

M12 Motorway Environmental Impact Statement

Appendix N Groundwater quality and hydrology assessment report

Roads and Maritime Services | October 2019

BLANK PAGE

Contents

Co	ntents		4
Glo	ssary	of terms and abbreviations	7
Exe	cutive	e summary	8
1.	Intro	duction	10
	1.1	Background	10
	1.2	Project overview	
	1.3	Purpose and scope of this report	16
	1.4	SEARs	16
2.	Polic	y and planning setting	20
	2.1	Water Act 1912, Water Management Act 2000 and Water Management Regulation 2018	20
	2.2	Water sharing plan	20
	2.3	NSW Aquifer Interference Policy (2012)	21
	2.4	Groundwater Dependent Ecosystems Policy	21
	2.5	National Water Quality Management Strategy	22
3.	Asse	ssment methodology	23
	3.1	Overview	23
	3.2	Study area	23
	3.3	Desktop assessment	23
	3.4	Site investigations	25
	3.5	Criteria	25
	3.6	Impact assessment methodology	31
	3.7	Key assumptions	32
4.	Exist	ing environment	33
	4.1	Climate	33
	4.2	Topography	34
	4.3	Hydrology	34
	4.4	Geology	38
	4.5	Soil landscapes	41
	4.6	Salinity	
	4.7	Acid sulfate soil and rock	
	4.8	Groundwater dependent ecosystems	
	4.9	Hydrogeology	
	4.10	Cultural groundwater values	
	4.11	Conceptual hydrogeological model	56
5.		ssment of potential impacts	
	5.1	Construction impacts	
	5.2	Operational impacts	
	5.3	Minimal impact considerations	
6.		ulative impacts	
7.	Envir	onmental management measures	74
	7.1	Overview	
	7.2	Groundwater monitoring program	75

8.	Conclusions							
	8.1	Summary	.78					
	8.2	Western cut	.78					
	8.3	Bridge footings	.79					
9.	Refer	rences	.80					

Tables

Table 1-1 SEARs (groundwater and hydrology)	17
Table 4-1 Average monthly rainfall, evaporation and rainfall surplus	33
Table 4-2 Watercourse geomorphology summary	37
Table 4-3 Summarised project groundwater monitoring bore testing	45
Table 4-4 Summarised project groundwater monitoring bore details	47
Table 4-5 Summarised project groundwater monitoring bore groundwater level data	48
Table 4-6 Summary of registered groundwater bores in region of project (BOM, 2018a)	49
Table 4-7 Summarised hydraulic testing results	55
Table 5-1 Estimated groundwater inflow scenarios	60
Table 5-2 Minimal impact consideration demonstration	70
Table 6-1 Assessment of potential cumulative impacts for relevant projects	72
Table 7-1 Environment management measures (groundwater and hydrology)	74

Figures

11
13
24
26
27
29
40
44
51
57
59
67
76

Annexures

Annexure A	Figures
Annexure B	Project monitoring bore logs
Annexure C	Project monitoring bore hydrographs
Annexure D	Registered groundwater bore lithology logs
Annexure E	Slug test analysis sheets
Annexure F	Water quality summary tables
Annexure G	Groundwater quality testing laboratory certificate

Glossary of terms and abbreviations

Term/Acronym	Meaning					
AHD	Australian Height Datum					
AIP	Aquifer Interference Policy					
ASS	Acid Sulfate Soils					
BGL	Below Ground Level					
BH	Borehole					
BOM	Bureau of Meteorology					
BTEXN	Benzene Toluene Ethylbenzene Xylenes and Naphthalene					
CEMP	Construction environmental management plan					
DPIE	Department of Planning, Industry and Environment					
EC	Electrical conductivity					
EIS	Environmental Impact Statement					
GDE	Groundwater dependent ecosystem					
LTAAEL	Long-term average annual extraction limit					
NWQMS	National Water Quality Management Strategy					
RL	Relative Level					
Roads and Maritime	Roads and Maritime Services					
SEARs	Secretary's environmental assessment requirements					
TDS	Total dissolved solids					
TSS	Total suspended solids					
WAL	Water access license					
WM Act	Water Management Act 2000 (NSW)					
WM Reg	Water Management Regulation 2018 (NSW)					
WQO	Water Quality Objective					
WSP	Water Sharing Plan					

Executive summary

Background

Roads and Maritime Services (Roads and Maritime) is seeking approval under Part 5, Division 5.2 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) to construct and operate the M12 Motorway project to provide direct access between the Western Sydney Airport at Badgerys Creek and Sydney's motorway network (the project). The project has been determined to be a controlled action under Section 75 of the *Environment Protection and Biodiversity Conservation Act 1999* (Commonwealth) (EPBC Act) for significant impact to threatened species and communities (Section 18 and Section 18A of the EPBC Act). As such, the project requires assessment and approval from the Commonwealth Government.

The M12 Motorway would run between the M7 Motorway at Cecil Hills and The Northern Road at Luddenham for a distance of about 16 kilometres and would be opened to traffic prior to opening of the Western Sydney Airport.

Purpose of this report

This report has been prepared to support the environmental impact statement (EIS) for the M12 Motorway project. The EIS has been prepared to address the Secretary's Environmental Assessment Requirements (SEARs) for the project (SSI 9364) and to enable the Minister for Planning and Public Spaces and the Commonwealth Minister for the Environment to make a determination on whether the project can proceed. The report presents an assessment of the construction and operational activities for the project that have the potential to impact on groundwater.

This groundwater assessment was undertaken by considering:

- The existing environmental conditions and values
- The potential impacts from the project on groundwater systems
- Appropriate monitoring and mitigation measures to ensure potential impacts are addressed.

A dewatering assessment was undertaken to estimate potential groundwater inflows (seepage) and subsequent potential drawdown which could occur if road cuttings extend below the water table. As dewatering of cuts beneath the water table is a potential cause of changes to groundwater flows, volumes and levels, this dewatering assessment forms a key part of this groundwater impact assessment.

Overview of potential impacts

The project is assessed to have minimal potential to directly interact with groundwater systems, with direct potential interaction expected to be limited to:

- One road cutting (cut) that is located approximately 1.5 kilometres east of The Northern Road which may intersect the water table by up to about 1.6 metres over a distance of about 250 metres. This cut is referred to as the 'western cut' in this report.
- Bridge footings, where piles are drilled below the water table.

Potential groundwater inflows from the western cut are assessed to be very low (maximum of 6.75 kilolitres per day) with minimal (about 1.6 metres at cut face and extent of influence of about 60 metres) accompanying groundwater level drawdown predicted. Negligible impacts to groundwater are anticipated to occur due to dewatering of the western cut.

Due to exemptions, a Water Access License (WAL) is not required to license potential groundwater inflows from the western cut. However, for the purpose of informing water accounting, a take of 2.46 megalitres per year is considered appropriate and conservative.

Groundwater quality at the bore (BH104) representative of the western cut had copper and zinc concentrations above the ANZECC/ARMCANZ (2000) trigger values for the protection of 95 per cent of freshwater species. However, the water quality at this location does not indicate a risk to human health, nor are impacts anticipated to occur due to intercepted groundwater from the cut being discharged to surface water.

Changes to water table levels in areas where bridge footings extend beneath the water table are qualitatively predicted to be minor and localised. Such changes are not expected to affect the local groundwater flow system or alter groundwater-surface water exchange in the region of the creeks, as piled footings would readily accommodate local groundwater flow diversion around the pile.

Groundwater contamination risks represent a low risk.

The contribution of the project to cumulative groundwater and hydrology impacts in the region, when considered collectively with impacts from surrounding projects such as the Western Sydney Airport, The Northern Road Upgrade, Metro Western Sydney Airport and major subdivisions and land releases, would be negligible. Nevertheless, as a collective, these projects may lead to reduced groundwater levels due to reduced recharge associated with increased impervious area, and potentially altered groundwater recharge chemistry, such as increased nutrient concentrations as a result of urban run-off.

The quality of surface water runoff from the project during the operational phase is anticipated to improve compared to existing conditions at all sensitive receiving waterways. Therefore, the potential for adverse groundwater quality impacts from infiltration of surface water runoff during operation is negligible.

Summary of environmental management measures

Risks associated with accidental spills or leakages of hazardous materials (such as fuels, lubricants and hydraulic oils), including subsequent risk of groundwater contamination, during the construction and operational phase of the project, will be managed through the construction environmental management plan (CEMP) and the implementation of the environmental management measures outlined in Appendix M and Appendix O of the EIS.

A groundwater monitoring program will be implemented to observe any changes in groundwater quality and levels that may be caused by the project and inform appropriate management responses. The monitoring program will include collection of baseline data for comparison to construction and operational monitoring data to understand, and respond to, any impacts from the project.

Conclusions

Based on a detailed review of baseline groundwater level and quality data, along with an analysis of the existing environmental setting and an assessment of the proposed alignment, the project is expected to generate negligible impacts on groundwater quality, flow and levels.

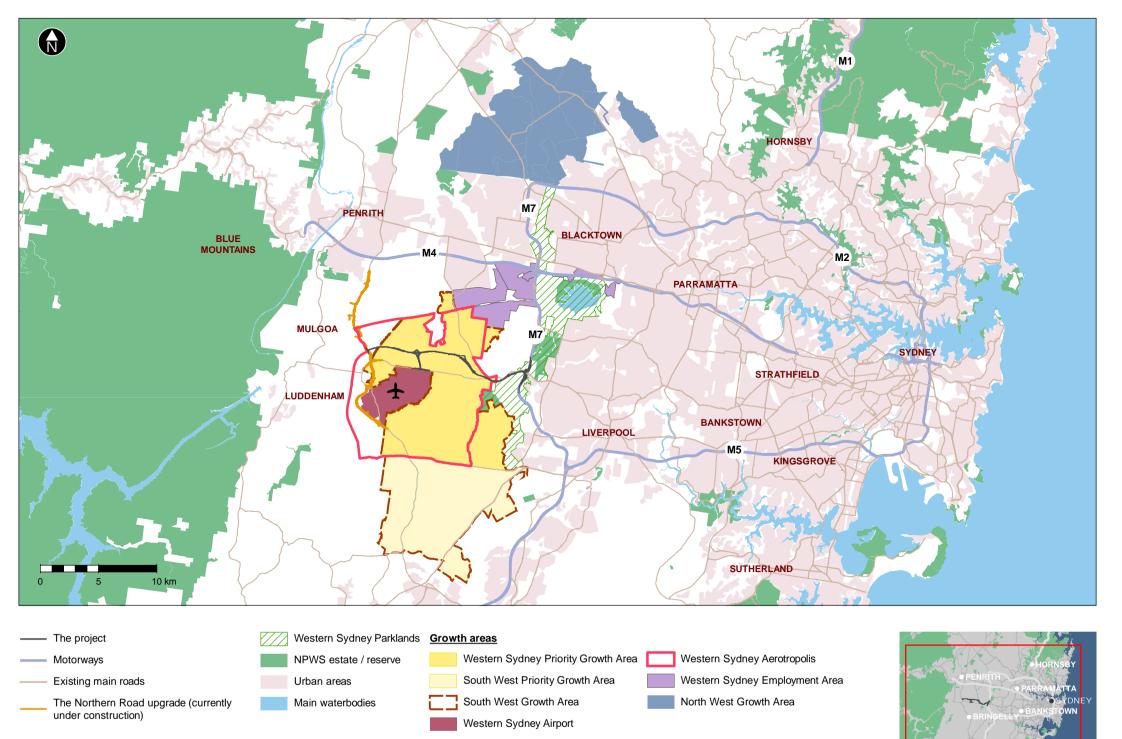
1. Introduction

1.1 Background

Roads and Maritime Services (Roads and Maritime) is seeking approval under Part 5, Division 5.2 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) to construct and operate the M12 Motorway project to provide direct access between the Western Sydney Airport at Badgerys Creek and Sydney's motorway network (the project). In addition, the project has been determined to be a controlled action under Section 75 of the *Environment Protection and Biodiversity Conservation Act 1999* (Commonwealth) (EPBC Act) (EPBC 2018/8286) for significant impact to threatened species and communities (Section 18 and Section 18A of the EPBC Act). As such, the project requires assessment and approval from the Commonwealth Government.

The M12 Motorway would run between the M7 Motorway at Cecil Hills and The Northern Road at Luddenham for a distance of about 16 kilometres and would be opened to traffic prior to opening of the Western Sydney Airport. The project would commence about 30 kilometres west of the Sydney central business district, at its connection with the M7 Motorway. The project traverses the local government areas of Fairfield, Liverpool and Penrith. The suburbs of Cecil Park and Cecil Hills are found to the east of the M12 Motorway, with Luddenham to the west.

The project is predominately located in greenfield areas. The topography in and around the project comprises rolling hills and small valleys between generally north–south ridge lines. The existing land uses are semi-rural residential, recreational, agricultural, commercial and industrial. The main residential areas are Kemps Creek, Mount Vernon and Cecil Hills.


The project is required to support the opening of the Western Sydney Airport by connecting Sydney's motorway network to the airport. The project would also serve and facilitate the growth and development of the western Sydney which is expected to undergo significant development and land use change over the coming decades. The motorway would provide increased road capacity and reduce congestion and travel times in the future and would also improve the movement of freight in and through western Sydney.

The project location is shown in Figure 1-1 in relation to its regional context.

1.2 Project overview

The project would include the following key features:

- A new dual-carriageway motorway between the M7 Motorway and The Northern Road with two lanes in each direction with a central median allowing future expansion to six lanes
- Motorway access via three interchanges/intersections:
 - A motorway-to-motorway interchange at the M7 Motorway and associated works (extending about four kilometres within the existing M7 Motorway corridor)
 - A grade separated interchange referred to as the Western Sydney Airport interchange, including a dual-carriageway four lane airport access road (two lanes in each direction for about 1.5 kilometres) connecting with the Western Sydney Airport Main Access Road
 - A signalised intersection at The Northern Road with provision for grade separation in the future
- Bridge structures across Ropes Creek, Kemps Creek, South Creek, Badgerys Creek and Cosgroves Creek
- Bridge structure across the M12 Motorway into Western Sydney Parklands to maintain access to the
 existing water tower and mobile telephone/other service towers on the ridgeline in the vicinity of Cecil
 Hills, to the west of the M7 Motorway

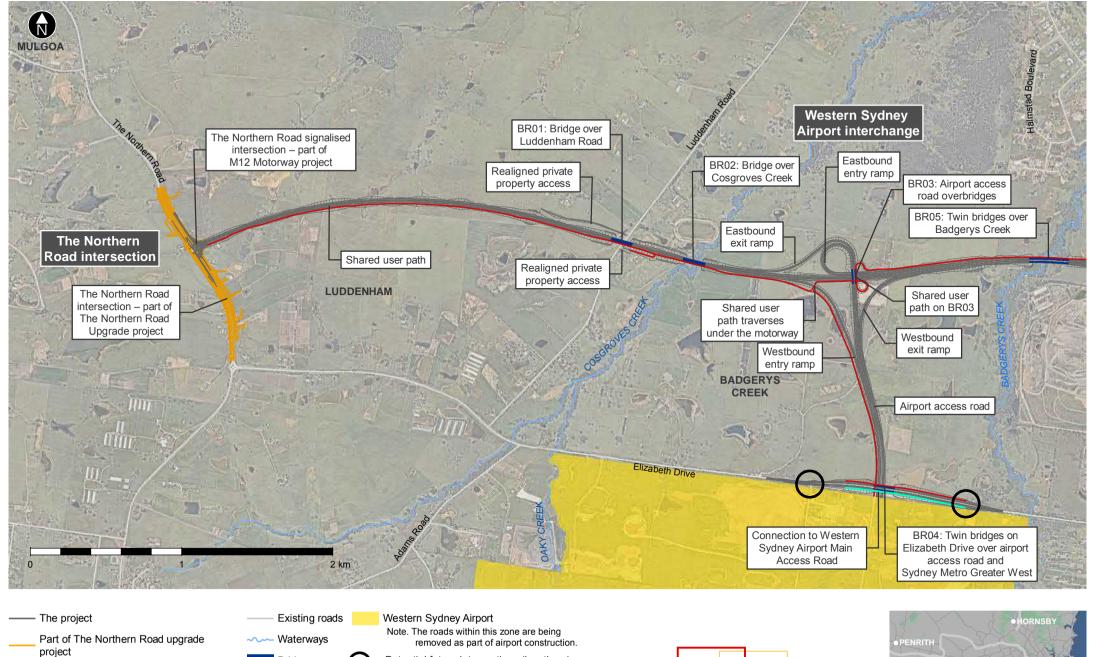
Figure 1-1 Project location (regional context)

Date: 18/07/2019 Path: J.\IE\Projects\04_Eastern\IA145100/08 Spatial\GIS\Directory\Templates\MXDs\Figures\EIS\Chapters\Chapters\Chapters\Chapter1_Introduction\FinalEIS\JAJV_EIS_Chap1_F001_ProjectOverview_Regional_r5v1

- Bridge structures at interchanges and at Clifton Avenue, Elizabeth Drive, Luddenham Road and other local roads to maintain local access and connectivity
- Inclusion of active transport (pedestrian and cyclist) facilities through provision of pedestrian bridges and an off-road shared user path including connections to existing and future shared user path networks
- Modifications to the local road network, as required, to facilitate connections across and around the M12 Motorway including:
 - Realignment of Elizabeth Drive at the Western Sydney Airport, with Elizabeth Drive bridging over the airport access road and future passenger rail line to the airport
 - A realignment of Clifton Avenue over the M12 Motorway, with associated adjustments to nearby property access
 - Relocation of Salisbury Avenue cul-de-sac, on the southern side of the M12 Motorway
 - Realignment of Wallgrove Road north of its intersection with Elizabeth Drive to accommodate the M7 Motorway northbound entry ramp
- Adjustment, protection or relocation of existing utilities
- Ancillary facilities to support motorway operations, smart motorways operation in the future and the existing M7 Motorway operation, including gantries, electronic signage and ramp metering
- Other roadside furniture including safety barriers, signage and street lighting
- Adjustments of waterways, where required, including Kemps Creek, South Creek and Badgerys Creek
- Permanent water quality management measures including swales and basins
- Establishment and use of temporary ancillary facilities, temporary construction sedimentation basins, access tracks and haul roads during construction
- Permanent and temporary property adjustments and property access refinements as required

The project overview presented in this document represents the design outlined in the M12 Motorway EIS. If the project is approved, a further detailed design process would follow, which may include variations to the design. Flexibility has been provided in the design to allow for refinement of the project during detailed design, in response to any submissions received following the exhibition of the environmental impact statement (EIS), or if opportunities arise to further minimise potential environmental impacts.

The key features of the project are shown on Figure 1-2.


1.2.1 Key features of project description related to groundwater

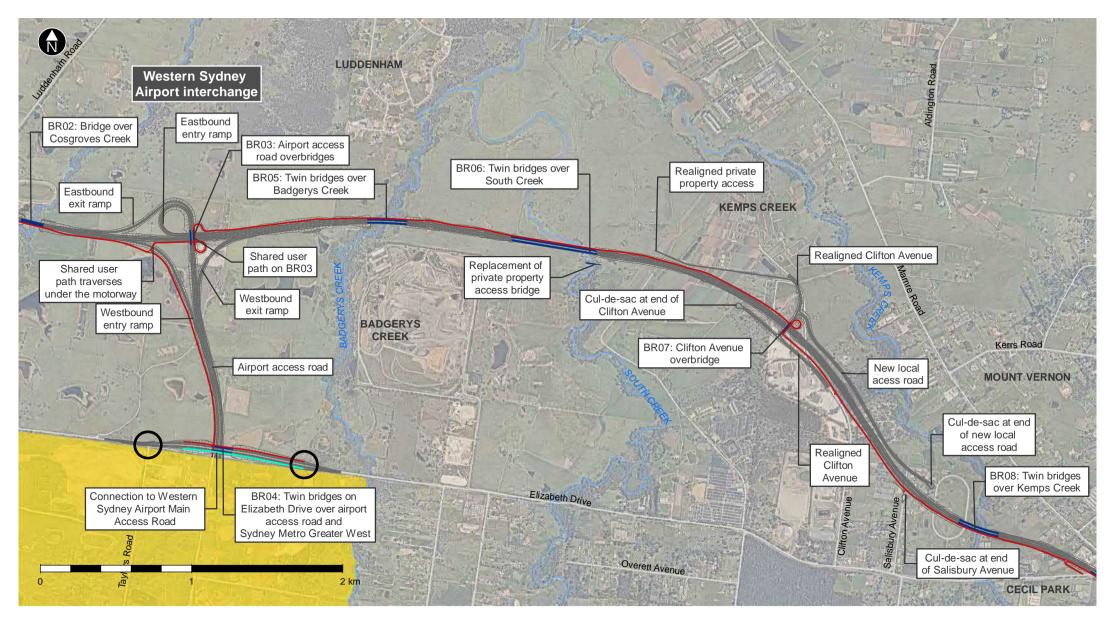
Cuttings and embankments

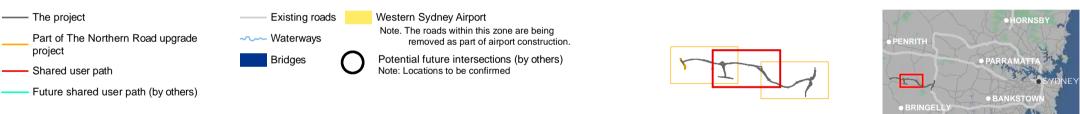
Cuttings would generally have a slope of three (horizontal) to one (vertical) (about 18 degrees). Through Western Sydney Parklands the slope of cuttings is increased to two (horizontal) to one (vertical). Benches (flat steps in the slope) are provided at regular intervals to improve stability.

Embankments would have a slope of four (horizontal) to one (vertical) (about 14 degrees) up to a height of 2.5 metres. Where embankment height exceeds 2.5 metres the slope is steepened to two (horizontal) to one (vertical) (about 26 degrees) with benches provided at regular intervals to improve stability.

The cuttings are subject to change following geotechnical analysis and design development. The location and dimension of cuttings, retaining walls and embankments would be confirmed during detailed design. Deep cuttings and high embankment fills are not proposed along local roads. Cuttings would range in depth with the deepest cut expected to be about 15 metres. Embankments would range in height up to about 13 metres.

- Shared user path
- Future shared user path (by others)


Bridges


Potential future intersections (by others) Note: Locations to be confirmed

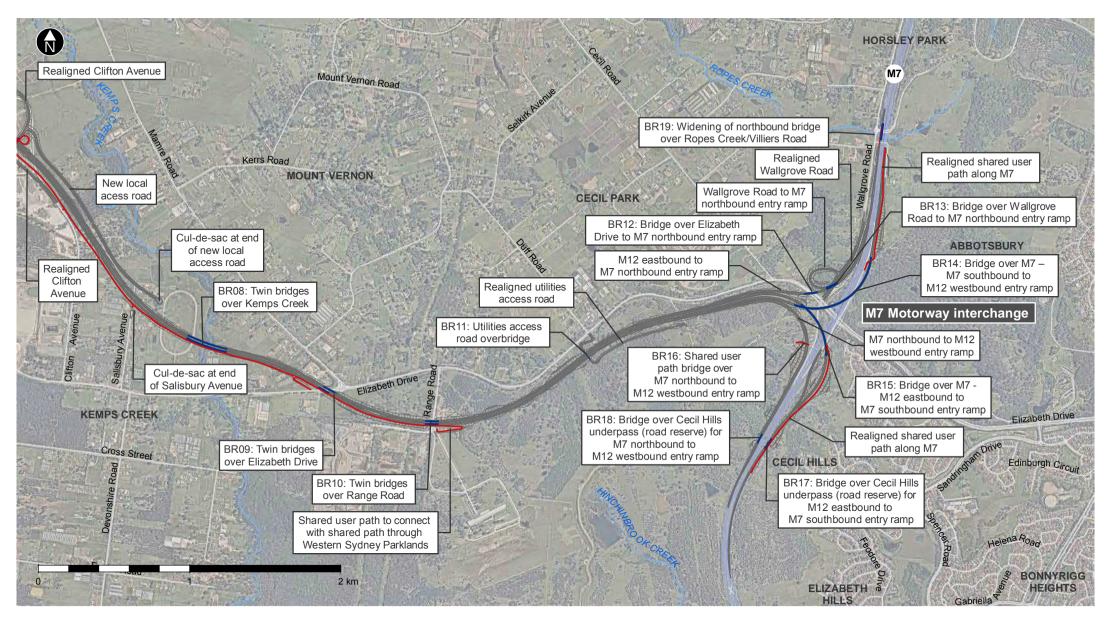

Figure 1-2 Key features of the project

Figure 1-2 Key features of the project

Date: 28/06/2019 Path: J:\/E\Projects\04 Eastern\/A145100\/08 Spatial\/GIS\Directory\Templates\/MXDs\Figures\EIS\/Chapters\/Chapter1 In

Date: 28/06/2019 Path: J:\IE\Projects\04_Eastern\IA145100\08 Spatial\GIS\Directory\Templates\MXDs\Figures\EIS\Chapters\Chapter1_Intro

Created by : EM | QA by : RB

Bridges

The project would include 18 new bridge sites along the length of the motorway and one widening of an existing bridge (at Ropes Creek). Bridges relevant to this groundwater assessment include the bridges which span the project's major creeks. These include bridges which have been assigned bridge reference BR02 (over Cosgroves Creek), BR05 (twin bridges over Badgerys Creek), BR06 (twin bridges over South Creek) and BR08 (twin bridges over Kemps Creek). These bridges range in length from about 140 metres to 560 metres, have been designed as multi-span precast concrete Super-T girder structures and have all been designed to have openings to accommodate flooding.

1.3 Purpose and scope of this report

This report has been prepared to support the EIS for the project. The EIS has been prepared to address the Secretary's Environmental Assessment Requirements (SEARs) for the project (SSI 9364), as well as the Australian Government assessment requirements under the EPBC Act. The EIS for the project provides sufficient information to enable the NSW Minister for Planning and Public Spaces and the Commonwealth Minister for the Environment to make a determination on whether the project can proceed. The report presents an assessment of the construction and operational activities for the project that have the potential to impact on groundwater.

The scope of the report is generally limited to groundwater and primary objectives are to:

- Summarise proposed development details that are relevant to groundwater
- Summarise key legislation and policy relevant to groundwater
- Summarise the local geological and hydrogeological setting
- Outline and assess potential groundwater related impacts which may arise due to the project
- Where required, outline measures to mitigate potential groundwater related impacts which may arise due to the project
- Outline a brief groundwater monitoring program for the project.

1.4 SEARs

On 18 June 2018, the Secretary of the NSW Department of Planning, Industry and Environment (DPIE) (Planning and Assessment) issued to Roads and Maritime the draft Secretary's environmental assessment requirements (SEARs) for the M12 Motorway EIS. The SEARS were finalised and reissued on 12 July 2018. The project was then determined to be a controlled action under the EPBC Act, and updated SEARs were issued on 30 October 2018 that include the Commonwealth assessment requirements under the EPBC Act. **Table 1-1** lists those requirements relating specifically to the assessment of the project's potential impacts on groundwater, with a reference to the chapter or section of this report where each requirement is addressed.

Table 1-1 SEARs (groundwater and hydrology)

Secretary's requirement	Where addressed
14. Water - Hydrology	
1. The Proponent must describe (and map) the existing hydrological regime for any surface and groundwater resource (including reliance by users and for ecological purposes) likely to be impacted by the project, including stream orders, as per the FBA.	Section 4.3, Section 4.9 and Section 4.11, and Appendix M of the EIS
2. The Proponent must prepare a detailed water balance for ground and surface water including the proposed intake and discharge locations, volume, frequency and duration.	The project does not involve the use of groundwater and potential groundwater inflow volumes to project road cuttings are negligible (Section 5.1.1 and Section 5.2.1), therefore, the water balance applies only to surface water and is addressed in Appendix M of the EIS
 3. The Proponent must assess (and model if appropriate) the impact of the construction and operation of the project and any ancillary facilities (both built elements and discharges) on surface and groundwater hydrology in accordance with the current guidelines, including: (a) natural processes within rivers, wetlands, estuaries, marine waters and floodplains that affect the health of the fluvial, riparian, estuarine or marine system and landscape health (such as modified discharge volumes, durations and velocities), aquatic connectivity and access to habitat for spawning and refuge; 	Section 5 and Appendix M of the EIS
(b) impacts from any permanent and temporary interruption of groundwater flow, including the extent of drawdown, barriers to flows, implications for groundwater dependent surface flows, ecosystems and species, groundwater users and the potential for settlement;	Section 5.1.2, Section 5.1.6, Section 5.2.2 and Section 5.2.6
(c) changes to environmental water availability and flows, both regulated/licensed and unregulated/rules-based sources;	Section 5.1.1, Section 5.2.1, Section 5.1.6, Section 5.2.6 and Appendix M of the EIS
(d) direct or indirect increases in erosion, siltation, destruction of riparian vegetation or a reduction in the stability of river banks or watercourses;	Appendix M of the EIS
(e) minimising the effects of proposed stormwater and wastewater management during construction and operation on natural hydrological attributes (such as volumes, flow rates, management methods and re-use options) and on the conveyance capacity of existing stormwater systems where discharges are proposed through such systems; and	Appendix M of the EIS
(f) water take (direct or passive) from all surface and groundwater sources with estimates of annual volumes during construction and operation.	Section 5.1.8 and Section 5.2.8
4. The Proponent must identify any requirements for baseline monitoring of hydrological attributes.	Baseline monitoring results are outlined in Section 7.2

Secretary's requirement	Where addressed
15. Water – quality	
 The Proponent must: (a) state the ambient NSW Water Quality Objectives (NSW WQO) and environmental values for the receiving waters relevant to the project, including the indicators and associated trigger values or criteria for the identified environmental values; 	Section 3.5 and Appendix M of the EIS
(b) identify and estimate the quality and quantity of all pollutants that may be introduced into the water cycle by source and discharge point and describe the nature and degree of impact that any discharge(s) may have on the receiving environment, including consideration of all pollutants that pose a risk of non-trivial harm to human health and the environment;	Section 5.1.1, Section 5.1.3, Section 5.1.10, Section 5.2.1, Section 5.2.3, Section 5.2.10 and Appendix M of the EIS
(c) identify the rainfall event that the water quality protection measures will be designed to cope with;	Appendix M of the EIS
(d) assess the significance of any identified impacts including consideration of the relevant ambient water quality outcomes;	Section 5.1.3, Section 5.1.10, Section 5.2.3, Section 5.2.10, Section 5.3 and Appendix M of the EIS
 (e) demonstrate how construction and operation of the project will, to the extent that the project can influence, ensure that: where the NSW WQOs for receiving waters are currently being met they will continue to be protected; and 	Section 3.5, Section 5.1.3, Section 5.1.10, Section 5.2.3, Section 5.2.10, Section 5.3 and Appendix M of the EIS
• where the NSW WQOs are not currently being met, activities will work toward their achievement over time;	Section 3.5, Section 5.3 and Appendix M of the EIS
(f) justify, if required, why the WQOs cannot be maintained or achieved over time;	Section 3.5 Section 5.3, Section 5.1.3, Section 5.2.3, and Appendix M of the EIS
(g) demonstrate that all practical measures to avoid or minimise water pollution and protect human health and the environment from harm are investigated and implemented;	Sections 5.1.10, Section 5.2.10, Section 5.3, Section 7 and Appendix M of the EIS
(h) identify sensitive receiving environments (which may include estuarine and marine waters downstream) and develop a strategy to avoid or minimise impacts on these environments; and	Section 4.9.6, Section 5.1.10, Section 5.2.10, Section 7 and Appendix M of the EIS
(i) identify proposed monitoring locations, monitoring frequency and indicators of surface and groundwater quality.	Baseline monitoring results are outlined in Section 4.9.2 and Section 4.9.5 and a groundwater monitoring program for construction and operation is outlined in Section 7.2
17. Soils	
1. The Proponent must verify the risk of acid sulfate soils (Class 1, 2, 3 or 4 on the Acid Sulfate Soil Risk Map) within, and in the area likely to be impacted by, the project.	Section 4.7
2. The Proponent must assess the impact of the project on acid sulfate soils (including impacts of acidic runoff offsite) in accordance with the current guidelines.	Section 4.7
3. The Proponent must assess whether the land is likely to be contaminated and identify if remediation of the land is required, having regard to the ecological and human health	Sections 5.1.10, Section 5.2.10 and Appendix O of the EIS

Secretary's requirement	Where addressed
risks posed by the contamination in the context of past, existing and future land uses. Where assessment and/or remediation is required, the Proponent must document how the assessment and/or remediation would be undertaken in accordance with current guidelines.	
4. The Proponent must assess whether salinity is likely to be an issue and if so, determine the presence, extent and severity of soil salinity within the project area.	Section 4.6, Section 5.1.9 and Section 5.2.9
5. The Proponent must assess the impact of the project on soil salinity and how it may affect groundwater resources and hydrology.	Section 4.6, Section 5.1.9 and Section 5.2.9

2. Policy and planning setting

2.1 Water Act 1912, Water Management Act 2000 and Water Management Regulation 2018

Water resources in NSW are administered under the *Water Act 1912* and the *Water Management Act 2000* (WM Act) by the Regions, Industry, Agriculture & Resources Group of the DPIE (RIAR). The WM Act governs the issue of water access licences and approvals for those water sources (rivers, lakes, estuaries and groundwater) in NSW where water sharing plans (WSP) have commenced. The WSP for the study area has commenced, and the area is therefore governed under the WM ACT (see **Section 2.2**).

In accordance with section 5.23(1) of the EP&A Act, the following approvals, which may have otherwise been required to undertake the project, would not be required for approved State significant infrastructure:

- Water use approval under section 89 of the WM Act
- Water management work approval (including a water supply works approval) under section 90 of the WM Act
- Activity approval under section 91 of the WM Act.
- Under Schedule 4 1(2) of the Water Management Regulation 2018 (WM Reg), road authorities are exempt from the need for a WAL.

2.2 Water sharing plan

Numerous WSPs are established throughout NSW for both surface water and groundwater. The purpose of a water sharing plan is to provide water users with a clear picture of when and how water will be available for extraction, protect the fundamental environmental health of the water source and ensure the water source is sustainable in the long-term. WSPs are sometimes subdivided into subset areas, referred to as 'sources', based on groundwater system characteristics.

The project is located in the area covered by the Water Sharing Plan for the Greater Metropolitan Region Groundwater Sources 2011 (NSW Government, 2015), and is within the Sydney Basin Central Groundwater Source.

Within the applicable WSP source, according to the NSW Water Register (Water NSW, 2019), as of May 2019 there are currently 162 groundwater access licences, with a total licensed volume of 3429 megalitres per year. The long-term average annual extraction limit (LTAAEL) for the Sydney Basin Central water source is 45,915 megalitres per year (NSW Government, 2015), which is 25 per cent of the estimated annual recharge for the area. As such, there is currently up to 42,486 megalitres per year of water available under the LTAAEL (correct as of May 2019). These volumes are relevant to the project as collectively they demonstrate that large volumes of unallocated groundwater exists. Whilst the project does not require a WAL, if the project were to result in groundwater extraction, the extraction volume can be placed into context with regards to water availability.

2.3 NSW Aquifer Interference Policy (2012)

The NSW Aquifer Interference Policy (AIP) (DPI NOW, 2012) outlines minimal impact considerations for water table and groundwater pressure drawdown for high priority groundwater dependent ecosystems (GDEs), as identified in the WSP, high priority culturally significant sites (as identified in the WSP) and existing groundwater supply bores. Water quality impact considerations are also outlined.

In accordance with the AIP, the project is situated within a 'less productive groundwater source' on the basis of low water supply bore numbers, expected low yields and expected moderate to high salinity, for which the following minimal impact considerations apply:

- A maximum cumulative pressure head or water table decline of two metres at any bore. If this condition cannot be met, then appropriate studies will need to demonstrate to the Minister's satisfaction that decline in head will not prevent the long-term viability of the affected water supply works unless make good provisions apply.
- Any change in groundwater quality should not lower the beneficial use category of the groundwater source beyond 40 metres from the activity. If this condition cannot be met, then appropriate studies will need to demonstrate to the Minister's satisfaction that the change in groundwater quality will not affect the long-term viability of the dependent ecosystem.

The term 'beneficial use category' is synonymous with the term 'environmental value', which is defined as values or uses of the groundwater that support aquatic ecosystems, primary industries, recreation and aesthetics, drinking water, industrial water, and cultural and spiritual values (ANZECC/ARMCANZ, 2000a).

Impact limits to high priority GDEs and culturally significant sites as outlined in the AIP are not applicable for the project as high priority GDEs and culturally significant sites are not mapped within approximately 10 kilometres of the project.

Potential groundwater level impacts at surrounding bores are assessed in **Section 5.1.5** and **Section 5.2.5** whilst potential impacts to groundwater quality are assessed in **Section 5.1.3** and **Section 5.2.3**. Demonstrated compliance with the AIP minimal impact considerations is summarised in **Section 5.3**.

2.4 Groundwater Dependent Ecosystems Policy

The NSW State Groundwater Dependent Ecosystems Policy (Department of Land and Water Conservation, 2002a) implements the WM Act by providing guidance on the protection and management of GDEs. It sets out management objectives and principles to:

- Ensure that the most vulnerable and valuable ecosystems are protected
- Manage groundwater extraction within defined limits thereby providing flow sufficient to sustain ecological processes and maintain biodiversity
- Ensure that sufficient groundwater of suitable quality is available to ecosystems when needed
- Ensure that the precautionary principle is applied to protect GDEs, particularly the dynamics of flow and availability and the species reliant on these attributes
- Ensure that land use activities aim to minimise adverse impacts on GDEs.

The above objectives and principles are upheld through the groundwater assessment's criteria (**Section 3.5**), which included the AIP minimal impact considerations.

2.5 National Water Quality Management Strategy

The National Water Quality Management Strategy (NWQMS) (Australian Government, 2000) is the adopted national approach to protecting and improving water quality in Australia. It consists of a number of guideline documents, of which certain documents relate to protection of surface water resources and others relate to the protection of groundwater resources.

The primary document relevant to the assessment of groundwater risks for the project is the Guidelines for Groundwater Quality Protection in Australia (Australian Government, 2013). This document sets out a high-level risk-based approach to protecting or improving groundwater quality for a range of groundwater beneficial uses (called 'environmental values'), including aquatic ecosystems, primary industries (including irrigation and general water users, stock drinking water, aquaculture and human consumption of aquatic foods), recreational and aesthetic values (eg swimming, boating and aesthetic appeal of water bodies), drinking water, industrial water and cultural values.

For the purpose of this assessment, 'environmental values' pertaining to aquatic ecosystems, primary industries, industrial water, and cultural values are considered potentially applicable. 'Environmental values' pertaining to drinking water are not applicable due to poor groundwater quality (**Section 4.9.5**). Values pertaining to recreational and aesthetic values are considered not applicable as the creeks that the project crosses, which may be fed by groundwater baseflow at times, are not used for these purposes in the area of the project.

There are no high priority culturally significant sites listed in the schedule of the WSP. Historically, a natural spring fed watercourse located about 300 metres east of Badgerys Creek within the project construction and operational footprints may have been an important water source for past communities during the drier cycles of seasonal variation (Appendix I of the EIS). This natural spring has now been in-filled by land practices. Therefore, cultural values are not considered applicable to the project.

3. Assessment methodology

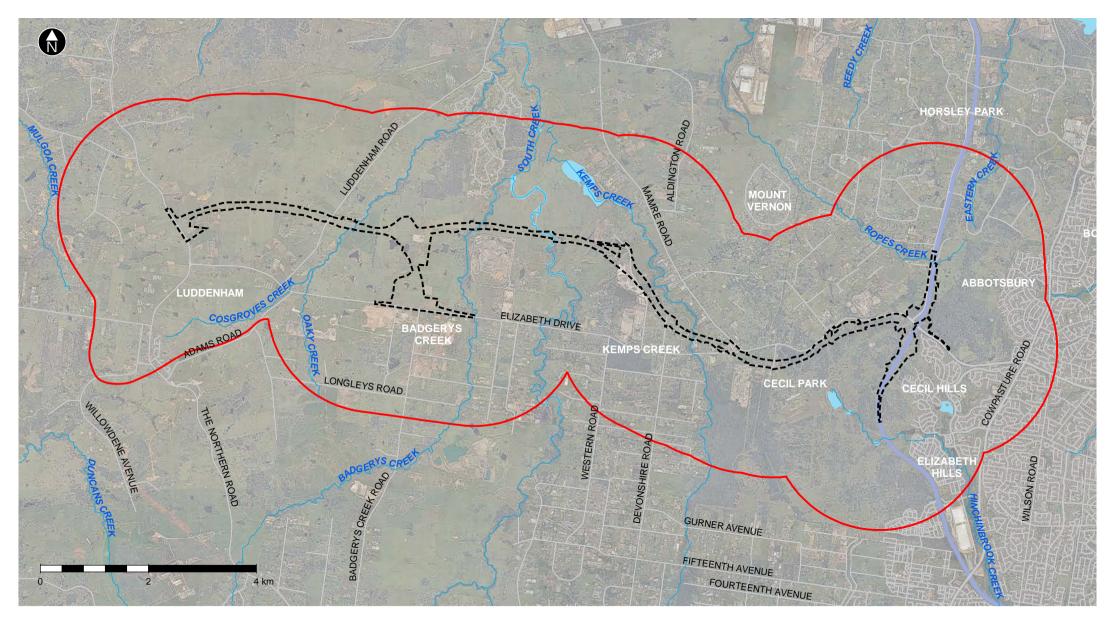
3.1 Overview

The assessment of potential groundwater related impacts arising from project has been implemented as follows:

- Characterisation of the existing environment including climate, topography, geology, and groundwater occurrence, quality and use, including groundwater dependent ecosystems (GDEs)
- Dedicated field investigations including drilling, permeability testing, monitoring bore installation, and groundwater level and quality monitoring
- Creation of a conceptual groundwater model
- Establishment of groundwater impact assessment criteria
- Assessment of the project's potential to interfere with the water table and underlying groundwater systems
- Estimation of groundwater inflows into project cuts and associated groundwater level drawdown extents
- Assessment of potential groundwater related impacts against the minimal impact considerations of the AIP (Section 2.3) and to address groundwater related issues raised in the SEARs (Section 1.4)
- Recommendations for monitoring and management of identified impacts and risks, including mitigation measures as appropriate.

The specific methodologies used for these components of the methodology are described in the following sections.

3.2 Study area


The 'groundwater study area' (**Figure 3-1**) that was used to inform the groundwater impact assessment included the project construction footprint and a two kilometre buffer with the exception of a discrete location to the west of the construction footprint. At this location, the buffer was extended to about three kilometres to capture an existing bore in Luddenham (bore GW108933.1.1).

3.3 Desktop assessment

Raw data is collected to enable characterisation of existing groundwater conditions across the study area. Sources included:

- The Bureau of Meteorology's (BOM) Australian Groundwater Explorer (BOM, 2018a) is reviewed to investigate registered groundwater bores and associated groundwater level records in the region of the project
- The BOM's Groundwater Dependent Ecosystem (GDE) Atlas (BOM, 2018b) is reviewed to investigate the potential for GDEs to exist within the study area
- Rainfall data from gauging stations in/around the study area, from the BOM (BOM, 2018c)
- The Water Register (http://www.water.nsw.gov.au/water-licensing/registers) for data on existing groundwater users, including Water Access Licence (WAL) holders and stock and domestic users.

Publicly available maps are also used, including geological maps, topography and drainage maps and soil maps.

Waterways
 Motorway
 Main roads
 Groundwater assessment study area
 Groundwater assessment study area

HORNSBY
 PENRITH
 PARRAMATTA
 OSYDNEY
 BRINGELLY

Figure 3-1 Groundwater impact assessment study area

Date: 1/07/2019 Path: J/IE/Projects/04_Eastern/IA145100/08 Spatial/GIS/Directory/Templates/MXDs/Figures/EIS/SpecialistReports/Groundwater/FinalEIS/JAJV_EIS_GW_F003_StudyArea_Construction_r3v1.m

3.4 Site investigations

3.4.1 Drilling program

For the purpose of informing geotechnical design, a contamination assessment and this hydrogeological assessment, geotechnical drilling was carried out as part of project investigations. The drilling program incorporated 31 project groundwater monitoring bores. Project groundwater monitoring bore locations are shown in **Figure 3-2**.

3.4.2 Groundwater level and quality monitoring

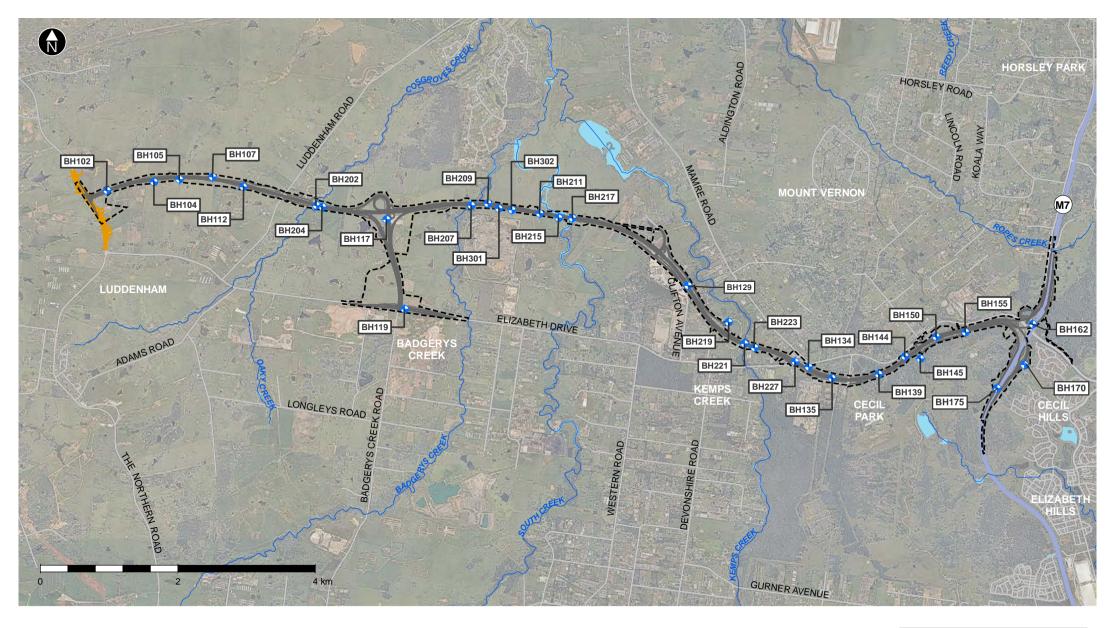
Project groundwater monitoring bores were subject to groundwater level and quality sampling.

Hydraulic testing through slug tests was undertaken at five of the project monitoring bores. The location of the five project monitoring bores where hydraulic conductivity was undertaken is demonstrated in **Figure 3-3**.

The location of the 25 project groundwater monitoring bores that produced groundwater level logger data that was used in the assessment, and the three project bores where manual dip data is used is shown in **Figure 3-4**.

The locations of the 10 project groundwater monitoring bores that were selected for groundwater quality sampling are demonstrated in **Figure 3-5**.

Further information on groundwater monitoring locations, groundwater levels and groundwater quality results are provided in **Section 4.9.1, Section 4.9.2** and **Section 4.9.5** respectively.


