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Abstract: This paper presents a summary of the key findings of the special issue of Atmosphere
on Air Quality in New South Wales and discusses the implications of the work for policy makers
and individuals. This special edition presents new air quality research in Australia undertaken
by (or in association with) the Clean Air and Urban Landscapes hub, which is funded by the
National Environmental Science Program on behalf of the Australian Government’s Department
of the Environment and Energy. Air pollution in Australian cities is generally low, with typical
concentrations of key pollutants at much lower levels than experienced in comparable cities in
many other parts of the world. Australian cities do experience occasional exceedances in ozone
and PM2.5 (above air pollution guidelines), as well as extreme pollution events, often as a result of
bushfires, dust storms, or heatwaves. Even in the absence of extreme events, natural emissions play a
significant role in influencing the Australian urban environment, due to the remoteness from large
regional anthropogenic emission sources. By studying air quality in Australia, we can gain a greater
understanding of the underlying atmospheric chemistry and health risks in less polluted atmospheric
environments, and the health benefits of continued reduction in air pollution. These conditions may
be representative of future air quality scenarios for parts of the Northern Hemisphere, as legislation
and cleaner technologies reduce anthropogenic air pollution in European, American, and Asian cities.
However, in many instances, current legislation regarding emissions in Australia is significantly more
lax than in other developed countries, making Australia vulnerable to worsening air pollution in
association with future population growth. The need to avoid complacency is highlighted by recent
epidemiological research, reporting associations between air pollution and adverse health outcomes
even at air pollutant concentrations that are lower than Australia’s national air quality standards.
Improving air quality is expected to improve health outcomes at any pollution level, with specific
benefits projected for reductions in long-term exposure to average PM2.5 concentrations.
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1. Introduction

1.1. Objectives of This Review Paper

The special issue of Atmosphere on Air Quality in New South Wales, Australia, brings together
papers that describe the outcomes of research undertaken by the Clean Air and Urban Landscapes
(CAUL) hub and its collaborators, including a number of measurement campaigns, and a series of
papers describing the results of the first major comparison of air quality models in Australia.

In this overview paper, we aim to:

1. review the existing literature relevant for understanding air quality in New South Wales;
2. summarise the key findings of research included in this special issue of Atmosphere (with an

emphasis on the implications for policy makers); and
3. finally, we outline a number of policy options that we believe should be prioritised, along with

supporting evidence from this research and the wider scientific literature.

http://www.mdpi.com/2073-4433/10/12/774?type=check_update&version=1
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1.2. Air Quality in Sydney

Air pollution has recently been identified as the largest environmental risk factor to human health
worldwide, with fine particulate matter the greatest contributor to impacts from poor air quality [1].
Sydney, in the state of New South Wales (NSW), is a city located on the south-eastern coast of Australia
(33◦52′ S, 151◦12′ E). It has a population of 5.1 million people (as of June 2017) [2] and experiences a
temperate climate with warm summers and no defined dry season [3]. Sydney has a similar latitude
and continental position to the South American cities of Montevideo, Uruguay and Buenos Aires,
Argentina and the South African city of Cape Town. Much of the urban area of the city of Sydney lies
within a basin with elevated topography bounding the basin to the north, west, and south, with the
Tasman Sea located at the eastern extent of the basin. The temperate coastal basin geography of Sydney
means it is influenced by both synoptic and meso-scale meteorological phenomena [4]. In particular,
cold air drainage into the basin during the cooler part of the year and afternoon sea breezes in the
warmer months are frequent, persistent meso-scale processes that impact the city’s air quality [5,6].

The New South Wales Department of Planning, Industry and Environment (DPIE) operates an
extensive network of air quality monitoring stations across the Sydney region, monitoring six different
measures of ‘criteria air pollutants’, which are used as indicators of air quality in NSW. These are ozone
(O3), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), visibility, and fine particles
(including those with aerodynamic diameters below 10 microns and 2.5 microns known as PM10 and
PM2.5, respectively). Measurements of each pollutant are normalised to the standard specified in
the National Environment Pollution Measure for Ambient Air Quality (NEPM) [7]. This normalised
information is published as the ‘Air Quality Index’ (AQI) for each pollutant. The air quality index for a
monitoring station is determined by the highest criteria pollutant AQI. Similarly, the AQI for each
region is determined by the highest station AQI [8].

Despite the relatively low air pollutant concentrations in Sydney in relation to comparable
international cities, significant health impacts occur in the city [9]. Exposure (even at low concentrations)
to pollutants, such as CO, nitrogen oxides (NOX), and fine particulate matter (PM), has been found
to increase hospital admissions for five outcomes of cardiovascular disease in elderly people in
Sydney [10]. A longitudinal cohort study has found evidence of a detrimental association between
long term exposure to the low concentrations of PM2.5 and NO2 in Sydney [11]. Table 1 lists the
criteria pollutant standards, illustrating that some of Australia’s NEPM standards are significantly less
stringent than the levels recommended internationally, by either the World Health Organization or
other developed nations.

Table 1. Table of Pollutant Standards.

Criteria Pollutant Australian NEPM Pollutant
Standard *

World Health Organization Recommendation
(ppb) or International

if No WHO Recommendation

SO2 1 h 200 ppb (100 ppb proposed) European Union 124 ppb; USA 75 ppb
(99th percentile of daily worst hour)

SO2 24 h 80 ppb (20 ppb proposed) 7.6 ppb
SO2 annual 20 ppb (proposed to be removed) No standard

NO2 1 h 120 ppb (90 ppb proposed) 97 ppb
NO2 annual 30 ppb (19 ppb proposed) 19 ppb

O3 1 h 100 ppb (proposed to be removed) New Zealand: 70 ppb; Japan: 60 ppb
O3 4 h 80 ppb (proposed to be removed) No standard
O3 8 h No standard (65 ppb proposed) 47 ppb

CO 9 ppm 10 ppm
PM2.5 24-h 25 µg/m3 (2025 goal of 20 µg/m3) 25 µg/m3

PM2.5 annual 8 µg/m3 (2025 goal of 7 µg/m3) 10 µg/m3

PM10 24-h 50 µg/m3 50 µg/m3

PM10 annual 25 µg/m3 20 µg/m3

* Standards are currently being reviewed for SO2, NO2 and O3—those proposed are those found in the consultation
document [12].
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Based on Australia’s NEPM standards and the normalised AQI, between 2012 to 2018, 87% to
98% of days fell within the ‘very good’, ‘good’ or ‘fair’ category for Sydney, as illustrated in Figure 1.
In recent years levels of NO2, SO2, and CO remained below their relevant standards in Sydney. Particle
concentrations (PM2.5 and PM10) show year to year variations due to changes in weather, fires, and
dust storms with no clear long-term trends apparent [13]. Relatively better air quality was recorded in
wetter, cooler years (e.g., 2012) compared to the more recent hotter, drier years. In 2018, PM2.5 and
PM10 levels were generally higher across the State due to impacts from intense drought conditions.
In Sydney, PM2.5 measurements were greater than the national standard (25 µg m−3) on 19 days of
2018, while PM10 concentrations exceeded the standard (50 µg m−3) on 20 days. In fact, air quality was
classified as ‘hazardous’ for 36 days of 2018 [14]. This classification was mostly associated with dust
storms and hazard reduction burns or bushfires during autumn and winter, and during these episodes,
the majority of Sydney’s air quality monitoring stations recorded daily particle averages above the
NEPM standard.
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Figure 1. Percentage of days that the Air Quality Index (AQI) rated as ‘very good’ or ‘good’; ‘fair’; and
‘poor’ or worse, in different regions of Sydney between 2012 and 2018 [14].

O3 was below the national standard for all but nine days in Sydney between 2015 and 2017 and
seven days in 2018. Due to the fact that O3 is photo-chemically produced from precursor pollutants,
O3 exceedances tend to be associated with high temperatures in the Sydney basin [14,15], which are
already associated with adverse health outcomes [16]. Ozone exceedances are less common in Sydney’s
east where sea breezes are common in the afternoons and temperatures are lower in the summer, and
this is reflected in the greater number of days with ‘good’ or ‘very good’ air quality (see Figure 1).

The NSW Environment Protection Authority creates 5-yearly emissions inventories for the greater
metropolitan area (which includes Sydney and the neighbouring cities of Wollongong and Newcastle,
which together account for 78% of the NSW population). The most recent emissions inventory was
completed for the calendar year of 2008. The inventory for 2013 is in preparation. Anthropogenic
contributions dominated total direct emissions of CO (97%), PM10 (81%), NOX (98.3%), PM2.5 (92%),
and SO2 (99%) [17]. More than 80% of NOX emissions (62% of NO2) are attributed to on-road and
off-road combustion engines. Approximately 70% of PM10 emissions are from automobiles and
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industrial sources, whereas more than 50% of PM2.5 emissions arise from domestic-commercial sources.
Care must be taken not to over-interpret these results because O3 and secondary PM2.5 are produced
via atmospheric chemistry and therefore, indirect emissions must not be overlooked. Secondary PM2.5

has been found to contribute significantly to total PM2.5 concentrations in the Sydney basin [18,19].
More detailed source analysis is available for each source category on the NSW Environment Protection
Authority’s website [20]; however, these are estimates only since the large scale effort in compiling this
inventory means that will be out of date by the time it is available.

Despite the limited number of recent air quality exceedances in Sydney, exposure to criteria
pollutants below regulated standards are still associated with significant health effects [9,11,21,22].
Exposure to PM2.5 concentrations considered as generally safe has been shown to increase the onset
risk of stroke within hours [23]. In a cohort of older men in Perth, an increase in mortality was observed
with increased exposure to PM2.5 (measured as particle light absorbance, which is a surrogate for
black carbon) [22]. Long term exposure to PM2.5 concentrations in the greater Sydney region was
associated with increased all-cause mortality in a study for the ‘45 and Up’ cohort (people aged 45 years
and older) [11]. These findings are consistent with international research, for example, significant
adverse health effects due to exposure to PM2.5 and O3 concentrations below US EPA (United States
Environmental Protection Agency) standards were found to increase all-cause mortality in a large
population study of at-risk groups in the United States [24]. Due to the occasionally high levels of
PM2.5, and O3 in Sydney, these pollutants will be discussed in depth below. Anthropogenic sources
contributing significantly to air pollution exposures and episodic events impacting on Sydney’s air
quality such as fires, dust storms, and pollen will also be discussed.

