

Transport for NSW

Beaches Link and Gore Hill Freeway Connection

Appendix W Arboricultural impact assessment

transport.nsw.gov.au DECEMBER 2020

Transport for NSW

Beaches Link and Gore Hill Freeway Connection Technical working paper: Arboricultural impact assessment December 2020 **Prepared for** Transport for NSW Prepared by Eco Logical Australia Pty Ltd © Transport for NSW

The concepts and information contained in this document are the property of Transport for NSW. You must not reproduce any part of this document without the prior written approval of Transport for NSW.

Contents

Abbre	eviations and terms	iv
Execu	utive summary	V
1	Introduction	1
1.1	Overview	1
1.2	The project	1
1.3	Project location	2
1.4	Key features of the project	2
1.5	Key construction activities	6
1.6	Purpose of this report	9
1.7	Secretary's environmental assessment requirements	9
2	Method	11
2.1	Visual tree assessment	11
2.2	Tree retention value	11
2.3	Assessing impacts to tree root systems	12
2.3.1	Tree protection zone (TPZ)	12
2.3.2	Structural root zone (SRZ)	12
2.3.3	Trees in group	12
2.3.4	Calculating impacts	12
2.4	Categories of impacts	14
2.4.1	Trees to be retained	14
2.4.2	Potential impact	14
2.4.3	Direct impact	14
2.5	Trees that would require further investigation	14
2.5.1	Inaccessible trees	14
2.5.2	Trees assessed as potential impact	14
2.5.3	Canopy pruning	15
3	Results of impact assessment	16
3.1	Detailed results	16
3.2	Summary of results	16
3.3	Retention value of potential and direct impact trees	16
4	Tree management	18
4.1	Tree sensitive construction	18
4.2	Hold points, inspection and certification	18
4.3	Protection for trees to be retained	18

4.3.1	Tree	protection fencing	19
4.3.2	Crowi	n protection	19
4.3.3	Trunk	protection	19
4.3.4	Grour	nd protection	20
4.3.5	Root	protection and root pruning	20
4.3.6	Unde	rground utilities	20
4.4	Tree	work	22
4.5	Cano	py pruning	22
4.6	Trees	to be removed	23
4.6.1	Reuse	e	23
4.6.2	Seed	collection	23
4.6.3	Repla	acement planting	23
Refere	nces		25
Annex	ure A	STARS assessment matrix	26
Annex	ure B	Maps of arboricultural assessment – Assessment Area 1	28
Annex	ure C	Table of results – Assessment Area 1	32
Annex	ure D	Maps of arboricultural assessment – Assessment Area 2	45
Annex	ure E	Table of results – Assessment Area 2	55
Annex	ure F	Maps of arboricultural assessment – Assessment Area 3	66
Annex	ure G	Table of results – Assessment Area 3	67
Annex	ure H	Maps of arboricultural assessment – Assessment Area 4	69
Annex	ure I	Table of results – Assessment Area 4	83
Annex	ure J	Maps of arboricultural assessment – Assessment Area 5	131
Annex	ure K	Table of results – Assessment Area 5	146

ii

List of figures

Figure 1-1 Key features of the Beaches Link component of the project	4
Figure 1-2 Key features of the Gore Hill Freeway component of the project	5
Figure 1-3 Overview of the construction support sites	8
Figure 1-4: Beaches Link and Gore Hill Freeway Connection arboricultural assessment areas.	10
Figure 2-1: Indicative Tree Protection Zone and Structural Root Zone	13
Figure 2-2: Calculating impacts	13
Figure 4-1: Tree protection fencing	21
Figure 4-2: Trunk protection	21
List of tables	
Table 1-1: Secretary's environmental assessment requirements – arboricultural impact assess	
Table 3-1: Summary of arboricultural results	16
Table 3-2: Summary of the number of trees subject to a potential impact	16
Table 3-3: Summary of the number of trees to be subject to direct impact	17
Table 4-1: Tree management schedule	18
Table 4-2: Tree pruning mitigation measures	22
Table 4-3: Summary of the estimated number of direct impact trees requiring offset under Biodiversity Offset Scheme or replacement planting	
Table 4-4: Summary of the estimated number of potential impact trees requiring offset under Biodiversity Offset Scheme or replacement planting	

Abbreviations and terms

Abbreviation	Description
Amenity tree	Trees (as defined in Willoughby Council's <i>Tree Preservation Order</i>) that do not classify for offset under the NSW Biodiversity Offsets Scheme, established under Part 6 of the <i>Biodiversity Conservation Act 2016</i> .
AQF	Australian Qualifications Framework
AS	Australian Standards
Associated infrastructure	Associated infrastructure refers to the supporting infrastructure which includes stormwater detention, air vents and construction site.
BL	Beaches Link
DBH	Diameter at Breast Height
Disturbance footprint	The aboveground area to be directly impacted by the project
ELA	Eco Logical Australia Pty Ltd
LGA	Local Government Area
m	Metre
mm	Millimetre
NO	Number
NSW	New South Wales
Operational ventilation systems	Includes tunnel air ventilation and emergency smoke exhaust systems.
SP	Species
SRZ	Structural Root Zone
STARS	IACA Significance of a Tree, Assessment Rating System
TPO	Tree Preservation Order
TPZ	Tree Protection Zone
ULE	Useful Life Expectancy
VTA	Visual Tree Assessment

Executive summary

An arboricultural impact assessment for the Beaches Link and Gore Hill Freeway Connection was conducted using field techniques, review of aerial photography and spatial data analysis. The assessment area included both amenity trees and trees within native vegetation communities (including native revegetation) within 15 metres of the project alignment.

Key results of the assessment are:

- 3009 trees would be directly impacted by construction and removed. Of these, 135 trees
 have high retention value, 1508 have medium retention value and 1366 have low retention
 value
- 500 trees have the potential to be impacted and would require careful management during construction to avoid or minimise impacts where possible
- Further arboricultural investigation of the construction footprint would be required in areas
 that were inaccessible at the time of this study and where the number of individual trees in
 a group were estimated.

Where amenity trees are removed due to the project, they would be replaced at a ratio equal to or greater than 1:1. The replacement trees would consist of local native provenance species from the vegetation community that once occurred in the locality (rather than plant exotic or non-local native trees) where available and subject to the urban design and landscape plan for the project. Where replacement trees cannot be accommodated within the operational footprint of the project, consultation would be carried out with the adjacent land owner and relevant local council (where appropriate) to determine if they can accommodate the replacement tree.

Native vegetation communities (including native revegetation) within the disturbance footprint impacted by the project would be offset according to provisions within the NSW Biodiversity Offset Scheme in accordance with the *Biodiversity Conservation Act 2016*. As such the residual number of trees requiring replacement planting is reduced. An estimate of the net number of trees requiring replacement are as follows:

- Of the 3009 directly impacted trees, 1065 were estimated to require replacement plantings, of which 76 are exempt species
- Of the 500 potentially impacted trees, 427 were estimated to require replacement plantings, of which 11 are exempt species.

1 Introduction

This section provides an overview of the Beaches Link and Gore Hill Freeway Connection (the project), including its key features and location. It also outlines the Secretary's environmental assessment requirements addressed in this technical working paper.

1.1 Overview

The Greater Sydney Commission's *Greater Sydney Region Plan – A Metropolis of Three Cities* (Greater Sydney Commission, 2018) proposes a vision of three cities where most residents have convenient and easy access to jobs, education and health facilities and services. In addition to this plan, and to accommodate for Sydney's future growth the NSW Government is implementing the *Future Transport Strategy 2056* (Transport for NSW, 2018), that sets the 40 year vision, directions and outcomes framework for customer mobility in NSW. The Western Harbour Tunnel and Beaches Link program of works is proposed to provide additional road network capacity across Sydney Harbour and Middle Harbour and to improve transport connectivity with Sydney's Northern Beaches. The Western Harbour Tunnel and Beaches Link program of works include:

- The Western Harbour Tunnel and Warringah Freeway Upgrade project which comprises a
 new tolled motorway tunnel connection across Sydney Harbour, and an upgrade of the
 Warringah Freeway to integrate the new motorway infrastructure with the existing road
 network and to connect to the Beaches Link and Gore Hill Freeway Connection project
- The Beaches Link and Gore Hill Freeway Connection project which comprises a new tolled motorway tunnel connection across Middle Harbour from the Warringah Freeway and the Gore Hill Freeway to Balgowlah and Killarney Heights and including the surface upgrade of the Wakehurst Parkway from Seaforth to Frenchs Forest and upgrade and integration works to connect to the Gore Hill Freeway at Artarmon.

A combined delivery of the Western Harbour Tunnel and Beaches Link program of works would unlock a range of benefits for freight, public transport and private vehicle users. It would support faster travel times for journeys between the Northern Beaches and areas south, west and north-west of Sydney Harbour. Delivering the program of works would also improve the resilience of the motorway network, given that each project provides an alternative to heavily congested existing harbour crossings.

1.2 The project

Transport for NSW is seeking approval under Part 5, Division 5.2 of the *Environmental Planning and Assessment Act 1979* to construct and operate the Beaches Link and Gore Hill Freeway Connection project, which would comprise two components:

- Twin tolled motorway tunnels connecting the Warringah Freeway at Cammeray and the Gore
 Hill Freeway at Artarmon to the Burnt Bridge Creek Deviation at Balgowlah and the
 Wakehurst Parkway at Killarney Heights, and an upgrade of the Wakehurst Parkway (the
 Beaches Link)
- Connection and integration works along the existing Gore Hill Freeway and surrounding roads at Artarmon (the Gore Hill Freeway Connection).

A detailed description of these two components is provided in Section 1.4.

1.3 Project location

The project would be located within the North Sydney, Willoughby, Mosman and Northern Beaches local government areas, connecting Cammeray in the south with Killarney Heights, Frenchs Forest and Balgowlah in the north. The project would also connect to both the Gore Hill Freeway and Reserve Road in Artarmon in the west.

Commencing at the Warringah Freeway at Cammeray, the mainline tunnels would pass under Naremburn and Northbridge, then cross Middle Harbour between Northbridge and Seaforth. The mainline tunnels would then split under Seaforth into two ramp tunnels and continue north to the Wakehurst Parkway at Killarney Heights and north-east to Balgowlah, linking directly to the Burnt Bridge Creek Deviation to the south of the existing Kitchener Street bridge.

The mainline tunnels would also have on and off ramps from under Northbridge connecting to the Gore Hill Freeway and Reserve Road east of the existing Lane Cove Tunnel. Surface works would also be carried out at the Gore Hill Freeway in Artarmon, Burnt Bridge Creek Deviation at Balgowlah and along the Wakehurst Parkway between Seaforth and Frenchs Forest to connect the project to the existing arterial and local road networks.

1.4 Key features of the project

Key features of the Beaches Link component of the project are shown in Figure 1-1 and would include:

- Twin mainline tunnels about 5.6 kilometres long and each accommodating three lanes of traffic in each direction, together with entry and exit ramp tunnels to connections at the surface. The crossing of Middle Harbour between Northbridge and Seaforth would involve three lane, twin immersed tube tunnels
- Connection to the stub tunnels constructed at Cammeray as part of the Western Harbour Tunnel and Warringah Freeway Upgrade project
- Twin two lane ramp tunnels:
 - Eastbound and westbound connections between the mainline tunnel under Seaforth and the surface at the Burnt Bridge Creek Deviation, Balgowlah (about 1.2 kilometres in length)
 - Northbound and southbound connections between the mainline tunnel under Seaforth and the surface at the Wakehurst Parkway, Killarney Heights (about 2.8 kilometres in length)
 - Eastbound and westbound connections between the mainline tunnel under Northbridge and the surface at the Gore Hill Freeway and Reserve Road, Artarmon (about 2.1 kilometres in length).
- An access road connection at Balgowlah between the Burnt Bridge Creek Deviation and Sydney Road including the modification of the intersection at Maretimo Street and Sydney Road, Balgowlah
- Upgrade and integration works along the Wakehurst Parkway, at Seaforth, Killarney Heights and Frenchs Forest, through to Frenchs Forest Road East
- New open space and recreation facilities at Balgowlah
- New and upgraded pedestrian and cyclist infrastructure
- Ventilation outlets and motorway facilities at the Warringah Freeway in Cammeray, the Gore Hill Freeway in Artarmon, the Burnt Bridge Creek Deviation in Balgowlah and the Wakehurst Parkway in Killarney Heights

- Operational facilities, including a motorway control centre at the Gore Hill Freeway in Artarmon, and tunnel support facilities at the Gore Hill Freeway in Artarmon and the Wakehurst Parkway in Frenchs Forest
- Other operational infrastructure including groundwater and tunnel drainage management and treatment systems, surface drainage, signage, tolling infrastructure, fire and life safety systems, roadside furniture, lighting, emergency evacuation and emergency smoke extraction infrastructure, Closed Circuit Television (CCTV) and other traffic management systems.

Key features of the Gore Hill Freeway Connection component of the project are shown in Figure 1-2 and would include:

- Upgrade and reconfiguration of the Gore Hill Freeway between the T1 North Shore & Western Line and T9 Northern Line and the Pacific Highway
- Modifications to the Reserve Road and Hampden Road bridges
- Widening of Reserve Road between the Gore Hill Freeway and Dickson Avenue
- Modification of the Dickson Avenue and Reserve Road intersection to allow for the Beaches Link off ramp
- Upgrades to existing roads around the Gore Hill Freeway to integrate the project with the surrounding road network
- Upgrade of the Dickson Avenue and Pacific Highway intersection
- New and upgraded pedestrian and cyclist infrastructure
- Other operational infrastructure, including surface drainage and utility infrastructure, signage and lighting, CCTV and other traffic management systems.

A detailed description of the project is provided in Chapter 5 (Project description) of the environmental impact statement.

Subject to obtaining planning approval, construction of the project is anticipated to commence in 2023 and is expected to take around five to six years to complete.