3.5 Criteria

3.5.1 Groundwater quality objective and assessment criteria

Overview

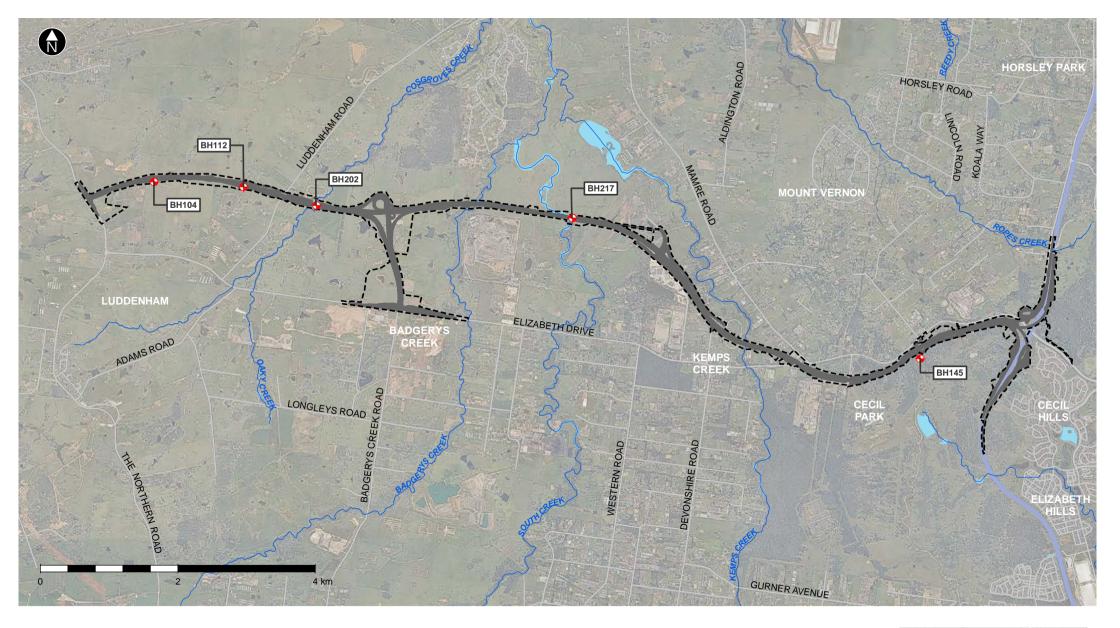
Although primarily applicable to surface water, as identified in the SEARs the desired performance outcome (item 15) for the project in relation to water quality is that:

"The project is designed, constructed and operated to protect the NSW Water Quality Objectives where they are currently being achieved, and contribute towards achievement of the Water Quality Objectives over time where they are currently not being achieved, including downstream of the project to the extent of the project impact including estuarine and marine waters (if applicable)".

Project groundwater monitoring bores



Figure 3-2 Project groundwater monitoring bore locations

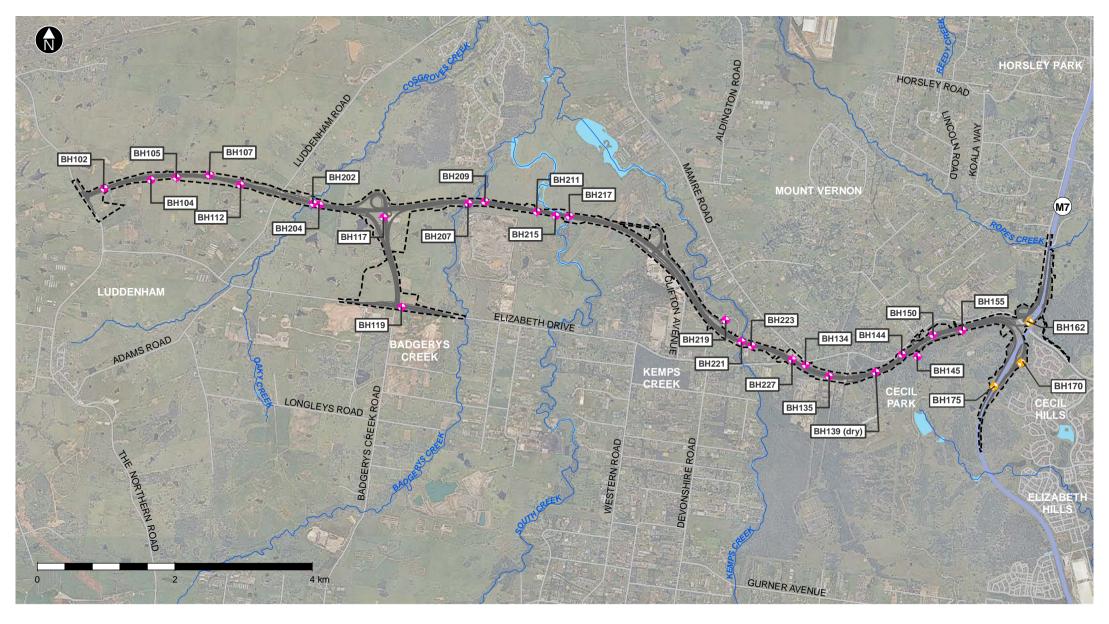

Waterways

Motorway

Main roads

•

Date: 3/07/2019 Path: J:\IE\Projects\04_Eastern\IA145100\08 Spa



Hydraulic conductivity testing bores The project ÷ Construction footprint Waterways Motorway

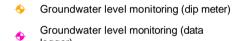
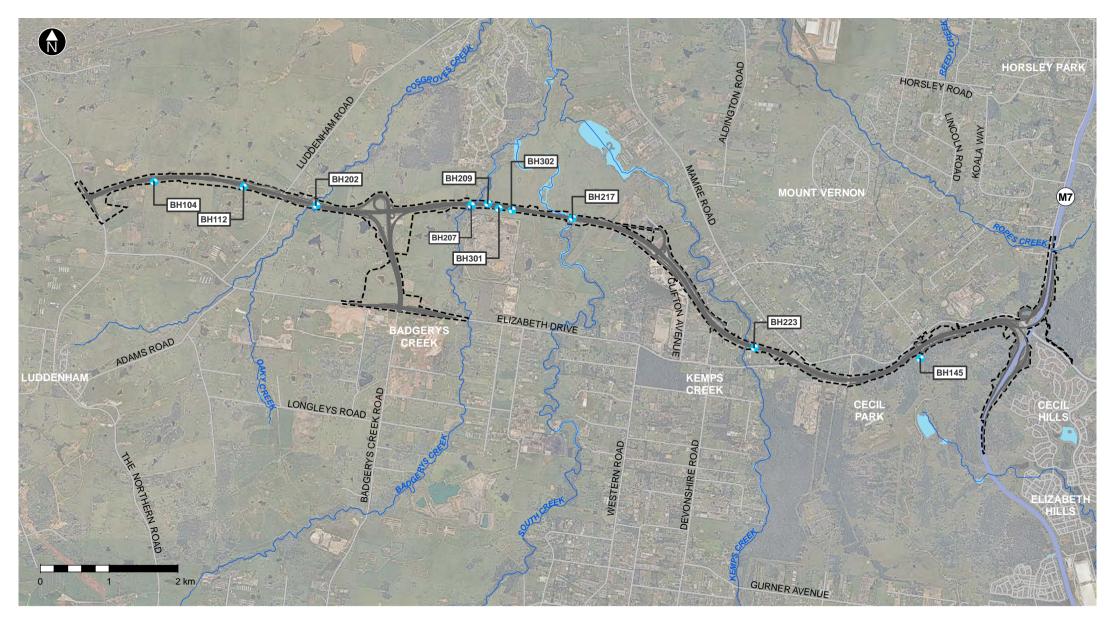

Urban roads

Figure 3-3 Location of project groundwater bores tested for hydraulic conductvity


- The project $\begin{bmatrix} 1 & & \\ & & \end{bmatrix}$ The project construction footprint
- Waterways
- Motorway
- Main roads

logger)

Figure 3-4 Location of project groundwater bores used for groundwater level monitoring

• PENRITH

----- Main roads

Figure 3-5 Location of project groundwater bores sampled for groundwater quality

Date: 1/07/2019 Path: J:NEVProjects'04_EastemVA145100/08 Spatial/GIS/Directory/Templates/MXDs/Figures/EIS/SpecialistReports/Groundwater/FinalEIS/JAUV_EIS_GW_F014_Groundwater/QualityTesting_r2v1.mx

Project groundwater quality objective

In line with the desired performance outcome for water quality quoted above, the groundwater quality objective for the project is to ensure design, construction and operation of the project has a neutral or beneficial effect to groundwater quality.

For the purpose of this assessment, a neutral or beneficial effect to groundwater quality is defined as an effect that does not lower the beneficial use category of the groundwater system, or an effect that raises the beneficial use category of the groundwater system.

Groundwater quality assessment criteria

The project is located primarily within the Hawkesbury-Nepean catchment. NSW Water Quality Objectives (WQOs) were not developed for the Hawkesbury-Nepean catchment, because at the time WQOs were approved by the government for catchments across NSW (September 1999), the Hawkesbury-Nepean was subject to an independent inquiry by the Healthy Rivers Commission (HRC).

The HRC inquiry determined water quality objectives that recognise the communities 'environmental values' and uses of the waterways. These water quality objectives were agreed to by the NSW Government through a statement of Joint Intent in 2001. Existing groundwater quality in this assessment is therefore compared to:

- HRC water quality objectives for total nitrogen and total phosphorus (the guidelines only cover these two analytes)
- The Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ, 2000) (commonly referred to as the 'ANZECC Water Quality Guidelines'), for analytes other than total nitrogen and total phosphorus. The project's catchment is considered to represent a "slightly modified freshwater system" (ANZECC/ARMCANZ, 2000). Therefore, for assessment of groundwater quality, a protection level of 95 per cent for freshwater ecosystems is used. ANZECC Water Quality Guidelines trigger values for lowland rivers are also used.
- The AIP's minimal impact considerations for groundwater quality, which stipulates that 'any change in groundwater quality should not lower the beneficial use category (defined in **Section 2.3**) of the groundwater source beyond 40 metres from the activity'.

These criteria were developed to provide a basis for assessing whether "no more than minimal harm", which is a WM Act concept, would occur to groundwater systems and associated environments, due to the granting of a water access license.

The HRC concentration for total nitrogen and total phosphorus is 0.7 mg/L and 0.035 mg/L respectively and the ANZECC Water Quality Guidelines concentrations are tabulated in **Annexure F**.

It should be noted that the HRC and ANZECC Water Quality Guidelines values are not standards and should not be regarded as such. The ANZECC Water Quality Guidelines recognise that monitoring programmes, including their performance objectives and assessment criteria, should focus on specific issues, not on default guideline values. As a result, consideration is given to background water quality in this assessment.

3.5.2 Groundwater level impact assessment criteria

Potential groundwater impacts are assessed against the AIP minimal impact considerations, which are summarised in **Section 2.3** and reported more fully alongside demonstrated project compliance in **Section 5.3**.

3.6 Impact assessment methodology

3.6.1 Overview

An assessment of dewatering impacts was undertaken to estimate potential groundwater inflows and reductions to groundwater levels if road cuttings (excavations) extend below the water table and are drained. Dewatering (such as through drainage of road cuttings) results in depressurisation of the groundwater system and has the potential to cause changes to groundwater flows and levels. The dewatering assessment is integral to the groundwater impact assessment because dewatering of cuts that extend below the water table is considered the primary project activity that could result in changes (reductions) to groundwater levels.

The dewatering inflow assessment was based on the application of Darcy's law, with inputs informed by project groundwater bore monitoring results and project design levels of the road. Darcy's law describes flow through porous media, which is proportional to hydraulic conductivity (measure of the ease with which water will pass through soil/rock), area and hydraulic gradient (slope of water table or piezometric head).

The assessment assumed a worst-case design scenario, where road cuttings below the baseline water table level would be permanently drained.

3.6.2 Dewatering assessment methodology

Potential groundwater inflow zones

Groundwater inflow zones would occur in areas where the project's proposed road level is below the water table. To identify potential groundwater inflow zones, existing groundwater levels from the project's groundwater monitoring bores were compared to the project's proposed vertical alignment. This was done by plotting the maximum groundwater level, monitored by data loggers at 24 project groundwater monitoring bores, on a long section that included existing ground level and the project's road design level.

Groundwater inflow volume estimation

To estimate potential groundwater 'take' (inflow) generated by the project cuts intersecting the water table, cross sectional Darcy's Law is used. This method is suitable for estimating cross sectional flow intersected by the project's cuttings. The form of Darcy's Law applied is described below:

Q = KIA

where:

Q = groundwater inflow (kL/d)

K = hydraulic conductivity (m/d)

I = hydraulic gradient (m/m)

A = saturated cross sectional area (square metres)

To account for uncertainty and incorporate sensitivity analysis into the assessment, three different hydraulic conductivity values are applied. The three values comprised the maximum of estimates from slug tests at project groundwater monitoring bores and upper and mid-range values obtained from literature.

Similarly, to account for uncertainty and incorporate sensitivity analysis into the assessment, three different groundwater gradients area applied:

- Low gradient (0.04 m/m)
- Medium gradient (0.10 m/m)
- High gradient (0.30 m/m).

Drawdown extent estimation

Due to drainage, interception of groundwater flow by project cuts that extend below the water table could potentially reduce groundwater levels in the region of the cuts. The outer limit of the area that could be subjected to reduced groundwater levels was estimated using the Cooper-Jacob (1946) equation:

Radius of influence (m) = $(2.25Tt/S)^{0.5}$, where

T = transmissivity (m²/d)

t = time (d)

S = storage

3.7 Key assumptions

The key assumptions relied on in the development of this report are:

- Predicted groundwater inflows and associated impacts are based on the design outlined in the M12 Motorway EIS. Any subsequent changes to the design may alter the impacts outlined herein would need to be considered during the detailed design stage of the project
- The existing environment is characterised based on project specific data and other data available in the public domain. The resulting interpretations are considered to reasonably represent the existing environment and the potential impacts associated with the project
- Field investigations carried out for the project occurred in tandem with the writing of this report. Any subsequent data that changes the conceptual hydrogeological model (described in **Section 4.11**) or findings of this report would be considered during the detailed design stage of the project.

Typically, sub-surface conditions are based on interpretation of background data and samples taken, and consequently contain an element of uncertainty. This report contains interpretations and conclusions which are uncertain due to the nature of the investigations, comprising:

- This report is based on assumptions that the site conditions as revealed through sampling are indicative of conditions throughout the site.
- The findings are the result of standard assessment techniques used in accordance with normal practices and standards, and (to the best of the author's knowledge) they represent a reasonable interpretation of the current conditions on the site.
- Sampling techniques, by definition, cannot determine the conditions between the sample points and so this report cannot be taken to be a full representation of the sub-surface conditions.
- This report provides an indication of the likely sub surface conditions only.

Conditions encountered when site work commences may be different from those inferred in this report, for the reasons explained above and hence the findings, observations and conclusions expressed in this report are linked to the information available at the time of writing.

4. Existing environment

This section includes a description of the existing environment and has been informed by the desktop investigations and field inspections undertaken for the project.

4.1 Climate

4.1.1 Overview

To assess long-term average monthly rainfall and evaporation for the study area, rainfall and evaporation statistics are sourced from the Bureau of Meteorology's (BOM) Badgerys Creek observation station and the BOMs Sydney Observatory Hill observation station respectively (BOM, 2018c). Rainfall statistics are sourced from the Badgerys Creek observation station because this station is close to the study area. Evaporation statistics are sourced from the Sydney Observatory Hill observation station. Whilst evaporation station because it is not available from the Badgerys Creek observation station. Whilst evaporation rates are likely higher in the study area than for the BOM's Sydney Observatory Hill observation station, the data is considered suitable for the purpose of assessing broad scale rainfall and evaporation trends.

Review of the Bureau of Meteorology's (BOM) rainfall data for the Badgerys Creek observation station indicated that the mean monthly rainfall for the study area ranges from 22.6 millimetres in July to 98.5 millimetres in February, with an average annual rainfall of about 681 millimetres.

Based on mean daily evaporation data from BOM's Sydney Observatory Hill observation station, evaporation exceeds rainfall for all months except June, where the average monthly rainfall surplus (ie rainfall minus evaporation) is about 25 millimetres. Average monthly rainfall, evaporation and rainfall surplus is summarised in **Table 4-1**.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Mean Rainfall (mm) ¹	79.4	98.5	81.3	49.4	37.0	61.4	22.6	36.8	32.3	51.4	69.0	57.1	680.9
Mean Evaporation (mm) ²	142.6	109.2	96.1	78.0	58.9	36.0	46.5	58.9	75.0	102.3	129.0	136.4	1068.9
Rainfall surplus (mm)	-63.2	-10.7	-14.8	-28.6	-21.9	25.4	-23.9	-22.1	-42.7	-50.9	-60.0	-79.3	-388.0

Table 4-1 Average monthly rainfall, evaporation and rainfall surplus

Notes: ¹ Source: BOM's Badgerys Creek observation station. ² Source: BOM's Sydney Observatory Hill observation station.

4.1.2 Observed rainfall during groundwater monitoring period

During 2018, observed monthly rainfall at the BOM's Badgerys Creek Station was 26 millimetres, 54 millimetres, 31 millimetres, 29 millimetres, 9 millimetres, 21 millimetres and 31 millimetres lower than long-term monthly average values for the months of February, March, April, May, June, July and August respectively. Evaporation during these same months ranged from about two to 2.6 times higher than historical long-term average values. The months of February to August comprise the groundwater level monitoring period documented in this report for the majority of monitoring bores.

Cumulative rainfall deviation (CRD) is defined as the cumulative of observed rainfall minus long-term average rainfall. CRD often corelates to groundwater levels measured at bores which respond to rainfall recharge. CRD analysis involves plotting the cumulative of observed monthly rainfall minus the historical long-term average monthly rainfall for that month. The line slope indicates drought and high rainfall periods. When the line slope increases, higher than average rainfall has occurred and when the line slope decreases below average rainfall has occurred.

A CRD plot of rainfall at the BOM's Badgerys Creek AWS station from January 1996 (close to start of available data set) through to February 2019 is provided in **Annexure A**, Figure 3 along with the groundwater monitoring period documented in this report. The CRD trends suggest that whilst the project's groundwater monitoring period corresponds with low rainfall and high evaporation, CRD during the monitoring period is quite close to a peak occurring in March 2017. This peak occurred following a pronounced minimum that occurred in December 2006. Based on the CRD trends and timing of the project's groundwater monitoring period, groundwater levels measured during the monitoring period are anticipated to be higher than long-term averages.

4.2 Topography

The topography of the study area may be characterised into three general terrain types:

- Rolling Hills Terrain, which occurs in the western and eastern portions of the proposed alignment
- Flat to Gently Undulating Terrain, which occurs in the central portion of the alignment
- Creek Channels/Alluvial Floodplain Terrain, which dissects the Flat to Gently Undulating Terrain within the central portion of the alignment.

Within the Rolling Hills Terrain, the topography typically comprises rounded hills with slopes of five degrees to 20 degrees, ie around 10 per cent to 35 per cent grade, and local relief of typically up to 10 metres to 30 metres. Within this general terrain type, the ground surface levels along the alignment range from about relative level (RL) 70 metres Australian Height Datum (AHD) to RL115 metres AHD.

The topography of the Flat to Gently Undulating Terrain in the central portion of the alignment typically comprises gentle rises and undulations with broad rounded crests with slopes of 0 degrees to 5 degrees, ie up to around 8 per cent grade, and local relief of up to about 15 metres. Ground surface levels along the central portion of the alignment range from about RL 35 metres AHD to RL 70 metres AHD. The Flat to Gently Undulating Terrain type is dissected by the Creek Channel/Alluvial Floodplain Terrain type by four meandering creeks, Cosgroves Creek, Badgerys Creek, South Creek and Kemps Creek, with each creek flowing to the north.

The topography of the alluvial floodplains adjacent to the creeks comprises low slopes of about 0 to 2 degrees, which extend from the creek channels out to a maximum distance of about 500 metres.

4.3 Hydrology

4.3.1 Catchment description

The project is located within the Hawkesbury-Nepean catchment, a catchment covering more than 22,000 square kilometres which provides drinking water, recreational opportunities, agricultural and fisheries produce and tourism resources for the Sydney Metropolitan area. The Hawkesbury-Nepean Catchment is of national significance, being the longest coastal catchment in NSW flowing 470 kilometres from the headwaters of the Nepean River in Goulburn before joining the Hawkesbury River in Sydney's west and draining to Broken Bay.

There are many major drainage features flowing in this catchment including the Hawkesbury, Nepean, Mulwaree, Wingecarribee, Wollondilly, Mulwaree, Tarlo, Nattai, Coxs, Kowmung, Grose, Capertee, Colo and Macdonald. There are also several creeks including Berowra, Mangrove, Cattai, South and Mooney creeks. The catchment contains a variety of landscapes including rainforest, open woodlands, heathlands, wetlands and highland freshwater streams.

The project lies within the Lower Nepean River Management Zone of the Hawkesbury-Nepean Catchment. Whilst almost half the Hawkesbury-Nepean Catchment is protected in national parks and water catchment reserves, the project lies within the South Creek subcatchment which has been extensively modified and disturbed due to increasing urbanisation and associated land clearing. The Hawkesbury River is the ultimate downstream receiving environment and is located about 29 kilometres from the project at the closest point.

Existing land uses within the study area are predominately semi-rural and include residential, agricultural, commercial and industrial. The largest residential areas are the suburbs of Kemps Creek, Mount Vernon and Horsley Park. Agricultural land uses include poultry farms, farms producing tomatoes and cucumbers, Christmas tree farm and wholesale nurseries. Commercial uses are generally located within the Kemps Creek village and include service stations, food stores, hardware and maintenance shops. Industrial uses include the Elizabeth Drive landfill and quarry site (Roads and Maritime, 2016).

Within the study area there are a number of existing transport and utilities infrastructure including the M7 motorway, Elizabeth drive, the Sydney Water Upper Canal system and major electrical infrastructure (Roads and Maritime, 2016).

The catchment is shale based and characterised by meandering streams. The project is located within the Cumberland Plain, a subregion of the Sydney Basin which consists of relatively flat and low-lying topography. However, small ridgelines are present around Horsley Park, Orchard Hills and Cecil Hills.

The project intersects Cosgroves Creek, Badgerys Creek, South Creek, Kemps Creek and Ropes Creek, and drains to Hinchinbrook Creek as shown on **Figure 4-1**. With the exception of Hinchinbrook Creek, these creeks drain into South Creek which then flows north to join the Hawkesbury River at Windsor. The South Creek subcatchment covers around 490 square kilometres and generally flows from south to north. The confluence of Kemps Creek and Badgerys Creek into South Creek is about three kilometres north of Elizabeth Drive (Roads and Maritime, 2016). There are also numerous farm dams in the area.

The South Creek subcatchment is one of the most degraded subcatchments of the Hawkesbury-Nepean. Catchment vegetation clearance and increasing urbanisation has dramatically altered the hydrological and sediment regimes. The hydrology of the catchment has been substantially altered due to increasing impervious surfaces which has in turn altered the geomorphology and ecology of the watercourse. Additional flow is also derived from a number of major Sewerage Treatment Plants (STPs) which discharge into the catchment (HNCMA 2007).

4.3.2 Key watercourses

Watercourses within the study area have been classified according to the Strahler stream classification system where waterways are given an order according to the number of additional tributaries associated with each waterway (Strahler, 1952). A first order stream, otherwise known as headwater streams begin at the top of a catchment. They are generally the smaller tributaries that carry water from the upper reaches of the catchment to the main channel of the river and are rarely named. Where two first order streams join, the section downstream of the junction is referred to as a second order stream. Additionally, where two second order streams join, the waterway downstream is classified third order and so on. Where a lower order stream (eg first) joins a higher order stream (eg third) the area downstream of the junction retains the higher order.

The following watercourses are shown in Figure 4-1.

Cosgroves Creek

Cosgroves Creek in the location at which the project would cross (about 500 metres east of where the project would cross Luddenham Road) is an ephemeral fourth order stream (Strahler, 1952) with a series of disconnected pools and named and unnamed tributaries including Oaky Creek. Cosgroves Creek originates in Luddenham and flows for about 8.5 kilometres until it drains into South Creek. The catchment is largely rural with some residential estates (Twin Creek Golf and Country Club).

The hydrological sub-catchment of Cosgroves Creek (draining to South Creek) is about 2165 hectares, of which 15 per cent (325 hectares) is classified as impervious surfaces (GHD, 2016a).

Badgerys Creek

Badgerys Creek in the location at which the project would cross (about 2.8 kilometres east of where the project would cross Luddenham Road) is a fourth order stream of about 16 kilometres in length, originating near Bringelly. The creek then flows north and then north east before its confluence with South Creek in the suburb of Badgerys Creek. Land use within the Badgerys Creek catchment consists of agricultural (grazing of naturalised and modified pastures) and rural residential. Ecologically sensitive riparian vegetation also exists within the catchment (GHD, 2016a) as do small areas of landfill and native forest.

The hydrological subcatchment of Badgerys Creek (draining to South Creek) is about 2800 hectares of which 12 per cent (335 hectares) is classified as impervious surfaces (GHD, 2016a). Badgerys Creek is the largest tributary of South Creek in the study area.

South Creek

South Creek in the location at which the project would cross (about 1.1 kilometres west of the Clifton Avenue cul-de-sac) is a major fifth order tributary of the Hawkesbury-Nepean River that originates in the low hills near Narellan and runs for over 64 kilometres in a northerly direction through the Western Cumberland Plain to Windsor where it flows into the Hawkesbury River. The South Creek catchment is a shale based catchment that encompasses most of the Cumberland Plain of western Sydney. South Creek is tidal in its lower reaches. South Creek drains a catchment of 414 square kilometres and is joined by 17 tributaries including Badgerys, Cosgroves, Kemps, Ropes and Eastern Creek.

The South Creek Catchment is currently regarded as one of the most seriously degraded subcatchments in the Sydney Region, largely due to long-term clearing of vegetation and increased impervious areas due to urbanisation. This has resulted in dramatic alterations to the hydrology, geomorphology and ecology of the watercourse (Rae 2007). The water quality of South Creek is influenced by discharge from a number of wastewater plants and runoff from stormwater and agriculture areas.

Kemps Creek

Kemps Creek in the location at which the project would cross (about 930 metres north-west of the Mamre Road/Elizabeth Drive intersection) is a tributary of South Creek and is a fourth order stream which flows into the Hawkesbury-Nepean River. The creek originates about two kilometres east of Catherine Fields and flows for about 17 kilometres through the suburbs of Rossmore, Bringelly, Austral and Kemps Creek before entering South Creek north of Elizabeth Drive. The creek flows through a predominately semi-rural setting, although urbanisation has increased in recent years (Liverpool City Council (LCC), 2003).

Kemps Creek catchment is known to suffer from drainage problems, due to limited hydraulic capacity in the creek channels, filling activities on the floodplain and inadequate hydraulic capacity at culverts and bridges (LCC, 2003). As a result of drainage problems there have been considerable earthworks to control water including construction of dams to store water, construction of channels or banks to divert flow of water and enlarging the creek channel to reduce flood levels (LCC, 2003). Land use within the Kemps Creek sub-catchment largely includes agriculture (grazing, market gardens, poultry), residential, commercial and extractive industry.

Ropes Creek

Ropes Creek in the location at which the project would cross (immediately west of the existing M7 Motorway crossing) is an ephemeral first order tributary of South Creek that rises in south western Sydney near Fairfield and generally flows in a northerly direction for about 23 kilometres before reaching its confluence with South Creek. Ropes Creek has been extensively cleared of vegetation, other than around the waterways, for agricultural activities to take place. The catchment has a long history of flooding (BMT, 2013). The Ropes Creek catchment also contains two well defined open channel tributaries.

Ropes Creek is traversed by several major roads including the M7 Motorway at Cecil Park, the M4 Western Motorway between Erskine Park and Colyton and the Great Western Highway and Main Western Railway Line east of Oxley Park.

Hinchinbrook Creek

Hinchinbrook Creek at its closest point to the project is a fourth order stream. Hinchinbrook Creek drains to the sub-catchment of Cabramatta Creek which lies within the Georges River catchment. The creek originates in Cecil Hills and flows through the suburbs of Elizabeth Hills and Hinchinbrook before it enters Cabramatta Creek at Hoxton Park. The health of Hinchinbrook Creek has been measured using the ecological indicators of water quality, vegetation and macroinvertebrates by the Georges River Combined Councils Committee (GRCCC). The overall health rating (2014-15) for Hinchinbrook Creek was poor due to the poor condition or lack of riparian vegetation and the low diversity of macroinvertebrates which were dominated by pollutant tolerant animals. Water quality however was good.

4.3.3 Watercourse geomorphology

Geomorphology of the main watercourses is summarised in Table 4-2.

Table 4-2 Watercourse geomorphology summary

Watercourse	Geomorphological description
Cosgroves Creek	Cosgroves Creek is a discontinuous channel with steep channel gradient, a depth of about two metres and an average channel width of about five metres. The substrate consists of silty clay. Undercutting occurs at meander bends, suggesting a high potential for erosion at this site.
Badgerys Creek	Badgerys Creek is an incised meandering channel with irregular bank morphology due to abundant riparian vegetation and woody debris. Undercutting occurs along the length of the channel. The channel has a steep gradient with a channel depth greater than three metres and average channel width of about five metres.
South Creek	South Creek has a moderate gradient and a discontinuous channel and lies within a largely un-vegetated floodplain. Some bank undercutting occurs along the imposed right bank. The depth of the channel appears shallow and channel width is about seven metres.
Kemps Creek	Kemps Creek has a moderate gradient and a discontinuous channel with irregular bank morphology. The creek is laterally unconfined and undercutting occurs at creek bends. The channel depth appears shallow with a silty clay substrate. The channel width averages about three metres.
Ropes Creek	Ropes Creek is a highly modified drainage channel transitioning to a laterally confined low gradient channel. The channel was completely dry upon inspection with minimal bank definition. No undercutting is apparent due to vegetation overgrowth and shallow depth.
Hinchinbrook Creek	Hinchinbrook Creek is a highly modified drainage channel consisting of a series of large disconnected pools. This section of the creek contains an artificial rock wall barrier downstream. The natural substrate consists of silty clays, with isolated sections of channel erosion and bank undercutting occurring at the channel meanders. The channel depth is greater than two metres.

Due to a history of clearing, construction of dams along the watercourses and ongoing agricultural activities, the waterways in the study area are considered to be in moderate geomorphic condition despite sections of well vegetated riparian zones.

4.3.4 Existing water quality summary

Appendix M of the EIS includes a review of water quality at Badgerys Creek, Cosgroves Creek, South Creek, Kemps Creek and Hinchinbrook Creek.

Appendix M of the EIS concludes that overall the water quality of creeks within the study area could be classified as poor and degraded due to low dissolved oxygen concentrations and elevated nutrients. Additionally, heavy metal concentrations are elevated for some creeks. Badgerys Creek generally exhibited the poorest water quality of the waterways (based on available data) with a greater number of indicators exceeding recommended guidelines. Additionally, concentrations are generally higher in Badgerys Creek compared to other creeks.

4.4 Geology

Based on review of the Penrith 1:100,000 geological map (Geological Survey of NSW, 1991) (**Figure 4-1**) and completed project geotechnical borehole logs, the study area includes two surface geological units as follows:

- Quaternary Alluvium (which is located in the vicinity of all of the project's creek crossings except Ropes Creek)
- Bringelly Shale bedrock.

4.4.1 Quaternary Alluvium

The Penrith 1:100,000 geological map (Geological Survey of NSW, 1991) indicates the alluvium comprises fine grained sand, silt and clay. Project boreholes adjacent to the project's four creek crossings with mapped alluvial material encountered silty sand, sandy clay, gravelly clay, silty clay, clayey silt, sandy silt, clayey sand and sandy gravel above the bedrock. As the bedrock occurs, at depths ranging from about 2.5 metres below ground level (BGL) to 7.0 metres BGL, the alluvium deposits are relatively thin. Based on geological mapping (Geological Survey of NSW, 1991) within the study area, the widths of the alluvium deposits are of the order of 300 metres, 700 metres, one kilometre and 500 metres for Cosgroves Creek, Badgerys Creek, South Creek and Kemps Creek respectively.

4.4.2 Bringelly Shale and underlying units

The Penrith 1:100,000 geological map (Geological Survey of NSW, 1991) indicates Bringelly Shale comprises shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone, rare coal and tuff. Project boreholes encountered siltstone, sandstone and interlaminated siltstone and sandstone at typical depths of about one metre BGL to five metres BGL.

With reference to the Penrith 1:100,000 geological map (Geological Survey of NSW, 1991), Bringelly Shale is the upper member of the Wianamatta Group. The Wianamatta Group was deposited during a single mostly regressive period following subsidence of the Hawkesbury Sandstone alluvial plain. Deposition of sediment continuously during the period resulted in the shoreline progressing eastwards and a vertical accumulation of sediments, beginning with offshore low energy marine muds at the base of the group (Ashfield Shale), which became a shoreline sand deposit (Minchinbury Sandstone), and finally into alluvial plain deposits (Bringelly Shale).

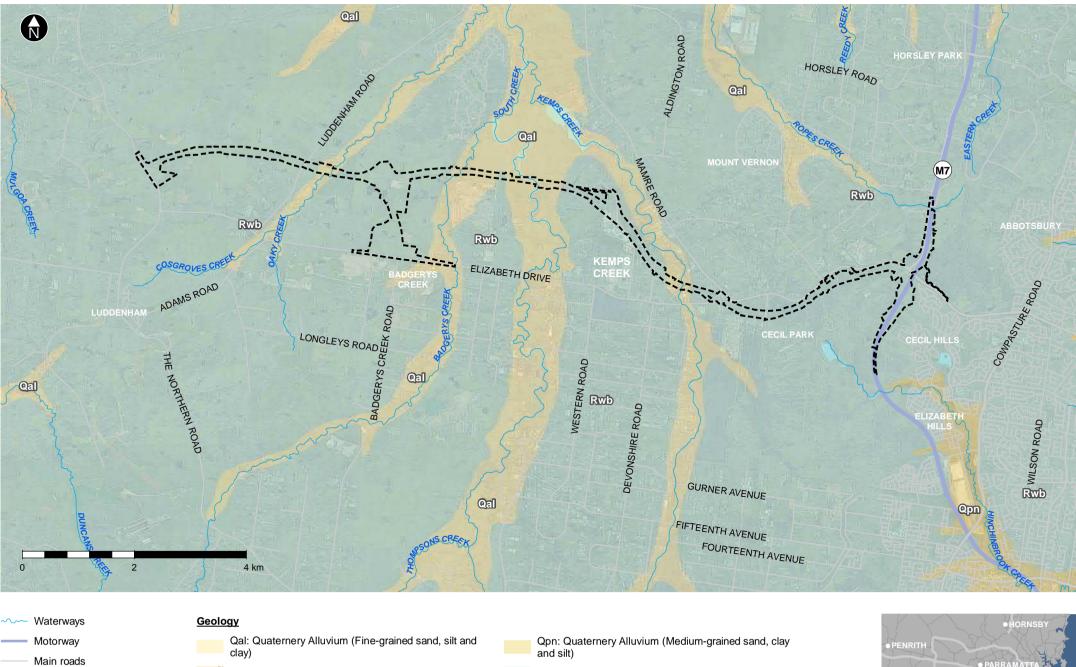
The Bringelly Shale was deposited in an alluvial plain environment that included swampy organic rich sediments, overbank alluvial clays, channel sands and lake deposits, which is why the unit has variable sedimentary rock types.

Bringelly Shales are often deeply weathered to depths of up to 10 metres. The formation typically weathers to form clays and silty clays of medium to high plasticity, and of low permeability. Based on project boreholes and regional experience, it is expected that where Bringelly Shale is present near the surface, ground conditions would comprise one metre to five metres of high plasticity, low permeability residual clays over highly weathered bedrock.

The underlying Minchinbury Sandstone differs to Bringelly Shale in being a relatively thin stratigraphic unit that separates the overlying Bringelly Shale from the underlying Ashfield Shale. The unit comprises fine to medium-grained quartz lithic sandstone comprising more than 15 per cent calcite, high quantities of quartzite and limited amounts of felspar, which differentiates it from the sandstones that occur in the Bringelly Shale

Ashfield Shale which occurs below the Minchinbury Sandstone comprises dark grey to black claystone, siltstone, shale and fine grained sandstone-siltstone laminate.

Bringelly Shale is the only anticipated bedrock unit to be intersected by the project alignment. The Minchinbury Sandstone and Ashfield Shale units are anticipated to occur sufficiently below the project alignment to not be intersected.


4.4.3 Intrusions

No igneous intrusions are shown on the geological map (Geological Survey of NSW, 1991) to be present on the project alignment. The Luddenham Dyke is located approximately two kilometres to the south west of The Northern Road intersection and there are volcanic necks to the north, closer to the M4 Motorway. Igneous dykes are often difficult to identify in this part of Sydney with limited surface exposures as the weathered dykes are often similar to weathered shale bedrock. Based on previous experience with rail and road route studies throughout Sydney, it is anticipated that two to four igneous dykes/intrusions may be present along the project alignment.

4.4.4 Structures


The Penrith 1:100,000 geological map (Geological Survey of NSW, 1991) indicates that the project alignment may be crossed at two locations by faulting or folding as follows:

- Narellan Lineament: The overall north/south linearity of South Creek suggests that it may be structurally controlled. In addition to this, there are also a number of north east trending tributaries into the South Creek channel, such as Cosgrove Creek, which may be an expression of regional faulting trends.
- Rossmore Anticline: This feature is described as a structural high within the Wianamatta Group. The geological map (Geological Survey of NSW, 1991) shows this feature ending at Elizabeth Drive, just to the east of the intersection with Luddenham Road. However, this feature may extend further north crossing the western end of the alignment. If this is the case, then bedrock bedding dips in the vicinity of such a feature could be altered and potentially dipping to the west on the western side of this structure.

Rwb: Bringelly Shale

Qpc: Quaternery Alluvium (Gravel, sand, silt,

Data sources Penrith 1:100 000

The project construction footprint

4.5 Soil landscapes

Based on a review of the 1:100,000 scale Soil Landscape Map for Penrith, the study area includes four soil landscapes as follows:

- South Creek: Fluvial deposits which are located along all four creek channels
- Blacktown: Residual soils located in the flat to gently undulating terrain between creek channels
- Luddenham: Residual soils located on the low rolling hills at both ends of the alignment
- Picton: Residual and colluvial soils located at the eastern end of the alignment.

The location and extent of each soil landscape is closely related to surface landform and topography.

South Creek soils are located within all four creek channels that cross the alignment. These soils are described as Quaternary alluvium derived from Wianamatta Group shales that comprise deep sandy, sandy clay and clay soils that were deposited as part of the current active South Creek drainage network. This is a dynamic soil landscape with many areas of erosion and deposition. Relevant limitations for development include high erodibility, shrink-swell potential, salinity, low fertility and localised areas of permanently high water tables or seasonal waterlogging.

Blacktown soils are located on the flat to gently undulating terrain between creek channels and are described as shallow to moderately deep clays and silty clays derived from the Bringelly Shales. Relevant limitations for development include strongly acidic, low fertility, high shrink-swell, low permeability potential for salinity, high erodibility.

Luddenham soils are located on the low rolling hills at both ends of the alignment. This soil landscape is derived from Bringelly Shales and is described as shallow to moderately deep, typically comprising clays, and sandy clays where Minchinbury Sandstone may be present. Moderately inclined slopes of 10-20 per cent are the dominant landform and as a result development limitations included high erosion hazards, together with a high shrink-swell potential and low permeability and low fertility.

There is an area of Picton soil landscape located in the rolling hills at the eastern end of the alignment. This soil landscape occurs on steep sided slopes over Wianamatta Group shales usually with a southern aspect and where there are slope gradients more than 20 per cent. Picton soils are described as shallow to deep residual and colluvial clays. Of particular note for this soil landscape is that there is potential for mass movement and slope instability, ie land sliding.

4.6 Salinity

The Salinity Potential in Western Sydney 2002 Map (Department of Land and Water Conservation, 2002b) shows the soils along the alignment generally have a moderate salinity potential with the exception of high salinity potential in the areas of Cosgrove Creek, in areas of low lying land to the east and west of Cosgrove Creek and along Kemps Creek, and with the exception of small areas of known soil salinity along the proposed alignment to the east of Range Road.

Areas of moderate salinity potential are defined as where Wianamatta Group Shales or tertiary alluvial terraces are present. Additional saline areas may be present which have not yet been identified or may occur if site conditions change adversely.

Areas of high salinity potential are defined as those areas where expected soil, geology, topography and groundwater conditions predispose a site to salinity. These areas are most commonly drainage systems or low lying/flat grounds where there is a high potential for the ground to become waterlogged.

Areas of known salinity are defined as those areas where saline soils have been identified or air photo interpretation and field observations have identified visual indicators of land salinity such as bare earth or waterlogging.

With reference to the above, areas of current or potential soil salinity are expected along the alignment where there is alluvium, waterlogged ground or shallow groundwater.

4.7 Acid sulfate soil and rock

4.7.1 Acid Sulfate Soils

Acid Sulfate Soils (ASS) is the common name for naturally occurring sediments and soils containing iron sulphides. The exposure of these soils to oxygen by drainage or excavation, oxidises the iron sulphides and generates sulfuric acid. The sulfuric acid can be readily released into the environment, with potential adverse effects on the natural and built environments. The majority of ASS are formed when available sulfate (which occurs widely in seawater, marine sediment, or saturated decaying organic material) reacts with dissolved iron and iron minerals forming iron sulfide minerals, the most common being pyrite. This generally limits their occurrence to deeper marine sediments and low lying sections of coastal floodplains, rivers and creeks where surface elevations are less than about RL five metres AHD.

The Australian Soil Resource Information System's (ASRIS 2018) online ASS risk map indicates the project is mapped within an area considered to have an extremely low probability of ASS occurrence, indicating that there is no known or expected occurrence of ASS within the construction footprint.

Additionally, a search was undertaken within Penrith Council (2010) and Liverpool Council (2008) LEPs for ASS risk maps for the construction footprint to determine the probability off ASS occurrence. The search found no ASS risk maps exist for the construction footprint within the LEPs and therefore conclusions can be drawn that there is no known or expected occurrence of ASS within the construction footprint.

4.7.2 Acid rock

Acid rock is defined as rock that contains sulfide or sulfate minerals (commonly pyrite) which has the potential to oxidise when exposed and produce sulfuric acid. Acid Rock is potentially an issue where the sulfide bearing rock that has previously been protected from weathering, or is below the water table, becomes exposed such as in deep cuttings.

Sedimentary pyrite is a common constituent of organic rich, typically fine-grained marine and anoxic terrestrial sediments. Coal measures and carbonaceous mudstones are typically where sedimentary pyrite would be anticipated.

To date, no occurrences of acid rock have been documented within Bringelly Shales soil landscapes and on this basis, the potential for encountering acid rocks along the project alignment is considered to be extremely low.

4.8 Groundwater dependent ecosystems

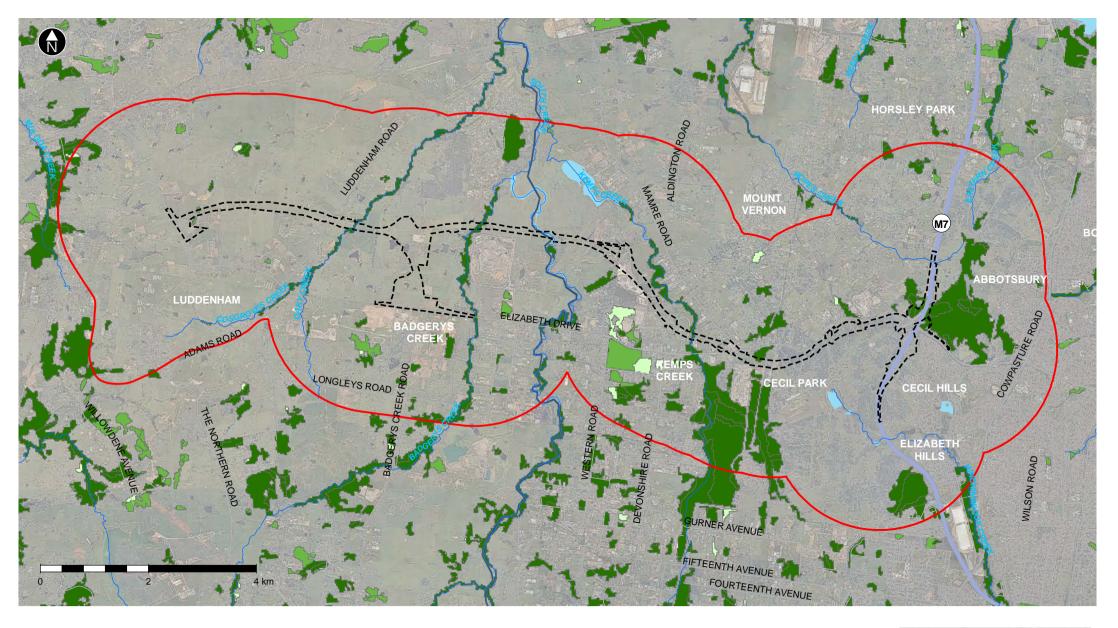
GDEs are ecological communities that are dependent, either entirely or in part, on the presence of groundwater for their health or survival. The NSW DPI Water Risk Assessment Guidelines for Groundwater Dependent Ecosystems (Serov et al., 2012) adopts the definition of a GDE as:

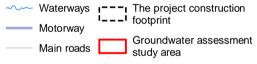
"Ecosystems which have their species composition and natural ecological processes wholly or partially determined by groundwater".

GDEs might rely on groundwater for the maintenance of some or all of their ecological functions, and that dependence can be variable, ranging from partial and infrequent dependence, ie seasonal or episodic, to total continual dependence.

The Bureau of Meteorology's GDE Atlas (BOM, 2018b) was reviewed to investigate the potential for GDEs to exist within the study area. The atlas mapping is shown in **Figure 4-2** and summarised as follows:

- South Creek is mapped as a high potential aquatic GDE (based on national assessment).
- Moderate to high potential terrestrial GDEs (based on national assessment) are mapped within the study area, generally in the region of the five creek crossings, but also in isolated areas away from the creeks. These GDEs were described as either Cumberland Shale Hills Woodland or Cumberland River Flat Forest.
- Several isolated areas away from the creeks mapped as low to high potential terrestrial GDEs.


Additionally, Appendix 2 of the water sharing plan legislation (NSW Government) indicated that no High Priority GDEs (karst and wetlands) are mapped within approximately 10 kilometres of the study area.


4.9 Hydrogeology

4.9.1 Project groundwater investigations and data set overview

The project's existing hydrogeological environment is characterised based on data collected from the project's groundwater monitoring network, which included:

- 31 groundwater monitoring bores installed for the purpose of informing geotechnical design and a range of environmental assessments associated with the project's Environmental Impact Statement (EIS).
 Project groundwater monitoring bore locations are shown in Figure 3-2.
- Manual groundwater level measurements on two dates (date of data logger install and date of logger download in August, 2018) for 25 of the 31 project groundwater monitoring bores, and on one date (date of data logger install or date of well development) for three of the 31 project groundwater monitoring bores. Three of the 31 project groundwater monitoring bores did not have groundwater level measurements as two were primarily installed for the purpose of gas monitoring and one bore (BH129) could not be accessed after it was constructed as the landowner could not be contacted to approve site access.
- Monitoring of groundwater levels at a two hourly interval by data loggers at 25 of the 31 project groundwater monitoring bores. An additional three project groundwater monitoring bores were equipped with data loggers. However, logger data from these three bores had not been downloaded at the time of this report. Information that may become available from those bores would be considered in future groundwater investigations during detailed design.