1.3. Particulate Pollution

Typical levels of PM2.5 pollution in both regional and urban Australia are generally low relative to
comparable populated regions around the globe [25]. The concentration of PM2.5 in Australian urban
areas is modelled to have an annual average of 8 µg m−3 [25]. New Zealand, a similarly developed
nation, much smaller in land mass and population, and with less frequent forest fires, has an even lower
annual average modelled concentration of 5 µg m−3 [25]. Modelled annual average concentration
of PM2.5 in urban areas is lower in Australia than in nations with higher population densities and
which experience substantial inter-regional transport of air pollution, such as the United Kingdom
(12 µg m−3), Germany (14 µg m−3), and China (59 µg m−3) [25]. The Australian annual average PM2.5

standard (8 µg m−3) is more stringent than standards or guideline values set by the European Union,
United States, and the World Health Organization [26]. Nevertheless, on shorter time-scales, Sydney
does experience exceedances of the daily PM2.5 limit of 25 µg m−3, and these exceedances are often
associated with wildfires or hazard reduction burns [27,28].

There is some evidence that PM2.5 concentrations are increasing in Sydney: a positive interannual
trend was found in weekly mean PM2.5 concentrations in all seasons at four Sydney sites [29]. An annual
cycle in PM2.5 monthly means was also found at the four sites examined in the study by Di Virgilio [29],
with all sites displaying a May peak, high concentrations until early Austral summer before descending
to a March minimum [29]. This is possibly due to the high incidence of hazard reduction burns during
late autumn, and the consistent contribution of domestic wood heaters to particle concentrations in
winter. Planetary boundary layer height and total cloud cover were the most consistent predictors of
PM2.5 concentration during high pollution days since hazard reduction burns are usually conducted
on cool, clear days with light winds and low mixing heights [29].

No similar trend is found in PM10 measurements: for example, Roberts [30] observed no change
in PM10 concentration from 1993–2007 in eastern Australian cities. This is unlike some cities in the
eastern United States in which PM10 concentrations are decreasing [31]. A synoptic climatology of
the warm months found that elevated PM10 concentrations in Sydney were associated with synoptic
westerly winds [4], most likely carrying crustal dust over the city from the dry interior of NSW and
from further inland areas.
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A comprehensive study of PM2.5 in Sydney, including both observational and modelling
components, was undertaken during the Sydney Particle Study (SPS) [19,32–34]. Two month-long
measurement campaigns were completed, in summer 2011 and autumn 2012, at Westmead Air Quality
Station in the Sydney Basin. Summer measurements revealed strong contributions from sea salt (34%)
and organic matter (34%) to the average PM2.5 composition. The remainder of the particle fraction was
attributed to secondary inorganic aerosol (15%), soil (11%) and elemental carbon (6%). In comparison,
autumn particle loadings were dominated by organic matter (57%) with additional contributions from
elemental carbon (16%), secondary inorganic aerosol (15%), soil (7%), and sea salt (5%). The elevated
contribution of organic matter to the autumn particle loading is likely due to the use of domestic
wood heating.

1.4. Ozone Pollution

Sydney experiences several O3 exceedances each year, with high O3 concentrations associated with
high temperatures in the Sydney basin and more prevalent in the west of the city [14,15]. In contrast,
background O3 concentrations in Sydney are comparatively low. The annual mean ozone concentration
for Sydney was 18.5 ppb in 2017 [35]. By comparison, the 2017 mean ozone concentration for urban
sites in the UK was 27.9 ppb [36]. Previous measurements, taken over a decade ago, indicate that
night-time background ozone concentration was in the range of 16–21 ppb at 14 air quality monitoring
sites in the Sydney region [37] for the period 1998–2005. The daytime background oxidant (O3 + NO2)
concentration in the Sydney region was about 35 ppb in 2005 for days in which no O3 exceedances
occurred, and 55 ppb for the ten days in which at least one site experienced O3 concentrations above
80 ppb [38].

A positive trend in ozone concentrations has been measured in cities in Europe (e.g., London,
Paris, and Berlin) and North America (e.g., Sacramento CA, Tucson AZ, and Dallas TX), linked to
reductions in NOX pollution [39,40]. Though there is no consistent global trend [41–43], increases in
background ozone concentrations have also been observed at pristine sites (e.g., Cape Grim, Tasmania,
and Mauna Loa Hawaii) [44].

O3 levels in Sydney increased from 1994 to 2002 (attributed to increasing temperatures, increasing
regional anthropogenic emissions, and an increasing incidence of bushfires and hazard reduction burns)
but have decreased again since 2002 with some annual variations [13,37]. Though ozone concentrations
in Sydney are often relatively low, photochemical smog events have impacted the city in the past.
O3 concentration in Sydney is highest during the summer, particularly on very hot days. A smog
event occurred in Sydney in January 2001, during which O3 concentrations were measured at above
80 ppb for seven consecutive days [45]. A number of synoptic climatologies have been performed
examining periods of unusually high O3 concentration in the Sydney basin, and considering the impact
of mesoscale air flows, such as basin drainage and sea breezes [4,46,47]. One of these studies created
eleven synoptic categories for Sydney and found one synoptic category dominated during more than
90% of the days when daily maximum 1 h mean ozone concentrations were greater than 100 ppb [48].
This category was associated with an anticyclone in the central Tasman Sea coupled with a ridge to
the northeast. A high inland-coast temperature gradient (leading to a significant sea breeze) and low
mixing layer height were also characteristic. High O3 concentrations were associated with a similar
synoptic category [47]. However, while the synoptic categories were a reasonable predictor of high
O3 on average, exceedances occurred under almost all synoptic types. Therefore, a more directed
examination was performed, focusing on the warm months of November to March [4]. Again, high
pressure over the Tasman Sea, associated with high local temperatures and sea breezes was a predictor
of high O3 concentrations. Discrimination of exceedance events between synoptic categories was
not significantly improved, highlighting the importance of mesoscale effects in the variation and the
non-homogeneity of air pollutant concentrations across the basin.

Despite the difficulty in synoptically categorising ozone exceedances, most incidences of elevated
ozone concentration experienced in Sydney are associated with a NOX-limited regime. O3 is formed
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via the photochemical reaction of VOCs and NOX and is, therefore, limited by one of these reagents
or by sunlight. The CSIRO Integrated Empirical Rate model was used to demonstrate that for all
averaging periods, a NOX-limited regime was present during most exceedance events (81%), especially
in Western Sydney (92%) [49].

1.5. Major Anthropogenic Sources of Air Pollution

Although Sydney’s most extreme pollution events are often associated with fires and dust storms
(e.g., [28,50–52]), studies analysing the sources of PM2.5 and NOX in NSW concluded that motor vehicle
exhaust was the largest contributor to total NOX [53] and the largest anthropogenic contributor to total
PM2.5 [54]. Power stations are also implicated as a major source of atmospheric fine particles [18].

Road traffic makes a significant (5–80%) contribution to airborne concentrations of fine particulate
matter (expressed both by mass and by number concentration) in urban areas around the world, with
sources of particles from exhaust and non-exhaust (tyre wear, road dust, etc.) [55]. Exhaust emissions
are dominant currently; however, the relative importance of non-exhaust emissions may increase
as electric vehicles become more common-place and if legislation is introduced to reduce exhaust
emissions [55]. Vehicle-related pollution levels have high spatial variability and are influenced by
many factors, including wind speed, traffic density, and distance from main roads [55]. Many studies
have shown that pollution levels decrease rapidly with distance from major roads [53,55–61]. There is
now widespread evidence of the adverse health effects associated with exposure to traffic-related air
pollution [62–64], including studies finding associations between health risks, such as the increased
risk of asthma in children living closer to major roads [65].

Australia lags behind other developed nations in fuel [66] and vehicle emissions standards [67],
and there is significant evidence for reduced health costs associated with introducing more stringent
fuel [66,68,69] and vehicle emissions [70] standards in Australia. Diesel vehicle emissions are known
to be carcinogenic [71] and have been identified as a particular health risk for vulnerable populations,
producing toxic ultrafine particles (among other pollutants) that can penetrate deep into lungs and
enter the bloodstream [72]. In addition, ‘real’ (on road) measurements of NOX and ‘hydrocarbon +

NOX’ emissions by diesel vehicles have been found to be much higher than that reported by laboratory
tests [73], increasing the need for stricter controls on the use of diesel fuel. Such controls have already
been recommended for NSW for heavy vehicles [74] to limit NOX, and should also be applied to
passenger vehicles. The phasing out of diesel vehicles has been shown to make a rapid improvement
in air quality, as demonstrated by a detailed modelling study in Europe [75].

An investigation into the health impacts of ethanol-blended petrol [68] concluded that PM2.5

emissions from Australian passenger fleet vehicles were reduced when ethanol blends were used
compared to pure petrol. Significant health benefits to the Sydney population were estimated from the
uptake of ethanol-blended fuels due predominantly to reductions in particulate matter [68], although
there is evidence that O3 levels may increase with ethanol use [76]. Improving fuel standards has a
proven track record of success in reducing emissions, for example, total emission reductions have
been achieved despite significant increases in vehicle miles travelled in the USA [75]. In Australia,
modelling of the effects of the Fuel Quality Standards Act 2000, showed that vehicle emissions for 2015
were less than half of the year 2000 levels for CO, NOX, PM2.5, SO2, and VOCs [77]. Nevertheless,
Australia permits higher levels of sulphur (an important precursor to particle formation) in petrol
than other developed nations such as USA, Canada, China, and European countries, and modelling
suggests that strengthening fuels standards in 2020 could save health costs of $110 million per year [78].
Recent studies in the USA show a multitude of health benefits following the reduction of sulphur from
30 ppm to 10 ppm (Australia’s limit is currently much higher at 150 ppm for low octane fuel) [78].
The revision of Australia’s Fuel Quality Standards Regulation commenced on 1 October 2019, and
petrol sulphur content will be reduced to 10 ppm by 2027. Lower sulphur levels in vehicle fuels will
lead to reduced emissions of SO2, and thus a lesser burden of secondary inorganic aerosols.
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Importantly, from 1 January 2020, Australia is obliged to comply with international shipping low
sulphur diesel fuel of 0.5% sulphur (or 5000 ppm), which is a substantial reduction on the current
permitted levels of 35,000 ppm [79]. Even so, shipping emissions will continue to be a large source of
SO2 for Sydney, with local ferry services exempt from the international shipping regulations. Much
more stringent controls apply in other locations (e.g., the USA has a 1000 ppm (0.1%) limit for sulphur
levels in fuel in control zones, such as harbours [80].

1.6. Natural Emissions and Their Impact on Air Pollution

Extremely poor air quality in Sydney, characterised by days in which the 24 h concentration of
PM10 exceeded the 99% percentile, is often due to bushfire smoke or occasional dust storm events [51].
Many of these fires are the result of prescribed burning (otherwise known as hazard reduction burning)
rather than wildfires [51,81]. Of the 52 days rated as having extremely poor air quality from 1994 to
2007, 48 were associated with bushfire smoke. During the same period, 59–90% of episodes where
particulate matter concentrations exceeded the national standard were due to fires in Sydney [82].
Bushfire smoke was also the main cause of particulate pollution events in other mainland Australian
cities from 1994–2007 [82].

