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1 . A B S T R A C T

Vehicle traffic is responsible for a significant portion of toxic air pollution in urban areas that has been linked to
a wide range of adverse health outcomes. Most vehicle air quality analyses used for transportation planning and
health effect studies estimate exposure from the measured or modeled concentration of an air pollutant at a
person's home. This study evaluates exposure to fine particulate matter from vehicle traffic and the magnitude
and cause of exposure misclassification that result from not accounting for population mobility during the day in
a large, sprawling region. We develop a dynamic exposure model by integrating activity-based travel demand,
vehicle emission, and air dispersion models to evaluate the magnitude, components and spatial patterns of
vehicle exposure misclassification in the Atlanta, Georgia metropolitan area. Overall, we find that population
exposure estimates increase by 51% when population mobility is accounted for. Errors are much larger in
suburban and rural areas where exposure is underestimated while exposure may be overestimated near high
volume roadways and in the urban core. Exposure while at work and traveling account for much of the error. We
find much larger errors than prior studies, all of which have focused on more compact urban regions. Since many
people spend a large part of their day away from their homes and vehicle emissions are known to create
“hotspots” along roadways, home-based exposure is unlikely to be a robust estimator of a person's actual ex-
posure. Accounting for population mobility in vehicle emission exposure studies may reveal more effective
mitigation strategies, important differences in exposure between population groups with different travel pat-
terns, and reduce exposure misclassification in health studies.

1. Introduction

Vehicle traffic is known to cause air pollutant emission hotspots
along high volume roads (Karner et al., 2010; Matte et al., 2013; Zhou
and Levy, 2007). Exposure to these hotspots or simply being located
near a high volume road is associated with a wide range of adverse
health outcomes including heart disease, respiratory illness, and cancer
(Barone-Adesi et al., 2015; Chen et al., 2015; Foraster et al., 2014; Gan
et al., 2010; Hart et al., 2014; McConnell et al., 2016; Pennington et al.,
2018; Samoli et al., 2016; Mette et al., 2017; Jennifer et al., 2016).
Many studies also find that disadvantaged populations are more likely
to live closer to higher volume roadways where the concentration of
vehicle emissions is expected to be higher (Cesaroni et al., 2010; Gunier
et al., 2003; Houston et al., 2004; Rowangould, 2013; Tian et al., 2013)
or where emissions have been shown to be greater (Apelberg et al.,
2005; Buzzelli and Jerrett, 2007; Chakraborty, 2009; Havard et al.,

2009; Kingham et al., 2007), raising environmental justice concerns.
This has led to the development of methods for generating high re-
solution maps of vehicle emission concentrations across urban areas for
use in exposure, health impact, and regional transportation planning
studies (Beckx et al., 2009a; Cook et al., 2008; Hatzopoulou and Miller,
2010; Lefebvre et al., 2011; Poorfakhraei et al., 2017; Tayarani et al.,
2016; Vallamsundar et al., 2016). However, even in studies where ve-
hicle emissions are mapped at high spatial and temporal resolution,
exposure is often estimated based on the residential address of in-
dividuals rather than where they spend time (Nyhan et al., 2016). When
considering exposure to vehicle emission hotspots, failing to account for
the daily mobility patterns of a population is likely to result in sig-
nificant exposure estimation errors.

Several recent studies using cell phone location data (Dewulf et al.,
2016; Nyhan et al., 2016; Picornell et al., 2019; Yu et al., 2018) or data
from surveys (Park and Kwan, 2017; Shafran-Nathan et al., 2017) have
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evaluated errors caused by failing to account for population mobility in
air pollution exposure studies. These studies consider different air
pollutants from mobile and stationary sources and use various methods
for estimating air pollutant concentrations (e.g., dispersion modeling,
land-use regression, or monitoring), but they all produce spatially de-
tailed concentration maps. Each of these prior studies then compared
exposure estimated at the residential location of the population with
estimates that consider exposure that occurs while spending time in
other places throughout the day. Little to no error is generally found
between the two approaches when results are aggregated to the re-
gional scale; however, large errors are found in more disaggregate re-
sults. Many studies find that exposure is underestimated in areas lo-
cated outside of the urban core while exposure within the core may be
overestimated when population mobility is not considered (Dewulf
et al., 2016; Picornell et al., 2019; Yu et al., 2018). Studies using per-
sonal exposure monitors have similar findings to modeling studies (de
Nazelle et al., 2013; Nieuwenhuijsen et al., 2015; Ouidir et al., 2015).
These errors appear to be caused by those living outside of urban cores
where air pollutant concentrations are lower, working in more urba-
nized areas where air pollution concentrations are higher.