Terrestrial GDE

- High potential GDE from national assessment
 - Moderate potential GDE from national assessment
 - national assessment

Aquatic GDE

- High potential GDE from national assessment
- Low potential GDE from

GDE: Commonwealth of Australia (Bureau of Meteorology) 2017 Date: 1/07/2019 Path: J:\IE\Projects\04_Eastern\IA145100\08 Spatial\GIS\Director

• PENRITH

BANKSTO

- The three project groundwater monitoring bores which were not equipped with data loggers to measure groundwater levels were primarily installed for the purpose of gas monitoring (BH301 and BH302) or could not be accessed (BH129).
- Groundwater level data logging commenced upon bore installation during February 2018 to August 2018 and will be ongoing as outlined in the groundwater monitoring program (**Section 7.2**).
- Groundwater sampling and subsequent laboratory analysis for a range of analytes relevant to general groundwater quality characterisation, assessing the contamination status of groundwater and assessing aggressivity of groundwater to inform engineering design elements of the project.

Ten project bores were sampled once and laboratory tested for the following analytes:

- Heavy metals (eight)
- Total recoverable hydrocarbons
- BTEXN
- Ammonia
- Nutrients
- pH, EC, TDS, TSS, Turbidity
- Major anions and cations
- Hydraulic testing at five bores was undertaken to enable estimation of hydraulic conductivity. The five bores comprised three bores located in the areas of the deepest cuts (water columns in bores spanned Bringelly Shale) and two bores located in areas of alluvium (water columns in bores spanned alluvium and Bringelly Shale).

Additionally, the above investigations and data were supplemented with public domain groundwater bore data and GDE mapping, both of which are detailed in **Section 4.9.3** and **Section 4.8** of this report.

A summary of groundwater level and quality monitoring undertaken for the project is provided in **Table 4-3**. The groundwater monitoring completed for the project is considered suitable to provide a baseline dataset to inform this assessment documented in this report.

Groundwater level monitoring (dip meter)	Groundwater level monitoring (data logger) ²	Groundwater quality sampling round (22-24/08/2018)	Slug tested to estimate hydraulic conductivity (August 2018)
 BH162¹ (04/09/2018) BH170¹ (04/09/2018) BH175 (04/09/2018) 	 BH102 (15/02/2018 to 15/01/2019) BH105 (18/02/2018 to 15/01/2019) BH107 (12/05/2018 to 21/08/2018) BH117 (12/05/2018 to 22/08/2018) BH119 (16/02/2018 to 21/08/2018) BH134 (16/02/2018 to 21/08/2018) BH135 (18/02/2018 to 21/08/2018) BH139 (dry) BH144 (29/05/2018 to 22/08/2018) BH150 (12/05/2018 to 27/08/2018) BH155 (29/05/2018 to 21/08/2018) BH204 (12/05/2018 to 21/08/2018) BH211 (15/06/2018 to 21/08/2018) BH215 (15/06/2018 to 21/08/2018) 	 BH104 BH112 BH145 BH202 BH207 BH209 BH217 BH223 BH301 ³ BH302 ³ Tested for: Heavy metals (eight) Total recoverable hydrocarbons 	 BH104 BH112 BH145 BH202 BH217

Table 4-3 Summarised project groundwater monitoring bore testing

Groundwater level monitoring (dip meter)	Groundwater level monitoring (data logger) ²	Groundwater quality sampling round (22-24/08/2018)	Slug tested to estimate hydraulic conductivity (August 2018)
Additionally, dip meter measurements were also taken at all bores that were equipped with data loggers. Measurements were taken at the start and end dates of the data logger monitoring period documented in the adjacent column.	 BH219 (30/05/2018 to 21/08/2018) BH221 (30/05/2018 to 21/08/2018) BH227 (15/06/2018 to 22/08/2018) BH104 (16/02/2018 to 15/01/2019) BH112 (12/05/2018 to 21/08/2018) BH202 (12/05/2018 to 21/08/2018) BH207 (12/05/2018 to 21/08/2018) BH209 (15/06/2018 to 21/08/2018) BH217 (15/06/2018 to 21/08/2018) BH223 (30/05/2018 to 22/08/2018) 	 BTEXN Ammonia Nutrients pH, EC, TDS, TSS, Turbidity Major anions and cations 	

Notes: ¹ Equipped with data logger but data not downloaded at time of this report. ² Data loggers are currently recording groundwater levels at all bores except BH301 and BH302. ³ Predominantly installed for the gas monitoring.

4.9.2 Project groundwater monitoring bore groundwater level data

Project groundwater monitoring bore details are summarised in **Table 4-4**, with locations provided in **Figure 3-2** and monitoring bore logs and hydrographs provided in **Annexure B** and **Annexure C** respectively.

Manual groundwater level measurements taken in August 2018 and continuous water level logger data are summarised in **Table 4-5**.

Groundwater level trends are summarised as follows:

- Excluding post purging trends, groundwater levels were stable or slowly decreasing throughout the monitoring period at BH104, BH105, BH107, BH112, BH117, BH119, BH134, BH135, BH144, BH202, BH204, BH207, BH209, BH211, BH215, BH217, BH219, BH221, BH223, BH227.
- Groundwater level at BH102 exhibited two gradual increasing trends during the monitoring period due to recovery from purging. Outside of the recovery periods, groundwater level was stable.
- BH145 and BH150 exhibited a gradual increasing trend throughout the data period, which is interpreted to represent slow post purging recovery due to low hydraulic conductivity. Towards the end of the available data period, groundwater level in BH150 is interpreted to have essentially recovered from purging. However, BH145 groundwater level is interpreted to not yet have recovered from purging. BH145 is a key bore for the project because it is in area of relatively deep cut. The groundwater level at BH145 at the end of the available data period represents the maximum level monitored by data logger and was 99.19 metres AHD. Whilst not having recovered to a representative groundwater level in the three month period since purging, once recovered, the representative groundwater level for this monitoring bore is expected to be well below the project's design level of about 104.6 metres AHD in the vicinity of BH145.

The general stable or declining groundwater level trend exhibited at the majority of project monitoring bores is attributed to low rainfall over the monitoring period.

Table 4-4 Summarised project groundwater monitoring bore details

Location	Easting	Northing	Surface elevation (m AHD)	Screened interval (mBGL)	Target hydrogeological unit
BH102	287043	6251433	92.19	3.00-12.32	Sandstone and siltstone
BH104	287727	6251558	101.11	3.00-17.38	Siltstone and sandstone
BH105	288096	6251589	92.70	3.00-12.10	Sandstone and siltstone
BH107	288575	6251634	94.63	2.00-13.45	Sandstone and siltstone
BH112	289024	6251485	93.78	3.00-21.63	Sandstone and siltstone
BH117	291107	6251013	65.05	2.50-12.35	Silty clay, sandstone and siltstone
BH119	291372	6249710	54.00	2.50-12.05	Silty clay and siltstone
BH134	297252	6248876	57.94	1.50-18.07	Silty clay, siltstone and sandstone
BH135	297594	6248706	60.55	1.00-10.00	Silty clay, siltstone and sandstone
BH139	298273	6248770	101.10	2.00-14.95	Sandstone and siltstone
BH144	298657	6249024	113.50	3.00-20.65	Sandstone and siltstone
BH145	298880	6248989	116.30	3.00-20.00	Sandstone and siltstone
BH150	299108	6249308	109.50	2.00-10.20	Silty clay, siltstone and sandstone
BH155	299535	6249380	121.60	2.00-12.00	Silty clay, siltstone and sandstone
BH162	300514	6249490	118.62	3.00-18.43	Silty clay, sandstone and siltstone
BH170	300394	6248905	92.41	4.36-10.36	Siltstone and sandstone
BH175	299999	6248562	80.34	3.00-19.80	Siltstone and sandstone
BH202	290090	6251218	49.53	2.00-17.93	Silty sandy clay, sandstone and siltstone
BH204	290177	6251195	50.24	3.00-15.43	Gravelly clay, sandstone and siltstone
BH207	292342	6251217	40.03	2.00-17.90	Silty sandy clay, sandstone and siltstone
BH209	292587	6251246	39.36	0.40-18.15	Silty clay, siltstone and sandstone
BH211	293340	6251097	37.72	2.00-18.00	Gravelly clay, siltstone, sandstone
BH215	293615	6251030	37.77	2.00-18.41	Silty clay, siltstone and sandstone
BH217	293817	6251033	40.49	0.50-17.85	Silty clay, clayey silt, sandy clay, gravelly sandy clay, siltstone, sandstone
BH219	296088	6249516	44.46	2.00-18.33	Silty clay, sandstone, siltstone
BH221	296320	6249208	45.24	2.00-18.14	Sandy silt, silty sand, sandy gravel, siltstone and sandstone
BH223	296466	6249150	46.26	2.00-18.28	Silty clay, sandstone, siltstone
BH227	297056	6248945	55.85	2.00-18.11	Silty clay, siltstone and sandstone
BH301	292746	6251171	42.98	0.40-10.50	Silty clay, sandy clay, gravelly clay, siltstone
BH302	292935	6251154	40.54	0.30-10.50	Clayey silt (fill), silty clay, gravelly clay, siltstone

Table 4-5 Summarised project	aroundwater monitoring	hore aroundwater level data
Table 4-5 Summarised project	groundwater morntoring	bolc gloundwatch level data

Bore ID	Manual groundwater level m AHD (late August, 2018)	Data logger minimum groundwater level (m AHD)	Data logger mean groundwater level (m AHD)	Data logger maximum groundwater level (m AHD)	Data logger period used to derive minimum, mean and maximum groundwater levels
BH102	83.60	83.32	83.51	83.60	31/03/2018 to 24/09/2018, 09/11/2018 to 15/01/2019
BH104	91.72	90.97	91.50	91.84	03/03/2018 to 21/08/2018, 03/09/2018 to 15/01/2019
BH105	81.29	81.11	81.36	85.56	07/03/2018 to 15/01/2019
BH107	83.93	83.75	83.87	83.99	12/05/2018 to 21/08/2018
BH112	75.99	75.92	75.97	76.01	14/05/2018 to 21/08/2018
BH117	NA - no data	60.36	60.59	60.79	12/05/2018 to 22/08/2018
BH119	52.57	52.55	52.90	53.32	16/02/2018 to 21/08/2018
BH134	54.40	54.36	54.50	54.77	16/02/2018 to 21/08/2018
BH135	58.17	58.17	58.58	59.22	18/02/2018 to 21/08/2018
BH139	NA - dry	NA - dry	NA - dry	NA - dry	NA - dry
BH144	94.09	93.87	94.04	94.11	29/05/2018 to 22/08/2018
BH145	99.17	98.66	98.95	99.19	03/06/2018 to 22/08/2018
BH150	105.17	104.72	105.03	105.19	12/05/2018 to 27/08/2018
BH155	NA - no data	110.75	110.79	110.83	01/06/2018 to 27/08/2018
BH162	112.80 (04/09/2018)	NA – no data available at time of report	NA – no data available at time of report	NA – no data available at time of report	NA – no data available at time of report
BH170	87.94 (04/09/2018)	NA – no data available at time of report	NA – no data available at time of report	NA – no data available at time of report	NA – no data available at time of report
BH175	74.62 (04/09/2018)	NA – no data available at time of report	NA – no data available at time of report	NA – no data available at time of report	NA – no data available at time of report
BH202	47.27	47.21	47.36	47.79	12/05/2018 to 21/08/2018
BH204	48.02	47.99	48.20	48.33	12/05/2018 to 21/08/2018
BH207	35.59	35.57	35.68	35.80	12/05/2018 to 21/08/2018
BH209	35.75	35.73	35.79	35.85	18/06/2018 to 21/08/2018
BH211	35.47	35.46	35.51	35.55	18/06/2018 to 21/08/2018
BH215	34.30	34.29	34.36	34.41	18/06/2018 to 21/08/2018
BH217	35.10	35.09	35.13	35.21	18/06/2018 to 21/08/2018
BH219	41.88	41.87	42.04	42.15	30/05/2018 to 21/08/2018

Bore ID	Manual groundwater level m AHD (late August, 2018)	Data logger minimum groundwater level (m AHD)	Data logger mean groundwater level (m AHD)	Data logger maximum groundwater level (m AHD)	Data logger period used to derive minimum, mean and maximum groundwater levels
BH221	41.44	41.42	41.48	41.52	30/05/2018 to 21/08/2018
BH223	43.16	43.06	43.17	43.23	01/06/2018 to 22/08/2018
BH227	53.95	53.89	53.94	53.97	04/07/2018 to 22/08/2018
BH301 (primarily gas monitoring bore)	NA - no data	NA – no logger	NA – no logger	NA – no logger	NA – no logger
BH302 (primarily gas monitoring bore)	NA - no data	NA – no logger	NA – no logger	NA – no logger	NA – no logger

4.9.3 Registered groundwater bores

The Bureau of Meteorology's (BOM) Australian Groundwater Explorer (BOM, 2018a) was reviewed to investigate registered groundwater bores and associated groundwater level records in the region of the project. The review identified 38 registered groundwater bores (**Table 4-6**) within the study area. No water level records were available for the bores. Registered groundwater bores are shown in **Figure 4-3**, with available groundwater bore lithology logs provided in **Annexure D**.

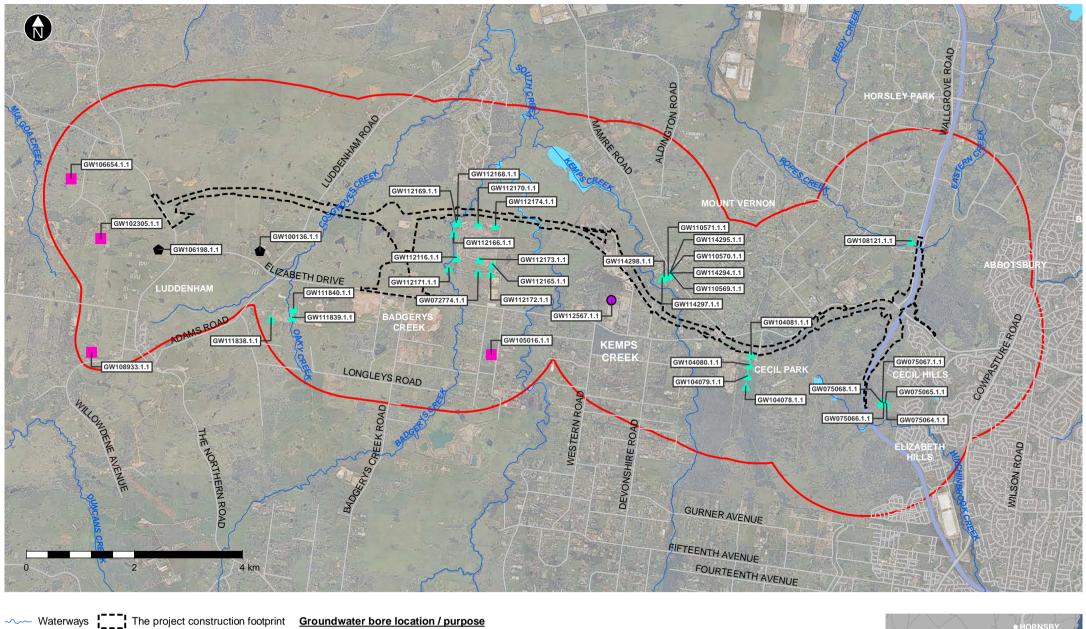

Five of the 38 bores had a purpose relating to water supply (ie irrigation, stock and domestic, water supply or commercial/industrial) and based on reported bore depth, three of these five bores are inferred to be accessing Hawkesbury Sandstone groundwater systems. The closest of these five bores relating to water supply is offset from the construction footprint by about 400 metres.

Table 4-6 Summary of registered groundwater bores in region of project (BOM, 2018a)

Bore ID	Purpose	Approximate surface level (m AHD)	Bore depth (m)	Standing water level m AHD (m BGL)
GW108933.1.1	Irrigation	82.5	268	ND
GW075068.1.1	Monitoring	69.0	10	ND
GW110571.1.1	Monitoring	45.4	12	ND
GW102305.1.1	Stock	78.0	61	ND
GW105016.1.1	Water supply	61.8	253	ND
GW072774.1.1	Exploration	54.6	30	ND
GW100136.1.1	Unknown	65.1	111	ND
GW110570.1.1	Monitoring	45.7	12	ND
GW110569.1.1	Monitoring	45.8	6	ND
GW075065.1.1	Monitoring	77.9	6	ND

Bore ID	Purpose	Approximate surface level (m AHD)	Bore depth (m)	Standing water level m AHD (m BGL)
GW075066.1.1	Monitoring	73.3	6	ND
GW075064.1.1	Monitoring	77.9	5	ND
GW108121.1.1	Monitoring	99.6	246	ND
GW106654.1.1	Irrigation	73.2	252	ND
GW104078.1.1	Monitoring	62.1	30	ND
GW075067.1.1	Monitoring	71.3	9	ND
GW104079.1.1	Monitoring	65.1	30	ND
GW104081.1.1	Monitoring	67.5	30	ND
GW104080.1.1	Monitoring	64.7	30	ND
GW106198.1.1	Unknown	86.9	268	ND
GW111838.1.1	Exploration	ND	30.0	ND
GW111839.1.1	Exploration	ND	30.4	ND
GW111840.1.1	Exploration	ND	30.7	ND
GW112168.1.1	Exploration	ND	26.5	ND
GW112169.1.1	Exploration	ND	16.6	ND
GW112166.1.1	Exploration	ND	32.3	ND
GW112116.1.1	Exploration	ND	23.4	ND
GW112171.1.1	Exploration	ND	32.0	ND
GW112170.1.1	Exploration	ND	26.9	ND
GW112173.1.1	Exploration	ND	24.0	ND
GW112174.1.1	Exploration	ND	22.0	ND
GW112165.1.1	Exploration	ND	35.0	ND
GW112172.1.1	Exploration	ND	36.5	ND
GW112567.1.1	Commercial and Industrial	ND	20.0	ND
GW114297.1.1	Exploration	ND	8.0	ND
GW114298.1.1	Exploration	ND	7.0	ND
GW114294.1.1	Exploration	ND	6.0	ND
GW114295.1.1	Exploration	ND	6.0	ND

Notes: ¹ ND = no data.

Exploration Groundwater assessment study

Commercial and Industrial \bigcirc

Irrigation, stock and domestic or water supply

Unknown ۵

Figure 4-3 Licensed groundwater bores in study area

area

Motorway

Main roads

Date: 3/07/2019 Path: J:\IE\Projects\04_Eastern\IA145100\08 Spatial

4.9.4 Main groundwater systems

Based on project geological conditions, project groundwater investigations and registered groundwater works, two main groundwater system types exist in the study area:

- Unconfined to semi confined alluvial groundwater systems associated with Cosgroves Creek, Badgerys Creek, South Creek and Kemps Creek, which the project alignment crosses
- Semi confined groundwater systems within the bedrock (Wianamatta Group Shale and Hawkesbury Sandstone).

These groundwater system types are described in the following sections.

Alluvial groundwater systems

As outlined in **Section 4.4**, with the exception of Ropes Creek, project boreholes adjacent to the project's creek crossings encountered alluvial clays, silts, sands and gravels above the bedrock, which occurred at depths ranging from about 2.5 to 7.0 metres BGL. Therefore, the alluvium deposits are relatively thin (ie less than seven metres) and predominantly clayey. Based on geological mapping (Geological Survey of NSW, 1991) within the study area, the widths of the alluvium deposits are of the order of 300 metres, 700 metres, one kilometre and 500 metres for Cosgroves Creek, Badgerys Creek, South Creek and Kemps Creek respectively.

The alluvial deposits are considered to be of insufficient thickness and hydraulic conductivity to be capable of providing a potential water supply. Flow directions are anticipated to be similar to a subdued reflection of the topographic surface. Therefore, it is likely that the alluvial groundwater systems are in some degree of hydraulic connection with the associated watercourses.

Current project groundwater monitoring bore data indicates that the water table depth in the area of the alluvial deposits ranges from about two metres BGL to five metres BGL.

Bedrock groundwater systems

The bedrock groundwater systems are characterised as semi confined dual porosity systems (granular flow and fracture flow). The upper major hydrostratigraphic unit comprises Wianamatta Shale which overlies a lower major hydrostratigraphic unit consisting of Hawkesbury Sandstone.

The Wianamatta Shale Group comprises Bringelly Shale, Minchinbury Sandstone and Ashfield Shale, which exist in that stratigraphic order. The base of the Wianamatta Group and top of the Hawkesbury Sandstone is anticipated to be at a level of the order of -40 metres AHD to -65 metres AHD in the study area.

Based on the project's maximum cut depth of about 15 metres BGL, the Wianamatta Group's upper formation of Bringelly Shale is the only rock formation anticipated to be encountered by project excavations. As such, and given the base of the Bringelly Shale formation is anticipated to be substantially lower than the project's vertical alignment, groundwater flow systems within the Bringelly Shale are considered to be the main bedrock groundwater flow systems relevant to the project.

Groundwater flow directions are anticipated to be similar to a subdued version of the topographic surface. Current project groundwater monitoring bore data indicates that the water table in the Bringelly Shale (including associated overlying residual clay) ranges from about one metre BGL to 19 metres BGL.

4.9.5 Groundwater quality

Groundwater quality has been assessed with respect to groundwater salinity mapping, project specific groundwater quality monitoring and groundwater contamination and is discussed below.

Salinity mapping and registered bore salinity

Sydney Basin groundwater salinity mapping (Russel et al., 2009) in the study area indicates that the Wianamatta Group groundwater systems have salinity concentrations of the order of 5000 to 10,000 mg/L, which is considered 'unpalatable' (NHMRC, 2011) for humans and generally likely to result in a decline in livestock production and condition (based on the upper 10,000 mg/L concentration). Salinity mapping (Russel et al., 2009) in the study area indicates that the Hawkesbury Sandstone groundwater systems have salinity concentrations of the order of 3000 to 5000 mg/L, which is considered 'unpalatable' (NHMRC, 2011) for humans and of a sufficiently low concentration such that most livestock types are able to adapt to this concentration without loss of production. At the upper end of the mapped concentration range (ie 5000 mg/L), dairy cattle production and condition would likely decline whilst poultry would likely not be able to tolerate this concentration, even if introduced gradually. Beyond the western extent of the study area, the mapped Hawkesbury Sandstone groundwater salinity decreases to 1000 to 3000 mg/L.

Of the 38 registered groundwater works, only three bores had reported salinity concentrations. Concentrations were 4200 mg/L (bore ID GW105016.1.1), 950 mg/L (bore ID GW108121.1.1) and 1500 mg/L (bore ID GW106654.1.1). These three bores had depths of 252.5 metres, 246 metres and 252 metres respectively and therefore are inferred to be accessing Hawkesbury Sandstone groundwater systems.

Project monitoring bore water quality data

Project groundwater monitoring bores were sampled once in August, 2018 and laboratory tested for a range of analytes. Ten bores were sampled, which included BH104, BH112, BH145, BH202, BH207, BH209, BH217, BH223, BH301 and BH301. Analytes included heavy metals, major cations and anions, nutrients, hydrocarbons, benzene toluene ethylbenzene xylenes and naphthalene (BTEXN) and polycyclic aromatic hydrocarbons (PAHs). Field parameters were taken using a water quality probe at the time of sampling.

Groundwater quality results are summarised in **Annexure F**, represented in a piper plot in Figure 2, **Annexure A** and documented in a laboratory certificate of analysis in **Annexure G**. The summary in **Annexure F** compares site analyte concentrations to the Australian Drinking Water Guidelines (ADWG) (NHMRC, 2015), the ANZECC Water Quality Guidelines trigger values for the protection of 95 per cent of freshwater species and ANZECC Water Quality Guidelines trigger values for lowland rivers.

Based on the data collected, the following general key points are noted:

- The piper plot indicates groundwater type is sodium chloride
- ADWG (2015) aesthetic criteria were exceeded for chloride, sodium and total dissolved solids
- Total dissolved solids ranged from 2650 mg/L to 19,500 mg/L, with an average value of 11,595 mg/L. These values correspond to saline to highly saline water.

Groundwater contamination

In relation to groundwater contamination and project groundwater quality laboratory results, the following summary points are noted:

- The majority of project groundwater bore copper and zinc concentrations exceeded the ANZECC Water Quality Guidelines for the protection of 95 per cent of freshwater species, with three locations either exceeding or equalling the trigger value for nickel
- Samples from three bores exceeded the ANZECC Water Quality Guidelines for the protection of 95 per cent of freshwater species for ammonia
- Samples from three bores exceeded the ANZECC Water Quality Guidelines trigger value for lowland rivers for total nitrogen
- ADWG (2015) health criteria were exceeded for arsenic at two bores and for nickel at one bore.

Appendix O of the EIS concludes that:

- The elevated heavy metal and nutrient concentrations in groundwater may be associated with the widespread agricultural land use in the area, the Elizabeth Drive landfill facility and potential areas of fill within the construction footprint, or alternatively represent background concentrations
- Contaminated groundwater has the potential to impact on construction activities such as bridge construction and excavations which reach depths to groundwater
- Releases of groundwater off site into the surrounding environments would also need to be managed through the CEMP to protect surrounding surface and groundwater environments.

4.9.6 Sensitive receiving environments

Sensitive receiving environments (SREs) relevant to this groundwater assessment include the potential aquatic and terrestrial GDEs (discussed in **Section 4.8**) plus the following waterways and/or waterbodies which were identified as SREs from a surface water perspective:

- Cosgroves Creek
- Badgerys Creek
- South Creek
- Kemps Creek
- Hinchinbrook Creek
- Unnamed tributary of Hinchinbrook Creek
- Doujon Lake
- SEPP Coastal Wetlands (ID113, ID114, ID117)
- Hinchinbrook Creek at the downstream SEPP coastal wetland ID276.

These SREs are relevant to the groundwater and hydrology assessment due to the potential for surface water/groundwater interactions. Further information about the classification of the SREs is available in Appendix M of the EIS.

4.9.7 Project bore hydraulic conductivity

Hydraulic testing results are summarised in **Table 4-7** with analysis plots provided in **Annexure E**. The following conclusions are made:

- The average and maximum hydraulic conductivity for bores screened in the Bringelly Shale was 0.002 m/d and 0.005 m/d respectively, which is within ranges cited in the literature (Hewitt, 2005) for Bringelly Shale.
- The average and maximum hydraulic conductivity for bores which had some of the screen interval within alluvial material was 0.017 m/d and 0.023 m/d respectively. The alluvial hydraulic conductivity values are an order of magnitude higher than the those from the bores screened in the Bringelly Shale.

Project groundwater monitoring bore ID	Screened material	Estimated hydraulic conductivity (m/d)	Analysis method
BH104	Below the water table, the screened material comprises sandstone	0.005	Rising head analysed using Hvorslev method
BH112	Below the water table, the screened material comprises siltstone and interbedded siltstone and sandstone	0.001	Rising head analysed using Hvorslev method
BH145	Below the water table, the screened material comprises interbedded siltstone and sandstone, siltstone and sandstone	5 x 10 ⁻⁵	Rising head analysed using Hvorslev method
BH202	Below the water table, the screened material comprises silty sandy clay, interbedded siltstone and sandstone, siltstone and sandstone	0.010	Falling head analysed using Hvorslev method
BH217	Below the water table, the screened material comprises sandy clay, gravelly sandy clay, silty clay, siltstone and interbedded siltstone and sandstone	0.023	Rising head analysed using Hvorslev method

Table 4-7 Summarised hydraulic testing results

4.10 Cultural groundwater values

There are no high priority culturally significant sites listed in the schedule of the WSP. Historically, a natural spring fed watercourse located about 300 metres east of Badgerys Creek within the project construction and operational footprints may have been an important water source for past communities during the drier cycles of seasonal variation (Appendix I of the EIS). This natural spring has now been in-filled by land practices. Therefore, cultural values are not considered applicable to the project.

4.11 Conceptual hydrogeological model

The conceptual hydrogeological model for the alluvial groundwater systems is summarised as follows:

- Groundwater flow direction similar to broad topography trend
- Low hydraulic gradient of less than one per cent
- Unconfined to semi confined groundwater systems
- Low hydraulic conductivity predominantly clayey sediments, with areas of moderate hydraulic conductivity material comprising sands and gravels
- Variable specific yield (Sy) ranging from about 0.05 to 0.15
- Up to seven metres thickness
- Saline to highly saline
- Low recharge by rainfall and possible minor upward leakage from the underlying Bringelly Shale groundwater systems in the region of major drainage lines
- Underlain by a semi confined Bringelly Shale groundwater system
- Generally, not used as a water supply source
- Shallow water table depth of about two to five metres BGL.

The conceptual hydrogeological model for Bringelly Shale groundwater system is summarised as follows:

- Groundwater flow direction similar to broad topography trend
- Low hydraulic gradient of up to about three per cent
- Semi confined
- Low hydraulic conductivity material with hydraulic conductivity ultimately dependent on fracture/defect
 extent
- Specific yield (Sy) of the order of 0.01 to 0.04
- Underlain by Minchinbury Sandstone, Ashfield Shale and Hawkesbury Sandstone groundwater systems, with the latter expected to commence at about -40 metres AHD to -65 metres AHD
- Saline to highly saline
- Low recharge by rainfall
- Generally, not used as a water supply source, likely due to low anticipated yields in the order of 0.3 to one litre per second, and due to salinity
- Transmits minor leakage to underlying groundwater systems with localised areas of upward leakage where overlain by alluvium in the region of major drainage lines
- Variable water table depth of about one metre to 19 metres BGL, with depth to the water table generally greater than that for the alluvial groundwater systems.

A conceptual hydrogeological cross section is provided in Figure 4-4.

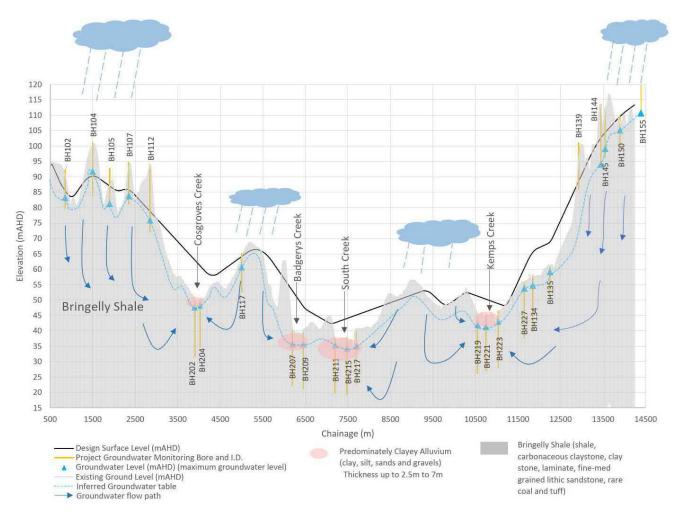


Figure 4-4 Conceptual hydrogeological cross section

5. Assessment of potential impacts

5.1 Construction impacts

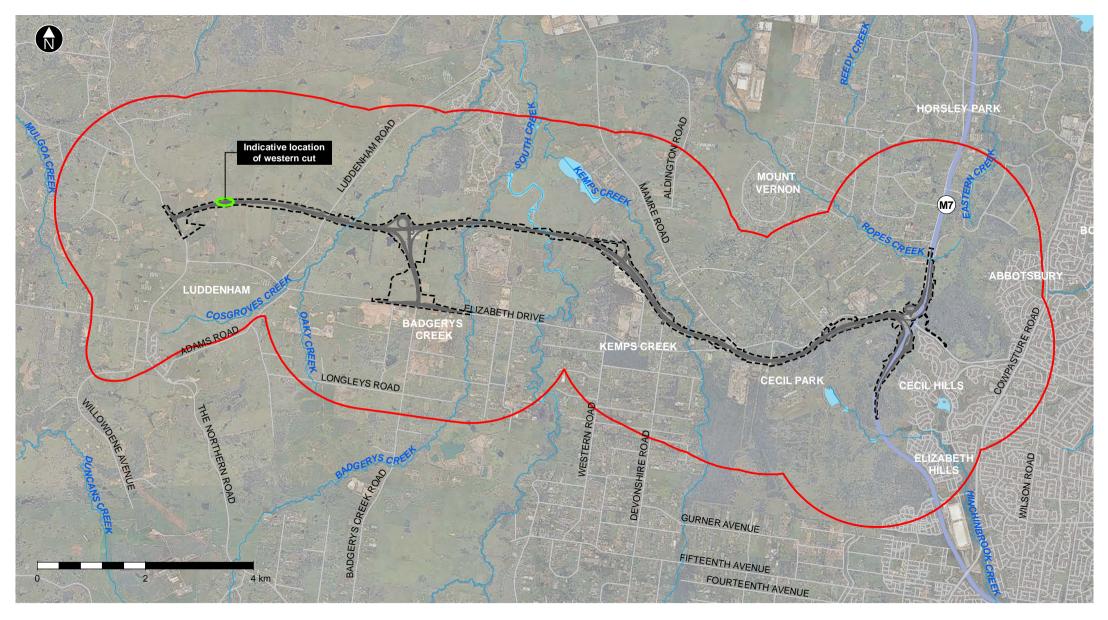
The project would utilise a potable water supply during construction for a range of purposes including (but not limited to) dust suppression, earthworks compaction, wheel washing, machinery, concrete/asphalt batching plants, curing structures and onsite amenities. Groundwater would not be utilised for these purposes.

The project construction footprint is shown in Figure 3-1.

5.1.1 Groundwater inflows

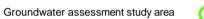
Potential groundwater inflow zones

Review of plotted maximum observed groundwater levels relative to the project's road design levels (Figure 1, **Annexure A**) and inferred groundwater levels (**Figure 4-4**) indicates that there is one area of cut likely to intersect the water table. The area of cut is located approximately 1.5 kilometres east of The Northern Road and is hereafter referred to as the 'western cut' (**Figure 5-1**).


The western Cut is a focus of the assessment because data indicates this cut will likely intersect the water table. As demonstrated by **Figure 4-4**, there are areas where the inferred groundwater level is relatively close (ie about 0.5 metres to 1 metres) to the project's road design level, including between South Creek and Kemps Creek and between Cosgroves Creek and Badgerys Creek.

With respect to the area between South Creek and Kemps Creek, cut depth in the location where the inferred groundwater level is closest to the project's road design level is about five metres. For bores on ridges, such as BH104, BH105, BH107, BH112, BH144 and BH145, the average minimum depth to groundwater was 13.9 metres. This is well below the cut depth of five metres and therefore cuts in between South Creek and Kemps Creek are not anticipated to intersect the water table.

Maximum groundwater levels were relatively close (about 2.5 metres) to the existing ground level in the vicinity of BH134, BH135 and BH227. However, cut is not proposed in this area (fill is proposed) and therefore the water table won't be intersected.


Maximum groundwater level is relatively close (about 1.25 metres) to the project's road design level on the high point between Cosgroves Creek and Badgerys Creek. However, the proposed cut at this location is only about 3.5 metres and therefore intersection of the water table is unlikely.

The current quantity and distribution of project groundwater monitoring bores is considered suitable to assess impacts of the project on groundwater given the low value of the groundwater resource, low magnitude of potential drawdown and anticipated negligible impacts.

The project Waterways

Motorway Main roads

Indicative location of western cut

Figure 5-1 Location of western cut

Date: 1/07/2019 Path: J:\IE\Projects\04_Eastern\IA145100\08 Spatial\GIS\Directory\Templates\MXDs\Figure

Western cut seepage face height and area

Prior to potential water table lowering due to groundwater seepage interception, the western cut base would be about 1.61 metres below the groundwater level. This is calculated by subtracting the road design level of 90.23 metres AHD from the maximum groundwater level monitored by data logger of 91.84 metres AHD at BH104. To account for long term drawdown at the cut face (due to drainage), for the purpose of inflow estimation, a long term seepage face height of 0.5 metres is adopted. This equates to 1.11 metres of drawdown at the cut face.

The western cut would potentially intersect the water table over a distance of about 250 metres on each side of the proposed motorway, giving a total cut length below the water table of about 500 metres.

Long-term seepage face cross sectional area is based on the total saturated cut length multiplied by the assumed long-term seepage face height. Therefore, long-term seepage face cross sectional area is 250 metres squared (500 x 0.50).

Western cut hydraulic conductivity

To account for uncertainty and incorporate sensitivity analysis into the assessment, three different hydraulic conductivity values were adopted to represent the Bringelly Shale in the region of the cut:

- The project's maximum Bringelly Shale hydraulic conductivity estimate from slug tests (0.005 m/d)
- Upper literature (Hewitt, 2005) bulk value for weathered Wianamatta Group Shale hydraulic conductivity (0.09 m/d)
- Mid-range literature (Hewitt, 2005) bulk value for weathered Wianamatta Group Shale hydraulic conductivity (0.04 m/d).

Western cut groundwater gradients

To account for uncertainty and incorporate sensitivity analysis into the assessment, three different groundwater gradients were applied in the region of the cut:

- Low gradient (0.04 m/m)
- Medium gradient (0.10 m/m)
- High gradient (0.30 m/m).

Western cut estimated groundwater inflows

Estimated groundwater inflows into the western cut for the full range of parameters that were adopted to account for uncertainty and incorporate sensitivity analysis are summarised in **Table 5-1**. The estimated maximum groundwater inflow from the total parameter set was 6.75 kilolitres per day.

Location	Adopted hydraulic conductivity (m/d)	Adopted gradient (m/m)	Adopted long-term seepage face cross sectional area (m ²)	Estimated groundwater inflow (kL/d)	Estimated groundwater inflow (ML/yr)
Western cut	0.04	0.04	250	0.40	0.15
Western cut	0.04	0.10	250	1.00	0.37
Western cut	0.04	0.30	250	3.00	1.10
Western cut	0.09	0.04	250	0.90	0.33
Western cut	0.09	0.10	250	2.25	0.82

Table 5-1 Estimated groundwater inflow scenarios

Groundwater quality and hydrology assessment report

Location	Adopted hydraulic conductivity (m/d)	Adopted gradient (m/m)	Adopted long-term seepage face cross sectional area (m ²)	Estimated groundwater inflow (kL/d)	Estimated groundwater inflow (ML/yr)
Western cut	0.09	0.30	250	6.75	2.46
Western cut	0.005	0.04	250	0.05	0.02
Western cut	0.005	0.10	250	0.13	0.05
Western cut	0.005	0.30	250	0.38	0.14

Western cut potential groundwater inflow evaporation

If the western cut is exposed, based on the seepage face area plus allowance for a 0.5 metres wide strip at the base of the cut for drainage, the total evaporative surface area would be 500 square metres. Based on a mean daily evaporation rate of 2.9 millimetres, this would lead to evaporation of about 1.45 kL/d, which is greater than the majority of estimated groundwater inflows (Error! Reference source not found.). Therefore, large proportions of the estimated groundwater inflows are anticipated to readily evaporate.

Western cut groundwater inflow implications

Regardless of whether evaporation of groundwater inflow is considered, which is greater than the majority of estimated groundwater inflows, the estimated maximum groundwater inflow from the total parameter set is 6.75 kilolitres per day, which represents a very low groundwater inflow rate.

The rate of seepage through the face of the cut would decrease as the groundwater system reaches equilibrium. The time period until equilibrium conditions are achieved is anticipated to be in the range of months up to say a year. Groundwater inflow rates at any time during the construction and operation phases of the project would be sufficiently low such that there would be no impacts to environments that would receive the potential discharge. Groundwater licensing implications are discussed in **Section 5.1.8** whilst implications of discharging the intercepted groundwater are discussed in **Section 5.1.9**

5.1.2 Groundwater levels

Western cut

As outlined in **Section 5.1.1**, the western cut base is likely to be up to about 1.61 metres below the groundwater level. To provide a conservative groundwater drawdown impact assessment, if no long-term seepage face is assumed (ie water levels are drawn down to level of road), the maximum potential change to groundwater level is estimated to be a decrease of up to about 1.61 metres. This maximum change, if it eventuated, would occur at the base of the cut. Moving away from the cut, the magnitude of the change in groundwater level would reduce until groundwater levels were no longer being influenced by the cut.

This extent of influence is estimated using the Cooper-Jacob (1946) equation:

Radius of influence (m) = $(2.25Tt/S)^{0.5}$, where

T = transmissivity (m²/d)t = time (d) S = storage

Transmissivity is assigned a value based on the full saturated cut height of 1.61 metres multiplied by the highest hydraulic conductivity scenario value of 0.09 m/d, which leads to conservative assessment.

Time is assigned a value of 365 days, which is considered sufficient time to enable steady state (ie equilibrium) conditions to be reached given the maximum drawdown is very small (1.61 metres). Seward et.al (2014) investigated a spatial approach to management of groundwater pumping wells using radius of influence and concluded that a five year period was appropriate for their study to determine a radius of influence. A reduced period of 365 days is chosen since the maximum drawdown caused by the project would be very small compared to drawdowns in pumping wells that Seward et.al (2014) investigated.

Storage is assigned a value of 0.03 to represent a specific yield (ie drainable porosity) for the Bringelly Shale.

Based on the above equation and associated parameter values, the extent of influence associated with the cut is determined to be about 60 metres. Based on regional experience, the maximum drawdown at the cut of 1.61 metres is considered within the bounds of natural variability that would occur in response to changing long-term climate conditions. Notwithstanding this, the implications of groundwater level drawdown within this zone of influence is assessed for GDEs, existing groundwater bores, surface water-groundwater interactions and surround land uses in **Section 5.1.4** to **Section 5.1.7**.

Areas of fill placement

There is a potential for the surcharge loading associated with fill placement and the resulting increase in effective stress to cause short-term increases to groundwater levels in areas of fill placement, and/or permanent increases to groundwater levels if the increased stress permanently alters the hydraulic conductivity of the underlying water-bearing ground.

This risk is applicable to relatively soft soils, and is not expected to occur in areas where the water table lies within the rock.

The potential increases in groundwater levels due to surcharge loading are expected to be very small, and limited to areas in the vicinity of fill placement.

Spring

Historically, a natural spring fed watercourse located about 300 metres east of Badgerys Creek within the project construction and operational footprints may have been an important water source for past communities during the drier cycles of seasonal variation (Appendix I of the EIS). This natural spring has now been in-filled by land practices. Despite being infilled, the location of the spring should be considered in the project's detailed design due to the engineering and construction implications (eg potentially soft subgrades).

Other areas

Potential groundwater level changes in areas outside of the western cut's extent of influence and areas of fill placement are anticipated to be negligible. Potential minor localised changes in the vicinity of bridge piles are discussed in **Section 5.1.6**.

5.1.3 Groundwater quality

There is minimal potential for groundwater quality to be impacted by the project during construction. Groundwater quality may be impacted during the construction phase by:

- Accidental spills or leakages of hazardous materials (such as fuels, lubricants and hydraulic oils) due to runoff and subsequent recharge, which is discussed in **Section 5.1.10**
- Recharge from project stormwater basin exfiltration, if the chemistry of the exfiltration water is different from that of the background recharge water quality
- Construction works that may mobilise contaminants (if present). This could occur due to locally altered flow directions due to dewatering of the western cut, or due to bridge piling excavations, which may increase the vertical connectivity between local groundwater systems, which is discussed in **Section 5.1.10**.

The above potential risks were assessed and determined to represent a low risk because:

- Potential impacts from accidental spills or leaks can be mitigated by measures identified in Section 7
- The chemistry of stormwater basin exfiltration water is not anticipated to be materially different from that of the background recharge water quality
- Changes to groundwater flow directions as a result of dewatering the western cut are estimated to be limited to within 60 metres of the cut, and groundwater quality in this location does not indicate a risk to human health
- Bridge piling is not anticipated to mobilise potential contaminants beyond the local vicinity of the pile because potential changes to groundwater levels are anticipated to be negligible, and because the pile bore would only be open temporarily before being filled with concrete.

The project is not anticipated to lower the beneficial use category of the groundwater system and is expected to have a neutral effect on groundwater quality.

5.1.4 Groundwater dependent ecosystems

The nearest mapped GDE to the western cut is about 240 metres away, which is outside the calculated extent of groundwater level reduction of about 60 metres (**Section 5.1.2**). Therefore, groundwater level changes caused by cut dewatering are not expected to occur in the areas of mapped GDEs.

5.1.5 Groundwater bores

The nearest registered groundwater bore used for water supply is about 1.9 kilometres from the western cut. This bore is outside the anticipated extent of influence of the western cut (**Section 5.1.2**) and therefore groundwater level impacts to surrounding groundwater supply bores would not occur.

The project is not anticipated to result in a change in groundwater quality which would lower the beneficial use category. Therefore, groundwater quality impacts to surrounding groundwater bores are not anticipated.

5.1.6 Surface water-groundwater interactions

As outlined in **Section 5.1.2**, groundwater level changes from potential western cut dewatering would be localised to within about 60 metres of the cut, which is sufficient distance from alluvial groundwater systems to avoid impacts. Additionally, negligible groundwater inflows are predicted and such flows would be subjected to high proportions of evaporative loss (**Section 5.1.1**). As a result, groundwater discharges are expected to be negligible. Therefore, potential cut dewatering would not impact alluvial systems and associated surface water-groundwater interactions.

The project has the potential to cause minor localised water table changes in areas where bridge footings extend beneath the water table. Deep footings which extend beneath the groundwater table in the alluvial material may lead to a minor, localised and short-term increase in groundwater level up-gradient of the footing due to flow obstruction. The reverse is expected to occur down-gradient of the footing. Such changes are not expected to affect the local groundwater flow system or alter groundwater-surface water exchange in the region of the creeks, as piled footings would readily accommodate local groundwater flow diversion around the pile. As such, no impacts regarding surface water-groundwater interactions are expected.

5.1.7 Surrounding land uses

No groundwater related impacts to surrounding land uses are expected. This is because changes to groundwater levels would be restricted to within about 60 metres of the western cut and even in this location, where the potential change in groundwater level would be highest, reduced groundwater levels are expected to still be within the bounds of natural variability. Additionally, the project is not anticipated to result in a change in groundwater quality which would lower the beneficial use category or exacerbate existing salinity (groundwater or soil) conditions.

5.1.8 Groundwater take and licensing

Permanent dewatering in the form of seepage collection from the western cut would ordinarily require a water use approval, a water supply work approval and a WAL. If the dewatering was temporary and occurred only during construction, then ordinarily a water supply work approval would be required. However, as discussed in **Section 2.1**, the project is exempt from the need for water use approval, a water supply work approval and a WAL.

For the purpose of assigning a volume for water accounting, a take of 2.46 ML/yr would be considered conservative since it accommodates the maximum estimated groundwater inflow calculated from the range of parameter set scenarios (**Table 5-1**). It is noted that the entire range of estimated groundwater inflows into the western cut are very low to negligible.

