BSAL Soil Data Cards SITE LOCATION: SOUTH OF CREEK PROFILE MAP DETAILS **SURVEY DETAILS** Profile No. Map Sheet No. **Eastings Northings** Described By **Profile Date** Photo Taken (1) No. of Layers 0000 O dan dub O O profile (1 site (2 QQQQQQ**@**Q@QQQQQQQQQQQQQ**@**Q**@** both profile & site 1 3333333333333333333 (2) 444444444444 4 May Moy 4 @ (3) auger (1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5555 (5) (Jun) (Dec) (5) (5) pit @ 4 6666 660 66 batter 3 77 7 gully 4 ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ ❸ 8888 (8) 88 core sample (5) 99999999999999999 9 9 9 other 6 NSW SOII Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL AND LAND checked (1 detailed @ ves (1) no @ LAND SOIL DATA CARD **INFORMATION** exclusion 3 **SYSTEM** SOIL **LANDFORM ELEMENT (1) VEGETATION** TYPE **Vegetation Community (1)** A.S.C. alcove (43) Please MARK sink hole/doline (52 cone (3) footslope 21 ox-bow (57) LIKE THIS ONLY: unknown (1 backplain (31) crater (51) foredune 12 pan/playa 56 5 stream channel (46 0 rainforest (2) hank (25) cut face (28) gully 42 pediment 22 streambed 45 0 wet sclerophyll forest 3 bar 6 cut-over surface 39 hillcrest ① pit (60) summit surface (2) Use 2B pencil Α dry sclerophyll forest 4 beach (26) hillslope (17) dam (16) plain (30) swale 47 SO No pen or biro woodland grass u'storev (5) beach ridge (7) B drainage depression 41 lagoon 54 prior stream (9) swamp 58 **Fully erase** woodland shrub u'storev 6 bench (19) dune (11) lake 55 rock flat (34) talus 23 mistakes D tall shrubland (7 berm (29) embankment (14) landslide (20) rock platform 35 GG tidal creek (48 Make no P low shrubland ® blow-out 59 estuary 44 levee (8) scald (36) tidal flat 37 strav marks heath (9) channel bench 33 fan (27) Junette (13) scarp (18) tor 4 Numbers in () A SG grassland/herbland @ cirque (50) fill top (40) maar (53) scree 24 trench 49 show max. H swamp complex (11) cliff (5) flood-out 32 mound (15) scroll 10 entries allowed valley flat B littoral complex (12 LITHOLOGY **TOPOGRAPHY** no vegetation 13 E A M **Growth Forms (4)** Substrate (3) Slope Percent Site Morphology (1) N tree @ not identified T limestone coarse-basic 0 tree mallee (2) unconsolidated (2) tuff 24) fine-acidio 46 **D D D D** crest 2 shrub 3 gravel 3 breccia (25) fine-intermediate 47 (2) (2) (2) hillock (3 W mallee shrub 4 sand 4 greywacke (26) fine-basic (48) (3) (3) (3) ridge 4 C heath shrub (5) (5) silt upper slope 5 arkose (27) serpentine (49 (4) (4) (4) G.S.G. chenopod shrub (6) gabbro clay 6 dolomite (28) (50 (5) (5) (5) midslope 6 (A) hummock grass @ organic material (7) calcrete dolerite 29 (51) 6 6 simple slope (7 BBB tussock grass @ alluvium (8) aeolianite (30) diorite (52 77.7 lower slope ® 00 sod grass 9 colluvium (9) chert (31) (53 svenite (8)(8)(8) open depression (9 00 sedge 10 (10) lacustrine iasper (32) granodiorite (54 99.9 closed depression (10 rush (11 E E aeolian (11) metamorphic (33) adamellite (55 **Slope Measurement** Slope Morphology (1) <u>எ</u> எ எ forb (12) marine (12) aneiss (34) granite (56 Method (1) ED CED CED fern/cycad (13 calcareous sand (13) schist/phyllite (35) (57 aplite inclinometer 3 waxing I (K) (K) (K) moss (14 fill (14) slate (36) quartz porphyry (58 Abnev level 4 waning 2 00 lichen (15 (15) mud hornfels (37) basalt (59 total station (5) maximal 3 (M) (M) liverwort (16 till (16) quartzite (38) andesite 60 RTK GPS © minimal @ PPP vine (17 sedimentary (IP) areenstone (39) trachyte (61 LIDAR CO Aspect (1) ® ® shale (18) amphibolite (40) 62 Microrelief Type (1) rhvolite LAND USE (1) (S) (S) (S siltstone/mudstone 19 marble (41) obsidian (63 N none @ CD CD national/state parks (T sandstone-quartz (20) igneous (42) scoria (64 normal gilgai ② NW NE W timber/scrub/unused @ crabhole gilgai 3 sandstone-lithic (21) coarse-acidio (43) ash 65 Œ X logged native forest 3 conglomerate coarse-intermediate (44) agglomerate (66 linear gilgai 4 SW SE hardwood plantation 4 67 other lattice gilgai (5) (5) affinity softwood plantation (5) Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with volun./native pasture 6 personal assessment (T other 9 improved pasture geology map @ Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map 3 very poorly drained very slowly permeable ≤ 500 mm depth ① orchard/vineyard 9 Rock Outcrop % (1) poorly drained 2 slowly permeable > 500 mm depth 2 vegetables/flowers 10 nil >20-30% 5 imperfectly drained 3 moderately permeable 3 < 50% area (T urban (11 <2% ② >30-50% ⑥ mod, well-drained highly permeable 4 > 50% area (2 industrial (12) 2-10% (3) >50% (7) well-drained (5) SITE FIELD NOTES quarry/mining (13) >10-20% (4) rapidly drained 6 other 14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked (2) Ground natural disturbance ① self-mulched 3 3 3 Cover % no effective disturbance 2 loose 4 4 4 limited clearing 3 00 soft 5 (5) (5) extensive clearing T T T firm @ 6 6 cleared, no cultivation (2) (2 hardset (7) (7) occasional cultivation 6 3 3 surface crust ® 8 8 rainfed cultivation (7) 4 4 trampled 9 9 irrigated cultivation ® 5 5 poached 10 (10) highly disturbed (9) (6) (6) recently cultivated (11) Photo file name/s: (7)(7)water repellent (12) (12) 8 6 gravelly (1) other (13) (13) (13) Please do not mark this space. 4640 SURVEY TITLE: RIXS CREEK BSAL 1781 NCS | cm | | mm (| 0 - | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | |------|----|------|---------------------------------|------------|---|------------|------------------|----------------------|-----------|---|-----------|----------------|--------------|-----------|--------------|---------|-------------------|---------|---------------------|-----------|---------------------|--------------------------------------| | 1 - | | | - | S | TATUS | | COLO | UR (M | unsell, | 1994) | Field | рН | | LA | YER NO | TES | | Fie | ld pH | Test N | /lethod | (1) | | | | L | .ower | | Horizor | | Moist M | unsell | Dry N | lunsell | (1 per la | ayer) | 1 , | 1 1 | | | | | Rai | pach (| test | | | 2 — | | | | | 2 @ D | | | | | | | 0 | | 1 1 | | - | | | | meter (| | | | | | | | | 3 B F C | | | | | | |)·① | | | | | | no | | | | D D | | | 4 | | 3.333 | | AB P | | | 33 | | 33 | | •3 | | | | | | audib | le/slight e | efferv. (| 2222 | 022 | | 3 — | ш | | 4.4.4 | | AO B | | GY | 4 4 | GY | 4 | | •4 | 1 | 1 (| | | | | | | 3 3 3
nctiver | | | | | | 5·5 5
6·6 6 | | (BC) | | G | 5 5
6 6 | G | (5) (5)
(6) (6) | |)• 5 | | 1 | | - | | DO | | | 1 2 3 | | | 4 — | | | | | | | | | | | |)• 7 | | | | | | | | | DOO | | | | | | 8.8 | | | | | 88 | | 33 | | 8 | | | | - | | | | , | 2 2 2 | | | 5 — | H | | 9•9 9
_ower | | Horizon | n | Moist M | unsell | Dry I | /lunsell | Field | nH | 2 | | | | | 2.00 | | | 3 3
4 4 4 | | | | | | | D C | 2 A D | | | | | | | • @ | | | | | | | | | 5 5 5 | | | | | | D·O | | 3 | | | | | | | | | | | | | diffu | | | 666 | 0 6 | | 6 — | | | 2)·(2) (2
3)· 63) (3 | | 4 C O O C | 3) (3) | 7.5 Y) (P
(N) | 3 3 | | P 25 20
3 3 | |)•②
)•③ | | | | - | | Grade | | RUCT | 1 2 3 | 4 5 | | | 2 | | 4 • 4 4 | | AD B | | GY | 44 | GY | 4 | |)• 4 | | | | | | | | | DOC | | | 7 — | | | 5.5 5 | | BO | | G | 55 | G | 55 | | • (5) | | | | | | | | | 2222 | | | | | | 6 6
7 7 7 | | | | | 6 6 7 7 | | 6 6 7 7 | |)• 6 | | | | | | mo | | | 3 3 3
4 4 | | | 8 — | | | B • B G | | | | | 88 | | 38 | |)•8 | | | | | | | | | 5 6 6 | | | 0 – | | | 9.9 | D | | | | | | | | 9 | | | | | | | | | 1 2 3 | | | | | | _ower | | Horizon
2 A D | | Moist M | | | Viunsell | Field | pH
)•① | 3 | | | 1 | | | | - | | | | 9 — | | | | | 2 A W C | | | | | | | | | | | | | rou | | , | 3 3 3 | | | | | 2 | 2.22 | DO | 4000 | | 7.5 ® P | 25 2 | 7.5 | P 25 2 | 2 |)·(2) | | | | | de la
constantina | | | | 444 | Name and Address of the Owner, where | | 10 — | 3 | | 3.333 | | AB P | | ① (N)
(S) | 3 3 4 | (T) (N) | 344 | |)•3
)•4 | | | | | Dominant (| | Ped Sha | | Sub-dom | | | | ۲ | | 4 · 4 · 4 · 5 · 5 · 5 | | (AC) (R) | | GY | 5 5 | GY | (4) (4)
(5) (5) | |)•(4)
)•(5) | | | | | 2 3 4
D D D | | platy | _ | | | | | | | 6 • 6 | | | | | 66 | | 66 | 6 | ·6 | | | | | 222 | | lenticula | | 222 | | | 11 — | | | 7.00 | | | | | | | | | | | 1 1 | | | | | prismat | | 3 3 3
4 4 4 | | | | | | 3°3 (3
3°9 (3 | | | | | 88 | | 88 | | • ®
• 9 | | | | | 4 4 4
5 5 5 | | column
ngular bl | | 5 5 G | | | 12 — | | _ | Lower | | Horizo | n | Moist N | unsell | Dry I | Munsell | Field | | 4 | | | | 666 | | ıb-ang. b | locky | 566 | | | | | | | | 2 A D | | | | | | |)·@ | | | | | | | polyhed | 1000 | | | | 13 — | | | | | 3 6 F 6 | | | | | | |)·(1)
)·(2) | | | | | 0 | | granula | | | 3 3 3 | | 13 — | 1 | | 3.3 | | AB (P) | | 110 (N) | | | 3 3 | |)·③ | | | | _ | 0 0 0 0 | | round | | | | | | 14 | | 4.4 | | AC R | | GY | 4 | | 44 | | •4 | | | | | Dominant (| | Ped Si | | Sub-dom | | | 14 — | | | 5·5 (| | BC | | G | 5 5 6 | | 6 6 | |)• 5 | | 1 1 | | 1 | 2 3 4 | 5 | <2 mr | - | 1 2 3 | 3 4 5
D (1) (1) | | | | | D • O O | | | | | | | | | | | | | | | | 2-5 mr | | | | | 15 — | | | 8.8 | | | | 100 | 88 | | 33 | | 8 | | | 1 1 | | 3333 | | 5-10 m | | | 3 3 3 | | ,0 | H | | 9.9 | 9) | Havina | _ | Majet N | lunnall | Desc | Munaell | Field | 9 | 5 | | | | 4 4 4
5 5 5 | | 10-20 m | 1110 | | 4 4 4
5 5 5 | | | | | Lower 0 | 00 (| Horizo | | Moist N | | | Munsell
BG 17 0 | |)•@ | 3 | | | | | | 20-50 m
50-100 r | 114 6/6 | | 000 | | 16 — | | | | | 3 B F | | | | | | | D•C | | | | | | | 100-200 | | 777 | | | | | | | | 4 0 0 0 | 3 @ | | | | | | 0.00 | | | T I | | | | 200-500 | | | | | 17 — | 15 | | 3·3 (3) | | AB P | | (TO) (N) (GY) | 4 4 | | (3) (6)
(4) (4) | | D•3
D•4 | | | 0=0 | | | | > 500 m | | ter Stat | 9 9 9 | | | | | 5.5 | | BO | | G | 6 5 | | 5 5 | | 0.5 | | | | | GATIO | | | | per laye | er) | | 18 — | | | 6.6 | | Estimated | | 100 | 6 6 | | 6 6 | | 0.6 | | | | | 1 2 3 | | | de | 1 2 3 | | | 10 — | | | 7·7 (| | Effective | | | 7 7
3 8 | | (T) (T) | | | | | | | | | | | | D (1) (1) (2) (2) (2) | | | | | 9.9 | | Rooting | | | | | | | 9 | | | | | 3333 | | | | | 3 63 63 | | 19 — | S | 0 | Upper | | Depth (m | | | le Taker | | | | | MENTS | | | | 4 4 4
5 5 5 5 | | | | | 4 4 4 | | | U | D | | | | | disturbed G | | | | | | | | | | 6666 | | and Malanata and | | TURE
per laye | r) | | 20 — | B | 2 | 2.2 | 2) (| 22.2 | ② ur | ndisturbed @ | | ** | not ident | ified @ | 2 | 22 | 22 | | organio | | | Texture | Grade | 1 2 | 3 4 5 | | | S | | | | 3 3·3 (4)·4 | | bulked • | | | as substas rock ou | | | 3 3 | | not id | | 1 | | | | | D (1)
2 (2) (2) | | 21 — | R | | | | 5 5.5 | | Base of Ol | | | | - 1 | | | | Amount (1 p | |) 1 2 3 | | | | | 3 3 3 | | 21- | A | 6 | 6.6 | 6 | 666 | 6 | lay | er contin | ues ① | qu | ıartz @ | 0 | 66 | 66 | | none | | | sand | y loam | 440 | 4 4 4 | | | T | | | | 7 7·7
3 3·3 | | | oil contin | | | | | | | | |) | | | | | 5 5 5
6 6 6 | | 22 — | E | | | | 9 9 9 | | | ment ren
ock reac | | | | | | | | • |) | | | | | | | | | Domi | nant (1) | | MOTTLES | Sub-c | dominant (|) | | bai | uxite @ | 0 10 | 10 10 | 10 10 | many (2 | 20-50% |) 5 5 5 | 55 | cla | y loam | 88 | 888 | | 23 — | | | | | Abundance
not evident | | | | | | | | | (II) (II) | | |) 6 6 6 | | | | | | | | | | 220 | | | | | | | | | | 12 (12) (13) | | sirength (1) | | 1 2 3 | | | | | | | 0.4 | 3 | 3 | 330 | 3 | 2-10% | 333 | D333 | D | | opalised v | D boov | 4 14 | 14 14 | 14 14 | | strong | 9 20 2 | 2 @ | si | ty clay | 12 12 (| 12 (12) | | 24 — | | | | | | | | | A | | | | | | | | 1 2 3 | | | | | (3) | | | | | 3 4 | _ | 20-50%
Colour | | 3 4 | _ | | nt (1 per la
very few (< | | | | | _ | _ | | | | • | | 14 (14) (14)
15 (15) (15) | | 25 — | | | D D (| | | | | _ | 1 | few (2-1 | | | | | | | 3 3 3 | | | • | | an an an | | | | | 22 | | | | | | | nmon (10-2 | , | | | | | | s 4 4 4 | | | | | | | 26 — | | | 3 3 C | | | | D (3) (3) (3) | | | many (20-5
ndant (50-9 | | | | | cond | | s | | | | | D (1)
2 (2) (2) | | 20 — | | | 5 5 | | - | | 5 5 5 | | | undant (>9 | | | | | | | | | | | | | | | 6 | 6 | 6 6 | 6 | pale | 6 | 0 6 6 | D | Siz | ze (1 per la | yer) Su | ır. 1 | 2 3 | 4 5 | | tubule | 8 B B | 88 | | light | D D C | DOD | | 27 — | | | 777
38 | | 0 | | | | | | | | | | | | 1 2 3 | | | | | 222 | | | 1 | | 3 4 | | | | 2 3 4 ! | _ | | avel (6-20)
vel (20-60) | | | | | | |) | | | | | 3 3 3
4 4 4 | | 28 — | | 0 | | D | faint | D G | | D | cobble | s (60-200 | mm) 🗷 | 1 4 | 44 | 44 | coarse (6- | 20 mm |)
3333 | 33 | | | | 5 6 5 | | | | | 2 2 | (3 | (3) | (B) (B) | 3) | prominent | (3) (3 | y (3) (3) (3 | ט | bould | ers (>600 | mm) G | 0 6 | 6 6 | 6 6 | ext coarse (| >60 mm |) 5 5 5 | (5) (5) | | | | | | 29 — | SITE LOCATION: ADJACENT TO TRACK **PROFILE MAP DETAILS SURVEY DETAILS** Profile No. Map Sheet No. **Eastings Northings** Described By **Profile Date** Photo Taken (1) No. of Layers 0000 O Jan Jul O O profile (1 site (2 both profile & site 1 33333333333333333 3 3 3 3 3 4 Mm (m) 3 3 Nature of Exposure (2) (2) 4 (10) (10) (4) (20) (3) auger (1 5555555555555555 5555 (5) Jun Oeo (5) (5) pit (2 4 669 6 6 batter 3 **(E)** O O 7 gully 4 8888 88 core sample 5 999999999999999999 9 9 other 6 NSW SOIL Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL checked (1 AND LAND yes ① no e detailed @ LAND SOIL DATA CARD INFORMATION exclusion (3) **SYSTEM** SOIL **LANDFORM ELEMENT (1) VEGETATION** TYPE **Vegetation Community (1)** A.S.C alcove 43 Please MARK sink hole/doline 52 cone (3) footslope (21) ox-bow (57) LIKE THIS ONLY: backplain (31) unknown (1 crater (51) foredune (12) pan/playa 56 5 stream channel (46 0 rainforest (2 bank (25) cut face (28) gully 42 pediment (22) streambed 45 0 wet sclerophyll forest 3 bar 6 cut-over surface 39 hillcrest ① nit (60) summit surface (2) Use 2B pencil A dry sclerophyll forest 4 beach (26) dam (16) hillslope @ plain (30) swale (47) SO No pen or biro woodland grass u'storey 5 beach ridge 7 drainage depression (41) B lagoon 54 prior stream (9) swamp 58 Fully erase woodland shrub u'storey 6 bench (19) dune 11 lake (55) rock flat 34 talus 23 E mistakes tall shrubland (7 berm (29) embankment (14) landslide 20 rock platform 35 tidal creek 48 GG Make no 5 low shrubland (8) blow-out 59 estuary 44 levee ® scald (36) tidal flat (37 stray marks heath (9 channel bench (33) fan (27) lunette (13) A scarp (18) tor (4) Numbers in () SG grassland/herbland @ cirque (50) fill top (40) maar (53) scree (24) trench 49 show max. H swamp complex (11 cliff (5) flood-out (32) mound (15) scroll 10 valley flat 38 entries allowed 8 littoral complex (12 LITHOLOGY **TOPOGRAPHY** no vegetation (13 6 A Growth Forms (4) Substrate (3) Site Morphology (1) **Slope Percent** N not identified tree CT limestone (23 coarse-basic 45 0 tree mallee (2 L unconsolidated (2) tuff (24) fine-acidic 46 **D D D D** crest 2 shrub 3 3 (25) gravel breccia fine-intermediate (47 22.2 hillock (3 W mallee shrub 4 sand 4 greywacke (26) fine-basic (48 (3)(3)(3)ridge 4 C heath shrub (5) (5) silt (27) arkose serpentine (49 (4) (4) (4) upper slope 5 G.S.G. chenopod shrub 6 clay gabbro 5 5.5 midslope 6 (6) dolomite (28) (50 (A) hummock grass @ organic material (7) calcrete (29) dolerite (51 666 simple slope T BBB tussock grass @ alluvium 8 aeolianite (30) diorite (52 7 .7 lower slope 00 sod grass 9 colluvium (9) chert (31) svenite (53 (8)(8)(8) open depression (9) (D) (D) sedge 10