Fire plays an important role in the Australian landscape [83]. Many of the native flora must
be burnt to trigger germination of seeds [84]. Prior to European settlement, Indigenous Australians
managed the landscape with a mosaic of small fires, and these practices continue, for example, in
parts of Northern Australia [85]. In recent decades, planned burning has been adopted in order to
reduce the severity and frequency of large uncontrolled fires [86]. Such preventative fires are typically
undertaken in spring or autumn, with low winds; however such weather provides little dispersion of
the smoke, meaning that nearby communities risk significant acute exposure. This trade-off between
fire safety and air quality remains the subject of ongoing debate [87].

An example of a fire event degrading the air quality of Sydney occurred in October 2013. During
fires burning to the northwest of Sydney from 17–27 October 2013, air quality stations in Sydney
recorded exceedances of the daily mean NEPM for PM10 (50 µg m−3) and PM2.5 (25 µg m−3) on seven
and nine days, respectively [28]. During the same event, a combination of ground-based measurements,
satellite observations and modelled meteorology was used to attribute high particle concentrations
in Brisbane (a city approximately 730 km north of Sydney) to smoke from the fires northwest of
Sydney [52], transported at high altitudes before intruding to the near-surface. This result demonstrates
the potential of regional impacts of large fires in the eastern Australian context.

Air quality in Sydney is occasionally impacted by dust storms originating in the dry regions of
inland Australia, most often during spring. A dust storm in October 2005 was due to a combination of
high wind speeds and a hot, dry period in western Queensland and NSW preceding the event. PM2.5

and PM10 concentrations exceeded the NEPM standards in Sydney, Brisbane, Mackay, and Gladstone
during the event (encompassing over 1600 km of the eastern coast of Australia) [88], demonstrating the
regional impact of dust storms. The most noteworthy recent dust storm impacting Sydney’s air quality,
known as the ‘Red Dawn’, occurred during September 2009 and attracted significant international news
coverage. During this storm, PM10 concentrations greater than 15,000 µg m−3 were recorded in the
Sydney basin [89], approximately 750 times the background concentration. Daily PM10 concentrations
above 2000 µg m−3 in regional NSW cities were among the highest ever recorded in the literature for
Australia. Estimates of the dust mass of this event are in the range of 2.5–3.2 million tonnes [89,90].
In February 2019, when most of eastern Australia was under drought conditions, a major dust storm
originating from Central Australia, caused high concentrations of PM10 in the Sydney metropolitan
area and in many towns and cities in western and northern NSW, including Armidale and Tamworth.
The dust was then transported across the Tasman Sea, affecting air quality in the Canterbury region in
the South Island of New Zealand [91].
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1.7. Health Impacts of Air Quality in Sydney

The relationship between air pollution and human health is observed in cities around the globe [25].
Nationally, the estimated deaths per 100,000 population attributed to ambient air pollution is much
lower in Australia than in other nations. The age-standardised death rate due to air pollution, (which
takes into account differing age structures of the populations), is estimated to be 0.2 deaths per
100,000 persons in Australia (uncertainty interval: ± 3 × 10−2), compared to 0.3 (± 7 × 10−2) in New
Zealand, 9 (± 3) in the United Kingdom, 13 (± 6) in Germany, and 70 (± 59) in China [25].

The Australian Institute of Health and Welfare [92] has estimated that in Australia in 2011, 1.6%
of all fatalities were attributable to air pollution. Another study, focusing on Sydney, indicated that
2.1% (90% confidence interval: 1.5–2.6%) of deaths were attributable to fine particulate matter and a
further 0.8% (95% confidence interval: 0.6–1.1%) due to ozone [9].

Air pollution has health impacts across the life course. It has been associated with adverse birth
outcomes, reduced lung function, respiratory and cardiovascular diseases, and more recently, diabetes,
autism, dementia, and reduced cognitive function [93–96]. Despite the relatively low levels of PM2.5 in
Australia, significant associations between air pollution and human health impacts have been observed
in Sydney and other parts of Australia [11,22,97–99].

1.8. The Influence of Allergenic Pollen

Aerobiological particles (e.g., pollen, fungal spores) also influence the air quality of Sydney [100]
and warrant discussion due to their contribution to the triggering of allergic respiratory diseases such
as asthma and allergic rhinitis. Representative families of grass and weed pollen have been shown to
exhibit positive associations with temperature and wind speed at Bankstown airport in the Sydney
basin [101]. One study found eleven synoptic categories for Sydney from October to March [102].
Three of these categories were associated with high concentrations of pollen from Cupressaceae (cypress
trees), Oleaceae (olive trees), and Poaceae (grasses). All synoptic categories were associated with
strong, dry westerly winds created by a low-pressure system to the south of the Australian continent.
Interestingly, high pollen counts were observed over a wide range of temperatures. The most extreme
pollen pollution episode in modern times occurred in Melbourne, Australia, in 2016 with nine people
killed and 476 people hospitalised during a single thunderstorm asthma event that impacted many
people with no previous history of asthmatic problems [103–105]. The risks associated with such events
are likely to increase as the impacts of increased atmospheric carbon dioxide levels and climate change
are felt in Australia, impacting plant biology, with greater pollen loads and allergenicity predicted [106].

1.9. Managing Air Pollutant Exposure

Managing exposure to air pollutants is essential in order to reduce the health impacts of poor air
quality. There are three techniques that are currently applied together to achieve this aim. The first is
to reduce emissions of air pollutants, which is the most desirable option. This would lead to lower
pollutant concentrations in cities (and elsewhere), and thus lower population exposure. The second
technique involves moving large emitters of air pollutants away from densely populated areas or
ensuring adequate separation distances between sources, such as transport corridors and industrial
areas, and sensitive land uses such as residential and commercial areas. These strategies ensure that
smaller proportions of vulnerable members of the population are exposed to elevated levels of air
pollutants. This requires air quality and health considerations to be integrated into infrastructure,
land use and transport planning processes. Finally, individuals can take responsibility for their
own exposure and avoid being outside during hazardous periods and other similar behavioural
modifications. This underlines the importance of education and of timely access to air quality
information, including real-time air quality measurements and accurate air quality forecast information
to help susceptible people additionally manage their exposure. Positives and negatives of each
technique are summarised in Table 2 below.
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Table 2. Positives and negatives of some air quality management techniques.

Reducing Emissions Managing Land Use Reducing Exposure

+

- climate co-benefit
- reduces total environmental

impact of the pollutants, not just
in the urban air-shed

- the most effective way of
reducing exposure

- stimulates the development of
new technology to meet societal
energy and material needs while
lowering emissions

- does not require new technology
- could incorporate green space

which may have other co-benefits
(including increased visual
amenity and reduced urban heat)

- reduced conflict between
polluting sources and
sensitive receptors

- cost effective if proactively
planned for

- flexible: allows tailoring to each
neighbourhood/lifestyle

- preventative measure that can
help address risks due to
unavoidable natural emissions

-

- potentially expensive
to implement

- delay in pollutant
concentration reduction

- does not prevent hazardous
episodes due to natural causes
like dust-storms and bushfires

- expensive to move sources or
introduce separation distances
after development

- no climate co-benefit in terms of
reduced greenhouse gas emissions

- inequitable as there will always be
some population
near infrastructure

- requires long-term planning

- relies on behaviour modification
and public education

- no guaranteed exposure reduction
(indoor may exceed
outdoor pollution)

- places responsibility on
susceptible individuals to manage
exposure rather than on
polluting sources

- places responsibility on
government to provide timely
access to air quality information

- may be less accessible to low
socio-economic groups

1.10. Benefits of Air Quality Abatements on Health

Health impact assessment (HIA) methods have been recently used to assess the impact of changes
to emissions on health using different Australian scenarios [9,69]. One such recent study looked at the
modelled benefits to human health of improving air quality in Sydney [9]. A hypothetical sustained
reduction in 2007 PM2.5 concentrations by 10% was estimated to result in 640 (95% CI: 430–850) fewer
premature deaths and 3500 additional life-years (95% CI: 2300–4600) in Sydney over 10 years [9].
HIAs targeting changes to emissions from specific sources have also been conducted. For example,
an HIA examining the effect of regulating shipping fuel while at port in Sydney reported that ship
emissions contributed 1.9% of the population-weighted PM2.5 concentration in Sydney in November
2010, resulting in 220 annual years of life lost [69]. Limiting fuel sulphur content to 0.1% while at berth
would reduce population exposure to ship emissions by 25% while limiting sulphur content within
300 km of the city would cause PM2.5 exposure from shipping emissions to decrease by 56% [69].

Some policies designed to limit greenhouse gas emissions have co-benefits for air quality and
therefore, for human health. For example, PM2.5, CO, and total hydrocarbon emissions are lowered
when a vehicle fleet is fueled with ethanol blends (compared to pure petrol). The potential health cost
savings for a 50% uptake of E10 fuel (which blends up to 10% ethanol with unleaded petrol) in Sydney
by 2006 was calculated at $16 million per annum and at $17 million per annum for a 100% uptake in
E10 by 2011 [68]. Other initiatives have a climate trade-off; for example, the use of low-sulfur fuels
leads to lower sulfate aerosols, which have a short-lived radiative cooling effect.

State government-sponsored projects have resulted in the development of marginal abatement
cost curves to assess the specific local economic, environmental, and social benefits of various air
quality abatement measures across populated areas of NSW [107]. Changes in industrial processes
(such as technical changes in the operations of coal-fired power stations) and domestic (such as changes
in response to legislation regarding personal vehicle emissions or wood-heater) sources of air pollution
were considered [107]. Abatement techniques were prioritised, and specific recommendations were
provided for the Greater Metropolitan Region (encompassing Sydney, Newcastle, and Wollongong)
and for each city. The high-priority recommendations for Sydney included retrofitting or replacing
diesel locomotives, trucks and buses; introducing emissions standards for off road vehicles and for
wood heaters; limiting industrial NOX and PM10 emissions and switching to gas electricity generation.
For the Greater Metropolitan Region of NSW (GMR), priorities included encouraging more people
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to cycle; investigating supply chain sustainability; controlling NOX emissions from coal fired power
stations, and introducing Euro 6 emissions standards for passenger vehicles [107]. Priority actions
proposed for investigation by the NSW Government’s Clean Air for New South Wales Consultation
paper targeted industrial, mining, and coal-fired power station emissions; emissions from on-road
and off-road transport; household emissions and specifically wood smoke; and smoke from hazard
reduction and open burning [108].