5.1.9 Soil and groundwater salinity

The main potential salinity risk is the project causing water table levels to rise, or project excavations resulting in a reduced depth to the water table. The project is not anticipated to raise water table levels during construction due to the following:

- The project construction footprint currently generally comprises grassland with extremely limited deep rooted vegetation. Therefore, evapotranspiration rates will not decrease due to removal of deep rooted vegetation during construction
- The construction footprint is generally compromised of low permeability material which has limited infiltration potential. Therefore, when exposed, and particularly after inadvertent and intentional compaction, increased infiltration is not anticipated

- Low lying areas, which based on mapping (**Section 4.6**) are likely to be relatively saline, will generally be filled with low permeability material, limiting infiltration potential in these areas
- Dust suppression water applied during construction would have low salinity and would be applied at rates which would not cause the water table to rise.

Areas where excavation during construction will lead to a reduced depth to groundwater are limited. In general, areas with an existing relatively shallow water table will be filled and therefore the depth to groundwater will be increased.

Based on the above, the project would have negligible impacts on soil and groundwater salinity during construction.

5.1.10 Groundwater contamination

Existing groundwater quality is discussed in **Section 4.9.5** with groundwater contamination implications discussed fully in Appendix O of the EIS and summarised below.

The following groundwater contamination related risks are considered potentially relevant to project construction works:

- Accidental spills or leakages of hazardous materials (such as fuels, lubricants and hydraulic oils) during the construction phase of the project have the potential to result in groundwater contamination (ie through runoff and subsequent recharge).
- If groundwater is contaminated, construction workers coming into contact with contaminated groundwater may be subjected to a human health risk.
- Construction works may mobilise contaminants towards SREs. This could occur through discharge of groundwater from the cut below the water table (ie the western cut) or through bridge piling excavations, which may increase the vertical connectivity between local groundwater systems.

The above potential risks were assessed and determined to represent a low risk.

Potential impacts from accidental spills or leaks can be mitigated by measures identified in Section 7.

Only one cut, the western cut, is expected to extend below the water table. The Discharge from this cut is estimated to be negligible, with substantial proportions of the discharge expected to evaporate (**Section 5.1.1**). For six out of nine parameter sets, the anticipated evaporation volume exceeds the estimated groundwater inflow rate. For the remaining three estimated inflow rates, the proportion of evaporation to the estimated groundwater inflow rates ranges from 21 per cent to 64 per cent.

Groundwater quality data from the bore (BH104) near this cut does not indicate a risk to human health. Potential discharge of groundwater from the cut below the water table is not anticipated to impact SREs.

Zinc concentration at BH104 (9 μ g/L) was only 1 μ g/L above the ANZECC Water Quality Guidelines freshwater 95 per cent protection value of 8 μ g/L. Copper concentration at BH104 (10 μ g/L) was only marginally above the ANZECC Water Quality Guidelines freshwater 95 per cent protection value of 1.4 μ g/L. Whilst the zinc and copper concentrations exceeded the ANZECC Water Quality Guidelines freshwater 95 per cent level at BH104, so did most of the other tested project groundwater monitoring bores. Therefore, existing potential baseflow contributions from groundwater to surface water systems are likely currently elevated above the ANZECC Water Quality Guidelines. Appendix M of the EIS concluded that overall the existing water quality of creeks within the study area is poor due to low dissolved oxygen concentrations and elevated nutrients, and that some creeks had elevated metal concentrations. Bridge piling is not anticipated to mobilise potential contaminants beyond the local vicinity of the pile because potential changes to groundwater levels are anticipated to be negligible, and because once the pile concrete is cured, potential hydraulic connection between different groundwater zones would be limited. Additionally, pile spoil comprising groundwater and soil/rock would be waste classified before being disposed offsite or reused onsite.

5.1.11 Utilities

Relocation of existing utilities and installation of additional utilities and services would be required for the project. Excavation depths for utilities would be confirmed during detailed design but are expected to typically be in the range of 0.3 metres to 1.2 metres for the project. Given that the minimum depth to groundwater is typically about two metres, such works are not anticipated to impact groundwater systems given the typical shallow depths of utilities.

5.2 Operational impacts

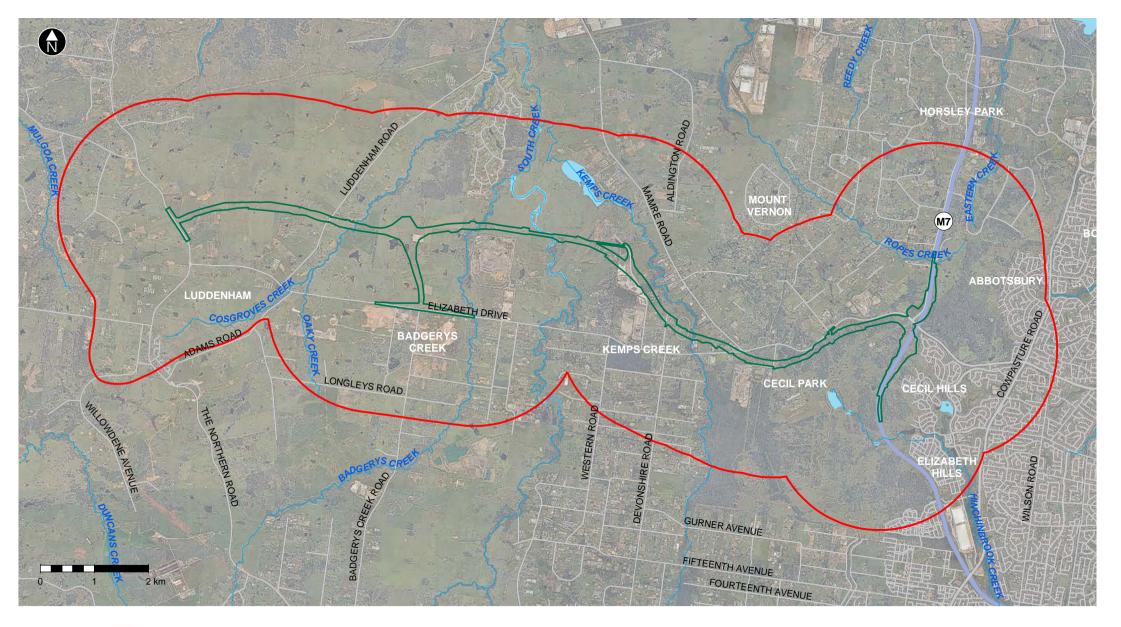
The project operational footprint is shown in Figure 5-2.

5.2.1 Groundwater inflows

Groundwater inflows during operation are not anticipated to differ from those likely to occur during construction (**Section 5.1.1**). If anything, operational inflows into the western cut would be less than during construction due to reduced hydraulic gradients.

5.2.2 Groundwater levels

Operational impacts to groundwater levels are not expected to differ from those which are likely to occur due to construction impacts (**Section 5.1**).


The most substantial changes to groundwater levels during operation are likely to occur in the area of the western cut, due to the cut intercepting and draining groundwater seepage. The maximum change to groundwater level would occur at the cut face and is anticipated to be about 1.61 metres, which is considered a minor change and likely within the bounds of variation caused by climate. No impacts are predicted as a consequence of this potential drawdown.

5.2.3 Groundwater quality

With the exception of recharge from project stormwater basin exfiltration, operational impacts to groundwater quality are not expected to differ from those which are likely to occur due to construction impacts (**Section 5.1.3**).

During operation, groundwater quality may be altered locally in the vicinity of stormwater basins. This may occur due to exfiltration from the stormwater basins resulting in groundwater recharge that has a different chemistry to that of the background groundwater recharge chemistry. If runoff from the road contains heavy metals, oil, grease or hydrocarbons from road use and/or accidental spills, the runoff would flow to stormwater basins and a small proportion may exfiltrate to the water table.

This is considered a low risk as potentially altered groundwater quality would be localised to the stormwater basins and the beneficial use category of the groundwater system is not anticipated to be degraded. Accordingly, the project would have a neutral effect on groundwater quality.

Groundwater assessment study area

The project operational footprint

Main roads

Figure 5-2 Project operational footprint

Date: 1/07/2019 Path: J:\IE\Projects\04_Eastern\IA145100\08 Spatial\GIS\Directory\7

5.2.4 Groundwater dependent ecosystems

Operational impacts to GDEs are not expected to differ from those which are likely to occur due to construction impacts (**Section 5.1.4**). During operation, reduced groundwater levels due to drainage of the western cut are estimated to be limited to within 60 metres of the cut. The nearest mapped GDE to the western cut is about 240 metres away. Therefore, groundwater level changes caused by cut dewatering are not expected to occur during operation of the project in the areas of mapped GDEs.

5.2.5 Groundwater bores

Operational impacts to groundwater bores are not expected to differ from those which are likely to occur due to construction impacts (**Section 5.1.5**).

Groundwater level and quality impacts to surrounding groundwater bores are not anticipated.

5.2.6 Surface water-groundwater interactions

Operational impacts to surface water-groundwater interactions are not expected to differ from those which are likely to occur due to construction impacts (**Section 5.1.6**).

As predicted for the construction phase, groundwater discharges from the western cut to surface water systems will be negligible during operation of the project. Additionally, groundwater level changes from potential western cut dewatering would be localised to within about 60 metres of the cut, which is sufficient distance from alluvial groundwater systems to avoid impacts.

The minor localised changes to groundwater levels due to pile construction that have been predicted to occur during the construction phase would be similar or less during the operation of the project.

No impacts to surface water-groundwater interactions are expected due to operation of the project.

5.2.7 Surrounding land uses

Groundwater related impacts to surrounding land uses are not anticipated. This is because changes to groundwater levels would be restricted to within about 60 m of the western cut and even at the cut where the potential change in groundwater level would be highest, reduced groundwater levels are expected to still be within the bounds of natural variability. Additionally, the project is not anticipated to result in a change in groundwater quality which would lower the beneficial use category or exacerbate existing salinity (groundwater or soil) conditions.

5.2.8 Groundwater take and licensing

Permanent dewatering in the form of seepage collection from the western cut would ordinarily require a water use approval, a water supply work approval and a WAL. However, as discussed in **Section 2.1**, the project is exempt from the need for water use approval, a water supply work approval and a WAL.

Operational groundwater take (ie inflow) is not expected to increase from that predicted to occur during construction (**Section 5.1.8**), if anything, the inflow rates would be lower.

For the purpose of assigning a volume for water accounting, a take of 2.46 ML/yr would be considered conservative since it accommodates the maximum estimated groundwater inflow calculated from the range of parameter set scenarios. It is noted that the entire range of estimated groundwater inflows are very low to negligible.

5.2.9 Soil and groundwater salinity

Soil and groundwater salinity impacts to surrounding land uses are not expected to occur as a result of the project operating.

5.2.10 Groundwater contamination

As discussed in **Section 5.2.3**, during operation, groundwater quality may be altered locally in the vicinity of stormwater basins due to exfiltration from the basins resulting in groundwater recharge. Such recharge is not anticipated to degrade the beneficial use category of the groundwater system.

Potential operational impacts associated with discharge of groundwater from the western cut would be the same as that applicable for construction impacts (**Section 5.1.10**). Therefore, potential operational discharge of groundwater is not anticipated to impact SREs.

With the implementation of the management measures outlined herein (**Section 7**) and in the EIS, impacts to groundwater quality during project operation are considered negligible and the beneficial use category of the groundwater system is not expected to be degraded.

5.3 Minimal impact considerations

As summarised in **Table 5-2**, the above potential construction and operational impacts meet the minimal impact considerations outlined in the NSW Aquifer Interference Policy (DPI NOW, 2012) and the project's groundwater quality objective (**Section 3.5**). Therefore, potential project impacts to groundwater are considered acceptable.

Table 5-2 Minimal impact consideration demonstration

Minimal impact considerations	Response
Water table	
 Less than or equal to 10 per cent cumulative variation in the water table, allowing for typical climatic "post-water sharing plan" variations, 40 m from any: a) High priority groundwater dependent ecosystem; or b) High priority culturally significant site; listed in the schedule of the relevant water sharing plan A maximum of a two metre decline cumulatively at any water supply work. 	
 2. If more than 10 per cent cumulative variation in the water table, allowing for typical climatic "post-water sharing plan" variations, 40 m from any: a) High priority groundwater dependent ecosystem; or b) High priority culturally significant site; listed in the schedule of the relevant water sharing plan if appropriate studies demonstrate to the Minister's satisfaction that the variation will not prevent the long-term viability of the dependent ecosystem or significant site. If more than a two metre decline cumulatively at any water supply work then make good provisions should apply. 	
Water pressure	
1. A cumulative pressure head decline of not more than a two metre decline, at any water supply work	Pressure decline is not predicted at water supply works.
2. If the predicted pressure head decline is greater than requirement 1 above, then appropriate studie are required to demonstrate to the Minister's satisfaction that the decline will not prevent the long-term viability of the affected water supply works unless make good provisions apply.	As per above response.
Water quality	
 Any change in the groundwater quality should not lower the beneficial use category of the groundwater source beyond 40 m from the activity 	The project is not anticipated to result in a change in groundwater quality which would lower the beneficial use category.
2. If condition 1 is not met then appropriate studies we need to demonstrate to the Minister's satisfaction that the change in groundwater quality will not prevent the long-term viability of the dependent ecosystem, significant site or affected water supply works.	

6. Cumulative impacts

Cumulative groundwater impacts may arise from the interaction of construction and operation activities of the project and other approved or proposed projects in the area. When considered in isolation, specific project impacts may be considered minor. These minor impacts may be more substantial, however, when the impact of multiple projects on the same receivers is considered. As such, the groundwater impacts discussed in **Section 5.1** and **Section 5.2**, are assessed in consideration of the recently completed, ongoing and proposed projects described in **Table 6-1**.

The identified projects are in varying stages of delivery and planning. This section provides an assessment of cumulative groundwater impacts based on the most current and publicly available information on the above. In many instances this is a high-level qualitative assessment. The assessment of cumulative impacts per project is discussed in the sections that follow.

Since potential groundwater drawdown impacts of the project are minor and localised (ie at the western cut), the project is expected to have a minor contribution to cumulative groundwater drawdown impacts. As the project is not expected to generate groundwater quality impacts during construction or operation, outside of the potential for accidental spills and localised negligible impacts at water quality basins, the M12 Motorway project would have a negligible contribution to cumulative groundwater quality and level impacts associated with the project and other identified projects in the vicinity.

Overall, given the minor impacts on groundwater generated by the project, which are also highly localised, the project would contribute only minor cumulative groundwater impacts associated with the construction and operation of the M12 Motorway project and other approved or known projects in the area.

Table 6-1 Assessment of potential cumulative impacts for relevant projects

Project	Relevance of the identified project to consideration of cumulative groundwater and hydrology impacts of the M12 project	Commentary
Western Sydney Airport (approved)	 Temporal and spatial relevance, due to following characteristics: Located directly adjacent to the project (overlapping areas of potential influence) Within the same groundwater system Likely to be some overlap in construction program, meaning likelihood of concurrent (simultaneous) construction and operation. 	 The Western Sydney Airport EIS groundwater assessment (GHD, 2016b) concluded that: Impacts to surrounding bores are expected to be negligible Impacts to artificial wetlands within the airport site are expected to be negligible Drawdown impacts in areas of sensitive vegetation are expected to be minor Drawdown associated with cuttings or building basements is expected to be very localised Overall reliance on groundwater discharge by creeks is low and changes to groundwater discharge would have minor impacts The underlying aquifer system is of low beneficial use There is a low risk of the project impacting water quality at surrounding surface water features and sensitive groundwater-reliant vegetation, and in areas of groundwater infiltration. The Western Sydney Airport EIS groundwater assessment (GHD, 2016b) indicated similar risks to groundwater are applicable during operation and construction.
Sydney Metro Greater West	 Temporal and spatial relevance, due to following characteristics: Located directly adjacent to the project (overlapping areas of potential influence) Within the same groundwater system Likely to be some overlap in construction program, meaning likelihood of concurrent (simultaneous) construction and operation. 	Construction of the Sydney Metro Greater West is likely to mean there will be both concurrent and consecutive activities with the construction of the M12 Motorway project. During timeframes where construction activities are concurrent, increased groundwater impacts may be possible. The magnitude of cumulative construction impacts will be dependent on the specific construction locations, activities and impacts which are yet to be determined for the Sydney Metro Greater West.

Project	Relevance of the identified project to consideration of cumulative groundwater and hydrology impacts of the M12 project	Commentary
The Northern Road Upgrade (approved) • Stage 5 (Littlefields Road to Glenmore Park) • Stage 6 (Eaton Road to Littlefields Road)	 Temporal and spatial relevance, due to following characteristics: Located directly adjacent to the project Within the same groundwater system Likely to be consecutive (back to back) construction and concurrent (simultaneous) operation. 	Stages 1 through 4 of The Northern Road upgrade would be completed by the time construction of the project commences. Based on the existing EIS documentation prepared for The Northern Road upgrade, there is no expected drawdown to the regional shallow unconfined water table and no expected impact to groundwater users including water supply users, GDEs, riparian areas or wetlands during construction of the project (Roads and Maritime, 2017). The construction for Stage 5 has commenced and is scheduled for completion end of 2022. The construction for Stage 6 is scheduled for mid-2019 to end of 2021. Construction activities associated with Stage 5 and Stage 6 may overlap with the project construction.
Other existing road network upgrades and potential road projects, including: • Elizabeth Drive Upgrade • Mamre Road Upgrade • Outer Sydney Orbital	 Temporal and spatial relevance, due to following characteristics: Located directly adjacent to the project Within the same groundwater system Potential to be consecutive (back to back) construction and concurrent (simultaneous) operation. 	The timing for construction of other road projects has not yet been announced. However, there is potential for overlaps in construction timing between the project and surrounding projects in the vicinity of the project. Based on current practice with 'design' of major roads, it would be expected that these projects are likely to generate similar impacts to that of the M12 Motorway – ie being localised and not expected to generate significant quality impacts beyond their respective footprints. Therefore, cumulative impacts are anticipated to be negligible.
 Major land releases, including: Western Sydney Aerotropolis South West Growth Area Western Sydney Employment Area. 	 Temporal and spatial relevance, due to following characteristics: Located directly adjacent to the project Within the same groundwater system Potential future context of the M12 project (operation). 	The timing for construction for surrounding urban development (growth areas) has not yet been announced. However, there is potential for overlaps in construction timing between the project and surrounding projects in the vicinity of the project. Urban and commercial development may impact on groundwater quality and levels. However, such impacts are anticipated to be minor based on the nature of the development and would be part of the analysis of constraints undertaken as part of strategic planning. The constraints analysis would also take into account major infrastructure such as the airport and road rail projects. If cumulative impacts to groundwater occurred, these impacts are anticipated to be minor and have limited consequences given the low value of the upper groundwater systems.

7. Environmental management measures

7.1 Overview

The environmental management measures that would be implemented to minimise groundwater and hydrology impacts of the project, along with the responsibility and timing for those measures, are presented in **Table 7-1**. These measures would be complimented by the environmental management measures outlines in Appendix M and Appendix O of the EIS. The environmental management measures include a groundwater monitoring program which will include collection of baseline groundwater data and groundwater monitoring during both construction and operation of the project as outlined in **Section 7.2**.

Based on the environmental management measures outlined in **Table 7-1**, it is considered that potential groundwater and hydrology impacts that may arise as a result of construction and operation of the project can be effectively managed.

Impact	Reference	Environmental management measure	Responsibility	Timing
Impacts to Groundwater quality and flows	GW01	Groundwater monitoring will be undertaken as part of the construction water quality monitoring program for the project. The groundwater monitoring will be based on the water quality monitoring methodology, water quality indicators and the monitoring locations presented in the Section 7.2 . Baseline groundwater monitoring will be undertaken at least monthly for at least six months prior to construction. Monitoring will also be undertaken at least monthly during construction and will continue for at least six months of operation to verify that there are no groundwater impacts, and that management measures are adequate.	Roads and Maritime/ Contractor	Prior to construction, and during construction
Alteration of groundwater flows and levels	GW02	Potential impacts to groundwater flows will be reconsidered as the detailed design for the project progresses, particularly in relation to the project's vertical alignment and extent of road cuttings. The aim of this will be to ensure that the groundwater controls proposed for the design as set out in the EIS, would remain effective in mitigating groundwater impacts. In the instance that, during detailed design it cannot be demonstrated that the groundwater controls would be effective in mitigating potential impacts, or if observed groundwater inflow rates into the western cut are higher than estimated, additional measures will be implemented to minimise potential impacts on groundwater flows due to road cuttings or other subsurface components of the project.	Contractor	Detailed design

Table 7-1 Environment management measures (groundwater and hydrology)

7.2 Groundwater monitoring program

7.2.1 Purpose

A groundwater monitoring program will be implemented as an environmental management measure to observe any changes in groundwater quality and levels that may be attributable to the project and inform appropriate management responses.

The monitoring program will include collection of baseline data for comparison to construction and operational monitoring data to understand, and respond to, any impacts from the project. An outline of each stage of the monitoring program (baseline, construction, operational) is provided in **Sections 7.2.2**, **7.2.3** and **7.2.4** (respectively) and describes the location and frequency of monitoring during these periods.

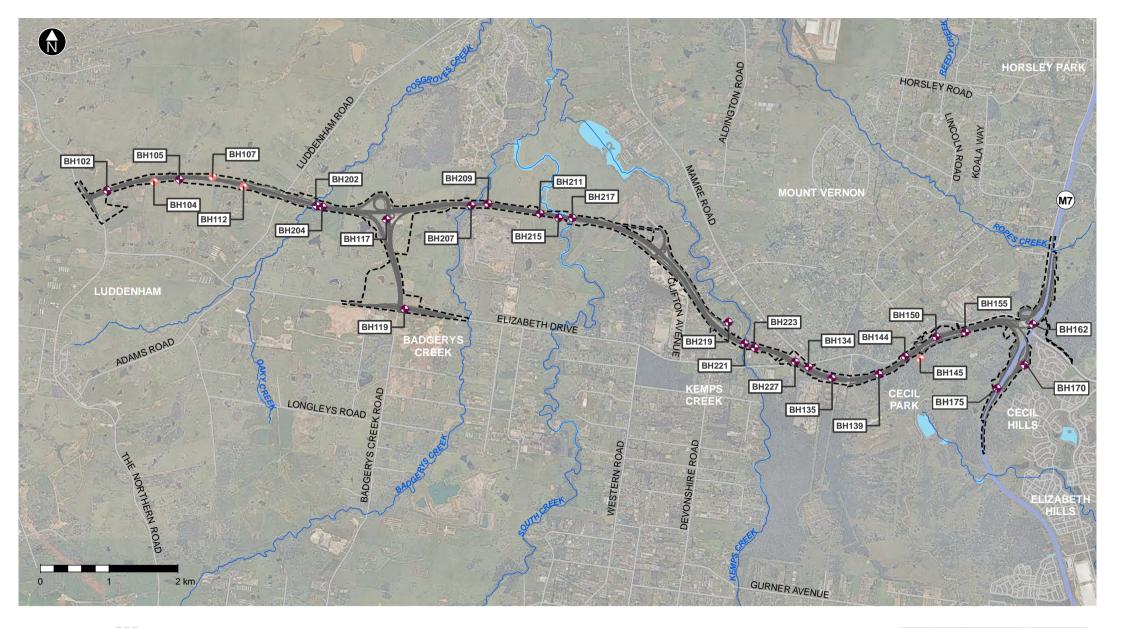
The groundwater quality indicators to be monitored are common to all stages of the monitoring program and are outlined in **Section 7.2.5**. Project groundwater monitoring bore locations are shown in **Figure 3-2**.

The frequency, locations and indicators to be sampled would be confirmed during detailed design.

7.2.2 Baseline data

The baseline data collected to date is presented in **Section 4.9.2** and **Section 4.9.5**. Additional baseline groundwater quality and level data will be collected prior to commencement of construction.

Additional baseline groundwater quality sampling will be undertaken at a monthly interval for at least six months at BH104, BH107, BH112 and BH145.


These locations were chosen because they represent areas of relatively substantial road cuttings and therefore there is a relatively higher potential for groundwater interception by the project alignment in these areas.

Additional baseline groundwater level monitoring will be undertaken primarily through download of data loggers. Groundwater level monitoring by data logger is currently being undertaken and will continue at all existing project groundwater monitoring bores (except BH301 and BH302, which were installed primarily to monitor gas) until at least the commencement of construction. The specific timing for the conclusion of the baseline monitoring period at each bore will vary. This is because construction will not commence uniformly over the whole alignment. Therefore, bore data that is collected during the construction period at bores that are sufficiently separated from construction works will still represent baseline data.

To allow for this, the baseline monitoring period will end at a specific project monitoring bore once construction is within 200 metres of that bore. This distance is considered conservative and suitable to ensure data collected to inform baseline conditions is representative.

Downloading of the logger data will occur concurrently with the groundwater quality sampling at BH104, BH107, BH112 and BH145. At remaining project monitoring bores, downloading of the logger data will occur quarterly. The purpose of the routine logger data downloading is to verify logger operation and provide opportunities to change logger batteries and address logger failures. Manual groundwater level monitoring by dip meter will be undertaken concurrently with the data logger downloading.

The location of the project groundwater bores that would be used for baseline data collection is presented in **Figure 7-1**.

- —— The project
- ----- Waterways
- Motorway
- Main roads

- Groundwater quality sampling and level monitoring bore (monitored monthly)
- Groundwater level bore (monitored quarterly)

Figure 7-1 Groundwater baseline monitoring locations

Date: 3/07/2019 Path: J:\IE\Projects\04_Eastem\IA145100\08 Spatial\GIS\Directory\Templates\MXDs\Figures\EIS\SpecialistReports\Groundwater\FinalEIS\JAJV_EIS_GW_F015_GroundwaterBaselineMonitoring_r2v1.m:

7.2.3 Construction phase groundwater monitoring

During construction, groundwater quality sampling will be undertaken monthly at BH104, BH107, BH112 and BH145.

Groundwater level data loggers will be downloaded at BH104, BH107, BH112 and BH145 concurrently with the groundwater quality sampling, and bi-monthly at all other project bores (except BH301 and BH302, which were installed primarily to monitor gas).

Manual groundwater level monitoring by dip meter will be undertaken concurrently with the data logger downloading.

With the exception of BH145, all of the project bores are within the construction footprint and will therefore be decommissioned during construction. Bores BH104, BH107, BH112 and BH145 will be replaced with newly drilled and constructed bores. The replacement bores are to be completed such that monthly groundwater quality sampling during construction can continue without a gap in the data record. All other bores will not be replaced unless data collected during the construction phase indicates this is required.

Groundwater quality monitoring indicators for the construction phase monitoring period are listed in the 'Groundwater monitoring indicators' section below.

7.2.4 Operational phase groundwater monitoring

Groundwater monitoring will continue for at least the first six months of operation to verify that operational impacts to groundwater are not occurring, or alternatively, inform appropriate mitigation measures. The operational phase groundwater level monitoring will be undertaken at the bores that replace BH104, BH107, BH112 and BH145 and will comprise:

- Monthly groundwater quality sampling for the indicators listed in in the 'Groundwater monitoring indicators' section below
- Monthly (concurrent with groundwater quality sampling) groundwater level data logger download and manual groundwater level measurement.

7.2.5 Groundwater monitoring indicators

The groundwater monitoring program will include monitoring of groundwater levels (data logger download and manual dipping at key locations) and sampling of the following indicators:

- Field parameters (electrical conductivity, pH, turbidity, dissolved oxygen, temperature and redox conditions)
- Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc, iron and manganese)
- Total recoverable hydrocarbons
- Nutrients (including ammonia, nitrate, nitrite, total nitrogen, total phosphorus)
- Major ions (chloride, sulphate, sodium, potassium, magnesium, calcium, carbonate and bicarbonate)
- Benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN)
- Total dissolved solids (TDS)
- Total suspended solids (TSS).

8. Conclusions

8.1 Summary

Based on a detailed review of background groundwater level and quality data, along with an analysis of the existing environmental setting and an assessment of the proposed alignment, with the exception of groundwater cultural values, the project is expected to generate negligible impacts on groundwater. As such, the project would have a negligible contribution to potential cumulative impacts associated with other projects in the surrounding area (ie Western Sydney Airport, Sydney Metro Greater West or major subdivisions and land releases).

Risks associated with accidental spills or leakages of hazardous materials (such as fuels, lubricants and hydraulic oils) during the construction phase of the project will be managed through the CEMP and during operation will be managed by surface water quality management measures outlined in Appendix M of the EIS.

Baseline groundwater level and quality monitoring has been undertaken and will be supplemented prior to construction, which in conjunction with construction and operational phase groundwater level and quality monitoring, will enable impacts to be identified and addressed with targeted response measures.

The project has minimal potential to directly interact with groundwater systems, with direct potential interaction expected to be limited to:

- A single cut in the west (about 1.5 kilometres east of The Northern Road) of the alignment, which may intersect the water table by up to about 1.6 metres over a distance of about 250 metres. This cut is referred to as the 'western cut' in this report.
- Bridge footings, where piles are drilled below the water table.

The assessment presented in this document is based on the design outlined in the M12 Motorway EIS. If the project is approved, a further detailed design process would follow, which may include variations to the design. Any subsequent changes to the design may alter the impacts outlined herein would be considered during the detailed design stage of the project.

8.2 Western cut

Potential groundwater inflows from the western cut were assessed to be very low. The maximum estimated groundwater inflow rate was 6.75 kilolitre per day. However, the majority of parameter sets adopted for sensitivity analysis generated groundwater inflow rates ≤1.00 kilolitre per day, and if the cut is exposed, evaporation would be about 1.45 kilolitre per day. The project is exempt from the need for a WAL. For the purpose of assigning a volume for water accounting, a take of 2.46 ML/yr is considered conservative since it accommodates the maximum estimated groundwater inflow calculated from a range of parameter set scenarios. It is noted that the entire range of estimated groundwater inflows were very low to negligible.

Groundwater quality at the bore (BH104) representative of this location had copper and zinc concentrations above the ANZECC Water Quality Guidelines trigger values for the protection of 95 per cent of freshwater species. However, the water quality at this location does not indicate a risk to human health, nor are impacts anticipated to occur due to intercepted groundwater from the cut being discharged to surface water.

8.3 Bridge footings

The project has the potential to cause minor localised water table changes in areas where bridge footings extend beneath the water table. Deep footings which extend beneath the groundwater table in alluvial material may lead to a minor, localised and short-term increase in groundwater level up-gradient of the footing due to flow obstruction. The reverse is expected to occur down-gradient of the footing. Such changes are not expected to affect the local groundwater flow system or alter groundwater-surface water exchange in the region of the creeks, as piled footings would readily accommodate local groundwater flow diversion around the pile.

9. References

ANZECC/ARMCANZ (2000) National Water Quality Management Strategy Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand.

ANZECC & ARMCANZ (2000a) National Water Quality Management Strategy: Australian and New Zealand Guidelines for Fresh and Marine Water Quality, paper no. 4, Commonwealth of Australia, Canberra.

Australian Government (2013) Guidelines for groundwater quality protection in Australia: National Water Quality Management Strategy, Department of Agriculture and Water Resources, Canberra, March. CC BY 3.0.

Australian Government (2018) Charter: National Water Quality Management Strategy, Department of Agriculture and Water Resources, Canberra, March. CC BY 3.0.

Australian Government Bureau of Meteorology (2018a), Australian Groundwater Explorer, accessed August 2018 at http://www.bom.gov.au/water/groundwater/explorer/map.shtml.

Australian Government Bureau of Meteorology (2018b), Groundwater Dependent Ecosystems Atlas, accessed August 2018 at http://www.bom.gov.au/water/groundwater/gde/map.shtml.

Australian Government Bureau of Meteorology (2018c) Weather observations for Badgerys Creek, accessed August 2018 at http://www.bom.gov.au/climate/averages/tables/cw_067108.shtml.

Australian Soil Resource Information System (ASRIS) Online acid sulfate soil map, accessed 4 September 2018 at http://www.asris.csiro.au/mapping/viewer.htm.

Bannerman, S. M and Hazelton, P. A (1990) Soil Landscapes of the Penrith 1:100,000 Sheet map and report, Soil Conservation Service of NSW, Sydney.

BMT (2013) Rural Area Flood Study Ropes, Reedy & Eastern Creeks Final Report. Prepared for Fairfield City Council, November 2013

Cooper, H. H. and Jacob, C. E. (1946) A generalized graphical method for evaluating formation constants and summarizing well field history, Trans Am, Geophys, Union, 27 (4) 526-534.

Department of Land and Water Conservation (1998) 1:25,000 Scale Acid Sulfate Soils Risk Map Series, Sydney.

Department of Land and Water Conservation (2002a) NSW State Groundwater Dependent Ecosystems (GDEs) Policy.

Department of Land and Water Conservation (2002b) Map of Salinity Potential in Western Sydney.

DPI (2013) Industries Policy and Guidelines for Fish Habitat Conservation and Management. NSW Department of Primary, June 2013.

Fairfull, S. and Witheridge, G. (2003) Why do Fish Need to Cross the Road? Fish Passage Requirements for Waterway Crossings. NSW DPI Cronulla.

Geological Survey of NSW (1991) The Penrith 1: 100,000 Geological Series Sheet 9030.

GHD (2016a) Western Sydney Airport EIS -Surface Water Hydrology and Geomorphology. Department of Infrastructure and Regional Development.

GHD (2016b) Western Sydney Airport EIS -Groundwater Assessment. Department of Infrastructure and Regional Development.

HNCMA (2007) Hawkesbury Nepean River Health Strategy. Hawkesbury Nepean Catchment Management Authority. March 2007.

HRC (1998) Independent inquiry into the Hawkesbury Nepean River System. Healthy Rivers Commission of New South Wales, August 1998.

JAJV (2019) M12 Motorway Concept Design and Environmental Impact Statement: Soils and contamination assessment report.

Liverpool City Council (2003) Austral Floodplain Risk Management Study and Plan. Review and Finalisation. Prepared by Perrens Consultants. September 2003.

Liverpool City Council (2008) Liverpool Local Environmental Plan, accessed August 2018 at https://www.legislation.nsw.gov.au/#/view/EPI/2008/403.

National Health and Medical Research Council (NHMRC 2015) Australian Drinking Water Guidelines ADWG 2015.

NSW Government Department of Primary Industries Office of Water (2012) NSW Aquifer Interference Policy.

NSW Government Office of Environment and Heritage (2018) Salinity potential in western Sydney, accessed August 2018 at https://www.environment.nsw.gov.au/research-and-publications/publications-search/salinity-potential-in-western-sydney-2002.

NSW Government, Water Act 1912 No. 44, Current version for 1 July 2018, accessed 11 July 2018.

NSW Government, Water Management Act 2000 No. 92, Current version for 1 July 2018, accessed 11 July 2018.

NSW Government (2015), Water Sharing Plan for the Greater Metropolitan Region Groundwater Sources 2011, Current version for 1 January 2015, accessed 11 July 2018.

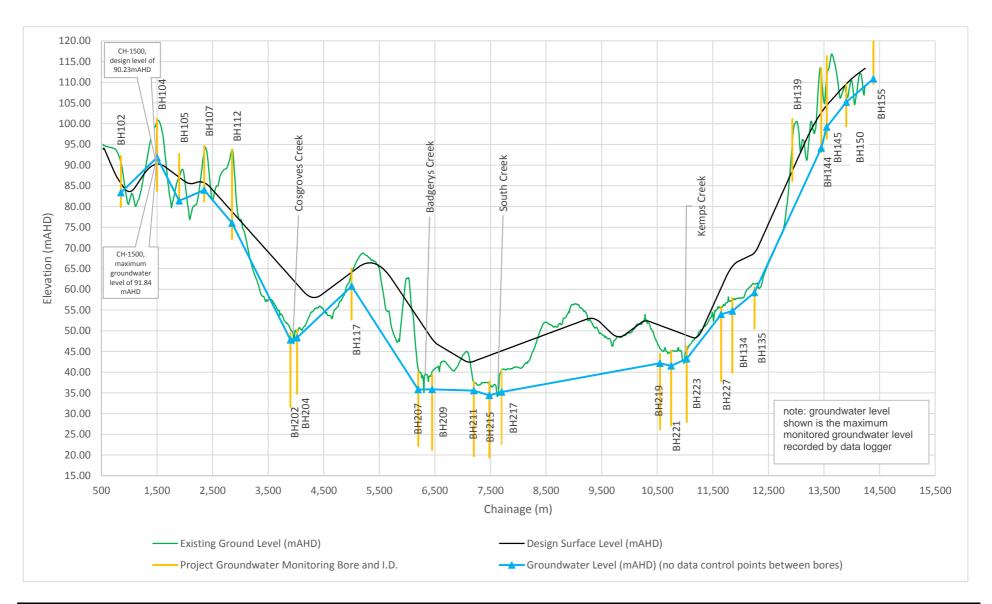
Penrith City Council (2010) Penrith Local Environmental Plan 2010, accessed August 2018 at https://legislation.nsw.gov.au/#/view/EPI/2010/540.

Rae, D. J. (2007) Water management in South Creek Catchment. Current state, issues and challenges. Technical report No. 12/07. Cooperative Research Centre for Irrigation Futures.

Roads and Maritime (2016) M12 Motorway Strategic Route Options Analysis, Hydrology Working Paper.

Roads and Maritime (2017) The Northern Road Upgrade – Mersey Road, Bringelly to Glenmore Parkway, Glenmore Park Final Environmental Impact Statement Volume 1: Main Report Roads and Maritime Services, December, 2017

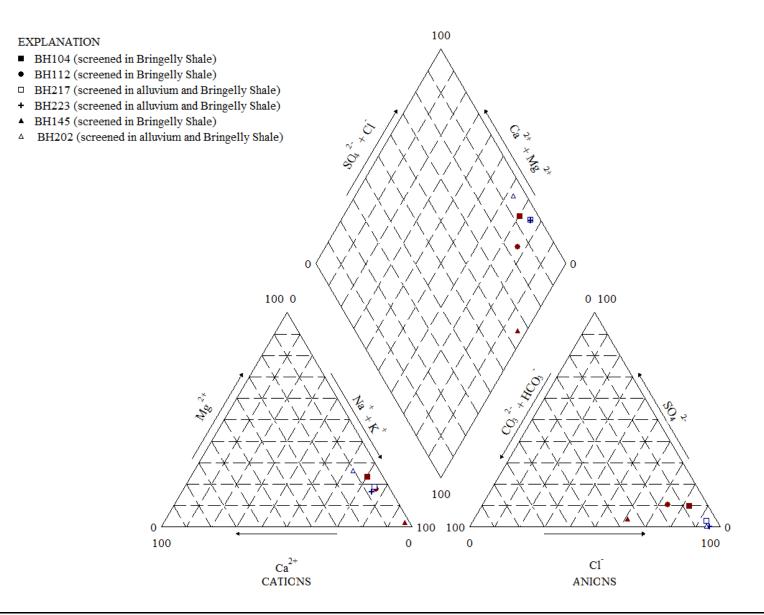
Russel, G., McKibbin, D., Williams, J. and Gates, G. (2009) A Groundwater Resource Assessment of the Triassic Rocks of the Sydney Basin, IAH NSW, Groundwater in the Sydney Basin Symposium, Sydney, NSW, Australia, 4-5 Aug. 2009, W>A>Milne-Home (Ed).


Seward, P., Xu, Yongxin, and Turton, Anthony (2015), Investigating a spatial approach to groundwater quantity management using radius of influence with a case study of South Africa, Water SA, Vol 411 No. 1.

Strahler, A. N. (1952) Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Am., 63, 1117-1142.

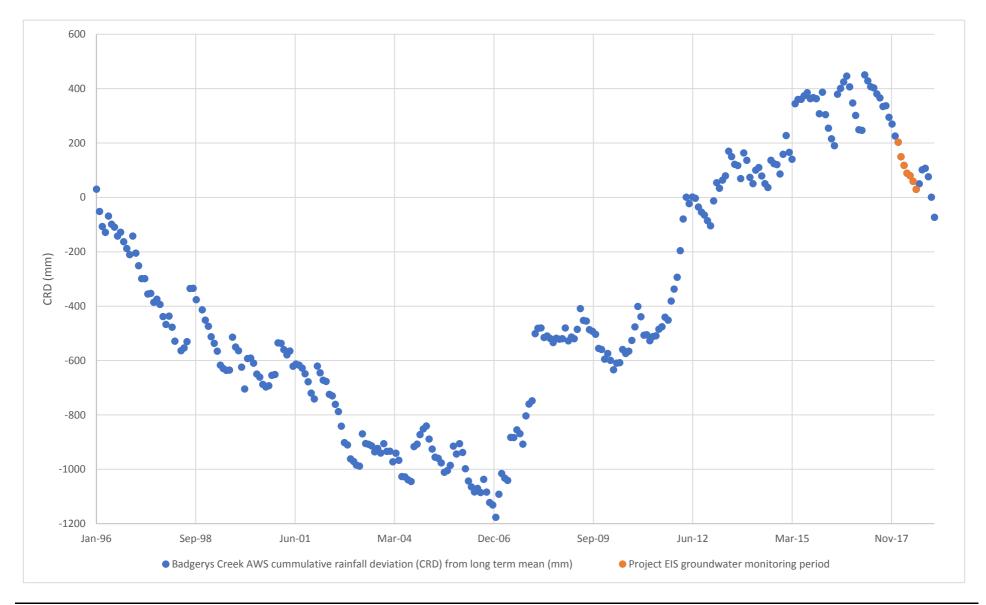
Water NSW (2019), NSW Water Register, accessed 2 May 2019 online at https://waterregister.waternsw.com.au/water-register-frame.

WSROC (2004) Western Sydney Salinity Code of Practice.