lacustrine (10) (32) granodiorite iasper (54 99.9 closed depression 10 ® ® ® rush (11) (TT) aeolian metamorphic (33) adamellite (55 Slope Measurement Slope Morphology (1) <u>எ</u> எ forb (12 marine (12) (34) (56) aneiss granite Method (1) ED CED CED fern/cycad (13 13 calcareous sand schist/phyllite (35) aplite (57 inclinometer 3 waxing (1 (K) (K) (K) moss (14 (14) 36) slate quartz porphyry (58) Abney level 4 waning @ 00 lichen (15 (15) mud hornfels (37) basalt (59 total station (5) maximal 3 (M) (M) liverwort (16 till (16) quartzite (38) andesite (60 RTK GPS © minimal 4 PPP vine (17 sedimentary (TOTAL) greenstone LIDAR Aspect (1) (39) trachyte (61 BB Microrelief Type (1) shale (18) amphibolite 40 rhyolite 62 LAND USE (1) (S) (S) (S siltstone/mudstone 41) marble obsidian (63 N none @ CD CD national/state parks (1 sandstone-quartz (20) (42) normal gilgai ② igneous scoria (64 NW NE W timber/scrub/unused (2) sandstone-lithic (21) coarse-acidic (43) ash (65 crabhole gilgai 3 Œ (X) logged native forest 3 conglomerate coarse-intermediate 44 SE (22) agglomerate 66 linear gilgai 4 SW hardwood plantation 4 other (67 lattice gilgai 5 (3) softwood plantation (5) affinity Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with volun./native pasture 6 personal assessment (T other (9) improved pasture geology map Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map 3 very poorly drained ① T very slowly permeable ≤ 500 mm depth ☐ orchard/vineyard 9 slowly permeable Rock Outcrop % (1) poorly drained 2 > 500 mm depth (2) vegetables/flowers 10 nil >20-30% 5 imperfectly drained moderately permeable 3 < 50% area (T urban 11 <2% ② >30-50% ⑥ > 50% area @ mod. well-drained (4) highly permeable industrial (12) 2-10% (3) >50% (7 well-drained (5) SITE FIELD NOTES quarry/mining 3 >10-20% 4 rapidly drained 6 other 14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked (2) Ground natural disturbance (1) self-mulched 3 3 3 Cover % no effective disturbance 2 4 loose 4 4 limited clearing 3 000 soft 5 (5) (5) extensive clearing () (1) (1) firm 🚳 6 6 cleared, no cultivation hardset (7) (2) (2 (7) occasional cultivation 6 3 3 surface crust ® 8 8 rainfed cultivation (7) 44 trampled (9) 9 irrigated cultivation ® (5) (5) poached 10 highly disturbed 9 (6) (6) recently cultivated (11) Photo file name/s: (12) (7)(7)water repellent (12) 8 6 gravelly ① other (13) (13) Please do not mark this space. 4641 SURVEY TITLE: RIXS CREEK BSAL NCS F | cm | | mm 0 10 | 20 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 1 | 20 | 130 1 | 40 | 150 | 160 | 170 | 180 | |------|-----|--|--|----------------|--------------------------|--------------|---|--------------------------|---------|----------|--------------------------------|---------|---|------------|--------------------------|-------------------|------------------------------|--| | 1 - | | LAYER S | STATUS | COLOUP | R (Mun | sell, | 1994) | Field pH | Jane L | LA | ER NOT | ES | | Fie | ld pH T | est Me | ethod | (1) | | | | Lower | Horizon | Moist Muns | sell | Dry M | unsell | (1 per layer) | 1 | 1 1 | | 1 1 | 1 1 | | Raup | oach 📟 | test s | | | 2 — | | | | | | | | O•O | | | | | 1 | | | eter ② | | | | | | | 40033 | | | | | (D) (D) (D) | | | | | | no | effervesce | | D D | D D | | 3 — | 1 | 3 3 3 | AB (P) | | | | 3 6 | 3.3 | | | | 1 1. | | | e/slight ef | | | | | | ľ | 4 4 4 4
5 5 5 5 | AO (B) | | 5 5 | GY
G | 4 4
5 5 | 4 • 4 | | | | 1 1 | | | effervesce
indary | | | | | | | 666 | | G | 56 | | 66 | 6.6 | | | | | | | (1 per la | yer) 1 | 2 3 | 4 5 | | 4 — | | 77·77
88·88 | | | | | 77
88 | 7·7
8·8 | | 1 | | | | 6 | not evi | dent ① | | | | | | 9 9 9 | | | | | | 9.9 | | |
| | - | | upt (5-20 | , | | | | 5 — | | Lower | Horizon | Moist Muns | | | unsell | Field pH | 2 | 1 1 | | 11. | | | ar (20-50 | , | | | | | | | 2 A D 1 | | | | | ©•©
(D•(D) (D) | | | | 1 1 | | | l (50-100
se (>100 | | | | | 6 — | | 22.22 | 40033 | 75 @ P @ | 5 2 75 | | P 25 2 | 2.2 | | | | 1 1 | | | STR | UCTU | RE | | | | 2 | 3 3·3 3
4 4·4 4 | AB P | | 3 3 10 | O (N)
GY) | 3 3 4 4 | 3·3
4·4 | 1 . | <u> </u> | 1 1 1 | | | | of Pedalit
single-gra | | | | | 7 — | | 5 5 6 5 | B O | | 5 5 | G | 5 | 5.6 | | | | | | | 0 | ssive 2 | | | | - | | 6666 | | | 00 | | 66 | 6 | | 1 1 | i i i | 1 1 | 1 | | weak ped | , | | | | | | | | | D (D) | | (7) (7)
(8) (8) | 7·7
8·8 | | | | | | | derate ped
strong ped | | | The second secon | | 8 — | | 9999 | | | | | | 9.9 | | | | | | | Fabri | c (1) 1 | 2 3 | 4 5 | | | | Lower | Horizon ② | Moist Mun | | | lunsell | Field pH | 3 , | | T T | | | | | andy 🗆
arthy 👁 | | | | 9 — | | | 3 (P) (P) (S) | | | | | | | | | 1 1 | | rou | gh-faced | - | | | | | | | 40033 | | | | P 25 2 | 2.2 | 1 1 | | 1 1 | | | | th-faced | | | | | 10 — | 3 | 3 3·3 3
4 4·4 4 | AB P | | 3 3 10 | | 3344 | 3·3
4·4 | | | | | minant (1)
2 3 4 | _ | ed Shap | | ub-domi
2 3 | | | | | 55.55 | 60 | | 5 5 | G | 6 5 | 5.6 | | | | | | | platy | | D II | | | 11 — | | 6 6 6 | | | 0 0 | | 66 | 6.6 | | | | | | | lenticular | | 22 | | | 11- | | 77.77
88.88 | | | 7 7 | | 77
38 | 3 •8 | 1 1 | | | | 3 3 3 6
1 4 4 6 | | prismatio | | 44 | | | | | 9 9 9 | | | | | | 9.9 | | | | | 555 | | ngular blo | cky 5 | 5 5 | | | 12 — | | Lower | Horizon ② | Moist Mun | | | lunsell | Field pH | 4 | | | | | | b-ang. blo
polyhedra | | | | | | | Committee of the commit | 3 9 P 2 | | | | | | | | | | 3 3 3 | | granular | | | | | 13 — | | Committee of the commit | 4 C C C C C | | | | | 2.2 | | 1 1 | | | | | crumb | | 999 | | | | 4 | 3 3 3 3 | AB P | | 3 3 4 4 | (N)
(GY) | 3 3
4 4 | (3)•(3)
(4)•(4) | | | | | 0 (10 (10)
minant (1) | | round
Ped Siz | | ub-domi | | | 14 — | ľ | 5 5 5 | (BC) | | 5 | G | 5 5 | 5.5 | | | | | 2 3 4 | | | 1 | 2 3 | 4 5 | | | | 6666 | | | 6 6
7 7 | | 6 6 7 7 | 6 6 7 7 | | 1 1 | | | | | <2 mm | | | | | 15 | | 8 8 8 | | | B (B) | | 88 | B • B | | 1 1 | | | 3 3 3 | | 5-10 mm | | 333 | | | 15 — | L | 9 9 9 | | | | | | 9.9 | | | | | 444 | | 10-20 mr | | 44 | | | | | Lower | Horizon ② | Moist Mun | | | lunsell | Field pH | E . | | | | 5 5 5 6
6 6 6 | | 20-50 mr
50-100 m | | 0 | | | 16 — | | D D • D D | 3 B F 2 2 | 5 MB B | 2005 | O CER C | B 2 1 | | | | | | 7 @ @ | | 100-200 m | | | | | | _ | | 4 C O 3 3
AB P | | 25 (2) (7)
3) (3) (1) | | | 2.2 | | 1 1 | - T - E | _ | | | 200-500 m | | | 3 3 3 | | 17 — | 5 | 3 3 3 3
4 4 4 4 | | | 4 4 | (A) | 3 3
4 4 | | | | CEC | | 9 9 9 | | > 500 mr | oil Wate | the latest the latest to the | 99 | | | | 5 5 5 | | | 5 5 | G | 5 5 | | | | | | ATION | | | each p | er laye | r) | | 18 — | | 6 6 6 6
7 7 7 7 | The second secon | | 6 6
7 7 | | 6 6 7 7 | | | | Type (1 per l | | 1 2 3 | | 1.0 | | 2 3 | 4 5
① ① ① | | | | 3 3 3 | Effective | | 88 | | 88 | 8.8 | | | calcai | eous C | 222 | 22 | | moist @ | 222 | 22 | | 19 — | | 9 9 9 9
Upper | Rooting Depth (m) | Sample | Takon | _ | CO | 9.9
ARSE FRAC | | | 0,1 | | 3 3 3 (3) (4) (4) (4) (4) | | | moist @ | | 3 4 4 | | 13 — | S | 0000 | | | | 5 | Type (1 per l | layer) Sur 1 | 2 3 | | | | 5 5 5 | | | TEXT | production of the production | , 4 | | 5000 | B | | | disturbed 3 | | | | dent 🗇 🗃 | | | ferromanganii | | | | | each p | | | | 20 — | S | C C C | 22.2 ur
33.3 3 | disturbed | | | | fied ② ② rate ③ ③ | | | | | 7 7 7 (B) | | | Grade 1 sand 1 | | | | | T | 4 4 4 | 4 4·4 4 bu | lk density 🗇 🤇 | 700 | DO | as rock out | crop 4 4 | 4 4 | 44 | | other C | 999 | 99 | loamy | sand @ | 022 | 000 | | 21 — | R | | 5 5 5 5
6 6 6 6 | Base of Obse | continue: | _ | | terial 5 5
artz 6 6 | | | Amount (1 per | | 1 2 3
D (1) (1) | | | sand 3 | | | | | A | | D D D D | | continue | | | spar 7 7 | | | very few | | 200 | | | loam © | | | | 22 — | Ė | | 8 8 8 | | ent refusa | | | rete ® ® | | | | | 3 3 3 | | - | | | 66 | | | | | MOTTLES Sub-c | | k reached | d 🎱 | | one 9 9 xite 10 10 | | | common (10-
many (20- | | 4 4 4 6
5 5 5 6 | | | | |) (T) (T)
(B) (B) | | 23 — | 1 | 2 3 4 5 | Abundance 1 2 | 3 4 5 | | | sh | nells 111 111 | O CO CO | ID (II) | abundant (> | 50%) | 666 | 66 | clay loam | sandy @ | 999 | 99 | | 25 — | | 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | not evident 6 6 <2% 2 2 | 0666 | | | | coal 12 12
nice 13 13 | | | Strength (1 per | | 1 2 3
D (1) (1) | | | | | | | | | 3333 | | 333 | | | | ood 14 14 | | | | | 202 | | | | | | | 24 — | | | ALCO LOUIS AND | | | | 0 | ther (18) (18 | 18 (18) | 18 (18) | Form (1 per | layer) | 1 2 3 | 4 5 | | clay ① | 3 43 (6 | (3) | | | | 2 3 4 5 | | 3 4 5 | P | | | /er) Sur. 1
2%) ② ② | | | soft segrega | | | | | | | 14 14
15 15 | | 25 — | Œ | | dark 🗇 🗇 | | | | few (2-10 | 0%) 333 | 333 | 33 | fragr | nents C | 333 | 33 | saprio | peat @ | 6 (16) (16) | 16 16 | | | | | | | | | | 0%) 4 4 | | | | | 444 | | | | | | | 26 — | | | | 333 | | | | 0%) | | | | | 5 5 5 | | C | | | | | | (5) | 5 6 5 | brown 5 5 | 555 | VE | ery abu | indant (>90 | 0%) 7 7 | | D D | root li | nings C | | 77 | Clay Fra | ction 1 | 2 3 | 4 5 | | 07 | | 06666 | | | | | | /er) Sur. 1 | | | Size (1 per l | | 888 | | light ma | - | | | | 27 — | | | 0 , | | | | | nm) ② ② | | | fine (<2 | 2 mm) C | DOO | D D | me | edium @ | 3 3 | 33 | | | _ | 2 3 4 5 | Contrast 1 2 | 3 4 5 | | e grav | el (20-60 n | mm) 3 3 | 333 | 33 | medium (2-6 | mm) C | 222 | 22 | medium I | heavy @ | D 4 4 | 44 | | 28 — | | | | | | | | nm) 4 4
nm) 5 5 | | | coarse (6-20
v coarse (20-6 | | | | | neavy C | 5 6 | 6 5 | | | | | prominent 3 3 | | | | | | | | ext coarse (>6 | | | | | | 1 | | | 29 — | | | | | | | | | | | | | | | | | | | SITE LOCATION: SOUTH OF DAM PROFILE MAP DETAILS **SURVEY DETAILS** Profile No. Map Sheet No. Eastings Northings Described By **Profile Date** Photo Taken (1) No. of Layers 0000 0000 0000 0 O Jan Jul O O site (2 0 QQQQ@QQ@@QQ@QQQQQQ@@@@Q@@@@Q@ both profile & site 1 Nature of Exposure (2) 2 (3) auger (1 5555555555555 5555 6666 (5) Jun Oeo (5) (5) pit @ (Idea 66666666666666666666 66 batter 3 (16) (5) O O gully 4 7 888888888888888888 888 (8) 88 core sample 5 999999999999999999 9 9 9 other 6 **NSW SOIL** Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL AND LAND ves ① detailed @ no @ **INFORMATION** LAND SOIL DATA CARD exclusion 3 **SYSTEM** SOIL **VEGETATION LANDFORM ELEMENT (1)** TYPE Please MARK A.S.C **Vegetation Community (1)** alcove (43) cone (3) footslope (21) ox-bow (57) sink hole/doline (52 LIKE THIS ONLY: unknown (1 backplain 31) crater (51) foredune (12) pan/playa 56 5 stream channel 46 0 rainforest 2 bank 25 cut face (28) gully 42 pediment (22) streambed 45 0 wet sclerophyll forest 3 bar 6 cut-over surface 39 hillcrest ① pit (60) summit surface (2) Use 2B pencil dry sclerophyll forest 4 A beach (26) hillslope @ dam (16) swale (47) plain (30) No pen or biro SO woodland grass u'storey 5 beach ridge (7) drainage depression (41) lagoon 54 prior stream (9) swamp 58 8 Fully erase woodland shrub u'storey 6 bench (19) dune 11 lake 55 rock flat 34 talus (23 mistakes E tall shrubland (7 berm (29) embankment (14) landslide (20) rock platform 35 tidal creek 48 GG Make no 5 low shrubland ® blow-out 59 estuary (44) levee (8) scald (36) tidal flat (37 stray marks heath (9) channel bench (33) fan (27) lunette (13) scarp (18) tor (4) Numbers in () A SG grassland/herbland cirque 50 fill top (40) maar (53) scree 24 trench 49 show max. H swamp complex (11) cliff (5) flood-out 32 mound (15) scroll 10 valley flat 38 entries allowed littoral complex (12 B LITHOLOGY TOPOGRAPHY F no vegetation (13 E A M Growth Forms (4) Substrate (3) Site Morphology (1) **Slope Percent** N limestone tree I not identified coarse-basic 45 0 0.00 L 0 tree mallee ② unconsolidated 2 tuff 24) ① ① **③**·① fine-acidic 46 crest (2 shrub 3 gravel (3) breccia (25) fine-intermediate (47 22.2 hillock 3 W mallee shrub 4 sand 4 (26) fine-basic greywacke (48 (3)(3)(3)ridge 4 C heath shrub (5 (5) silt arkose (27) serpentine (49 (4) (4) (4) upper slope 5 chenopod shrub (6) 5 5.5 G.S.G. clay 6 dolomite (28) gabbro (50 midslope 6 A hummock grass @ organic material calcrete dolerite 7 29 (51 666 simple slope (7 BBB tussock grass 🚳 alluvium (8) aeolianite (30) diorite (52 lower slope @ 00 sod grass 9 colluvium 9 chert (31) svenite (53 (B) (B) open depression (9) (D) (D) sedge (10 (10) lacustrine iasper (32) granodiorite (54 99.9 closed depression @ TO TO TE rush (11 aeolian (11) metamorphic (33) adamellite (55 Slope Measurement Slope Morphology (1) **@ @ @** forb (12) marine (12) aneiss (34) granite (56 Method (1) E E E fern/cycad (13 calcareous sand (13) schist/phyllite (35) aplite (57 waxing (1 moss (14) fill (14) slate (36) quartz porphyry (58 Abney level 4 waning @ D D lichen (15 mud (15) hornfels (37) basalt (59 total station (5) maximal 3 OD OD liverwort (16) till (16) quartzite (38) andesite (60 RTK GPS 6 minimal 4 P P P Aspect (1) vine (17 sedimentary 92 areenstone (39) trachyte (61 LIDAR @ Microrelief Type (1) BB shale (18) amphibolite (40) (62 rhvolite LAND USE (1) **S S S** siltstone/mudstone (19) (41) obsidian (63 N marble none @ T Z national/state parks (1 sandstone-quartz (20) igneous (42) scoria (64 normal gilgai ② NW NE W timber/scrub/unused (2) sandstone-lithic (21) coarse-acidic (43) ash (65 crabhole gilgai 3 E ∞ logged native forest 3 SE conglomerate coarse-intermediate (44) agglomerate (66 linear gilgai 4 SW 9 hardwood plantation 4 (67 lattice gilgai 5 (3) other softwood plantation (5) affinity **Identification
Method (1)** melonhole gilgai 6 **HYDROLOGY** with volun./native pasture 6 personal assessment (1 other 9 improved pasture @ geology map Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map ③ very poorly drained ① very slowly permeable ≤ 500 mm depth ☐ orchard/vineyard 9 poorly drained 2 slowly permeable > 500 mm depth ② Rock Outcrop % (1) imperfectly drained 3 moderately permeable 3 vegetables/flowers (10 nil >20-30% (5) < 50% area (1) <2% ② >30-50% ⑥ urban (11 > 50% area (2 mod well-drained highly permeable 4 industrial (12 2-10% ③ >50% (7) well-drained (5) SITE FIELD NOTES quarry/mining 13 rapidly drained 6 >10-20% 4 other 14 **Surface Condition** Expected SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked 2 Ground natural disturbance (1 self-mulched 3 3 3 Cover % no effective disturbance 2 loose 4 4 4 limited clearing (3) soft (5) (5) (5) 6 firm @ (6) cleared, no cultivation 22 hardset 7 7 occasional cultivation 6 3 3 surface crust ® (8) (8) rainfed cultivation (7) **4 4** trampled 9 (9) irrigated cultivation (8) (5) (5 poached (10) (10) Photo file name/s: highly disturbed 9 6 6 recently cultivated 1 TOT water repellent 12 (12) 8 8 gravelly ① other 13 13 (13) Please do not mark this space. 4626 SURVEY TITLE: RILY, S. LREEK, B.S.A.L. © NCS | cm | | mm 0 10 | 0 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | |------|-----|--|--|-------|--------------------------|---|---------------|------------------------------|----------------------|--------------------------|-----------------|--------------|-----------|----------------------------|-----------------------|-------------------------------|----------|---|------------| | 1 - | | LAYER | STATUS | | COLOU | JR (M | unsell | , 1994) | Field pH | | L | AYER NO | TES | | Fi | eld pH To | est M | ethod | (1) | | | | Lower | Horizon | | Moist Mu | nsell | Dry I | Munsell | (1 per layer) |) 1 | | | | 1 1 1 | | Raup | ach 🍯 | etest s | trip ③ | | 2 — | | | | | | | | 69 17 0
B 2 1 | | | | | | | | | eter (2) | | | | | | 2222 | | | | | | D 25 2 | 2.2 | | | | | | n | o effervesce | | | D D | | 3 — | 1 | 33.33 | AB P | | | 3 @ | | 3 3 | 3.3 | | | | | 1 1 1 | | ble/slight eff | | | | | | ľ | 4 4·4 4