Only a few studies have focused on similar errors in exposure esti-
mates to vehicle emissions specifically, which have used similar study
methods (Beckx et al., 2009b; Dhondt et al., 2012; Hatzopoulou and

Miller, 2010; Shekarrizfard et al., 2016). Integrated modeling chains
are used where an activity-based travel demand model provides mo-
bility data to vehicle emission models to estimate emission rates along
roadway networks that are then fed into air quality models to estimate
ambient pollution concentration maps. Mobility data from the activity-
based travel demand model is then combined with the pollution con-
centration maps to estimate exposure to vehicle emissions, accounting
for population mobility. Dhondt et al. (2012) found that exposure to
elemental carbon, which is primarily associated with vehicle emissions,
was underestimated by about seven percent on average in Belgium
when population mobility was not considered. Larger errors were noted
in disaggregate results, particularly in the population living outside of
more urbanized areas. Hatzopoulou and Miller (2010) and
Shekarrizfard et al. (2016) found almost no difference in average ex-
posure differences to NOx in Toronto, Canada and NO2 in Montreal,
Canada, respectively, from vehicle emissions when population mobility
was considered (although Shekarrizfard et al. (2016) did find larger
differences for those who commute using transit or active travel
modes); however, exposure errors were larger when evaluating dis-
aggregated results.

Existing studies demonstrate that failing to account for population
mobility results in exposure estimation errors that in aggregate are
relatively minor and may be either positive or negative. Disaggregate

Fig. 1. Study area.
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analysis generally find larger errors and that exposure is under-
estimated in populations living in areas that are more residential or
further from the urban core. Most prior studies have been conducted in
Europe and Canada and have considered relatively compact cities or
regions. Few studies have evaluated larger, more sprawling, urban
areas in the United States where one might expect to find larger dif-
ferences between exposure estimates made at residential locations and
those accounting for population mobility. Longer commutes on more
congested highways and greater distance separating residential and
urban centers are two factors that are likely to result in larger errors in
sprawling regions. Greater levels of sprawl have been associated with
more vehicle use and worse air quality (Ewing et al., 2007; Schweitzer
and Zhou, 2010; Stone et al., 2007; TRB, 2009).

Our study evaluates the magnitude and spatial patterns of errors
caused by estimating exposure to vehicle emissions at residential lo-
cations in the Atlanta, Georgia metropolitan area which has been
ranked as the most sprawling large metropolitan area (and second most
sprawling area of any size) in the United States (Ewing and Hamid,
2014). We evaluate exposure to primary PM2.5 emissions from vehicle
exhaust, tire and brake wear at residential locations and activity loca-
tions across the entire 8376 square mile Atlanta, Georgia metropolitan
area which is home to over 4.6 million people. We obtain mobility data
from an activity based travel demand model and estimate ambient
concentrations of PM2.5 from vehicle traffic using an integrated mod-
eling chain. We also evaluate how different activities for people living
in different parts of the metropolitan area contribute to daily exposure
levels, revealing how factors affecting exposure vary spatially within a
region. Overall, our study demonstrates that exposure estimation errors
are likely to be larger in more sprawling regions, which are very
common in the United States (Ewing and Hamid, 2014).

2. Methods

We evaluated exposure estimation errors for the population residing
in the Atlanta, Georgia metropolitan area (Fig. 1) using an integrated
chain of travel demand, vehicle emission and air quality models. The
Atlanta metropolitan area is a large and sprawling region located in the
southeastern United States covering 8376 mi2 with a 2017 population
of 5.9 million people making it the 9 most populated metropolitan area
in the United States. An important factor in choosing the Atlanta me-
tropolitan area for our study in addition to its sprawling land-use pat-
tern is the availability of population mobility data from the Atlanta
Regional Commission's (ARC) activity-based travel demand model
(ABM). The ABM provided us with the estimated positions and move-
ments for each individual residing in the Atlanta region for a typical
mid-week day during 2017. We used these mobility data to estimate the
rate of PM2.5 emissions from vehicle trips, the ambient concentration of
PM2.5 from these vehicle trips, and individual PM2.5 exposures at
household locations and other places visited during the day. We then
compared exposure estimates from household locations with those that
integrate exposure over the course of the day as individuals move from
location to location.