Another potential method to reduce air pollution is to undertake urban greening projects.
Green-space has the co-benefits of mitigating the urban heat-island effect, as well as improving the
psychological and physical well-being of nearby residents [109]. In one study, measures of particulate
pollution (total suspended particles, PM10 and PM2.5) were negatively correlated with surrounding
area greenspace across the Sydney central business district [110], demonstrating the potential positive
impact of dense vegetation in urban areas on air quality. However, both the aerodynamic and pollutant
removal effects of urban greening must be considered. Modelling studies have found that urban
vegetation can limit mixing of pollutants in street canyons and thereby have a detrimental impact
on localised urban air quality [111]. To counter this effect, Janhäll [112], informed by a review of the
relevant literature, suggests the planting of low vegetation close to emission sources, allowing the
improvement of local air quality without limiting mixing in street canyons. Further research is needed
on the positive and negative impacts of urban greening on air quality and human health as the existing
evidence is mixed [113,114].

It is also important to consider emissions of biogenic VOC species (BVOCs) from the trees
themselves. Due to relatively high concentrations of NOX found in urban areas, ozone production is
often limited by the availability of VOCs. Therefore, planting of high BVOC emitting species that make
atmospheric VOCs more available could drive up secondary organic aerosol formation and ozone
production, especially in hot, dry conditions [19,115,116]. The traits of urban European trees relevant
to air quality have been documented [117]; however, very little research has been published for native
Australian species [118,119]. This is an important gap as some Australian tree species, including certain
species of eucalypts, are high emitters of BVOCs [120]. Further, it is important to consider the potential
for increased exposure to pollen when evaluating tree species.

Reducing exposure is the third part of an overall strategy to reduce harm from air pollution.
A short-term solution is to remain indoors, especially during high pollution events. This may be
applicable during major smoke and dust events, depending on the ventilation of the building [121],
but in the wider context, there is a need to reduce ongoing (non-event) exposure at the source, where
possible. Further consideration of the ingress of ambient air pollution indoors is needed. Unfortunately,
there is limited information on indoor pollution in Australia, (see [122–125] and references therein).
Further work, including evaluation of the health impacts of indoor and outdoor air for a range of
buildings, residential, commercial, and retail are needed.

1.11. Climate Change and Air Quality

Climate change may be a significant driver of changing air quality in Sydney. Stronger predicted
near-surface temperature inversions over southeast Australia might intensify poor air quality in the
Sydney basin [126] by limiting the atmospheric mixing of locally emitted pollutants. The predicted
worsening of air quality in Sydney due to climate change mirrors global predictions, such as the study
by Zhang et al. that reported increases in surface maximum 8-h O3 concentration by 22% during a
heatwave in the USA. [127]. Similarly, using global chemical models coupled to chemical transport
models, Jacob and Winner [128] predicted that increased periods of air mass stagnation and increasing
temperatures would lead to increased O3 concentrations in many regions, particularly in polluted
urban areas. The authors also highlighted that the increased frequency of wildfires driven by climate
change could result in increased particulate concentration separate to the effects modelled using
meteorological variables.
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Increased atmospheric stability, warmer temperatures, and increased BVOCs may also drive
increased secondary aerosol formation in the Sydney basin. Dean and Green [129] performed a review
on climate change, air quality, and health impacts in Sydney. They highlighted the likelihood of
worsened air quality in a city with a changed climate and identified the need for more focussed research
on the response of particulate matter to climate change. Both the total population of Sydney and the
proportion of the population that is especially vulnerable to poor air quality episodes are predicted
to increase in the coming years (with an aging population and strong population growth predicted
in Sydney’s west). This will exacerbate existing air quality issues such as those in Western Sydney,
where fine particulate matter and O3 concentrations are typically higher than elsewhere in the city.
The increased number of people living at the urban–bush interface will increase the potential for people
to be impacted by bushfire smoke events (both wildfire and planned burns).

2. Key Findings from the Clean Air and Urban Landscape Hub and Its Collaborators

2.1. Air Quality Measurement Studies

The CAUL hub formulated a programme of research to provide air quality measurements in New
South Wales that could help achieve three main objectives:

1. To answer questions posed by the public in a series of “road-shows” that were organised when
CAUL was established;

2. To provide novel atmospheric composition measurements that can provide a better understanding
of the concentrations of ammonia in the urban atmosphere and the impact of smoke from wildfires,
hazard reduction burns, and domestic wood-heaters;

3. To finalise and publish the atmospheric composition data from a number of previous measurement
campaigns so that these could be used for rigorous testing of the performance of different air
quality models over New South Wales.

2.1.1. Publicly Driven Research

There is increasing public concern about air quality in Sydney. This was reflected in a common
question raised at the CAUL “road-show” events, which was some variation of: “are the pollution
concentrations at air quality monitoring network sites around Sydney truly representative of what I
am exposed to in my everyday settings”? Undeterred by the fact that this is an unanswerable question
(due to the huge variability in peoples’ daily lives), we set about attempting to provide some insights
to this issue via two separate case-studies:

1. In the first case-study, ambient air quality measurements were made on the roof of a two-story
building in the Sydney suburb of Auburn, to evaluate conditions that might represent a typical
suburban balcony site. Measurements made at the balcony site were then compared to data
from three nearby regulatory air quality monitoring stations [130]. Overall, the air quality at the
balcony was similar to that measured at the regulatory sites. Average O3 and PM2.5 concentrations
were lowest at the Auburn balcony site; nitrogen oxides were within the range measured at the
other sites, and carbon monoxide was highest at Auburn. Considering that O3 and PM2.5 are
the pollutants of most concern in Sydney, we concluded that the existing air quality network
provides a satisfactory indication of concentrations of outdoor air quality pollutants at the selected
“balcony” site at Auburn.

2. The second case study examined roadside concentrations of PM2.5 during an intensive three-day
campaign. PM2.5 concentration measurements were made in the vicinity of a major road (known
to carry heavy traffic) in the Sydney suburb of Randwick. Observed PM2.5 concentrations were
compared to regional urban background levels, and the spatial and temporal variations were
analysed [131]. This study showed a highly variable spatial distribution of PM2.5 along the
main road studied. The average PM2.5 roadside concentration recorded was 13 µgm−3, which
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was approximately twice the concentration of the nearby regulatory air quality network sites.
Those people residing at, (or working for long hours outdoors at), busy roadside locations are,
therefore, likely to be at enhanced risk of suffering detrimental health effects associated with air
pollution. PM2.5 levels were observed to decrease by 30% at a distance of 50 m away from main
road intersections, suggesting that pedestrians and cyclists should use side-streets whenever
possible. PM2.5 concentrations were recorded to be 50% higher in the morning rush hour than the
afternoon rush hour at roadside locations, implying that joggers and cyclists can reduce their
PM2.5 exposure by choosing to exercise in the afternoons rather than the mornings, (although
avoiding busy road locations whenever possible is advised).

Our case study in Auburn showed that the New South Wales air quality monitoring network
provided a good representation of pollution levels at our chosen “balcony” site. Although this
result cannot be generalised to all balcony locations in western Sydney, it does demonstrate the
effectiveness of the regional air quality monitoring network in this case. In contrast, average roadside
PM2.5 concentrations in the sampled areas of Randwick were found to be approximately twice those
measured at nearby air quality monitoring stations. We also found very high spatial variability of
PM2.5 at roadside locations, meaning that roadside air quality cannot simply be evaluated by locating
an air quality monitoring station at a single roadside location. Instead, estimates of the average increase
of common pollutants at roadside locations (compared to regional background values) are needed
to supplement regional air quality monitoring. The heightened concentrations at intersections and
near bus-stops should give additional weight to the recommendation of the broad-scale adoption of
anti-idling emissions control technologies in on-road motor vehicles, and improvements in road design,
such as bus lanes that move the bulk of traffic further from the curb. In future, improved estimates
could be made by a network of fixed roadside sensors that operate year-round, but currently, the
technology is still developing [132]. From these case studies, we conclude that the existing air quality
monitoring network in New South Wales is likely to be fit for purpose, with respect to representing
urban background pollutant concentrations, and that outreach programmes should be undertaken to
inform the public of simple steps that can be taken to minimise their exposure.

Another suggestion from the CAUL “road-shows” was to carry out a research project looking
at urban greening (and mosses in particular) to mitigate air quality impacts. Research in other cities
has shown that roadside trees can either decrease or increase local concentrations of air pollutants
depending upon the degree to which they hinder the dispersion of pollutants, with hedges being shown
to be a particularly good choice of vegetation barrier, and green roofs also an effective air pollution
abatement measure [24]. Moss proved to be even more efficient at removing particulate matter from
the atmosphere than the nearby native tree species that were tested [133]. This study compared the
particulate matter entrapment by roadside moss turfs with that of leaves of a common native tree in the
coastal city of Wollongong, NSW, Australia. Plant samples were collected from nine sites on an urban
gradient, in three urban classes based on road type: low (quiet roads in peri-urban suburbs), medium
(busy suburban roads), and high (freeway-type). Chlorophyll fluorescence, a common measurement of
photosynthetic efficiency, was also measured as a proxy for plant stress. By dry weight, moss trapped
more than the leaf samples. In addition, greater amounts of total particulate matter were trapped by
mosses at the more urbanized sites, implying a positive trend along the urban gradient. The trend in
particulate matter trapped by moss was similar to the trend in average ambient PM2.5 concentrations
measured for two weeks at one site from each urban class, by the deployment of a mobile sensor.
The sampled vegetation was also increasingly stressed along the urban gradient (although the exact
physical or chemical causes of the stress are unknown): the photosynthetic efficiency of tree leaves
declined by 2% from low to high urbanisation, while moss photosynthetic efficiency declined by 40%,
indicating a steeper stress gradient for mosses. While the trees appeared to be less affected, both plant
types appeared to respond to urbanisation by increasing wax deposition [134].

A companion study investigated the comparative ability of four different indigenous tree species
in NSW to remove particulate matter from the atmosphere. This study showed that evergreen trees
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absorb particulate matter into their leaves, whilst in deciduous trees, the particulate matter deposits
onto the leaf surface and can get washed off. This means that deciduous trees’ ability to scavenge
particles gets renewed after rainfall events [134].

2.1.2. Novel Atmospheric Composition Measurements in Sydney

In conjunction with the suburban balcony case-study described above, novel atmospheric
composition measurements were made along an integrated open-path of nearly 400 m between
a Fourier transform infrared spectrometer and an array of mirrors, across the centre of Auburn.
The spectrometer operated for approximately nine months between October 2016 and September 2017,
(with a break between March and May 2017) and made routine measurements of carbon dioxide (CO2),
CO, methane (CH4), and ammonia (NH3). Concentrations of methanol (CH3OH), acetylene (C2H2),
ethylene (C2H4), and formaldehyde (CH2O) were also measured during episodes of enhanced pollution.