5 5·5 6 | (BO) | | | 4 4
5 | G Y | 4 4 6 5 | 4 • 4 | | | | | | | g effervesce
oundary [| | | | | . | | 6666 | | | | 66 | | 66 | 6.6 | | | | | | | (1 per lay | yer) 1 | 2 3 | 4 5 | | 4 — | | 77.77
38.33 | | | | 77 | | (T) (T)
(B) (B) | 7·7
8·8 | | | | | | | not evid
sharp (<5 n | | | | | | | 9 9 9 | | | | ه ها | | | 9.9 | | | | | | al | orupt (5-20 n | , | | | | 5 — | | Lower | Horizon | | Moist Mu | | | Munsell | Field pH | | | | | | | ear (20-50 n | | | | | | | | | | | | | B 2 1 | ①·①
①·① | | 1 1 | | | | | ial (50-100 n
fuse (>100 n | | | | | 6 — | | 22.22 | 4000 3 | | 73 Y P | 2.5 2 | 7.5 Y | P 25 2 | 2.2 | | | | | | | STRI | JCTL | JRE | | | | 2 | 3 3·3 3
4 4·4 4 | AB P | | (T) | 344 | (N)
(GY) | (3) (3)
(4) (4) | 3 • 3 | | | | | | Grade | of Pedality
single-grai | | | | | 7 — | | 5 5 5 | 60 | | © | 5 | <u>G</u> | 55 | 5.6 | - | | | | | | 0 0 | | | | | | | 6 6 6 | | | | 66 | | 6 6 | 6.6 | | | | | | | weak peda | | | | | | | (7) (7) (8) (8) (8) (8) | | | | 77 | | (T) (T)
(B) (B) | 7°7
8°8 | | | | | | me | oderate peda
strong peda | | | | | 8 — | | 9999 | | | | | | | 9.9 | _ | | | | | | | | 2 3 | | | | | Lower | Horizon |) (T) | Moist Mu | | | Munsell | Field pH | | | | | | | | | | | | 9 — | | Control of the Contro | 3 | | | | | | | | | | | | ro | ugh-faced p | - | | | | | | | 4003 | 3 | | | | P 25 2 | 2.2 | | 1 1 | | | | | ooth-faced p | | | | | 10 — | 13 | 3 3·3 3
4 4·4 4 | AB (P) | | (N) | (3) (3) | (N) | 3 3
4 4 | 3.3 | | | | | Dominant (| 5 | Ped Shap | | ub-domin | | | | | 5 5 5 | | | G | 5 5 | G | (5) (5) | 5.5 | | | | | | 1 | platy | d | DOO | 00 | | 11 — | | 6 6 6 6
7 7 7 | | | | 6 6 7 7 | | 6 6
7 7 | 6·6
7·7 | | | | | (2) (2) (2)
(3) (3) (3) | | lenticular
prismatic | | 2 2 2
3 3 3 | | | | | B B B | | | | 88 | | 3 3 | 8.8 | | | | | 444 | | columnar | | D 4 4 | | | 40 | L | 9999 | | 1 | | | | | 99•9 | | | | | 555 | | angular bloc | - | | | | 12 — | | Lower O O | Horizon ② | | Moist Mu | | | Munsell
BG 17 0 | Field pH | | | | | | | sub-ang. bloo
polyhedral | , | | | | | | D D.D D | 3 B F 2 | 2 | (5) (MB) (B) | 20 | (5) YB | B 21 | D.C | | | | . 8 | 888 | 8 | granular | Œ | 3 3 3 | 88 | | 13 — | ١. | 2 2 2 2
3 3 3 3 | 4 C O 3 | 3 | 75 Y P
10 N | | 7.5 Y | P 25 2 | ②·2
③·3 | | | | | 9 9 9
0 10 10 10 | | crumb
round | | | | | | 4 | 4 4 4 | | | GY) | 4 4 | | 44 | 4.4 | | | | _ | Dominant (| | Ped Size | | ub-domi | | | 14 — | | 5 5 5 | | | G | 5 5 | | 5 5 | 5.5 | | | | 1 | | | | | 1 2 3 | | | | | 6 6 6 6
7 7 7 7 | | | | | | 6 6
7 7 | 6·6
7·7 | | | | | | | <2 mm
2-5 mm | | | | | 15 — | | 8888 | | | | 88 | | 3 3 | 8.8 | | | | <u> </u> | 3333 | 3 | 5-10 mm | C | 3 3 3 | 33 | | | L | 9 9 9 9 | Horizon | | Moist Mu | mooll | Desc | Munsell | 9·9
Field pH | _ | | | | 4 4 4
5 5 5 | | 10-20 mm
20-50 mm | | 4 4 5 5 5 | | | 40 | | Lower O O O | | | | | | | O•@ | _ | T T | | | 6 6 | | 50-100 mn | | 000 | | | 16 — | | | 3 B E 2 | | | | | | | | 1 1 | 1 1 1 | | | | 100-200 mi | | | | | | _ | | 4 C O G | 3 | (75) (Y) (P)
(11) (N) | | 7.5 Y | (P) (25) (2)
(3) (3) | | | | | | 8 8 8
9 9 9 | | > 500 mm | | 8 8 8
9 9 9 | | | 17 — | 5 | 4 4 4 | AD (B) | | GY | 44 | GY | 4 4 | 4.4 | | | SEC | | GATIO | OR OTHER DESIGNATION. | So | il Wate | er Statu | S | | | | 5 5 5
6 6 6 | | | G | (5) (5)
(6) (6) | | (5) (5)
(6) (6) | | |
 | | 1 2 3 | | | | per layer | | | 18 — | | | | | lui. | | | | | | | | | | | | | | | | | | 8888 | | | | 88 | | 3 3 | | | 1 1 | | | 222 | | | | 222 | | | 19 — | s | 9 9 9 9
Upper | Depth (m) | | Sampl | e Taken | | CO | 9•9
ARSE FRA | THE RESERVE AND ADDRESS. | ITS | | | 3 3 3
4 4 4 | | | | 39 39 3 9
4) 4) 4 | | | | lü | 00.00 | | | per layer) 1 | 2 3 | 4 5 | Type (1 per | ayer) Sur 1 | 2 | 3 4 5 | ferr | uginous | 555 | 5 5 | | TEXT | TURE | | | 20 — | B | | ① ① ① ① ② | | disturbed ③ | | | | dent 📵 🍱
fied ② ② | | | | | 6666 | | Texture G | | per layer | | | 20 — | S | 33.33 | 33.33 | D | bulked @ | 66 | 66 | as subst | rate 3 3 | 03 | 3333 | not ic | dentified | 888 | 3 | S | and C | DOO | D D | | | T | | 4 4 4 4
5 5 5 5 | | k density Base of Obs | | | | crop 4 4 | | | | | 9 9 9 | | | | 2 (2 (2
3 (3 (3 | | | 21 — | R | | 6666 | | | r contin | | | artz 6 6 | | | | | | | | | 4 4 4 | | | | 17 | | | | | | ues ② | | spar 7 7 | | | | | 222 | | | oam C | 5 5 5 | 55 | | 22 — | Ė | | 3 3 8 8
9 9 9 9 | | | | usal ③
hed | | rete 3 3
one 9 9 | | | | | 333 | | silty loss sandy clay | | | | | | | Dominant (1) | MOTTLES S | ub-d | ominant (1) | | | bau | ixite 100 11 | 00 0 | 10 10 10 | many (| 20-50%) | 555 | 5 5 | clay l | oam (| 888 | 33 | | 23 — | | 2 3 4 5 | | | 3 4 5 | | | | nells III II | | | | | | | clay loam s | | | | | | | 2222 | | | 0000 | | | | nice (13) (13 | | | | | | | | | | | | 24 — | | | | | | | | | ood (14) (14 | | | | | 222 | | | _ | 2 12 12 | | | | | 4 4 4 4
5 5 5 5 | | | 4 4 4
5 5 5 | - | Amou | nt (1 per lay | ther ® © | | | | | 1 2 3 | | | | 3 3 43 44 44 44 44 44 44 44 44 44 44 44 44 | | | | 1 | 2 3 4 5 | Colour 1 | 2 | 3 4 5 | | | very few (< | 2%) ② ② | 00 | 222 | | nodules | 222 | 2 2 | hemic | peat d | 5 (15) (15) | (E) (E) | | 25 — | | | | | | | com | few (2-10
nmon (10-20 | 0%) 3 3
0%) 40 4 | | | | - | | | Sand Frac | | 6 (16) (16) | | | | | 3333 | The state of s | | 3333 | | | many (20-50 | | | | | | 5 5 5 | | | | | | | 26 — | | 4444 | yellow @ | | 444 | | | ndant (50-90 | | | | | | 6 6 6 | | D | fine C | 222 | 22 | | | |) | | | 5 5 5
6 6 6 | | | undant (>9)
ze (1 per la) | | | | | | | | Clay Frac | | 1 2 3
D (1) (1) | | | 27 — | 7 | | grey | DO | | | fine g | ravel (2-6 r | nm) 🗇 🗇 | DO | DOO | Size (1 pe | er layer) | 1 2 3 | 4 5 | light med | dium C | 222 | 22 | | | 8 | 2 3 4 5 | | | 3 4 5 | 200 | | avel (6-20 r | | | | | | ① ① ⑤ | | | | 3 3 3 | | | 28 — | 1 | | | | 3 4 5
① ① ① ① | | | s (60-200 r | | | | | | 333 | | medium he | | 4) (4) (4
5) (6) (6) | | | 20 — | 2 | 2222 | distinct @ | 2 | 0000 | | stones | (200-600 r | nm) 5 5 | 5 | 555 | v coarse (20 | 0-60 mm) | 444 | 4 4 | D | | | | | | (3) | 33333 | prominent C | D (3 | <u> </u> | | bould | ers (>600 r | nm) © @ | 00 | 666 | ext coarse | (>60 mm) | 555 | (5) (5) | D | | | | | 29 — | SITE LOCATION: OPEN PADDOCK PROFILE MAP DETAILS **SURVEY DETAILS** Profile No. Map Sheet No. Eastings Northings Described By **Profile Date** Photo Taken (1) No. of Layers 0000 profile ① site 2 both profile & site @ 1 (2) 3 auger (1 55555555555555555555 5555 5 Jun Oec 5 5 pit @ 4 6666 (6) 66 batter 3 **653** (7) TT gully 4 888888888888888888888888888 8888 (8) 88 core sample (5) 9999999999999999 9 other 6 **NSW SOIL** Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL AND LAND checked @ ves (1) no @ detailed (2 LAND SOIL DATA CARD **INFORMATION** exclusion (3 **SYSTEM** SOIL **VEGETATION LANDFORM ELEMENT (1)** TYPE Please MARK **Vegetation Community (1)** A.S.C alcove (43) cone (3) footslope (21) sink hole/doline (5) LIKE THIS ONLY: unknown (T backplain (31) crater (51) foredune 12 5 pan/playa 56 stream channel 46 0 rainforest 2 bank (25) cut face (28) gully 42 pediment (22) streambed (45 0 wet sclerophyll forest 3 bar 6 cut-over surface 39 hillcrest ① summit surface 2 pit (60) Use 2B pencil A dry sclerophyll forest 4 beach (26) hillslope @ dam (16) plain (30) swale 47 SO No pen or biro woodland grass u'storey 5 beach ridge (7) drainage depression 41 lagoon 54 prior stream (9) swamp (58 B **Fully erase** woodland shrub u'storey 6 bench (19) dune 11 lake 55 rock flat (34) talus 23 mistakes tall shrubland (7 berm (29) embankment (14) landslide 200 rock platform 35 GG tidal creek (48) Make no low shrubland ® blow-out 59 estuary (44) levee (8) scald (36) tidal flat 37 stray marks heath 9 channel bench (33) fan (27) Numbers in () lunette (13) scarp (18) tor 4 SG grassland/herbland @ cirque (50) fill top 40 maar (53) scree (24) trench (49 show max. swamp complex (11) cliff (5) flood-out 32 entries allowed mound (15) scroll (10) valley flat 38 littoral complex (12 LITHOLOGY **TOPOGRAPHY** F no vegetation (13 A Growth Forms (4) Substrate (3) **Slope Percent** Site Morphology (1) limestone tree @ not identified coarse-basic (45 00.00 flat (1 tree mallee 2 unconsolidated 2 tuff 24) fine-acidic (46) **D D D D** crest (2 shrub 3 gravel (3) breccia (25) fine-intermediate (47 (2) (2) (2) hillock (3 mallee shrub 4 sand 4 greywacke (26) fine-basic (48) (3) (3) (3) ridge 4 C heath shrub (5 (5) silt arkose (27) serpentine (10 (4) (4) (4) upper slope 5 GSG chenonod shrub (6) clay (6) dolomite (28) gabbro (50 (5) (5) (5) midslope 65 (A) hummock grass @ organic material dolerite 7 calcrete 29 (51 6 6 6 simple slope (7 BBB tussock grass @ alluvium (8) aeolianite (30) (52 diorite 77.7 lower slope (8 colluvium 00 sod grass 9 9 chert (31) (53 svenite (B) (B) (B) open depression (9) 00 sedge (10 closed depression 10 lacustrine (10) iasper (32) granodiorite (54 99.9 FFF rush (11 aeolian (11) metamorphic (33) adamellite (55 **Slope Measurement** Slope Morphology (1) (G) (G) (G forb (12) granite marine (12) aneiss (34) (56 Method (1) E CE fern/cycad (13 calcareous sand (13) schist/phyllite (35) (57 aplite inclinometer 3 waxing (1 moss (14) fill (14) (36) (58 slate quartz porphyry Abney level 4 waning @ TO TO lichen (15 mud (15) hornfels (37) basalt (59 total station (5) maximal 3 M M liverwort (16 till (16) quartzite (38) andesite 60 RTK GPS 6 minimal 4 P P P vine (17) sedimentary (17) areenstone (39) trachyte (61 LIDAR Aspect (1) BB shale (18) amphibolite (40) (62 Microrelief Type (1) rhvolite LAND USE (1) **S S** siltstone/mudstone (19) (41) (63 marble obsidian N Tnational/state parks (1 sandstone-quartz (20) igneous (42) scoria (64 normal gilgai ② OW NE crabhole gilgai 3 W timber/scrub/unused @ sandstone-lithic (21) coarse-acidic (43) ash 65 W E \propto logged native forest 3 conglomerate coarse-intermediate (44) agglomerate (66 linear gilgai 4 SW SE (Y) hardwood plantation 4 other 67 lattice gilgai 5 (5) affinity softwood plantation (5) Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with volun./native pasture (6) personal assessment (1) other 9 improved pasture geology map Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping (8) both assessment & map 3 very poorly drained ① very slowly permeable ≤ 500 mm depth ☐ orchard/vineyard (9) slowly permeable > 500 mm depth 2 Rock Outcrop % (1) poorly drained (2) vegetables/flowers (10 imperfectly drained 3 nil >20-30% (5 moderately permeable 3 < 50% area (T urban (11 <2% ② >30-50% ⑥ > 50% area @ mod. well-drained (4) highly permeable 4 industrial (12 2-10% ③ >50% (7 well-drained 5 SITE FIELD NOTES quarry/mining 13 >10-20% 4 rapidly drained 6 other (14 **Surface Condition** Expected SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked 2 Ground natural disturbance (1) self-mulched 3 3 3 Cover % no effective disturbance 2 loose 4 4 4 limited clearing 3 (ID) (ID) soft (5) (5) (5) (6) extensive clearing (49) (1) (1) firm G (6) cleared, no cultivation 2 2 hardset 7 7 occasional cultivation 6 33 surface crust ® (8) 8 rainfed cultivation (7) 44 trampled (9) 9 irrigated cultivation ® (5) (5) poached (10) (10) highly disturbed (9) 6 6 recently cultivated (11) Photo file name/s: (7)(7)water repellent 12 (12) 8 8 gravelly ① other 13 (9) (9 13 (13) Please do not mark this space. SURVEY TITLE: RILXS, CREEK, BSAL SON | cm | | mm 0 10 | 20 | 30 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 1 | 20 | 130 | 140 | 150 | 160 | 170 | 180 | |-------|----------------
---|---|-------------------------|---------------------|----------------|--------------------|--|-----|-----|--------------------------------|--------|---------------------------------------|------------|------------------------------------|---------|---|---------------------------| | 1 - | | LAYER S | STATUS | COLOU | IR (Mu | nsell, | 1994) | Field pH | | LA | YER NOT | ES | | Fie | | | Method | | | | | Lower | Horizon | Moist Mu | | | | (1 per layer) | 1 , | 1 1 | 1 1 1 | | 1 - 1 | | | | test | strip 3 | | 2 — | | | 2 (2) (1) (2) (3) (B) (F) (2) (| | | | | | | | | | | | | meter (| | | | | П | | 4003 | 3 73 Y P | 25 2 | 7.5 Y | | 2.2 | | | | | | | efferves | cence | DOC | | | 3 — | 1 | 3 3 3 3
4 4 4 4 | AB (P)
AC (R) | | 3 3 (4) | 10 (N)
(GY) | 3 3
4 4 | 3·3
4·4 | | | | 1 1 | | | - | | 2 2 2
3 3 3 | | | | ı. | 5 5 5 5 | 80
80 | | 5 5 | G | 5 5 | 5.5 | 1 1 | | | | 1 1 | | | | nctiver | | | 4 _ | | 6666 | | | 66 | | 66 | 66 | | | 1 1 1 | 1 1 | 1 | | | | 1 2 3 | | | 4 – | | 7 7.7 7
8 8 8 8 | | | 77 | | (T) (T)
(B) (B) | 7·7
8·8 | | | | | | | | | | | | | | 9999 | | | | | | 9.9 | | | | | | ab | rupt (5-20 | mm) | 3 3 | 33 | | 5 — | | Lower | Horizon (2) (A) (D) (1) | Moist Mu | | | /lunsell | Field pH | 2 , | | T T | 1 1 | F F | | | | 3 4 4 5 5 6 | | | | | | 3 B F 2 | | | | | | | | | | | | | | 5 6 6 | | | 6 — | | ACTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF | 4003 | | | | P 25 2 | 2.2 | | | | 1 | 1 1 | Cunda | | RUCT | | 4 5 | | | 2 | 3 3 3 3
4 4 4 4 | AB P | | 3 3 (4) (4) | 10 (N)
(GY) | 3 3
4 4 | 3·3
4·4 | 1 1 | | | | | Grade | | | 1 2 3
1 1 1 | | | 7 — | | 5 5 5 5 | BO | The second second | 55 | G | 5 5 | 5.5 | | | īīī | 1 | 1 | | ma | assive | 2222 | 022 | | | | 6 6 6 6
7 7 7 7 | | | 6 6
7 7 | | 6 6 7 7 | 6 6 7 7 | | | | | | mo | | | 3 3
4 6 4 | | | 8 — | | 888 | | | 88 | | ® ® | 3 3 | | | | | | | | | 5 5 5 | | | ٦ | | 9999 | Hariman | 84-1-4 84v | man!! | Dent | A. man all | 9·9
Field pH | 2 | | | | | | | | 1 2 3 | | | | | Lower ① | Horizon ② | Moist Mu 2.5 R BG | | | Munsell
BG 17 0 | O·@ | 3 | | | | 1 1 | | | - | | | | 9 — | | | 3 (b) (F) (a) | | | | | D D • D | | | | | 1 1 | | 0 | • | 3 3 6 | | | | | 2 2 2 2 3 3 3 | 4 C O 3 | | 2.5 (2) (3) (3) (3) | | P 25 2
3 3 | ②·②
③·③ | | | | De | minant (| | oth-faced | | 4 4 4 Sub-dom | | | 10 — | 3 | 4 4 4 | AD B | | 4 | GY | 44 | 4.4 | | | | 1 | 2 3 4 | 5 | ou one | | 1 2 3 | 4 5 | | | | (5) (5) (5)
(6) (6) (6) | BC | | 5 5 6 6 | G | (5) (5)
(6) (6) | 5 • 5 | | | | | D (1)
2 (2) (2) | | platy
lenticula | | | | | 11 - | | | | | | | 77 | | | | | | 3 3 3 | | prismat | | 3333 | | | | | 8888 | | | 88 | | 88 | 8.8 | | | 1 1 1 | | 444 | | column | | 4 4 4 | | | 12 — | H | 9 9 9 9
Lower | Horizon | Moist Mu | insell | Dry I | Viunsell | 9·9
Field pH | | | | | 5 5 5
6 6 | | ingular blub-ang. b | | 5 5 5
6 6 6 | | | | | | 2 A D D | 1 25 B 6 | (T) (D) | 2.5 B | BG 17 0 | 0.0 | | | | 7 | | | polyhed | ral | | | | 40 | | | 3 6 7 2 3 4 0 0 3 | | | | | ① ①·①
②·② | | | | | 3 3 3 3 9 9 9 9 9 | | granula
crumb | 100 | 3 3 3
9 9 3 | | | 13 — | l _a | 3 3 3 3 | AB P | | 33 | | 33 | The state of s | | | | | 10 (10 (10 | | round | | | | | | 4 | 4 4 4 | AO B | GY | 4 | GY | 44 | | | | | | ominant (| | Ped Si | ze | Sub-dom | | | 14 — | | (5) (5) (5)
(6) (6) (6) | (BC) | G | (5) (5)
(6) (6) | G | (5) (5)
(6) (6) | | | 1 1 | | | 2 3 4
1 1 1 | 5 | <2 mr | n | 1 2 3 | | | | | 7 7.7 | | | 77 | | 77 | 7.7 | | | | 2 | 222 | 2 | 2-5 mr | n | 222 | 222 | | 15 — | | 8 8 8 8
9 9 9 9 | | | 88 | | 88 | 3 •3 | | | | | 3 3 3
4 4 4 | | 5-10 m | | 3 3 3
4 4 4 | | | | Н | Lower | Horizon | Moist Mu | ınsell | Dry | Munsell | Field pH | | 1 1 | 0.00 | | 5 5 5 | | 20-50 m | | 5 5 E | | | 16 — | | | 2 A D D | | | | | 0.0 | | | | | 6 6 6 | | 50-100 r | | 666 | | | | | | (3) (B) (F) (20)
(4) (C) (O) (3) | | | | | | | | 1 10 1 | | 7 7 7