2.1. Activity based travel demand modeling

Population mobility and traffic data were modeled using two
models maintained by the ARC. The Coordinated Travel-Regional
Activity Modeling Platform (CT-RAMP) was used to estimate the
number and types of trips made by individuals and households while a
user equilibrium traffic assignment modeled implemented in Citilabs’
Cube Voyager software was used to assign these trips to the transpor-
tation network.

For this study, we obtained disaggregate CT-RAMP model outputs
from modeling completed by ARC as part of its regional transportation
planning process. The modeling output we received was generated from
a model scenario designed by ARC to represent baseline conditions for

the year 2017. The CT-RAMP output contained records for each trip
made by each person (modeling agent) for a typical mid-week day. The
output included 19.8 million trip records that contained information
about each trip's origin and destination, purpose, departure time and
travel mode along with socioeconomic information about the trip
maker and their household. We used these data with ARC's traffic as-
signment model to determine the path and duration of each trip over
the transportation network.

The CT-RAMP model is one of several ABM frameworks that are
currently used by MPOs in the United States (Vovsha et al., 2011).
ABMs differ from traditional aggregate “4-step” travel demand models
in three important ways. First, tours are modeled rather than trips. A
tour is a series of linked trips that begin and eventually end at a person's
residence. Modeling tours ensures consistency in space and time. For
example, an individual cannot start the next trip until they have com-
pleted the first trip, and they must start each trip form the destination of
the previous trip. Second, ABMs derive travel demand from each in-
dividual's needs and desires to participate in various activities that are
spatially distributed. In an ABM each individual is assigned a daily
activity schedule and must seek out a way to complete each activity
under a time constraint. ABMs may also consider household vehicle
availability and joint tours (e.g., two or more family members sharing a
ride to reach similar destinations). In a 4-step model, household trip
generation rates and distribution patterns are estimated using aggregate
functions fitted to regional observations. Lastly, ABMs are typically
designed as agent-based microsimulation models. Each individual and
household is represented by an individual agent that makes a series of
discrete choices. Information about each agent and their household is
retained throughout the modeling process, making it possible to track
each agent as they move from place to place in the model. A 4-step
model contains a series of aggregate functions that operate at a zonal
level rather than at the individual or household level, which means that
the zonal household attributes that were used to determine travel de-
mand in earlier stages of the model are not retained in later stages when
traffic patterns are determined. While ABMs are developed primarily to
understand travel demand and traffic patterns, the disaggregate popu-
lation mobility estimates that are produced by these models can be used
for many other purposes, including modeling exposure to air pollution.

ARC's implementation of CT-RAMP simulates the travel decisions of
each person in the Atlanta metropolitan area for a typical weekday
(Parsons Brinckerhoff, 2015). The population within the model is di-
vided into 5873 traffic analysis zones (TAZs) which are similar in size
and geography to U.S. census block groups (Table A.1). The TAZs are
used to identify the location of households and activities. The first step
in the modeling process is creating a synthetic population for the study
area by expanding the 2007–2011 5-Year Public Use Microdata Sample
(PUMS) data from the U.S. Census Bureau. The sample data are ex-
panded so that the distribution of households and population attributes
in the synthetic population align with control totals. An overall popu-
lation control is set for the region. At the household level, controls in-
clude the number of households in each TAZ by income, size and
number of workers. At the individual level, controls include persons by
age (by county) and occupation (by TAZ).

ARC's CT-RAMP model considers three general types of activities:
mandatory, maintenance, and discretionary. Mandatory activities, such
as work and school, must be made and generally have tight time con-
straints while other activities have greater flexibility as to when and
where they may occur. The synthetic population is classified into eight
person-type groups, including full-time worker, part-time worker, col-
lege student, non-working adult, non-working senior, driving age stu-
dent, non-driving student, and pre-school, that can participate in ten
types of activities, including work, grade school, high school, uni-
versity, escorting, shopping, eat out, other maintenance, social, and
other discretionary activities. Decisions about mandatory activities are
modeled first which then constrain later decisions about maintenance
and discretionary activities. The model also considers household
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interactions that may lead to joint tours such as when household
members must share a vehicle. The model operates at a half hour time
step, estimating the location (TAZ) of each individual and the activity
they are engaging in at each time period. Trips are assigned to the

transportation network with a user equilibrium traffic assignment
model.