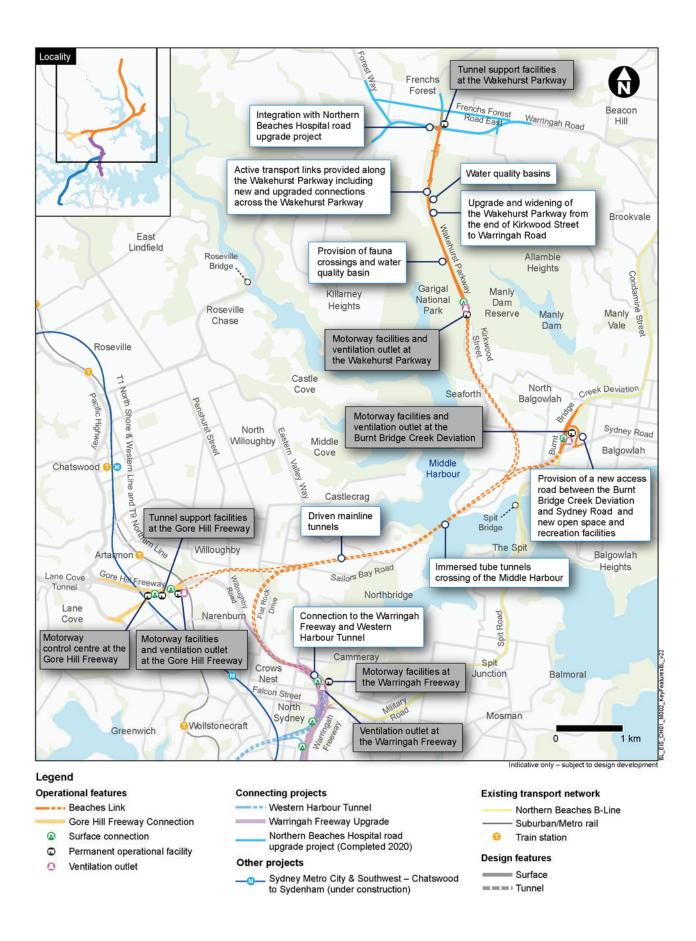


Figure 1-1 Key features of the Beaches Link component of the project

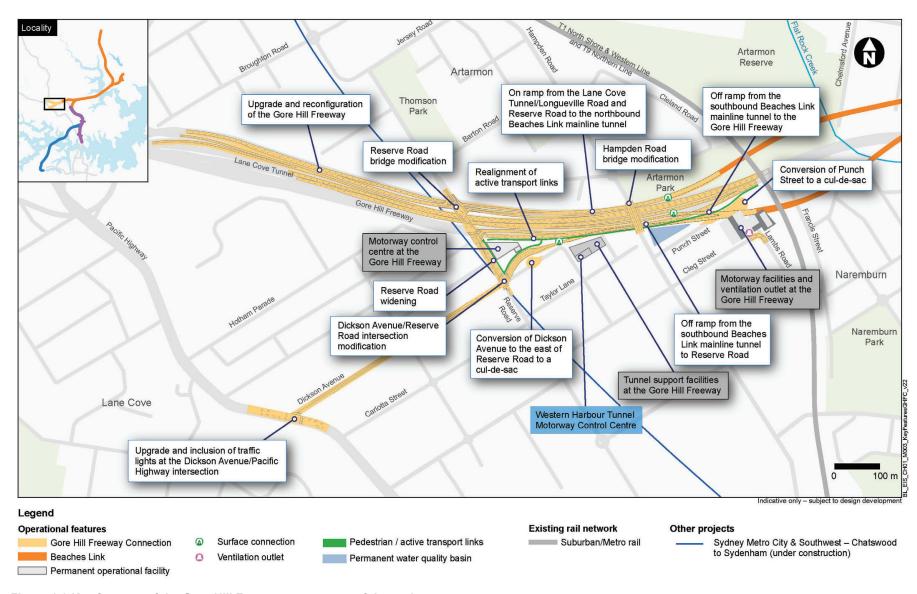


Figure 1-2 Key features of the Gore Hill Freeway component of the project

© ECO LOGICAL AUSTRALIA PTY LTD 5

1.5 Key construction activities

The area required to construct the project is referred to as the construction footprint. The majority of the construction footprint would be located underground within the mainline and ramp tunnels. However, surface areas would also be required to support tunnelling activities and to construct the tunnel connections, tunnel portals, surface road upgrades and operational facilities.

Key construction activities would include:

- Early works and site establishment, with typical activities being property acquisition and condition surveys, utilities installation, protection, adjustments and relocations, installation of site fencing, environmental controls (including noise attenuation and erosion and sediment control), traffic management controls, vegetation clearing, earthworks, demolition of structures, building construction support sites including acoustic sheds and associated access decline acoustic enclosures (where required), construction of minor access roads and the provision of property access, temporary relocation of pedestrian and cycle paths and bus stops, temporary relocation of swing moorings and/or provision of alternative facilities (mooring or marina berth) within Middle Harbour
- Construction of the Beaches Link, with typical activities being excavation of tunnel construction access declines, construction of driven tunnels, cut and cover and trough structures, construction of surface upgrade works, construction of cofferdams, dredging and immersed tube tunnel piled support activities in preparation for the installation of immersed tube tunnels, casting and installation of immersed tube tunnels and civil finishing and tunnel fitout
- Construction of operational facilities comprising:
 - A motorway control centre at the Gore Hill Freeway in Artarmon
 - Tunnel support facilities at the Gore Hill Freeway in Artarmon and at the Wakehurst
 Parkway in Frenchs Forest
 - Motorway facilities and ventilation outlets at the Warringah Freeway in Cammeray (fitout only of the Beaches Link ventilation outlet at the Warringah Freeway (being constructed by the Western Harbour Tunnel and Warringah Freeway Upgrade project), the Gore Hill Freeway in Artarmon, the Burnt Bridge Creek Deviation in Balgowlah and the Wakehurst Parkway in Killarney Heights
 - A wastewater treatment plant at the Gore Hill Freeway in Artarmon
 - Installation of motorway tolling infrastructure
- Staged construction of the Gore Hill Freeway Connection at Artarmon and upgrade and integration works at Balgowlah and along the Wakehurst Parkway with typical activities being earthworks, bridgeworks, construction of retaining walls, stormwater drainage, pavement works and linemarking and the installation of roadside furniture, lighting, signage and noise barriers
- Testing of plant and equipment and commissioning of the project, backfill of access declines, removal of construction support sites, landscaping and rehabilitation of disturbed areas and removal of environmental and traffic controls.

Temporary construction support sites would be required as part of the project (refer to Figure 1-3), and would include tunnelling and tunnel support sites, civil surface sites, cofferdams, mooring sites, wharf and berthing facilities, laydown areas, parking and workforce amenities. Construction support sites would include:

- Cammeray Golf Course (BL1)
- Flat Rock Drive (BL2)
- Punch Street (BL3)
- Dickson Avenue (BL4)
- Barton Road (BL5)
- Gore Hill Freeway median (BL6)
- Middle Harbour south cofferdam (BL7)
- Middle Harbour north cofferdam (BL8)
- Spit West Reserve (BL9)
- Balgowlah Golf Course (BL10)
- Kitchener Street (BL11)
- Wakehurst Parkway south (BL12)
- Wakehurst Parkway east (BL13)
- Wakehurst Parkway north (BL14).

A detailed description of construction works for the project is provided in Chapter 6 (Construction work) of the environmental impact statement.

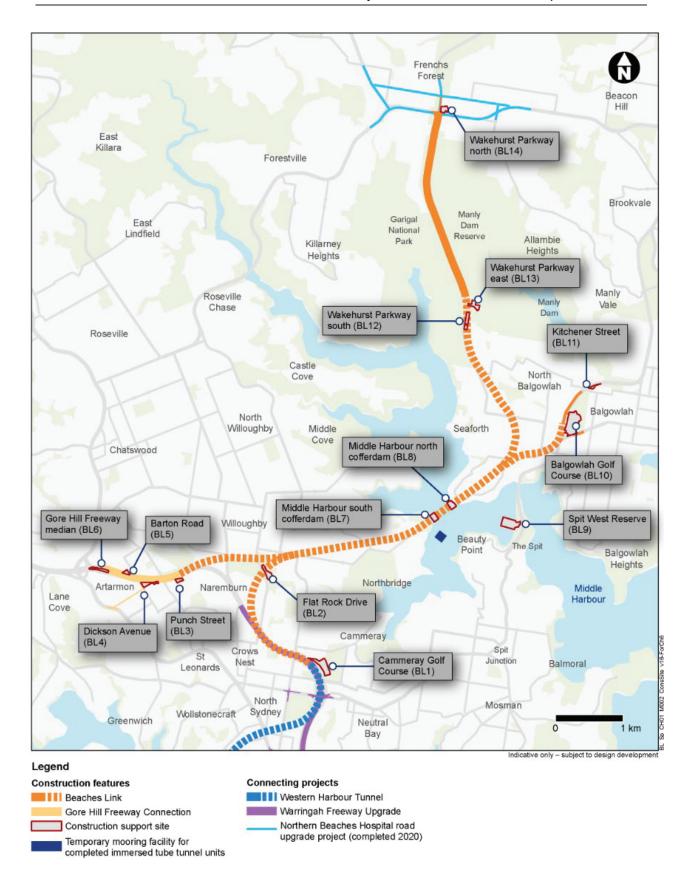


Figure 1-3 Overview of the construction support sites

1.6 Purpose of this report

This report has been prepared to support the environmental impact statement for the project and to address the environmental assessment requirements of the Secretary of the NSW Department of Planning, Industry and Environment.

The purpose of this report is to:

- Identify the trees within the project area (Figure 1-4) that are likely to be affected by the proposed works
- Assess the current overall condition of the subject trees
- Evaluate the significance of the subject trees
- Assess potential impacts to the subject trees
- Identify tree management measures that could assist with tree retention.

The study area is defined as the construction footprint plus a buffer of 15 metres.

The method and findings of this report are based on the *Australian Standard AS 4970-2009 Protection of trees on development sites*, the site inspections (subject to access availability) and analysis of aerial imagery. The identification of trees that would be subject to direct impact, potential impact or be retained was determined in consideration of the project design, layout of construction support sites and construction methodology. This report provides a preliminary assessment of trees that could be retained subject to further design development and construction planning.

The project has been divided into five 'assessment areas' for ease of description (Figure 1-4).

1.7 Secretary's environmental assessment requirements

The Secretary's environmental assessment requirements relating to this arboricultural assessment and where these requirements are addressed in this report are outlined in Table 1-1.

Table 1-1: Secretary's environmental assessment requirements – arboricultural impact assessment

Secretary's environmental assessment requirements	Where addressed
Place Making and Design (Key Issue 7)	
3. The proponent must assess the visual and landscape impact of the proposal, including ancillary infrastructure on: (c) landscaping, green spaces and existing trees and tree canopy, including an assessment of likely magnitude of impacts to trees and need for removal to be undertaken by an arborist, including the provision of measures to minimise and offset impacts;	Section 3 summarises results of the impact assessment and Section 4 identifies measures to minimise and offset impacts by replacement planting.

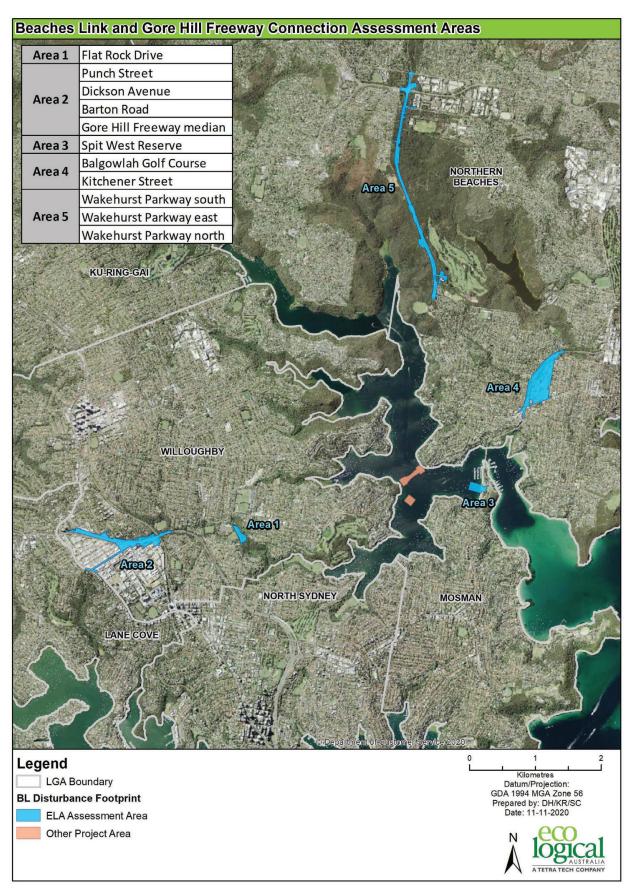


Figure 1-4: Beaches Link and Gore Hill Freeway Connection arboricultural assessment areas

2 Method

2.1 Visual tree assessment

The subject trees were assessed in accordance with a stage one visual tree assessment (VTA) as formulated by Mattheck and Breloer (1994), and practices consistent with modern arboriculture. The field assessment was carried out by experienced Australian Qualification Framework (AQF) level five consulting arborists (Elizabeth Hannon and David Bidwell).

The following limitations apply to this methodology:

- Trees were defined as those being at least four metres high with a diameter at breast height (DBH) of over 600 millimetres. This is consistent with the definition of a tree in Willoughby Council's *Tree Preservation Order* (TPO). Willoughby's TPO has the most conservative definition of a tree from a review of all TPOs in the study area
- Trees were inspected from ground level, without the use of any invasive or diagnostic tools or testing
- Trees within adjacent properties or restricted areas were not subject to a complete visual inspection. Where possible, trees in restricted areas were assessed from a distance
- No aerial inspections or root mapping were carried out
- Tree heights, canopy spread and diameter at breast height (DBH) were estimated, unless otherwise stated
- Tree identification was based on broad taxonomical features present and visible from ground level at the time of inspection.

2.2 Tree retention value

A tree retention assessment has been carried out in accordance with the Institute of Australian Consulting Arboriculturists (IACA) *Significance of a Tree, Assessment Rating System (STARS)* (IACA, 2010). The system uses a scale of high, medium and low significance in the landscape based on a combination of at least three environmental, cultural, physical and social values. Once the tree significance has been defined, this is combined with the useful life expectancy (ULE) (as determined by at least three criteria) to determine the retention value of the tree or group of trees. Details are provided in Annexure A.

Tree Retention Value = Significance + Useful Life Expectancy

Resultant categories of tree retention values are as follows:

- **Low retention value**: These trees are not considered important for retention, nor require special works or design modification to be implemented for their retention
- **Medium retention value**: These trees are moderately important for retention. Their removal should only be considered if adversely affecting the proposed building/works and all other alternatives have been considered and exhausted
- **High retention value**: These trees are considered important for retention and should be retained and protected. Design modification or relocation of infrastructure should be considered to accommodate the setbacks as prescribed by *Australian Standard AS4970-2009 Protection of trees on development sites*.

© ECO LOGICAL AUSTRALIA PTY LTD

2.3 Assessing impacts to tree root systems

Impacts to tree root systems may occur from excavation, compacted fill, machine trenching, ground penetration or soil disturbance. Figure 2-1 provides a diagrammatic representation of the tree protection zone (TPZ) and structural root zone (SRZ).

2.3.1 Tree protection zone (TPZ)

The TPZ is the optimal combination of crown and root area (as defined by *Australian Standard AS4970-2009 Protection of trees on development sites*) that would require protection during the construction process so that the tree can remain viable. The TPZ is an area that is isolated from the work zone to ensure no disturbance or encroachment occurs into this zone. Tree sensitive construction measures must be implemented if works are to proceed within the TPZ.

The TPZ was calculated using the following formula:

TPZ = Diameter at Breast Height (DBH) x 12, where DBH is in metres.

A minimum TPZ of two metres was applied for trees that have a DBH less than 1.5 metres. An upper TPZ limit of 15 metres was applied.

2.3.2 Structural root zone (SRZ)

The SRZ is the area of the root system (as defined by *Australian Standard AS4970-2009 Protection of trees on development sites*) used for stability, mechanical support and anchorage of the tree. Severance of structural roots (diameter greater than 50 millimetres) within the SRZ may lead to the destabilisation and/or decline of the tree.

The indicative SRZ radius was determined using the following formula:

SRZ radius = $((D \times 50)^{0.42}) \times 0.64$, where DBH is in metres.

A SRZ of 1.5 metres was applied for trees that have a DBH less than 0.15 metres.

2.3.3 Trees in group

Trees were recorded as a 'group' if they had similar characteristics such as size, species and condition. The SRZ and TPZ for trees in group were calculated using the average DBH determined during field assessment. The number in a group was estimated if it was not possible to count the individual trees.