3 8 8 | | 100-200
200-500 | | (T) | | | 17 — | 5 | | AB P | | 33 | 10 N | 33 | 3.3 | | | | | 999 | | > 500 m | | 999 | | | 17 – | ۲ | 4 4 4 4
5 5 5 5 | | G Y | 4 4 5 5 | GY
G | 4 4 5 5 | | | - | SEGF | REG | ATIO | NS | | | ter State | | | | | 6666 | | | 6 6 | | 66 | 6.6 | | | Type (1 per l | | | | | | 1 2 3 | 3 4 5 | | 18 — | | 7 7·7 7
8 8·8 8 | | | 77
88 | | (7) (7)
(8) (8) | | | | | | (1) (1) (2) (2) (2) | | | | ① ① ① | | | | | 9999 | Rooting | | | | | 9.9 | | | | | 3333 | | | | 3 3 6 | | | 19 — | S | Upper | Depth (m) | | e Taken | 4 5 | | ARSE FRAC | | 4 5 | manganife | | | | THE RESERVE OF THE PERSON NAMED IN | | 444 | D 4 4 | | | U | (D) (D) (D) | \bigcirc | disturbed 3 | | | | | | | terrug
ferromanganii | | 5 5 5
6 6 6 | | | | TURE
per laye | r) | | 20 — | B | (C) (C) (C) | 22.22 | undisturbed 4 | 44 | 44 | not ident | ified 2 2 | 220 | 22 | or | ganic | | | Texture | Grade | 1 2 3 | 3 4 5 | | | S | | 3 3·3 3
4 4·4 4 | bulked 6 bulk density 7 | | | | rate 3 3
tcrop 4 4 | | | | | 888 999 9 | | | | ① ① ① | | | 21 — | R | 55.55 | 5555 | Base of Obs | servatio | n (1) | as parent ma | terial 5 5 | 5 5 | 55 | Amount (1 per | layer) | 1 2 3 | 4 5 | claye | y sand | 333 | 3 3 3 | | | A | | 6 6 6
7 7 7 7 | , | r continu | | | artz 6 6 spar 7 7 | | | yen fow | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 4 4 4
5 5 6 | | | 22 — | I | 8888 | 8 8 8 | | nent refu | | | rete ® ® | | | - | , | 3333 | | | | | 666 | | 22 - | E | 0000 | 9999 | | ck reach | ned 4 | | | | | common (10- | | | | | | | | | | 1 | Dominant (1)
2 3
4 5 | | 2 3 4 5 | | | | uxite 100 100
nells 110 111 | | | many (20-
abundant (> | | 5 5 5
6 6 6 | | | | | B B B
B B B | | 23 — | | 6 6 6 | not evident 6 | 6666 | | | | | | | Strength (1 per | layer) | 1 2 3 | 4 5 | silty cla | y loam | 1 1 1 1 | 10 10 | | | |) | | 2222
3333 | | | | nice 13 13
rood 14 14 | | | | | | | | | | | | 24 — | | 4 4 4 A | 10-20% 4 | 4444 | | | | ther (18) (18 | | | Form (1 per | | | | - | | | 3 (3) (3) | | | | 0 0 0 0 5 | | 5555 | | | | yer) Sur. 1 | | | soft segrega | | | | | • | | 4 14 14 | | 25 — | | 2 3 4 5
1 1 1 1 1 | | 2 3 4 5 | | , | | 2%) ② ②
0%) ③ ③ | | | | | 2 2 2
3 3 3 | | | | | 5 (15 (15)
6 (16) (16) | | | (2 | 00000 | red ② | 2222 | | | mon (10-2 | 0%) 4 4 | 44 | 44 | cr | /stals | 444 | 44 | Sand F | raction | 1 2 3 | 3 4 5 | | 26 — | |) (3) (3) (3)
(4) (4) (4) | | 3 3 3 3
4 4 4 4 | | | | 0%) | | | | | 5 5 5
6 6 6 | | | | | D (D (D) | | 20 — | (5 | 5555 | brown 5 | 5555 | | | | 0%) ⑦ ⑦ | | | | | | | | | | | | 10.00 | | | | 6666 | | Siz | e (1 per la | yer) Sur. 1 | 2 3 | 4 5 | tu | bules | 888 | 3 3 | | light | 000 | DOO | | 27 — | |) | | 7777
8888 | | | | mm) ① ①
mm) ② ② | | | Size (1 per l | | 1 2 3
① ① ① | | | | | 222 | | | 1 | 2 3 4 5 | Contrast 1 | 2 3 4 5 | coa | rse grav | vel (20-60 r | mm) 3 3 | 33 | 33 | medium (2-6 | mm) | 222 | 22 | medium | heavy | 4 4 0 | 4 4 4 | | 28 — | | | | | 1 | | | mm) 4 4 | | | coarse (6-20
v coarse (20-6 | | | | | heavy | 55 | 5 5 6 | | | | 33333 | | | | | | | | | ext coarse (>6 | | | | | | | | | 29 — | | | | | | | | | | | | | | | | | | | SITE LOCATION: OPEN PADDOCK **PROFILE MAP DETAILS SURVEY DETAILS** Profile No. Map Sheet No. Eastings Northings Described By **Profile Date** Photo Taken (1) No. of Layers 000000 0000 profile (T O dan dun o o site (2 QQQQQQQQQQQQQQQQQQQQQQQQQ both profile & site @ 1 333333333333333333333 3 3 3 3 3 Mm 0 3 3 Nature of Exposure (2) 2 44444444444 4 May (Nov 4) @ auger (1 (33) 5555 6666 5555555555555 (5) (Jun (Dec) (5) (5) pit @ 4 (6) 6 6 batter 3 (5) O O 7 gully 4 (8) 88 core sample 5 99999999999999999 9 9 9 other 6 NSW SOIL Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL AND LAND checked (1 ves ① no @ detailed @ **INFORMATION** LAND SOIL DATA CARD exclusion 3 SYSTEM SOIL **VEGETATION** LANDFORM ELEMENT (1) TYPE Please MARK **Vegetation Community (1)** sink hole/doline (52 A.S.C alcove (43) cone (3) footslope 21 ox-bow (57) LIKE THIS ONLY: unknown (T backplain (31) crater (51) foredune 12 pan/playa 56 5 stream channel (46 0 rainforest 2 bank (25) cut face (28) gully 42 pediment 22 streambed 45 0 wet sclerophyll forest 3 bar 6 cut-over surface 39 hillcrest ① pit (60) summit surface (2) Use 2B pencil A dry sclerophyll forest 4 beach 26 hillslope @ dam (16) plain 30 swale (47) No pen or biro SO woodland grass u'storey 5 beach ridge (7) drainage depression 41 lagoon 54 prior stream (9) swamp 58 D Fully erase woodland shrub u'storey 6 bench (19) dune 11 lake 55 rock flat 34 talus 23 mistakes = tall shrubland (7 berm (29) embankment (14) landslide (20) rock platform 35 tidal creek 48 GG Make no 5 low shrubland ® blow-out 59 estuary 44 levee (8) scald (36) tidal flat (37 stray marks heath 9 channel bench 33 fan (27) lunette (13) scarp (18) tor 4 Numbers in () A SG grassland/herbland @ cirque (50) fill top (40) maar (53) scree (24) trench 49 show max. H swamp complex (11) cliff (5) flood-out 32 mound (15) scroll 10 entries allowed valley flat 38 littoral complex (12 B LITHOLOGY TOPOGRAPHY F no vegetation (13 E A M Growth Forms (4) Substrate (3) Site Morphology (1) Slope Percent N limestone tree (1 not identified T coarse-basic 45 0 L tree mallee (2) unconsolidated (2) tuff 24) fine-acidic 46 **D D D D** crest 2 shrub 3 gravel (3) breccia (25) fine-intermediate (47 22.2 hillock (3 W mallee shrub 4 sand 4 greywacke (26) fine-basic (48 (3)(3)(3)ridge 4 C heath shrub (5) (5) silt arkose (27) serpentine (49 4 4.4 upper slope 5 GSG chenonod shrub (6) gabbro midslope @ clay (6) dolomite (28) (50 (5) (5) (5) (A) hummock grass @ organic material 7 calcrete dolerite 29 (51 666 simple slope T BBB tussock grass @ alluvium (8) aeolianite (30) diorite (52 77.7 lower slope (8 00 sod grass 9 colluvium (9) chert (31) syenite (53 (B) (B) (B) open depression (9 00 sedge 10 lacustrine (10) iasper (32) granodiorite (54 9 .9 closed depression @ E E E rush (11 aeolian (11) metamorphic (33) adamellite (55 Slope Measurement Slope Morphology (1) (G) (G) forb (12) marine (12) aneiss (34) granite (56 Method (1) E E E fern/cycad (13 calcareous sand (13) schist/phyllite (35) (57 aplite inclinometer 3 waxing (1 (K) (K) (K) moss (14) fill (14) slate (36) quartz porphyry (58 Abney level 4 waning @ D D lichen (15 (15) mud hornfels (37) basalt (59 total station (5) maximal 3 M M liverwort (16 till (16) quartzite (38) andesite (60 RTK GPS © minimal 4 PPP vine (17) sedimentary Aspect (1) GHA areenstone (39) trachyte (61 LIDAR @ BB shale (18) amphibolite (40) (62 Microrelief Type (1) rhvolite LAND USE (1) **S S** siltstone/mudstone (19) marble (41) obsidian (63 N (T) (Z) national/state parks (T sandstone-quartz (20) scoria igneous (42) (64 normal gilgai ② NW NE W timber/scrub/unused @ sandstone-lithic (21) coarse-acidic (43) ash (65 crabhole gilgai 3 Œ ∞ logged native forest 3 conglomerate SE coarse-intermediate (44) agglomerate (66 linear gilgai 4 SW hardwood plantation 4 Y other lattice gilgai 5 (3) affinity softwood plantation (5) Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with volun./native pasture (6) personal assessment (T other 9 improved pasture geology map @ Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping 3 ≤ 500 mm depth ① both assessment & map 3 very poorly drained very slowly permeable orchard/vineyard 9 Rock Outcrop % (1) poorly drained 2 slowly permeable 2 > 500 mm depth 2 vegetables/flowers 10 nil >20-30% (5 imperfectly drained (3) moderately permeable 3 < 50% area (T <2% ② >30-50% ⑥ urban (11 > 50% area @ mod well-drained (4) highly permeable 4 industrial (12 2-10% (3) >50% (7 well-drained (5) SITE FIELD NOTES quarry/mining 13 >10-20% 4 rapidly drained 6 other (14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked (2) Ground natural disturbance self-mulched 3 3 3 Cover % no effective disturbance (2) loose 4 4 4 limited clearing 3 (D) (D) soft (5) (5) (5) extensive clearing (49) (1) (1) 6 (6) firm 663 cleared, no cultivation (2) (2 hardset (7) 7 occasional cultivation 6 33 surface crust ® (8) 8 rainfed cultivation (7) 4 4 trampled (9) 9 irrigated cultivation ® 5 5 (10) poached (10) highly disturbed (9) 6 6 recently cultivated (11) Photo file name/s: 77 water repellent (12) (12) 8 8 gravelly ① other (13) (13) (9) (9 (13) Please do not mark this space. 4645 SURVEY TITLE: RILXS, CREEK, BSAL NCS Pearson | cm | | mm 0 10 | 20 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | |----------|----------|--|--
--|-----------------------------|-------------|------------------------|----------------------------------|---------|-------|----------------|------------|---|---|------------------------|-------------|--|----------------------------| | 1 - | | LAYER S | STATUS | COLOU | R (Mu | nsell, | 1994) | Field pH | | LA | YER NO | TES | | Fie | eld pH | Test I | /lethod | (1) | | | | Lower | Horizon | Moist Mun | | | | - | 1 | | 100 | | | | | • | test s | strip ③ | | 2 — | | | | | | | | | | | | | | | | neter (| | | | | | 22.22 | 40033 | 75 Y P | 2.5 | 75 Y | P 25 2 | 2.2 | | | | | | | efferveso | ence (| DOC | | | 3 — | 1 | 3 3 3 3
4 4 4 4 | AB P | The second secon | 3 4 4 | (N)
(GY) | 3 3
4 4 | 3·3
4·4 | | | | | | 100000000000000000000000000000000000000 | 0 | | 2 2 2
3 3 3 | | | | ı. | 5 5 5 | BC) | | 5 5 | G | 5 | 5.5 | | | | | | | | | nctiven | | | 4 — | | 6 6 6 | | | 5 6 | | 66 | 6 6 | | | T T | | | | | | 1 2 3
1 (1) (1 | | | | | 7 7 7 7
3 3 3 3 | | | 7 7
B B | | (T) (T)
(B) (B) | B • B | | | | | | | | | 2 2 2 | | | _ | Ш | 9999 | | | | | | 9.9 | | | | | | | | | 3 3 3 | | | 5 — | | Lower | Horizon ② A D D G | Moist Mun | | | lunsell | Field pH | 2 | | | | | | | | 4 4
5 5 5 | | | | | D D.D D | 3 (5) (7) | 5 6 B | 200 | 5 6 | B 2 1 | D D • D | | | | | | | use (>100 | mm) (| 666 | | | 6 — | | 2 2 2
3 3 3 3 | 4 © 0 3 3
AB P | | 2.5 (2.5 (3) (3) (4) | | P 25 2 | 2·2
3·3 | | | F - I | | | Grade | | ty (1) | 1 2 3 | 4 5 | | | 2 | 4444 | AD (R) | | 3 4 | GY | 44 | 4.4 | | | | | | | | | DOC | | | 7 — | | 5 5 5 | BC | | 5 5 | G | (5) (5) (6) (6) | 5· ⑤ | | | T I | | | | | | 2 2 2
3 3 3 | | | | | 6 6 6 6
7 7 0 7 | | | 5 6
7 7 | | | | | | | | | mo | | - | 3 (3) (3
3) (4) (4) | | | 8 — | | 8888 | | | 88 | | 88 | 8.8 | | | | | | | | | 5 6 5 | | | | H | ① ① ① ① | Horizon | Moist Mur | rsell | Dry N | lunsell | 9•9
Field pH | 3 | | | | | | | | 1 2 3
1 1 1 | | | 9 _ | | | 2 A D D C | (B) (B) (B) | 1.7 0 | 25 R | BG 17 0 | 0.0 | | | | | | | e | arthy (| 2 2 3 | 22 | | 9 — | | | 3 B F 2 2 4 0 0 3 3 | | | | B 2 1
P 25 2 | ① ①·①
②·② | | | 1 1 | | | | | • | 3 3 3
4 4 4 | | | | | 3 3 3 3 | (4) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6 | | 3 3 | | 33 | 3.3 | | | | | Dominant (| | Ped Sha | | Sub-domi | | | 10 — | 3 | 4444 | (AC) (R) | The second secon | 4 4 | GY | 4 4 | 4.4 | | | | | 2 3 4 | | | | 1 2 3 | | | | | 5 5 5
6 6 6 | BC | | 5 5 | G | 6 6 | 5·5
6·6 | | | | | | | platy
lenticula | | | | | 11 — | | 0000 | 1.60 | | 70 | | | 7.7 | | | | | 333 | | prismati | - | 3 3 3 | | | | | 8 8 8 | | | 3 3 | | 88 | 8.8 | | | 1 1 | | 444 | | columna | | 4 4 4
5 5 5 | | | 12 — | \vdash | 9 9 9 9
Lower | Horizon | Moist Mur | nsell | Dry I | /lunsell | •9•9 Field pH | 4 | | | | | | ngular blo | | 5 G G | | | | | 00.00 | 2 A D D 1 | 25 B 66 C | 1700 | 2.5 B | BG (1.7) (D) | @·@ | | | | | | | polyhedr | Person | 700 | | | 13 — | | | 3 B F 2 2
4 C O 3 3 | | | | | ① ①·①
②·② | | | | | (B) | | granula
crumb | | 3 3 3
9 9 9 | | | 13 — | la | 3 3 3 | AB (P) | The second secon | 333 | | 33 | 3.3 | | | | | 10 10 10 | | round | | 10 10 11 | | | | 14 | 4 4 4 | AD (B) | | 4 4 | GY | 4 4 | | | | 1 1 | | Dominant (| | Ped Siz | | Sub-dom | | | 14 — | | 5 5·5 5
6 6·6 6 | (BC) | | 5 5 | G | (5) (5)
(6) (6) | (5)·(5)
(6)·(6) | | | | 1 | 2 3 4 | | <2 mn | - | 1 2 3 | | | | | 7 7.7 7 | | | 77 | | 77 7 | 7.7 | | | | | 222 | | 2-5 mn | | 222 | | | 15 — | | (B) (B) (B) (B) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G | | | 88 | | 88 | 3 • 3 9 • 9 | | | | | 3 3 3
4 4 4 | | 5-10 mr
10-20 m | | 3 3 3
4 4 4 | | | | H | Lower | Horizon | Moist Mu | nsell | Dry I | Viunsell | Field pH | | | 1 1 | | 555 | | 20-50 m | 1000 | 5 5 5 | | | 16 — | | | | | | | | | | | 1 1 | | | | 50-100 n | CO CO O ACO | 666 | | | 1,57 € 5 | ı | | (3) (B) (F) (2) (2) (4) (C) (O) (G) (G) | | | | | | | | 1 1 | | | | 100-200 i
200-500 i | | 7 7 7
3 8 8 | | | 17 — | 5 | 33.33 | | The state of s | 33 | | 33 | | | | | 9 | 999 | 9 | > 500 m | | 999 | | | 17 — | ۲ | (4) (4) (4)
(5) (5) (5) | | | 4 4
5 5 | GY
G | 4 4 5 5 | | | | SEC | REG | GATIO | NS | | | ter Statu | | | | | 6666 | | | 6 | | 66 | 6.6 | | | | | 1 2 3 | | | | 1 2 3 | 3 4 5 | | 18 — | l | 77.77 | A STATE OF THE PARTY PAR | | 77 | | (T) (T)
(B) (B) | | | | | | | | | | ① ① ①
② ② ② | | | | | 9 9 9 | Rooting | | | | | 9.9 | | | | | 333 | | | | 3 3 3 | | | 19 — | S | Upper | Depth (m) | Sample | | 4 5 | | ARSE FRAC | | | 0 | | 444 | | Security of the second | | 444 | D (1) (1) | | | U | | | disturbed ③ | | | | dent @ @ | | | | - | 5 5 5
6 6 6 | | 1,120,000,000 | | TURE
per layer | r) | | 20 — | B | 22.22 | 2 2 2 u | ndisturbed 🚳 | 6 | 4 4 | not identi | ified 2 2 | 2 2 | 22 | | organic | | | Texture | Grade | 1 2 3 | 3 4 5 | | | S | | 3 3 3 3
4 4 4 b | bulked (50) | | | | rate 3 3 | | | not id | | 8 8 8
9 9 9 | | | | ① ① ① | | | 21 — | R | 5 5 5 | 5555 | Base of Obs | ervatio | n (1) | as parent mat | terial 5 5 | 5 5 | 5 5 | Amount (1 | oer layer) | 1 2 3 | 4 5 | clayey | sand | 333 | 3 3 | | | A | | 6 6 6 6
7 7 7 7 | - | continu | | | artz 6 6
spar 7 7 | | | ven, fo | | | | | | 4 4 4
5 5 5 | | | 20 | I | (8) (8) (8) | 888 | equipme | | | | rete ® ® | | | | | 333 | | | | 6 6 | | | 22 — | E | AND DESCRIPTION OF THE PERSON NAMED IN | 9999 | | ck reach | ed 4 | | one 9 9 | | | | | | | | | | | | | | | MOTTLES Sub- | | | | | ixite 100 100
nells 110 111 | | | | | 5 5 5
6 6 6 | | | | (B) (B) (B) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G | | | 23 — | 66 | 666 | not evident @ @ | 0666 | | | char | coal 12 12 | 12 (12) | 12 12 | | per layer) | 1 2 3 | 4 5 | silty clay | loam | 10 10 1 | 1 1 1 1 | | | | 02222 | The second secon |) (2) (2)
(3) (3) (3) | | | | nice 13 13
rood 14 14 | | | | | | | | | | D (II) (II)
2 (I2) (I2) | | 24 — | | 4444 | | 1 4 4 4 | | < | | ther (18) (18 | | | Form (1 p | | 1 2 3 | | - | | | 3 (13) (13) | | | | 5555 | | 555 | 1 | | | /er) Sur. 1 | | | | | | | | | | 4 14 14 | | 25 — | 1 | 2 3 4 5 | | 3 4 5 | | ١ | | 2%) | | | | | (2) (2) (2)
(3) (3) (3) | | | • | (15) (15) (16)
(16) (16) (17) | 5 (15) (15)
6 (16) (16) | | | 2 | 00000 | red 2 G | 0000 | | | mon (10-2 | 0%) 4 4 | 4 4 | 44 | | crystals | 444 | 44 | Sand Fr | action | 1 2 3 | 3 4 5 | | 26 | | 3 3 3 3
4 4 4 4 | | 3 3 3 3
D 4 4 4 | | | | 0%) | | | 000 | | 5 5 5 5 6 6 6 6 | | | | ① ① ② | | | 26 — | | 5555 | | 5555 | | | | 0%) | | | La Contraction | | | | | | | | | | 6 | 6666 | pale 6 | 0666 | | Siz | e (1 per lay | yer) Sur. 1 | 2 3 | 4 5 | | tubules | 888 | 0 0 0 | | light | D D C | DOO | | 27 — | | | 0 , | D D D D
B B B B | | | | mm) ① ①
mm) ② ② | | | | | 1 2 3 | | - | | | 222 | | | 1 | 2 3 4 5 | | 2 3 4 5 | coa | rse grav | /el (20-60 r | mm) 3 3 | 333 | 33 | medium (| 2-6 mm | 222 | 22 | medium | | | | | 28 — | | | | | | | , | mm) 4 4 | | | , | | | | | heavy | 5 6 | 5 5 | | | |) | distinct 2 0 | 2 2 2 2