ARC's CT-RAMP and traffic assignment models were calibrated with
data from ARC’s 2011 Regional Travel Survey (WSP and Atkins, 2017;

Fig. 2. Comparison of static and dynamic annual 24-h mean PM2.5 exposure estimates.

Fig. 3. Estimated error in annual 24-h mean static exposure estimates at individual TAZs.
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NuStats, 2011). The survey employed a geographically and demo-
graphically stratified sampling scheme to ensure that data was collected
from a diverse range of households within each of the 20 counties that
make up the Atlanta metropolitan region. Each survey respondent was
asked to complete a 24-h travel diary and provide a range of socio-
economic information about themselves and their household. The
survey had a 6% response rate which compares to similar travel diary
surveys conducted in other regions. Data was collected on 26,203 in-
dividual tours and 1199 joint tours made by 10,278 households and
25,810 individuals. Additional data from the 2010 U.S. Census and a
2011 on-board transit survey were also used to calibrate the model.

The model was validated against a combination of the survey data
and traffic observations. The modeling framework, calibration and va-
lidation procedures were also peer reviewed by a panel of modeling
experts organized by the U.S. Department of Transportation Federal
Highway Administration (Lemp, 2017). The model calibration report
indicates that the model can replicate base year county to county trip
frequencies and trip distances by trip purpose, traffic volumes, and
regional vehicle miles traveled (VMT) estimates reasonably well (WSP
and Atkins, 2017). A comparison of modeled work trip flows between
counties with survey data shows less than a 1% difference for most
county pairs and an overall 0.996 correlation coefficient. Estimated
traffic flows deviated less than 5% from the observed traffic flows
across 20 screens lines. Modeled VMT for the study area was 17% less
than the regional estimate but only 5% less if local roads are excluded
from the comparison (WSP and Atkins, 2017).

We use a 5% random sample of the population from each TAZ in our
study. Using a sample from the full model output decreases the com-
putational burden of assigning and retaining information from all 19.8
million trips that occurred in the region. The 5% sample includes in-
formation on 887,508 trips made by 195,284 individuals in 188,000
households. The difference between the characteristics of individuals,
households and their trip attributes in the 5% sample and full synthetic
population are not statistically significant (Table A.2). The error in-
troduced by sampling a portion of the trips made by households in each
TAZ may introduce some bias when evaluating mobility patterns from

individual TAZs, particularly those with very small populations; how-
ever, we find clear and consistent spatial patterns in our results that
suggest any bias at the TAZ level is likely very small. Since our analysis
includes a large population of TAZs we do not expect any significant
bias when evaluating regional trends and patters, which is the focus of
our study. Note, that the full model output is still used to estimate
aggregate traffic volumes and average speeds on the network for our air
quality analysis but this process does not require retaining information
on individual trips and is therefore less computationally taxing.

We also estimated the duration that individuals spend at different
locations engaging in various activities since these data are not in-
cluded in the CT-RAMP output. The CT-RAMP output contains in-
formation about the origin, destination, and departure time of each trip.
The duration of each activity was estimated by first calculating the
difference between the departure time of the prior trip and the pro-
ceeding trip and then subtracting the travel time. We also exclude from
our analysis individuals who make transit trips because we did not have
access to individual level transit trip routing data.

2.2. Air quality modeling

In this study, we estimate exposure to directly emitted, primary,
PM2.5 emissions from vehicle exhaust, tire and brake wear. We use the
U.S. EPA's Motor Vehicle Emissions Simulator (MOVES2014a) model to
estimate vehicle emission rates for each roadway segment. MOVES is
tailored with a regional vehicle fleet, travel activity data, fuel, me-
teorology, and inspection/maintenance program information. We use
MOVES to create an emission factor lookup table that tabulates emis-
sion rates in 5 mi/h increments for urban restricted access, urban un-
restricted access, rural restricted access, and rural unrestricted access
roadway types. The lookup table is then used to assign emission factors
to each roadway segment and calculate emission rates.