2.3.4 Calculating impacts

Impacts to trees were determined by spatial data analysis using a geographic information system. A TPZ buffer was generated for each tree point collected, where the radius of the buffer was equal to the calculated TPZ. The area of the TPZ buffer that intersects the disturbance footprint is the 'impact zone'. The per cent of impact was then calculated using the following formula (illustrated in Figure 2-2):

TPZ impact (per cent) = (Impact Zone Area / TPZ buffer) * 100

The maximum potential TPZ was applied to determine the level of impact where trees were recorded as a group and situated within the buffer area.

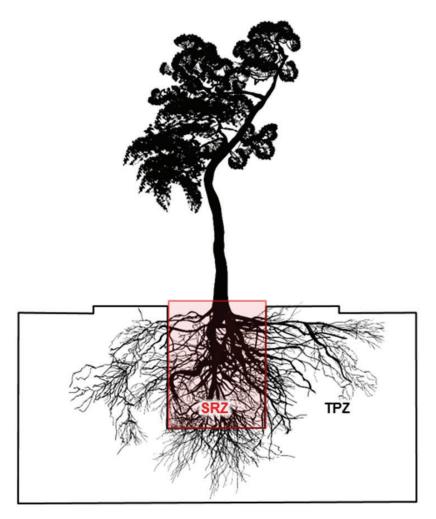


Figure 2-1: Indicative Tree Protection Zone and Structural Root Zone

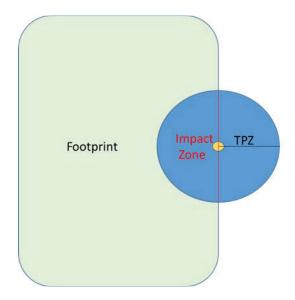


Figure 2-2: Calculating impacts

2.4 Categories of impacts

2.4.1 Trees to be retained

'Trees to be retained' were assessed as having minor encroachment (less than ten per cent) into the TPZ and no impact to the SRZ. Detailed root investigations are not required for these trees.

2.4.2 Potential impact

Trees categorised as having a 'potential impact' include:

- Trees which may not be impacted following completion of further design development
- Those assessed as having 10 to 20 per cent encroachment to the TPZ or inside the SRZ
- Trees identified by Transport for NSW as having an 'opportunity for retention'
- Trees that may be subject to canopy pruning.

The following design changes would be considered to retain these trees where practicable, considering the retention value of the tree, and the complexity and cost of the change:

- Road design
 - Minor adjustment of roadway batter line designs to avoid impact
 - Relocate services/pathways outside of TPZs
- Utilities design
 - Design utilities to be installed at a minimum depth of 1200 millimetres below ground to avoid impact to the root zones of trees
- · Pedestrian and shared user paths
 - Design to be installed on or above grade, minimising/eliminating excavation within tree protection zones
 - Design using porous materials (eco-paving, porous asphalt, decomposed granite) to allow water and oxygen to reach the root zone
 - Design using tree sensitive techniques (pier and beam, suspended slabs).

Requirements for canopy pruning (refer to Section 2.5) should be considered during further design development to minimise impacts to trees where possible.

2.4.3 Direct impact

Trees categorised as 'direct impact' were assessed as having more than 20 per cent encroachment to the TPZ or inside the SRZ, and no opportunity for retention under the current project. This impact would be confirmed following completion of the project's further design development phase (post environmental impact assessment phase).

2.5 Trees that would require further investigation

2.5.1 Inaccessible trees

The maps appended to this report indicate areas (e.g. private property, along freeway) that were inaccessible or visible only from a distance. These areas would require further assessment when access becomes available.

2.5.2 Trees assessed as potential impact

Trees that were identified as subject to potential impact would require further detailed assessment prior to completion of further design development of the project (root and canopy investigation) via non-

destructive methods to determine the suitability for retention. This should be performed under supervision of the project arborist. If encroachment cannot be restricted to outside of the SRZ, these trees cannot be successfully retained and their loss should be offset by replacement planting. Further arboricultural investigation could involve pruning assessment and mitigation (see below).

2.5.3 Canopy pruning

While detailed assessment has not yet been carried out regarding the impacts of pruning for this project, the removal of live branches and foliage would impact a tree. These impacts can be summarised within the following categories:

- Reducing photosynthesis: Removing live branches and foliage would reduce the tree's ability to
 photosynthesis and produce energy. The energy produced by the leaves is the source of chemical
 energy for all living cells in the entire plant, and therefore, is essential for the normal functioning
 and survival of the tree
- Wounding: Pruning creates wounds which may act as entry points for pests, disease and decay causing pathogens. Poor pruning techniques and practices can increase the likelihood of disease and decay pathogens entering the tree
- Epicormic shoots: Epicormic shoots originate from latent or adventitious buds located in the cambium and concealed by the bark. Epicormic shoots are weakly attached to the parent branch or stem and pruning these may increase the overall risk associated with the tree
- Change in dynamics: Trees are self-optimising organisms and grow according to the forces (wind)
 and conditions that act upon them. Wind load stresses are absorbed by branches and dissipated
 throughout the tree by the swaying motion (mass damping). Removing large branches may affect
 the trees ability to reduce and suppress those forces.

A pruning assessment under the *Australian Standard AS 4373-2007 Pruning of amenity trees* would be required for trees categorised as having a 'potential impact'. The basis for the assessment correlates to the amount of live foliage that is likely to be removed:

- Minor pruning works: The removal of less than ten per cent live canopy volume would be considered acceptable providing the final cut location is to a branch collar and does not exceed 150 millimetres in diameter.
- Major pruning works: The removal of more than ten per cent live canopy volume (while feasible) would require approval by the project arborist.

3 Results of impact assessment

3.1 Detailed results

Detailed results of the arboricultural impact assessment are presented in map and table format in Annexure B to K. The maps show locations of trees assessed within the study area and their potential impacts. The tables provide details of tree data collected, including the numbers, species type, dimensions, health, retention value and potential impacts.

3.2 Summary of results

A summary of the results is provided in Table 3-1. As indicated in Section 2.1, these results do not include all trees within the construction footprint and buffer area due to some trees being inaccessible during field investigations. Further assessment would be needed for a more accurate determination of the trees to be impacted. The estimate is based on current knowledge for inaccessible areas.

Table 3-1: Summary of arboricultural results

Impact to TPZ	Number of trees in each assessment area					
	1	2	3	4	5	Total
Trees to be retained	127	119	33	750	770	1799
Potential impact	108	98	1	158	135	500
Direct impact	216	390	3	421	1979	3009
Total	451	607	37	1329	2884	5308

3.3 Retention value of potential and direct impact trees

Further information regarding the retention values of trees to be subject to potential or direct impact is given below. Table 3-2 summarises results for the number of trees subject to potential impact from the proposed works. Further investigation would be needed following completion of further design development to determine if these trees can be retained or would be removed.

Table 3-2: Summary of the number of trees subject to a potential impact

Retention value	Number of trees to be subject to potential impact in each assessment area					
recention value	1	2	3	4	5	Total
Low	16	39	1	51	20	127
Medium	67	35		91	91	284
High	25	24		16	24	89
Total	108	98	1	158	135	500

Table 3-3 summarises results for the number of trees subject to a direct impact from the proposed works. These trees would be removed under the current proposal. Finalisation of these numbers would be subject to completion of the project's further design development (post environmental impact assessment phase).

Table 3-3: Summary of the number of trees to be subject to direct impact

Retention value	Number of trees to be subject to direct impact in each assessment area					
recention value	1	2	3	4	5	Total
Low	89	225	3	119	930	1366
Medium	93	151		267	997	1508
High	34	14		35	52	135
Total	216	390	3	421	1979	3009

4 Tree management

4.1 Tree sensitive construction

Tree sensitive construction techniques may be used for minor works provided no structural roots are likely to be impacted and the project arborist can demonstrate that the tree remains viable. Mitigation measures to be considered during construction include:

- The area lost to encroachment should be compensated for elsewhere, contiguous with the TPZ
- The project arborist should be consulted for any works within the TPZ
- Tree protection must be installed.

Tree sensitive techniques can be used to install services within the TPZ. These include horizontal directional drilling, boring, and non-destructive excavation methods such as hydro-vacuum excavation (sucker truck), air spade and manual excavation. Removal of existing hard surfaces should be carried out manually to avoid root damage.

4.2 Hold points, inspection and certification

The approved tree protection plan must be available on site prior to the commencement of works, and throughout the entirety of the project. To ensure the tree protection plan is implemented, hold points have been specified in the schedule of works (Table 4-1). It is the responsibility of the construction contractor to complete each of the tasks. Once each stage is reached, the work would be inspected and certified by the project arborist and the next stage may commence. Alterations to this schedule may be required, however, this shall be through consultation with the project arborist.

Table 4-1: Tree management schedule

Pre-construction	Prior to site establishment indicate clearly (with spray paint on trunks) trees marked for removal only
	Tree protection (for trees that would be retained) shall be installed prior to site establishment, this would include mulching of areas within the TPZ
During construction	Scheduled inspection of trees by the project arborist should be carried out monthly during the construction period
3	Inspection of trees by project arborist after all major construction has ceased, following the removal of tree protection measures
Post-construction	Final inspection of trees by project arborist

4.3 Protection for trees to be retained

The following tree protection measures would be required for any trees that fall within 15 metres of the construction footprint and are to be retained:

 Tree protection fencing must be established around the perimeter of the TPZ. If the protective fencing requires temporary removal, trunk, branch and ground protection must be installed and must comply with Australian Standard AS 4970-2009 Protection of trees on development sites. Existing fencing and site hoarding may be used as tree protection fencing providing the tree(s) remain isolated from the construction zone

- If temporary access for machinery is required within the TPZ, ground protection measures would be installed. The purpose of ground protection is to prevent root damage and soil compaction within the TPZ. Ground protection may include a permeable membrane such as geotextile fabric beneath a layer of mulch, crushed rock or rumble boards
- Any additional construction activities within the TPZ of the subject trees must be assessed and approved by the project arborist, and must comply with Australian Standard AS 4970-2009 Protection of trees on development sites.

Tree protection guidelines described below must be implemented during the construction period if no treespecific recommendations are detailed. Alternative protection measures may be developed in consultation with the project arborist.

4.3.1 Tree protection fencing

The TPZ is a restricted area delineated by temporary fencing, usually with a minimum height of 1.8 metres, or a permanent structure such as an existing wall or fence (see Figure 4-1).

Trees that are to be retained must have protective fencing erected around the TPZ to protect and isolate it from the construction works. Fencing must comply with the *Australian Standard AS 4687-2007 Temporary fencing and hoardings*.

Tree protection fencing must be installed prior to site establishment and remain intact until completion of works. Once erected, protective fencing must not be removed or altered without the approval of the project arborist.

If the protective fencing requires temporary removal, trunk, branch and ground protection must be installed and must comply with *Australian Standard AS 4970-2009 Protection of trees on development sites*.

Tree protection fencing shall be:

- Enclosed to the full extent of the TPZ
- Cyclone chain wire link fence or similar, with lockable access gates
- Certified and inspected by the project arborist
- Installed prior to the commencement of works in a given area
- Prominently signposted with 300 millimetres x 450 millimetres boards stating "NO ACCESS -TREE PROTECTION ZONE".

4.3.2 Crown protection

Tree crowns/canopies may be injured or damaged by machinery such as excavators, drilling rigs, trucks, cranes, plant and vehicles. Where crown protection is required, it would usually be located at least one metre outside the perimeter of the crown.

Crown protection may include the installation of a physical barrier, pruning selected branches to establish clearance, or the tying/bracing of branches.

4.3.3 Trunk protection

Where provision of tree protection fencing is impractical or must be temporarily removed, trunk protection shall be installed for the nominated trees to avoid accidental mechanical damage.

The removal of bark or branches allows the potential ingress of micro-organisms which may cause decay. Furthermore, the removal of bark restricts the trees' ability to distribute water, mineral ions (solutes), and glucose.

Trunk protection shall consist of a layer of either carpet underfelt, geotextile fabric or similar wrapped around the trunk, followed by 1.8 metre lengths of softwood timbers aligned vertically and spaced evenly around the trunk (with around 50 millimetre gap between the timbers) (Figure 4-2).

The timbers must be secured using galvanised hoop strap (aluminium strapping). The timbers shall be wrapped around the trunk but not fixed to the tree, as this would cause injury/damage to the tree.

4.3.4 Ground protection

Tree roots are essential for the uptake/absorption of water, oxygen and mineral ions (solutes). It is essential to prevent the disturbance of the soil beneath the dripline and within the TPZ of trees that are to be retained. Soil compaction within the TPZ would adversely affect the ability of roots to function correctly.

If temporary access for machinery is required within the TPZ ground protection measures would be required. The purpose of ground protection is to prevent root damage and soil compaction within the TPZ. Ground protection may include a permeable membrane such as geotextile fabric beneath a layer of mulch, crushed rock or rumble boards.

If the grade is to be raised within the TPZ, the material should be coarser or more porous than the underlying material.

4.3.5 Root protection and root pruning

If incursions/excavation within the TPZ are unavoidable, exploratory excavation (under the supervision of the project arborist) using non-destructive methods may be considered to evaluate the extent of the root system affected, and determine whether the tree can remain viable.

If the project arborist identifies conflicting roots that requiring pruning, they must be pruned with a sharp implement such as secateurs, pruners, handsaws or a chainsaw back to undamaged tissue. The final cut must be a clean cut.

4.3.6 Underground utilities

All underground utilities should be routed outside of the TPZ. If underground utilities need to be installed within the TPZ, they should be installed using horizontal directional drilling or trenched by hydro-vacuum excavation (sucker-truck). The horizontal drilling/boring must be at minimum depth of 600 millimetres below grade. Trenching for services is to be regarded as 'excavation'.



Figure 4-1: Tree protection fencing

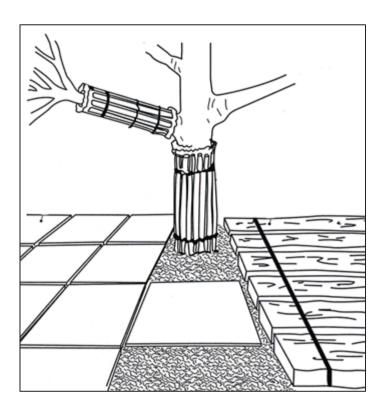


Figure 4-2: Trunk protection

4.4 Tree work

Tree work includes pruning and removal of trees:

- All tree work is to be carried out by an arborist with a minimum AQF level 3 qualification in Arboriculture
- All tree work must be in accordance with Australian Standard AS 4373-2007 Pruning of amenity trees and the Code of Practice for the Amenity Tree Industry (WorkCover NSW, 1998)
- Permission must be granted from the relevant consent authority, prior to removing or pruning of any of the subject trees.

4.5 Canopy pruning

There are several mitigation measures that could be implemented to reduce the impacts of canopy pruning. These measures are outlined in Table 4-2.