3 3 3 3 | | | | mm) | | | | | | | | | | | | 29 — | | | | | | | | | | | | | | | | | | , | OPEN PADDOCK SITE LOCATION: PROFILE MAP DETAILS **SURVEY DETAILS** Profile No. Map Sheet No. Eastings Northings Described By **Profile Date** Photo Taken (1) No. of Layers 0000 0000 0000000 O Jan Jul O O profile (T site (2 QQQQ@QQQ@QQQ@QQQQQQQQQ<mark>@Q</mark>@@@@ both profile & site 1 3 3 3 3 6 An 0 3 3 Nature of Exposure (2) (2) 444444444444 4 May Nov 4 @ (138) 5555555555555555 5555 (5) (Jun (Dec) (5) (5) pit @ 4 6666 (6) 66 batter 3 (5) DO 7 gully 4 88888888888888888888888 888 (8) 88 core sample (5) 9999999999999 9 9 9 other 6 NSW SOIL Potential BSAL? (1) Site type (1)
BIOPHYSICAL STRATEGIC AGRICULTURAL AND LAND checked (T ves (1) detailed @ no 🗪 LAND SOIL DATA CARD **INFORMATION** exclusion 3 **SYSTEM** SOIL **LANDFORM ELEMENT (1) VEGETATION** TYPE Please MARK **Vegetation Community (1)** A.S.C alcove (43) footslope 21 ox-bow (57) sink hole/doline 52 LIKE THIS ONLY: pan/playa 56 unknown (1 backplain (31) crater (51) foredune 12 D stream channel (46 0 rainforest 2 bank 25 cut face (28) gully 42 pediment 22 streambed (45 E wet sclerophyll forest 3 bar 6 cut-over surface 39 hillcrest ① nit (60) summit surface (2) Use 2B pencil A dry sclerophyll forest 4 beach (26) dam (16) hillslope (17) plain (30) swale 47 SO No pen or biro woodland grass u'storey 5 beach ridge (7) B drainage depression (41) lagoon 54 prior stream (9) swamp (58 **Fully erase** woodland shrub u'storey 6 bench (19) dune 11 lake 55 rock flat (34) talus 23 A mistakes tall shrubland (7 berm (29) embankment (14) landslide (20) rock platform 35 tidal creek 48 GG Make no H low shrubland ® blow-out 59 estuary (44) levee (8) scald (36) tidal flat (37 strav marks heath 9 channel bench (33) fan (27) lunette (13) scarp (18) tor 4 Numbers in () C SG grassland/herbland @ cirque (50) fill top (40) maar (53) scree (24) trench 49 show max. D swamp complex (11) cliff (5) flood-out 32 mound (15) scroll 10 entries allowed valley flat 38 B littoral complex (12 F LITHOLOGY **TOPOGRAPHY** no vegetation (13 E A Substrate (3) Growth Forms (4) Site Morphology (1) **Slope Percent** L tree (T not identified limestone coarse-basic (45 0 0 . L N tree mallee 2 unconsolidated (2) tuff 24) fine-acidic 46 **D D D D** crest 2 shrub 3 grave (3) breccia (25) fine-intermediate 47 (2) (2) (2) hillock (3 mallee shrub 4 sand 4 greywacke (26) fine-basic (48 (3) (3) (3) ridge 4 C heath shrub (5 silt (5) arkose (27) serpentine (49 4 4.4 upper slope 5 GSG chenonod shrub (6) clav 6 dolomite (28) gabbro (50 (5) (5) (5) midslope 6 hummock grass @ organic material calcrete dolerite 7 29 (51 6 6 6 simple slope T BBB tussock grass @ alluvium (8) aeolianite (30) (52 diorite 7 9.7 lower slope @ 00 sod grass 9 colluvium 9 chert (31) (53 svenite (8) (8) (8) open depression 9 00 sedge (10 granodiorite lacustrine iasper (32) (54 99.9 closed depression (10 E E E rush (11 aeolian (11) metamorphic (33) adamellite (55 **Slope Measurement** Slope Morphology (1) (G) (G) forb (12) marine (12) aneiss (34) granite (56 Method (1) E E E fern/cycad (13 calcareous sand (13) schist/phyllite (35) (57 aplite inclinometer 3 waxing @ moss (14) fill (14) slate (36) (58 Abney level 4 quartz porphyry waning @ O O lichen (15 mud (15) hornfels (37) basalt (59 total station (5) maximal 3 M M liverwort (16 till (16) quartzite (38) andesite (60 RTK GPS © minimal 4 PPP vine 17 sedimentary (3) areenstone (39) trachyte (61 LIDAR @ Aspect (1) BB shale (18) amphibolite (40) (62 Microrelief Type (1) rhvolite LAND USE (1) (S) (S) (S siltstone/mudstone (19) marble (41) obsidian (63 N \mathbb{C} national/state parks (1 sandstone-quartz (20) igneous (42) scoria (64 normal gilgai ② NW NE W coarse-acidic crabhole gilgai 3 timber/scrub/unused (2) sandstone-lithic (21) (43) ash (65 E ∞ logged native forest 3 conglomerate coarse-intermediate (44) agglomerate (66 linear gilgai 4 SW SE hardwood plantation 4 Y (67 other lattice gilgai 3 (5) affinity softwood plantation 5 Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with volun./native pasture (6) personal assessment (1 other 9 improved pasture geology map Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map 3 very poorly drained very slowly permeable ≤ 500 mm depth ① > 500 mm depth 2 orchard/vineyard 9 Rock Outcrop % (1) poorly drained 2 slowly permeable vegetables/flowers 10 nil >20-30% (5 imperfectly drained (3) moderately permeable 3 < 50% area (T <2% ② >30-50% ⑥ urban (11 > 50% area @ mod well-drained 4 highly permeable 4 industrial (12 2-10% ③ >50% (7 well-drained @ SITE FIELD NOTES quarry/mining (13) >10-20% 4 rapidly drained 6 other (14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked (2) Ground natural disturbance (1) self-mulched 3 3 3 Cover % no effective disturbance (2) loose 4 4 4 limited clearing 3 soft 5 (5) (5) extensive clearing (4) (1) (1) 6 6 firm (6) cleared, no cultivation @ 2 2 hardset (7) 7 occasional cultivation 6 33 surface crust ® (8) 8 rainfed cultivation @ 4 4 trampled 9 9 irrigated cultivation (8) 5 5 poached (10) (10) highly disturbed (9) 6 6 recently cultivated 1 Photo file name/s: 777 water repellent (12) (12) 88 gravelly ① 9 9 other (13) (13) (13) Please do not mark this space. 4646 SURVEY TITLE: RILXS, CREEK, BSAL 17814 NCS Pearson | cm | - 1 | mm 0 | 1 | 0 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | | 100 | 110 12 | 0 130 | 140 | 150 | 160 | 170 | 180 | |--------|----------|--------------------|----------|------------------|----------------------------|--------|--|--------------------|--------------|--------------------------|----------------------------------|----------------|---|------------|---------------------------------|--|------|--|--------------------|-----------
--| | 1 - | | L/ | YER | STATI | US | | COLO | UR (M | unsell, | 1994) | Field pH | | | LA | YER NOTE | S | | Field pH T | est Me | thod | (1) | | | | Lov | | | orizon | | Moist M | | | | (1 per layer | | | | | | - | | eter 2 | | strip 3 | | 2 — | | 10 10 | O O | 3 B | E 2 | 2 | 5 8 B | 20 | 5 B C | B 2 1 | | | | | | | | Н | CI (1) | | | | | | 2 2
3 3 | | | (D) (E) | 3 | | 3 3 | (10) (N) | 25 (2)
(3) (3) | 2°2
3°3 | | | | | | | no effervesce
dible/slight eff | | | | | 3 — | Ш | 44 | 44 | AC | (B) | | GY | 4 | GY | 44 | 4.4 | | | | | | stro | ng effervesce | ence 3 | 33 | 33 | | | | (5) (5)
(6) (6) | | |) | | G | 5 5 6 6 | G | 6 6 | 5°5 | | | | | | - | Oundary I
(1 per la | | | | | 4 — | | 77 | O T | | | | | 77 | | 7 7 | 7.7 | | | 1 1 | | | | not evi | dent ① | 100 | D D | | | | 3 3
9 9 | | | | | | 88 | | 88 | 8 • 8 9 • 9 | | | | | | ١. | sharp (<5 i
abrupt (5-20 i | | | | | 5 — | | | ver | | orizon | | Moist M | | | lunsell | Field pH | | | 1 0 | 1 1 1 | | ara | clear (20-50 i
dual (50-100 i | , | | | | | | D D | D I | 3 6 | E | 2 | (5) (B) (B | 200 | 5 6 | B 2 1 | D • O | | | | | | | diffuse (>100 i | mm) © | 66 | | | 6 — | | 2 2
3 3 | | | (D) | 3 | | | | P 25 2
3 3 | ②·2
③·3 | | | | | | Grad | STR
de of Pedality | V (1) 1 | | 4 5 | | | 2 | 44 | 4 4 | AC | B | | GY | 4 | GY | 44 | 4.4 | | | | | | | single-gra | ined ① | 100 | D D | | 7 — | | (5) (5)
(6) (6) | | |) | | G | (5) (5)
(6) (6) | G | (5) (5)
(6) (6) | 5°5
6°6 | | | - | | | | mas
weak ped | sive ②
lality ③ | | and the second s | | | | 77 | 77 | | | | | 77 | | $\mathcal{O}\mathcal{O}$ | 7.7 | | | | | | 7 | moderate ped | | | | | 8 — | | 8 8
9 9 | | | | | | 88 | | 88 | 9.9 | | | | | | | strong ped
Fabric | c (1) 1 | | | | | | | ver | | orizon | | Moist M | | | lunsell | Field pH | | | | | | | | andy ① | | | | 9 — | | D D | D I | 3 B | E 2 | 2 | (5) YB (B | 200 | (5) YB (| B 2 1 | D·O | | | | | | | rough-faced p | oeds 3 | 33 | 33 | | | | 2 2
3 3 | | |) 回 3
) P | 3 | 75 Y P
110 N | 25 (2)
(3) (3) | 75 Y) (| P 25 2
3 3 | ②·2
③·3 | | | 1 1 | | Dominant | | Ped Shap | | 1b-domir | | | 10 — | 3 | 44 | 4 | AC | B | | GY | 44 | GY | 4 4 | 4.4 | | | | | 1 2 3 | 4 5 | | 1 | 2 3 | 4 5 | | | | (5) (5)
(6) (6) | | | 0 | | G | (5) (5)
(6) (6) | G | 5 5
6 6 | | | | 1 1 | | (D) | | platy
lenticular | | ① ① ① | | | 11 — | | 7 7 | 77 | | | | | | | 00 | | | | 1 | 1 1 1 | 3333 | | prismatic | | | 33 | | | | (B) (B) (9) | | | | | | 88 | | 88 | 3 ·8 | | | | | 444
555
5 | | columnar
angular bloc | | | 4 4
5 5 | | 12 — | , | | wer | | lorizon | | Moist N | | | lunsell | Field pH | | | | | | | sub-ang. blo | | | 6 6
7 7 | | | | D D | D O | 3 B | E 2 | 2 | (5) YB (B | 20 | (5) YB (| B 2 1 | | | | | | 888 | | granular | 8 | 3 3 | 3 3 | | 13 — | | 2 2
3 3 | | | | 3 | 7.5 Y (P
(10) (N) | | 7.5 Y) (| P 25 2
3 3 | ②·2
③·3 | | | | | 999
1000 | | crumb
round | | | 99 | | | 4 | 4 4 | ·4 4 | (AC | B | | GY | 44 | GY | 4 4 | 4.4 | | | | | Dominan | (1) | Ped Size | e Su | ıb-domii | nant (1) | | 14 — | | (5) (5)
(6) (6) | | | | | G | (5) (5)
(6) (6) | G | (5) (5)
(6) (6) | 5 • 5 | | | 1 1 | | 1 2 3 | | <2 mm | | 2 3 | 4 5
1 1 1 | | | | | | | | | | | | | | | | | | 222 | 22 | 2-5 mm | 2 | 22 | 22 | | 15 — | | 88 99 | | | | | | 3 3 | | 88 | 9.9 | D | | | | 3333
444 | | 5-10 mm
10-20 mn | | | 3 3
4 4 | | | | | wer | _ | lorizon | | Moist M | | | lunsell | Field pH | _ | | | | | | 20-50 mn | | | 55 | | 16 — | | | | | | _ | | | | | D.C | | | | | 666
7777 | | 50-100 mi
100-200 m | | | | | | _ | 2 2
3 3 | | | | DO | 75 Y E | | 75 Y) (| P 25 2
3 3 | | | 1 | | | 888
999 | | 200-500 m
> 500 mn | | | (B) | | 17 — | 5 | 44 | •4 4 |) AC | B | | GY | 44 | GY | 44 | 4.4 | D_ | | | SEGE | EGATIO | | So | il Wate | r Statu | s | | | | (5) (5)
(6) (6) | | | 9 | | G | (5) (5)
(6) (6) | | (5) (5)
(6) (6) | | | | | | ver) 1 2 | | | each po | | r)
4 5 | | 18 — | | | | | mated | | | | | | 7.7 | D | | | not evi | dent @ @ (| DD | D | - | | 000 | | | | 88 99 9 | | | oting | | | 88 | | 88 | 3·6
3·6 | | | | | eous ② ② (| | | | |) (2) (2)
) (3) (3) | | 19 — | S | | per | Dep
① ① | oth (m) | | | ole Taker | | | ARSE FRA | | | 4 5 | 0 | rous 4 4 (| | Martin Committee | | | 44 | | | UB | D I | D (I) | DO | D• (1) | | listurbed G | 3 3 | 33 | not evid | dent 🗇 🕝 | | D | DO | ferromanganife | erous 6 6 | 66 | 6 (1 | TEXT each po | er layer | | | 20 — | S | | | 2 (2
) (3) (3 | | | disturbed distur | | | | ified ② ② | | | | | anic 7770 | | Texture (| Sand (1 | 2 3 | 4 5
1 1 1 | | | I | 44 | •4 4 | 4 | •4 4 | D bul | k density C | | | as rock ou | tcrop 4 4 | D 4 | 4 | 44 | (| other 9 9 | 99 | Ioamy | sand ② | 22 | 022 | | 21 — | R | 66 | · 6 G | 5
5
6
6 | 0.60 | D | Base of Ol
lay | er contin | | | terial 5 6 | | | | Amount (1 per l | none ① ① | | | | | 3 3
4 4 | | 100.00 | F | | | | | | | oil contin | | | spar 7 7 | | | | | (2%) (2 (2) (1) (1) (1) (1) (2) (1) (2) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | | 2 | loam 🎟 | 5 5 | 55 | | 22 — | E | 99 | 999 | 99 | 993 | Ð | bed | ock read | | ironst | tone 9 3 | 9 | 9 | 99 | common (10-2 | 20%) 4 4 | 44 | sandy clay | loam (7 | | | | | | | | | | | ominant (| | | | uxite 110 (1
nells 111) (1 | | | | | 50%) | | | | | 880 | | 23 — | 6 | 6 | 6 | not ev | rident G | 0 6 | 666 | D | | char | coal 12 1 | 2) (12 | 12 | 12 (12) | Strength (1 per l | ayer) 1 2 | 3 4 | 5 silty clay | loam @ | 10 10 | 0 100 | | | | 2 2
3 3 | | | | | 2
3
3
3 | | | 100 | nice 13 1
rood 14 1 | | | | | veak ① ① ()
rong ② ② () | | | | | | | 24 — | 4 | 4 4 | 4 4 | 10-2 | 20% | D (4 | 444 | D | | 0 | ther (18) (1 | 8 (18 | 18 (| 18) (18) | Form (1 per la | ayer) 1 2 | 3 4 | 5 | clay 13 | 13 (13 | 3 (13) (13) | | | 1 | 2 3 | 4 5 | Cold | | | 3 4 5 | | | | yer) Sur. 1
2%) ② ② | | | | | tions ① ① ① | | The second secon | | | D (14) (14)
D (15) (15) | | 25 — | | ① ① ① | | | | | О (1) (1) (2) (2) (2) (2) (2) (3) | | com | | 0%) ③ ③
0%) ④ ④ | | | | fragm | ents 3 3 | 3 3 | 3 sapric | peat @ | 16 16 | 16 16 | | | 3 | 33 | 333 | orar | nge G | 3) (3) | 3333 | D | m | any (20-5 | 0%) 5 3 | 5 (5 | 5 | 55 | A | reins 5 5 | 5 5 | 5 cc | | | 4 5
O ① ① | | 26 — | | 4 4
5 5 | | | | | 4 4 C | | | | 0%) | | | | | ions 6 6 0 | | | | | 22 | | | 6 | 66 | 6 | D pa | le G | 5 6 | 6 6 6 | D | Size | e (1 per la | yer) Sur. 1 | 1 2 | 3 | 4 5 | tub | ules ® ® | 88 | 8 | light (1 | | 000 | | 27 — | | | | | | | (T) (T) (T) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B | | | | mm) ① ① mm) ② ② | | | | | mm) 1 2 | | | | | 22 | | | 1 | 2 3 | 4 5 | Cont | rast | 1 2 | 3 4 5 | co | arse grav | el (20-60 r | mm) 3 3 | 3) (3 | 3 | 33 | medium (2-6 | mm) 2 2 | 22 | 2 medium h | neavy 4 | 4 4 | 44 | | 28 — | | | | | | | | | cobbles | (60-200 r
(200-600 r | mm) 4 4 mm) 5 3 | 1) (4
1) (5 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 4 4
5 5 | coarse (6-20
v coarse (20-60 | mm) 3 3 0 | | | eavy 5 |) (5) (5) | 55 | | | | | | | | | 333 | | boulde | ers (>600 r | mm) 6 | 0 6 | 000 | 66 | ext coarse (>60 | mm) 5 5 | 5 5 | 5 | | | | | 29 — | OPEN PADDOCK SITE LOCATION: PROFILE MAP DETAILS **SURVEY DETAILS** Profile No. Map Sheet No. Eastings **Northings Described By Profile Date** Photo Taken (1) No. of Layers 0000 O Jan Jul O O profile (1 site 2 QQQQ@QQQQQQQQQQQQ**@**Q@@@@@ both profile & site 1 3333333333333333333333 (2) 444444444444444 444 4 May Moy 4 @ (FEE 5555 (5) Jun (0e) (5) (5) nit @ 4 6666 (450) 6 6 batter 3 (5) 7 T T gully 4 88888888888888888888888 8888 88 core sample (5)