This novel technique allowed for average concentrations of NH3 to be measured across the
open-path, with observed concentrations varying from 1 to 20 ppb, and showed the importance of
NH3 from traffic in particulate formation potential in Sydney [135].

By examining the ratios of the observed concentrations of NH3 to CO, this study established that:

• NH3:CO ratios were strongly correlated with traffic volumes on nearby roads, implying that
the main source of NH3 at the site is from traffic exhaust fumes, via the operation of catalytic
converters. (The NH3:CO ratio will decrease if the emissions are not fresh due to the shorter
atmospheric lifetime of NH3 compared to CO.)

• The current emissions inventory for New South Wales (the GMR2008 [20]) underestimates
gas-phase NH3 vehicle emissions (when compared to CO) by approximately 40%.

• The urban concentrations observed in this study imply that NH3 is the limiting reagent for
production of NH4NO3 aerosol, but for (NH4)2SO4, SO2 is the limiting reagent [135]. This finding
provides further evidence to support changing the legislation to reduce the maximum permitted
sulfur levels in shipping fuels and vehicle petroleum.

The novel, open-path spectrometer measurements also allowed for the impact of smoke from hazard
reduction burns and from domestic wood-heaters to be explored, to answer the following questions:

1. Are there significant differences in the chemical composition of smoke from domestic wood-heaters
and smoke from hazard reduction burns?

2. During the “balcony” case-study, which of these sources of wood-smoke caused the greatest
exposure to pollutants of concern (e.g., PM2.5) in Auburn?

Analysis of the smoke pollution events determined that (for the measured components) the
chemical composition of smoke was very similar, whether the smoke originated from domestic
wood-heaters or from hazard reduction burns. During the study period in Auburn, hazard reduction
burns were a greater immediate acute threat to public health (because peak concentrations of particulate
matter were highest during these events). However, domestic wood-heater events produced greater
cumulative exposure during the campaign, due to the greater duration of enhanced pollution from this
source, so, also presenting a public health threat. Whilst both of these pollution sources vary from year
to year, this study highlighted the significance of pollution from domestic wood-heaters in Sydney as
an issue of importance both for the public and for policy-makers.

Outside of the major capital cities, Australia is a large and sparsely populated nation. Most of the
air quality monitoring activities are undertaken in the main cities; however, remote-sensing technologies
make it possible to expand some of this coverage to the whole population. Satellite-derived estimates
of the total-column aerosol optical thickness (AOT) and tropospheric NO2 column density have
been shown to be sensitive to concentrations in the boundary layer, and for both aerosols and NO2,
concentrations tend to be highest in the lowest layers of the atmosphere [136]. This has been successfully
combined within land-use regression models to predict monthly or annually-averaged NO2 or PM2.5
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concentrations at the earth’s surface [137,138]. Such methods have the advantage that they are not
limited by state or local government boundaries and offer relative consistency in their method.

2.1.3. Findings from Previous Measurement Campaigns in New South Wales

An important aspect of air quality management within a city is the accuracy and reliability
of the operational air quality model for the region. The establishment of the CAUL hub provided
the opportunity to undertake a major air quality modelling comparison that could benchmark the
available air quality models against each other and against previously established standards for
performance (see Section 2.2). However, in order to elucidate different aspects of why one model
may outperform another, it is important to have very detailed atmospheric composition data that
includes a range of species that are not routinely measured as part of the regulatory air quality
monitoring network. The Australian atmospheric chemistry community had undertaken three relevant
measurement campaigns to gather detailed atmospheric composition data, but these data had not been
through their final quality assurance procedures that were required before publication. In the early
stages of CAUL, efforts were concentrated on finalising these datasets from the two Sydney Particle
Study campaigns (SPS1 and SPS2) [32–34] and from the Measurements of Urban, Marine, and Biogenic
Air (MUMBA) campaign [6,139,140] from the southern city of Wollongong. These three campaigns
were used as the basis of the modelling comparison described in Section 2.2. In addition, work has
been undertaken to finalise the data gathered during two campaigns in the industrialised Hunter
Valley of New South Wales [141].

The SPS1 and SPS2 campaign findings are published elsewhere [33]; here, we summarise the
findings from the other campaigns that were reported in this special issue.

The MUMBA campaign ran for eight weeks from mid-December 2012 to mid-February 2013,
providing a rich dataset of atmospheric composition at the marine/urban/forest interface. An episode
of clean marine air enabled the measurement of background concentrations of key species (including a
number of VOCs) at these latitudes [139]. MUMBA also provided interesting observations of isoprene
from nearby vegetation and other biogenic VOCs, which predominantly originated from the forested
escarpment that surrounds much of Wollongong. These natural biogenic emissions play an important
role in the control of air quality in Australian cities, due to the remoteness from other polluting sources
and the relatively low local anthropogenic emissions [139].

Wollongong is well known in New South Wales as an industrial city; nevertheless, traffic emissions
were shown to be the main driver of NOX concentrations at the MUMBA site, and the air-shed was
VOC-limited [6]. The daily average mass concentration of fine particles (PM2.5) was low (6.1 µg m−3)
during the MUMBA campaign [142]. The particle number concentration was dominated by ultrafine
particles (particles with a diameter between 3 and 100 nm), with an average and median value of
7.0 × 103 cm−3 and 5.2 × 103 cm−3, respectively. Eight particle formation and growth events were
identified from the particle number size distribution range from 14 nm to 600 nm dataset [142]. Particle
formation and growth events occurred in air masses that travelled from the ocean and passed through
populated areas, including Sydney. Anthropogenic sulphate, the photochemical age of air masses and
relative humidity potentially played a role in the particle formation and growth events. Sources of
particles identified included traffic emissions, industrial activities, and the marine atmosphere [142].

There were two days of extreme heat during the MUMBA campaign (with temperatures exceeding
40 ◦C). This provided a good test case to model the impact of extreme temperatures on O3 formation
in Sydney [143]. Ratios of biogenic VOCs measured at the MUMBA site on these hot days were
different from those measured on other days of the campaign, but further measurements are needed to
understand to what degree this resulted from the different vegetation types being sampled and how
much was caused by the extreme heat [139].

Further north of Sydney is the Hunter Valley, where domestic housing is located close to major
industrial sources, and communities are concerned about the impact of coal mining and associated
industrial emissions on their health. Such public concerns resulted in two studies in the Hunter Valley
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looking at the chemical composition of particulate matter [141,144,145]. Two sampling periods (2012
and 2014) at six sites in the Hunter Valley and across two size fractions (PM2.5 and PM2.5-10) were input
to a receptor model, to determine the source of particulate matter influencing particle composition
at the sites. Fourteen factors were found to contribute to particle mass [141]. Of these, three source
profiles common to all sites, size fractions, and sampling periods were Sea Salt, Industry-Aged Sea Salt,
and Soil. Four source profiles were common across all sites for PM2.5, including Secondary Sulphate,
Secondary Nitrate, Mixed Industry/Vehicles, and Woodsmoke. One source profile (Other Biomass
Smoke) was only identified in PM2.5 at the two sites furthest from the coast, and two source profiles
(Mixed Industry/Shipping and Vehicles) were only identified in PM2.5 at the four sites closest to the
coast [141].

The contribution of the Soil Factor to PM2.5 mass is consistently about 10% of the total mass across
the sites, while Sea Salt decreased with distance from the coast and Smoke increased with distance from
the coast, (but together these two classes make-up about 25–50% of the mass of PM2.5 at all sites) [141].
The largest contribution to PM2.5 was from industrial sources (primary and secondary) at all except the
most inland site, where Woodsmoke and industry sources made an equal contribution of 40% with
most of the industry component from secondary processes (80%). At most sites, primary emissions
accounted for approximately 30%, and secondary reactions accounted for approximately 70% of the
industry source [141]. Studies that identify the major sources of atmospheric fine particulate matter are
extremely useful in helping to prioritise efforts to reduce atmospheric concentrations by emissions
control measures.

2.2. CAUL Air Quality Modelling Comparison and Modelling Studies

Air quality modelling is an important aspect of the management of atmospheric pollution in any
community. It allows for public warnings to be issued when air quality is predicted to be poor, as
well as providing insights to the causes of different pollution events and analysis of the impact of
future emission scenarios. A major undertaking within CAUL was the first comparison of hourly
air quality models over Sydney, using a suite of six air quality modelling systems, over the time
periods of the SPS1, SPS2, and MUMBA campaigns. The comparison resulted in improvements to the
implementation of models over Sydney and demonstrated that air quality modelling over the greater
metropolitan regions of New South Wales can meet international standards of performance [146,147].

Such modelling comparisons help cross-validate the models, test their skill at reproducing
observed atmospheric composition, and identify any flaws or problems in the way that the models are
set up or run [53,147]. At the end of the comparison exercise, the validated models may be used to
undertake a number of different studies with added confidence in the modelled output [143,148,149].

The air quality model comparison used two separate meteorological models (CCAM and WRF)
with a total of seven different configurations and was conducted over consistent geographical domains,
grid resolutions, and time periods [147]. The modelling domains were nested so that the outer grid
covered the whole of Australia at 80 km resolution, whilst the innermost (of four) grids covered
the Sydney basin at 3-km resolution. Comparison of the meteorology within the models identified
systematic overestimates of wind speeds that were more pronounced overnight, which is a common
weather model bias [147]. The temperatures were well simulated, with the largest biases also seen
overnight. The models tended to have a drier lower atmosphere than observed, implying that better
representations of soil moisture and surface moisture fluxes would improve the subsequent air quality
simulations [147]. The local-scale meteorological features, such as the sea breeze, which is a critical
feature driving ozone formation in the Sydney Basin was reasonably well-represented in the simulations.
Overall, the biases between simulations and observations were generally within the recommended
benchmark values with the exception of extreme (both high and low) events, when the biases tended
to be larger [147].

The main driver of the interaction of meteorology and air quality is the degree of atmospheric
mixing that acts to dilute ground-level emissions of primary pollutants. Chambers et al., 2019 [5], show
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the usefulness of radon as a tool for inferring atmospheric boundary layer heights to better constrain
the atmospheric mixing within air quality models. In this study, the modelling comparison results were
evaluated within different atmospheric “class-types” defined over 24-h periods using a 222Rn-based
stability classification technique [5]. Calculating hourly distributions of observed and simulated
quantities within each class-type helped: (i) bridge the scale gap between simulations and observations,
(ii) separately represent the variability associated with spatial and temporal source heterogeneity rather
than it adding to bias values, and (iii) provide an objective way to group results over whole diurnal
cycles that separates uncontrollable sources of uncertainty (synoptic non-stationarity, rainfall, mesoscale
motions, extreme stability, etc.) from parameterisation problems, or between-model differences [5].
Meteorological model skill varied across the diurnal cycle for all seven models, with an additional
dependence on the atmospheric mixing class that varied between models. Model skill regarding air
quality varied strongly as a function of mixing class and was typically worst when public exposure
would have been the highest (during episodes of poor air quality). This has important implications
for using contemporary models to assess potential health risks in new and rapidly evolving urban
regions [5].