Table 4-2: Tree pruning mitigation measures

Canopy volume	Mitigation measures
Minor pruning (<10%)	 Removing multiple smaller branches, rather than large singular branches/portions of the tree would decrease the impacts of pruning and the sizes of the pruning wounds All pruning work is to be carried out by an arborist with a minimum AQF level 3 qualification in Arboriculture in accordance with Australian Standard AS 4373-2007 Pruning of amenity trees.
Major pruning (>10%)	 A detailed assessment for major pruning works is to be carried out by an AQF level 5 arborist (project arborist) Removing multiple smaller branches, rather than large singular branches/portions of the tree would decrease the impacts of pruning and the sizes of the pruning wounds Implement supplementary water/nutrient program to improve the overall health of the tree and mitigate pruning impacts Carry out staged pruning works to minimise the amount of live canopy removed at any one time, allowing the tree to recover between each stage (e.g. 30% total live canopy = three stages, two months apart, at 10% per stage).

4.6 Trees to be removed

4.6.1 Reuse

All native trees to be removed should be mulched and chipped for reuse on site in landscaping works.

4.6.2 Seed collection

Seasonal seed collection should be carried out where appropriate for reuse in landscaping and hydromulching.

4.6.3 Replacement planting

This assessment identified trees (including amenity trees and trees within native vegetation communities (including native revegetation) assessed in Appendix S (Technical working paper: Biodiversity development assessment report)) that would be removed due to the project subject to further design development and construction planning. To minimise the impact of tree removal, where amenity trees are removed as a result of the project, they would be replaced at a ratio equal to or greater than 1:1. The replacement trees would consist of local native provenance species from the vegetation community that once occurred in the locality (rather than plant exotic or non-local native trees) where available and subject to the urban design and landscape plan for the project. Where replacement trees cannot be accommodated within the operational footprint of the project, consultation would be carried out with the adjacent land owner and relevant local council (where appropriate) to determine if they can accommodate the replacement tree. Replacement planting should consider the Transport for NSW Vegetation Offset Guide (Transport for NSW, 2019).

Native vegetation communities (including native revegetation) within the disturbance footprint impacted by the project would be offset according to provisions within the NSW Biodiversity Offset Scheme, established under Part 6 of the *Biodiversity Conservation Act 2016* (refer to Appendix S (Technical working paper: Biodiversity development assessment report)). Therefore, replacement planting would not be required for trees within these communities.

As such, the residual number of trees requiring replacement planting is reduced. An estimate of the net number of trees requiring replacement planting are as follows:

- Of the 3009 directly impacted trees, 1065 were estimated to require replacement plantings, of which 76 are exempt species
- Of the 500 potentially impacted trees, 427 were estimated to require replacement plantings, of which 11 are exempt species.

Table 4-3 summarises the estimated number of direct impact trees requiring offset under the NSW Biodiversity Offset Scheme (refer to Appendix S (Technical working paper: Biodiversity development assessment report)), and residual number of trees requiring replacement plantings, including the number of trees identified as exempt species. Table 4-4 summarises the estimated number of potential impact trees requiring offset under the NSW Biodiversity Offset Scheme and residual number of trees requiring replacement plantings, including the number of trees identified as exempt species. Further information regarding requirements for individual trees is provided in the summary tree assessment tables for each assessment area included in the annexures. During further design development and construction planning, opportunities for the retention of trees would be further explored and confirmed.

Table 4-3: Summary of the estimated number of direct impact trees requiring offset under the NSW Biodiversity Offset Scheme or replacement planting

A A	Offset via NSW	Replacement planting required			
Assessment Area	Biodiversity Offset Scheme	Exempt species	Non-exempt species		
Area 1	206	0	10		
Area 2	31	19	340		
Area 3	0	0	3		
Area 4	69	55	297		
Area 5	1638	2	339		
Total	1944	76	989		

Table 4-4: Summary of the estimated number of potential impact trees requiring offset under the NSW Biodiversity Offset Scheme or replacement planting

A A	Offset via NSW Biodiversity Offset Scheme	Replacement planting required			
Assessment Area		Exempt species	Non-exempt species		
Area 1	51	0	57		
Area 2	3	1	94		
Area 3	0	0	1		
Area 4	17	10	131		
Area 5	2	0	133		
Total	73	11	416		

References

Barrell, J. 2001. SULE: Its use and status into the new millennium, in Management of mature trees, Proceedings of the 4th NAAA Tree Management Seminar, NAAA, Sydney.

Brooker M.I.H, Kleinig D.A. 2006. *Field guide to eucalypts. vol. 1, South-eastern Australia,* 3rd ed Bloomings Books, Melbourne.

Draper, B. and Richards, P. 2009. *Dictionary for Managing Trees in Urban Environments, Institute of Australian Consulting Arboriculturists (IACA)*, CSIRO Publishing, Collingwood, Victoria, Australia.

Eco Logical Australia, 2020. Western Harbour Tunnel and Warringah Freeway Upgrade Technical working paper: Arboricultural Impact Assessment.

Harris, R.W., Matheny, N.P., and Clark, J.R. 1999. *Arboriculture: integrated management of landscape trees, shrubs, and vines*, Prentice Hall, Upper Saddle River, New Jersey.

Mattheck, C. 2007. *Updated field guide for visual tree assessment*. Karlsruhe: Forschungszentrum Karlsruhe.

Mattheck, C. and Breloer, H. 1994. 'Field Guide for Visual Tree Assessment' *Arboricultural Journal*, Vol 18 pp 1-23.

IACA 2010. IACA Significance of a Tree, Assessment Rating System (STARS), Institute of Australian Consulting Arboriculturalists, Australia, www.iaca.org.au.

Robinson L. 2003. *Field guide to the native plants of Sydney*, 3rd ed, Kangaroo Press, East Roseville NSW.

Standards Australia 2007. *Australian Standard: Pruning of amenity trees, AS 4373–2007*. Standards Australia, Sydney.

Standards Australia 2007. *Australian Standard: Temporary fencing and hoardings*, *AS 4687-2007*. Standards Australia, Sydney.

Standards Australia 2009. *Australian Standard: Protection of trees on development sites, AS 4970 (2009).* Standards Australia, Sydney.

Transport for NSW 2019. Vegetation Offset Guide, DMS-SD-087.

WorkCover NSW 1998. Code of Practice for the Amenity Tree Industry.

Annexure A STARS assessment matrix

Tree Significance - Assessment Criteria - STARS[©] (IACA, 2010)

Low	Medium	High		
The tree is in fair-poor condition and good or low vigour.	The tree is in fair-good condition. The tree has form typical or	The tree is in good condition and good vigour.		
The tree has form atypical of the species. The tree is not visible or is partly visible from the surrounding properties or obstructed by other vegetation or buildings.	atypical of the species. The tree is a planted locally indigenous or a common species with its taxa commonly planted in the local area.	The tree has a form typical for the species. The tree is a remnant or is a planted locally indigenous specimen and/or is rare or uncommon in the local area or of botanical interest or of substantial age. The tree is listed as a heritage item, threatened species or part of an endangered ecological community		
The tree provides a minor contribution or has a negative impact on the visual character and amenity of the local area.	The tree is visible from surrounding properties, although not visually prominent as partially obstructed by other vegetation or buildings when viewed from the street.			
The tree is a young specimen which may or may not have reached dimensions to be protected by local Tree Preservation Orders or similar protection mechanisms and can easily be replaced with a suitable specimen.	The tree provides a fair contribution to the visual character and amenity of the local area. The tree's growth is moderately restricted by above or below ground influences, reducing its ability to reach dimensions typical for the taxa in situ.	or listed on council's significant tree register. The tree is visually prominent and visible from a considerable distance when viewed from most directions within the landscape due to its size and scale and makes a positive		
The tree's growth is severely restricted by above or below ground influences, unlikely to reach dimensions typical for the taxa in situ – tree is inappropriate to the site conditions.	TOT THE TAXA III SITU.	contribution to the local amenity. The tree supports social and cultural sentiments or spiritual associations, reflected by the broader population or community group or has commemorative values.		
The tree is listed as exempt under the provisions of the local Council Tree Preservation Order or similar protection mechanisms. The tree has a wound or defect that has the potential to become		The tree's growth is unrestricted by above and below ground influences, supporting its ability to reach dimensions typical for the taxa in situ – tree is appropriate to the site conditions.		
structurally unsound. The tree is an environmental pest species due to its invasiveness or poisonous/allergenic properties.				
The tree is a declared noxious weed by legislation.				

Tree Significance						
		High	Medium	Low		
ectancy	Long >40 years					
Useful Life Expectancy	Medium 15-40 years					
Useful I	Short <1-15 years					
	Dead					

Legend for Matrix Assessment					
	Priority for retention (High): These trees are considered important for retention and should be retained and protected. Design modification or re-location of building/s should be considered to accommodate the setbacks as prescribed by the Australian Standard <i>AS4970-2009 Protection of trees on development sites</i> . Tree sensitive construction measures must be implemented if works are to proceed within the Tree				
	Consider for retention (Medium): These trees may be retained and protected. These are considered less critical; however their retention should remain priority with the removal considered only if adversely affecting the proposed building/works and all other alternatives have been considered and exhausted.				
	Consider for removal (Low): These trees are not considered important for retention, nor require special works or design modification to be implemented for their retention.				
	Priority for removal (Low): These trees are considered hazardous, or in irreversible decline, or weeds and should be removed irrespective of development.				