Annexure A Figures

JACOBS

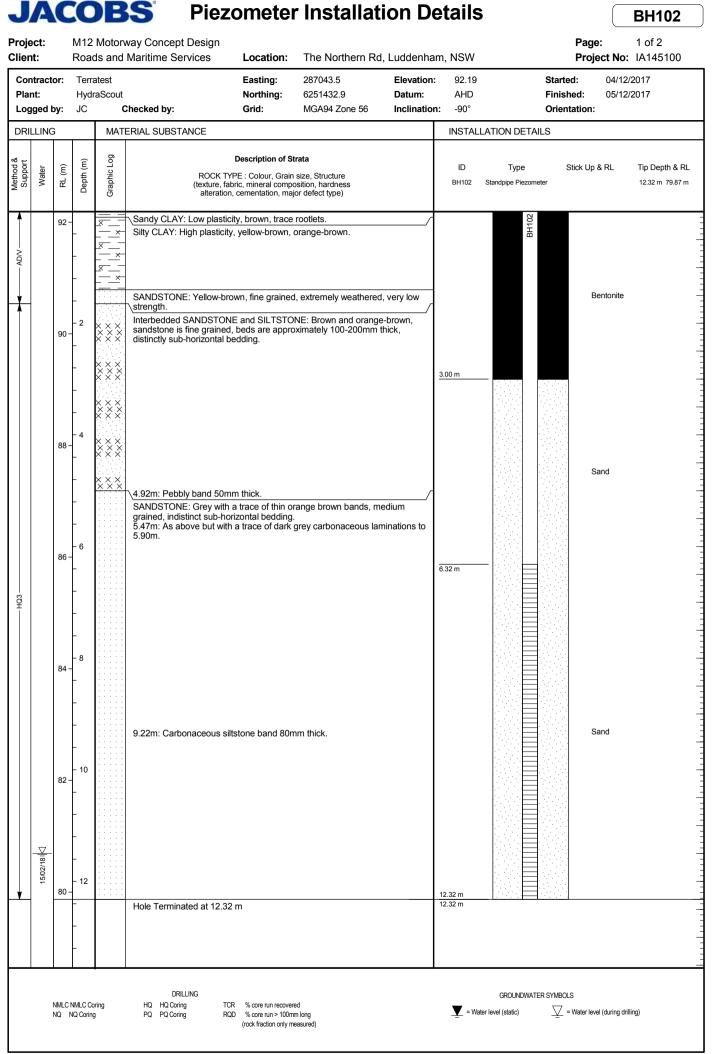
M12 Motorway Groundwater Monitoring Bore Long Section - Figure 1

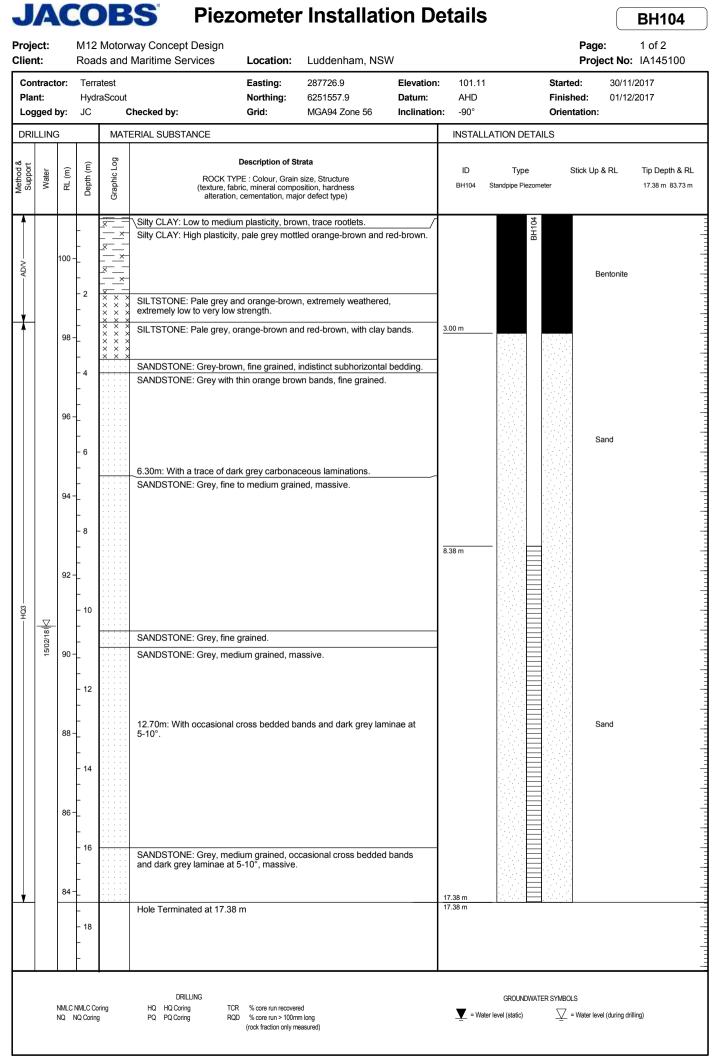

\Jacobs.com\ANZJE\Projects\04_Eastern\IA145100\09 Environmental\Surface and Ground Water\Groundwater\[M12 50% CD Cut Fill analysis_with gw analysis updated to 80%.xlxx]long section figure

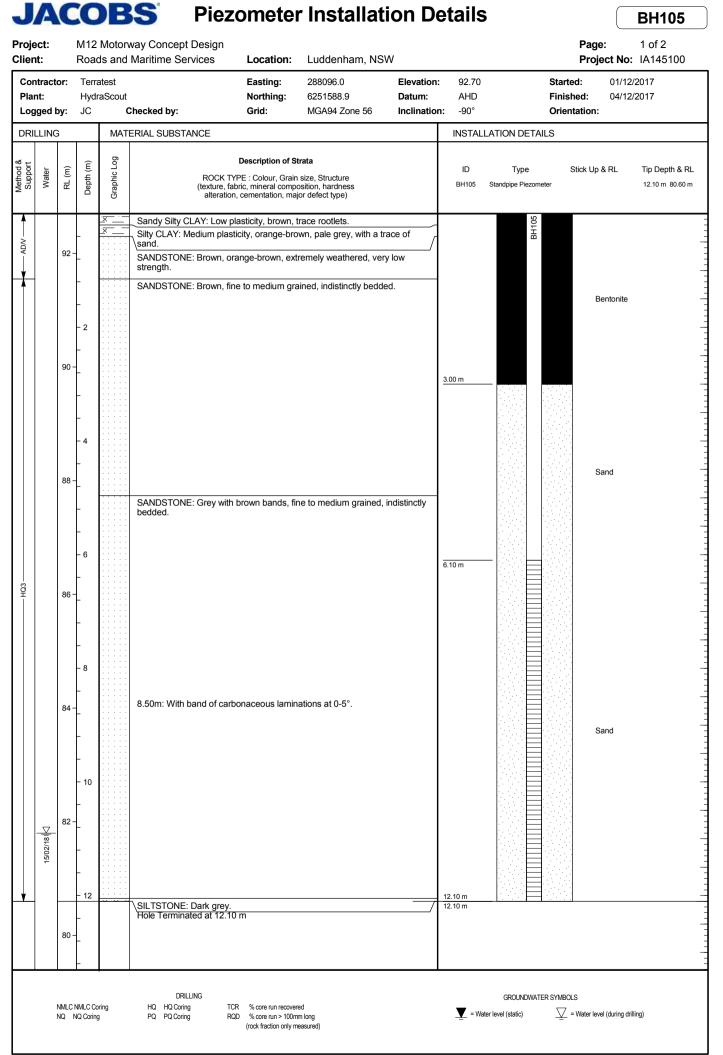

JACOBS

M12 Motorway Groundwater Monitoring Bore Piper Plot for BH104, BH112, BH145, BH202, BH2017 and BH223 - Figure 2

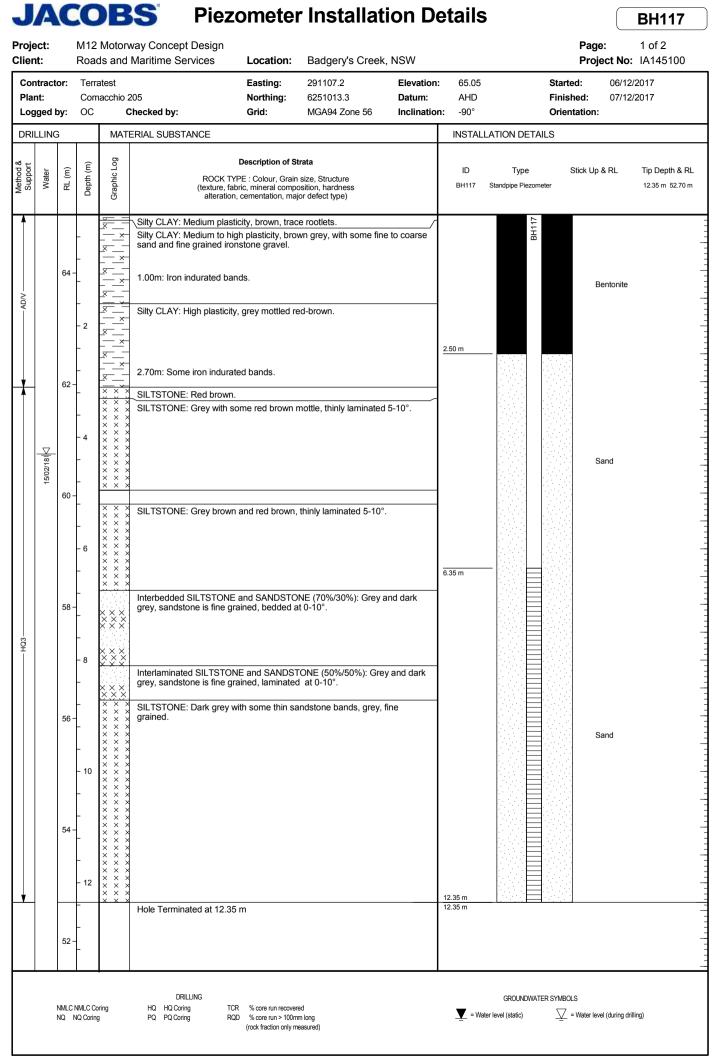
C:\Users\rosebj\Desktop\M12\[GW level data logger analysis.xlsx]Piper plot

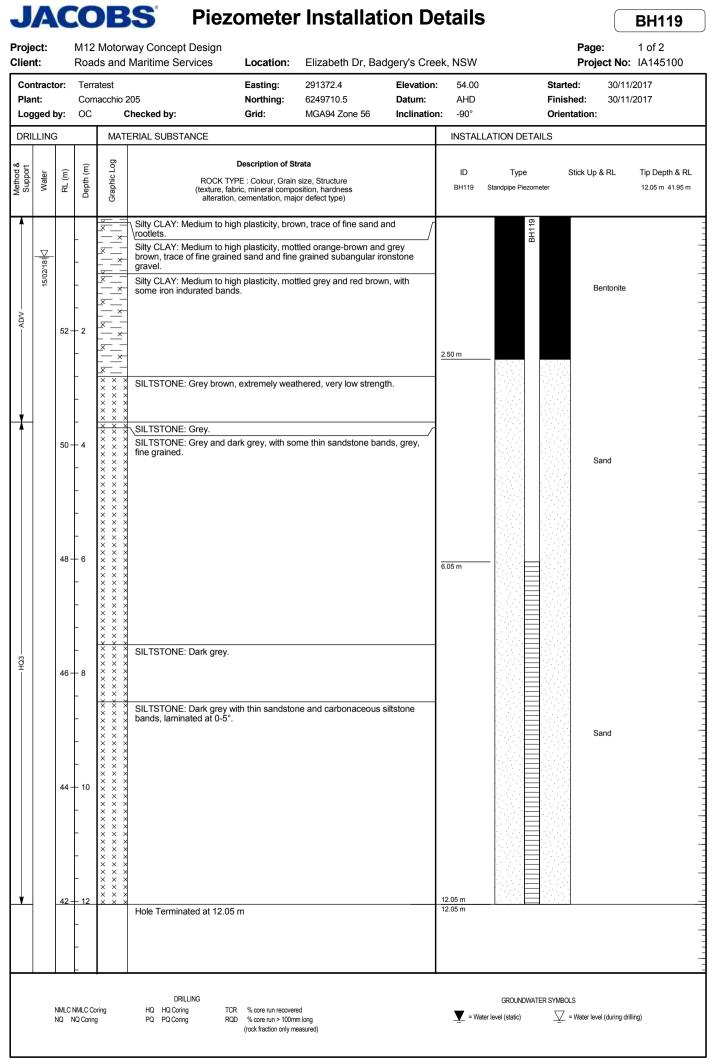



Badgerys Creek AWS BOM station cummulative rainfall deviation (CRD) and project EIS groundwater monitoring period - Figure 3



Annexure B Project monitoring bore logs





oje			С M12		way Concept Design						Pag	je:	BH107 1 of 2
ien					Maritime Services	Location:	Luddenham, NS	W				ject No:	IA145100
lan	tract it: ged l			atest nacchio : (205 Checked by:	Easting: Northing: Grid:	288574.6 6251634.4 MGA94 Zone 56	Elevation: Datum: Inclination	94.63 AHD : -90°		Started: Finished: Orientation	10/04/ 11/04/	
RIL	LING	3		MAT	ERIAL SUBSTANCE				INSTAL	LATION DETA	ILS		
Support	Water	RL (m)	Depth (m)	Graphic Log	(texture, fa	Description of St YPE : Colour, Grain abric, mineral compo n, cementation, maj	size, Structure osition, hardness		ID BH107	Type Standpipe Piezome	Stick U	p & RL	Tip Depth & R 13.45 m 81.18 n
		94 -	_	× ×	Silty Sandy CLAY: Low t yellow-brown, sand is fin		ity, red-brown mottled			BH107			
			-	· · · · · ·	SANDSTONE: Mottled b weathered, extremely low	prown and red-bro w strength.	own, fine grained, extre	emely			◄	Bentonite	
			- - 2		1.50m: V-bit Refusal SANDSTONE: Brown, fii 1.70m: As above, but wi 5°.			ations at	<u>2.00 m</u>				
		92 -	-										
			- - 4 -	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
		90 -	-		5.36m: As above, but be	coming medium	grained.						
	ered		- 6		,		g						
	Not Encountered	88 -	-		SANDSTONE: Grey and subrounded pebbles.	l orange-brown, fi	ine grained, with some	coarse					
			- - 8 -	× × × × × × × × × × × × × × × × × × ×	SILTSTONE: Grey, with	dark grey carbon	aceous laminations at	0°.	7.45 m			Sand	
		86 -	-	× × × × × × × × × × × × × × × × × × ×	9.07-9.14m: Sandstone 9.14m: As above, but da		ge-brown staining.						
	∇		- 10 -	× × × × × × × × × × × × × × × × × × ×									
	11/05/18	84 -	L	× × ×	SANDSTONE: Dark gre	y, fine grained.							
	-		- - - 12	× × × × × × × × × × × × × × × × × × ×	SILTSTONE: Dark grey	with orange-brow	n staining, laminated a	at 0°.					
		82 -	-	× × × × × × × × × × × × × × ×	Interlaminated SANDST Siltstone): Sandstone is subhorizontal lamination	grey, fine grained s.	I, siltstone is dark grey						
+			- 14	××××	SILTSTONE: Dark grey Hole Terminated at 13.4		vith grey laminations.		13.45 m 13.45 m				
		80 -	_										
-			VMLC C			CR % core run recover QD % core run > 100m (rock fraction only m	m long		= Wa	GROUNDWATE ter level (static)		evel (during drill	ing)

oje er	ect: nt:				ay Concept Design Iaritime Services	Location:	Luddenham, NS	N			Paç Pro	•	1 of 2 IA145100
	ntract			atest		Easting:	289024.5	Elevation:	93.78		Started:	03/04/	
aı	nt:		Con	nacchio 20	5	Northing:	6251485.3	Datum:	AHD		Finished:	04/04/	
bg	ged l	by:	JC	Ch	ecked by:	Grid:	MGA94 Zone 56	Inclination	: -90°		Orientatior	1:	
RI		3		MATEF	RIAL SUBSTANCE				INSTALLA	ATION DETAI	LS		
ort		-	Ê	Log	ſ	Description of St	rata		ID	Turpo	Stick U	n & DI	Tip Depth & I
Support	Water	RL (m)	Depth (m)	Graphic Log		E : Colour, Grain ic, mineral compo				Type Standpipe Piezome		PARE	21.63 m 72.15
				Ğ	alteration, o	cementation, maj	or defect type)						
			-	×	Silty Sandy CLAY: Medium	plasticity, red-	brown trace fine graine	ed sand.		BH112			
			F	<u>x · _ · </u>	SANDSTONE: Pale grey m	nottled vellow-b	rown and orange-brow	/n. fine		Ē			
2		92 -	-		grained, extremely weather	red, very low st	rength.	,			◄	Bentonite	
			- 2 -		SILTSTONE: Dark grey mo	ottled orange-b	rown, extremely weath	ered, very					
\vdash			F	$\times \times \times$	SILTSTONE: Pale grey and	d dark grev sta	ined orange-brown.		3.00 m, 90.78 m	F			
		90 -	-			3 , 9 , 1	J						
			- 4 -		Interlaminated SILTSTONE								
			F		Sandstone): Dark grey stai grained, subhorizontal lami		orange-brown, sands	tone is fine					
		88 -	-		Silty CLAY: Medium plastic	ity, pale grey, g	rey and yellow-brown						
			- 6 -	$\times \times \times$ $\times \times \times$ $\times \times \times$	SILTSTONE: Dark grey wit	h orange-brow	n staining, indistinctly l	aminated.					
			Ļ										
		86 -	- 8	\times \times \times \times	7.35-7.66m: As above, but	with iron indura	ated clasts.						
			Ē	$\begin{array}{c} \times \ \times \ \times \\ \times \ \times \ \times \\ \times \ \times \ \times \end{array}$									
			Ļ	$\begin{array}{c} \times \times \times \\ \times \times \times \end{array}$									
	ered	84 -	- 10	\times \times \times \times	SANDSTONE: Grey, fine g SILTSTONE: Grey and dar		d laminations.		9.63 m, 84.15 m				
	Not Encountered			10 0 1 0	SANDSTONE: Dark grey, f	-							
	Not Er			$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$	SILTSTONE: Dark grey be	coming pale gr	ey, indistinctly laminat	ed.					
		82 -	- 12	XXX	Interbedded SILTSTONE a	IND SANDSTO	NE (60% Siltstone, 40	%					
- HU3			- '2		Sandstone): Siltstone is da subhorizontal bedding.	rk grey, sandsi	one is grey, tine grain	ea,				Sand	
			F										
		80 -	- - 14	$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$									
			-		SILTSTONE: Dark grey, in sandstone bands approxim			ne grained					
			F			2							
	5/05/181	78 -	- 16	\times \times \times \times									
	15/		-	× × × × × × × × ×									
			F		Interbedded SILTSTONE a	Ind SANDSTO	NE (60% Siltstone, 40	%					
		76 -	- - 18	× × × × × ×	Sandstone): Siltstone is da subhorizontal laminations.	rk grey, sandst	one is grey, fine grain	ed, distinct					
			F	$\times \times \times$	17.90m: As above, but bec SILTSTONE: Dark grey, dis	-							
			-		laminations.	-	0						
		74 -	- - 20										
			F	$\begin{array}{c} \times \times \times \\ \times \times \times \end{array}$. .							
			╞	× × × × × ×	20.72m: Sandstone band, 20.98m: As above, but with	tine to medium n some fine gra	grained, 140mm thick ined Sandstone lamin	ations.	21.63 m, 72.15 r				
*		72 -	- 22		Hole Terminated at 21.63 r Target depth	n			21.63 m, 72.15 r		<u> </u>		
			F		i aigot deptii								
			-										
		<u> </u>	F	ļ –									
					DRILLING					GROUNDWATE	R SYMBOLS		
		NMLC I	NMLC Co		HQ HQ Coring TCR PQ PQ Coring RQD	% core run recovere % core run > 100mr			= Water	level (static)	🖂 = Water I	evel (during dril	lina)

	Terratest Easting: 29	Maritime Services	Location:	Clifton Ave, Kerr	ps Creek, N	SW		Page Proje		IA145100
Plant: C	Comacchio 20	05 hecked by: STP	-	295498.5 6250051.9 MGA94 Zone 56	Elevation: Datum: Inclination:	49.12 AHD : -90°	Fi	arted: nished: rientation:	27/06/2 27/06/2	
RILLING	-	RIAL SUBSTANCE				INSTALLATION	I DETAILS			
Support Water RL (m)	Depth (m) Graphic Log	ROCK TYP (texture, fab	Description of St PE : Colour, Grain ric, mineral compo cementation, majo	size, Structure sition, hardness			Type De Piezometer	Stick Up	& RL	Tip Depth & RL 9.40 m 39.72 m
Vot Euroonntered		CLAYEY GRAVELLY SAN brown, gravel is fine to me rootlets.; moist, very stiff - SILTY SANDY CLAY: me gravel; moist, very stiff to I SILTY CLAY: high plasticit medium, subangular irons 2.00m: Becoming pale gre some ironstone bands.	dium, subangul hard dium to high plas nard ty, red-brown an tone gravel; mo ey mottled red-br ey mottled red-br ty, pale grey mo JAL SOIL) wn, with some p re.; highly weath	lar to angular, with a tr sticity, brown, with a tr id grey, with some fine ist, hard rown and orange-brow ttled red-brown, with s pale grey clay seams iered, extremely low to	ace of fine / · · · · · · · · · · · · · · · · · ·	0.50 m, 48.62 m A	BH129		entonite	
		SILTSTONE: massive, grr highly weathered, extreme 5.84-5.89m: Carbonaceou 6.21-6.26m: Carbonaceou CARBONACEOUS SILTS laminations.; highly weath medium strength SILTSTONE: dark grey ar moderately weathered, low SILTSTONE: dark grey., r slightly weathered, mediur 8.50-8.66m: Sandstone la	ify low to very lo us siltstone banc is siltstone banc TONE: dark gre ered to moderat d grey., indistine w to medium stre nassive to indist n and high strer	w strength I. J. ey., distinct sub-horizo ely weathered, very lo ctly bedded, sub-horiz ength	ntal w and ontal.; dding.;					
39-		Hole Terminated at 9.40 n Target depth	n			9.40 m, 39.72 m AHD 9.40 m, 39.72 m AHD	DUNDWATER SY			

oject: ent:						tion De	lano				BH134
			way Concept Design Maritime Services	Location:	Elizabeth Dr, Ce	ecil Park, NSV	N		Pag Pro		1 of 2 IA145100
ontractor: lant: ogged by:		ratest IraScout (Checked by:	Easting: Northing: Grid:	297251.6 6248876.4 MGA94 Zone 56	Elevation: Datum: Inclination:	57.94 AHD : -90°		Started: Finished: Orientation	07/12/ 08/12/ :	
RILLING		MAT	ERIAL SUBSTANCE				INSTALL	ATION DETA	ILS		
Water RL (m)	Depth (m)	Graphic Log	(texture, fat	Description of Str PE : Colour, Grain s pric, mineral compos , cementation, majo	size, Structure sition, hardness		ID BH134	Type Standpipe Piezom	Stick Uj	0 & RL	Tip Depth & F 18.07 m 39.87
56 ♥ 81/20/91 54 52	- - - - - - 4 - -		Silty Sandy CLAY: Low to Silty CLAY: High plasticity 2.50m: Colour becomes p 4.00m: With a trace of fine	r, yellow-brown m bale grey mottled e to coarse subro	orange-brown, trac	ce of sand.	1.50 m	BH134		Bentonite	
50	- 8	· · · · · · · · · · · · · · · · · · ·	SANDSTONE: Pale grey low strength. SANDSTONE: Orange-br 9.00m: Siltstone band 400 SILTSTONE: Pale grey al	rown, fine grained	d.		9.07 m				
48	10 - - - - - - 12	××× ××× ××× ××× ××× ×××	Interbedded SILTSTONE grey, sandstone is grey, f	and SANDSTON	NE (70%/30%): Siltsto	one is dark					
44	- - - - 14 -	××× ××× ××× ××× ××× ×××	12.66m: Approximately 3(0% siltstone and	70% sandstone.					Sand	
42	- 16 - -	× × × × × ×	Interbedded SILTSTONE grey, sandstone is grey, f			one is dark					
40	- - 18 - -		Hole Terminated at 18.07	m			<u>18.07 m</u> 18.07 m				

ojec ient					way Concept Design Maritime Services	Location:	Range Rd, Ceci	l Park, NSW			Page: Proje		1 of 2 IA145100
Conti Plant	:		Hyd	atest raScout		Easting: Northing:	297594.0 6248705.9	Elevation: Datum:	60.55 AHD		Started: Finished:	07/12/2 07/12/2	
	Inc	-	JC		Checked by: ERIAL SUBSTANCE	Grid:	MGA94 Zone 56	Inclination:		TION DETAIL	Orientation:		
RILL		,			ERIAL SUBSTANCE				INSTALLA	ATION DETAIL	5		
nodque	Water	RL (m)	Depth (m)	Graphic Log	(texture, fa	Description of St (PE : Colour, Grain bric, mineral compo n, cementation, maj	size, Structure osition, hardness		ID BH135 S	Type Standpipe Piezomete	Stick Up 8	& RL	Tip Depth & F 10.00 m 50.55
		60 -	- - -		Silty Clayey SAND: Fine Silty CLAY: High plasticity			ce sand.		BH135	Be	entonite	
	15/02/181	59 -	- 1 - - - 2		Silty CLAY: High plasticity SILTSTONE: Pale grey a strength. SILTSTONE: Brown and 50-100mm, and thin clay	ind orange-brown	n, extremely weathere	ed, very low	1.00 m 1.00 m				
		58 -	- - - 3 -	*****									
		57 -	- - 4 -	× × × × × × × × × × × × × × × × × × ×	SILTSTONE: Grey, indist	inctly laminated a	at 0-5°.						
		55 -	- 5 - - - - 6	× × × × × × × × × × × × × × × × × × ×							Sa	ind	
		54 -	- - - - 7	××× ××× ×××	INTERLAMINATED SILT fine grained, siltstone is o		NDSTONE: Sandston	e is grey,					
		53 -	- - - - 8	× × × × × × × × ×									
		52 -	- - - - - 9	x x x x x x x x x x x x x x x x x x x									
_		51 -	- - - - - 10-		SANDSTONE: Grey with Hole Terminated at 10.00		grained.		10.00 m 10.00 m				
		50 -	-										
		NMLCI		pring	DRILLING HQ HQ Coring TC	R % core run recover	ed			GROUNDWATER		(during drilli	

J	A	C			S Piez	ometer	r Installa	tion De	etails	1			BH139
oje ien					way Concept Design Maritime Services	Location:	Western Sydne	y Parklands,	NSW		Page Proje		1 of 2 IA145100
Plan	tract It: ged			atest nacchio : (205 Checked by:	Easting: Northing: Grid:	298273.1 6248769.7 MGA94 Zone 56	Elevation: Datum: Inclinatior	AHD		Started: Finished: Orientation:	16/04/2 17/04/2	
RIL	LINC	3		MAT	ERIAL SUBSTANCE				INSTALL	ATION DETA	LS		
Support	Water	RL (m)	Depth (m)	Graphic Log	(texture, fa	Description of St 'PE : Colour, Grain bric, mineral compc a, cementation, maj	size, Structure osition, hardness		ID BH139	Type Standpipe Piezome	Stick Up &	& RL	Tip Depth & R 14.95 m 86.15 r
		100 -	2	×	Silty CLAY: Medium to hi SANDSTONE: Brown an very low strength. SANDSTONE: Brown, fir	d red-brown, fine	e grained, extremely v		<u>2.00 m</u>	BH139	—— Ве	entonite	
		98 -	- - - 4		2.45m: As above, but be 3.05m: As above, but co	-	-						
		96 -	-										
	tered		- 6 -		SANDSTONE: Brown an	d grey, fine grain	ied, with siltstone ban	ds.	5.95 m				
	Not Encountered	94 -	- - - - - -		SANDSTONE: Brown an breccia/nodules, dark gre		edium grained, with s	iltstone			Se Se	and	
		90 -	- 10 - - - - - - - - - - - 12		SILTSTONE: Dark grey v	vith orange-brow	n staining, indistinctly	laminated.					
		88 -	- - - 14		13.85m: Sandstone ban								
+		86 -	-		SANDSTONE: Grey, fine Hole Terminated at 14.94		an yıcy lanıllılde.		14.95 m 14.95 m				
			- - 16										
			- 16 NMLC Ca NQ Corin		DRILLING HQ HQ Coring TC PQ PQ Coring RC		m long		L = Wat	GROUNDWATE ar level (static)	ER SYMBOLS	l (during drilli	ng)

12 Motorway Concept Design oads and Maritime Services Location: Western Sydney Parklands, ierratest Easting: 298656.6 Elevation: comacchio 305 Northing: 6249024.3 Datum: //G Checked by: Grid: MGA94 Zone 56 Inclination MATERIAL SUBSTANCE	113.50 Start AHD Finis	shed: 05/04/2018 ntation: Stick Up & RL Tip	45100
Comacchio 305 Northing: 6249024.3 Datum: MG Checked by: Grid: MGA94 Zone 56 Inclination MATERIAL SUBSTANCE Inclination MATERIAL SUBSTANCE Inclination Image: Structure in the structure in the structure interal composition, hardness atteration, cementation, major defect type) Silty CLAY: Medium plasticity, brown, with a trace of root fibres in top 50mm. Image: Structure interaction	AHD Finis -90° Oriel INSTALLATION DETAILS ID Type BH144 Standpipe Piezometer 3.00 m, 110.50 m	shed: 05/04/2018 ntation: Stick Up & RL Tip 20.6	Depth & R
Image: Second state Description of Strata ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, major defect type) Silty CLAY: Medium plasticity, brown, with a trace of root fibres in top 50mm. SILTSTONE: Brown and dark grey, highly weathered, very low strength. Interbedded SILTSTONE and SANDSTONE (70% Siltstone, 30% Sandstone): Brown and grey, sandstone is fine grained, with iron staining in defects, thinly bedded. Silt Stome: Becoming more grey. Silt Therbedded SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Grey and dark grey, sandstone is fine grained. SANDSTONE: Pale grey with dark grey flecks and laminae, fine grained. Interbedded SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Grey and dark grey, sandstone is fine grained. SANDSTONE: Pale grey with dark grey flecks and laminae, fine grained. Intertaminated SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Grey and dark grey, sandstone is fine grained. Intertaminated SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Grey and dark grey, sandstone is fine grained, distinctly laminated.	ID Type BH144 Standpipe Piezometer	20.6	
Silty CLAY: Medium plasticity, brown, with a trace of root fibres in top 50mm. X X SILTSTONE: Brown and dark grey, highly weathered, very low strength. Interbedded SILTSTONE and SANDSTONE (70% Siltstone, 30% Sandstone): Brown and grey, sandstone is fine grained, with iron staining in defects, thinly bedded. X X S.5.0m: Becoming more grey. X X S.5.0m: Becoming more grey. S Sandstone): Grey and dark grey, sandstone is fine grained. SANDSTONE: Pale grey with dark grey flecks and laminae, fine grained. Interhaminated SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Grey and dark grey, sandstone is fine grained, distinctly laminated. S Sandstone): Grey and dark grey. sandstone is fine grained.	BH144 Standpipe Piezometer	20.6	
50mm. SULTSTONE: Brown and dark grey, highly weathered, very low strength. Interbedded SILTSTONE and SANDSTONE (70% Siltstone, 30% Sandstone): Brown and grey, sandstone is fine grained, with iron staining in defects, thinly bedded. X X X X X X 4 X X X 5.50m: Becoming more grey. X X X X X X Sandstone): Grey and dark grey, sandstone is fine grained. SANDSTONE: Pale grey with dark grey flecks and laminae, fine grained. SANDSTONE: Pale grey with dark grey, sandstone is fine grained. SANDSTONE: Pale grey with dark grey, sandstone is fine grained. X X X Interhedded SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Grey and dark grey, sandstone is fine grained. Interhaminated SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Grey and dark grey, sandstone is fine grained, distinctly laminated. X X X Interbedded SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Grey and dark grey, sandstone is fine grained, distinctly laminated.	3.00 m, 110.50 m	- Bentonite	
 10 X X X 12 X X 12 Interlaminated SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Siltstone is dark grey, sandstone is grey, fine grained. 14 X X X <li< td=""><td></td><td>Sand</td><td></td></li<>		Sand	
16 X			
18 × × × × × × × × × ×			
22 Hole Terminated at 20.40 m	20.65 m, 92.85 m AHD 20.65 m, 92.85 m AHD		
14 16 2 18	Sandstone): Siltstone is dark grey, sandstone is grey, fine grained.	Sandstone): Siltstone is dark grey, sandstone is grey, fine grained. Sandstone): Siltstone is dark grey, sandstone is grey, fine grained. Sandstone): Siltstone is dark grey, sandstone is grey, fine grained. Sandstone): Siltstone is dark grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone): Siltstone is dark grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone): Siltstone is dark grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone): Siltstone is dark grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone): Siltstone is dark grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone): Siltstone is dark grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone is grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone is grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone is grey with some thin sandstone bands and laminae, distinctly laminated. Sandstone is grey with some thin sandstone is g	Interfaminated SILTSTONE and SANDSTONE (50% Sittstone, 50% Sandstone): Sittstone is dark grey, sandstone is grey, fine grained. Sandstone): Sittstone is dark grey, sandstone is grey, fine grained. Sittstone: Sittstone is dark grey with some thin sandstone bands and laminae, distinctly laminated. Sittstone:

)	4)B	S Piezo	ometer	Installa	ion De	etails				BH145
oje ent					vay Concept Design Maritime Services	Location:	Western Sydne	/ Parklands, I	NSW		Page Proje		1 of 2 IA145100
lan	tract t: ged			atest nacchio 3 C	305 Checked by:	Easting: Northing: Grid:	298879.9 6248988.6 MGA94 Zone 56	Elevation: Datum: Inclination	116.30 AHD :: -90°		Started: Finished: Orientation:	05/04/ 06/04/	
RIL	LINC	G		MAT	ERIAL SUBSTANCE				INSTALL	ATION DETA	ILS		
support	Water	RL (m)	Depth (m)	Graphic Log	(texture, fab	Description of Str PE : Colour, Grain s rric, mineral compos , cementation, majo	size, Structure sition, hardness		ID BH145	Type Standpipe Piezomo	Stick Up	& RL	Tip Depth & F 20.00 m 96.30 r
		116-	-	×	Silty Sandy CLAY: Mediur γ root fibres in the top 50mr	n plasticity, brow	n and yellow-brown,	with some		BH145			
			- -		Silty CLAY: Medium plasti		ange-brown.			B	≺ — B	entonite	
		114 -	- 2		SILTSTONE: Dark grey a strength.	nd orange brown	n, extremely weathere	-					
			-	× × × × × × × × × × × ×	SILTSTONE: Dark grey w	ith some red-bro	wn		3.00 m, 113.30	m			
		112-	- 4 - -	× × × × × × × × × × × ×	Interbedded SILTSTONE Sandstone): Grey-brown,								
		110 -	- - 6 -	$\begin{array}{c} \times \times \times \times \\ \times \times \times \times \\ \times \times \times \end{array}$									
			- -	× × × × × × × × ×	7.60m: Increasing in Sand	dstone (40%) and	d becomina more are	W.					
	red	108 -	- 8 - -	× × × × × × × × ×	Interbedded SILTSTONE Sandstone): Grey and dai fine grained, thin to mediu	and SANDSTON	NE (60% Siltstone, 40 stained defects, san)%	8.00 m, 108.30	m AHD			
	29%066/EBthatintered	106 -	- 10	$\overset{\times\times\times\times}{\overset{\times\times\times}{\overset{\times\times\times}{\overset{\times\times}{\overset{\times\times}{\overset{\times\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}$	9.50m: Increasing in Siltst	one (70%), indist	tinctly bedded.						
			-	$\stackrel{\times\times\times}{\underset{\times\times\times}{\overset{\times\times}{\times}}}$							– Si	and	
		104 -	- 12 - -	× × × × × × × × ×									
		102 -	- - - 14	$\hat{x} \hat{x} \hat{x}$									
			-	$\hat{x} \hat{x} \hat{x}$									
			- - 16	\times \times \times \times \times	Carbonaceous SILTSTON		ONE (50% Siltetopo	50%					
		100 -	1 - -	$\overset{\times\times\times\times}{\overset{\times\times\times}{\overset{\times\times}{\overset{\times}{\overset{\times}{\overset{\times}{\times$	Sandstone): Dark grey an subhorizontal laminations	d grey, sandstor							
			- 18	X X X X X X	SANDSTONE: Grey, fine	arained with son	ne dark grev laminae						
		98 -	1 - -	× × × × × × × × ×	Interbedded SILTSTONE Sandstone): Dark grey, sa bedding.	and SANDSTON	NE (50% Siltstone, 50)%					
+		96 -	 		Hole Terminated at 20.00	m			20.00 m, 96.30 20.00 m, 96.30				
			-										
			NMLC Co		DRILLING HQ HQ Coring TCF PQ PQ Coring RQI	 % core run recovered % core run > 100mm (rock fraction only measured) 	n long		= Water	GROUNDWATI	ER SYMBOLS	el (during dril	ling)

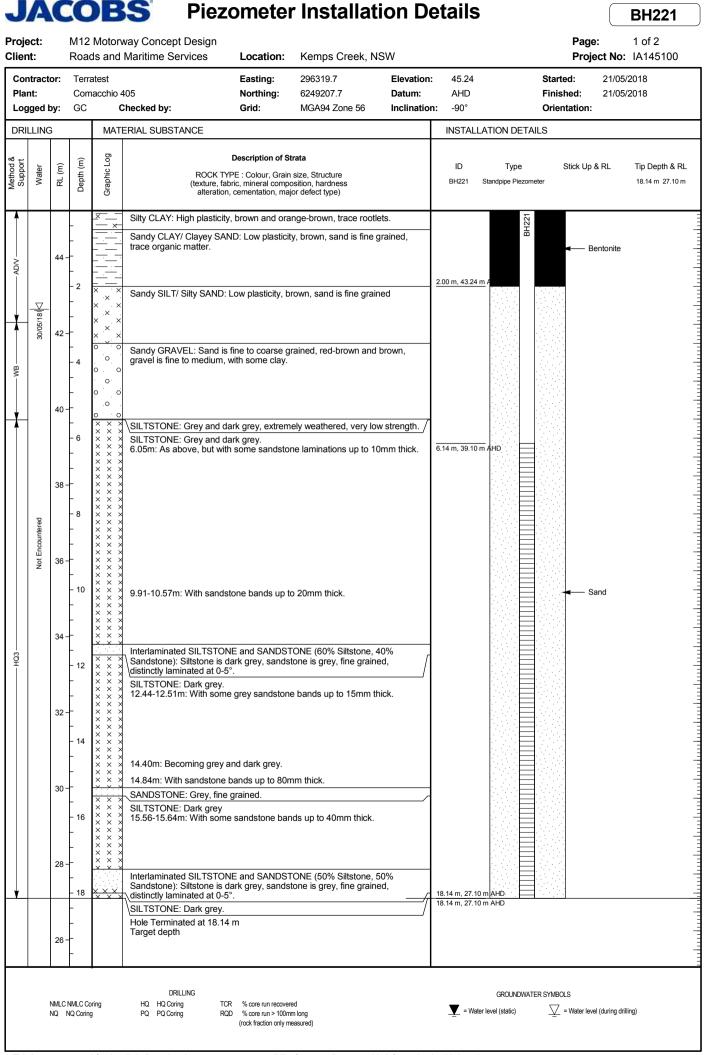
J	2			JE	S Piezo	ometer	Installat	tion D	etails	5		BH150
ojeo ient					way Concept Design Maritime Services	Location:	Western Sydne	y Parklands,	NSW		Page: Proje	1 of 2 ct No: IA145100
Plan	ract t: jed			atest nacchio ((305 Checked by:	Easting: Northing: Grid:	299108.0 6249307.6 MGA94 Zone 56	Elevation Datum: Inclination	AHD	0	Started: Finished: Orientation:	10/04/2018 10/04/2018
RIL	LINC	3		MAT	ERIAL SUBSTANCE				INSTAL	LATION DETA	ILS	
Support	Water	RL (m)	Depth (m)	Graphic Log	ROCK TYP (texture, fabr	Description of Stra E : Colour, Grain s ic, mineral compos cementation, majo	size, Structure sition, hardness		ID BH150	Type Standpipe Piezom	Stick Up &	RL Tip Depth & F 10.20 m 99.30
			-		Sandy Silty CLAY: Low to r top 50mm.	medium plasticit	y, brown, with root fil	ores in the		BH150		
		109 -	-	× · · ·	Silty CLAY: Medium plastic	city, orange-brow	vn.					
			- - 1 -		1.00m: Becoming dark gre	ey and brown.					—— Ве	ntonite
		108 -	-		Silty CLAY: Medium plastic some ironstone and shale	city, pale grey mo gravel.	ottled brown and red	, hard, with				
			- 2 -	× ×		-			<u>2.00 m</u>			
		107 -	-									
			- 3 -	× ×	- - -							
		106 -	-	× × × × × × × × × × × ×	SILTSTONE: Grey-brown a	and dark grey, h	ighly fractured.					
			- 4 -		4.20m: An above, but with	nome hands of	aandatana annravim	otoly	4.20 m			
	tered	105 -	-		4.20m: As above, but with 10-20mm thick.	Some bands of s	sandstone approxim	alely				
	Not Encountered		- 5 -	× × × × × × × × ×								
		104 -	-									
			- 6 -	× × × × × × × × ×	6.00-6.20m: Carbonaceou	s siltstone band.					Sa	nd
		103 -	-	× × × × × × × × ×	6.63-6.76m: Sandstone ba	and						
	∇		- - 7	× × × × × × × × ×	Interbedded SILTSTONE a Sandstone): Dark grey, sa	and SANDSTON	IE (60% Siltstone, 40 grained.)%				
	15/05/18	102 -	-									
			- - 8	$\overset{\times\times\times}{\overset{\times\times\times}{\overset{\times\times\times}{\overset{\times\times}{\overset{\times\times}{\overset{\times\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}{\overset{\times}}}{\overset{\times}}$	Interbedded SILTSTONE a		IE (50% Siltetopo 5)	19/				
		101 -	-	× × × × × × × × ×	Sandstone): Dark grey, sa bedded, with iron staining i	ndstone is fine g						
			- - 9		Interlaminated SILTSTONE Sandstone): Dark grey, sa			50%				
		100 -										
.			- - 10	$\times \times $					10.00 -			
		99 -	ŀ	<u>x x x </u>	Hole Terminated at 10.20 r	m			10.20 m 10.20 m			
			- - - 11									
			NMLC C NQ Corin		DRILLING HQ, HQ Coring TCR PQ, PQ Coring RQD	% core run recoverec % core run > 100mm (rock fraction only mea	long		= Wa	GROUNDWATI	ER SYMBOLS	(during drilling)

oje en	ct: t:				way Concept Design Maritime Services	Location:	Western Sydney	/ Parklands, I	NSW		Pag Pro		1 of 2 IA145100
lan	tract it: ged			ratest nacchio 4	405 Checked by:	Easting: Northing: Grid:	299535.5 6249379.5 MGA94 Zone 56	Elevation: Datum: Inclination	121.60 AHD : -90°		Started: Finished: Orientation	16/04/2 16/04/2	
RIL	LINC	3		MAT	ERIAL SUBSTANCE				INSTALL	ATION DETAI	LS		
Support	Water	RL (m)	Depth (m)	Graphic Log	(texture, fa	Description of SI YPE : Colour, Grain abric, mineral compo n, cementation, maj	size, Structure osition, hardness		ID BH155	Type Standpipe Piezomei	Stick Up	0 & RL	Tip Depth & RL 12.00 m 109.60 m
				×	Silty Sandy CLAY: Low p	blasticity, brown, v	with root fibres in top 5	50mm.	0.00 m	BH155			
			_		Silty CLAY: Low to medi	um plasticity, pale	e brown and red-brow	n.			1	Bentonite	
_		120 -	-		Silty CLAY: Medium plas weathered bands of silts	ticity, brown and tone.	red-brown, with some	extremely					
			- 2		1.90m: As above, but be	coming pale gre	y mottled red-brown.						
			-	× × × × × × × × × × × × × × × × × × ×	Interbedded SILTSTONE Sandstone): Brown and bedded.								
		118-	- 4	× × × × × ×					4.00 m	-			
			-	××× ××× ×××									
	Not Encountered	116 -	- 6	× × × × × ×	NO CORE: 200mm								
	Not		-	× × × × × × × × ×	SILTSTONE: Dark grey, grained.	with sandstone t	bands and laminae, gr	ey, fine				Sand	
		114 -	-	× × × × × × × × × × ×									
			- 8	× × × × × × × × ×	Interbedded SILTSTON Sandstone): Grey-brown medium bedded.	E and SANDSTO and grey, sands	NE (60% Siltstone, 40 tone is fine grained, th)% hinly to					
			-	× × × × × ×									
		112 -	- 10	× × × × × × × × × × × × × × × × × × ×	SILTSTONE: Dark grey,	subhorizontal lar	ninations.						
	29/05/18			× × × × × × × × × × × × × × × × × × ×									
		110 -	- 10	· · · · · · · · · · · · · · · · · · ·	11.60m: As above, but v	vith some sandst	one bands.		12.00 m				
			-		Hole Terminated at 12.0	0 m			12.00 m				
		NMLCI			DRILLING HQ HQ Coring T(CR % core run recover				GROUNDWATE	R SYMBOLS		

roj lie	ect: nt:				way Concept Design Maritime Services	Location:	Cosgroves Cree	ek, Luddenha	am. NSW			Page: Project No	1 of 2 : IA145100
Pla	ntract nt: gged			atest nacchio 4 (405 Checked by:	Easting: Northing: Grid:	290089.9 6251218.3 MGA94 Zone 56	Elevation: Datum: Inclination	AHD		Starte Finish Orient		5/2018 5/2018
DR	LLING	G		MAT	ERIAL SUBSTANCE				INSTALL	ATION DETA	AILS		
Support	Water	RL (m)	Depth (m)	Graphic Log	(texture, fa	Description of S /PE : Colour, Grain bric, mineral comp	size, Structure osition, hardness		ID BH202	Type Standpipe Piezon		Stick Up & RL	Tip Depth & RI 17.93 m 31.60 m
•			-	0 ×	aiteration Silty SAND: Fine grained ∖gravel.	n, cementation, ma		ounded		BH202			
AD/V	15/05/18	48-	- - - 2 -		Silty Sandy CLAY: High fine grained, with a trace		-brown, mottled pale ູ	grey, sand is	2.00 m, 47.53 n			Bentonite	
	-	46 -	- - 4 -	· · · · · · · · · · · · · · · · · · ·	SANDSTONE: Pale grey very low strength. SANDSTONE: Orange-b grey carbonaceous lamir SILTSTONE: Dark grey, laminations and bands.	rown and yellow nations.	-brown, fine grained, v	vith dark					
		44 -	- 6 -	× × × × × × × × × × × × × × × × × × ×	SANDSTONE: Grey, fine				5.93 m, 43.60 n	ī AHD			
	Not Encountered	42 -	- - 8 -	× × × × × × × × × × × × × × × × × × ×	Carbonaceous SILTSTO SILTSTONE: Dark grey, 8.39m: As above, but wit 8.76-8.89m: Sandstone I	with pale grey ba	onaceous Siltstone.	tions.					
- HQ3	Not	40 -	- - - 10 -	× × × × × × × × × × × ×	Interlaminated SILTSTO Sandstone): Siltstone is subhorizontal lamination:	NE and SANDST dark grey, sands	ONE (60% Siltstone/	40% led, distinct				Sand	
		40 -	- - - 12 -	× × × × × × × × × × × × × × × × × × ×	SILTSTONE: Dark grey a sandstone laminae, pale	nd grey, subhorizontal laminations with some		h some					
		36 -	- 14 	× × × × × × × × × × × ×	Interlaminated SANDST(Siltstone): Sandstone is subhorizontal laminations	grey, fine grained							
		34 -	- - - 16 -	× × × × × × × × × × × × × × ×	Carbonaceous SILTSTO	NE: Dark grey, ii	ndistinctly laminated.						
¥.		32 -	- 18	× × ×	SANDSTONE: Grey and Interlaminated SILTSTO Sandstone): Siltstone is subhorizontal laminations	NE and SANDS dark grey, sands 3.	ONE (70% Siltstone/	30%	17.93 m, 31.60 17.93 m, 31.60				
		30 -	- - -		Hole Terminated at 17.93 Target depth	3 m							
			NMLC Co			CR % core run recover CD % core run > 100m (rock fraction only m	im long		= Wate	GROUNDWA [*]	_	S Water level (during d	illing)

roje lier	ect: nt:				vay Concept Design Maritime Services	Location: Cosgroves Creek, Luddenh			m. NSW			Page: Projec		1 of 2 IA145100
Contractor: Plant: Logged by:		Terratest Comacchio 40 JC CI		405 Shecked by:	Easting: 290177.3 Northing: 6251195.2 Grid: MGA94 Zone 56		Elevation: 50.24 Datum: AHD Inclination: -90°			Started: Finished: Orientation:		19/04/2018 20/04/2018		
DRI	LLING	3			ERIAL SUBSTANCE				INSTAL	ALLATION DETAILS				
						Description of St	rata							
Support	Water	RL (m)	Depth (m)	Graphic Log	(texture, fat	PE : Colour, Grain pric, mineral compo , cementation, maj	osition, hardness		ID BH204	Type Standpipe Piezo	meter	Stick Up & F	ΚL	Tip Depth & RL 15.43 m 34.81 m
	15/05/18	50 -	2		Silty SAND: Fine grained, Sandy CLAY: High plastic medium grained, trace fin	ity, yellow-brown	n mottled grey, sand is	s fine to e rootlets.		BH204		Bent	tonite	
- ADN -		48-	-		Gravelly CLAY: Low to m orange-brown and yellow ironstone, with fine to coa	-brown, gravel is	fine to coarse sub-ro	unded	<u>3.00 m</u>					
¥.		46 -	- 4 -	· · · · · · · · · · · · · · · · · · ·	SANDSTONE: Grey, fine SANDSTONE: Grey stain with dark grey laminations	ed orange-brow		Ĵ						
	q	44 -	- 6	· · · · · · · · · · · · · · · · · · ·	SILTSTONE: Dark grey w carbonaceous siltstone b 6.00m: As above, but trac	<i>i</i> ith occasional g ands.		s.	6.43 m					
	Not Encountered	42 -	- - 8 -		SANDSTONE: Grey, fine SILTSTONE: Grey. SANDSTONE: Grey, fine SILTSTONE: Grey. SANDSTONE: Grey, fine	grained.								
— наз —		40 -	10	× × × × × × × × × × × × × × × × × × ×	SILTSTONE: Dark grey. CARBONACEOUS SILTS SILTSTONE: Dark grey, i			ninae.				San	d	
			-	^ ^ × × × × × × × × × × × × × × × × × ×	Interlaminated SANDSTC Siltstone): Sandstone is g subhorizontal laminations	rey, fine grained								
		38 -	- 12 - -	× × × × × × × × × × × × × × × × × × ×	Interbedded SILTSTONE Sandstone): Siltstone is c subhorizontal bands with	ark grey, sands some pebble ba	tone is grey, fine grain inds.	ed,						
		36 -	- - 14 -	× × × × × × × × × × × × × × × × × × ×	Interlaminated SILTSTON Sandstone): Siltstone is d distinctly laminated. Carbonaceous SILTSTOI Interlaminated SANDSTC and dark grey, sandstone	ark grey, sands NE: Dark grey. NE and SILTST	tone is grey, fine grain ONE (70%, 30% Silts	ed, tone): Grey						
¥		34 -	- - 16 -		Hole Terminated at 15.43	m			15.43 m 15.43 m					
			NMLC Co			R % core run recover D % core run > 100m			_ = Wa	GROUNDWA	_	OLS , _ = Water level (d	luring drilling	