The CAUL hub was particularly interested in exploring Indigenous knowledge and perspectives.
The annual cycles in meteorological variables in Sydney were used to identify a set of quasi-seasons
using a combination of Indigenous knowledge, statistics, and historical data from the Bureau of
Meteorology in Australia [150]. This approach was particularly successful in identifying the coldest
time of year, when atmospheric mixing is at its lowest, and there are peak concentrations of PM2.5, CO,
and NOX in Sydney. The methodology used could easily be applied in other parts of the world [150].

Improvements to air quality forecasts may be gained by increasing the complexity of models (such
as coupling to ocean models), although at the cost of greater computing resources [151,152]. The relative
performance of the Weather Research and Forecasting model with chemistry (WRF/Chem), with and
without coupling to the Regional Ocean Model System (ROMS) (WRF/Chem-ROMS), was shown in two
paired papers [151,152]. WRF/Chem-ROMS generally performs well at 3-, 9-, and 27-km resolutions
for sea-surface temperature and boundary layer meteorology, despite larger under-predictions for total
precipitation due to the limitations of the cloud microphysics scheme or cumulus parameterisation [152].
The model also performs well for surface O3, under-predicts PM2.5 and PM10 during SPS1 and MUMBA
and over-predicts PM2.5 and under-predicts PM10 during SPS2. These biases are attributed to inaccurate
meteorology, precursor emissions, insufficient SO2 conversion to sulphate, inadequate dispersion at
finer grid resolutions, and under-prediction in secondary organic aerosol [152]. The use of finer grid
resolutions (3- or 9-km) can generally improve the performance for most variables.

In the companion paper [151], the performance of WRF/Chem and WRF/Chem-ROMS are
compared for their applications in Australia. The explicit air-sea interactions in WRF/Chem-ROMS led
to substantial improvements in simulated sea-surface temperature, latent heat fluxes, and sensible
heat fluxes over the ocean during all three field campaigns, which led to better performance of
WRF/Chem-ROMS in boundary layer meteorology [152]. The percentage differences in simulated
surface concentrations between the two models were mostly in the range of ±10% for CO, OH, and
O3, ±25% for CH2O, ±30% for NO2, ±35% for hydrogen peroxide, ±50% for SO2, ±60% for isoprene
and terpenes, ±15% for PM2.5, and ±12% for PM10 [151]. The satellite-constrained chemical boundary
conditions reduced the model biases of surface CO, NO, and O3 predictions at 3-km for all field
campaigns, surface PM2.5 predictions at 3-km for SPS1 and MUMBA, and surface PM10 predictions
at all grid resolutions for all field campaigns. The chemical boundary conditions were shown to be
more important in the relatively clean Southern Hemisphere, than in the more polluted Northern
Hemisphere [151].

The continued monitoring of air quality in Sydney has shown that the city experiences exceedances
for only two of the regulated pollutants, O3 and PM2.5. For this reason, the final paper from the
comparison exercise presents the overall performance of the six air quality modelling systems in
predicting O3 and PM2.5, during the SPS1, SPS2, and MUMBA campaigns [153]. Model performance
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for O3 was evaluated against measurements at 16 air quality monitoring stations. Performance
for domain-wide hourly O3 was good, with the models generally meeting benchmark criteria for
normalised mean bias (<15%) and correlation (>0.5). The models also reproduced the observed O3

production regime (based on the O3/NOX indicator) at 80% or more of the air quality monitoring
sites. When the model output is paired with the observations, all models tend to overestimate the
lowest observed hourly O3 values and underestimate the highest observed hourly O3 values; as has
been observed in other comparison exercises (e.g., [154]). The probability of the models predicting
daily maximum O3 values above 60 ppb at specific sites was generally low (0–67%). This probability
increased to 25–80% when testing the models for daily maximum O3 values above 60 ppb in a specific
region (e.g., Sydney East, Sydney North-West). Relaxing the test further to domain-wide detection of
events only marginally improved the probability of detection (28–93%) but greatly reduced the number
of false alarms, with the false alarm ratio decreasing each time the test was relaxed (False alarm ratio,
domain-wide: 10–40%; region: 32–73%; site: 40–100%).

Performance for PM2.5 was assessed using measurements at five air quality monitoring stations
during the summer campaigns (SPS1 and MUMBA) and four stations during the autumn campaign
(SPS2). Domain-wide model performance for daily PM2.5 (24-h averages) was variable. Most models
underestimated PM2.5 concentrations during the summer campaigns and overestimated them in
autumn (SPS2). The benchmark criteria for normalised mean bias (<30%) was met by only one model
for SPS2 and MUMBA. Most models met the criteria for SPS1. All models met the criteria for correlation
(>0.4) during SPS2, and most did during the summer campaigns. The evaluation of the performance
of the models for PM2.5 was hindered by the few monitoring sites reporting PM2.5 at the time of
the campaigns.

As with many other parts of the world, key challenges remain for air quality modelling, including
access to accurate emissions inventories and meteorology for the modelled region [6,147]. Australia lacks
a consistent national emissions inventory. Only sporadically updated regional inventories of varying
resolution, composition, and methodology are produced around some of the cities. As a contribution
towards improving emissions inventories, an uncertainty analysis has been made of emissions estimates
in the NSW Environment Protection Authority’s Air Emissions Inventory for 2008 for the Greater
Metropolitan Region [20,155].

After the completion of the comparison study, when the models have been optimized, and their
performance has been validated against observations and the ensemble of other models, it is then
possible to benchmark the models against international performance standards and apply the models
to address particular issues of interest.

Chang et al., 2018, assessed the ability of one of the models from the comparison study (the regional
air quality model, the coupled Conformal Cubic Atmospheric Model and Chemical Transport Model
(CCAM-CTM)) for the NSW Greater Metropolitan Region to predict concentrations of PM2.5, O3, and
NO2 by evaluation against air quality data from the NSW DPIE air quality monitoring network [146].
Overall, CCAM-CTM performance was shown to be comparable to that of other regional air-shed models
reported in the literature [146]. Generally, the model slightly over-predicted PM2.5 concentrations
but under-predicted peak values on the most polluted days [146]. The speciation of PM2.5 was
generally well captured (with a factor of 2) but with some underestimation of the contribution of
sea-salt, ammonia, and elemental carbon. NO2 and peak O3 values were also slightly under-predicted.
The study also identified possible mechanisms for future improvements in the model, including better
characterization of highly variable emissions sources, such as domestic wood-heaters, traffic, and
industrial emissions [146].

A study utilising the ‘45 and Up’ cohort [156] estimated the exposure to PM2.5 and NOX for
participants who lived in Western Sydney at the baseline of that study [96]. Exposure assessment for
NO2 was based on a satellite-based land use regression model, and PM2.5 exposure was based upon
a Chemical Transport Model (CTM) [99]. The associations between exposure to PM2.5 and NO2 at
baseline, with hospitalisation for all respiratory diseases over a seven-year follow-up, was assessed.
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The median annual concentration of PM2.5 was slightly lower for Western Sydney residents compared
with the rest of Sydney (4.1 µg m−3 vs. 4.6 µg m−3); the maximum PM2.5 concentrations were higher for
residents in Western Sydney compared with other areas in Sydney (13.8 µg m−3 vs. 8.11 µg m−3) [99].
Median annual concentration of NO2 was lower in Western Sydney compared with other areas in
Sydney. Similar to the results for the whole of Sydney [99], no associations between exposure to air
pollutants and hospitalisation for all respiratory diseases in Western Sydney were found [99].

O3 formation can be both NOX or VOC-limited, with the prevalence of a NOX-limited regime over
Sydney confirmed during days of elevated ozone concentrations during a 2013 heatwave using the
WRF-Chem model (as used in the modelling comparison exercise described above) [143]. However,
they also highlighted the importance of biogenic VOC emissions (from Eucalyptus trees, which are
prevalent in the forested regions surrounding Sydney), by showing that when all biogenic VOC
emissions were removed from the model, no O3 events occurred [143]. This study also highlights
that problems with O3 pollution in Sydney are likely to be exacerbated in future years by a warming
climate, with higher temperatures increasing emissions of biogenic precursors and speeding up the
chemical production of O3 in approximately equal measures. Similarly, being a NOX limited regime,
the benefits of all policy actions to reduce NOX will simultaneously also reduce O3 (i.e., traffic controls
and the mitigation of industrial emissions).

Two further papers use the CCAM-CTM model to identify the major source contributions to
O3 and PM2.5 in Sydney [148,149]. The most significant contributions to ozone in NSW come from
biogenic VOC emissions, which dominate over anthropogenic emissions [149]. The relative importance
of different emissions varies between geographic regions of NSW, depending on the ozone formation
potential of the region and whether it is NOX or VOC limited [149]. Commercial and domestic sources
are the largest anthropogenic contributor to ozone concentrations because they combine high VOC
and low NOX emissions (except for domestic wood-smoke—which is also a high NOX emitter) [149].
Emissions controls on power stations will reduce ozone concentrations in North West Sydney, the Lower
Hunter, and Illawarra regions of NSW, whilst traffic emissions control will be the most effective policy
to reduce ozone in the South West of Sydney, which is most prone to smog and ozone exceedances [149].

To assess the impact on residents, the modelled annual averaged PM2.5 concentrations from
CCAM-CTM were weighted by the population density (using the 1 km resolution gridded population
data from the Australian Bureau of Statistics), [148]. It was found that 60% of the PM2.5 burden in
the NSW Greater Metropolitan Region originates from natural sources (biogenic emissions, sea salt,
and wind-blown dust) and 40% from anthropogenic sources. Of the anthropogenic sources, the most
significant contributions to overall population-weighted PM2.5 in the NSW Greater Metropolitan
Region come from wood-heaters (31%), industry (26%), on-road motor vehicles (19%), power stations
(17%), and non-road diesel and marine (6%) [148].

These modelling studies provide evidence for policy-makers of the most important source
contributors of two of the pollutants of most concern in NSW (O3 and PM2.5). Such studies provide
a sound scientific basis for prioritising air quality management interventions to optimise improved
public health outcomes.