Annexure B Maps of arboricultural assessment – Assessment Area 1

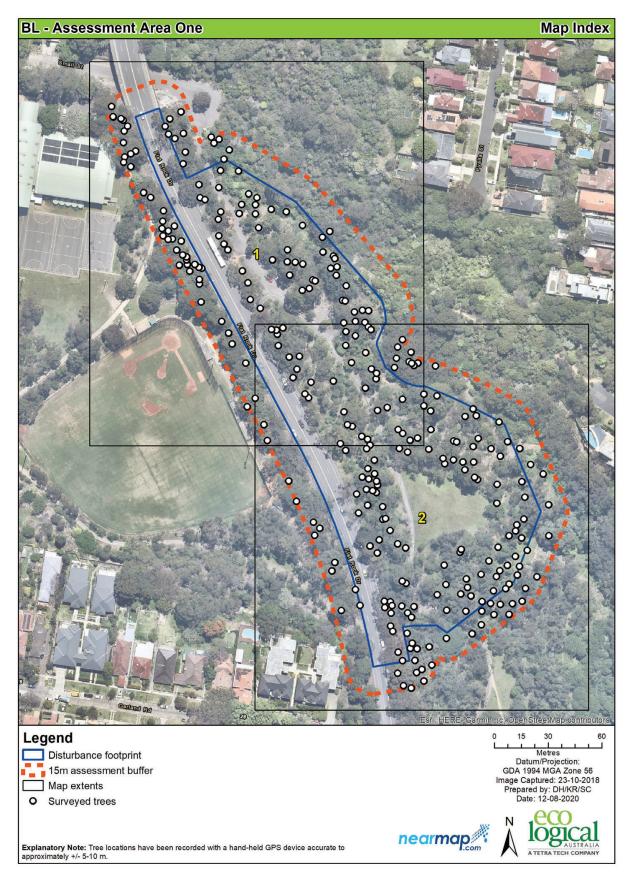


Figure A-1: Results for Assessment Area 1 - Overview

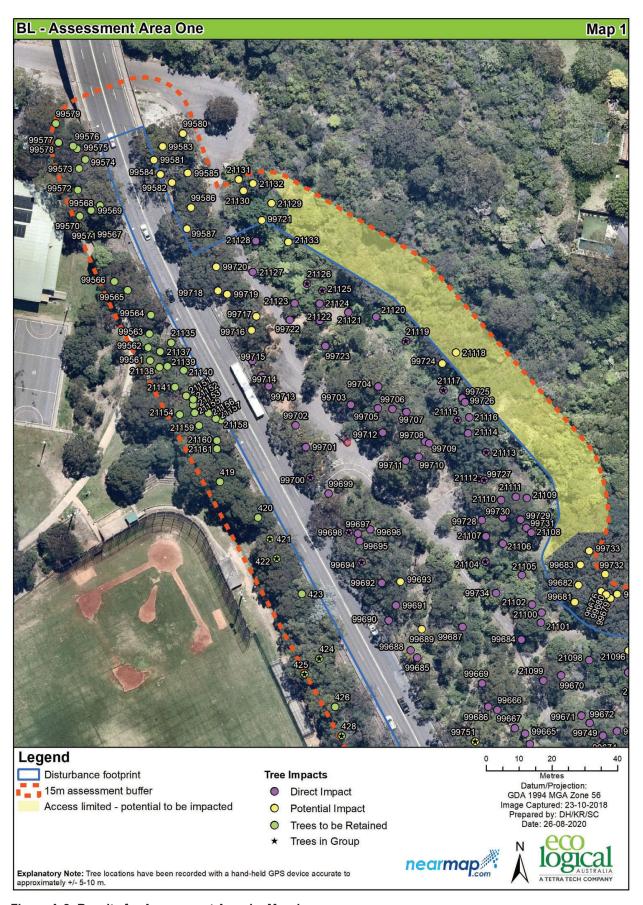


Figure A-2: Results for Assessment Area 1 – Map 1

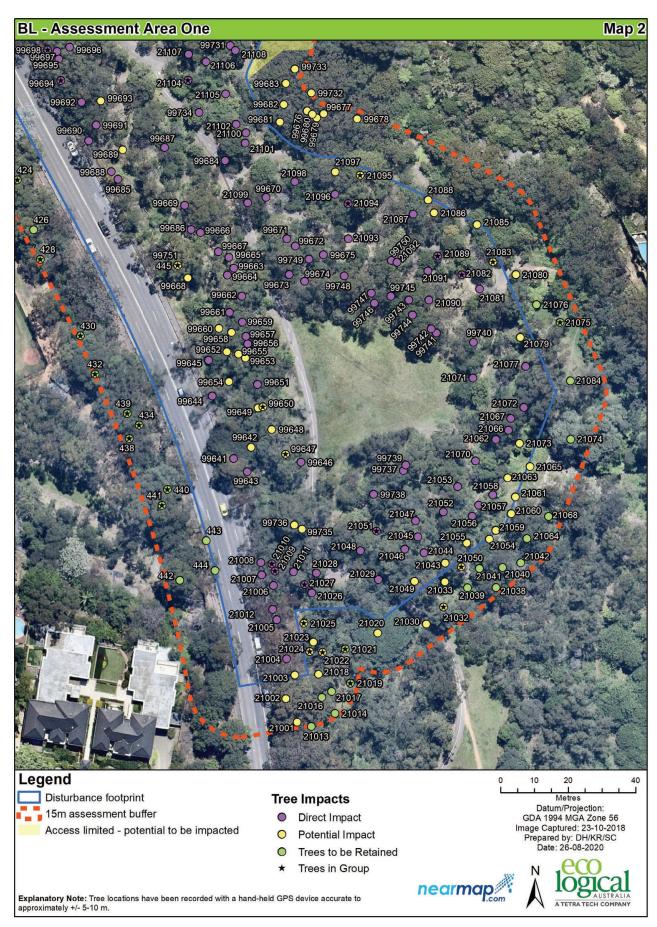


Figure A-3: Results for Assessment Area 1 - Map 2

Annexure C Table of results – Assessment Area 1

Table A-1: Table of results - Assessment Area 1

No. Botanic	al Name	Trees in Grou	p Height (m)	Spread (m) H	ealth Structu	ire ULE	Tree Significance	e Retention Valu	e DBH (mm)	TPZ (m	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting Northing
419 Eucalyptus m	icrocorys	1	10	4 G	ood Fair	Medium	Medium	Medium	450	5.4	2.4	Trees to be Retained		1	1	333838 6257192
420 Corymbia ma	culata	1	8	4 Fa	ir Fair	Short	Low	Low	400	4.8	2.3	Trees to be Retained		1	1	333850 6257181
421 Eucalyptus pa	niculata	5	6	3 G	ood Fair	Medium	Medium	Medium	400	4.8	2.3	Trees to be Retained		1	1	333853 6257175
422 Syncarpia glo	mulifera	3	5	3 Fa	ir Fair	Medium	Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333855 6257169
423 Eucalyptus pa	niculata	1	6	4 Fa	ir Poor	Short	Low	Low	350	4.2	2.1	Trees to be Retained		1	1	333863 6257158
424 Eucalyptus pa	niculata	2	7	3 G	ood Fair	Medium	Medium	Medium	550	6.6	2.6	Trees to be Retained		1	1	333868 6257138
425 Eucalyptus pa	niculata	4	9	3 Fa	ir Fair	Medium	Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333864 6257134
426 Eucalyptus pa	niculata	1	8	3 G	ood Fair	Medium	Medium	Medium	400	4.8	2.3	Trees to be Retained		1	1	333873 6257124
428 Syncarpia glo	mulifera	6	5	3 Fa	ir Fair	Medium	Medium	Medium	400	4.8	2.3	Trees to be Retained		1	1	333875 6257115
21098 Glochidion fei	dinandi	1	11	4 Fa	ir Fair	Medium (15-40 years) Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333950 6257138
21099 Eucalyptus sa	ligna	1	7	6 G	ood Good	Long (>40 years)	High	High	650	7.8	2.8	Direct Impact	Biodiversity Offset Scheme	1	1	333936 6257132
21100 Eucalyptus pi	ularis	1	9	3 G	ood Good	Long (>40 years)	High	High	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1	333936 6257152
21101 Syncarpia glo	mulifera	1	6	4 Fa	ir Good	Medium (15-40 years) Medium	Medium	230	2.8	1.8	Direct Impact	Biodiversity Offset Scheme	1	1	333936 6257149
21102 Pittosporum ເ	ndulatum	1	10	5 Fa	ir Good	Medium (15-40 years)Medium	Medium	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	1	333933 6257155
21104 Allocasuarina	littoralis	2	11	5 Fa	ir Good	Medium (15-40 years) Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333919 6257168
21105 Angophora co	stata	1	3	3 G	ood Fair	Long (>40 years)	Medium	High	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	1	333930 6257164
21106 Eucalyptus pu	ınctata	1	8	6 G	ood Good	Medium (15-40 years) Medium	Medium	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	1	333924 6257173
21107 Cupaniopsis a	anacardioides	s 1	8	10 G	ood Fair	Medium (15-40 years)Low	Low	100	2	1.5	Direct Impact	Biodiversity Offset Scheme	1	1	333919 6257176
21108 Angophora co	stata	1	8	7 G	ood Fair	Medium (15-40 years) Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1	333933 6257177
21109 Eucalyptus sa	ligna	1	7	6 G	ood Good	Long (>40 years)	High	High	600	7.2	2.7	Direct Impact	Biodiversity Offset Scheme	1	1	333931 6257187
21110 Acacia sp.		1	7	1 G	ood Fair	Short (5-15 years)	Medium	Medium	260	3.1	1.9	Direct Impact	Biodiversity Offset Scheme	1	1	333924 6257187
21111 Eucalyptus sa	ligna	1	16	7 G	ood Good	Long (>40 years)	High	High	600	7.2	2.7	Direct Impact	Biodiversity Offset Scheme	1	1	333928 6257188
21112 Allocasuarina	littoralis	20	16	10 Fa	ir Fair	Medium (15-40 years)Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333918 6257193
21113 Allocasuarina	littoralis	10	9	4 Fa	ir Fair	Medium (15-40 years)Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333919 6257201
		1					1	1	1		1	1				

No. Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
21114 Allocasuarina littoralis	1	9	9	Fair	Good	Medium (15-40 years) Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1	333913	6257207
21115 Pittosporum undulatum	2	10	3	Fair	Fair	Short (5-15 years)	Medium	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333910	6257211
21116 Allocasuarina littoralis	1	17	5	Fair	Good	Medium (15-40 years)Medium	Medium	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	1	333914	6257212
21117 Pittosporum undulatum	4	12	8	Fair	Fair	Medium (15-40 years)Low	Low	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	1	333906	6257220
21118 Pittosporum undulatum	1	10	6	Fair	Fair	Medium (15-40 years)Low	Low	300	3.6	2	Potential Impact	Replacement planting required	1	1	333910	6257231
21119 Eucalyptus pilularis	2	13	4	Good	Good	Long (>40 years)	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333895	6257235
21120 Acacia sp.	1	10	2	Fair	Fair	Short (5-15 years)	Low	Low	250	3	1.8	Direct Impact	Biodiversity Offset Scheme	1	1	333886	6257242
21121 Eucalyptus pilularis	1	10	8	Good	Good	Long (>40 years)	Medium	High	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	1	1	333877	6257244
21122 Eucalyptus pilularis	1	6	4	Poor	Fair	Short (5-15 years)	Low	Low	260	3.1	1.9	Direct Impact	Biodiversity Offset Scheme	1	1	333868	6257241
21123 Syncarpia glomulifera	1	12	6	Poor	Good	Short (5-15 years)	Low	Low	160	2	1.5	Direct Impact	Biodiversity Offset Scheme	1	1	333861	6257246
21124 Pittosporum undulatum	1	4	2	Poor	Fair	Short (5-15 years)	Medium	Low	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	1	333868	6257246
21125 Cyathea cooperi	2	12	10	Good	Good	Medium (15-40 years) Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333869	6257250
21126 Pittosporum undulatum	2	4	4	Fair	Fair	Short (5-15 years)	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	1	333864	6257252
21127 Syncarpia glomulifera	1	7	4	Fair	Fair	Medium (15-40 years) Medium	Medium	300	3.6	2	Direct Impact	Replacement planting required	1	1	333848	6257256
21128 Pittosporum undulatum	1	14	6	Good	Fair	Medium (15-40 years)Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	1	333849	6257266
21129 Quercus robur	1	6	4	Good	Good	Medium (15-40 years)High	High	650	7.8	2.8	Potential Impact	Replacement planting required	1	1	333854	6257277
21130 Allocasuarina littoralis	1	9	8	Fair	Fair	Short (5-15 years)	Low	Low	300	3.6	2	Potential Impact	Replacement planting required	1	1	333845	6257281
21131 Banksia integrifolia	1	13	6	Good	Fair	Medium (15-40 years) Medium	Medium	300	3.6	2	Potential Impact	Replacement planting required	1	1	333844	6257284
21132 Angophora costata	1	12	7	Good	Good	Long (>40 years)	High	High	550	6.6	2.6	Potential Impact	Replacement planting required	1	1	333848	6257283
21133 Pittosporum undulatum	1	8	8	Good	Fair	Medium (15-40 years) Medium	Medium	250	3	1.8	Potential Impact	Biodiversity Offset Scheme	1	1	333859	6257265
21135 Eucalyptus sp.	1	19	12	Good	Fair	Medium (15-40 years) Medium	Medium	550	6.6	2.6	Trees to be Retained		1	1	333823	6257234
21137 Syncarpia glomulifera	1	9	11	Fair	Fair	Medium (15-40 years) Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333820	6257232
21138 Angophora costata	1	12	10	Fair	Fair	Long (>40 years)	Medium	Medium	300	3.6	2	Trees to be Retained		1	1	333820	6257227
21139 Eucalyptus microcorys	1	12	12	Fair	Fair	Medium (15-40 years) Medium	Medium	400	4.8	2.3	Trees to be Retained		1	1	333822	6257227

No. Botanical Name	Trees in Group He	eight (m)Spread (m	n) Health	Structure	ULE	Tree Significan	nce Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
21140 Syncarpia glomulifera	1	9	8	Fair	Fair	Medium (15-40 year	s) Medium	Medium	250	3	1.8	Trees to be Retained		1	1	333827	7 6257226
21141 Eucalyptus microcorys	1	10	7	Fair	Fair	Medium (15-40 year	s) Medium	Medium	300	3.6	2	Trees to be Retained		1	1	333824	4 6257221
21151 Eucalyptus microcorys	1	10	10	Fair	Good	Medium (15-40 year	s) Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333828	6257218
21152 Eucalyptus microcorys	1	9	2	Fair	Good	Medium (15-40 year	s) Medium	Medium	300	3.6	2	Trees to be Retained		1	1	333830	6257217
21153 Eucalyptus microcorys	1	9	15	Fair	Good	Medium (15-40 year	s) Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333830	6257216
21154 Eucalyptus microcorys	1	10	8	Fair	Fair	Medium (15-40 year	s) Medium	Medium	400	4.8	2.3	Trees to be Retained		1	1	333826	6 6257213
21155 Eucalyptus microcorys	1	4	3	Fair	Good	Medium (15-40 year	s) Medium	Medium	450	5.4	2.4	Trees to be Retained		1	1	333830	6257213
21156 Eucalyptus paniculata	1	8	3	Fair	Fair	Medium (15-40 year	s) Medium	Medium	250	3	1.8	Trees to be Retained		1	1	333834	4 6257213
21157 Eucalyptus paniculata	1	5	5	Good	Fair	Medium (15-40 year	s) Medium	Medium	400	4.8	2.3	Trees to be Retained		1	1	333837	6257211
21158 Eucalyptus paniculata	1	8	5	Good	Fair	Medium (15-40 year	s) Medium	Medium	300	3.6	2	Trees to be Retained		1	1	333838	8 6257211
21159 Eucalyptus microcorys	1	6	6	Fair	Fair	Medium (15-40 year	s) Medium	Medium	500	6	2.5	Trees to be Retained		1	1	333832	2 6257209
21160 Corymbia maculata	1	13	5	Good	Fair	Medium (15-40 year	s)Medium	Medium	550	6.6	2.6	Trees to be Retained		1	1	333837	6257205
21161 Eucalyptus microcorys	1	11	6	Good	Fair	Medium (15-40 year	s) Medium	Medium	600	7.2	2.7	Trees to be Retained		1	1	333837	6257202
99561 Eucalyptus microcorys	1	8	8	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Trees to be Retained		1	1	333817	6257229
99562 Eucalyptus sp.	1	12	10	Poor	Poor	Short	Low	Low	400	4.8	2.3	Trees to be Retained		1	1	333816	6 6257233
99563 Lophostemon confertus	1	8	7	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Trees to be Retained		1	1	333817	6257237
99564 Eucalyptus saligna	1	16	12	Fair	Fair	Medium	Medium	Medium	700	8.4	2.8	Trees to be Retained		1	1	333817	6257243
99565 Eucalyptus saligna	1	14	17	Poor	Fair	Short	Low	Low	700	8.4	2.8	Trees to be Retained		1	1	333810	6257250
99566 Eucalyptus saligna	1	12	11	Good	Fair	Medium	Medium	Medium	800	9.6	3	Trees to be Retained		1	1	333806	6 6257253
99567 Lophostemon confertus	1	10	6	Good	Fair	Medium	Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333799	6257268
99568 Corymbia maculata	1	16	15	Good	Good	Long	High	High	600	7.2	2.7	Trees to be Retained		1	1	333801	1 6257276
99569 Eucalyptus microcorys	1	8	6	Good	Fair	Medium	Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333799	6257275
99570 Eucalyptus saligna	1	17	16	Good	Fair	Medium	Medium	Medium	600	7.2	2.7	Trees to be Retained		1	1	333795	6257273
99571 Eucalyptus saligna	1	16	15	Good	Fair	Medium	Medium	Medium	300	3.6	2	Trees to be Retained		1	1	333795	6257270
99572 Eucalyptus saligna	1	14	12	Good	Fair	Medium	Medium	Medium	500	6	2.5	Trees to be Retained		1	1	333795	6257281
99573 Corymbia maculata	1	10	11	Fair	Fair	Medium	Medium	Medium	450	5.4	2.4	Trees to be Retained		1	1	333795	6257288
99574 Eucalyptus microcorys	1	11	10	Fair	Fair	Short	Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333797	7 6257290

No. Botanical Name	Trees in Grou	p Height (m)	Spread (m	n) Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
99575 Eucalyptus haemastoma	1	16	12	Good	Good	Long	High	High	600	7.2	2.7	Trees to be Retained		1	1	333794	6257294
99576 Acacia elata	1	11	9	Poor	Fair	Short	Low	Low	300	3.6	2	Trees to be Retained		1	1	333793	6257294
99577 Eucalyptus sp.	1	15	12	Fair	Poor	Short	Medium	Medium	650	7.8	2.8	Trees to be Retained		1	1	333789	6257295
99578 Eucalyptus saligna	1	11	9	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Trees to be Retained		1	1	333789	6257295
99579 Eucalyptus sp.	1	15	12	Fair	Fair	Medium	Medium	Medium	650	7.8	2.8	Trees to be Retained		1	1	333788	6257301
99580 Angophora costata	1	8	7	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Potential Impact	Replacement planting required	1	1	333827	6257298
99581 Corymbia maculata	1	9	5	Good	Fair	Medium	Medium	Medium	550	6.6	2.6	Potential Impact	Replacement planting required	1	1	333818	6257290
99582 Eucalyptus haemastoma	1	9	7	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Potential Impact	Replacement planting required	1	1	333823	6257283
99583 Angophora costata	1	12	7	Good	Fair	Medium	Medium	Medium	350	4.2	2.1	Potential Impact	Replacement planting required	1	1	333821	6257294
99584 Eucalyptus sp.	1	8	9	Poor	Fair	Short	Low	Medium	600	7.2	2.7	Potential Impact	Replacement planting required	1	1	333820	6257286
99585 Angophora costata	1	12	9	Fair	Poor	Medium	Medium	Low	350	4.2	2.1	Potential Impact	Replacement planting required	1	1	333828	6257286
99586 Corymbia maculata	1	15	16	Good	Fair	Long	Medium	Medium	400	4.8	2.3	Potential Impact	Replacement planting required	1	1	333829	6257276
99587 Corymbia maculata	1	15	16	Good	Good	Medium	High	High	550	6.6	2.6	Potential Impact	Replacement planting required	1	1	333828	6257269
99665 Syncarpia glomulifera	1	7	4	Fair	Poor	Short	Low	Low	250	3	1.8	Direct Impact	Biodiversity Offset Scheme	1	1	333931	6257115
99666 Eucalyptus saligna	1	12	8	Good	Fair	Medium	Medium	Medium	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	1	333922	6257123
99667 Syncarpia glomulifera	1	12	5	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	1	333928	6257117
99669 Angophora costata	1	9	5	Fair	Fair	Short	Low	Low	250	3	1.8	Direct Impact	Biodiversity Offset Scheme	1	1	333918	6257131
99670 Eucalyptus saligna	1	11	8	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333942	6257133
99671 Eucalyptus saligna	1	11	8	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1	333948	6257121
99672 Eucalyptus saligna	1	13	8	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333950	6257119
99676 Angophora costata	1	15	14	Good	Good	Long	High	High	600	7.2	2.7	Potential Impact	Replacement planting required	1	1	333954	6257159