	.\				S Piezo	Jineter	Installa		elans			L	BH207
oject: ent:	:				way Concept Design Maritime Services	Location:	Badgery's Cree	k, NSW				Page: Project N	1 of 2 lo: IA145100
Contractor: Plant: Logged by:		r:	Terratest Comacchio 205			Easting: Northing: Grid:	292341.6 6251217.1 MGA94 Zone 56	Elevation: Datum: Inclinatior	AHD		Started Finishe Orienta	l: 02/ ed: 03/	05/2018 05/2018
	NG			MAT	ERIAL SUBSTANCE				INSTALLA	TION DETA	AILS		
Water		RL (m)	Depth (m)	Graphic Log	ROCK TYF (texture, fabi	Description of Stra PE : Colour, Grain s ric, mineral compos cementation, major	size, Structure sition, hardness		ID BH207 S	Type tandpipe Piezom		ick Up & RL	Tip Depth & F 17.90 m 22.13
		-	_	x — ×	Silty CLAY: Medium to hig			o 50mm.		BH207			
_			-	×	Silty CLAY: High plasticity,	brown, yellow-br	rown and grey.			Ξ		Bentoni	te
	:	38 -	- - 2		NO CORE: 850mm				2.00 m, 38.03 m	r			
			_		Silty Sandy CLAY: High pla	asticity, orange-b	prown and grey, w <	PL, Vst.					
			-		NO CORE: 500mm								
<u> </u>	7	36 -	- 4		SANDSTONE: Yellow-brov SILTSTONE: Dark grey, p		-	iined.					
15/05/18	200		-		Carbonaceous SILTSTON sandy laminations.	E: Dark grey and	d grey, with some fir	e grained					
		34 -	- 6	$\begin{array}{c} \times \ \times \ \times \\ \times \ \times \ \times \\ \times \ \times \ \times \end{array}$					5.90 m, 34.13 m	AHD =			
			-		0.00.0.00m. 0illetere have	4.000							
			-		6.60-6.90m: Siltstone band	d, 300mm.							
		32 -	- 8		7.50m: Sandstone band, f	ine grained, 40m	nm thick.						
ountered		52 -	-	$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$									
Not Encountered			-	× × × × × ×	Interlaminated SILTSTON	E and SANDSTC	ONE (50% Siltstone/	50%					
		~~	- 10	$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$	Sandstone): Dark grey and laminated at 0-5°.	d grey, sandston	e is fine grained, dis	tinctly				Sand	
		30-	- 10 -										
			-	$\stackrel{\times\times\times}{\underset{\times\times\times}{\overset{\times\times}{\times}}}$	10.50m: Increasing in san								
		20	- 12	× × × × × × × × ×	11.50m: Increasing in sand thick.	dstone (75%), wi	ith some bands up t	o 100mm					
		20-	- 12										
			-	$\times \times $									
		~~	-	××× ×××	13.20-13.40m: Sandstone	band, 20mm							
		26-	- 14 -		SILTSTONE: Dark grey. 14.00m: Pebble band, 50n	nm.							
				$\hat{x} \hat{x} \hat{x}$	Carbonaceous SILTSTON	IE: Dark grey.							
		24 -	- - 16		Interlaminated SILTSTON	E and SANDSTO							
			L	×××	laminated at 0-5°. Interlaminated SILTSTON								
			-	×××	Sandstone): Dark grey and laminated at 0-5°.	u grey, sandston	ie is line grained, inc	isuncuy					
		22	- 18	××× ×××					17.90 m, 22.13 m				
					Hole Terminated at 17.90 Target depth	111							
			-										
			_										
	A 14	MIC	MICC	ving	DRILLING	% core run recovered	4			GROUNDWAT	TER SYMBOLS		
			VMLC Co IQ Coring		HQ HQ Coring TCR PQ PQ Coring RQD		long		= Water I	evel (static)	<u> </u>	Vater level (during	g drilling)


oject: ent:			way Concept Design Maritime Services	Location:	Badgery's Creel	NSW			Page Proje	: 1 of 2 ct No: IA145100
ontractor: ant: ogged by:	Terra	atest 1acchio 4		Easting: Northing: Grid:	MGA94 Zone 56	Elevation: Datum: Inclination	AHD		Started: Finished: Orientation:	06/06/2018 06/06/2018
RILLING		MATE	ERIAL SUBSTANCE				INSTALI	LATION DETAIL	_S	
Water RL (m)	Depth (m)	Graphic Log	(texture, f	Description of S YPE : Colour, Grain abric, mineral comp on, cementation, ma	size, Structure osition, hardness		ID BH209	Type Standpipe Piezome	Stick Up 8 er	RL Tip Depth & 18.15 m
1506/18	- - - - - - - - - - - - - - - - - - -		Silty CLAY: Medium pla trace subrounded to rous and. Silty CLAY: Medium pla ironstone gravel. SILTSTONE: Grey and SILTSTONE: Dark grey 6.30m: With some fine g	nded fine ironsto sticity, grey and o dark grey, extrem and brown, indist	ne gravel, trače of fine range, trace subangul lely weathered, very lo	ar fine	0.40 m 0.50 m			ntonite
Not Encountered	- 8 - 8 	x x x x x x x x x x x x x x x x x x x	6.90m: As above, but w SILTSTONE: Grey. V.96m: With some grey SILTSTONE: Grey, with SILTSTONE: Dark grey laminations. 9.20-9.30m: With some SILTSTONE: Dark grey 2mm thick. 11.13-11.29m: With sor 11.42-11.58m: Grey and 12.52m: Becoming disti SILTSTONE: Dark grey laminations.	fine grained same some grey, fine g and grey, with tra grey, fine grained and grey, with so ne subangular to d dark grey sands netly laminated.	dstone laminations. grained sandstone lan ice carbonaceous bar I sandstone lamination me carbonaceous lan subrounded pebbles. tone band, fine graine	ids and is. hinae up to id.			sa	nd
	- 14 - - - - - 16 - -		Interlaminated SANDST Siltstone): Sandstone is laminated at 0-5°. SANDSTONE: Grey, fin bands.	grey, fine grained	d, siltstone is dark grey	, distinctly				
	- - 18 - - -		Hole Terminated at 18.7 Target depth	5 m			18.15 m 18.15 m			

	MATERIAL SUBSTANCE	AHD Finis on: -90° Orien INSTALLATION DETAILS	
Authoric aut	MATERIAL SUBSTANCE Description of Strata ROCK TYPE : Colour, Grain size, Structure (texture, fabric, mineral composition, hardness alteration, cementation, major defect type) Silty Sandy CLAY: Medium plasticity, orange-brown mottled red-brown, sand is fine grained.	ID Type BH211 Standpipe Piezometer	
	Silty Sandy CLAY: Medium plasticity, orange-brown mottled red-brown, sand is fine grained.	BH211 Standpipe Piezometer	
	sand is fine grained.	BH211	
- 4 - 4 - 8 - 8 	Gravelly CLAY: High plasticity, mottled pale grey, red-brown, orange-brown and grey, with some fine to coarse sand and fine gravel.	2.00 m	Bentonite
2 - 10 - - - - - - - - - - - - - - - - - - -	X X X SILTSTONE: Dark grey, with some sandstone laminations. X X X X X X X <		 Sand
- 16 - - - - - - - - - - - - - - - - -	Interlaminated SILTSTONE and SANDSTONE (50% Siltstone, 50% Sandstone): Siltstone is dark grey, sandstone is grey, fine grained,	18.00 m	

ect: nt:				vay Concept Desigi Maritime Services	Location:	South Creek, N	21/1/			Page:		1 of 2 IA14510
-						South Creek, N						
ntracto nt:	or:	Terra Com	atest acchio 4	05	Easting: Northing:		Elevation: Datum:	AHD		tarted: inished:	29/05/2 29/05/2	
ged b	y:	GC	С	hecked by:	Grid:	MGA94 Zone 56	Inclination:	-90°	C	rientation:		
LLING			MATE	ERIAL SUBSTANCE				INSTAL	LATION DETAILS			
			E									
tter	RL (m)	Depth (m)	Graphic Log	BOC	Description of St K TYPE : Colour, Grain			ID	Туре	Stick Up &	RL	Tip Depth 8
Water	R	Dept	Sraph	(texture	e, fabric, mineral compo ation, cementation, maj	sition, hardness		BH215	Standpipe Piezometer			18.41 m
		-	×	Silty CLAY: Low to me some fine grained sat			ey, with		BH215			
		-	<u>× </u>									
		_	×									
		- 2	- <u>^</u>					2.00 m	_			
		-		Silty CLAY: Medium p fine grained sand.	lasticity, brown and	grey and orange-brov	vn, trace					
<u></u>		-	×									
15/06/181		_	<u>× </u>		bigh planticity brow	un and arow trace fin	a ta agarag					
÷		- 4		Silty CLAY: Medium to grained sand and fine		ni and grey, trace ini						
		-	×									
		_	×									
		-	×									
		- 6	× × × × × ×	SILTSTONE: Grey ar	d brown, extremely	weathered, very low	strength.					
		-	$\times \times \times$	NO CORE 110mm SILTSTONE: Dark gr	ev and brown-orang	e indistinctly laminate	d f	6.41 m	- =			
		_	× × × × × × × × ×	NO CORE 50mm	ey and brown orang		.u.					
		-	× × × × × × × × ×	SILTSTONE: Grey wi	-	-	/					
_		- 8	\times \times \times \times \times	SILTSTONE: Dark gr	ey, indistinctly lamina	aled.						
Not Encountered		-	\times \times \times \times \times \times \times									
Encou		_		SANDSTONE: Grey, Interbedded SILTSTO	-							
Not		-	$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$	Sandstone): Siltstone	is dark grey, sandst	one is grey, fine grair						
		- 10	$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \end{array}$	SILTSTONE: Dark gr		inated	/					
		_	$\begin{array}{c} \times \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$									
		-		10.80-10.98m: With s	ome sandstone lam	nations.						
		-		SILTSTONE: Grey. SILTSTONE: Dark gr	ev with trace rounde	d pebbles						
		- 12	$ \begin{array}{c} \hat{x} \\ \hat$	0.210101.2. Bain gi	,							
		-	× × × × × ×	∖NO CORE 120mm ∖SILTSTONE: Dark gr			/					
		-	× × × × × ×	NO CORE 70mm	ey, with trace people							
		-	× × × × × × × × ×	SILTSTONE: Dark gr	-							
		- 14 -	× × × × × × × × ×	Interlaminated SAND Siltstone): Sandstone								
		-	\times \times \times \times \times	laminae. SILTSTONE: Dark gr	ey]					
		-	× × × × × × × × ×	13.87-14.16m: Grey t 14.85-14.95m: Pebbl								
		- - 16	$ \begin{array}{c} $	15.72-15.78m: Grey,	fine to medium grain	ed sandstone band.						
		-	$\begin{array}{c} \times \times$									
		-	\times \times \times \times \times									
			× × × × × × × × ×	17.39m: Pebble band	50mm							
		- 18	× × ×	Interlaminated SILTS		ONE (80% Siltstone	20%					
				Sandstone): Siltstone	is dark grey, sandst		grained1	18.41 m 18.41 m				
		-		Hole Terminated at 1			/					
		_		Target depth								
		- 20										
			I				I					
				DRILLING					GROUNDWATER S'	/MBOLS		

ojeo ent					vay Concept Design Maritime Services	Location:	South Creek, N	214/				Page:	1 of 2 IA145100
	tract		Terra	Terratest Hanjin DB8		Easting:		Elevation: Datum:	AHD	AHD		Started: 12/06/ Finished: 13/06/	
bgg	ged b	oy:	MG	С	hecked by:	Grid:	MGA94 Zone 56	Inclination	1: -90°		Orientat	tion:	
IL	LING	6		MATE	ERIAL SUBSTANCE				INSTAL	LATION DETA	ILS		
- 00000	Water	RL (m)	Depth (m)	Graphic Log	(texture,	Description of St TYPE : Colour, Grain fabric, mineral compo on, cementation, maj	size, Structure osition, hardness		ID BH217	Type Standpipe Piezom		k Up & RL	Tip Depth & 17.85 m
			_	×	Clayey SILT: Brown, wi Silty CLAY: High plastic		nd a trace of sand.	/	<u>0.50 m</u>	BH217	-	- Concrete - Bentonite	
			-		Clayey SILT: Low plast grey flecks.	city, brown, yellow	r-brown mottled grey,	with dark					
			- 2 -		Sandy CLAY: Medium trace of fine gravel.	plasticity, yellow-br	rown, brown and grey	with a					
-	5/06/18		_		Sandy CLAY: Medium	blasticity, yellow-br	rown and pale grey, w	> PL, Vst.					
	15		- 4		NO CORE: 200mm Sandy CLAY: Medium	plasticity, pale grey	y, yellow-brown, with i	ronstone					
			-		gravel, w> PL, Vst. NO CORE: 250mm Gravelly Sandy CLAY: grained sand, gravel is								
			- 6	0 0 X	NO CORE: 1000mm Gravelly Sandy CLAY: grey, sand is fine to coa	Medium plasticity,	vellow-brown, pale gr	ey, dark	5.85 m				
			-	× × × × × ×	Silty CLAY: High plastic	and grey.							
	Encountered		- 8	× × × × × × × × × × × × × × × × × × ×	Interbedded SANDSTC Siltstone): Dark grey, sa SILTSTONE: Dark grey	andstone is fine gr and grey.							
	Not End		-	× × × × × × × × × × ×	Carbonaceous SILTST SILTSTONE: Grey and 9.20m: With some sand	dark grey.		/			-	— Sand	
			- 10 -	× × × × × × × × × × ×	9.75-9.85m: Sandstone 10.30-10.60m: Carbona	,							
			-	× × × × × × × × ×	Carbonaceous SILTST	ONE: Dark grey.							
			- 12 -	× × × × × × × × ×	Interlaminated SANDS Siltstone): Grey and da laminated at 0-5°.								
			-	× × × × × × × × × × × ×	SILTSTONE: Grey and 12.80-12.92m: Interlam 13.30m: With some sar	inated Siltstone ar	nd Sandstone.						
			- - 14 -	× × × × × ×	Interlaminated SANDS Siltstone): Grey and da laminated at 0-5°.	FONE and SILTST	ONE (60% Sandston is fine grained, indist	e, 40% inctly					
			-		14.40m: Increasing in S SILTSTONE: Dark grey SILTSTONE: Grey, with	and grey.		e)					
			- - 16 -	× × × × × × × × × × × ×	Carbonaceous SILTST 10mm thick.			ations up to					
				$\begin{array}{c} \times \times \times \\ \times \times \times \end{array}$	Interlaminated SANDS Siltstone): Grey and da	FONE and SILTST rk grey, sandstone	ONE (70% Sandston is fine grained, indist	e, 30% inctly					
t			- 18	· · · · · ·	SANDSTONE: Grey, fir Hole Terminated at 17.	v	ned.		17.85 m 17.85 m				
			-										
	1	_	_	_	DRILLING			_		GROUNDWAT	ER SYMBOLS	_	

oje ien	ct: t:				way Concept Design Maritime Services	Location:	Kemps Creek, N	ISW			Page: Project No	1 of 2 D: IA145100
	tract	tor: Terratest				Easting:	296088.3	Elevation:	44.46	Sta	-	15/2018
Plar	nt:			Comacchio 405		Northing:	6249516.1	Datum:	AHD	Fir	nished: 23/0	5/2018
Log	ged I	by:	GC		Checked by:	Grid:	MGA94 Zone 56	Inclination:	-90°	Or	ientation:	
DRIL	LING	G 		MAT	ERIAL SUBSTANCE				INSTALLATION [DETAILS		
ť			Ê	60-	r i	Description of St	rata		ID T.			To Death & D
Support	Water	RL (m)	Depth (m)	Graphic Log		E : Colour, Grain ic, mineral compo			ID Ty BH219 Standpipe I		Stick Up & RL	Tip Depth & R 18.33 m 26.13 n
,	-		ă	Gra		cementation, maj						
₽			_	x ×	Silty CLAY: Medium to high					BH219		
		44 -	F	x	red-brown, some fine grain gravel and rootlets.	eu sano, trace	line, subrounded iror	isione		В	a Dentenit	
			-								Bentonite	2
			- 2	×				2	2.00 m, 42.46 m /			
– AD/V	<u> </u>	42-	Ĺ	×	2.00m: As above, mottled staining.	grey and orang	e-brown with some re	ed-brown				
	30/05/181		-	×								
	ж			× ×								
			- 4	×								
X	23/05/181	40 -	-	<u>×</u>	Silty CLAY: Medium to high thin bands of very low stren		and brown, with som	ie interred				
- MB				×								
X			_	×	NO CORE: 150mm							
			- 6		SANDSTONE: Grey, fine g	rained, with so	me dark grey subhori	zontal				
		38 -	Ľ	× × × × × × × × ×	\laminations. Interbedded SANDSTONE			50%	5.33 m, 38.13 m AHD	目		
			_	$\hat{\mathbf{x}} \times \hat{\mathbf{x}}$	Siltstone): Sandstone is gro bedded at 0-5°, bands up t			y, distinctly		E		
			-	$\times \times $	SILTSTONE: Dark grey an 7.20-7.40m: Pebbly band.	d grey.						
		00	- 8	$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$						目		
		36 -	ŀ	$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$		-1'- 4'4h - 1'	-4					
			-	$\times \times \times$ $\times \times \times$	SILTSTONE: Dark grey, in	distinctly lamina	ated.			目		
			- 10	× × × × × × × × ×						目		
		34 -	- 10	× × × × × ×						目	Sand	
			-	$\times \times \times$ $\times \times \times$								
				× × × × × ×								
HQ3			- 12	× × × 	SANDSTONE: Grey, fine g	rained, with so	me dark grey laminae	2.		目		
		32 -	-	× × × × × ×	SILTSTONE: Dark grey, in	distinctly lamina	ated.			E.		
				× × × × × × × × ×								
			-	$\times \times \times$ $\times \times \times$								
			- 14	× × × × × × × × ×						目		
		30 -	_	× × × × × ×	NO CORE: 50mm SILTSTONE: Dark grey, in	distinctly lamina	ated.	/		目		
			-	× × × × × × × × ×						目		
			-	$\times \times $	15.39m: As above, but gre	у.				E		
		28-	- 16 -	× × × × × × × × ×								
			F		Interlaminated SILTSTONE Sandstone): Siltstone is da					目		
				× × × × × × × × ×	SILTSTONE: Dark grey, in							
			- - 18	× × ×	Interlaminated SANDSTON	JE and SILTST	ONF (50% Sandeton	e 50%				
¥		26 -	-		Siltstone): Sandstone is gro laminations at 0-5°.			(distinct	18.33 m, 26.13 m AHD 18.33 m, 26.13 m AHD			
					Hole Terminated at 18.33 r	n		/				
			Ļ		Target depth							
			- 20									
			MILC C			% core run recovere			_	NDWATER SYN		drilling)
		NQ N	IQ Corin	g	PQ PQ Coring RQD	% core run > 100mr	n long		= Water level (statio) <u>\</u>	= Water level (during	ariiing)

This log was created for Jacobs' client. Jacobs accepts no responsibility for any reliance on this information by third parties.

J	4	C	C	JE	S Piez	ometer	⁻ Installat	tion De	etails				BH223
oje ient					vay Concept Design Maritime Services	Location:	1255 Mamre Rd	l, Kemps Cre	eek, NSW		Page Proje		1 of 2 IA145100
lan	tracto t: ged t		Terra Com GC	acchio 4	405 Checked by:	Easting: Northing: Grid:	296465.8 6249150.2 MGA94 Zone 56	Elevation: Datum: Inclinatior	AHD		Started: Finished: Orientation:	15/05/ 16/05/	
RIL	LING	3		MATE	ERIAL SUBSTANCE				INSTALLA	ATION DETA	ILS		
Support	Water	RL (m)	Depth (m)	Graphic Log	(texture, fa	Description of St (PE : Colour, Grain bric, mineral compo n, cementation, majo	size, Structure sition, hardness		ID BH223 S	Type Standpipe Piezome	Stick Up	& RL	Tip Depth & Rl 18.28 m 27.98 m
		46 -		×	Silty Sandy CLAY: Mediu	m to high plastici	ty, brown, sand is fine	e grained.		BH223			
			-		Silty Sandy CLAY: Low to orange-brown,.	o medium plastici	ty, grey and brown m	ottled		臣	—— В	entonite	
-	8	44 -	- 2		Silty CLAY: High plasticity medium ironstone gravel		ange and red-brown,	with trace	2.00 m, 44.26 m				
	30/05/181	42 -	- - 4 -		Silty CLAY: High plasticity	y, grey and orang	je-brown.						
		40 -	- - - 6 -						6.28 m, 39.98 m	Ω AHĐ			
		38 -	- - - 8 -		SILTSTONE: Grey and d SANDSTONE: Grey with SILTSTONE: Dark grey, Interlaminated SILTSTOI Sandstone): Siltstone is of 7.74m: Becoming 70% S	dark grey lamina distinctly laminate NE and SANDST dark grey, sandst iltstone, 30% Sar	ee, fine grained. ed. ONE (50% Siltstone/ one is grey, fine grain ndstone.	50% ied.					
		36 -	- - - 10 - -	× × × × × × × × × × × × × × × × × × ×	SILTSTONE: Dark grey, bands up to 40mm thick. 10.65m: As above, but g	·	ated, with trace of san	lastone			s: ≺S	and	
		34 -	- - 12 -	× × × × × ×	SANDSTONE: Grey, fine 12.20m: As above, but w	•	ey laminae.						
		32 -	- - - 14 -		SILTSTONE: Dark grey a grained sandstone bands Interbedded SILTSTONE Sandstone): Siltstone is o subhorizontal bedded.	s, grey up to 10m and SANDSTO	m thick. NE (70% Siltstone/ 30)%					
		30 -	- - - 16	× × × × × × × × × × × × × ×	SILTSTONE: Dark grey. 14.54-14.60m: Fine grain Interbedded SILTSTONE Sandstone): Siltstone is o	and SANDSTO	NE (50% Siltstone/ 50						
		-28-	- - - 18 -	× × × × × × × × × × × × × × × × × × ×	SANDSTONE: Grey, fine 17.41-17.44m: Dark grey SILTSTONE: Dark grey, 17.99m: As above, but w Hole Terminated at 18.28 Target depth	grained, with thir siltstone band. distinctly laminate ith sandstone ba	n dark grey lamination	is.	18.28 m, 27.98 r 18.28 m, 27.98 r				
			- - - 20		U 101								
			NMLC Co NQ Coring			R % core run recovere D % core run > 100mn (rock fraction only me	n long		= Water	GROUNDWATE	ER SYMBOLS	el (during drilli	ing)

Plar	tract	or:	Terra	atest acchio 4	Maritime Services 05 hecked by:	Location: Easting: Northing: Grid:	Cnr Elizabeth Dr MGA94 Zone 56	Elevation: Datum: Inclination	AHD	'ark, NSW	Proje Started: Finished: Orientation:	07/06/2 07/06/2	
RIL	LING	6		MATE	ERIAL SUBSTANCE				INSTAL	LATION DETAIL	S		
Support	Water	RL (m)	Depth (m)	Graphic Log	(texture	Description of St TYPE : Colour, Grain fabric, mineral compo ion, cementation, maj	n size, Structure osition, hardness		ID BH227	Type Standpipe Piezomet	Stick Up a	& RL	Tip Depth & F 18.11 m
			- - - - 2		FILL: Silty CLAY, high FILL: Silty CLAY, med				<u>2.00 m</u>	BH227	◄ —— Bé	entonite	
	15/06/181		- - - - 4		Silty CLAY: Medium to with some fine ironstor	ne gravel, trace fine	e grained sand.						
1			- - - - 6		Silty CLAY: High plasti subrounded fine ironst SILTSTONE: Grey and	one gravel.		wotrongth	6.11 m				
r L			-	× × × × × × × × ×	SANDSTONE: Orange laminae.	-brown, fine graine	ed, with a trace of dark						
	Not Encountered		- 8 - -	× × × × × × × × × × × × × × × × × × ×	SILTSTONE: Grey and 8.61-8.80m: Dark grey	-							
	Not		-	× × × × × × × × × × × × × × × × × × ×	SANDSTONE: Grey at SILTSTONE: Dark gree Interbedded SILTSTO Sandstone): Siltstone some interlaminated b	y and brown. NE and SANDSTO s dark grey, sandst	NE (60% Siltstone, 40				Si	and	
0			- - 12 -	× × × × × × × × ×	SILTSTONE: Grey.								
			- 14	× × × × × × × × × × × ×	Interbedded SANDSTo Siltstone): Sandstone i 13.15-13.68m: With a	s grey and grey, fin							
			- - - 16 -	* * * * * * * * * * * * * * * * * * * *	SILTSTONE: Pale gre SILTSTONE: Dark gre								
,			- - - <u>18</u> -		17.55m: Carbonaceou SANDSTONE: Grey, v Hole Terminated at 18 Target depth	/ith dark grey lamin	nations.	/	<u>18.11 m</u> 18.11 m				
			-		DRILLING					GROUNDWATEI			

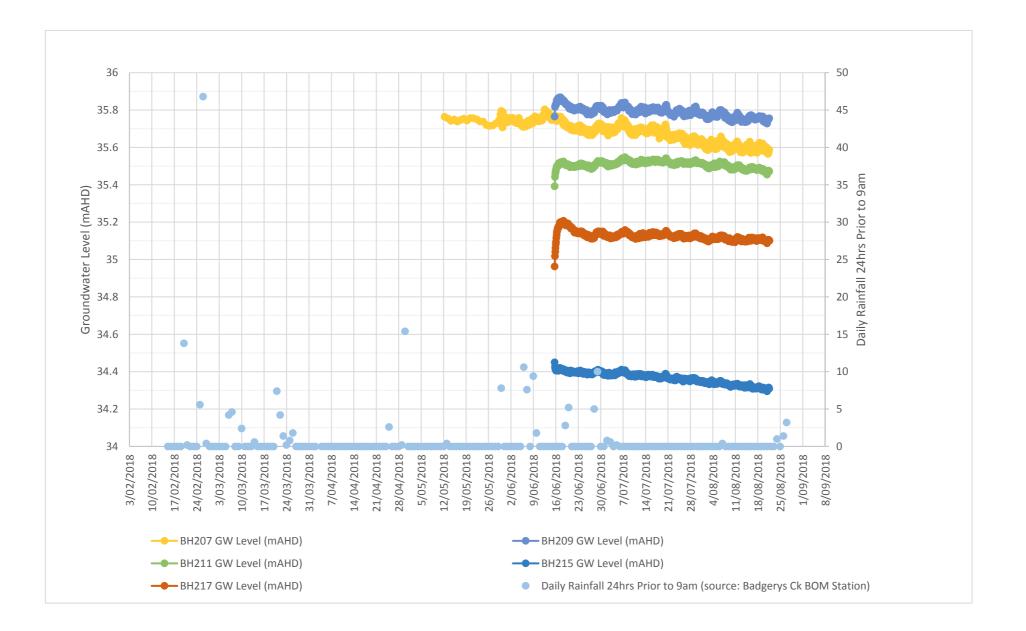
l

ient			Roa	ds and	Maritime Services	Location:	Badgery's Creek	k, NSW			Proje	ct No:	IA145100
Plan	ract t: jed l			atest nacchio 2	205 Checked by:	Easting: Northing: Grid:	292746.4 6251170.7 MGA94 Zone 56	Elevation: Datum: Inclination:	42.98 AHD -90°		Started: Finished: Orientation:	07/06/2 07/06/2	
		-	MIC		ERIAL SUBSTANCE					TION DETAI			
Support	Water	RL (m)	Depth (m)	Graphic Log	ROCK TY (texture, fal	Description of Stu PE : Colour, Grain pric, mineral compo , cementation, majo	size, Structure sition, hardness		ID BH301	Type Standpipe	Stick Up &	<u>k</u> RL	Tip Depth & F 10.50 m 32.48
					FILL: Clayey SILT, dark g	•		sand.		10			
			_	××× ×	Silty CLAY: Medium plast	-		e of sand.	0.40 m	BH301	Be	entonite	
		42-		_x	Silty CLAY: High plasticity	, brown, grey an	d red-brown.						
		42-	- 1	×									
			-	^ 	1.40m: Becoming brown	and yellow-browr	۱.						
		41 -	- 2	×									
			-	×									
			-		Sandy CLAY: High plastic medium grained.	city, grey and yell	ow-brown, sand is fin	e to					
		40 -	- 3 -										
-	08/06/181		-		Gravelly CLAY: High plas fine to medium, subangu	ticity, red-brown, ar to angular, wit	grey and yellow-brow h a trace of sand.	<i>i</i> n, gravel is					
	08/06/	39 -	- 4										
			-	- <u>-</u>									
			_										
		38 -	- 5										
			-		Silty CLAY: High plasticity	arey and brown	and orange-brown	with some			Sa	and	
		37 -	-	×	extremely weathered ban	ds of siltstone ar	nd ironstone gravel.	with Some					
			_	×	6.30m: Becoming brown	and dark brown							
			_	 	bloom. Decoming blown								
		36 -	- 7	×									
			_	×									
		0.5	-	$\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \end{array}$	SILTSTONE: Grey-brown strength.	and grey, extrer	nely weathered, very	low					
		35 -	- 8 -	$\begin{array}{c} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \\ \times & \times &$									
			_	$\hat{\times} \hat{\times} \hat{\times} \hat{\times} \hat{\times} \hat{\times} \hat{\times} \hat{\times} $									
		34 -	- - 9	$\begin{array}{c} \times \ \times \ \times \\ \times \ \times \ \times \\ \times \ \times \ \times \end{array}$									
			-	$\begin{array}{c} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \\ \times & \times &$									
			-	\times \times \times									
		33 -	- 10 -		10.20m: December	ow to low stress '	h						
-			-	$\begin{array}{c} \times \times \times \\ \times \times \end{array}$	10.20m: Becoming very l Hole Terminated at 10.50	-			10.50 m 10.50 m				
		32 -	- - 11										
			-										
		I		ļ									
		NMLCI		ring	DRILLING HQ HQ Coring TC	R % core run recovere				GROUNDWATE	R SYMBOLS		

oje ier	ect: nt:				way Concept Design Maritime Services	Location:	Badgery's Creel	K, NSW			Page: Project No	1 of 1 IA145100
Cor Plai	ntract nt:	tor:	Terra	atest Iacchio 2	205	Easting: Northing:	292934.6 6251153.7	Elevation: Datum:	AHD		Started: 07/0	6/2018 6/2018
	iged l		MG		Checked by:	Grid:	MGA94 Zone 56	Inclination			Orientation:	
RI	LLINC	3 		MATI	ERIAL SUBSTANCE				INSTALLA	TION DETAIL	_S	
Support	Water	RL (m)	Depth (m)	Graphic Log	(texture, fa	Description of St (PE : Colour, Grain bric, mineral compon, cementation, maj	size, Structure osition, hardness		ID BH302	Type Standpipe	Stick Up & RL	Tip Depth & RI 10.50 m 30.04 m
		40 -	_		FILL: Silty CLAY, mediun FILL: Clayey SILT, pale t		brown, some rootlets.	/	0.30 m	BH302	< Bentonite	
			- - 1		Silty CLAY: High plasticit	y, grey and oran	ge-brown.					
		39 -	-		1.25m: With some iron in							
			- 2 - -		1.80m: With some fine g	rained sand.						
		38 -	- - - 3		Gravelly CLAY: High plas fine to medium, subangu	sticity, red-brown lar to angular iro	, grey and yellow-brov nstone, with a trace o	vn, gravel is f sand.				
		37 -	-									
			- 4 -									
		36 -	- - - 5		SILTSTONE: Grey and d	ark grey, extrem	ely weathered, very lo	ow strength.				
		35 -	-	× × × × × × × × × × × ×	5.50m: Becoming dark g	rey.					Sand	
			- - 6 -	× × × × × × × × × × × × × ×								
		34 -	- - - 7	× × × × × × × × × × × × × ×								
		33 -	-	× × × × × × × × × × × × × ×	7.00m: Becoming very lo	w to low strength	1.					
			- - 8 -	× × × × × × × × × × × ×	SILTSTONE: Dark grey,	highly weathered	d, very low to low stre	ngth.				
		32 -	- - - 9	× × × × × × × × × × × × × ×								
		31 -	- - -	× × × × × × × × × × × ×								
			- - 10 -	× × × × × × × × × × × × × × × × × × ×								
		-30-	- - - 11 -	× × × × × ×	Hole Terminated at 10.50 Target depth) m			10.50 m 10.50 m			
		NMLCI		ring	DRILLING HQ HQ Coring TC	R % core run recover	ed			GROUNDWATER	RSYMBOLS	

This log was created for Jacobs' client. Jacobs accepts no responsibility for any reliance on this information by third parties.

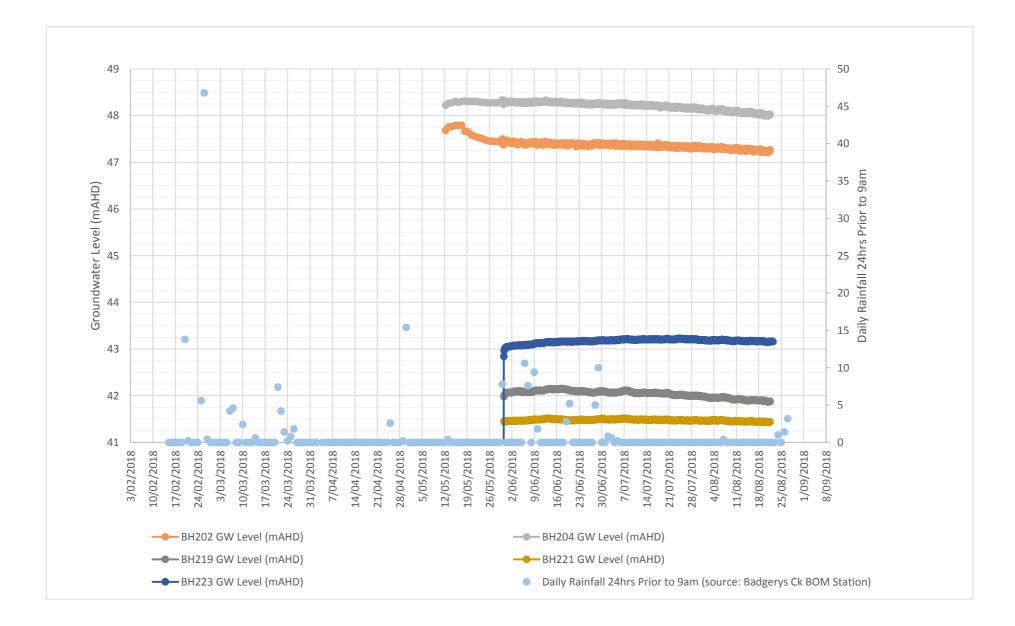
ject:			Concept Desig							Page		1 of 2
ont: ontraci ant:		Terra	ls and Maritime Itest acchio 405	Services	Location: Easting: Northing:	Walgrove Rd, C 300514.2 6249490.7	Elevation: Datum:	W 118.62 AHD		Proje Started: Finished:	20/08/2 21/08/2	
ogged	l by:	GC	Checked b	y: NC	Grid:	MGA94 Zone 56	Inclination	-90°		Orientation:		
	IG		MATERIAL SUE	BSTANCE				INSTALLA	FION DETA	LS		
Water	RL (m)	Depth (m)	Graphic Log	(texture, fa	Description of St YPE : Colour, Grain abric, mineral compo n, cementation, maj	size, Structure sition, hardness		ID BH162	Type Standpipe	Stick Up	& RL	Tip Depth & F 18.43 m 100.19
	118 -				AY: low plasticity, angular gravel, tr	brown, fine to coarse ace rootlets.; dry	grained		BH162	≼ — B	entonite	
	116 -	- 4	XXX and grey	, fine to coarse	grained sand, fine	icity, mottled brown, r to coarse subangula t to rounded cobbles.	ar to angular	<u>3.00 m, 115.62 m</u>				
04/09/181		- 6	SILTY CI moist, ve		city, mottled red-b	rown and grey, trace	rootlets.;	6.43 m, 112.19 m	AFD			
-	110 -	- 8	Subround	ded to subangu	lar ironstone grav	prown and pale grey, el; moist, hard ottled grey, hard, mois						
	108 -	- - 10 -	SANDST	ONE: fine grain	ned, dark brown, t / weathered, low a	race dark grey, sub-h and high strength	orizontal,			- s	and	
	106 -	- 12	sub-horiz moderate 12.09-12	contal lamination ely weathered to	ns, with brown sta o slightly weathere bonaceous lamina	ey, trace dark grey, ining around defects. ed, medium to high st ations.						
	104 -	- - 14 -				ey, trace dark grey, ered, medium strengt	h					
	102 -	- - - 16 -	weathere SANDST	ed - slightly wea ONE: fine grair	thered, medium a ned, grey, with sor	tone laminations.; mo ind high strength ne dark grey, sub-hoi nedium to high streng	rizontal					
		- - - 18			ned, grey, trace da ium to high streng	ark grey sub-horizonta th						
	100 -	- - - - 20	sandstor laminate	ne is fine graine d.; fresh, mediu minated at 18.4	d, grey; siltstone is m strength	BONACEOUS SILTS s dark grey, subhorizo	STONE: 7	<u>18.43 m, 100.19 n</u> 18.43 m, 100.19 n				


ie	ect: nt:				•	Design aritime Services	Location:	Western Sydne	ey Parklands	8, N	SW				Page Proje		1 of 2 IA145100
Pla	ntract nt: gged		Comacchi : GC			; ecked by: NC	Easting: Northing: Grid:	300394.5 6248905.0 MGA94 Zone 56	Elevation Datum: Inclinatio		92.41 AHD -90°			Start Finis		27/08/ 27/08/	
		-			MATERIAL SUBSTANCE				inciniatio	T	INSTALLA		ΞΤΔΙ		nation.		
										+	INCONTEEN.		_ 17 0				
Support	Water	RL (m)	Depth (m)	Graphic Log		(texture, fal	Description of St PE : Colour, Grain pric, mineral compo , cementation, maj	size, Structure osition, hardness			ID BH170	Type Standp			Stick Up a	& RL	Tip Depth & RL 10.36 m 82.05 m
HQ3	04/09/18	92 - 91 - 89 - 88 - 88 - 88 - 88 -				SILTSTONE: dark grey to aninations.; highly weath trength	dium plasticity, c subrounded grav dium to high pla fine, subangular ty, red-brown ar istone gravel, m ed, brown, trace ms.; extremely v dstone gravels in trace sandstone dium grained, br CONE AND SILT STONE): sandsto ; siltstone is dar one trace carbonac eathered to mod	dark brown, fine grain vel; dry, hard sticity, mottled grey, r to subrounded grav, id grey, trace fine gravity oist, hard. carbonaceous lamin weathered to highly w n clay matrix e laminations.; mode rown; moderately we STONE (70% one is fine grained, b k grey; moderately we eous and sandstone lerately weathered, w <i>i</i> th some highly weathered, low to me aceous veins	red-brown rel, fine ained sand, ations, veathered, veathered, low rown, veathered, low rown, rery low to		.00 m, 90.41 m /		BH170		Be St	entonite	
		85 - 84 - 83 -	- - - - - - - - - - - - - - - - - - -			NTERBEDDED SILTST(SANDSTONE): siltstone i GANDSTONE): siltstone i SILTSTONE: dark grey, t noderately weathered, lo NTERBEDDED SILTSTO ANDSTONE): siltstone i noderately weathered, lo SILTSTONE: dark grey, v o medium subrounded to dightly weathered, very lo 0.40m: With trace sub-ho SANDSTONE: fine graine weathered, medium to ho	s dark grey; san medium strengti and, 60mm race subrounded w and medium s DNE AND SAND s dark grey; san w to medium str vith brown bands o rounded pebble w to high streng	dstone is fine graine h d to rounded pebbles strength DSTONE (50% SILTS dstone is fine graine ength s, distinct laminations ss.; extremely weath th ne laminations.	d, grey; 5.; 5TONE/50% d, grey; 5, trace fine ered to		0.02 00.05						
¥		82 -	- - - 11	pring	F	0.29m: Becoming dark g fole Terminated at 10.36 arget depth DRILLING					0.36 m, 82.05 m 0.36 m, 82.05 m	AHD		R SYMBO	DLS		

This log was created for Jacobs' client. Jacobs accepts no responsibility for any reliance on this information by third parties.

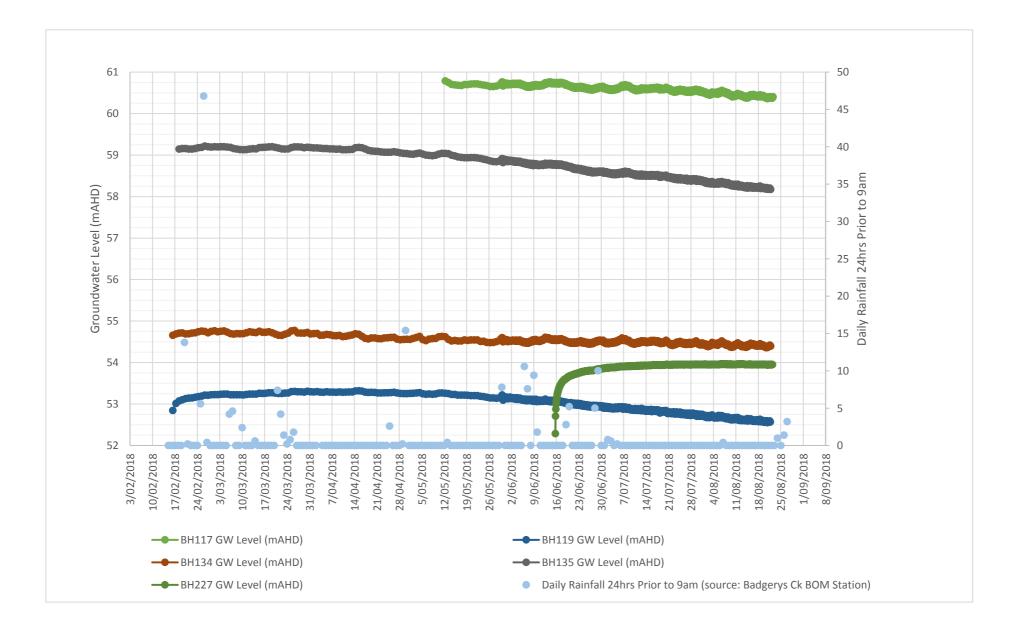
roje lier	ect:					ept Design Maritime Services	Location:	M7 Motorway, C		Λ/		Pag	-	1 of 2 IA145100	
-	ntract		Terr	ates	t		Easting: Northing:	299999.3 6248562.1	Elevation: Datum:	80.34 AHD		Started: Finished:	07/08/ 08/08/	/2018	
	ged I	-	-			Checked by: NC	Grid: MGA94 Zone 56 Inclin		Inclination:	T		Orientation	:		
JRI	LLINC	3			MAT	ERIAL SUBSTANCE				INSTALLA	TION DETA	ILS			
Support	Water	RL (m)	Depth (m)		Graphic Log	ROCK TYP (texture, fabr	Description of St PE : Colour, Grain ric, mineral compo cementation, maj	size, Structure osition, hardness		ID BH175 Si	Type tandpipe Piezome	Stick U	p & RL	Tip Depth & F 19.80 m 60.54 r	
		80 -	-	\otimes	\times	SILTY CLAY: medium to h grained sand. SILTY CLAY: medium plas trace of rootlets and some	ticity, mottled g	rey and orange-brow			BH175	4	Bentonite		
		78-	- 2			2.00m: Becoming extreme red-grey, recovered as sut SILTSTONE: dark grey, ex as fine subangular to angu	bangular to ang tremely weathe	ular gravel.		3.00 m, 77.34 m	4				
		76 -	- - 4 -			SANDSTONE: fine grained staining.; extremely weather medium strength									
		74 -	- - 6 -			SILTSTONE: dark grey an up to 10mm thick., trace of moderately weathered, ext 5.40-5.44m: Fine grained s	f iron staining; e remely low to n	extremely weathered to nedium strength	0	5.80 m, 73.54 m /	4 HD				
	untered	72-	- - 8 - -			8.40-8.75m: With subround	ded to rounded	ironstone pebbles.							
- HQ3	Not Encountered	70 -	- - 10 - -			SILTSTONE: dark grey, inc fresh, extremely low to me		ated.; extremely weath	ered to				Sand		
		68 -	- 12 - -			12.41m: Recoming arou									
		66 -	- 14 -			13.41m: Becoming grey. SILTSTONE: dark grey, tra pebbles.; fresh, medium ar			punded						
		64 -	- - 16 - -			15.07m: Becoming grey. SILTSTONE: dark grey, wi fine to medium sub-rounde sub-horizontal laminations.	ed to rounded p	ebbles, distinct to indi							
		62 -	- - 18 -		× • •	17.82m: Becoming interbe SANDSTONE: fine grained strength SILTSTONE: dark grey, dis	d, grey, with sor	me dark grey bands.;							
¥		60 -	- - 20 - -			fresh, medium and high str 18.80-19.27m: With subrou Hole Terminated at 19.80 r Target depth	rength unded to round		1	19.80 m, 60.54 m 19.80 m, 60.54 m					
			- - NMLC C			DRILLING HQ HQ Coring TCR PQ PQ Coring RQD	% core run recover % core run > 100mi (rock fraction only m	m long		= Water le	GROUNDWATE	ER SYMBOLS = Water le	evel (during dril	ling)	

This log was created for Jacobs' client. Jacobs accepts no responsibility for any reliance on this information by third parties.