3. Implications for Policy Makers

3.1. Policy Options to Minimise Poor Air Quality Episodes from Smoke Pollution

During the CAUL measurement campaign at Auburn, all the major pollution events were
associated with fires [130,157], reinforcing previous findings that fires (both wild and prescribed) are
responsible for most of the worst air quality events in Sydney [51,82]. The new NEPM excludes hazard
reduction burns (incorrectly assigning them to natural episodes) [7]. This discourages the consideration
of the health impacts of hazard reduction burns during the planning of such events, to the detriment of
the health of the population of Sydney. In order to minimise avoidable severe pollution events, the
NEPM guidelines need to be revised so that only exceedances caused by wildfire pollution can be
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excluded from the reported exceedance count. Additionally, the use of the latest modelling tools to
predict the impact of the prescribed burns on air quality (e.g., [158]) should be mandated. Further
research support should be given to improving these tools and communicating these risks to the public.
The best possible predictions of smoke impacts should be available before decisions are made on
whether or not to ignite a hazard reduction burn. Research support that enables a proper analysis of the
pros and cons of hazard reduction burning strategies should continue (like the current DPIE bushfire
risk management research hub). The DPIE bushfire risk management research hub brings together
researchers, fire agencies and public land managers in a collaborative research effort to improve fire
management strategies, and reduce the risk fires pose to people, property and the environment.

Pollution from wood smoke contains a number of additional chemicals (such as formaldehyde and
ammonia) that are known human toxins [157]. These will exacerbate the health impacts of exposure to
smoke from the legislated pollutants. The chemical composition of smoke is very similar, regardless
of whether the source is bushfires or domestic wood-heaters [157]. Wood-heaters are a significant
contribution to human sources of PM2.5, as discussed earlier [130,148], and measurements made during
the CAUL Auburn campaign, established that the overall exposure to heightened pollution levels from
smoke from domestic wood-heaters in Auburn was greater than from bushfires, despite five major
bushfire pollution events during spring 2017 [157].

We recommend that legislation be considered that works towards eliminating the use of
wood-heaters in urban areas (and reducing their use in regional areas prone to meteorological
conditions that trap the pollution near the surface). As this legislation is phased in, interim measures
could be implemented that further reduce the permitted emissions from the current guidelines/standard
of 1.5 g of particles per kg of fuel burned [159].

3.2. Policy Options to Reduce Air Pollution from Traffic

As discussed above for wood smoke pollution, preventing exceedances of air quality standards is
only part of the challenge, since PM2.5 has been shown to cause adverse health impacts, and has no
known safe limit [160]. Problems associated with chronic exposure to air pollutants, mean that the
best overall outcomes for population health will be via a reduction in emissions from all the major
pollutant sources.

Research in this special issue shows that more than half the PM2.5 burden in Sydney is from
natural sources [148]. Amongst the anthropogenic contribution, emissions from on-road petrol and
diesel vehicles account 19% of the population-weighted annual average PM2.5 concentrations in the
NSW Greater Metropolitan Region [148]. In addition, the CAUL roadside campaign in Randwick [131]
confirmed the findings of many international studies that have reported significant increases in PM2.5

pollution near busy roads [78,123,161,162]. Many people spend time near traffic hotspots and main
roads during their commute or other parts of their day-to-day lives, and so are exposed to heightened
levels of pollution above that observed by the regulatory air quality monitoring sites. Furthermore,
infill urban development in Sydney is disproportionately occurring along main road sites, so that
population exposure to traffic-related air pollution is likely to increase over the next decade. There is
also a tendency for this to impact the more vulnerable in our society with those of lower socio-economic
status being more likely to live by busy roads and more likely to commute by bus (with bus-stops
having been identified as typical pollution hotspots [131,163,164]). Thus, a reduction of emissions from
road vehicles is an important issue for public health and social equity.

Regulation of motor vehicles and fuels has reduced air emissions and air pollution concentrations
in recent decades despite the growth in traffic activity [108]. However, recent air quality trends and
emission projections indicate that air pollution from vehicles will plateau and then increase without
further action to protect air quality [165]. We recommend that policies be implemented to reduce
traffic-related pollution. Strategies that should be considered include:

1. Prioritising policies that encourage active transport, such as better pedestrian and separated
cycle paths [166,167]. Providing better public transport and considering fiscal policies, such
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as introducing congestion taxes and tax deductions for public transport, whilst removing
incentives/tax breaks for company cars.

2. Legislation and measures to encourage a more rapid move to low and zero tail-pipe emission
vehicles. Australia could follow the lead of nations that have incentivised the uptake of electric
vehicles, with some nations also declaring timelines for bans on the sale of new internal combustion
engine passenger vehicles, with the aim of improving air quality and reducing greenhouse gas
emissions; for example the United Kingdom [168] and France [169]. This will require supporting
actions to ensure that the required infrastructure is in place, such as mandating the phasing in
of recharge stations at premises licenced to sell petrol and diesel; incentivising the provision of
charging infrastructure by the private sector and revising planning instruments and building
construction requirements to accommodate infrastructure. The NSW Electric and Hybrid Vehicle
Plan released in 2018 [170] commits the state government to co-invest in charging infrastructure
on major regional routes and to provide support for charging through strategic land use planning
and guides. This plan provides the platform to advocate for further actions to accelerate the move
to low and zero tail-pipe emission vehicles. The use of renewable energy to power electric vehicle
infrastructure should be maximised to reduce the reliance of fossil fuel power generation. Policies
should be put in place to develop a sustainable framework for charging of electric vehicles so as
to reduce overall emissions and avoid adverse impacts on the electricity grid [171,172]. Biogenic
VOC emissions have been shown to undergo chemical reactions with anthropogenic NOX in the
atmosphere leading to a major source of PM2.5 and O3 [148]; however, these natural emissions
form particulate matter and O3 after reacting with NOX. Vehicles contribute over 80% of NOX

emissions in the Sydney region [13]; hence, the move to zero tail-pipe emission vehicles may also
reduce the apparent contribution to PM2.5 and O3 from natural sources of VOCs, in addition to
removing the more direct emissions amounting to >20% of PM2.5 [13]. Policies to promote the use
of electric vehicles should be co-designed with policies to improve the public transport system
and encourage its use.

3. During the transition to zero tail-pipe emission vehicles, reduced pollution can be achieved by
introducing a further tightening of fuel efficiency, fuel quality, and emission standards, introducing
anti-idling control technologies, and by phasing out diesel vehicles [66]. Consideration should
be given to addressing non-exhaust emissions, such as tire and brake wear particles and raised
dust, which will eventually become more significant as the move to electric vehicles nears
completion [165].

4. Set an example by limiting government vehicles and public transport to non-fossil-fuel use.
As noted above, vehicle exhaust emissions contribute significantly to criteria air pollutant
emissions in the Greater Metropolitan Region. The move away from this engine type, towards
low/no emission electric or fuel cell vehicles will provide air quality benefits. NSW has a 10 per
cent target for new NSW Government general purpose passenger fleet cars purchased or leased by
state agencies to be electric or hybrid vehicles by 2020/21 [170]. This target should be increased for
future years and consideration given to the transition of public transport. The large-scale use of
electric buses has been successful in cities such as Hefei (>600 buses) and Shenzhen (>1000 buses),
China [77]. All levels of governments can contribute to this effort via schemes to promote clean
transport and energy generation and by leading by example (e.g., by using electric trains, buses,
and motor-vehicles and by installing solar power). This ‘early adopter’ policy would help bring
forward the installation of new infrastructure (e.g., charging stations) required for lower emissions
vehicles and would result in a greater number of low/no emission vehicle models being available.
This move needs to be coupled with the provision of electricity from renewable sources.

5. Limit motor vehicle engine idling. This has co-benefits for reduced fuel costs and CO2 emissions.
It is also particularly effective for air quality since much idling occurs at exposure hotspots such
as intersections and car-parks.
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3.3. Policy Options to Reduce Other Major Pollution Sources

1. Implement policies to further improve energy efficiency and accelerate the transition to clean
energy; so, mitigating air pollution and greenhouse gas emissions from traditional coal-fired
power generation. This makes sense for economic reasons also, since the cost of renewable energy
is falling rapidly.

2. Shipping—from January 2020 fuels with less than 0.5% sulphur will be mandated by international
shipping laws, but local ferry services like Sydney Ferries are exempt. Modelling has shown large
human health benefits could be gained from stricter emissions controls on shipping in Sydney [69].
Thus, a move to overcome the State versus Federal barriers to enforcing ship emissions should be
prioritised. Switching to Liquefied Natural Gas or electric, such as is being adopted for ferries
in Norway and New Zealand, would see a significant reduction in both greenhouse gases and
criteria pollutants [64,65]. Additionally, in-harbour emission for on-board power generation
can potentially be mitigated through the provision of electrical mains shore-power for ships
when docked.

3. Control off-road vehicle emissions, which are growing in contribution due to the absence of
non-road diesel emission standards. Also address VOC emissions from the commercial and
domestic sector, which are emerging as an increasingly important source of ozone and secondary
organic aerosol precursors [173].

3.4. Urban Design to Reduce Exposure

Urban greening can help reduce fine particulate matter pollution by intercepting and removing
aerosols from the atmosphere. More research is needed in this area because of the complex nature of
atmospheric composition and sources (e.g., biogenic emissions are precursors to both particulate matter
and ozone), and in certain circumstances, trees and bushes can cause a street canyon effect, reducing
natural ventilation and trapping pollution closer to the ground where people breathe. Nevertheless,
Sydney is surrounded by great swathes of heavily forested regions, and, thus, the extra contribution
to biogenic precursors from urban greening projects into the air-shed is unlikely to be significant
(although further research is needed).

1. Look for the best native species for intercepting particulate pollution [134] and with the lowest
emissions of allergic pollens and biogenic VOC species most prone to contribute to fine particulate
matter and O3 formation.

2. Consider further trials of moss beds and moss walls, which have been shown in our preliminary
study to be efficient at removing particulate matter from the atmosphere [133].

3. As urban density increases, it will be important to ensure that there are sufficient green spaces both
for air quality and for other aspects of livability, including for the mitigation of urban heat [174].
Given the importance of PM2.5 in overall air quality, and the evidence of decreasing concentrations
of PM2.5 with height above ground (supported by the findings of the CAUL Auburn campaign
reported in this special issue [130]), there is evidence to support urban planning that encourages
high-rise buildings set in ample green-space. This would also be beneficial for walkability and
access to public transport [166,167,175].

4. Use planning permissions to avoid building pre-schools, child-care centres, schools, hospitals and
aged care homes near major roads or traffic hotspots or in valleys prone to conditions that trap
pollution near the ground since proximity to major roads has been shown to increase exposure to
air pollutants [78,161,162,176–178].

5. Similarly, the location of new polluting industries should consider prevailing wind direction and
the relative locations of populated areas (as is done through the NSW EPA approval methods).

6. Indoor air considerations should not be forgotten in urban design. Design and maintenance
at schools should prioritise the transition away from combustion or unflued gas heating,
which contributes to poor indoor air quality and is of particular concern in school classrooms.
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In addition, classrooms which are inadequately ventilated increase exposure to indoor air
pollutants [179]. Air pollution in classrooms can impact the health [180], attendance, and even
academic performance of students [181]. Airlocks between attached garages and the living zones
of residential buildings should be mandated to prevent direct ingress of vehicle exhaust [182].