No. Botanical Name	Trees in Grou	PHeight (m)Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
99677 Angophora costata	1	16	14	Good	Good	Long	High	High	600	7.2	2.7	Potential Impact	Replacement planting required	1	1 3	333959	6257158
99679 Angophora costata	1	15	9	Good	Good	Long	High	High	450	5.4	2.4	Potential Impact	Replacement planting required	1	1 3	333957	6257157
99680 Angophora costata	1	12	11	Good	Fair	Medium	Medium	Medium	300	3.6	2	Potential Impact	Replacement planting required	1	1 3	333955	6257158
99681 Angophora costata	1	12	11	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Replacement planting required	1	1 3	333946	6257155
99682 Angophora costata	1	16	15	Good	Good	Long	High	High	400	4.8	2.3	Potential Impact	Replacement planting required	1	1 3	333947	6257161
99683 Angophora costata	1	15	12	Good	Good	Long	High	High	700	8.4	2.8	Potential Impact	Replacement planting required	1	1 3	333948	6257167
99684 Eucalyptus saligna	1	10	5	Good	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	1 3	333930	6257144
99685 Eucalyptus saligna	1	7	3	Good	Fair	Medium	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	1 3	333898	6257139
99686 Eucalyptus saligna	1	10	6	Poor	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1 3	333920	6257124
99687 Eucalyptus saligna	1	12	4	Poor	Poor	Short	Low	Low	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1 3	333912	6257148
99688 Grevillea robusta	1	8	3	Poor	Poor	Short	Low	Low	250	3	1.8	Direct Impact	Biodiversity Offset Scheme - Exempt species (Willoughby City Council)	1	1 (333896	6257141
99689 Callitris rhomboidea	1	4	3	Good	Poor	Short	Low	Low	100	2	1.5	Potential Impact	Biodiversity Offset Scheme	1	1 3	333899	6257147
99690 Eucalyptus punctata	1	11	8	Good	Fair	Medium	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	1 3	333889	6257150
99691 Eucalyptus saligna	1	14	8	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1 3	333892	6257155
99692 Corymbia maculata	1	6	6	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1 3	333887	6257161
99693 Angophora floribunda	1	12	8	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Biodiversity Offset Scheme	1	1 3	333893	6257162
99694 Corymbia maculata	5	11	3	Fair	Fair	Medium	Low	Low	150	2	1.5	Direct Impact	Biodiversity Offset Scheme	1	1 3	333881	6257168
99695 Corymbia maculata	1	12	5	Good	Fair	Medium	Medium	Medium	250	3	1.8	Direct Impact	Biodiversity Offset Scheme	1	1 3	333880	6257174
99696 Corymbia maculata	1	12	8	Good	Fair	Medium	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	1 3	333884	6257178
99697 Angophora costata	1	10	6	Good	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	1 3	333880	6257176
99698 Corymbia maculata	2	9	7	Good	Fair	Medium	Medium	Medium	250	3	1.8	Direct Impact	Biodiversity Offset Scheme	1	1 3	333877	6257177
99699 Eucalyptus sp.	1	12	10	Fair	Poor	Short	Low	Low	700	8.4	2.8	Direct Impact	Biodiversity Offset Scheme	1	1 3	333871	6257189

No. Botanical Name	Trees in Grou	p Height (m)	Spread (m)	Health S	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
99700 Corymbia maculata	4	9	4	Good F	-air	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	1	1	333865	6257193
99701 Corymbia maculata	1	9	5	Good F	-air	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	1	1	333864	6257203
99702 Corymbia maculata	1	7	6	Good F	-air	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	1	1	333861	6257209
99703 Eucalyptus saligna	1	15	11	Good G	Good	Long	High	High	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	1	333878	6257216
99704 Eucalyptus saligna	1	20	17	Good G	Good	Long	High	High	650	7.8	2.8	Direct Impact	Biodiversity Offset Scheme	1	1	333886	6257221
99705 Eucalyptus saligna	1	18	13	Good F	-air	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333886	6257214
99706 Eucalyptus saligna	1	20	12	Good G	Good	High	High	High	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	1	333890	6257214
99707 Eucalyptus punctata	1	5	5	Poor F	Poor	Low	Low	Low	200	2.4	1.7	Direct Impact	Biodiversity Offset Scheme	1	1	333895	6257213
99708 Eucalyptus saligna	1	20	8	Good G	Good	Long	High	High	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333900	6257204
99709 Eucalyptus saligna	1	20	8	Good G	Good	Long	High	High	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333902	6257204
99710 Eucalyptus saligna	1	18	10	Good G	Good	Long	High	High	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1	333898	6257200
99711 Eucalyptus saligna	1	15	6	Good F	-air	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333894	6257199
99712 Eucalyptus saligna	1	15	8	Fair F	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333887	6257207
99713 Eucalyptus scoparia	1	7	7	Fair F	air	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	1	1	333853	6257221
99714 Angophora costata	1	6	5	Poor F	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	1	1	333851	6257224
99715 Eucalyptus saligna	1	9	7	Fair F	air	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	1	1	333848	6257229
99716 Angophora costata	1	8	6	Poor F	air	Short	Low	Low	350	4.2	2.1	Potential Impact	Replacement planting required	1	1	333848	6257238
99717 Angophora costata	1	7	4	Fair F	Poor	Short	Low	Low	400	4.8	2.3	Potential Impact	Replacement planting required	1	1	333849	6257243
99718 Corymbia maculata	1	10	8	Good G	Good	Long	High	High	800	9.6	3	Potential Impact	Replacement planting required	1	1	333837	6257250
99719 Corymbia maculata	1	11	7	Good F	-air	Medium	Medium	Medium	350	4.2	2.1	Potential Impact	Replacement planting required	1	1	333840	6257249
99720 Angophora costata	1	13	8	Good F	-air	Medium	Medium	Medium	350	4.2	2.1	Potential Impact	Replacement planting required	1	1	333837	6257258

No. Botanical Name	Trees in Grou	p Height (m)	Spread (m)) Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
99721 Quercus robur	1	16	12	Good	Fair	Short	Low	Low	650	7.8	2.8	Potential Impact	Replacement planting required	1	1	333851	6257272
99722 Eucalyptus saligna	1	8	4	Poor	Poor	Short	Low	Low	150	2	1.5	Direct Impact	Biodiversity Offset Scheme	1	1	333859	6257241
99723 Eucalyptus saligna	1	13	6	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1	333870	6257233
99724 Angophora costata	1	12	11	Good	Good	High	High	High	650	7.8	2.8	Potential Impact	Biodiversity Offset Scheme	1	1	333906	6257228
99725 Casuarina glauca	1	15	9	Good	Fair	Medium	Medium	Medium	600	7.2	2.7	Direct Impact	Biodiversity Offset Scheme	1	1	333912	6257218
99726 Casuarina glauca	1	15	7	Fair	Fair	Short	Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333913	6257216
99727 Casuarina glauca	5	12	5	Fair	Poor	Short	Low	Low	150	2	1.5	Direct Impact	Biodiversity Offset Scheme	1	1	333917	6257193
99728 Eucalyptus saligna	1	16	11	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	1	333918	6257180
99729 Eucalyptus saligna	1	15	11	Good	Good	High	High	High	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333929	6257181
99730 Eucalyptus punctata	1	15	7	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	1	333924	6257181
99731 Angophora costata	1	9	4	Fair	Fair	Short	Low	Low	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	1	333931	6257178
99732 Angophora costata	1	17	16	Good	Good	Long	High	High	750	9	2.9	Potential Impact	Replacement planting required	1	1	333955	6257164
99733 Angophora costata	1	15	12	Good	Good	Long	High	High	800	9.6	3	Potential Impact	Replacement planting required	1	1	333950	6257171
99734 Glochidion ferdinandi	1	5	3	Fair	Fair	Low	Low	Low	200	2.4	1.7	Direct Impact	Biodiversity Offset Scheme	1	1	333922	6257158
430 Eucalyptus paniculata	4	8	3	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Trees to be Retained		1	2	333887	6257092
432 Eucalyptus paniculata	3	7	3	Fair	Good	Medium	Medium	Medium	350	4.2	2.1	Trees to be Retained		1	2	333891	6257081
434 Corymbia maculata	10	13	4	Fair	Fair	Short	Low	Low	350	4.2	2.1	Trees to be Retained		1	2	333904	6257066
438 Eucalyptus saligna	2	10	4	Fair	Fair	Medium	Medium	Medium	600	7.2	2.7	Trees to be Retained		1	2	333901	6257062
439 Allocasuarina littoralis	7	6	2	Fair	Poor	Short	Low	Low	250	3	1.8	Trees to be Retained		1	2	333901	6257069
440 Eucalyptus paniculata	4	9	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Trees to be Retained		1	2	333913	6257047
441 Eucalyptus saligna	3	14	4	Fair	Fair	Medium	Medium	Medium	500	6	2.5	Trees to be Retained		1	2	333911	6257042
442 Eucalyptus saligna	1	14	4	Fair	Good	Medium	Medium	Medium	500	6	2.5	Trees to be Retained		1	2	333916	6257020
443 Angophora costata	1	9	4	Fair	Poor	Medium	Medium	Medium	450	5.4	2.4	Trees to be Retained		1	2	333924	6257032
444 Eucalyptus sp.	1	9	3	Poor	Fair	Short	Low	Medium	500	6	2.5	Trees to be Retained		1	2	333927	6257023
445 Angophora costata	4	8	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Biodiversity Offset Scheme	1	2	333916	6257113

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm	n) TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	мар	Easting	Northing
21001	Corymbia maculata	1	6	4	Good	Fair	Long (>40 years)	Medium	High	450	5.4	2.4	Potential Impact	Replacement planting required	1	2	333951	6256978
21002	Corymbia maculata	1	7	5	Good	Good	Long (>40 years)	High	High	900	10.8	3.2	Potential Impact	Replacement planting required	1	2	333948	6256985
21003	Eucalyptus saligna	1	7	4	Fair	Fair	Medium (15-40 years)	High	High	800	9.6	3	Potential Impact	Biodiversity Offset Scheme	1	2	333950	6256992
21004	Eucalyptus scoparia	1	13	4	Fair	Fair	Medium (15-40 years)	Medium	Medium	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	2	333948	6256997
21005	Eucalyptus tereticornis	1	6	3	Fair	Good	Medium (15-40 years)	High	High	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	1	2	333945	6257008
21006	Corymbia maculata	1	12	4	Fair	Good	Long (>40 years)	High	High	700	8.4	2.8	Direct Impact	Biodiversity Offset Scheme	1	2	333944	6257018
21007	Corymbia citriodora	1	6	4	Fair	Good	Long (>40 years)	High	High	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2	333941	6257021
21008	Corymbia citriodora	1	10	5	Good	Good	Long (>40 years)	High	High	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2	333940	6257025
21009	Corymbia citriodora	3	7	5	Good	Fair	Long (>40 years)	Medium	Medium	200	2.4	1.7	Direct Impact	Biodiversity Offset Scheme	1	2	333944	6257023
21010	Corymbia citriodora	4	8	6	Good	Fair	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333944	6257025
21011	Corymbia citriodora	1	5	3	Fair	Fair	Long (>40 years)	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2	333950	6257022
21012	Glochidion ferdinandi	1	8	4	Poor	Fair	Short (5-15 years)	Medium	Low	180	2.2	1.6	Direct Impact	Biodiversity Offset Scheme	1	2	333944	6257011
21013	Syncarpia glomulifera	1	7	6	Fair	Good	Long (>40 years)	Medium	Medium	300	3.6	2	Trees to be Retained		1	2	333955	6256977
21014	Angophora costata	1	7	5	Fair	Good	Long (>40 years)	Medium	Medium	300	3.6	2	Trees to be Retained		1	2	333962	6256980
21016	Eucalyptus pilularis	1	11	10	Fair	Good	Long (>40 years)	Medium	High	300	3.6	2	Trees to be Retained		1	2	333958	6256985
21017	Eucalyptus pilularis	1	12	7	Good	Fair	Long (>40 years)	High	High	490	5.9	2.5	Trees to be Retained		1	2	333961	6256987
21018	Eucalyptus pilularis	1	11	8	Fair	Good	Long (>40 years)	High	High	550	6.6	2.6	Potential Impact	Replacement planting required	1	2	333957	6256992
21019	Casuarina cunninghamiana	4	4	4	Fair	Fair	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Trees to be Retained		1	2	333967	6256989
21020	Ficus sp.	1	4	3	Good	Good	Medium (15-40 years)	Medium	High	1300	15	3.7	Potential Impact	Replacement planting required	1	2	333975	6257004
21021	Casuarina cunninghamiana	3	4	2	Fair	Fair	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Trees to be Retained		1	2	333965	6256999
21022	Casuarina cunninghamiana	6	4	4	Fair	Fair	Medium (15-40 years)	Medium	Medium	500	6	2.5	Potential Impact	Replacement planting required	1	2	333959	6256998
21023	Ficus sp.	1	4	7	Fair	Good	Medium (15-40 years)	Medium	Medium	600	7.2	2.7	Potential Impact	Replacement planting required	1	2	333956	6257001
21024	Casuarina cunninghamiana	6	11	10	Fair	Fair	Medium (15-40 years)	Medium	Medium	500	6	2.5	Potential Impact	Replacement planting required	1	2	333955	6256999

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
21025	Casuarina cunninghamiana	3	3	3	Fair	Fair	Medium (15-40 years)	Medium	Medium	500	6	2.5	Potential Impact	Replacement planting required	1	2	333953	6257007
21026	Ficus sp.	1	12	12	Fair	Good	Medium (15-40 years)	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2	333955	6257016
21027	Allocasuarina littoralis	10	16	10	Fair	Fair	Medium (15-40 years)	Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333953	6257018
21028	Glochidion ferdinandi	1	19	12	Good	Good	Medium (15-40 years)	Medium	Medium	200	2.4	1.7	Direct Impact	Biodiversity Offset Scheme	1	2	333957	6257022
21029	Ficus rubiginosa	1	18	18	Good	Good	Long (>40 years)	Medium	Medium	900	10.8	3.2	Direct Impact	Biodiversity Offset Scheme	1	2	333975	6257020
21030	Elaeocarpus reticulatus	1	6	5	Good	Fair	Medium (15-40 years)	Medium	Medium	200	2.4	1.7	Potential Impact	Replacement planting required	1	2	333989	6257007
21032	Casuarina glauca	3	18	6	Fair	Fair	Medium (15-40 years)	Medium	Medium	600	7.2	2.7	Potential Impact	Replacement planting required	1	2	333994	6257012
21033	Angophora costata	1	11	5	Fair	Good	Long (>40 years)	Medium	Medium	300	3.6	2	Potential Impact	Replacement planting required	1	2	333995	6257019
21038	Eucalyptus pilularis	1	7	4	Good	Good	Long (>40 years)	High	High	550	6.6	2.6	Trees to be Retained		1	2	334010	6257018
21039	Acacia sp.	1	7	3	Good	Good	Medium (15-40 years)	Medium	Medium	250	3	1.8	Trees to be Retained		1	2	334001	6257018
21040	Acacia sp.	1	11	4	Fair	Fair	Medium (15-40 years)	Medium	Medium	500	6	2.5	Trees to be Retained		1	2	334012	6257024
21041	Eucalyptus pilularis	1	19	8	Good	Good	Long (>40 years)	High	High	500	6	2.5	Trees to be Retained		1	2	334005	6257023
21042	Eucalyptus pilularis	1	20	12	Fair	Fair	Medium (15-40 years)	Medium	Medium	500	6	2.5	Trees to be Retained		1	2	334017	6257025
21043	Eucalyptus pilularis	1	12	5	Good	Good	Long (>40 years)	High	High	500	6	2.5	Potential Impact	Biodiversity Offset Scheme	1	2	333995	6257025
21044	Eucalyptus pilularis	1	13	9	Good	Good	Long (>40 years)	Medium	High	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333989	6257028
21045	Eucalyptus pilularis	1	10	6	Good	Fair	Long (>40 years)	High	High	600	7.2	2.7	Direct Impact	Biodiversity Offset Scheme	1	2	333987	6257033
21046	Eucalyptus pilularis	1	12	4	Fair	Fair	Medium (15-40 years)	Medium	Medium	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333983	6257029
21047	Eucalyptus pilularis	1	7	3	Good	Good	Long (>40 years)	High	High	850	10.2	3.1	Direct Impact	Biodiversity Offset Scheme	1	2	333986	6257037
21048	Eucalyptus pilularis	1	21	10	Fair	Fair	Medium (15-40 years)	High	High	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333970	6257029
21049	Eucalyptus pilularis	1	18	4	Good	Good	Long (>40 years)	Medium	High	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	1	2	333986	6257019
21050	Syncarpia glomulifera	2	9	5	Good	Good	Medium (15-40 years)	High	High	400	4.8	2.3	Potential Impact	Replacement planting required	1	2	334000	6257024
21051	Casuarina glauca	3	17	9	Fair	Fair	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333975	6257034
21052	Eucalyptus pilularis	1	12	5	Good	Good	Medium (15-40 years)	High	High	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	2	333994	6257040
21053	Eucalyptus pilularis	1	23	11	Good	Good	Long (>40 years)	High	High	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	1	2	333999	6257047