9999999999999999999 (9) 9 9 other (6 NSW SOIL Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL AND LAND yes ① no 🚳 detailed @ LAND SOIL DATA CARD **INFORMATION** exclusion 3 **SYSTEM** SOIL LANDFORM ELEMENT (1) **VEGETATION** TYPE **Vegetation Community (1)** A.S.C alcove 43 Please MARK cone (3) footslope (21) ox-bow (57) sink hole/doline (52 LIKE THIS ONLY: backplain (31) unknown (T crater (51) foredune (12) pan/playa 56 stream channel (46) 0 rainforest (2 bank (25) cut face (28) aully (42) pediment 22 streambed (45) H wet sclerophyll forest 3 bar 6 cut-over surface 39 hillcrest ① pit (60) summit surface (2) Use 2B pencil A dry sclerophyll forest 4 beach (26) dam (16) hillslope @ plain (30) swale (47) SO No pen or biro woodland grass u'storey 5 beach ridge (7) drainage depression (41) B lagoon 54 prior stream (9) swamp (58) **Fully erase** woodland shrub u'storey 6 bench (19) dune (11) lake 55 rock flat 34 talus 23 A mistakes tall shrubland (7 berm (29) landslide @ embankment (14) rock platform 35 GG tidal creek (48) Make no H low shrubland (8) blow-out 59 estuary 44 levee (8) scald (36) tidal flat (37 stray marks heath 9 channel bench 33 fan (27) Numbers in () lunette (13) scarp (18) tor 4 C SG grassland/herbland @ cirque (50) fill top (40) maar (53) scree (24) trench (49 show max. D swamp complex (11) cliff (5) flood-out 32 mound (15) scroll 10 entries allowed valley flat 38 B littoral complex (12 LITHOLOGY **TOPOGRAPHY** FAMI no vegetation (13 E Growth Forms (4) Substrate (3) Slope Percent Site Morphology (1) N tree (1 not identified limestone coarse-basic (45 flat (1 tree mallee 2 Y 0 unconsolidated (2) tuff (24) fine-acidic 46 (T) (T) (T) crest (2 shrub (3 3 (25) gravel breccia fine-intermediate (47 (2) (2) (2) hillock (3 V mallee shrub 4 greywacke sand 4 (26) fine-basic (48 (3) (3) (3) ridge 4 Ċ heath shrub (5 silt (5) arkose (27) serpentine (49 (4) upper slope 5 G.S.G. chenopod shrub 6 clay (6) gabbro dolomite (28) (50 (5) (5) (5) midslope @ A hummock grass @ organic material (7) calcrete dolerite (29) (51 666 simple slope (7 BBB tussock grass @ alluvium (8) aeolianite (30) diorite (52 77.7 lower slope ® 00 sod grass 9 colluvium (9) chert 31) svenite (53 (8) (8) open depression (9 00 sedge 10 lacustrine (10) (32) iasper granodiorite (54 99.9 closed depression (10) D D E rush (11 aeolian (11) metamorphic (33) adamellite (55 **Slope Measurement** Slope Morphology (1) തതര forb (12 marine (12) aneiss (34) granite (56 Method (1) E CE fern/cycad 13 calcareous sand (13) schist/phyllite (57 aplite inclinometer 3 waxing @ (B) (B) (B) moss (14) (14) slate (36) quartz porphyry (58 Abnev level 4 waning 2 (D) lichen 15 (15) mud hornfels (37) basalt (59 total station (5) maximal 3 liverwort (16) (16) till quartzite (38) andesite (60 RTK GPS © minimal 4 PPP vine (17 sedimentary (A-76) greenstone (39) trachyte (61 LIDAR Aspect (1) BB shale (18) amphibolite 40 (62 Microrelief Type (1) rhvolite LAND USE (1) S S S siltstone/mudstone marble 41) obsidian (63 N national/state parks I sandstone-quartz (20) (42) igneous scoria (64 normal gilgai ② NW NE W timber/scrub/unused (2) sandstone-lithic (21) coarse-acidic (43) ash (65) crabhole gilgai 3 E X logged native forest 3 conglomerate coarse-intermediate 44 (22) agglomerate (66 linear gilgai 4 SW SE hardwood plantation 4 other 67 lattice gilgai 5 (\$) softwood plantation (5) affinity Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with C volun./native pasture 6 personal assessment (T other 9 geology map @ improved pasture Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map 3 ≤ 500 mm depth ☐ very poorly drained very slowly permeable orchard/vineyard 9 Rock Outcrop % (1) poorly drained @ slowly permeable > 500 mm depth (2) vegetables/flowers @ nil >20-30% 5 moderately permeable 3 imperfectly drained (3) < 50% area CT urban 11 <2% ② >30-50% ⑥ mod, well-drained (4) highly permeable 4 > 50% area @ industrial (12) 2-10% (3) >50% (7 well-drained 55 SITE FIELD NOTES quarry/mining 133 >10-20% (4) rapidly drained 6 other 14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked (2) Ground natural disturbance (1) self-mulched 3 3 3 Cover % no effective disturbance 2 loose 4 4 4 limited clearing 3 soft 5 (5) (5) firm @ 6 (6) cleared, no cultivation hardset (7) (2) (2 (7) occasional cultivation 6 (3) (3) surface crust ® (8) 8 rainfed cultivation (7) 44 trampled (9) 9 irrigated cultivation ® (5) (5 poached 10 (10) highly disturbed 9 6 6 recently cultivated (11) Photo file name/s: (12) (7)(7)water repellent (12) 88 gravelly ① other (13) (13) (13) Please do not mark this space. SURVEY TITLE: RILX, S. C.R.E.E.K. B.S.A.L. 17814 NCS P | LAYER NATE PRIOR Michigan | cm | | mm 0 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 9 | 0 100 | | 110 1 | 20 | 130 | 140 | 150 | 160 | 170 | 180 | |---|------|----------|--------------------------|--|------------|--|----------|--------------|---|---------------------------------------|----------|-------------------|------------|---------------|---------|------------|----------|---|---------|--------------|--------------| | Part | 1 - | | LAYER | STATUS | | COLOU | JR (Mu | ınsell, | 1994) | Field pH | | L | .AY | ER NOT | ES | | F | ield pH | Test | Method | 1 (1) | | The content of | strip 3 | | Section Company Comp | 2 — | | D D O | 3 B F | 22 | 5 @ B | 20 | 5 @ 0 | B 2 1 | | | | | | | | | | HCI (| 1) | | | Total Control | | ١, | | | 33 | | | | | | | | 1 | | | | 0.37 | | | | | | Color Colo | 3 — | 1 | | | | | | | | 4.4 | | | | | | | stron | g efferves | cence | 333 | 333 | | Company Comp | | | | (BC) | | | | G | | | | 1 1 1 | - | | | | Bo | | | | | | Description | 4 — | | |
 | | 77 | | 77 | 70.7 | | | | | | | | not e | vident | 000 | DOO | | The content of | | | | | | | 88 | | 3 3 | | | | | | 1 | | а | | , | | | | Company Comp | 5 — | | Lower | | | | | | | Field pH | 2 | | | | 1 | | | | , | | | | Compared | | | | | | | | | | | | 1 1 1 | | | | | | | | | | | Column | 6 — | | | | 33 | | | | | | | | 1 | r r r | | | Grade | | | | 3 4 5 | | Second | | 2 | | | | | | | 100000000000000000000000000000000000000 | | | | | | | | Grade | | | | | | Company Comp | 7 — | | | EO | | | | G | | | | | 1 | | 1 | | | | | | | | Company Comp | | | | | | | | | The second second | 7.0 | | | | | | | m | oderate p | edality | 4 | 4 4 4 | | | 8 — | | | | | | 88 | | 3 3 | | | | | | 1 | | _ | | | | | | The content of | | Г | Lower | Horizo | | | | | | Field ph | 1 3 | 3 | | | | | | | sandy | D D C | DDD | | Compared | 9 — | | | | | | | | | | | | | 1 1 1 | | | ro | | - | | | | 10 - | | | 22.22 | 400 | | 75 Y P | 2.5 (2) | 7.5 Y | P 25 2 | 2.0 | D | | | | - | | sm | ooth-face | peds | 4 6 | 444 | | 11 - | 10 — | 13 | The second second second | The second second | | | | | | | | | _ | 1 1 1 | | | | Ped Sha | ape | | | | 1 | | | 5 5 5 | 80 | | | | G | | | | | | | | | | | | | | | Company Comp | 11 — | 88 | | 33 | | | 1 1 1 | - | 1 1 1 | | | | | | | | | 13 | 12 — | H | Lower | Horizo | | | | | | Field ph | | 1 | 1 | | | | | 0 | | 666 | 666 | | 13 | | | | | | | | | | | | | _ | | | | | | | | | | 14 | 13 — | | | | | 75 Y P | 2.5 2 | 7.5 Y | P 25 2 | 2.0 | 2 | | | | 9 | 999 | 9 | | | 990 | 999 | | 14- | | 4 | | | | | | | | | | | | 1 1 1 | | | _ | | | | | | 15 - | 14 — | Ι. | 5 5 5 | BC | | | 5 5 | G | 5 5 | 5.0 | 50 | | | | 1 | 2 3 4 | 5 | | | 1 2 | 3 4 5 | | 15 | | l | | | | | | | | | | 1 1 1 | - | 1 1 1 | | | | | | | | | | 15 — | | 8888 | | | | | | | 8.0 | 8 | | | | 3 | 3333 | 3 | 5-10 m | ım | 330 | 3 3 3 | | 16 10 10 10 10 10 10 10 | | H | | | on | Moist Mu | unsell | Dry I | Viunsell | | | 5 , , | | 1 1 1 | | | | | | | | | 17 | 16 — | | | | _ | | | | | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | _ | | | | | | | 88 | 3 3 3 | | 18 | 17 — | 5 | | | | | | | | | | | | | | | | and the same of | | | | | 18 | | ľ | 5 5 5 | (BO) | | and the same of th | 5 5 | © | 5 5 | 5.0 | 5 | | | | | | | (| | per lay | er) | | 19 | 18 — | ı | | Section 1 to | d | | | | | | | | | | | | | | dry | | | | 19 | | | 8888 | Effective | 9 | | | | | 8.0 | 8 | | | calca | reous | 222 | 20 | 2) mod | . moist | 220 | 222 | | TEXTURE (1 as 4 5 | 19 — | 6 | | | | Sampl | e Taken | | CO | THE RESERVE AND ADDRESS OF THE PARTY. | 100 | IENTS | | | | | | | | | | | 20 - 8 | | U | | | | per layer) 1 | 2 3 | 4 5 | | | | | | _ | | | | 100000000000000000000000000000000000000 | | | | | T | 20 — | | 22.22 | 22.2 | 2 un | disturbed @ | 4 | 44 | not ident | ified ② C | 2) (| 222 | 2 | 01 | ganic | | | Texture | Grade | 1 2 | 3 4 5 | | R S S S S S S S S S | | T | | | | | | | | | | | | not ide | | | | | | | | | 22 - E | 21 — | R | 5555 | 555 | 5 | Base of Obs | servatio | on (1) | as parent ma | terial 5 | 5) (| 5 5 5 | 5) A | mount (1 per | layer) | 1 2 3 | 4 | 5 claye | y sand | 33 | 3 3 3 | | 22 - 22 - 23 | | A | | | | | | | | | | | | very few | | | | | | | | | Dominant (1) MOTTLES Sub-dominant (1) | 22 — | E | 88.88 | 8 8 8 | 8 | | | | silo | rete 3 | 8) (| 888 | 8 | | , | | | | - | | | | 24 | | | | | | | | ned 4 | | | | | | | | | | | | | | | 24 | 23 — | | | | | | | | | | | | _ | | | | | | | | | | 24— | | | | The second section of the second section of | 22 | 0000 | | | pur | mice (13) | 13) (| 13 (13) (13) (13) | 13) | rengin (i pe | | | | _ | _ | | | | S | 24 — | | | | | | | | | | | | | | | | | _ | | | | | 25 — ① ① ① ① ① ① dark ② ② ② ② ② ② ② ② ② ② ② ② ② ② ② ② ② ② ② | | (5 | 5555 | 20-50% | 5 5 | 555 | | | nt (1 per la | yer) Sur. | 1 | 2 3 4 | 5 8 | oft segreg | ations | | 000 | 1 fibi | ic peat | 14 14 | 14 (14) (14) | | 22 2 2 2 red 2 2 2 2 2 common (10-20%) 4 4 4 4 4 4 crystals 4 4 4 4 4 5 crystals 4 4 4 4 4 5 crystals 4 4 4 4 4 5 crystals 4 4 5 crystals 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 crystals 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 — | | | | | | - | ١ | | | | | | | | | | | | | | | 26— 4 4 4 4 4 yellow brown 5 5 5 5 5 very abundant (50-90%) 6 5 6 6 5 6 concretions 6 6 6 6 6 fine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | (2 | 00000 | red | 22 | 0000 | | | mon (10-2 | 0%) 4 | 4) (| 444 | 4 | | ystals | 444 | 4 | 4 Sand F | raction | 1 2 | 3 4 5 | | Clay Fraction 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) Sur. 1 2 3 4 5 Size (1 per layer) | 26 - | | | | | | | | | | | | | concr | | | | | | | | | 27 — C C C C C C C C C C C C C C C C C C | 20 - | (5 | 5555 | brown | 5 5 | 555 | | very ab | undant (>9 | 0%) 🗇 (| 7) (| | 7 | root I | inings | | | | raction | 1 2 | 3 4 5 | | 8 8 8 8 9 gley 8 8 8 8 9 gravel (6-20 mm) 2 2 2 2 2 2 fine (<2 mm) 1 1 1 medium 3 3 3 3 3 medium (2-6 mm) 2 2 2 2 2 2 medium heavy 4 4 4 4 4 4 coarse (6-20 mm) 3 3 3 3 3 3 medium (2-6 mm) 2 2 2 2 2 2 medium heavy 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 27 - | 28 — ①①①①① faint ①①①①① cobbles (60-200 mm) ④ ④ ④ ④ ④ ④ coarse (6-20 mm) ③ ③ ③ ③ ③ heavy ⑤ ⑥ ⑤ ⑤ ⑤ ② ② ② ② ② ② ② ② ② ② ② ② ② ② ② | | 3 | | gley | 88 | 0 8 8 8 | | gra | avel (6-20 r | mm) ② (| 2) | 222 | 2 | fine (< | 2 mm) | DOO | 000 | D r | nedium | 33 | 333 | | 20222 distinct 22222 stones (200-600 mm) 5 5 5 5 5 v coarse (20-60 mm) 4 4 4 4 4 3 3 3 3 3 3 prominent 3 3 3 3 3 boulders (>600 mm) 6 6 6 6 ext coarse (>60 mm) 5 5 5 5 | 28 | | | faint | DO | | | | | | | | | | | | | | | | | | | 20 - | | | | | | | stones | (200-600 r | mm) (5) (| 5) | 5 5 5 | <u>5</u> v | coarse (20-6 | 0 mm | 444 | 4 | 4 | | | | | | 20 | <u></u> | ی رق رق رق رق | o prominent | ق بعا | ر في رفي رفي | | bould | 010 (2000 [| 1111) | س (| ا ته ته ته | 9 ري | AL COMISE (>C | N IIIII | ع رق رق رق |) رق ر | الع | | | | OPEN PADDOCK SITE LOCATION: **PROFILE MAP DETAILS SURVEY DETAILS** Profile No. Map Sheet No. Eastings **Northings** Described By **Profile Date** Photo Taken (1) No. of Layer 000000 00000profile (T site (2 0 both profile & site @ 1 3333333333333333333 2 4 May Nov 4 @ (3) auger 1 555555555555555 5,555 (5) Jun Oeo (5) (5) nit @ (40) 6666 (6) 6 6 batter 3 (5) (7) (7)(7)gully 4 3333 88 (8) core sample 5 **9999999999999999**9 other 6 Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL checked ① AND LAND yes ① detailed @ no 🝩 LAND SOIL DATA CARD **INFORMATION** exclusion (3) **SYSTEM** SOIL LANDFORM ELEMENT (1) **VEGETATION** TYPE **Vegetation Community (1)** Please MARK A.S.C alcove 43 cone (3) footslope 21 ox-bow (57) sink hole/doline (52) LIKE THIS ONLY: backplain (31) unknown (T crater (51) foredune (12) pan/playa 56 stream channel 46 5 0 rainforest (2) hank (25) cut face (28) gully 42 pediment (22) streambed (45) 0 wet sclerophyll forest 3 bar 6 hillcrest ① cut-over surface (39) pit 60 summit surface (2) Use 2B pencil A dry sclerophyll forest 4 beach (26) dam 16 hillslope @ plain (30) swale (47) No pen or biro SO voodland grass u'storey 5 beach ridge ① drainage depression (41) lagoon 54 B prior stream (9) swamp 58 Fully erase woodland shrub u'storey 6 bench (19) dune (11) lake (55) rock flat (34) talus 23 mistakes E tall shrubland (7) berm (29) embankment (14) landslide 20 rock platform (35) tidal creek 48 GG Make no S low shrubland (8) blow-out 59 estuary 44 levee ® scald 36 tidal flat (37 stray marks heath 9 channel bench 33 fan 27 lunette (13) tor (4) Numbers in () A scarp (18) SG grassland/herbland @ cirque (50) fill top (40) maar (53) scree (24) trench 49 show max. H swamp complex (11) cliff (5) flood-out (32) mound (15) scroll (10) valley flat 38 entries allowed C littoral complex (12 LITHOLOGY **TOPOGRAPHY** no vegetation (13 E A M I **Growth Forms (4)** Substrate (3) Site Morphology (1) Slope Percent N not identified tree @ limestone coarse-basic (45 00.00 tree mallee ② 0 unconsolidated (2) triff (24) fine-acidic (46 crest 2 shrub (3) gravel (3) breccia 25) fine-intermediate (47 22.2 hillock 3 W mallee shrub 4 4 sand greywacke fine-basic (48 (3) (3) (3) ridge 4 C heath shrub (5 silt (5) arkose (27) (49 serpentine (4) (4) (4) upper slope 5 G.S.G. chenopod shrub 6 6 clay dolomite (28) gabbro (50 (5) (3) (5) midslope 6 (A) hummock grass @ organic material (7) calcrete (29) dolerite **(51)** simple slope T 666 BBB tussock grass @ alluvium 8 aeolianite 30 diorite (52 777 lower slope @ 00 sod grass (9) colluvium 9 chert (31) syenite (53 8 8 8 open depression (9) 00 sedge 10 10 lacustrine (32) granodiorite (54 iasper 99.9 closed depression 10 ® ® ® rush (11) aeolian (11) metamorphic (33) adamellite (55 Slope Measurement Slope Morphology (1) തതര forb (12) marine (12) (34) (56 gneiss granite Method (1) ED CED CED fern/cycad (13 13 calcareous sand schist/phyllite 35) aplite (57 inclinometer waxing (1 (K) (K) moss (14 (14) slate (36) quartz porphyry (58 Abnev level 4 waning @ O O lichen (15 (15) mud hornfels (37) basalt (59 total station (5) maximal (3) liverwort (16) (16) (60 RTK GPS 6 till quartzite (38) andesite minimal 4 PPP vine (17 sedimentary (H-72) greenstone (39) trachyte (61 LIDAR @ Aspect (1) BB (18) amphibolite shale 40 rhyolite 62
Microrelief Type (1) LAND USE (1) S S S siltstone/mudstone 19 marble (41) obsidian (63 N CD CD national/state parks (1 sandstone-quartz 20 normal gilgai 2 ianeous (42) scoria (64 NW NE W timber/scrub/unused (2) sandstone-lithic (21) coarse-acidic (43) ash (65 crabhole gilgai 3 W E X logged native forest 3 conglomerate (22) coarse-intermediate (44) agglomerate (66 linear gilgai 4 SW SE hardwood plantation 4 other lattice gilgai 5 (5) softwood plantation (5) affinity Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with C volun./native pasture 6 personal assessment (1 other (9) improved pasture geology map Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map 3 very poorly drained ① very slowly permeable ≤ 500 mm depth ① orchard/vineyard 9 slowly permeable Rock Outcrop % (1) poorly drained (2) > 500 mm depth ② nil >20-30% 5 vegetables/flowers (10 imperfectly drained 3 moderately permeable 3 ≤ 50% area ① urban II <2% ② >30-50% ⑥ mod, well-drained highly permeable 4 50% area (2 industrial (12 2-10% (3) >50% (7) well-drained (5) SITE FIELD NOTES quarry/mining 13 >10-20% 4 rapidly drained 6 other 14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked (2) (2) Ground natural disturbance (1 self-mulched 3 3 (3) Cover % no effective disturbance 2 4 4 loose 4 limited clearing 3 **(1)** soft 5 (5) (5) extensive clearing (1) (1) (6) 6 firm @ cleared, no cultivation 659 hardset (7) (7) (2) (2 occasional cultivation 6 (3) (3) surface crust ® (8) (8) rainfed cultivation (7 44 trampled 9 9 irrigated cultivation ® (5) (5) poached (10) highly disturbed (9) 6 6 recently cultivated 1 Photo file name/s: (12) (7)(7)water repellent (12) 88 gravelly ① (13) Please do not mark this space. SURVEY TITLE: RILXS CREEK BSAL NCS Pearson | cm | | mm 0 10 | 20 3 | 0 40 | 50 | 60 | 70 | 80 | 90 10 | 110 | 0 120 | 130 | 140 | 150 160 | 170 | 180 | |------|----|---|--|---|------------------------|-------------|--------------------------|----------------------------------|---|--------|--|--|-----------|------------------------------------|----------------|------------------------------------| | 1 - | | LAYERS | STATUS | COLOU | JR (Mu | ınsell | 1994) | Field pH | BE SHOW | LAYER | NOTES | | Fie | eld pH Test | Method | (1) | | | | Lower | Horizon | Moist Mu | | | | (1 per layer) | 1 | | | | | Raupach | | strip ③ | | 2 — | | | 2 6 D 6 C | | | | | | | | | | United St | pH meter | | | | | | 2222 | 4003 | D 75 Y P | 2.5 | 7.5 Y | P 25 2 | 2.2 | | | | | | effervescence | DOO | | | 3 — | 11 | 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | AB P | | (4) (4) | (N)
(GY) | (3) (3)
(4) (4) | 3·3
4·4 | | | | | | le/slight efferv.