7. Application of modern building codes will provide insulation to reduce cooling/heating costs.
Schemes to encourage retro-fitting older properties for similar gains should be encouraged;
however, adequate ventilation should also be considered to minimise the build-up of indoor air
pollutants and mildew.

8. Special consideration should be given to ensuring sufficient urban greenery and the planting of
trees/bushes as a mitigation measure for fine particulates in the development associated with
the new Western Sydney Airport at Badgerys Creek. This is especially important in the west of
Sydney due to meteorological conditions that can trap pollution near the surface and exacerbate
poor air quality in the west of the city.

3.5. Air Quality Monitoring, Modelling, and Public Alerts

Continued monitoring of air quality is crucial for understanding changes in air quality. The Sydney
basin has a large network of air quality monitoring stations operated by the Department of Planning,
Industry, and Environment (DPIE). The CAUL Auburn study demonstrated that the regional monitoring
stations provided a good representation of air quality at a case study site chosen to be typical of a
suburban balcony in western Sydney [130]. However, air quality is highly spatially variable, evidenced
in the gradient of fine particulate matter from busy road to regional background in 300 m [59]. From the
CAUL Randwick campaign, Wadlow et al., [131] concluded that the PM2.5 concentrations were very
variable near major roads and that hotspots existed by busy intersection and bus-stops. They concluded
that the addition of one or two roadside air quality stations to the DPIE network was likely to be less
informative than supplementing the existing network with a dense array of sensors around one or
two areas to illustrate likely hotspots (and then disseminate this information via a public education
program) [131]. Data from roadside air quality stations and sensor networks in hotspots can also be
used to ‘train’ air quality models and thus, provide supplementary information. Careful and strategic
planning should be conducted in order to determine the placement and capability requirements of
different types of sensors. Roadside or low-cost monitoring should be accompanied by public education;
otherwise, the data is likely to be misunderstood and may hinder rather than help the situation.

The DPIE also runs an operational air quality model issuing daily forecasts for the next day and
undertakes research to make continued improvements to its performance [146]. Continued efforts
to improving air quality modelling should be made as this is of paramount importance to issuing
accurate and reliable alerts to vulnerable members of the population. It is important that poor air
quality events are anticipated so that vulnerable people can take precautions to mitigate the effects (e.g.,
seek shelter in an air-conditioned building and take medications as necessary). False alerts must be
minimised so that people respond appropriately to warnings issued. In addition, DPIE should continue
to use best practice in the communication of air quality, such as the use of an air quality index (AQI),
communication tools, and methods of disseminating the information efficiently, such as providing AQI
information with radio, print, and electronic dissemination of daily weather forecasts [183]. Research in
China has demonstrated the effectiveness of an AQI-like tool in communicating morbidity risks [184].
The design of this tool is important as the personal perception of air quality has been shown to have a
stronger impact in modifying behaviour than a published index [185]. NSW already has an AQI and
reports region-specific values [35], which is important due to the high spatial variability of air quality.
This information is disseminated via websites, media outlets, email alerts, and mobile-phone alerts.
Further resources could be provided to disseminate information on the NSW AQI and the public alert
system as widely as possible, as well as evaluating the current system. Proper resourcing of the air
quality monitoring and modelling efforts by DEPI needs to continue to ensure the best public health
outcomes are achieved.
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3.6. Public Outreach, Education, and Community or Individual Actions Designed to Reduce Exposure

Specific education campaigns that highlight the risks to health, the local sources, and the actions
communities can take to improve air quality can also reduce overall exposure to air pollution.

Specific examples include:

1. Implementing strategies to encourage cycling and walking. Provide services such as safe cycling
maps, bike lockers, and showers to encourage students and staff to walk or cycle to school.
Cycling and walking do not contribute to poor air quality like many of the other modes of
transport and offer the co-benefit of physical activity. In Sydney, the use of cars to travel to school
is associated predominantly with the attitudes of parents, highlighting the need for an integrated
(child-parent) approach in education strategies [186].

2. Support outreach and incentive programs to motivate the public to move away from the use of
wood and other combustion heaters. Community education has been shown to have a significant
effect on reducing wood smoke emissions in Australia, (by reducing use of wood-heaters) using
health risk as a motivational trigger [187].

3. Use outreach and education programs to highlight the risks of both ambient and indoor air
pollutants. Studies in Australia [122,125,188] and overseas [189,190] have highlighted the need
for public health education with respect to the health risks of indoor air quality, especially
as Australians spend the majority of their time indoors. Indoor air quality is unregulated in
Australia [191] and therefore, can be very poor. A study in Brisbane showed times of the day
likely associated with cooking and commuting were the largest contributors to ultrafine particle
exposure in children [192].

4. Provide advice for reducing individual exposure. This should include:

• Taking steps to minimise exposure to air pollutants by: exercising away from main roads,
or, if this is not possible, then exercising in the early evening when the boundary layer is
higher (in preference to the morning) [131] and choosing alternate activities when air quality
is forecast/measured to be hazardous.

• The potential benefits of behaviour that can reduce personal exposure to particulate air
pollution during hazardous air pollution events. There is only limited evidence that
adopting behaviours to limit personal exposure to air pollutants is effective in reducing
cardiopulmonary health risks [193]; however, evidence demonstrating positive effects
include altering air conditioner settings [194] and wearing a personal respiratory mask [195].
Although more recent research suggests that face masks could raise pollution risks [196].

5. Introduce anti-idling zones, especially around at-risk populations such as child-care centres,
schools, aged-care homes, and hospitals. On-road vehicle emissions contribute to student air
pollutant exposure [161], and morning and evening peaks in exposure have been measured [192].
Anti-idling has been shown to be effective in improving air quality in circumstances where the
drop-off and pick-up zone traffic is a major component of local air pollution mix, although
this mitigation measure is not as effective where schools are located very close to major
highways [161,197–200]. The anti-idling efforts must be accompanied by appropriate education
since community and driver knowledge of health benefits has been shown to increase with
education efforts [201].

3.7. Priorities for Further Research

Continued research into air quality is required, especially as the move away from fossil fuels will
change the atmospheric chemistry and shift the priorities from where they are at present. In particular,
we recommend:

• A thoroughly researched and detailed National Air Pollution Emission Inventory should be
funded (that incorporates and extends the existing one), including gridded and time resolved
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emissions where appropriate and uncertainty estimates, with resources provided for annual
updates. A national emissions inventory is crucial for the prioritisation of targets for pollution
reduction and for determining effective air quality management policy and predicting future air
quality scenarios [202]. There is no national emissions inventory for Australia comparable to those
present in the USA [203] or the United Kingdom [204]. The existing Australian National Pollutant
Inventory does not capture domestic, area, or line emissions and is, therefore, incomplete [202].

• Research on future air quality, exposure, and associated health impacts taking into account
changing energy/fuel use, climate, population growth, and development as well as urbanisation.

• Research into ‘data fusion’ across existing air quality networks and future sensor networks that
could include hot spot measurements, satellite retrievals, and model outputs (including chemical
transport and land use regression models) for a more comprehensive air quality and exposure
mapping, etc. [205].

• Make the measurement of indoor air quality a research focus. Indoor air quality is unregulated [191]
and harmful [206]. Little research has been completed on indoor air quality [122,125,191].

• Research on pollen speciation, distribution, and health impacts. Support the development of
pollen emission methodologies within air quality models to protect populated or otherwise at-risk
areas of NSW. A system is being developed for Victoria [207] and could be extended to other
regions of Australia.

• Research on the effect of urban greening on air quality. This should include amelioration of
particulate matter by vegetation as well as biogenic VOC emissions (in order to improve the
agreement between measurements and models [120]). In addition, further research into the
atmospheric chemistry that follows biogenic VOC emissions and leads to secondary organic
aerosol formation and ozone production should be prioritised.

3.8. Concluding Remarks Regarding Policy Implications

In this section, we have listed a large number of policy options and targets that should be
prioritised. Since modelling of the environmental economics and health impacts of all the different
policy options is beyond the scope of this work, we have not attempted a full ranking of these priorities.
We recommend the support of future efforts for the construction of such modelling tools for use in all
Australian jurisdictions. Nevertheless, it is clear, from the research that apportions contributions from
different pollution sources, that residential wood-smoke, smoke from wildfires and hazard reduction
burns, traffic emissions and emissions from industry and power generation contribute significantly to
population exposures in Sydney. We therefore recommend prioritising policy analysis of measures to
significantly reduce population exposures to air emissions, with consideration given to reducing the use
of wood-heaters, minimising smoke impacts from bushfires and moving away from combustion-engine
based transport in the Sydney basin.

4. Summary and Conclusions

This review provides an overview of the findings of research undertaken by CAUL and its
partners, summarising the papers in the special issue of Atmosphere on Air Quality in New South Wales,
Australia, in the context of previous research. Some of the highlights include:

1. Publicly driven research by CAUL has provided case-studies in Sydney that can be used to deliver
clear and simple messages about air quality to the public, such as:

• The DPIE network of air quality monitoring stations is likely to be fit for purpose, with
respect to representing urban background pollutant concentrations in Sydney, (i.e., in areas
that are not close to a local pollution source, such as major traffic thoroughfares).
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• Roadside pollution levels (such as PM2.5 concentrations) are likely to be significantly higher
than non-road side locations, with hotspots at traffic junctions, bus-stops, and drop-off and
pick up zones (e.g., at schools).

• Air quality improves rapidly with distance from main roads so that pedestrians and cyclists
are advised to use side-streets whenever possible.

• Due to meteorology, roadside pollution is often significantly worse in the morning rush hour
than the afternoon rush hour, such that cyclists and joggers can reduce their exposure by
choosing to exercise in the afternoons.

2. Novel measurements have allowed us to better understand the role of NH3 in the chemistry
of aerosol formation in Sydney and to understand the complex chemical mix of toxins that are
present in wood-smoke, whether from bushfires or domestic wood-heaters.

3. Studies of the amelioration of air pollution in NSW have shown the capacity of urban trees
to remove fine particulate matter from the atmosphere, and have highlighted the even greater
efficiency of mosses in this capacity.

4. A major air quality modelling comparison has enabled the operational air quality forecasting
model used for Sydney to be benchmarked against international standards, thereby increasing
confidence in the daily forecasts.

Sydney’s future air quality can be improved by reducing pollution from traffic, residential
wood-smoke, industry, and power generators, and minimising smoke impacts from hazard reduction
burning. There are also possible gains to be had from providing greater amelioration by greening the
city with native trees and mosses; however, further research is needed to assess the pros and cons of
urban greening for air quality.
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