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
21054	Ficus sp.	1	19	8	Good	Fair	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Potential Impact	Biodiversity Offset Scheme	1	2 3	334008	6257032
21055	Casuarina cunninghamiana	1	19	8	Good	Good	Medium (15-40 years)	Medium	High	600	7.2	2.7	Potential Impact	Biodiversity Offset Scheme	1	2 3	334001	6257031
21056	Eucalyptus pilularis	1	17	15	Good	Good	Long (>40 years)	High	High	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	2 3	334003	6257039
21057	Celtis sinensis	1	10	6	Fair	Fair	Medium (15-40 years)	Low	Low	200	2.4	1.7	Direct Impact	Biodiversity Offset Scheme - Exempt species (Willoughby City Council)	1	2 3	334005	6257042
21058	Acacia decurrens	1	10	7	Fair	Good	Medium (15-40 years)	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2 3	334009	6257045
21059	Tristaniopsis laurina	1	8	6	Good	Fair	Medium (15-40 years)	Medium	Medium	200	2.4	1.7	Potential Impact	Biodiversity Offset Scheme	1	2 3	334010	6257035
21060	Tristaniopsis laurina	1	11	10	Good	Fair	Medium (15-40 years)	Medium	Medium	300	3.6	2	Potential Impact	Biodiversity Offset Scheme	1	2 3	334014	6257040
21061	Tristaniopsis laurina	1	11	10	Fair	Fair	Medium (15-40 years)	Medium	Medium	180	2.2	1.6	Potential Impact	Biodiversity Offset Scheme	1	2 3	334016	6257044
21062	Angophora costata	1	4	3	Fair	Fair	Medium (15-40 years)	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2 3	334010	6257061
21063	Tristaniopsis laurina	1	8	3	Good	Good	Medium (15-40 years)	Medium	Medium	300	3.6	2	Potential Impact	Biodiversity Offset Scheme	1	2 3	334013	6257050
21064	Eucalyptus pilularis	1	6	4	Good	Good	Long (>40 years)	High	High	700	8.4	2.8	Trees to be Retained		1	2 3	334019	6257032
21065	Eucalyptus pilularis	1	21	8	Fair	Fair	Medium (15-40 years)	High	High	550	6.6	2.6	Potential Impact	Biodiversity Offset Scheme	1	2 3	334020	6257053
21066	Eucalyptus pilularis	1	20	7	Fair	Fair	Medium (15-40 years)	High	High	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2 3	334014	6257064
21067	Eucalyptus pilularis	1	18	6	Good	Good	Long (>40 years)	High	High	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2 3	334014	6257068
21068	Eucalyptus pilularis	1	19	6	Good	Good	Long (>40 years)	High	High	800	9.6	3	Trees to be Retained		1	2 3	334025	6257039
21070	Acacia decurrens	1	4	5	Fair	Fair	Medium (15-40 years)	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2 3	334004	6257055
21071	Acacia decurrens	1	10	6	Fair	Fair	Medium (15-40 years)	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2 3	334003	6257080
21072	Melaleuca sp.	1	18	12	Fair	Good	Medium (15-40 years)	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2 3	334018	6257071
21073	Pittosporum undulatum	1	18	12	Good	Good	Medium (15-40 years)	Medium	Medium	200	2.4	1.7	Potential Impact	Biodiversity Offset Scheme	1	2 3	334017	6257060
21074	Eucalyptus pilularis	1	5	7	Good	Good	Medium (15-40 years)	High	High	800	9.6	3	Trees to be Retained		1	2 3	334032	6257062
21075	cyathea cooperi	10	9	10	Good	Good	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Trees to be Retained		1	2 3	334029	6257096
21076	Callitris columellaris	1	13	7	Fair	Good	Medium (15-40 years)	Medium	Medium	300	3.6	2	Trees to be Retained		1	2 3	334022	6257101
21077	Allocasuarina littoralis	1	15	10	Fair	Fair	Short (5-15 years)	Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2 3	334019	6257083
21079	Eucalyptus pilularis	1	9	6	Fair	Fair	Medium (15-40 years)	Medium	Medium	300	3.6	2	Potential Impact	Biodiversity Offset Scheme	1	2 3	334017	6257092
21080	Eucalyptus pilularis	1	6	3	Fair	Fair	Medium (15-40 years)	Medium	Medium	350	4.2	2.1	Potential Impact	Replacement planting required	1	2 3	334016	6257110

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	ΓPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
21081	Acacia decurrens	1	15	6	Fair	Fair	Medium (15-40 years)	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2	334005	6257106
21082	Syncarpia glomulifera	2	6	4	Fair	Good	Medium (15-40 years)	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2	334000	6257110
21083	Syncarpia glomulifera	2	16	7	Good	Good	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Potential Impact	Biodiversity Offset Scheme	1	2	334009	6257114
21084	Acacia falcata	1	13	10	Good	Good	Medium (15-40 years)	Medium	Medium	500	6	2.5	Trees to be Retained		1	2	334032	6257079
21085	Elaeocarpus reticulatus	1	8	9	Fair	Fair	Medium (15-40 years)	Low	Low	100	2	1.5	Potential Impact	Biodiversity Offset Scheme	1	2	334004	6257125
21086	Pittosporum undulatum	1	4	4	Good	Fair	Medium (15-40 years)	Medium	Medium	300	3.6	2	Potential Impact	Biodiversity Offset Scheme	1	2	333992	6257129
21087	Angophora costata	1	9	8	Good	Good	Long (>40 years)	Medium	High	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2	333985	6257128
21088	Angophora costata	1	7	6	Good	Fair	Long (>40 years)	Medium	Medium	300	3.6	2	Potential Impact	Biodiversity Offset Scheme	1	2	333990	6257132
21089	Syncarpia glomulifera	2	20	10	Fair	Good	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333993	6257116
21090	Glochidion ferdinandi	1	10	6	Good	Fair	Medium (15-40 years)	Medium	Medium	259	3.1	1.9	Direct Impact	Biodiversity Offset Scheme	1	2	333990	6257103
21091	Angophora costata	1	7	6	Good	Fair	Long (>40 years)	Medium	High	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2	333990	6257111
21092	Eucalyptus pilularis	1	10	3	Good	Good	Long (>40 years)	High	High	750	9	2.9	Direct Impact	Biodiversity Offset Scheme	1	2	333981	6257114
21093	Glochidion ferdinandi	1	12	3	Good	Good	Medium (15-40 years)	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333966	6257121
21094	Casuarina cunninghamiana	4	7	5	Fair	Good	Medium (15-40 years)	Medium	Medium	700	8.4	2.8	Direct Impact	Biodiversity Offset Scheme	1	2	333966	6257131
21095	Pittosporum undulatum	4	9	7	Fair	Fair	Medium (15-40 years)	Medium	Medium	300	3.6	2	Potential Impact	Biodiversity Offset Scheme	1	2	333970	6257140
21096	Angophora costata	1	8	5	Poor	Fair	Short (5-15 years)	Low	Low	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2	333962	6257134
21097	Angophora costata	1	10	5	Good	Fair	Long (>40 years)	Medium	Medium	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	1	2	333962	6257141
99641	Corymbia maculata	1	14	10	Good	Fair	Medium	Medium	Medium	700	8.4	2.8	Direct Impact	Biodiversity Offset Scheme	1	2	333932	6257056
99642	Eucalyptus elata	1	14	8	Poor	Fair	Short	Low	Low	500	6	2.5	Potential Impact	Biodiversity Offset Scheme	1	2	333937	6257059
99643	Eucalyptus elata	1	15	9	Poor	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333936	6257052
99644	Eucalyptus elata	1	15	11	Poor	Poor	Short	Low	Low	750	9	2.9	Direct Impact	Biodiversity Offset Scheme	1	2	333926	6257074
99645	Eucalyptus elata	1	14	11	Poor	Fair	Short	Low	Low	1200	14.4	3.6	Direct Impact	Biodiversity Offset Scheme	1	2	333925	6257085
99646	Eucalyptus saligna	1	13	7	Fair	Fair	Medium	Medium	Medium	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	2	333952	6257055
99647	Eucalyptus saligna	3	12	3	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Biodiversity Offset Scheme	1	2	333948	6257057
99648	Eucalyptus saligna	1	11	6	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Biodiversity Offset Scheme	1	2	333943	6257064
99649	Angophora costata	1	12	5	Fair	Fair	Short	Low	Low	300	3.6	2	Potential Impact	Biodiversity Offset Scheme	1	2	333939	6257071
99650	Corymbia maculata	2	14	6	Good	Fair	Medium	Low	Low	150	2	1.5	Potential Impact	Biodiversity Offset Scheme	1	2	333941	6257071

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
99651	Eucalyptus saligna	1	15	10	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2	333939	6257078
99652	Eucalyptus saligna	1	15	10	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	1	2	333930	6257087
99653	Casuarina glauca	1	11	6	Good	Fair	Short	Low	Low	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	1	2	333936	6257086
99654	Acacia sp.	1	11	6	Fair	Poor	Short	Low	Low	150	2	1.5	Potential Impact	Biodiversity Offset Scheme	1	2	333931	6257079
99655	Eucalyptus saligna	1	15	6	Fair	Fair	Short	Low	Low	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	1	2	333934	6257087
99656	Eucalyptus saligna	1	8	4	Fair	Fair	Short	Low	Low	200	2.4	1.7	Direct Impact	Biodiversity Offset Scheme	1	2	333936	6257090
99657	Corymbia maculata	1	9	5	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333936	6257092
99658	Eucalyptus saligna	1	12	5	Fair	Poor	Short	Low	Low	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	1	2	333932	6257093
99659	Angophora costata	1	8	3	Fair	Fair	Medium	Medium	Medium	250	3	1.8	Direct Impact	Biodiversity Offset Scheme	1	2	333935	6257096
99660	Eucalyptus saligna	1	15	6	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Potential Impact	Biodiversity Offset Scheme	1	2	333928	6257094
99661	Angophora costata	1	10	5	Fair	Fair	Medium	Medium	Medium	250	3	1.8	Direct Impact	Biodiversity Offset Scheme	1	2	333931	6257099
99662	Eucalyptus saligna	1	12	8	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2	333935	6257104
99663	Angophora costata	1	11	11	Fair	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333932	6257112
99664	Angophora costata	1	15	7	Fair	Fair	Medium	Medium	Medium	300	3.6	2	Direct Impact	Biodiversity Offset Scheme	1	2	333930	6257110
99668	Eucalyptus saligna	1	14	12	Good	Good	Long	High	High	600	7.2	2.7	Potential Impact	Biodiversity Offset Scheme	1	2	333919	6257109
99673	Eucalyptus saligna	1	10	7	Poor	Fair	Short	Low	Low	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333949	6257110
99674	Eucalyptus saligna	1	11	7	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333953	6257108
99675	Eucalyptus saligna	1	15	11	Good	Good	Long	High	High	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	2	333959	6257116
99678	Angophora costata	1	12	11	Good	Fair	Medium	Medium	Medium	350	4.2	2.1	Potential Impact	Replacement planting required	1	2	333969	6257156
99735	Eucalyptus saligna	1	15	5	Good	Good	Long	High	High	500	6	2.5	Potential Impact	Biodiversity Offset Scheme	1	2	333952	6257035
99736	Eucalyptus saligna	1	22	6	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Biodiversity Offset Scheme	1	2	333950	6257036
99737	Eucalyptus saligna	1	18	10	Good	Good	Long	High	High	700	8.4	2.8	Direct Impact	Biodiversity Offset Scheme	1	2	333982	6257052
99738	Casuarina glauca	1	14	6	Good	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	1	2	333974	6257045
99739	Casuarina glauca	1	19	11	Fair	Poor	Short	Low	Low	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	1	2	333983	6257054
99740	Eucalyptus saligna	1	12	9	Fair	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	334003	6257090
99741	Eucalyptus saligna	1	16	9	Good	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	1	2	333992	6257093

No.	Botanical Name	Trees in Group	Height (m)	Spread (m	n) Healtl	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m) Impact	Offset/replacement	Area	Мар	Easting Northing
99742	Eucalyptus saligna	1	17	11	Good	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333991 6257094
99743	Eucalyptus saligna	1	16	11	Good	Good	High	High	High	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	2	333984 6257103
99744	Eucalyptus saligna	1	15	6	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333985 6257098
99745	Angophora costata	1	15	6	Poor	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333979 6257104
99746	Eucalyptus saligna	1	20	10	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	1	2	333974 6257102
99747	Corymbia maculata	1	14	9	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	1	2	333973 6257105
99748	Angophora costata	1	11	5	Fair	Fair	Short	Low	Low	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	1	2	333965 6257110
99749	Eucalyptus saligna	1	16	11	Good	Good	Long	High	High	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	1	2	333955 6257115
99750	Eucalyptus saligna	1	15	11	Good	Good	Long	High	High	500	6	2.5	Direct Impact	Biodiversity Offset Scheme	1	2	333979 6257114
99751	Angophora costata	4	8	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Biodiversity Offset Scheme	1	2	333916 6257113

Annexure D Maps of arboricultural assessment – Assessment Area 2

Table A-2: Index to Assessment Area 2 maps

Map Index	Map Extent
Мар 1	Gore Hill Freeway/Lane Cove Tunnel and Pacific Highway Interchange
Мар 2	Gore Hill Freeway/Lane Cove Tunnel (Marden Street)
Мар 3	Gore Hill Freeway (Reserve Road)
Мар 4	Gore Hill Freeway (Reserve Road and Dickson Avenue)
Мар 5	Gore Hill Freeway (Hampden Road and Cleg Street)
Мар 6	Gore Hill Freeway (North Shore Rail Line Overpass)
Мар 7	Gore Hill Freeway (Grandview Street)
Map 8	Dickson Avenue