effervescence | | | | | ľ | 5 5 5 | B O | | 5 5 | G | 5 | 5.5 | | | | | | undary Dis | | | | 4 — | | 6 6 6 | | | 66 | | 66 | 60.6 | | | | 1 1 1 | | (1 per layer)
not evident | | | | | | 7 7·7 7
8 8·8 8 | | | (T) (T) (B) (B) | | (7) (7)
(8) (8) | 7·7
8·8 | | | | | | sharp (<5 mm) | | | | | | 9999 | | | | | | 9.9 | | | | | | rupt (5-20 mm) | | | | 5 — | | Lower (1) | Horizon ② | Moist Mu | | | Munsell
BG (1-7) (0) | Field pH | 2 | 1 | | | | ear (20-50 mm)
al (50-100 mm) | | | | | | D D.D | 3 6 F 6 | D (5) (8) (B) | 20 | 5 @ | B 21 | D • D | | | | | | use (>100 mm) | 666 | | | 6 — | | 2 2 2 2
3 3 3 3 | 4 © 0 3 C | | 25 2
3 3 | | P 25 2
3 65 | 2·2
3·3 | | | 1 1 | | Grade | STRUC
of Pedality (1) | | 4 5 | | | 2 | 4444 | AD (R) | | 4 | GY | 44 | 4.4 | | | | | | single-grained | | | | 7 — | | 5 5 5 5
6 6 6 6 | (BC) | | (5) (5)
(6) (6) | G | (5)
(5) (6) (6) | 5·5
6·6 | | | | | | massive weak pedality | 222 | | | | | | | | 77 | | | 3. 7 | | | | | mo | derate pedality | | | | 8 — | | 8888 | | | 33 | | 88 | 8.8 | | To be | | | | strong pedality | | | | | Н | ① ① ① ① | Horizon | Moist Mu | ınsell | Dry I | Viunsell | 9·9
Field pH | 3 | | | | | | 1 2 3 | | | 9 _ | | @ O O @ | 2 A D D C | D 25 B BG | 170 | 2.5 R | BG (17) (0) | 0.0 | | | | | | earthy | 2 2 | 022 | | 9 — | | | 3 | | | | B 2 1 | ① ①·①
②·② | | | | | 1 | igh-faced peds
oth-faced peds | | | | | 3 | 3 3 3 | AB (P) | | 33 | | 33 | 3.3 | | | | Dominant (| | Ped Shape | Sub-dom | | | 10 — | 10 | 4 4 4 | AC R | | | GY | 4 4 | 4.4 | | | | 1 2 3 4 | 5 | plate | 1 2 3 | | | | | 5 5 5 5
6 6 6 6 | BO | | (5) (5)
(6) (6) | G | 6 6 | 5.5 6.6 | | | | | 100 | platy
lenticular | 222 | | | 11 — | | 7 7.7 | | | 7 | | $\mathcal{D}\mathcal{D}$ | 7.7 | | | | 3 3 3 3 | | prismatic | 333 | | | | | 8 8 8
9 9 9 9 | | | 88 | | 3 3 | 9.9 | | | | 4 4 4 4
5 5 5 5 | | columnar
ngular blocky | 4 4 4
5 5 5 | | | 12 — | | Lower | Horizon | Moist Mu | | | Munsell | Field pH | 4 | | | 6 6 6 | 6 su | ub-ang. blocky | 666 | 0 6 | | | | | 2 A D D C C C C C C C C C C C C C C C C C | | | | | | | | | 7 7 7 7
3 3 3 3 | | polyhedral
granular | 777 | | | 13 — | | | 4003 | | | | | 2.2 | | | | 9999 | | crumb | 999 | | | | 1 | 3 3 3 | AB P | | 33 | | 33 | 3.3 | | | | 10 (10 (10 | | round | 10 10 1 | | | 14 — | Ι. | 4 4·4 4
5 5·5 5 | AD (R) | | 4 4
5 5 | GY
G | 4 4 5 5 | 4 • 4 5 • 5 | | | - | Dominant (| 5 | Ped Size | Sub-dom | | | 14- | | 6666 | | | 66 | | 66 | | | 1 1 | | DOOO | | <2 mm | 000 | | | | | 7 7·7 7
8 8·8 8 | | | 77 | | (7) (7)
(8) (8) | 7·7
8·8 | | | | 2 2 2 2
3 3 3 3 | | 2-5 mm
5-10 mm | 222 | | | 15 — | | 9999 | | | | | | 9.9 | | | | 4444 | 4 | 10-20 mm | 444 | DAA | | | | Lower | Horizon ② A D 1 | Moist Mu | | | Munsell | Field pH | | | | 5 5 5 5
6 6 6 6 | | 20-50 mm
50-100 mm | 5 5 5
6 6 6 | | | 16 — | l | | 3 8 6 2 | | | | | | | | | | | 100-200 mm | 000 | | | | | | 40030 | | | | | | | | | | | 200-500 mm | 3 3 3 | | | 17 — | 5 | 4 4·4 4 | | (T) (N)
(CY) | 44 | | 3 3
4 4 | | | | VOLUMENT COMMENTS | | | > 500 mm | (ater State | THE RESERVE OF THE PERSON NAMED IN | | | | 5 5 5 | | G | 5 5 | G | 55 | | | | | GATIO | | | h per laye | er) | | 18 — | ı | 6 6 6 6
7 7 7 7 | Children and the Control of Cont | | | | 6 6
7 7 | | | Туре | | er) 1 2 3 ent 🗐 🗊 🗇 | | dry | 1 2 3 | | | | | 8888 | | | 88 | | 88 | | | | | us 222 | | mod. mois | 222 | 222 | | 19 — | - | 9 9 9 9
Upper | Rooting
Depth (m) | Sample | e Taken | | CO | 9.9 | | m | 0,1 | us 3 3 3
us 4 4 6 | | | | | | | S | 0000 | 00.00 | (3 per layer) 1 | 2 3 | 4 5 | Type (1 per l | layer) Sur 1 | 2 3 4 | 5 | ferrugino | us 5 5 5 | 5 5 | TE | XTURE | | | 20 — | B | | ① ① ① ①
② ② ② ② | disturbed ③ | | | | | | | - | us 6 6 6 | | (1 eac | h per laye | | | 20 — | S | 3 3 3 | 33.33 | bulked ® | 66 | 66 | as subst | rate 3 3 | 333 | 3 | not identifi | ed 8 8 8 | 3 3 | sand | | | | | T | | 4 4 4 4 5 5 5 5 | ulk density Base of Obs | | | | | 444 | | | er 9 9 9
er) 1 2 3 | | loamy sand | | | | 21 — | R | 6666 | 6666 | | er continu | | | | 666 | | | ne ① ① ① | | | | | | | T | | 77·77
88·88 | | il continu | | | | | | | %) | | | 550 | | | 22 — | E | | 9999 | | nent refu
ock reach | | | | (B) | | | %) 3 3 6
%) 4 4 4 | | sandy clay loan | | | | | | Dominant (1) | MOTTLES Sub | dominant (1) | | | bau | ixite 10 10 | (I) (II) (II) (II) | 1 m | any (20-50 | %) 5 5 5 | 5 5 | clay loam | 88 | 3 3 3 | | 23 — | | 2 3 4 5 | not evident 6 | 2 3 4 5
6 6 6 6 | | | | | | _ | | | | clay loam sandy
silty clay loam | | | | | 2 | 2222 | <2% ② | 2222 | | | pun | nice 13 13 | 13 13 13 | 13 | we | ak ① ① @ | | sandy clay | TO COLOR | | | 24 — | | 3 3 3 3
4 4 4 4 | | 3 3 3 3
4 4 4 4 | | | | | 14 14 14 18 18 18 | | | ng ② ② ② ② ② er) 1 2 3 | | | 1 12 12 1 | | | | | 5555 | | 5 5 5 | | | nt (1 per lay | er) Sur. 1 | 2 3 4 | 5 soft | | ns ① ① ① | | | 1 14 14 1 | | | 25 — | | 2 3 4 5 | | 2 3 4 5 | | - | | | 0000 | | | es 2 2 @ | | | | | | 20 — | | | AMERICA | $ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$ | | com | | | 3 3 3 | | | nts 3 3 3
als 4 4 4 | | sapric pea Sand Fraction | | | | | 3 | 3333 | orange 3 | 3 3 3 3 | | r | many (20-50 | 0%) 5 5 | 555 | 5 | vei | ns 5 5 5 | 5 5 | coarse | (D) | DOD | | 26 — | | 0 4 4 4 4
0 5 5 5 5 | The same of sa | 4 4 4 4
5 5 5 5 | | | | | | | | ns 6 6 6 | | Clay Fraction | 223 | | | | 6 | 6666 | pale 6 | 6666 | | Siz | ze (1 per lay | /er) Sur. 1 | 2 3 4 | 5 | tubu | es 8 8 8 | 3 3 | ligh | 000 | | | 27 — | | | 0 , | | | | | | | | | er) 1 2 3 | | | | | | | 1 | 2 3 4 5 | | 8 8 8 8
2 3 4 5 | | | | | 0222 | | | m) ① ① ① ④
m) ② ② ② | | medium
medium heavy | 3 3 3 G | | | 28 — | | | faint ① | | | cobble | s (60-200 r | nm) 4 4 | 444 | Coar | rse (6-20 m | m) 3333 | 3 3 | heav | (5) (6) (8) | | | | |) | distinct 2 (| 2 2 2 2
3 3 3 3 | | | | | | | | m) 4 4 4
m) 5 5 5 | | | | | | 29 — | | | | | | | | | Andrew or Description | | - Committee of the Comm | THE RESERVE OF THE PARTY | | | | | OPEN PADDOCK SITE LOCATION: **PROFILE MAP DETAILS** SURVEY DETAILS Profile No. Map Sheet No. Eastings Northings Described By **Profile Date** Photo Taken (1) No. of Layer 0000 0000 O Jan Jul O O (1) (1) (Feb) (Aun) (3) (1) site (2 both profile & site 1 3 3 3 3 3 6 0 0 3 3 Nature of Exposure (2) 2 4444444444 4 May (Toy 4) auger (1 (B) 55555555555555555 5555 (5) Jun Oec (5) (5) pit @ 4 6666666666666666666 6666 (6) 66 batter 3 (5) OOOOOOOOOOOOOOOOO 7 TT gully 4 8888888888888 8888 (8) 88 core sample 5 99999999999999999 (9) 9 9 other 6 **NSW SOIL** Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL AND LAND checked @ detailed 2 yes 📻 no (2) LAND SOIL DATA CARD **INFORMATION** exclusion (3 **SYSTEM** SOIL **VEGETATION LANDFORM ELEMENT (1)** TYPE Please MARK sink hole/doline 52 A.S.C **Vegetation Community (1)** alcove (43) footslope (21) ox-bow (57) LIKE THIS ONLY: pan/playa 56 unknown (1 backplain (31) crater (51) foredune 12 stream channel (46) C 0 rainforest 2 bank 25 cut face (28) gully 42 pediment (22) streambed 45 H wet sclerophyll forest 3 bar 6 cut-over surface 39 hillcrest ① nit (60) summit surface (2) Use 2B pencil A dry sclerophyll forest 4 beach (26) hillslope @ dam (16) plain (30) swale (47) No pen or biro SO woodland grass u'storey 5 beach ridge ① B drainage depression 41 lagoon 54 prior stream (9) swamp 58 **Fully erase** woodland shrub u'storey 6 bench (19) dune 11 lake 55 rock flat 34 talus 23 mistakes tall shrubland (7 berm (29) embankment (14) landslide (20) rock platform 35 tidal creek 48 GG Make no low shrubland ® blow-out 59 estuary 44 levee (8) scald (36) tidal flat (37 stray marks heath 9 channel bench (33) fan (27) lunette (13) scarp (18) tor (4) Numbers in () SG grassland/herbland @0 cirque (50) fill top 40 maar (53) scree 24 trench 49 show max. swamp complex 11 cliff (5) flood-out 32 mound (15) scroll 10 entries allowed valley flat 38 littoral complex (12 F LITHOLOGY **TOPOGRAPHY** no vegetation (13) A M **Growth Forms (4)** Substrate (3) Site Morphology (1) **Slope Percent** tree (1 not identified limestone coarse-basic 0 0 . flat I tree mallee ② unconsolidated 2 tuff 24) fine-acidic 46 **D D D D** crest 2 shrub 3 gravel 3 breccia (25) fine-intermediate 47 22.2 hillock (3) mallee shrub 4 sand 4 greywacke (26) fine-basic (48 (3)(3)(3)ridge 4 C heath shrub (5) (5) silt arkose (27) sementine (49 (4) (4) (4) upper slope 5 GSG chenopod shrub (6) 5 5.5 midslope @ clay 6 dolomite (28) gabbro (50 (A) hummock grass @ organic material 7 calcrete dolerite 29 (51 666 simple slope 7 BBB tussock grass @ alluvium (8) aeolianite (30) diorite (52 77.7 lower slope (8) 00 sod grass 9 colluvium 9 chert (31) (53 svenite (8) (8) open depression (9) 00 sedge (10 granodiorite (10) lacustrine iasper (32) (54 99.9 closed depression (10 E E E rush (11 aeolian (11) metamorphic (33) adamellite (55 Slope Measurement Slope Morphology (1) തതര forb (12) marine (12) (34) granite (56 Method (1) E E E fern/cvcad (13 calcareous sand (13) schist/phyllite (35) aplite (57 inclinometer 3 waxing @ moss (14) fill (14) slate (36) (58 Abney level 4 quartz porphyry waning (2) DD lichen (15 mud (15) hornfels (37) basalt (59 total station (5) maximal 3 M M liverwort (16 quartzite till (16) (38) andesite (60 RTK GPS 6 minimal 4 P P P vine (17 sedimentary Aspect (1) 1 areenstone (39) trachyte (61 LIDAR @ Microrelief Type (1) BB shale (18) amphibolite (40) (62 rhvolite LAND USE (1) **S S** siltstone/mudstone (19) marble **(41)** obsidian (63 N none @ T C national/state parks (1 normal gilgai ② sandstone-quartz (20) igneous (42) scoria (64 NW (NE) W timber/scrub/unused (2) sandstone-lithic (21) coarse-acidic (43) ash (65 crabhole gilgai 3 W Œ \propto logged native forest 3 conglomerate coarse-intermediate 44 SE (22) agglomerate (66 linear gilgai 4 SW hardwood plantation (4) other lattice gilgai 5 S affinity softwood plantation 5 Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with C volun./native pasture (6) personal assessment (T other 9 improved pasture @ geology map Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map ③ very poorly drained very slowly permeable ≤ 500 mm depth ① orchard/vineyard 9 poorly drained ② slowly permeable @ > 500 mm depth (2) Rock Outcrop % (1) vegetables/flowers 10 nil >20-30% 5 imperfectly drained (3) moderately permeable 3 < 50% area (T) <2% ② >30-50% ⑥ urban (11 mod. well-drained (4) > 50% area (2) highly permeable 4 industrial (12 2-10% (3) >50% (7) well-drained 5 SITE FIELD NOTES quarry/mining (13) >10-20% 4 rapidly drained 6 other (14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked
(2) Ground natural disturbance T self-mulched 3 3 3 Cover % no effective disturbance (2) loose 4 4 4 limited clearing 3 soft 5 (0) (0) (5) (5) extensive clearing (1) (1) 6 6 firm @ cleared, no cultivation (2) (2 hardset (7) 7 occasional cultivation 6 33 surface crust ® (8) 8 rainfed cultivation (7 44 trampled 9 9 irrigated cultivation ® 5 5 poached 10 (10) highly disturbed (9) 6 6 recently cultivated 11 Photo file name/s: 777 water repellent (12) (12) 88 gravelly ① other (13) (13) (13) Please do not mark this space. SURVEY TITLE: RIXS CREEK, BSAL NCS Pearson | cm | | mm 0 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 1 | 20 | 130 | 140 | 150 | 160 | 170 | 180 | |------|----|--|----------------------|-------------|---------------------------|--------------------|-----------------|--|--|---------|------------|------------------------------|----------|---------------------|-------------------|---------------------------|---------|-----------------------|----------------------------| | 1 - | | LAYER | STATUS | | COLO | JR (M | unsell | , 1994) | Field pH | | LA | ER NOT | ES | | Fie | eld pH | est l | /lethod | (1) | | | | Lower | Horizon | | Moist Mu | | | Munsell | (1 per layer) | 1 , | | T 1 T | 1 1 | | | | pach (| D test | strip ③ | | 2 — | | | | | | | | | | | | | | | NEW YORK | | ICI (1 | | | | | | 2 2 2 2
3 3 3 3 | 4 C O C | 3 3 | 75 Y P
8 N | | 75 Y | P 25 2
3 3 | 2·2
3·3 | | | 1 1 1 | 1 1 | | | effervesc
ole/slight e | | | | | 3 — | 1 | 4 4 4 4 | AD (B) | | GY) | 44 | (E) | 44 | 4.4 | | | | | | strong | effervesc | ence (| 3 3 3 | 33 | | | | 5 5 5
6 6 6 6 | BC | | G | (5) (5)
(6) (6) | G | 5 5 6 6 | 5·5
6·6 | | | 1 1 1 | | | Во | undary | | nctiven | | | 4 — | | D D D | | | | 000 | | 9 9 | 7.0 | -1 | | | | | | not ev | ident (| DOC | 000 | | | | (B) (B) (B) (B) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G | | | | 88 | | 88 | 8·8 9·9 | | | | | | | sharp (<5
rupt (5-20 | , | | | | 5 — | | Lower | Horizoi | | Moist Mu | | | Munsell | Field pH | 2 , | | 1 1 | | | cle | ear (20-50 | mm) | 4 4 4 | 4 4 | | | | | | | | | | 66 (T) (D)
(B) (2) (D) | | | | 1 1 1 | T 1 | | _ | al (50-100
use (>100 | | | | | 6 — | | 2222 | 4000 | | 75 Y P | 2.5 2 | 7.5 Y | P 23 2 | 2.2 | | | | | | Cuada | | UCT | | 4 5 | | | 2 | 3 3 3 3
4 4 4 4 | AB P | | (N)
(GY) | 3 3 | | 3 3
4 4 | A CONTRACTOR OF THE PARTY TH | | | | | | Grade | of Pedali
single-gra | | | | | 7 — | | 5 5 5 5 | BO | | G | (5) (5)
(6) (6) | © | (5) (5)
(6) (6) | | | 4 | | | 1 1 | | | | 2 2 2
3 3 3 | | | | | 6 6 6 6
7 7 7 7 | | | | | | 00 | | | | | | | mo | derate pe | , | | and the second second | | 8 — | | 8 8 8 8
9 9 9 9 | | | | 88 | | 88 | 8 • 8 9 • 9 | | 1 1 | | | | | strong pe | | 5 5 5
1 2 3 | | | | Н | Lower | Horizo | | Moist Mu | | - | Munsell | Field pH | 3 | | | 1-1 | | | S | andy (| DOO | | | 9 — | | | | | | ① ①
② ① | | | | | | | | | roı | e
ugh-faced | | 2 2 2
3 3 3 | | | | | @@@@ | 4000 | | 73 T P | 25 2 | 75 Y | P 25 2 | 2.2 | | | | | | smo | oth-faced | peds (| 4 4 4 | 4 4 | | 10 — | 3 | 3 3·3 3
4 4·4 4 | AB P | | | 3 3 4 4 | ① N
② | 3 3
4 4 | | | | | | ominant (*) | | Ped Sha | | Sub-dom
1 2 3 | | | | | 5 5 5 | BO | | <u>G</u> | 5 | <u>G</u> | 5 5 | 5.5 | | | | D | DOD | 1 | platy | (| DOO | 000 | | 11 — | | 6 6 6 6
7 7 7 7 | | | | 6 6 | | 66 | | | | 1 1 1 | | 2 2 2
3 3 3 | | lenticula
prismati | | 2 (2) (2
3) (3) (3 | | | | | 8888 | | | | 88 | | 3 3 | | | 1 1 | | | 444 | The second second | columna | r (| 4 4 4 | | | 12 — | Н | ③ ①·③ ⑨
Lower | Horizo | n | Moist Mu | unsell | Dry | Munsell | 9·9
Field pH | 4 | г г | | | 5 5 5
6 6 6 | | ingular blo
ub-ang. bl | | 5 5 5
6 6 6 | | | | | 0000 | 2 A D | DI | 2.5 R BG | 170 | 2.5 R | BG 1.7 0 | 0.0 | | | | | T T T | | polyhedr | | | | | 13 — | | ① ① ① ② ② | | | | | | (B) (2) (C) | | | | | | 3 3 3
3 9 9 | | granula
crumb | | 3 (3 (8
9 (9 (9 | | | | 4 | 3 3 3 | AB (P) | | (M) (D) | 3 3 | | 3 3
4 4 | | | | 1 1 1 | _ | 10 (10 (10 | _ | round
Ped Siz | _ | 10 10 10 Sub-dom | | | 14 — | l' | 4 4·4 4
5 5·5 5 | 60 G | | G | 5 5 | | 5 5 | | | | | | ominant (*
2 3 4 | _ | Peu Siz | | 1 2 3 | | | | | 6 6 6 6
7 7 7 7 | | | | 66 | | 6 6 7 7 | The second second | | | | | D D D | | <2 mm | | | | | 15 — | | 8 8 8 | | | | 88 | | 88 | 8.8 | | | | 3 | 333 | 3 | 5-10 mr | n | 3 3 3 | 033 | | .0 | H | 9 9 9 9
Lower | Horizo | n | Moist M | unsell | Dry | Munsell | 9.9
Field pH | 5 | | | | 4 4 4
5 5 5 | | 10-20 m
20-50 m | | 4 4 4
5 5 5 | | | 16 — | | 0000 | 2 A D | DI | 2.5 R 8G | 17 0 | 2.5 B | BG 177 (1) | 0.0 | | | | 6 | 666 | 6 | 50-100 m | ım | 666 | 066 | | 10 - | | | | | | | 100000 | | | | 1 1 | | | 7 7 7
3 3 3 | | 100-200 r
200-500 r | | 7) 7) 7
3) (8) (8 | | | 17 — | 5 | 33.33 | AB P | | (II) (III) | 33 | (II) (II) | 33 | 3.3 | | | | | 999 | | > 500 m | m | 999 | D 9 9 | | 17 | ۲ | 4 4·4 4
5 5·5 5 | | | G | 4 4
5 5 | | | | | | SEGF | REG | ATIO | VS | | | ter State
per laye | | | 18 — | | 6666 | | | | 66 | | 66 | | | | Type (1 per l | | 1 2 3 | | | dnı | 1 2 3
① ① ① | | | 10 - | | | | | | 7 7
3 8 | | (T) (T) (B) (B) (B) | | | | | | 222 | | | - | | | | 19 — | - | 9 9 9 9
Upper | Rooting
Depth (m) | - | Comp | le Taker | | CO | 9.9
ARSE FRAC | | | 0,1 | | 3 3 3
4 4 4 | | | | 39 39 6 4 4 4 | | | 13 - | S | 0000 | 00.00 | D (3 | per layer) 1 | 2 3 | 4 5 | Type (1 per | layer) Sur 1 | 2 3 | 4 5 | ferrugi | nous | 555 | 5 5 | | TEX | TURE | | | 20 — | В | ① ① ① ①
② ② ② ② | | | disturbed 3 | | | | dent | | | erromanganif
oro | | 6 6 6
7 7 7 | | | | per laye | _ | | 20 - | S | 3 3 3 | 33.3 | 3 | bulked 6 |
66 | 66 | as subst | trate 3 3 | 333 | 33 | not iden | tified | 888 | 88 | | sand | | | | 21 — | R | 4 4 4 4
5 5 5 5 | | | Ik density CZ Base of Ob | | | | tcrop 4 4
terial 5 5 | | | mount (1 per | | 9 9 9
1 2 3 | | | | ② ② ②
③ ③ ③ | 2 2 2
3 3 3 | | 21- | A | 6666 | 666 | 6 | laye | er contin | ues ① | qu | uartz 6 6 | 66 | 66 | | none | | D C | sandy | loam | 444 | D 4 4 | | 22 — | I | 7 7 7 7
8 8 8 | 888 | 8 | | | ues @
usal ③ | The second secon | spar 7 7 crete 8 8 | | | | | 2 2 2
3 3 3 | | | | | 0 | | LC - | E | 9 9 9 9
Dominant (1) | | | | | hed 4 | | tone 9 9 | | | many (20- | | 4 4 4
5 5 5 | | | | | | | 23 — | 1 | 2 3 4 5 | Abundance | 1 2 | 3 4 5 | | | sl | hells III III | D CD CD | I I | abundant (> | 50%) | 666 | 66 | clay loam | sandy | 999 | 999 | | 25 — | | 6 6 6 6 0 2 2 2 2 | | | 0666 | | | | coal 12 12
mice 13 13 | | | trength (1 per | | 1 2 3
① ① ① | | | | | | | 24 | 3 | 3333 | 2-10% | 3 3 | 3333 | | | opalised w | vood (14) (14 | 14 14 1 | 14) (14) | s | trong | 222 | 22 | silt | y clay | 12 12 1 | 2 12 12 | | 24 — | | (4) (4) (4)
(5) (5) (5) (5) | | | 4 4 4
5 5 5 | | Amou | | other (18) (18)