We use U.S. EPA's AERMOD dispersion model to estimate the am-
bient concentration of PM2.5 from each roadway source. Each roadway
segment is modeled as an area source with length and width corre-
sponding to the roadway segment, and with other dispersion para-
meters set following U.S. EPA particulate matter hotspot modeling
guidance for transportation projects (U.S. Environmental Protection
Agency, 2015). Prior studies have shown that AERMOD is able to
predict the concentration of vehicle emissions along roadways (Heist
et al., 2013), including PM2.5 emissions (Chen et al., 2009), reasonably
well. We use 2 days of hourly meteorological observations from each
month of a five year meteorology data set recorded at 7 monitoring
location(s) to estimate annual average hourly concentrations of PM2.5

from vehicle emissions during 2017. Concentrations are modeled for a
regular grid of point receptors with 100 m spacing covering the entire
Atlanta metropolitan area. We apply AERMOD using a unique rastering

Table 1
Annual 24-h mean PM2.5 concentrations and activity durations.

Place Type of Activity

Home Work Travel Education Other

Annual 24-h Mean
Concentration (μg/
m3)

Urban 0.39 0.57 0.85 0.40 0.54
Suburban 0.11 0.30 0.43 0.20 0.23

Time (Hours) Urban 15.72 4.43 1.42 0.78 1.67
Suburban 15.35 4.38 1.55 1.04 1.69

Fig. 4. Annual 24-h mean exposure to PM2.5 for different activities.
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Fig. 5. Population Distribution (a); Population Change from Early Morning (b–e) at TAZ Level; average PM2.5 concentration (f–j) at Different Time of Day.
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approach that breaks up the modeling domain into small pieces that can
be modeled in parallel, significantly reducing modeling run time
(Rowangould, 2015). We then create a 20 m resolution raster from the
point concentration estimates using empirical Bayesian kriging for each
of the 5 time periods considered by the ARC-ABM (Figure A1).

2.3. Static exposure method

We estimate each individual's static exposure based on the daily
average PM2.5 concentration at their home. The ARC-ABM trip diary
provides the TAZ where each individual's home is located. We then
calculate the annual average area weighted daily PM2.5 concentration
within each TAZ from our concentration rasters.

Fig. 6. Share of daily exposure to vehicle emissions from different activities at the TAZ level.
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2.4. Dynamic exposure method

We estimate each individual's dynamic exposure by accumulating
their exposure over the course of the day as they move through the
transportation network and spend time in various places. Annual
average area weighted concentrations of PM2.5 are estimated for each
TAZ for each of the 5 time periods considered by the ARC-ABM. We
then estimate each individual's exposure by tracking the amount of time
and the time of day that they spend in each TAZ engaging in various
activities. We also track exposure that occurs while traveling on the
transportation network between TAZs. We estimate the average PM2.5

concertation for travel on each network link as the average con-
centration of the PM2.5 raster cells that the link passes through. We then
estimate each individual's exposure during travel between each activity
using the travel time weighted average concentration of the links that
make up the route. Each individual's annual average 24-h exposure is
then calculated following Equation (1).

∑ ∑ ∑=
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= = =

E C T C TT( * )   ( * ) i
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where;
Ei is the annual average 24-h exposure to PM2.5 for individual i in

units of μg-hr/m3, J is the set of TAZs where individual, i, engaged in
activities during time period t, K is the set of network links that in-
dividual, i, traveled on to reach each TAZ in J during time period t,

Cjt is the annual average area weighted PM2.5 concentration in TAZ j
for time period t.

Tjt is the time in hours that an individual spends in TAZ j during time
period t.

Ckt is the annual average PM2.5 concentration on link k during time
period t.

TTkt is travel time on link k during time period t.
Individual exposure estimates were then used to estimate the annual

average 24-h mean exposure for the population residing in each TAZ.
We also estimated the portion of daily exposure occurring from each
activity type and travel for populations living in different locations
throughout the study area. Results are also aggregated for urban and
suburban residents to understand how exposure misclassification varies
between these general populations in addition to our more disaggregate
results. Urban areas are defined as the regional core, regional em-
ployment corridors, and maturing neighborhoods. Suburban areas in-
clude established suburbs, developing suburbs, developing rural areas,
and rural areas.

2.5. Results

We find large differences in vehicle emission exposure estimates
calculated using dynamic and static exposure methods. The Atlanta
metropolitan area annual 24-h population weighted mean dynamic
exposure is 1.99 μg-hr/m3 higher (51% higher) than the static exposure
estimate (5.86 μg-hr/m3 vs 3.87 μg-hr/m3). The dynamic exposure
method estimates nearly 50% fewer people in the lowest exposure ca-
tegory (0-2 μg-hr/m3) and almost two times the number of people in the
highest exposure category (> 10 μg-hr/m3) shown in Fig. 2.