Annexure C Project monitoring bore hydrographs

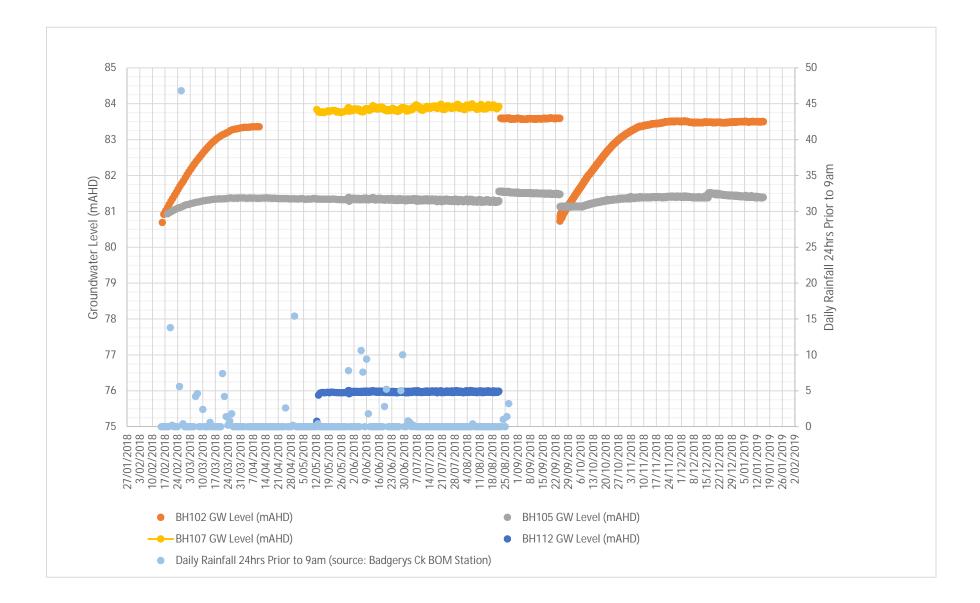
JACOBS

M12 Motorway Groundwater Monitoring Bore Hydrographs: BH207, BH209, BH211, BH215, BH217 - Figure 4


C:\Users\rosebj\Desktop\M12\[GW level data logger analysis.xlsx]set 1

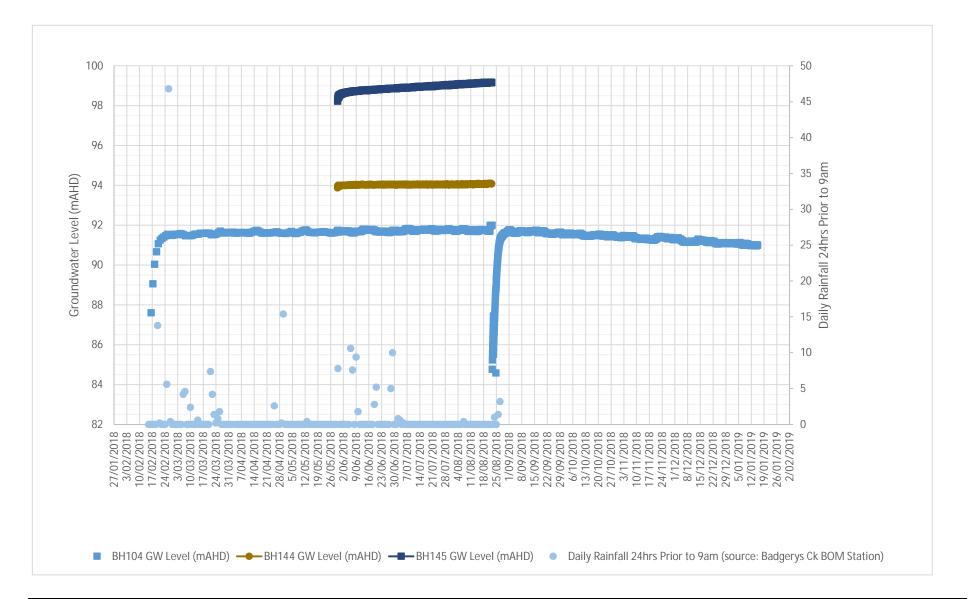
M12 Motorway Groundwater Monitoring Bore Hydrographs: BH202, BH204, BH219, BH221, BH223 - Figure 5

C:\Users\rosebj\Desktop\M12\[GW level data logger analysis.xlsx]set 2

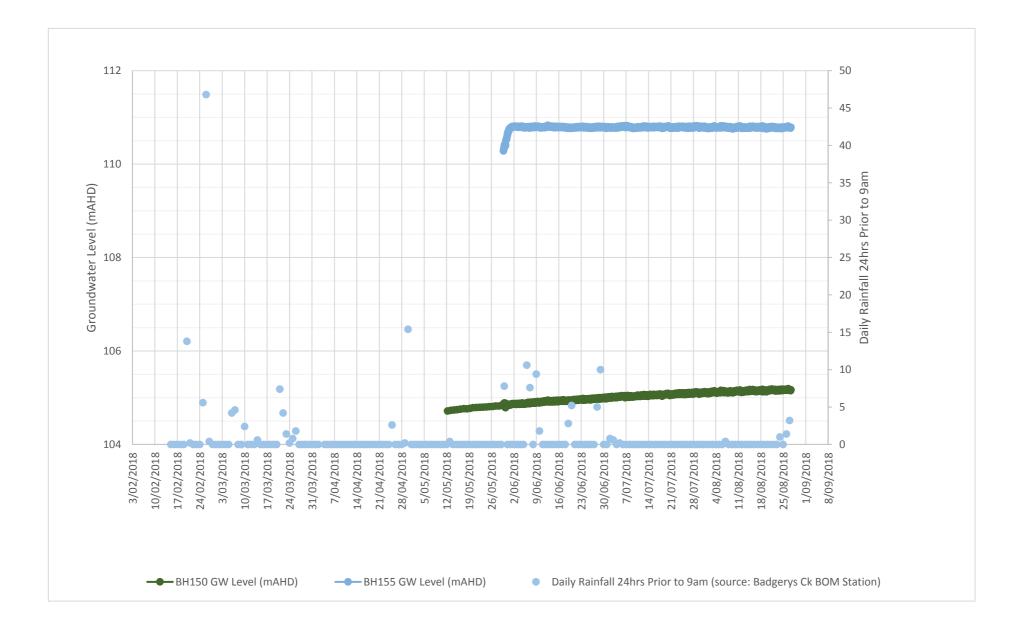


M12 Motorway Groundwater Monitoring Bore Hydrographs: BH117, BH119, BH227, BH134, BH135 - Figure 6

C:\Users\rosebj\Desktop\M12\[GW level data logger analysis.xlsx]set 3

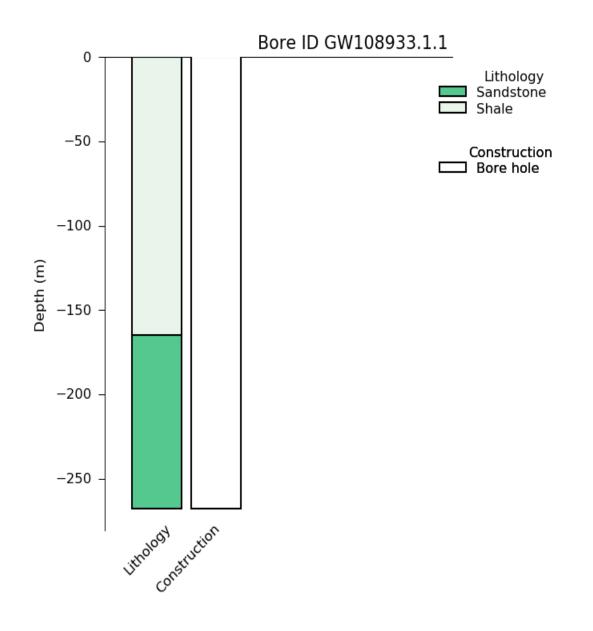

JACOBS

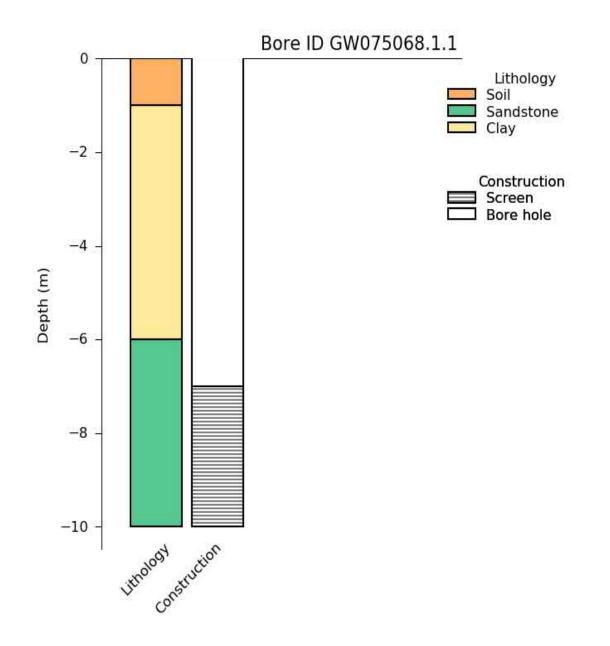
M12 Motorway Groundwater Monitoring Bore Hydrographs: BH102, BH105, BH107, BH112 - Figure 7

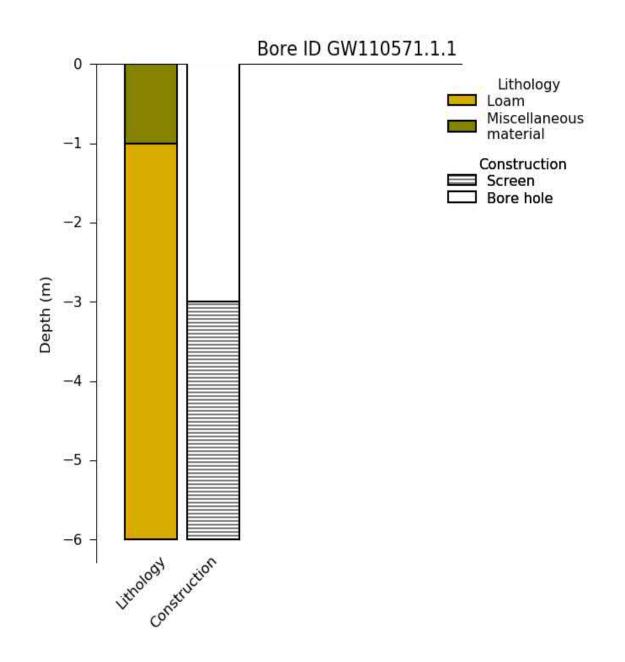

\Jacobs.com\ANZ\/E\Projects\04_Eastern\IA145100\09 Environmental\Surface and Ground Water\Groundwater\[GW level data logger analysis_80% report.xlsx]set 4

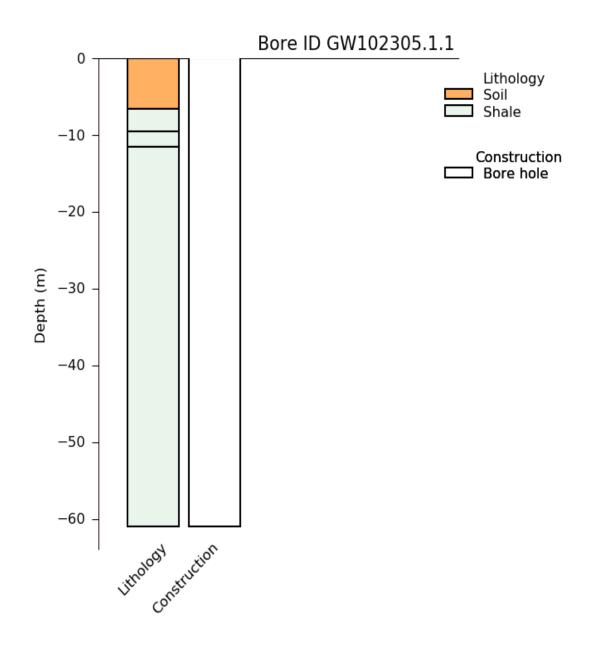
M12 Motorway Groundwater Monitoring Bore Hydrographs: BH104, BH144, BH145 - Figure 8

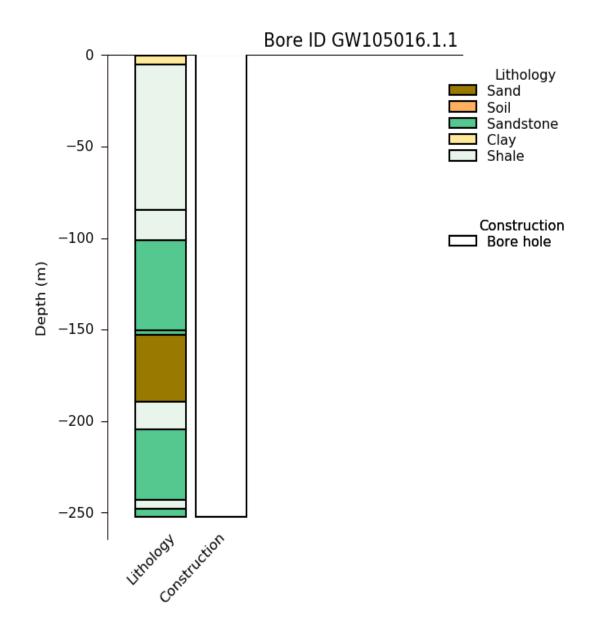
\Jacobs.com\ANZI/E\Projects\04_Eastern\IA145100\09 Environmental\Surface and Ground Water\Groundwater\[GW level data logger analysis_80% report.xlsx]set 5

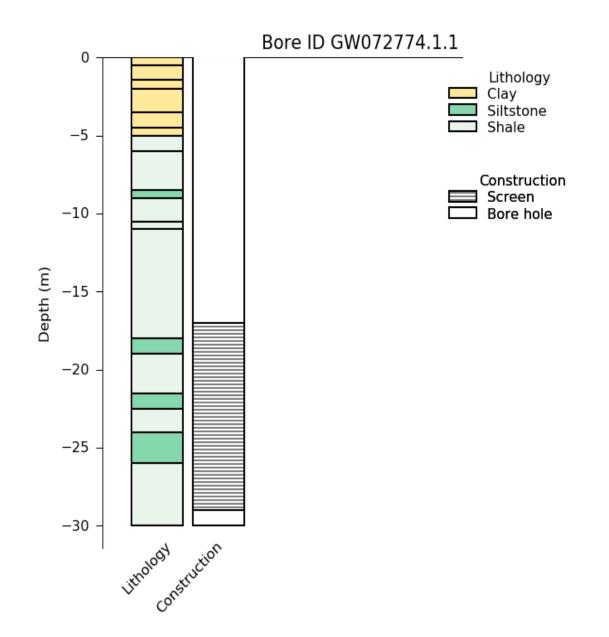


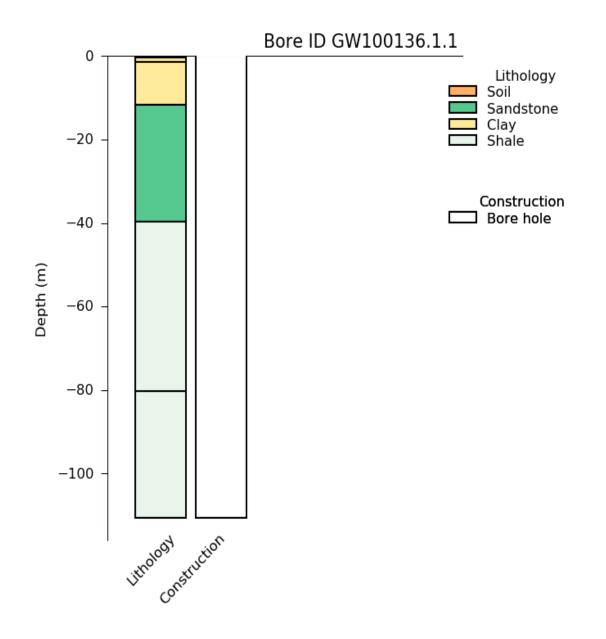

JACOBS

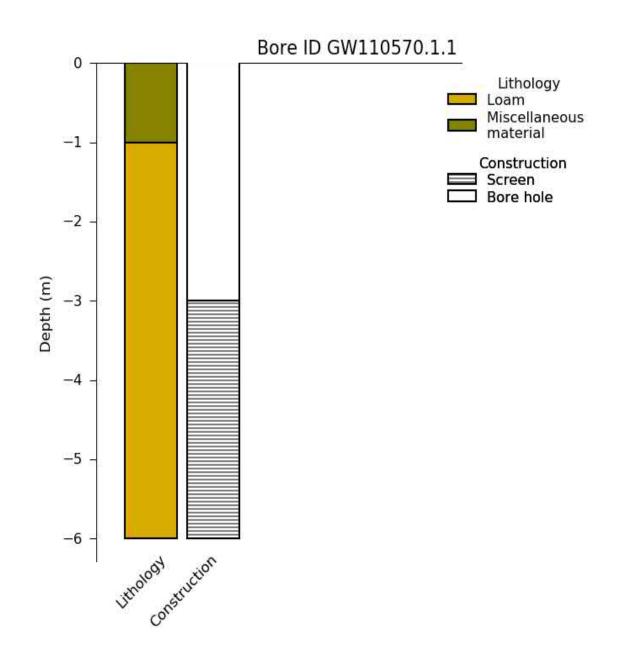

M12 Motorway Groundwater Monitoring Bore Hydrographs: BH150, BH155 - Figure 9

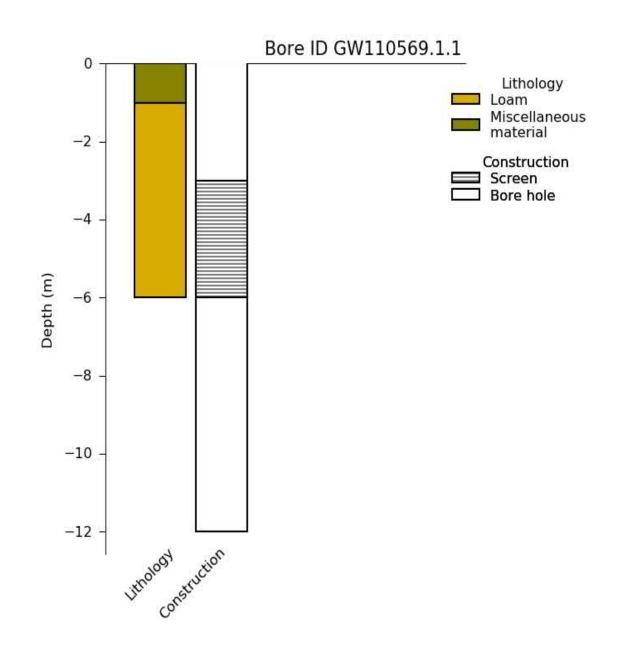

C:\Users\rosebj\Desktop\M12\[GW level data logger analysis.xlsx]set 6

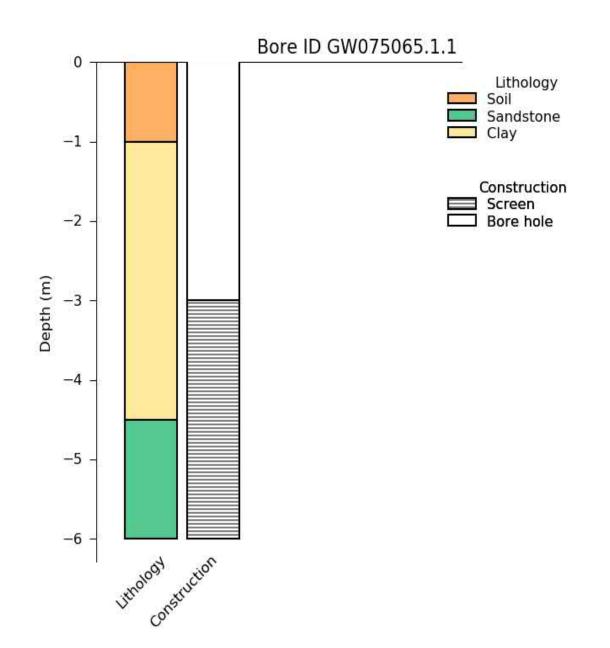

Annexure D Registered groundwater bore lithology logs

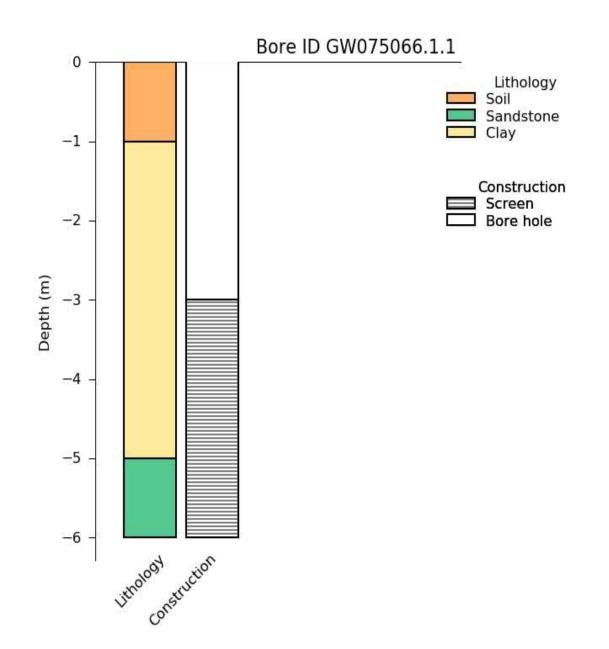


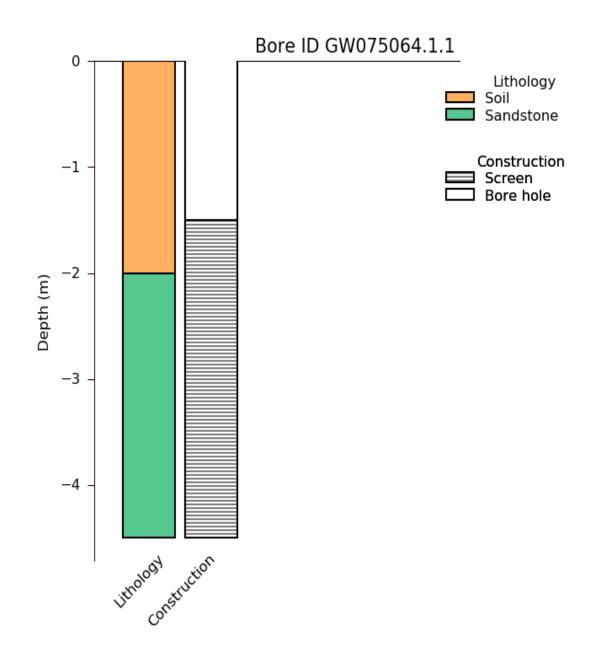


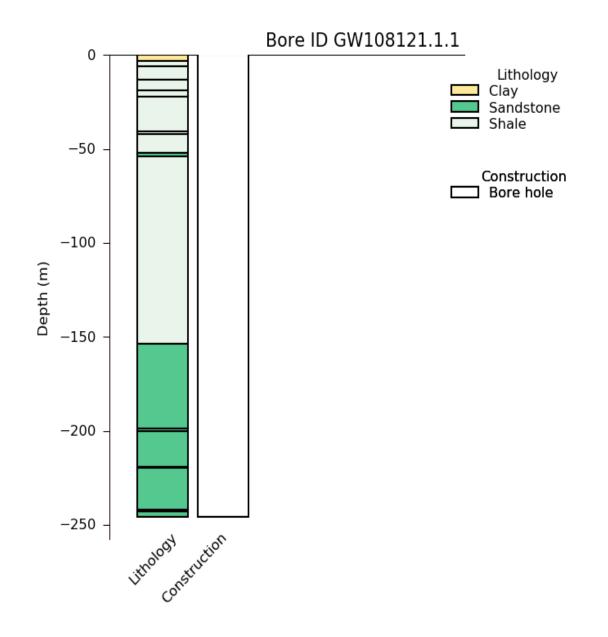


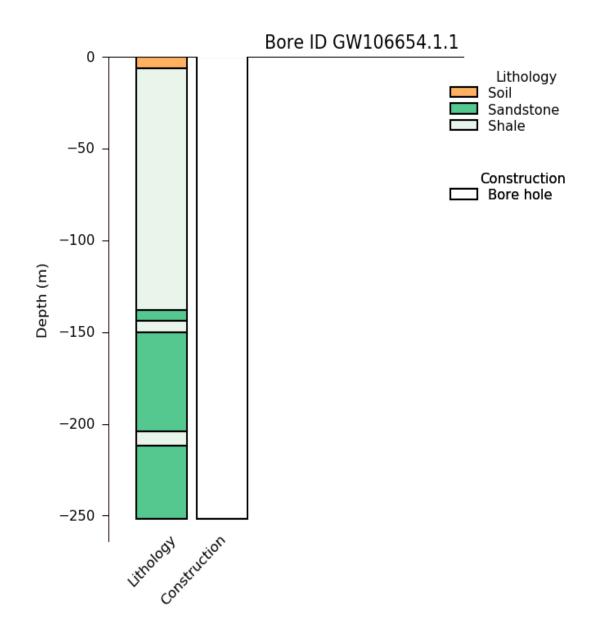


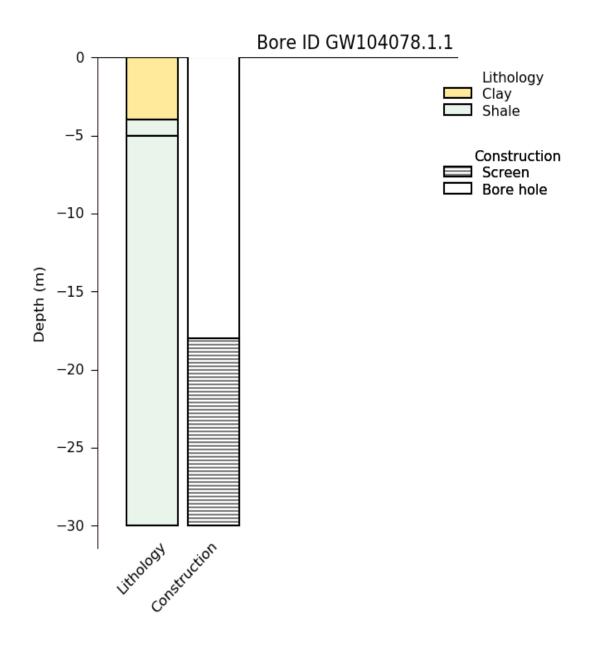


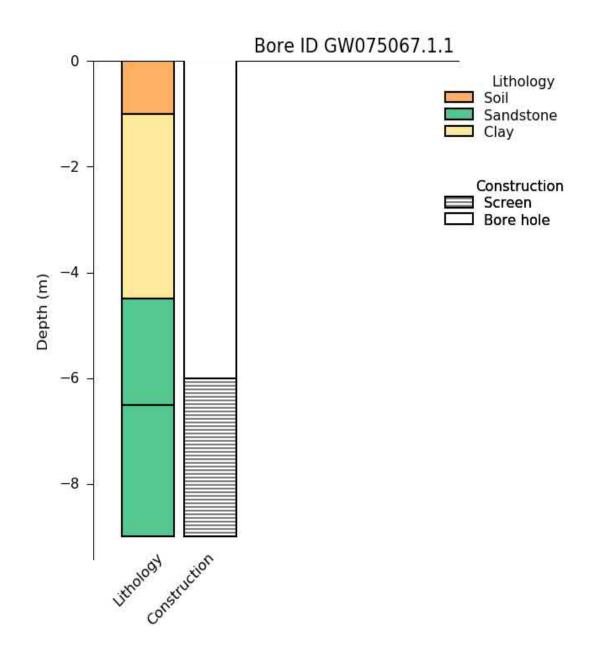


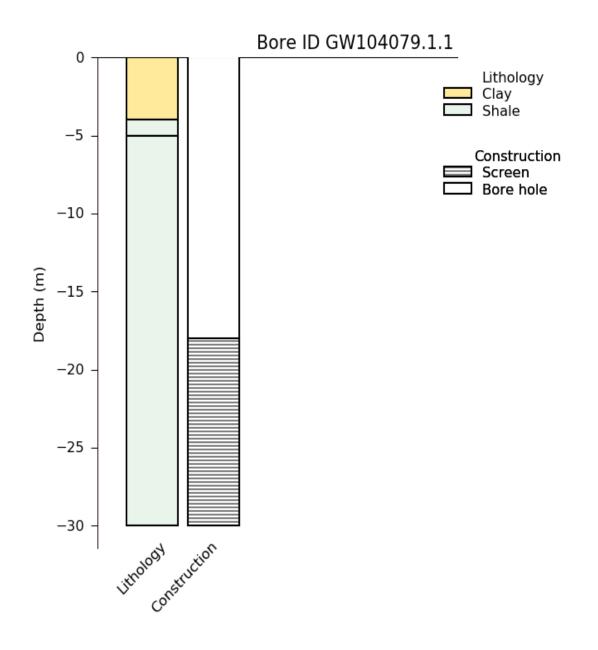


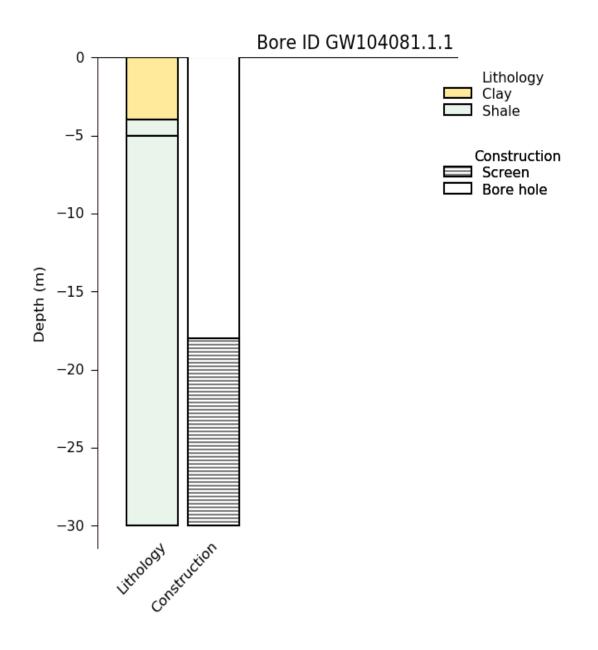


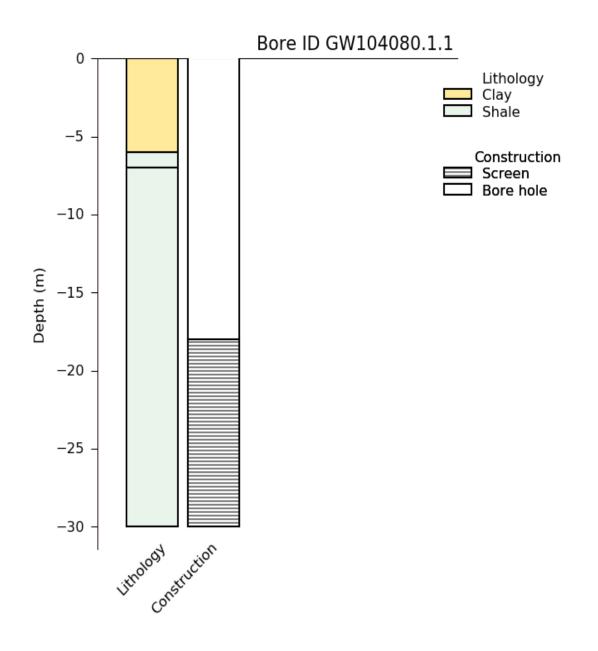


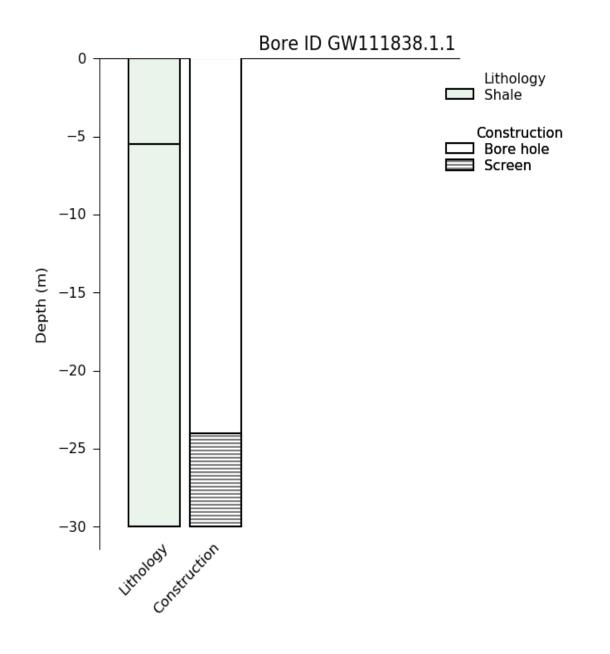


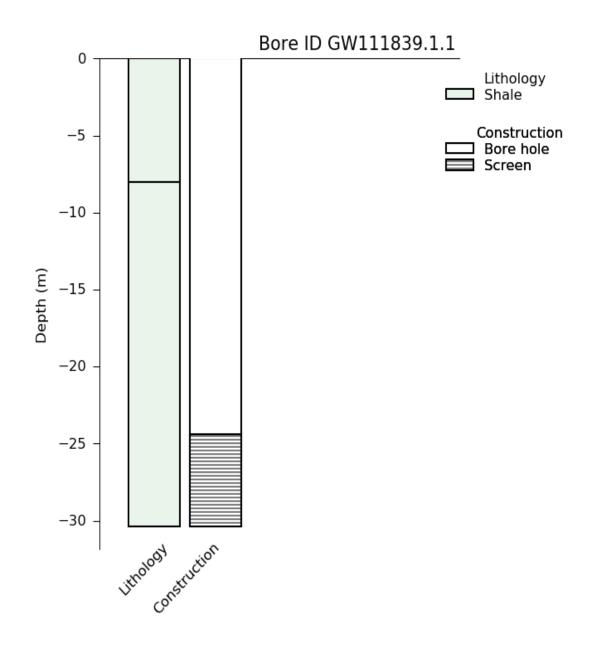


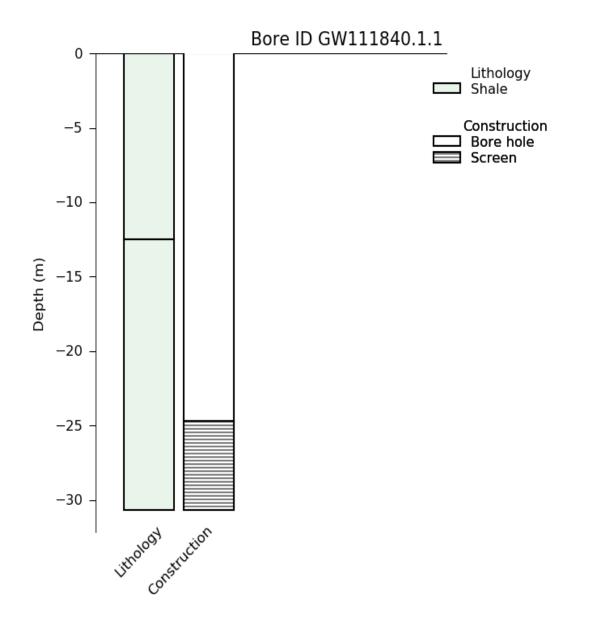


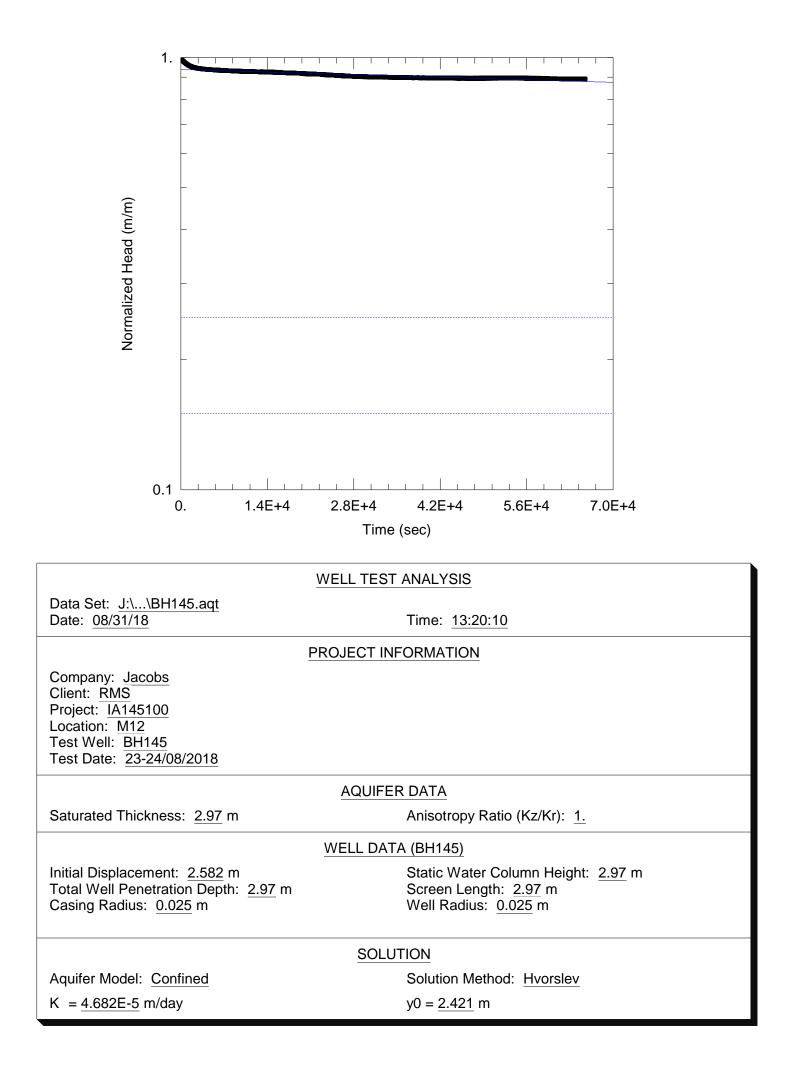


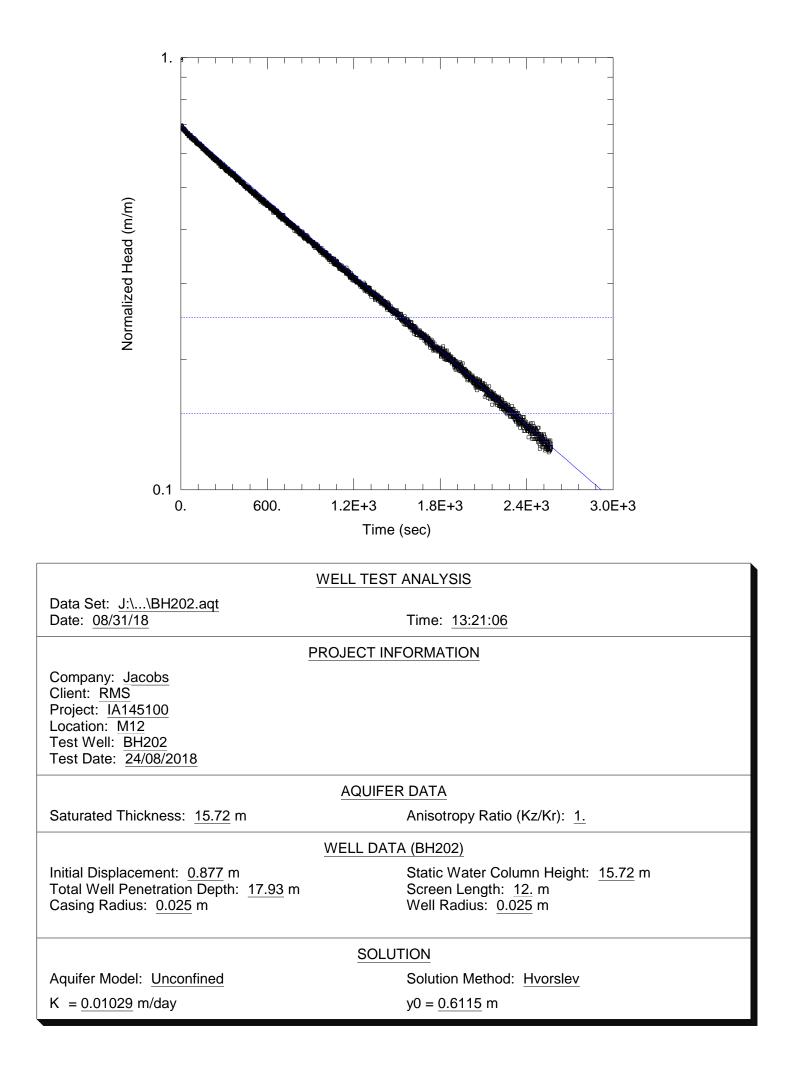


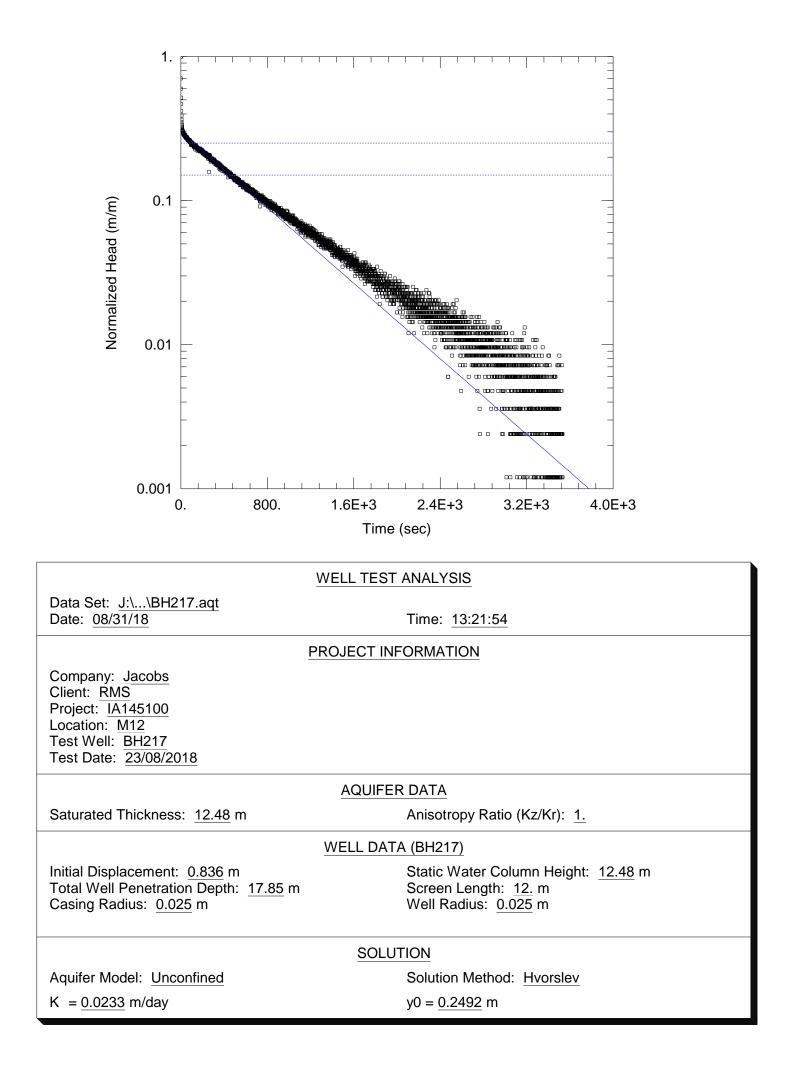


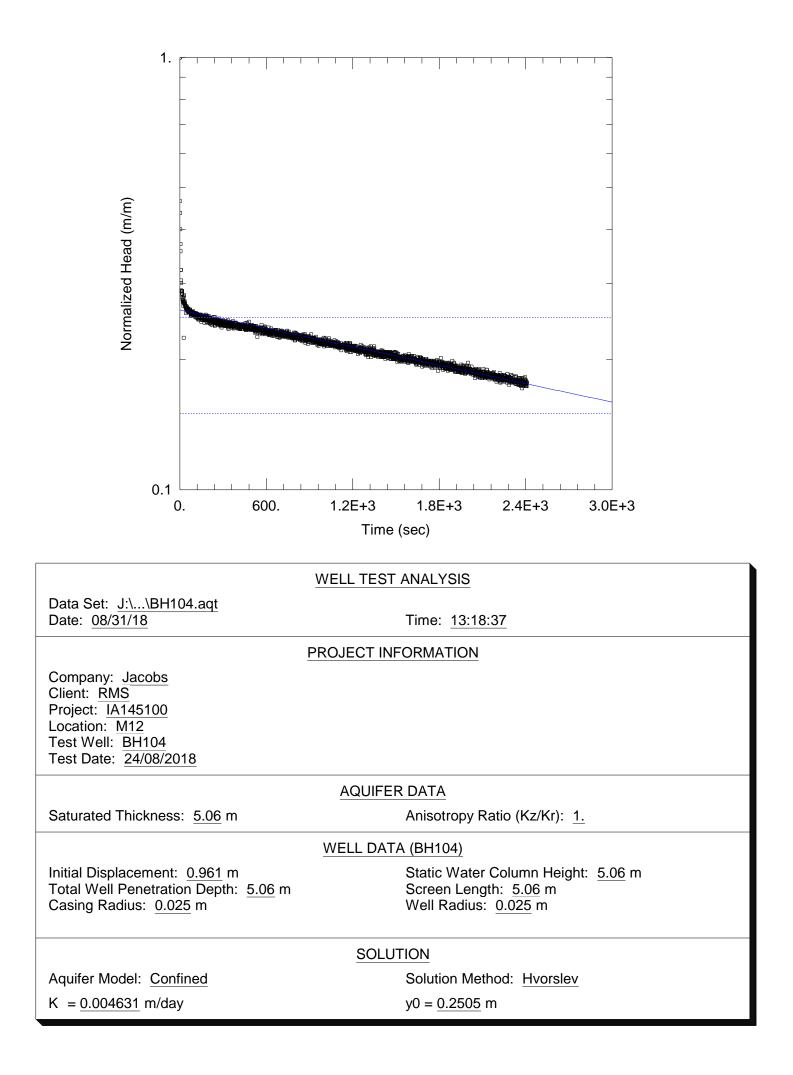


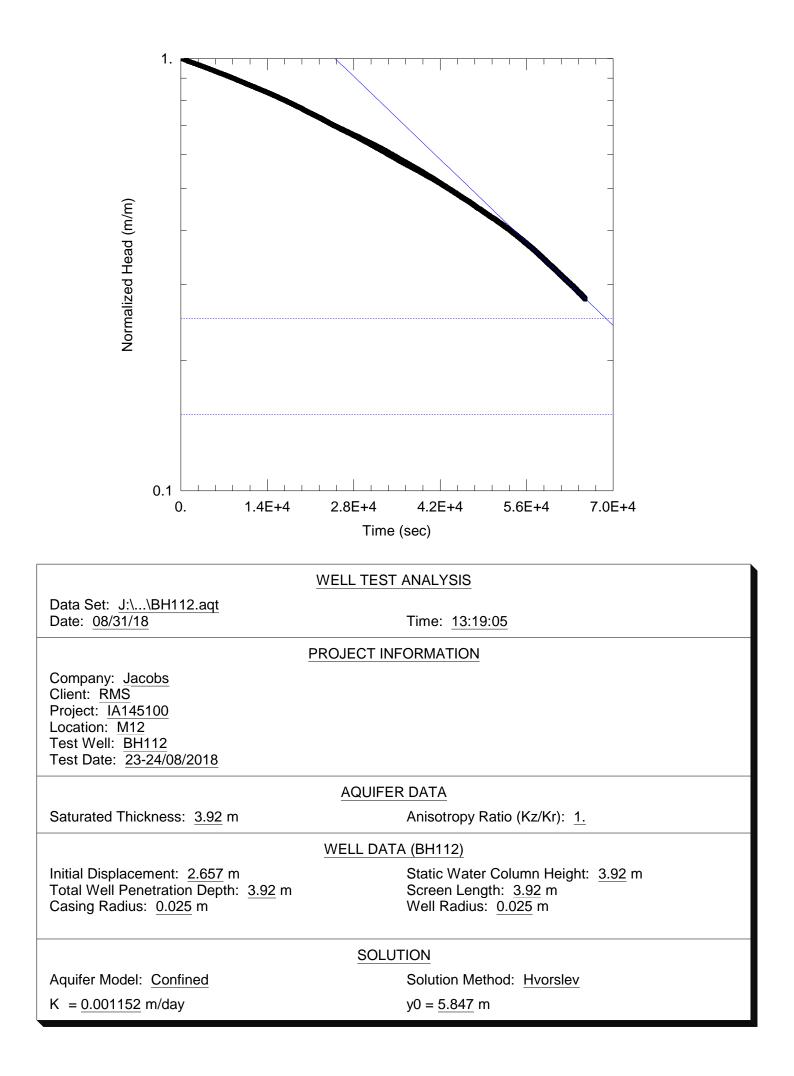







Note: lithology logs for the following bores were not available:


GW112168.1.1 GW112169.1.1 GW112166.1.1 GW112116.1.1 GW112171.1.1 GW112170.1.1 GW112173.1.1 GW112174.1.1 GW112165.1.1 GW112172.1.1 GW112567.1.1 GW114297.1.1 GW114298.1.1 GW114294.1.1 GW114295.1.1 GW106198.1.1


Annexure E Slug test analysis sheets

Annexure F Water quality summary tables

						Metals					Ha	1											Ino	rganics											
		H		1		ivietals					рн						1				1		110	ydnics	1	1				1	1				
		Arsenic (Filtered)	Cadmium (Filtered)	Chromium (III+VI) (Filtered)	Copper (Filtered)	Lead (Filtered)	Magnesium (Filtered)	Mercury (Filtered)	Nickel (Filtered)	Zinc (Filtered)	pH (lab)	Carbonate Alkalinity as CaCO3	Alkalinity (Hydroxide) as CaCO3	Alkalinity (total) as CaCO3	Ammonia as N	Anions Total	Bicarbonate	Calcium (Filtered)	Cations Total	Chloride	Electrical conductivity (lab)	ionic Balance	Kjeldahl Nitrogen Total	Nitrate & Nitrite (as N)	Nitrate (as N)	Nitrite (as N)	Nitrogen (Total)	Phosphate total (P)	Phosphorus	Potassium (Filtered)	Reactive Phosphorus as P	Sodium (Filtered)	Sulfate as SO4 - Turbidimetric (Filtered	Total Dissolved Solids	ISS
		µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	pH Units	mg/L		mg/L	mg/L	meq/L	mg/L	mg/L	meq/L	mg/L	uS/cm	%	mg/L	mg/L	mg/L	µg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EQL		113									0.01	1	1	1	0.01	0.01	1		0.01	1	1	0.01	0.1	0.01	0.01	10	0.1	0.05	0.01		0.01			10	5
ADWG 2015 Aesthetic				Ì	1000					3000							1	1		250												180		600	
ADWG 2015 Health		10	2		2000	10		1	20																11.29	910									
ANZECC 2000 FW 95%		24	0.2	1	1.4	3.4		0.6	11	8					0.9										0.1581										
ANZECC 2000 FW 99%			0.06	0.01	1	1		0.06	8	2.4					0.32										0.00384		0.35		0.01						
ANZECC (2000) trigger values for lo	lowland rivers										6.5-8																0.5		0.05		0.02				
Field ID Location	Sample Date																																		
BH104 BH104	23/08/2018	1	<0.1	<1	10	<1	570	<0.1	9	9	7.61	<1	<1	941	-	205	941	252	203	5920	20,200		-	-	-	-	-	-	-	29	-	_		14,600	
BH112 BH112	24/08/2018	3	<0.1	<1	3	<1	268	<0.1	11	15	7.62	<1	<1	1200	-	131	1200	138	125	3320	12,400	2.31	-	-	-	-	-	-	-	37	-	2180	624	7680	1730
BH145 BH145	24/08/2018	12	<0.1	<1	<1	<1	8	<0.1	33	<5	7.8	<1	<1	725	-	36.1	725	13	36.6	730	3750	0.58	-	-	-	-	-	-	-	6	-	807	51		39,300
BH202 BH202	22/08/2018	2	<0.1	<1	12	2	843	<0.1	6	49	7.16	<1	<1	870	-	260	870	568	267	8590	26,400	1.41	-	-	-	-	-	-	-	42	-	3870	<1	19,500	9
BH207 BH207	24/08/2018	4	< 0.1	<1	18	<1	- I	<01	7	36	7 35	· ·	- 1	- I	4.6	-	.	l -	- I	5580	-	-	49	<0.01	< 0.01	<10	49		<0.02	- I	<0.01	- I	<1		

BH202	BH202	22/08/2018	2	<0.1	<1	12	2	843	<0.1	6	49	7.16	<1	<1	870	-	260	870	568	267	8590	26,400	1.41	-	-	-	-	-	-	-	42	-	3870	<1	19,500	9
BH207	BH207	24/08/2018	4	<0.1	<1	18	<1	-	<0.1	7	36	7.35	-	-	-	4.6	-	-	-	-	5580	-	-	4.9	<0.01	<0.01	<10	4.9	-	<0.02	-	<0.01	-	<1	-	•
BH209	BH209	23/08/2018	<1	<0.1	<1	5	<1	-	<0.1	4	18	7.59	-	-	-	1.26	-	-	-	-	6740	-	-	1.5	<0.01	<0.01	<10	1.5	-	<0.02	-	<0.01	-	366	-	•
BH217	BH217	24/08/2018	4	<0.1	<1	6	<1	517	<0.1	10	16	7.14	<1	<1	531	-	216	531	260	228	7070	22,500	2.78	-	-	-	-	-	-	-	20	-	3960	283	15,900	413
BH223	BH223	22/08/2018	2	<0.1	<1	1	<1	279	<0.1	4	14	7.55	<1	<1	371	-	142	371	225	142	4770	14,800	0.07	-	-	-	-	-	-	-	13	-	2470	9	9240	72
BH301	BH301	23/08/2018	1	<0.1	<1	10	1	-	<0.1	14	25	7.21	-	-	-	0.34	-	-	-	-	10,800	-	-	<0.5	<0.01	<0.01	<10	<0.5	-	<0.05	-	<0.01	-	973	-	-
BH302	BH302	23/08/2018	19	<0.1	<1	32	2	-	<0.1	8	57	-	-	-	-	1.12	-	-	-	-	-	-	-	1.2	<0.01	<0.01	<10	1.2	-	<0.02	-	<0.01	-	-	-	-
QAQC1	BH207	24/08/2018	4	<0.1	<1	<1	<1	-	<0.1	4	17	-	-	-	-	4.47	-	-	-	-	-	-	-	4.5	<0.01	<0.01	<10	4.5	-	<0.02	-	0.01	-	-	-	-
QAQC2	BH207	24/08/2018	3	<0.2	<1	<1	<1	-	<0.1	3	16	-	-	-	-	3.9	-	-	-	-	-	-	-	4.4	<0.05	<0.02	<20	4.4	0.06	-	-	-	-	-	-	-
Statistical S	Summary																																			
Maximum	Concentration		19	<0.2	<1	32	2	843	<0.1	33	57	7.8	<1	<1	1200	4.6	260	1200	568	267	10800	26400	2.78	4.9	<0.05	<0.02	<20	4.9	0.06	<0.05	42	0.01	3960	973	19500	39300
Average Co	oncentration		4.6	0.054	0.5	8.2	0.79	414	0.05	9.4	23	7.4	0.5	0.5	773	2.6	165	773	243	167	5947	16675	1.3	2.8	0.0083	0.0058	5.8	2.8		0.013	25	0.006	2761	359	11595	6983
Standard D	Deviation		5.4	0.014	0	9.3	0.58	291	0	8.1	16	0.24	0	0	297	1.9	79	297	185	83	2917	8121	1.1	2	0.0082	0.002	2	2		0.0067	14	0.0022	1198	394	6180	15844

Note: For toxicants, ANZECC 2000 Freshwater 95% values were incorporated into the groundwater quality criteria. 99% values are shown in this table for context.