yer) Sur. 1 | | | Form (1 per soft segrega | | | | | | | 3 (13) (13)
4 (14) (14) | | 0.5 | 1 | 2 3 4 5 | Colour | 1 2 | 3 4 5 | | | very few (< | 2%) ② ② | 222 | 2 2 | no | dules | 222 | 22 | hemi | peat | (E) (E) | 5 (15) (15) | | 25 — | | | 100,000,000 | | | | con | | 0%) 3 3
0%) 4 4 | | | | | 3 3 3
4 4 4 | | | | | 6 (16) (16)
3 4 5 | | | 3 | 3333 | orange | 3 3 |) ७ ७ ७ | | 1 | many (20-5 | 0%) 5 5 | 55 | 5 5 | | veins | 555 | 5 5 | 0 | oarse | D D C | DDD | | 26 — | | 4 4 4 4
5 5 5 5 | , | | 4 4 4
5 5 5 | | | | 0%) | | | | | 6 6 6
7 7 7 | | | | | 2 2 2 3 4 5 | | | 6 | 6666 | pale | 6 6 | 0 6 6 | | Siz | ze (1 per la | yer) Sur. 1 | 2 3 | 4 5 | tu | oules | 888 | 88 | | light | 1 | | | 27 — | | (D) (D) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T | | | | | | | mm) ① ①
mm) ② ② | | | Size (1 per I
fine (<2 | | 1 2 3
① ① ① | | | | | 2 2 2
3 3 | | | 1 | 2 3 4 5 | Contrast | 1 2 | 3 4 5 | СО | arse gra | vel (20-60 i | mm) 33 | 333 | 3 3 | medium (2-6 | mm) | 222 | 22 | medium | heavy | 440 | D 4D 4D | | 28 — | | | | | | | | | mm) 4 4
mm) 5 5 | | | coarse (6-20
coarse (20-6 | | | | | leavy | ف رق رق | 5 5 5 | | | 3 | 3333 | | 3 3 | 3333 | | bould | lers (>600 i | mm) © © | 66 | 66 | ext coarse (>6 | 0 mm) | 555 | 5 5 | | | | | | 29 — | TRACK ALONG RIDGE SITE LOCATION: PROFILE MAP DETAILS **SURVEY DETAILS** Profile No. Map Sheet No. Eastings Northings Described By **Profile Date** Photo Taken (1) No. of Layer T profile site 2 both profile & site 1 (2) 4444444444444444444444 (4) (May (Nov) (4) (4) (3) auger I 55555555555555555 5555 pit @ (5) Jun Dec (5) (5) (4) 666666666666666666 6666 (6) 66 batter 3 (5) (7) 77 gully 4 8888888888888888888 3333 (8) 88 core sample (5 999999999999999999 (9) other 6 NSW SOIL Potential BSAL? (1) Site type (1) BIOPHYSICAL STRATEGIC AGRICULTURAL AND LAND ves (1) detailed @ no @ LAND SOIL DATA CARD **INFORMATION** exclusion 3 **SYSTEM** SOIL **LANDFORM ELEMENT (1) VEGETATION** TYPE Please MARK A.S.C **Vegetation Community (1)** alcove (43) cone (3) footslope 21 sink hole/doline (52 LIKE THIS ONLY: crater 51 backplain (31) C unknown (1 foredune (12) pan/playa 56 stream channel 46 0 rainforest 2 bank (25) cut face (28) gully 42 pediment (22) streambed (45) H wet sclerophyll forest 3 har 6 cut-over surface (39) hillcrest (1) nit (60) summit surface (2) Use 2B pencil A dry sclerophyll forest 4 beach (26) hillslope @ dam (16) plain (30) swale 47 SO No pen or biro woodland grass u'storey 5 B beach ridge (7) drainage depression 41 lagoon 54 prior stream (9) swamp 58 **Fully erase** woodland shrub u'storey 6 bench 19 dune 11 lake 55 rock flat (34) talus 23 mistakes A tall shrubland @ berm (29) embankment 114 landslide 20 rock platform 35 GG tidal creek (48) Make no low shrubland ® H blow-out 59 estuary (44) levee (8) scald (36) tidal flat (37) strav marks heath (9 channel bench (33) fan (27) lunette (13) scarp (18) tor 4 Numbers in () E SG grassland/herbland @ cirque 50 fill top 40 maar (53) scree (24) trench (49 show max. 0 swamp complex (11) cliff (5) flood-out 32 mound (15) entries allowed scroll (10) valley flat 38 littoral complex (12 B LITHOLOGY F **TOPOGRAPHY** no vegetation (13) E A M I Growth Forms (4) Substrate (3) **Slope Percent** Site Morphology (1) L not identified tree (1 limestone coarse-basic (45 flat (1 L 0 tree mallee ② unconsolidated 2 tuff (24) fine-acidic crest 2 shrub 3 gravel 3 breccia (25) fine-intermediate (47 (2)(2) hillock (3 W mallee shrub 4 (4) greywacke sand (26) fine-basic (48 (3) (3) (3) ridge 4 C heath shrub (5) (5) silt arkose (27) serpentine (49 44.4 upper slope G.S.G. chenopod shrub (6) clay 6 dolomite (28) gabbro (50 (5) (5) (5) midslope 6 (A) hummock grass @ organic material dolerite 7 calcrete 29 (51) 6 6 6 simple slope (7) BBB tussock grass @ alluvium (8) aeolianite (30) (52 diorite (7)(7)(7)lower slope ® 00 sod grass (9) colluvium 9 chert (31) (53 svenite (B) (B) (B) open depression 9 00 sedge (10 lacustrine (10) iasper (32) granodiorite (54 closed depression 10 99.9 (E) (E) (E rush (11 aeolian (11) metamorphic (33) adamellite (55 Slope Measurement Slope Morphology (1) @ @ @ forb (12) marine (12) (34) granite (56 Method (1) aneiss ED CED CED fern/cycad (13 calcareous sand (13) schist/phyllite (35) (57 aplite inclinometer 3 waxing @ moss (14) fill (14) (36) (58 slate quartz porphyry Abney level 4 waning 2 T T lichen (15 mud (15) hornfels (37) basalt (59 total station (5) maximal 3 M M liverwort (16 till (16) quartzite (38) andesite (60 RTK GPS 6 minimal 4 P P P vine (17 sedimentary areenstone (39) trachyte (61 LIDAR @ Aspect (1) BB shale (18) amphibolite (40) (62 Microrelief Type (1) rhvolite LAND USE (1) S S S siltstone/mudstone (19) (41) marble obsidian (63 N none @ CD CD national/state parks (1 sandstone-quartz (20) ianeous (42) scoria (64 normal gilgai ② OW NE crabhole gilgai 3 W timber/scrub/unused (2) sandstone-lithic (21) coarse-acidic (43) ash (65 Œ ∞ logged native forest 3 conglomerate coarse-intermediate (44) agglomerate (66 linear gilgai 4 SW SE hardwood plantation 4 Y other (5) lattice gilgai (5) softwood plantation (5) affinity Identification Method (1) melonhole gilgai 6 **HYDROLOGY** volun./native pasture 6 personal assessment (1 with other 9 improved pasture geology map @ Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map 3 very poorly drained very slowly permeable ≤ 500 mm depth ☐ orchard/vineyard 9 Rock Outcrop % (1) slowly permeable > 500 mm depth ② poorly drained (2) vegetables/flowers (10 imperfectly drained (3) nil >20-30% (5 moderately permeable 3 < 50% area (T) <2% ② >30-50% ⑥ urban (11 mod, well-drained highly permeable 4 > 50% area 2 well-drained 5 industrial (12 2-10% ③ >50% (7) SITE FIELD NOTES quarry/mining (13) >10-20% 4 rapidly drained 6 other (14 **Surface Condition** Expected SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked 2 Ground natural disturbance (1 self-mulched 3 3 (3) Cover % no effective disturbance 2 4 4 loose 4 (II) limited clearing (3) soft (5) (5) (5) 6 firm @ (6) cleared, no cultivation 22 hardset (7) 7 occasional cultivation 6 3 3 surface crust ® (8) (8) rainfed cultivation (7) 44 trampled (9) 9 irrigated cultivation (8) (5) (5 poached (10) (10) highly disturbed (9) 6 6 recently cultivated 11 Photo file name/s: TOT water repellent (12) (12) 8 8 gravelly ① other 13 13 (13) Please do not mark this space. SURVEY TITLE: RILXS CREEK, BSAL. © NCS Pear | 4 | | mm 0 10 | 20 30 | 40 | 50 60 | 70 | 80 | 90 100 | 110 12 | 0 130 | 140 1 | 150 160 | 170 180 | |--|--|---
--	--	--	--	--
--		' -		LAYER S
1 0 8 8 0 9 9 4 5	Soil W (1 each dry mod. moist moist wet TE; (1 each Exture Grade sand loamy sand clayey sand	3 3 3 3 3 3 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19 – 20 –
ferrugin ferromanganife organite with the companite organite ferromanganife organite orga	PEGATION (Per) 1 2 3	4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dry mod. moist wet TE: (1 eacl Fexture Grade sand loamy sand clayey sand sandy loam silty loam andy clay loam clay loam slay loam slay loam	3 3 3 3 3 3 3 4 5 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(10) (10	Sample Sample Barriager) 1 disturbed 30 disturbed 60	4 4 (6) (5) (5) (6) (6) (7) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	CO Type (1 per not evice not identias subst as rock out as parent main	4 • 4 • 4 • 5 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6
0 0	Sample 3 per layer) 1 disturbed 33 disturbed 45 layer soil equipme bedroot dominant (1) 2 3 4 5 3 6 6 6 3 7 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 (6) (5) (5) (6) (6) (7) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	CO Type (1 per not evice not identical as substate as a parent main as mai	4 • 4 • 4 • 5 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AB P AC B Estimated Effective Rooting Depth (m) O	Sample 3 per layer) 1 disturbed 30 disturbed 40	4 4 (5) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Type (1 per not evice not identification as substate as rock out as parent mark question opalised with the control of cont
depth ① slowly permeable orchard/vineyard 9 Rock Outcrop % (1) poorly drained > 500 mm depth ② vegetables/flowers (10 nil (1) >20-30% (5 imperfectly drained 3 moderately permeable 3 < 50% area (T <2% ② >30-50% ⑥ urban (11 mod. well-drained 4 highly permeable 4 > 50% area ② industrial (12 2-10% >50% (7) well-drained 5 SITE FIELD NOTES quarry/mining (13) >10-20% (4) rapidly drained 6 other 14 **Surface Condition** SITE CONDITION Expected Current (2) Wet (2) Dry (2) cracked 2 Site Disturbance(s) (2) Ground natural disturbance (1 self-mulched 3 3 3 Cover % no effective disturbance (2) (4) loose (4) (4) limited clearing 3 CON COS soft (5) (5) (5) firm @ 6 6 cleared, no cultivation hardset @ 22 T occasional cultivation (6) 333 surface crust ® 8 8 rainfed cultivation (7) 4 4 trampled (9) 9 irrigated cultivation (8) (5) (5 poached (10) (10) highly disturbed (9) 6 for recently cultivated 1 Photo file name/s: water repellent (12) (12) 77 88 gravelly (1) Please do not mark this space. SURVEY TITLE: RILXS CREEK BSAL © NCS	cm		mm 0 10	20 30
-50%)	555	5 5		n 8 8 0
--	--------------------	-----------------	-----------------------------	----------------------------------
2 2				
(12) 2-10% (3) >50% (7) well-drained (5) SITE FIELD NOTES quarry/mining (13) >10-20% (4) rapidly drained 6 other (14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked (2) Ground natural disturbance self-mulched 3 (3) 3 Cover % no effective disturbance (2) 4 loose 4 4 limited clearing 3 0 soft (5) (5) (5) extensive clearing firm 669 6 (6) cleared, no cultivation 22 hardset (7) (7) occasional cultivation (6) (3) (3 surface crust ® (8) 8 rainfed cultivation (7) 44 trampled 9 9 irrigated cultivation ® 5 5 poached (10) highly disturbed (9) 6 6 recently cultivated 1 Photo file name/s: 77 water repellent (12) (12) 8 8 gravelly ① 13 Please do not mark this space. SURVEY TITLE: RILXS, CREEK, BSAL	cm		mm 0 10	0 20
--	----------------------------	-------------	-------------------------------	
(1)** TYPE Please MARK **Vegetation Community (1)** A.S.C alcove 43 cone (3) footslope (21) ox-bow (57) sink hole/doline (52) LIKE THIS ONLY: backplain (31) 5 unknown (1 crater (51) foredune (12) pan/playa 56 stream channel (46 0 rainforest (2 hank (25) cut face (28) aully (42) pediment (22) streamhed (45 0 wet sclerophyll forest 3 bar (6) cut-over surface (39) hillcrest ① pit (60) summit surface (2) Use 2B pencil A dry sclerophyll forest 4 beach (26) dam (16) hillslope 179 swale (47) plain (30) SO No pen or biro woodland grass u'storey 5 beach ridge (7) drainage depression (41) B lagoon 54 prior stream (9) swamp 58 Fully erase woodland shrub u'storey 6 bench (19) dune (11) lake (55) rock flat 34 talus (23 mistakes tall shrubland (7 berm (29) embankment (14) landslide 20 rock platform (35) tidal creek 48 GG Make no low shrubland (8) blow-out 59 estuary 44 levee ® scald (36) tidal flat (37 stray marks heath 9 channel bench 33 fan 27 lunette (13) scarp (18) tor (4) Numbers in () SG grassland/herbland @ cirque 50 fill top 40 maar (53) scree (24) trench 49 show max. swamp complex (11) cliff (5) flood-out (32) mound (15) scroll (10) valley flat 38 entries allowed littoral complex 12 LITHOLOGY TOPOGRAPHY no vegetation (13 Growth Forms (4) Substrate (3) Site Morphology (1) **Slope Percent** not identified tree I limestone coarse-basic (45 0 0 tree mallee 2 unconsolidated (2) tuff (24) fine-acidic (46 crest 2 shrub (3 grave 3 (25) breccia fine-intermediate (47 22.2 hillock 3 mallee shrub 4 sand (4) greywacke (26) fine-basic (48 (3)(3)(3)ridge 4 С heath shrub (5 silt (5) arkose (27) serpentine (49 (4) (4) (4) upper slope 5 G.S.G. chenopod shrub 6 clay (6) dolomite gabbro (28) (50) (5) (5) (5) midslope 6 (A) hummock grass @ organic material (7) calcrete (29) dolerite (51 666 simple slope (7 BBBB aeolianite tussock grass @ alluvium 8 30 diorite (52 lower slope 00 sod grass 9 colluvium 9 chert (31) svenite (53 (8) @ (8) open depression 9 000 sedge (10 lacustrine 10 (32) granodiorite (54 iasper 99.9 closed depression @ **DDE** rush (11) aeolian (11) metamorphic (33) adamellite (55 **Slope Measurement** Slope Morphology (1) തതര forb (12 marine (12) gneiss (34) (56 granite Method (1) TO COT COT fern/cycad (13) calcareous sand (13) schist/phyllite (35) aplite (57 waxing (1 inclinometer 3 (K) (K) moss (14) fill (14) slate (36) Abney level 4 quartz porphyry (58 waning @ D D lichen (15 (15) mud hornfels (37) basalt (59 total station (5) maximal (3 OD OD liverwort (16) (16) till quartzite (38) andesite (60 RTK GPS (6) minimal 4 PPP vine (17) sedimentary (Hill) greenstone (39) trachyte 61 LIDAR @ Aspect (1) (R) (R) (18) Microrelief Type (1) shale amphibolite 40 rhyolite 62 LAND USE (1) **S S** marble siltstone/mudstone (41) obsidian 63 N none @ national/state parks (1 sandstone-quartz 200 (42) (64 normal gilgai 2 ianeous scoria NW NE W timber/scrub/unused (2) sandstone-lithic (21) coarse-acidic (43) ash (65 crabhole gilgai 3 W Œ X logged native forest 3 conglomerate (22) coarse-intermediate (44) agglomerate 66 SE linear gilgai 4 SW hardwood plantation 4 other (67 lattice gilgai 5 S affinity softwood plantation (5) Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with C volun./native pasture 6 personal assessment (1 other (9) improved pasture geology map Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping (8) both assessment & map 3 very poorly drained ① very slowly permeable ① ≤ 500 mm depth ☐ Rock Outcrop % (1) slowly permeable orchard/vineyard (9) poorly drained (2) > 500 mm depth (2) vegetables/flowers @ nil >20-30% (5 imperfectly drained 3 moderately permeable 3 < 50% area (T urban (11 <2% ② >30-50% ⑥ mod, well-drained > 50% area (2 highly permeable industrial (12 2-10% (3) >50% (7) well-drained (5) SITE FIELD NOTES quarry/mining 13 >10-20% (4) rapidly drained 6 other (14 **Surface Condition** SITE CONDITION Current (2) Wet (2) Dry (2) Site Disturbance(s) (2) cracked (2) (2) Ground natural disturbance self-mulched 3 (3) (3) Cover % no effective disturbance 2 loose 4 4 4 limited clearing 3 (40) (F) soft (5) (5) (5) firm @ 6 (6) cleared, no cultivation hardset (7) (2) (2 (7) occasional cultivation 6 (3) (3) surface crust ® (8) 8 rainfed cultivation (7) 44 trampled (9) 9 irrigated cultivation ® (5) (5 poached (10) highly disturbed 9 6 6 recently cultivated 1 Photo file name/s: 777 water repellent (12) (12) 8 8 gravelly ① Please do not mark this space. SURVEY TITLE: RILXS CREEK, BSAL © NCS Pearson 17814	cm	m	nm 0 10	20
				o efferves
Slope Morphology (1) @ @ @ forb (12) marine (12) aneiss (34) granite (56 Method (1) E E E fern/cycad (13) calcareous sand (13) schist/phyllite (35) (57 aplite inclinometer 3 waxing a (K) (K) (K moss (14) (14) (36) (58 Abney level 4 fill slate quartz porphyry waning (2 O O lichen (15 mud (15) hornfels (37) basalt (59 total station (5) maximal 3 liverwort 16 till 16 quartzite (38) andesite (60 RTK GPS 6 minimal @ P P P Aspect (1) vine (17 sedimentary (TA greenstone (39) trachyte (61 LIDAR @ (18) amphibolite (40) 62 (R) (R) shale Microrelief Type (1) rhvolite LAND USE (1) ड़ा ड़ा ड siltstone/mudstone (19) (41) obsidian (63 marble N none @ (T) (Z) national/state parks (T sandstone-quartz (20) ianeous (42) scoria (64 normal gilgai 2 NW NE W timber/scrub/unused @ sandstone-lithic (21) coarse-acidic (43) ash (65 crabhole gilgai 3 E SE ∞ logged native forest 3 conglomerate coarse-intermediate (44) agglomerate (66 linear gilgai 4 SW hardwood plantation 4 (67 3 Y other lattice gilgai (5) affinity softwood plantation 5 Identification Method (1) melonhole gilgai 6 **HYDROLOGY** with volun./native pasture 6 personal assessment (1 other 9 improved pasture @ geology map Profile Drainage (1) Permeability (1) Depth (1) & Extent (1) cropping ® both assessment & map 3 very poorly drained ① very slowly permeable ≤ 500 mm depth ① orchard/vineyard (9) Rock Outcrop % (1) poorly drained 2 slowly permeable > 500 mm depth 2 vegetables/flowers (10 imperfectly drained 3 moderately permeable 3 nil >20-30% (5 < 50% area (T <2% ② >30-50% ⑥ urban (11 > 50% area @ mod well-drained highly permeable 4 industrial (12 2-10% ③ >50% (7) well-drained 5 SITE FIELD NOTES rapidly drained 6 quarry/mining (13) >10-20% (4) other 14 **Surface Condition** Expected SITE CONDITION Current (2) Wet (2) Dry (2) cracked 2 Site Disturbance(s) (2) Ground natural disturbance (1 self-mulched 3 3 (3) Cover % no effective disturbance 2 4 4 loose 4 limited clearing 3 (D) (O) soft (5) (5) (5) (6) firm @ (6) cleared, no cultivation hardset 7 7 22 occasional cultivation 6 3 3 surface crust ® (8) rainfed cultivation (7) 44 trampled (9) (9) irrigated cultivation (8) (5) (5 poached (10) (10) Photo file name/s: highly disturbed 9 6 6 recently cultivated 1 water repellent 12 (12) 777 8 8 gravelly ① other 13 13) (13) Please do not mark this space. 4627 SURVEY TITLE: RILXS, CREEK, BSAL © NCS F	cm		mm 0	10
2 • 2 3 3 • 3		4 C C C	3 3	75 Y C 10 (N)
--	-------	-----------------------	--------------------	-------------------------
(20- abundant (>				clay loam sai
--	-------------------	------------	--	----------------
	Texture Grade			