The size and direction of errors vary extensively across the Atlanta
metropolitan area (Fig. 3). The annual average 24-h exposure for po-
pulations living near major highways and in the core urban area is
overestimated by up to 40% by the static exposure method while ex-
posure is underestimated by up to 160% for populations living in rural
areas away from highways. In most suburban areas not directly ad-
jacent to highways, exposure is underestimated by 20%–80% by the
static method, while exposure in urban areas away from major road-
ways is typically overestimated by a smaller amount.

The differences in dynamic and static exposure estimates are caused
by people spending some amount of time out of their home in places

with different PM2.5 concentrations. The average person in the Atlanta
metropolitan region spends 38% of the day outside of their home where
PM2.5 concentrations are on average higher (Table 1). For urban re-
sidents, 19% of the population, concentrations are on average
2.5%–118% higher at work, school, while driving and in other outside
of home locations. Suburban residents, 81% of population, experience
average concentrations that are 82%–290% higher when away from
their homes. The highest exposures occur while traveling followed by
work for both urban and suburban residents (Table 1).

While concentrations at home are on average lower than elsewhere,
home is still the place that accounts for the greatest amount of daily
exposure to vehicle emissions because of the relatively long amount of
time spent at home (Fig. 4). On average, exposure at home accounts for
43% of daily exposure. Work and travel contribute to most of the re-
maining daily exposure, accounting for 27% and 18% of daily exposure,
respectively.

The absolute difference in the annual average 24-h exposure esti-
mated using the dynamic and static methods are similar for urban and
suburban residents (2.1 μg-hr/m3 and. 2.0 μg-hr/m3, respectively);
however, the relative error is much higher for suburban areas (19% for
urban residents and 43% for suburban residents) (Fig. 4). Urban re-
sidents also receive a larger portion of their daily exposure at home
than suburban residents do (54% vs. 39%). Suburban resident's ex-
posure while at work and at home is somewhat similar, contributing to
31% and 39% of daily exposure, respectively. Exposure while traveling
is a more significant contributor to daily exposure for suburban re-
sidents than urban residents (20% vs. 12%).

The spatial analysis in Fig. 5 shows how the location of the popu-
lation and the concentrations of PM2.5 change over the course of an
average weekday in the Atlanta metropolitan area. The concentration
maps (Fig. 5 f-j) show relatively high concentrations of PM2.5 along the
region's major roadways and urban core during the morning and eve-
ning commute periods. The population maps show how people in the
region generally move from areas away from roadways where they live
to activity centers along the region's major highways during the day
(red dots in Fig. 5 b-e) and then back home again in the evening. The
patterns shown in Fig. 5 reveal how a large portion of the region's
population moves into the highest concentration areas during the day
for work, school and other activities. An interesting observation is that
the suburban and rural population residing in communities north of the
urban core, appear to accumulate a significant amount of exposure by
spending time during the day away from the urban core but adjacent to
some of the region's largest highways.

Within both urban and suburban areas there is significant variation
in exposure and the activities contributing to it (Fig. 6). For people who
live near major roads, exposure at their home can account for most of
their daily vehicle emissions exposure. In the Atlanta metropolitan area
35% of the population lives within 500 m of high-volume roadways
(> 25,000 AADT) where exposure at home on average accounts for
56% of daily exposure. In rural, outlying areas, such as the far north-
west suburbs, traveling can be the largest source of daily exposure. For
4.4% of the population in the Atlanta region traveling accounts for
more than 50% of their daily exposure. In many suburban areas, time
spent at work is the largest contributor to daily exposure. For 25.7% of
the region's population work is the largest component of daily exposure,
on average accounting for 58.1% of daily exposure. While not apparent
in the maps shown in Fig. 6, exposure while at school can also be sig-
nificant. Time spent at school accounts for 32.4% of daily exposure for
those who attend school.