M12 Motorway

		Turbidity		T	'RH - NE	EPM 20	13 Fract	ions		T	PH - NEF	PM 1999	9 Fractio	ons				BTE	XN											Р	PAHs								
		Turbidity	, TRH >C6 - C10	TRH >C10 - C16	TRH >C16 - C34	, TRH >C34 - C40	, TRH >C10 - C40 (Sum of total)	TRH >C6 - C10 less BTEX (F1)	TRH >C10 - C16 less Naphthalene (F2)	, TPH C6 - C9	, TPH C10 - C14	TPH C15 - C28	TPH C29-C36	TPH C10 - C36 (Sum of total)	Benzene	, Ethylbenzene	, Naphthalene	Toluene	Total BTEX	Xylene (m & p)	Xylene	Xylene Total	Benzo[b+j]fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(a)pyrene TEQ calc (zero)	Benzo(g,h,i)perylene	, Benzo(k)fluoranthene	, Chrysene	, Dibenz(a,h)anthracene	, Fluoranthene	Fluorene	, Indeno(1,2,3-c,d)pyrene	Phenanthrene	Pyrene	PAHs (Sum of total)
50		NTU	µg/L		µg/L			mg/L	mg/L	µg/L	μg/L 50	µg/L	µg/L	µg/L	µg/L	µg/L				µg/L		Jg/L	mg/L 0.001	µg/L	µg/L	µg/L 1	1.12	μg/L 0.5	1.0	µg/L 1	µg/L	µg/L	µg/L 1	µg/L	µg/L	µg/L	µg/L		µg/L
EQL ADWG 2015 Aesthetic		0.1	20	100	100	100	100	0.02	0.1	20	50	100	50	50	1	2		2 25	0.001	2		2 20	0.001	1	1	1	1	0.5	0.5	- 1	- 1	1	1	1	1		1	1	0.5
ADWG 2015 Health		5													1	300		800				600						0.01											0.01
ADV/G 2015 Health ANZECC 2000 FW 95%															950	300	16	000			350	000						0.01											0.01
ANZECC 2000 FW 95%															600		2.5				200	-																	
ANZECC (2000) trigger values for	lowland rivors														000		2.J				200																		
																							1										1						
Field ID Location	Course In Date																																						
	Sample Date																																						
BH104 BH104	23/08/2018	306		-	-	-	-	-	-	· ·	-	-	-	-	-	-	-		-	-	-		-	-	-			-	-	-	-	-	-	-	-	-	-	-	
		306 1650	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104 BH104	23/08/2018		-	-	-	-	-				-	-	-	-	-	-							- - -		-	-		-	-	-	-	-	-		-	-	-	-	• • •
BH104 BH104 BH112 BH112	23/08/2018 24/08/2018	1650	- - -			-					-	-	-	-	-	-					-		-		-	-	-		-	- - -	-		-		-				- - -
BH104 BH104 BH112 BH112 BH145 BH145	23/08/2018 24/08/2018 24/08/2018	1650 22,800	•	-	-	- - - <100		-	-	-	-	•	- - - <50	-	- - - - <1	-	-	-	-	-	-	• •	- - - <0.001	•	- - - - <1	- - - - <1	-	- - - <0.5	- - - <0.5	- - - - <1	- - - - <1	- - - <1	- - - <1		- - - - <1	- - - - <1	- - - - <1	•	- - - <0.5
BH104 BH104 BH112 BH112 BH145 BH145 BH202 BH202	23/08/2018 24/08/2018 24/08/2018 22/08/2018	1650 22,800 12.5	- - <20	- - <100	- - <100		<100	- - - <0.02	- - - <0.1	- - - <20	-	•		-	-	- - <2	- - - <1	- - - <2	- - -		- - - <2	- - - <2		-	-	- - - - <1 <1	- - - <1	- - - <0.5 <0.5	- - - <0.5 <0.5		- - - - <1 <1	- - - <1 <1	-	-	-	-	-	- - <1	
BH104 BH104 BH112 BH112 BH145 BH145 BH202 BH202 BH207 BH207	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018	1650 22,800 12.5 -	- - <20 <20	- - <100	- - <100		<100	- - - <0.02	- - - <0.1	- - - <20	- - - <50	- - - <100		- - <50	- - <1	- - <2	· · · · · · · · · · · · · · · · · · ·	- - - <2	- - - <0.001	- - - <2	- - - <2 <2	- - - <2	<0.001	- - - <1	- - <1		- - - <1						- - <1	- - - <1	- - <1	- - <1	- - <1	- - <1	<0.5
BH104 BH104 BH112 BH112 BH145 BH145 BH202 BH202 BH207 BH207 BH209 BH209	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018 24/08/2018 23/08/2018	1650 22,800 12.5 -	- - <20 <20	- - <100 <100	- - <100 <100	<100	<100 <100	- - <0.02 <0.02	- - <0.1 <0.1	- - <20 <20	- - <50 <50	- - <100 <100		- - <50 <50	- - <1 <1	- - <2 <2	· · · · · · · · · · · · · · · · · · ·	- - - <2 <2	- - <0.001 <0.001	- - <2 <2	- - - <2 <2	- - - <2 <2	<0.001 <0.001	- - <1 <1	- - <1 <1	<1	- - <1 <1	<0.5	<0.5	<1		<1	- - <1 <1	- - <1 <1	- - <1 <1	- - <1 <1	- - <1 <1	- - <1 <1	<0.5 <0.5
BH104 BH104 BH112 BH112 BH145 BH145 BH202 BH202 BH207 BH207 BH209 BH209 BH217 BH217	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018 23/08/2018 24/08/2018 24/08/2018	1650 22,800 12.5 - - 224	- - <20 <20 -	- <100 <100 - -	- <100 <100 - -	<100 - -	<100 <100 - -	- - <0.02 <0.02 - -	- - <0.1 <0.1 -	- - <20 <20	- - <50 <50 - -	- - <100 <100	<50 - -	- - <50 <50 -	- - <1 <1	- - <2 <2 -		- - - <2 - -	- - <0.001 <0.001 - - <0.001	- - <2 <2 - - - <2	- - - - - - - - - - - - -	- - <2 <2 -	<0.001 <0.001	- - <1 <1	- - <1 <1	<1 - - <1	- - - - - - - - - - - - - - - -	<0.5 - - <0.5	<0.5	<1		<1	- - <1 <1	- - <1 <1	- - <1 <1	- - <1 <1	- - <1 <1	- <1 <1 -	<0.5 <0.5
BH104 BH104 BH112 BH112 BH145 BH145 BH202 BH202 BH207 BH207 BH209 BH209 BH217 BH217 BH223 BH223	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018 23/08/2018 24/08/2018 24/08/2018 22/08/2018	1650 22,800 12.5 - - 224 80.1	- - <20 <20 - - - <20	- <100 <100 - - <100	- <100 <100 - - <100	<100 - - <100	<100 <100 - - <100	- - <0.02 <0.02 - - <0.02	- - <0.1 <0.1 - - <0.1	- - <20 <20 - - - <20	- - <50 <50 - - <50	- - <100 <100 - -	<50 - - <50	- - <50 <50 -	- - <1 <1 - -	- <2 <2 - - <2 -	· · · · · · · · · · · · · · · · · · ·	- - <2 - - - - <2 - - -	- - <0.001 <0.001 - - <0.001	- - <2 <2 - - - <2	- - - - - - - - - - - - -	- - <2 <2 - - - <2 - -	<0.001 <0.001 - -	- - <1 <1 - -	- - <1 - -	<1 - - <1	- - - - - - - - - - - - - - - -	<0.5 - - <0.5	<0.5 - - <0.5	<1 - - <1	<1 - -	<1 - -	- <1 <1 -	- - <1 <1 - -	- - <1 <1 - -	- - <1 <1 - -	- <1 <1 - - - <1	- <1 <1 - - <1	<0.5 <0.5 - -
BH104 BH104 BH112 BH112 BH1145 BH145 BH202 BH202 BH202 BH202 BH202 BH207 BH207 BH207 BH209 BH207 BH217 BH217 BH223 BH223 BH301 BH301 BH302 BH302 QAQC1 BH207	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018 23/08/2018 24/08/2018 22/08/2018 22/08/2018	1650 22,800 12.5 - 224 80.1 -	- - <20 <20 - - <20 <20 <20	- <100 <100 - - <100 <100	- <100 <100 - - <100 <100	<100 - <100 <100	<100 <100 - - <100 <100	- - <0.02 <0.02 - - <0.02	- - <0.1 <0.1 - - <0.1 <0.1	- - - - - - - - - - - - - - - - - - -	- - <50 <50 - - <50 <50 <50 <50	- - <100 <100 - - <100	<50 - <50 <50	- <50 <50 - - <50	· <1 <1 · · · · <1	- -2 -2 - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	- - <2 <2 - - <2 - - <2 <2 <2	- - <0.001 <0.001 - - <0.001	- - <2 <2 -	- - - - - - - - - - - - - - - - - - -	- - <2 <2 - - <2 - - <2 <2 <2	<0.001 <0.001 - - <0.001	· · · · · · · · · ·	- <1 <1 - - -	<1 - - <1	· · · · · · · · · · · · · · · · · · ·	<0.5 - - <0.5 <0.5	<0.5 - - <0.5	<1 - - <1	<1 - - <1	<1 - - <1	- <1 <1 - - <1	- - <1 <1 - - - <1	- <1 <1 - - - - <1	- <1 <1 - - - <1	- <1 <1 - - - <1	- <1 <1 - - <1 <1 <1	<0.5 <0.5 - - <0.5
BH104 BH104 BH112 BH112 BH1145 BH145 BH202 BH202 BH207 BH207 BH209 BH209 BH217 BH217 BH223 BH223 BH301 BH301 BH302 BH302	23/08/2018 24/08/2018 22/08/2018 22/08/2018 23/08/2018 24/08/2018 24/08/2018 22/08/2018 22/08/2018 23/08/2018 23/08/2018	1650 22,800 12.5 - - 224 80.1 - -	- - - - - - - - - - - - - - - - - - -	- <100 <100 - - <100 <100 <100	- <100 <100 - - <100 <100 <100	<100 - <100 <100 <100	<100 <100 - - <100 <100 <100	- - <0.02 - - - <0.02 - - <0.02 <0.02	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - <50 <50 - - - <50 <50 <50 <50	- - <100 <100 - - <100 <100	<50 - <50 <50 <50	- <50 <50 - - <50 <50 <50 <50	· · · <t< td=""><td>- -2 -2 -2 - - -2 -2 -2 -2 -2</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>- - <2 <2 - - <2 - - <2 <2 <2</td><td>- - <0.001 <0.001 - - <0.001 <0.001</td><td>- - - - - - - - - - - - - - - - - - -</td><td>- - - - - - - - - - - - - - - - - - -</td><td>- - - - - - - - - - - - - - - - - - -</td><td><0.001 <0.001 - - <0.001 <0.001</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>· (1) (1) · · (1) (1) (1)</td><td><1 - - <1 <1</td><td>· · · · · · · · · · · · · · · · · · ·</td><td><0.5 - - <0.5 <0.5</td><td><0.5 - - <0.5 <0.5</td><td><1 - - <1 <1</td><td><1 - - <1 <1</td><td><1 - - <1 <1</td><td>- <1 <1 - - <1 <1</td><td>- - - - - - - - - - - - - - - - - - -</td><td>- - - - - - - - - - - - - -</td><td>- <1 <1 - - - <1 <1 <1</td><td>- <1 <1 - - <1 <1</td><td>· · · · · · · · · · · · · ·</td><td><0.5 <0.5 - <0.5 <0.5</td></t<>	- -2 -2 -2 - - -2 -2 -2 -2 -2	· · · · · · · · · · · · · · · · · · ·	- - <2 <2 - - <2 - - <2 <2 <2	- - <0.001 <0.001 - - <0.001 <0.001	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.001 <0.001 - - <0.001 <0.001	· · · · · · · · · · · · · · · · · · ·	· (1) (1) · · (1) (1) (1)	<1 - - <1 <1	· · · · · · · · · · · · · · · · · · ·	<0.5 - - <0.5 <0.5	<0.5 - - <0.5 <0.5	<1 - - <1 <1	<1 - - <1 <1	<1 - - <1 <1	- <1 <1 - - <1 <1	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- <1 <1 - - - <1 <1 <1	- <1 <1 - - <1 <1	· · · · · · · · · · · · · ·	<0.5 <0.5 - <0.5 <0.5
BH104 BH104 BH112 BH112 BH145 BH145 BH202 BH202 BH207 BH207 BH208 BH209 BH217 BH217 BH233 BH223 BH301 BH301 BH302 BH207 QAQC1 BH207 QAQC2 BH207 Statistical Summary	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018 23/08/2018 22/08/2018 22/08/2018 23/08/2018 23/08/2018 23/08/2018	1650 22,800 12.5 - - 224 80.1 - - - - - -		- <100 <100 - - <100 <100 <100 <50	- <100 <100 - - <100 <100 <100 <100	<100 - <100 <100 <100 <100	<100 <100 - <100 <100 <100 <100	- - <0.02 <0.02 - - <0.02 <0.02 <0.02 <0.02 <0.02	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - <50 <50 - - <50 <50 <50 <50 <50	- - <100 <100 - - <100 <100 <100 <100	<50 - <50 <50 <50 <100	- <50 <50 - - <50 <50 <50 <100	. .	· · · · · · · · · · · · · ·	. .	- - <2 <2 - - - <2 <2 <2 <2 <2 <2 2	- - <0.001 - - <0.001 <0.001 <0.001 -	- - <2 <2 - - - <2 <2 <2 <2 <2 <2	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.001 <0.001 - <0.001 <0.001 <0.001 <0.001	- - - - - - - - - - - - - - - - - - -	· <1 <1 · · <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 - - - - - - - - - - - - -	· · · · · · · · · · · · · ·	<0.5 - <0.5 <0.5 <0.5 <1	<0.5 - <0.5 <0.5 -	<1 - <1 <1 <1 <1 <1 <1 <1	<1 - <1 <1 <1 <1 <1 <1 <1	<1 - - - - - - - - - - - - -	. . <t< td=""><td>. . <t< td=""><td>. .</td><td>. .</td><td>· - - - - - - - - - - - - -</td><td>. . <t< td=""><td><0.5 <0.5 - <0.5 <0.5 <0.5 <1</td></t<></td></t<></td></t<>	. . <t< td=""><td>. .</td><td>. .</td><td>· - - - - - - - - - - - - -</td><td>. . <t< td=""><td><0.5 <0.5 - <0.5 <0.5 <0.5 <1</td></t<></td></t<>	· - - - - - - - - - - - - -	. . <t< td=""><td><0.5 <0.5 - <0.5 <0.5 <0.5 <1</td></t<>	<0.5 <0.5 - <0.5 <0.5 <0.5 <1
BH104 BH104 BH112 BH112 BH1145 BH145 BH202 BH202 BH207 BH207 BH209 BH209 BH217 BH217 BH223 BH301 BH302 BH302 OAQC1 BH207 OAQC2 BH207 Statistical Summary Maximum Concentration	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018 23/08/2018 22/08/2018 22/08/2018 23/08/2018 23/08/2018 23/08/2018	1650 22,800 12.5 - - 224 80.1 - - - - 22800	 -20 -20 -20 -20 -20 -20 -20 -20	- <100 <100 - <100 <100 <100 <50	- - <100 <100 - - <100 <100 <100 <100	<100 - <100 <100 <100 <100	<100 <100 - - <100 <100 <100 <100 <100	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - <100 <100 - - <100 <100 <100 <100	<50 - <50 <50 <100 <100	- - <50 <50 - - <50 <50 <50 <100	. . .1 .1 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	. .	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	<0.001 <0.001 - <0.001 <0.001 <0.001 <0.001 <0.001	· · · · · · · · · · · · · · · · · · ·	· - - - - - - - - - - - - -	<1 - - - - - - - - - - - - -	· · · · · · · · · · · · · ·	<0.5 - <0.5 <0.5 <1 <1	<0.5 - <0.5 <0.5 - - <0.5	<1 - - - - - - - - - - - - -	<1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1	. <11 .1 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	· <1	. . <t< td=""><td>- - - - - - - - - - - - - -</td><td><0.5 <0.5 - <0.5 <0.5 <0.5 <1</td></t<>	- - - - - - - - - - - - - -	<0.5 <0.5 - <0.5 <0.5 <0.5 <1
BH104 BH104 BH112 BH112 BH112 BH112 BH112 BH112 BH1202 BH202 BH202 BH207 BH207 BH207 BH209 BH207 BH217 BH217 BH223 BH223 BH301 BH301 BH302 BH302 QAQC1 BH207 QAQC2 BH207 Statistical Summary Maximum Concentration Average Concentration Average Concentration	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018 23/08/2018 22/08/2018 22/08/2018 23/08/2018 23/08/2018 23/08/2018	1650 22,800 12.5 - - 224 80.1 - - - - - 22800 4179	 -20 -20 -20 -20 -20 -20 -20 -20 -2	- <100 <100 - - <100 <100 <100 <50	- - <100 <100 - - <100 <100 <100 <100 <1	<100 - <100 <100 <100 <100 <100 <100 50	<100 <100 - - <100 <100 <100 <100 <100 <	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - <100 <100 - <100 <100 <100 <100 <100	<50 - <50 <50 <100 <100 29	- - <50 <50 - - - <50 <50 <50 <100 29	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - <1 - <1 - <1 <1 <1 <1 <1 <1 <1	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	<0.001 <0.001 - <0.001 <0.001 <0.001 <0.001 <0.001 0.0005	· · · · · · · · · · · · · ·	- - - - - - - - - - - - - -	<1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 0.5	- - - - - - - - - - - - - - - - - - -	<0.5 - <0.5 <0.5 <0.5 <1 <1	<0.5 - <0.5 <0.5 - - <0.5 0.5 0.25	<1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 0.5	<1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 0.5	<1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 0.5	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	· - - - - - - - - - - - - -	- <1 <1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<0.5 <0.5 - <0.5 <0.5 <0.5 <1 <1 0.29
BH104 BH104 BH112 BH112 BH1145 BH1145 BH202 BH202 BH207 BH207 BH209 BH207 BH217 BH217 BH223 BH223 BH301 BH301 BH302 BH302 OAQC1 BH207 QAQC2 BH207 Statistical Summary Maximum Concentration	23/08/2018 24/08/2018 24/08/2018 22/08/2018 24/08/2018 23/08/2018 22/08/2018 22/08/2018 23/08/2018 23/08/2018 23/08/2018	1650 22,800 12.5 - - 224 80.1 - - - - 22800	 -20 -20 -20 -20 -20 -20 -20 -20	- - <100 <100 - - <100 <100 <100 <50	- - <100 <100 - - <100 <100 <100 <100	<100 - <100 <100 <100 <100	<100 <100 - - <100 <100 <100 <100 <100	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - <100 <100 - - <100 <100 <100 <100	<50 - <50 <50 <100 <100	- - <50 <50 - - <50 <50 <50 <100	. . .1 .1 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	. .	- - <1 - <1 - <1 <1 <1 <1 <1 <1 <1	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	<0.001 <0.001 - <0.001 <0.001 <0.001 <0.001 <0.001	· · · · · · · · · · · · · · · · · · ·	· - - - - - - - - - - - - -	<1 - - - - - - - - - - - - -	· · · · · · · · · · · · · ·	<0.5 - <0.5 <0.5 <1 <1	<0.5 - <0.5 <0.5 - - <0.5	<1 - - - - - - - - - - - - -	<1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1	. <11 .1 1 .1 .1 .1 .1 .1 .1 .1 .1 .1	· <1	. . <t< td=""><td>- <1 <1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1</td><td><0.5 <0.5 - <0.5 <0.5 <0.5 <1</td></t<>	- <1 <1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<0.5 <0.5 - <0.5 <0.5 <0.5 <1

Note: For toxicants, ANZECC 2000 Freshwater 95% values were incorporated into the groundwater quality criteria. 99% values are shown in this table for context.

Annexure G

Groundwater quality testing laboratory certificate

CERTIFICATE OF ANALYSIS

Work Order	ES1825044	Page	: 1 of 14	
Client	: JACOBS GROUP (AUSTRALIA) PTY LTD	Laboratory	Environmental Division Sydney	
Contact	: SATH DAVE	Contact	: Brenda Hong	
Address	: 100 CHRISTIE STREET P O BOX 164	Address	:	
	ST LEONARDS NSW, AUSTRALIA 2065			
Telephone		Telephone	:	
Project	: IA145100 M12 Groundwater	Date Samples Received	: 24-Aug-2018 14:45	ANUIDI.
Order number	: IA145100	Date Analysis Commenced	: 24-Aug-2018	
C-O-C number	:	Issue Date	: 30-Aug-2018 18:32	
Sampler	: SATH DAVE			AC-MRA NATA
Site	:		1 m	
Quote number	: SY/426/18			Accreditation No. 825
No. of samples received	: 14			Accredited for compliance with
No. of samples analysed	: 13			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EK061G/EK067G/EK062G: : LOR raised for TKN & TN on various samples due to sample matrix.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEX compounds spiked at 20 ug/L.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page: 3 of 14Work Order: ES1825044Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	BH104	BH112	BH209	BH207	BH217
	C	lient sampli	ng date / time	23-Aug-2018 00:00	24-Aug-2018 00:00	23-Aug-2018 00:00	24-Aug-2018 00:00	24-Aug-2018 00:00
Compound	CAS Number	LOR	Unit	ES1825044-001	ES1825044-002	ES1825044-003	ES1825044-004	ES1825044-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.61	7.62	7.59	7.35	7.14
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	20200	12400			22500
A015: Total Dissolved Solids dried	at 180 + 5 °C							
Total Dissolved Solids @180°C		10	mg/L	14600	7680			15900
A025: Total Suspended Solids dried								
Suspended Solids (SS)		5	mg/L	373	1730			413
EA045: Turbidity Turbidity		0.1	NTU	306	1650			224
		0.1	NIG	500	1050			224
D037P: Alkalinity by PC Titrator		4						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1			<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1			<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	941	1200			531
Total Alkalinity as CaCO3		1	mg/L	941	1200			531
D041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	921	624	366	<1	283
D045G: Chloride by Discrete Analys	ser							
Chloride	16887-00-6	1	mg/L	5920	3320	6740	5580	7070
D093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	252	138			260
Magnesium	7439-95-4	1	mg/L	570	268			517
Sodium	7440-23-5	1	mg/L	3280	2180			3960
Potassium	7440-09-7	1	mg/L	29	37			20
G020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.001	0.003	<0.001	0.004	0.004
Cadmium	7440-43-9		mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3		mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.010	0.003	0.005	0.018	0.006
Nickel	7440-02-0	0.001	mg/L	0.009	0.011	0.004	0.007	0.010
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	< 0.001
Zinc	7440-66-6		mg/L	0.009	0.015	0.018	0.036	0.016
G035F: Dissolved Mercury by FIMS Mercury	7400.07.0	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
mercury	7439-97-6	0.0001	iiig/L	~0.0001	NU.000 I	~0.000 T	~0.000 I	NU.000 I

Page: 4 of 14Work Order: ES1825044Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	BH104	BH112	BH209	BH207	BH217
	Cli	ient sampli	ng date / time	23-Aug-2018 00:00	24-Aug-2018 00:00	23-Aug-2018 00:00	24-Aug-2018 00:00	24-Aug-2018 00:00
Compound	CAS Number	LOR	Unit	ES1825044-001	ES1825044-002	ES1825044-003	ES1825044-004	ES1825044-005
				Result	Result	Result	Result	Result
EK055G: Ammonia as N by Disc	rete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L			1.26	4.60	
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N	14797-65-0	0.01	mg/L			<0.01	<0.01	
EK058G: Nitrate as N by Discret	e Analyser							
Nitrate as N	14797-55-8	0.01	mg/L			<0.01	<0.01	
EK059G: Nitrite plus Nitrate as N		lysor						
Nitrite + Nitrate as N		0.01	mg/L			<0.01	<0.01	
EK061G: Total Kjeldahl Nitrogen	By Discroto Apolycor		, , , , , , , , , , , , , , , , , , ,					
Total Kjeldahl Nitrogen as N	by Discrete Analyser	0.1	mg/L			1.5	4.9	
EK062G: Total Nitrogen as N (TK ^ Total Nitrogen as N	N + NOX) by Discrete An	0.1	ma/l			1.5	4.9	
, , , , , , , , , , , , , , , , , , ,		0.1	mg/L			1.5	4.9	
EK067G: Total Phosphorus as P	by Discrete Analyser							1
Total Phosphorus as P		0.01	mg/L			<0.02	<0.02	
EK071G: Reactive Phosphorus a	s P by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L			<0.01	<0.01	
EN055: Ionic Balance								
Total Anions		0.01	meq/L	205	131			216
Total Cations		0.01	meq/L	203	125			228
Ionic Balance		0.01	%	0.51	2.31			2.78
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	1.0	µg/L			<1.0	<1.0	
Acenaphthylene	208-96-8	1.0	µg/L			<1.0	<1.0	
Acenaphthene	83-32-9	1.0	µg/L			<1.0	<1.0	
Fluorene	86-73-7	1.0	µg/L			<1.0	<1.0	
Phenanthrene	85-01-8	1.0	µg/L			<1.0	<1.0	
Anthracene	120-12-7	1.0	µg/L			<1.0	<1.0	
Fluoranthene	206-44-0	1.0	µg/L			<1.0	<1.0	
Pyrene	129-00-0	1.0	µg/L			<1.0	<1.0	
Benz(a)anthracene	56-55-3	1.0	µg/L			<1.0	<1.0	
Chrysene	218-01-9	1.0	µg/L			<1.0	<1.0	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L			<1.0	<1.0	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L			<1.0	<1.0	
Benzo(a)pyrene	50-32-8	0.5	µg/L			<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L			<1.0	<1.0	

Page : 5 of 14 Work Order : ES1825044 Client : JACOBS GROUP (AUSTRALIA) PTY LTD Project : IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	BH104	BH112	BH209	BH207	BH217
	Cl	ient sampli	ng date / time	23-Aug-2018 00:00	24-Aug-2018 00:00	23-Aug-2018 00:00	24-Aug-2018 00:00	24-Aug-2018 00:00
Compound	CAS Number	LOR	Unit	ES1825044-001	ES1825044-002	ES1825044-003	ES1825044-004	ES1825044-005
				Result	Result	Result	Result	Result
P075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	tinued						
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L			<1.0	<1.0	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L			<1.0	<1.0	
Sum of polycyclic aromatic hydrocarbons		0.5	µg/L			<0.5	<0.5	
Benzo(a)pyrene TEQ (zero)		0.5	μg/L			<0.5	<0.5	
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		20	µg/L			<20	<20	
C10 - C14 Fraction		50	µg/L			<50	<50	
C15 - C28 Fraction		100	µg/L			<100	<100	
C29 - C36 Fraction		50	µg/L			<50	<50	
C10 - C36 Fraction (sum)		50	µg/L			<50	<50	
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	20	µg/L			<20	<20	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	µg/L			<20	<20	
>C10 - C16 Fraction		100	μg/L			<100	<100	
>C16 - C34 Fraction		100	μg/L			<100	<100	
>C34 - C40 Fraction		100	µg/L			<100	<100	
>C10 - C40 Fraction (sum)		100	µg/L			<100	<100	
>C10 - C16 Fraction minus Naphthalene		100	µg/L			<100	<100	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	μg/L			<1	<1	
Toluene	108-88-3	2	μg/L			<2	<2	
Ethylbenzene	100-41-4	2	μg/L			<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L			<2	<2	
ortho-Xylene	95-47-6	2	µg/L			<2	<2	
Total Xylenes		2	μg/L			<2	<2	
Sum of BTEX		1	μg/L			<1	<1	
Naphthalene	91-20-3	5	μg/L			<5	<5	
P075(SIM)S: Phenolic Compound Surr	ogates							
Phenol-d6	13127-88-3	1.0	%			18.5	18.7	
2-Chlorophenol-D4	93951-73-6	1.0	%			40.8	43.6	
2.4.6-Tribromophenol	118-79-6	1.0	%			69.3	73.7	

Page : 6 of 14 Work Order : ES1825044 Client : JACOBS GROUP (AUSTRALIA) PTY LTD Project : IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	BH104	BH112	BH209	BH207	BH217
	Cli	ent sampli	ng date / time	23-Aug-2018 00:00	24-Aug-2018 00:00	23-Aug-2018 00:00	24-Aug-2018 00:00	24-Aug-2018 00:00
Compound	CAS Number	LOR	Unit	ES1825044-001	ES1825044-002	ES1825044-003	ES1825044-004	ES1825044-005
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
2-Fluorobiphenyl	321-60-8	1.0	%			66.3	81.9	
Anthracene-d10	1719-06-8	1.0	%			77.3	84.7	
4-Terphenyl-d14	1718-51-0	1.0	%			77.0	80.4	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%			93.5	89.9	
Toluene-D8	2037-26-5	2	%			104	97.6	
4-Bromofluorobenzene	460-00-4	2	%			108	103	

Page: 7 of 14Work Order: ES1825044Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	BH301	BH302	BH223	BH145	BH202
	С	lient sampli	ng date / time	23-Aug-2018 00:00	23-Aug-2018 00:00	22-Aug-2018 00:00	24-Aug-2018 00:00	22-Aug-2018 00:00
Compound	CAS Number	LOR	Unit	ES1825044-006	ES1825044-007	ES1825044-008	ES1825044-009	ES1825044-010
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.21		7.55	7.80	7.16
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm			14800	3750	26400
A015: Total Dissolved Solids dried	at 180 + 5 °C							
Total Dissolved Solids @180°C		10	mg/L			9240	2650	19500
A025: Total Suspended Solids dried		1						
Suspended Solids (SS)	1 at 104 ± 2 C	5	mg/L			72	39300	9
			<u></u>					
EA045: Turbidity Turbidity	 	0.1	NTU			80.1	22800	12.5
		0.1					22000	12.9
ED037P: Alkalinity by PC Titrator		4				4	-14	-1
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L			<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L			<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L			371	725	870
Total Alkalinity as CaCO3		1	mg/L			371	725	870
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	973		9	51	<1
D045G: Chloride by Discrete Analys	ser							
Chloride	16887-00-6	1	mg/L	10800		4770	730	8590
D093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L			225	13	568
Magnesium	7439-95-4	1	mg/L			279	8	843
Sodium	7440-23-5	1	mg/L			2470	807	3870
Potassium	7440-09-7	1	mg/L			13	6	42
EG020F: Dissolved Metals by ICP-MS	3	1						
Arsenic	7440-38-2	0.001	mg/L	0.001	0.019	0.002	0.012	0.002
Cadmium	7440-43-9		mg/L	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
Chromium	7440-47-3		mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.010	0.032	0.001	<0.001	0.012
Nickel	7440-02-0	0.001	mg/L	0.014	0.008	0.004	0.033	0.006
Lead	7439-92-1	0.001	mg/L	0.001	0.002	<0.001	<0.001	0.002
Zinc	7440-66-6		mg/L	0.025	0.057	0.014	<0.005	0.049
G035F: Dissolved Mercury by FIMS Mercury		0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
mercury	7439-97-6	0.0001	iiig/∟	~0.0001	~0.000 T	~0.000 i	-0.000 T	NU.000 I

Page: 8 of 14Work Order: ES1825044Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	BH301	BH302	BH223	BH145	BH202
	Clie	ent samplii	ng date / time	23-Aug-2018 00:00	23-Aug-2018 00:00	22-Aug-2018 00:00	24-Aug-2018 00:00	22-Aug-2018 00:00
Compound	CAS Number	LOR	Unit	ES1825044-006	ES1825044-007	ES1825044-008	ES1825044-009	ES1825044-010
				Result	Result	Result	Result	Result
EK055G: Ammonia as N by Disc	rete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.34	1.12			
EK057G: Nitrite as N by Discret	e Analvser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01			
EK058G: Nitrate as N by Discret	te Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01			
EK059G: Nitrite plus Nitrate as I		vser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01			
EK061G: Total Kjeldahl Nitrogen	By Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.5	1.2			
EK062G: Total Nitrogen as N (Th			<u> </u>					
COSC Total Nitrogen as N (Tr	(N + NOX) by Discrete An	alyser 0.1	mg/L	<0.5	1.2			
-		0.1	mg/E	-0.0				
EK067G: Total Phosphorus as P Total Phosphorus as P	by Discrete Analyser	0.01	mg/L	<0.05	<0.02			
-		0.01	mg/L	<0.05	<0.02			
EK071G: Reactive Phosphorus a		0.04		-0.01	10.04			
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01			
EN055: Ionic Balance								
Total Anions		0.01	meq/L			142	36.1	260
Total Cations		0.01	meq/L			142	36.6	267
Ionic Balance		0.01	%			0.07	0.58	1.41
EP075(SIM)B: Polynuclear Arom	natic Hydrocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0			
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0			
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0			
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0			
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0			
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0			
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0			
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0			
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0			
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0			
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0			
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0			

Page: 9 of 14Work Order: ES1825044Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	BH301	BH302	BH223	BH145	BH202
· · · · · · · · · · · · · · · · · · ·	Cl	ient sampli	ng date / time	23-Aug-2018 00:00	23-Aug-2018 00:00	22-Aug-2018 00:00	24-Aug-2018 00:00	22-Aug-2018 00:00
Compound	CAS Number	LOR	Unit	ES1825044-006	ES1825044-007	ES1825044-008	ES1825044-009	ES1825044-010
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Con	tinued						
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0			
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0			
Sum of polycyclic aromatic hydrocarbons		0.5	µg/L	<0.5	<0.5			
• Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5			
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		20	µg/L	<20	<20			
C10 - C14 Fraction		50	µg/L	<50	<50			
C15 - C28 Fraction		100	µg/L	<100	<100			
C29 - C36 Fraction		50	µg/L	<50	<50			
C10 - C36 Fraction (sum)		50	µg/L	<50	<50			
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20			
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20			
(F1)								
>C10 - C16 Fraction		100	µg/L	<100	<100			
>C16 - C34 Fraction		100	µg/L	<100	<100			
>C34 - C40 Fraction		100	µg/L	<100	<100			
>C10 - C40 Fraction (sum)		100	µg/L	<100	<100			
>C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100			
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1			
Toluene	108-88-3	2	µg/L	<2	<2			
Ethylbenzene	100-41-4	2	µg/L	<2	<2			
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2			
ortho-Xylene	95-47-6	2	µg/L	<2	<2			
` Total Xylenes		2	µg/L	<2	<2			
Sum of BTEX		1	µg/L	<1	<1			
Naphthalene	91-20-3	5	µg/L	<5	<5			
EP075(SIM)S: Phenolic Compound Surr	ogates							
Phenol-d6	13127-88-3	1.0	%	18.9	17.0			
2-Chlorophenol-D4	93951-73-6	1.0	%	45.8	51.3			
2.4.6-Tribromophenol	118-79-6	1.0	%	78.4	68.5			

Page: 10 of 14Work Order: ES1825044Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	BH301	BH302	BH223	BH145	BH202
	Cli	ent sampli	ng date / time	23-Aug-2018 00:00	23-Aug-2018 00:00	22-Aug-2018 00:00	24-Aug-2018 00:00	22-Aug-2018 00:00
Compound	CAS Number	LOR	Unit	ES1825044-006	ES1825044-007	ES1825044-008	ES1825044-009	ES1825044-010
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
2-Fluorobiphenyl	321-60-8	1.0	%	75.9	77.0			
Anthracene-d10	1719-06-8	1.0	%	90.7	87.0			
4-Terphenyl-d14	1718-51-0	1.0	%	83.9	78.8			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	102	98.6			
Toluene-D8	2037-26-5	2	%	106	110			
4-Bromofluorobenzene	460-00-4	2	%	110	113			

Page: 11 of 14Work Order: ES1825044Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC1	ТВ	TS	
	Cl	ient sampli	ng date / time	24-Aug-2018 00:00	17-Aug-2018 00:00	13-Aug-2018 00:00	
Compound	CAS Number	LOR	Unit	ES1825044-011	ES1825044-013	ES1825044-014	
				Result	Result	Result	
EG020F: Dissolved Metals by ICP-M	NS						
Arsenic	7440-38-2	0.001	mg/L	0.004			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001			
Chromium	7440-47-3	0.001	mg/L	<0.001			
Copper	7440-50-8	0.001	mg/L	<0.001			
Nickel	7440-02-0	0.001	mg/L	0.004			
Lead	7439-92-1	0.001	mg/L	<0.001			
Zinc	7440-66-6	0.005	mg/L	0.017			
EG035F: Dissolved Mercury by FIM	IS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001			
EK055G: Ammonia as N by Discret	e Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	4.47			
EK057G: Nitrite as N by Discrete A							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01			
EK058G: Nitrate as N by Discrete A			5				
Nitrate as N	14797-55-8	0.01	mg/L	<0.01			
			<u>9</u> / _				
EK059G: Nitrite plus Nitrate as N (I Nitrite + Nitrate as N	NOX) by Discrete Ana	0.01	mg/L	<0.01			
		0.01	ing/L	~0.01			
EK061G: Total Kjeldahl Nitrogen B		0.4		45			
Total Kjeldahl Nitrogen as N		0.1	mg/L	4.5			
EK062G: Total Nitrogen as N (TKN	+ NOx) by Discrete Ar						
^ Total Nitrogen as N		0.1	mg/L	4.5			
EK067G: Total Phosphorus as P by	v Discrete Analyser						
Total Phosphorus as P		0.01	mg/L	<0.02			
EK071G: Reactive Phosphorus as I	P by discrete analyser						
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01			
EP075(SIM)B: Polynuclear Aromati	c Hydrocarbons						
Naphthalene	91-20-3	1.0	µg/L	<1.0			
Acenaphthylene	208-96-8	1.0	µg/L	<1.0			
Acenaphthene	83-32-9	1.0	µg/L	<1.0			
Fluorene	86-73-7	1.0	µg/L	<1.0			
Phenanthrene	85-01-8	1.0	µg/L	<1.0			
Anthracene	120-12-7	1.0	µg/L	<1.0			
Fluoranthene	206-44-0	1.0	µg/L	<1.0			

Page: 12 of 14Work Order: ES1825044Client: JACOBS GROUP (AUSTRALIA) PTY LTDProject: IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC1	ТВ	TS	
	Cli	ient samplii	ng date / time	24-Aug-2018 00:00	17-Aug-2018 00:00	13-Aug-2018 00:00	
Compound	CAS Number	LOR	Unit	ES1825044-011	ES1825044-013	ES1825044-014	
				Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued					
Pyrene	129-00-0	1.0	µg/L	<1.0			
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0			
Chrysene	218-01-9	1.0	µg/L	<1.0			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0			
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0			
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0			
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0			
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0			
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	μg/L	<0.5			
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5			
EP080/071: Total Petroleum Hydroca	rbons						
C6 - C9 Fraction		20	µg/L	<20	<20		
C10 - C14 Fraction		50	µg/L	<50			
C15 - C28 Fraction		100	µg/L	<100			
C29 - C36 Fraction		50	µg/L	<50			
[^] C10 - C36 Fraction (sum)		50	μg/L	<50			
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	าร				
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20		
(F1)	-						
>C10 - C16 Fraction		100	µg/L	<100			
>C16 - C34 Fraction		100	µg/L	<100			
>C34 - C40 Fraction		100	µg/L	<100			
^ >C10 - C40 Fraction (sum)		100	µg/L	<100			
^ >C10 - C16 Fraction minus Naphthalene	ə	100	µg/L	<100			
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	16	
Toluene	108-88-3	2	µg/L	<2	<2	17	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	17	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	16	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	17	
^ Total Xylenes		2	μg/L	<2	<2	33	
^ Sum of BTEX		1	µg/L	<1	<1	83	

Page : 13 of 14 Work Order : ES1825044 Client : JACOBS GROUP (AUSTRALIA) PTY LTD Project : IA145100 M12 Groundwater

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC1	ТВ	TS	
	Cli	ent sampli	ing date / time	24-Aug-2018 00:00	17-Aug-2018 00:00	13-Aug-2018 00:00	
Compound	CAS Number	LOR	Unit	ES1825044-011	ES1825044-013	ES1825044-014	
				Result	Result	Result	
EP080: BTEXN - Continued							
Naphthalene	91-20-3	5	µg/L	<5	<5	18	
EP075(SIM)S: Phenolic Compound S	urrogates						
Phenol-d6	13127-88-3	1.0	%	17.6			
2-Chlorophenol-D4	93951-73-6	1.0	%	46.3			
2.4.6-Tribromophenol	118-79-6	1.0	%	60.2			
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	1.0	%	76.0			
Anthracene-d10	1719-06-8	1.0	%	85.0			
4-Terphenyl-d14	1718-51-0	1.0	%	77.0			
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	89.7	97.9	85.0	
Toluene-D8	2037-26-5	2	%	92.1	107	106	
4-Bromofluorobenzene	460-00-4	2	%	98.9	110	106	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)	
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Surrogates				
Phenol-d6	13127-88-3	10	44	
2-Chlorophenol-D4	93951-73-6	14	94	
2.4.6-Tribromophenol	118-79-6	17	125	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	20	104	
Anthracene-d10	1719-06-8	27	113	
4-Terphenyl-d14	1718-51-0	32	112	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	71	137	
Toluene-D8	2037-26-5	79	131	
4-Bromofluorobenzene	460-00-4	70	128	

www.rms.nsw.gov.au/m12 m12motorway@rms.nsw.gov.au

1800 517 155

Roads and Maritime Services PO Box 973 Parramatta NSW 2124

October 2019 RMS 19.1374 ISBN: 978-1-925891-89-8