2.6. Discussion

We find that a static analysis of exposure to primary PM2.5 from
vehicle exhaust, tire and brake wear, where all exposure is assumed to
occur at home, in the Atlanta metropolitan area is likely to result in
large exposure estimation errors. Using data from the Atlanta Regional
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Commission's activity-based travel demand model, we demonstrate that
accounting for the daily movement of the population and the location of
various activities generally results in higher exposure estimates for both
urban and suburban residents. We also demonstrate that exposure
patterns and errors in exposure estimates vary significantly across the
region. A static exposure method overestimates vehicle emissions ex-
posure for populations residing in Atlanta's urban core and along high-
volume roads by up to 40% while underestimating exposure in sub-
urban and rural areas by up to 150%. Exposures at home, work or while
traveling can account for most of a person's daily exposure depending
on where they live and work. The exposure errors we find are generally
larger than those reported in prior studies (Beckx et al., 2009b; Dhondt
et al., 2012; Hatzopoulou and Miller, 2010; Shekarrizfard et al., 2016)
using similar methods in other cities, which is expected given the more
sprawling development pattern and greater car dependence of the
Atlanta metropolitan area.

The differences in the two exposure estimation methods may have
important planning and policy implications. Since a static exposure
estimation method generally underestimates exposure, the benefits of a
mitigation strategy or study of exposure burden using this approach
would underestimate potential benefits or exposure risks. A more ac-
curate estimate of exposure could help justify additional mitigation
efforts. Furthermore, with more knowledge of where exposure occurs,
mitigation measures can be more targeted. Most exposure occurs at
home and at work. While much of the population lives outside of the
urban core in our study area, most of the region's population would
benefit from vehicle emission reductions in the urban core because
many of the region's jobs are there. For example, policies or projects
that reduce vehicle use in the urban core such as a congestion charging
scheme or improved public transit would reduce exposure for both
urban and suburban residents. A static exposure estimation method
would not account for the potentially substantial benefits to people
living outside the urban core.

Exposure estimates that account for travel and the location of ex-
posure throughout the day can also improve epidemiological studies of
vehicle emissions exposure. Most epidemiology studies have based their
exposure estimates on exposure occurring at a person's residence
(Setton et al., 2011). A few studies have tracked individuals using
personal monitors, but these are the exception and often have small
sample sizes (Spira-Cohen et al., 2011; Steinle et al., 2013). Modeled or
observed activity patterns that allow for a more accurate exposure es-
timate may reveal new or stronger (or possibly weaker) associations
between various health outcomes and vehicle emissions exposure. Since
different population groups are also likely to have different housing,
employment and travel patterns, a dynamic exposure method could also
provide a more accurate means for evaluating disparities in health ef-
fects and exposure across race, income and age groups.

There are also limitations to our study that should be understood.
Our analysis focuses on primary PM2.5 emissions from vehicle exhaust,
tire and brake wear. Other pollutants from vehicle traffic may result in
different exposure patterns and errors. We did not model transit trips.
We model exposure for typical weekday travel patterns, we do not
consider weekends and holidays. Exposure along transit routes is likely
less than that on highways and those using transit may also have dif-
ferent travel patterns. Since transit mode share in the study area is
relatively low (1.7%) we do not expect this exclusion to have a sig-
nificant effect on our findings. Our static and dynamic exposure esti-
mates are based on ambient PM2.5 concentration estimates. We do not
account for differences between ambient and indoor or in vehicle
concentrations. All else being equal, we assume that places with higher
ambient concentrations also have higher indoor or in vehicle con-
centrations; however, we acknowledge that regional differences in
building stock or the vehicle fleet could challenge this assumption. We
do not have comprehensive information about vehicle and building
characteristics or how much time people spend inside and outside of
vehicles and buildings that would allow us to accurately calculate these

differences. We know this causes some amount of error based on a
limited number of prior studies (Baek et al., 1997; Marshall et al.,
2003). However, presently there is no practical method for addressing
these limitations in a spatially detailed analysis of an entire me-
tropolitan region. Future research could combine population mobility
with infiltration impacts (Chang et al., 2015) to further enhance the
study of exposure misclassification. Although the data we use represent
individual agents and households, location data are aggregated to TAZs.
As a result, we estimate exposure based on the average concentration of
PM2.5 within each TAZ, introducing some error to our exposure esti-
mates. The most likely error is the overestimation of exposure in larger
and more rural TAZs where much of the population lives away from
heavily trafficked roadways. If this is true, then exposure mis-
classification would be even greater than we have estimated in our
study for rural and suburban residents. Finally, we use a complex
system of models that each produce point estimates. Uncertainties and
errors exist but they are not quantified or propagated through this
modeling system which are two widely acknowledged limitations in the
transportation system modeling field and one that has yet to be resolved
(Rodier and Johnston, 2002).
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