Figure A-2: Results for Assessment Area 2 - Overview

Figure A-3: Results for Assessment Area 2 - Map 1

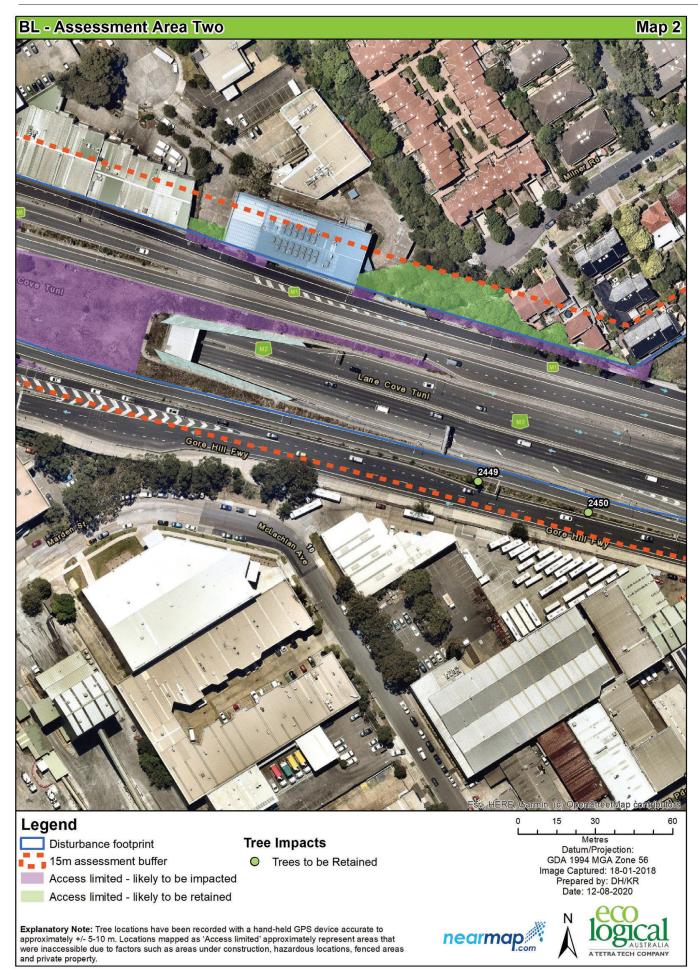


Figure A-4: Results for Assessment Area 2 – Map 2

Figure A-5: Results for Assessment Area 2 - Map 3

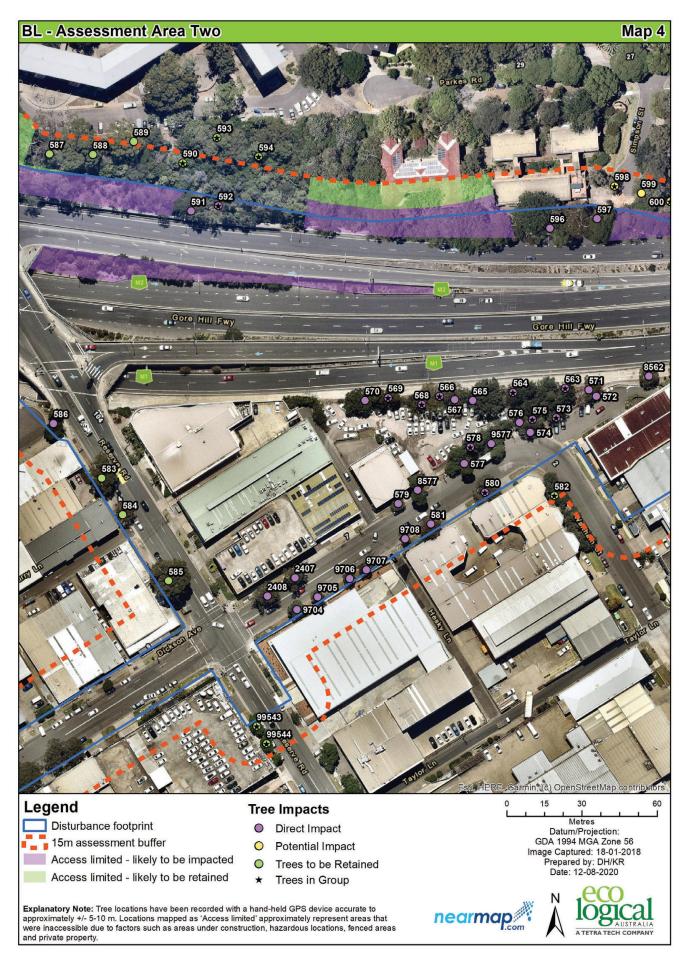


Figure A-6: Results for Assessment Area 3 – Map 4

Figure A-7: Results for Assessment Area 2 - Map 5



Figure A-8: Results for Assessment Area 2 – Map 6

Figure A-9: Results for Assessment Area 2 – Map 7

Figure A-10: Results for Assessment Area 2 - Map 8

Annexure E Table of results – Assessment Area 2

Table A-3: Table of results - Assessment Area 2

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting Northing
641	Eucalyptus saligna	1	6	3	Fair	Fair	Short	Low	Low	300	3.6	2.0	Trees to be Retained		2	1	331410 6257237
642	Angophora costata	1	5	2	Good	Fair	Medium	Low	Low	200	2.4	1.7	Trees to be Retained		2	1	331404 6257235
643	Eucalyptus saligna	3	6	2	Fair	Fair	Medium	Low	Low	300	3.6	2.0	Trees to be Retained		2	1	331395 6257231
99542	Lophostemon confertus	1	6	3	Fair	Fair	Short	Low	Low	200	2.4	1.7	Trees to be Retained		2	1	331427 6257244
99752	Casuarina cunninghamiana	1	6	5	Fair	Fair	Medium	Medium	Low	200	2.4	1.7	Trees to be Retained		2	1	331392 6257225
997317	Eucalyptus saligna	1	7	5	Good	Fair	Medium	Medium	Medium	250	3.0	1.8	Trees to be Retained		2	1	331388 6257224
997318	Acacia sp.	1	6	5	Good	Fair	Medium	Medium	Medium	300	3.6	2.0	Trees to be Retained		2	1	331380 6257227
997319	Casuarina cunninghamiana	1	7	6	Fair	Poor	Short	Medium	Low	400	4.8	2.3	Trees to be Retained		2	1	331369 6257218
2449	Melaleuca quinquenervia	1	5	2	Poor	Fair	Medium	Low	Low	300	4.8	2.3	Trees to be Retained		2	2	331728 6257078
2450	Jacaranda mimosifolia	1	5	1	Poor	Fair	Short	Low	Low	200	9.0	2.9	Trees to be Retained		2	2	331771 6257066
612	Eucalyptus microcorys	1	16	5	Good	Fair	Medium	Medium	Medium	600	7.2	2.7	Trees to be Retained		2	3	331901 6257123
613	Eucalyptus saligna	1	16	5	Good	Fair	Medium	Low	Medium	500	6.0	2.5	Trees to be Retained		2	3	331907 6257118
614	Eucalyptus saligna	1	22	10	Good	Fair	Long	High	High	750	9.0	2.9	Trees to be Retained		2	3	331904 6257115
615	Eucalyptus saligna	2	20	11	Good	Good	Long	High	High	650	7.8	2.8	Trees to be Retained		2	3	331907 6257121
616	Eucalyptus microcorys	1	16	5	Fair	Poor	Short	Low	Low	550	6.6	2.6	Trees to be Retained		2	3	331905 6257124
617	Corymbia maculata	1	23	11	Good	Fair	Medium	High	High	750	9.0	2.9	Trees to be Retained		2	3	331914 6257120
618	Allocasuarina littoralis	1	18	8	Fair	Poor	Short	Low	Low	700	8.4	2.8	Trees to be Retained		2	3	331922 6257122
619	Allocasuarina littoralis	5	18	5	Fair	Fair	Medium	Medium	Medium	650	7.8	2.8	Trees to be Retained		2	3	331931 6257123
620	Eucalyptus globulus 'bicostata'	2	15	7	Good	Good	Medium	High	High	650	7.8	2.8	Direct Impact	Replacement planting required	2	3	331894 6257094
621	Angophora floribunda	3	15	4	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Replacement planting required	2	3	331917 6257088
622	Ulmus parvifolia	3	9	5	Good	Fair	Medium	Medium	Medium	550	6.6	2.6	Trees to be Retained		2	3	331948 6257114
623	Castanospermum australe	2	10	6	Good	Poor	Short	Medium	Low	600	7.2	2.7	Potential Impact	Replacement planting required	2	3	331831 6257132
624	Liquidambar styraciflua	1	13	10	Good	Poor	Short	Medium	Low	900	10.8	3.2	Trees to be Retained		2	3	331847 6257155
625	Eucalyptus saligna	1	18	11	Fair	Good	Medium	Medium	High	900	10.8	3.2	Trees to be Retained		2	3	331875 6257173

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting	Northing
626	Eucalyptus saligna	1	18	9	Fair	Fair	Medium	Medium	Medium	700	8.4	2.8	Trees to be Retained		2	3 3	331885	6257166
627	Corymbia maculata	1	18	7	Good	Fair	Medium	Medium	Medium	500	6.0	2.5	Trees to be Retained		2	3 3	331894	6257173
628	Eucalyptus saligna	3	24	10	Good	Good	Long	High	High	700	8.4	2.8	Trees to be Retained		2	3 3	331907	6257185
629	Cupressus sp.	2	7	3	Good	Poor	Short	Low	Low	350	4.2	2.1	Trees to be Retained		2	3 3	331914	6257196
630	Eucalyptus elata	1	18	9	Fair	Fair	Medium	Medium	Medium	850	10.2	3.1	Trees to be Retained		2	3 3	331927	6257186
631	Allocasuarina littoralis	3	22	9	Good	Poor	Medium	Medium	Medium	750	9.0	2.9	Trees to be Retained		2	3 3	331935	6257205
632	Eucalyptus microcorys	1	21	6	Good	Fair	Medium	Medium	Medium	600	7.2	2.7	Trees to be Retained		2	3 3	331928	6257210
633	Eucalyptus saligna	1	14	4	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	3 3	331925	6257112
634	Eucalyptus botryoides	1	5	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	3 3	331918	6257098
635	Cinnamomum camphora	3	4	2	Fair	Poor	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required - Exempt species (Willoughby City Council)	2	3 3	331922	6257100
2409	Eucalyptus sp.	1	5	2	Fair	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Replacement planting required	2	3 3	332025	6257067
2410	Eucalyptus sp.	1	6	2	Fair	Fair	Medium	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	3 3	332022	6257070
2411	Allocasuarina littoralis	2	7	3	Fair	Poor	Medium	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	3 3	332017	6257076
2412	Platanus -ù acerifolia	1	8	4	Good	Fair	Medium	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	3 3	331993	6257072
2413	Eucalyptus pilularis	1	8	2	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Replacement planting required	2	3 3	331991	6257078
2414	Eucalyptus microcorys	1	18	7	Good	Fair	Medium	Medium	Medium	700	8.4	2.8	Trees to be Retained		2	3 3	332001	6257101
2415	Callistemon salignus	1	7	2	Fair	Fair	Medium	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	3 3	332006	6257088
9651	Pittosporum undulatum	1	4	3	Poor	Poor	Short	Low	Low	200	2.4	1.7	Direct Impact	Replacement planting required	2	3 3	332011	6257083
9709	Jacaranda mimosofolia	1	8	4	Fair	Poor	Short	Low	Low	450	5.4	2.4	Trees to be Retained		2	3 3	331828	6257146
9710	Eucalyptus saligna	1	15	6	Good	Good	Long	High	High	800	9.6	3.0	Trees to be Retained		2	3 3	331932	6257180
9711	Eucalyptus microcorys	1	15	6	Fair	Fair	Medium	Medium	Medium	500	6.0	2.5	Trees to be Retained		2	3 3	331918	6257177
9725	Eucalyptus microcorys	1	15	6	Fair	Fair	Medium	Medium	Medium	500	6.0	2.5	Trees to be Retained		2	3 3	331918	6257181
563	Allocasuarina littoralis	3	6	3	Fair	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	4 3	332260	6256983
564	Allocasuarina littoralis	3	6	3	Fair	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	4 3	332239	6256982
565	Allocasuarina littoralis	1	11	6	Fair	Fair	Medium	Medium	Medium	750	9.0	2.9	Direct Impact	Replacement planting required	2	4 3	332223	6256978
566	Eucalyptus saligna	4	5	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	4 3	332210	6256980

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m)	Impact	Offset/replacement	Area	Мар	Easting	Northing
567	Allocasuarina littoralis	1	7	3	Fair	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	4	332216	6256979
568	Eucalyptus saligna	2	6	3	Fair	Poor	Medium	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	4	332203	6256977
569	Eucalyptus microcorys	3	8	3	Fair	Fair	Medium	Low	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	4	332189	6256980
570	Cinnamomum camphora	1	8	6	Good	Poor	Medium	Low	Low	450	5.4	2.4	Direct Impact	Replacement planting required - Exempt species (Willoughby City Council)	2	4	332180	6256978
571	Eucalyptus microcorys	1	7	3	Fair	Fair	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	4	332269	6256983
572	Angophora costata	1	5	3	Fair	Fair	Medium	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	4	332272	6256980
573	Banksia integrifolia	3	4	2	Fair	Poor	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	4	332256	6256972
574	Banksia integrifolia	1	4	2	Fair	Fair	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	4	332246	6256966
575	Eucalyptus saligna	2	5	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	4	332247	6256971
576	Allocasuarina littoralis	1	6	2	Fair	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	4	332242	6256970
577	Lophostemon confertus	1	7	4	Fair	Poor	Medium	Medium	Medium	600	7.2	2.7	Direct Impact	Replacement planting required	2	4	332220	6256953
578	Allocasuarina littoralis	2	10	2	Fair	Poor	Short	Medium	Low	450	5.4	2.4	Direct Impact	Replacement planting required	2	4	332222	6256960
579	Tristaniopsis laurina	1	4	2	Fair	Fair	Medium	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	4	332193	6256937
580	Eucalyptus nicholii	2	8	3	Fair	Fair	Short	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required - Exempt species (Willoughby City Council)	2	4	332228	6256942
581	Eucalyptus nicholii	1	10	4	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Replacement planting required - Exempt species (Willoughby City Council)	2	4	332206	6256929
582	Callistemon viminalis	3	4	2	Good	Fair	Medium	Low	Medium	250	3.0	1.8	Trees to be Retained		2	4	332256	6256940
583	Corymbia maculata	1	15	5	Good	Fair	Medium	Medium	Medium	600	7.2	2.7	Trees to be Retained		2	4	332075	6256948
584	Eucalyptus saligna	1	8	3	Fair	Poor	Short	Low	Low	550	6.6	2.6	Trees to be Retained		2	4	332083	6256933
585	Corymbia maculata	1	12	6	Good	Fair	Medium	High	High	750	9.0	2.9	Trees to be Retained		2	4	332102	6256906
586	Podocarpus elatus	1	5	4	Good	Poor	Short	Medium	Low	500	6.0	2.5	Direct Impact	Replacement planting required	2	4	332056	6256969
587	Eucalyptus scoparia	1	12	7	Poor	Poor	Short	Medium	Low	1000	12.0	3.3	Trees to be Retained		2	4	332054	6257077
588	Corymbia citriodora	1	23	13	Good	Good	Long	High	High	750	9.0	2.9	Trees to be Retained		2	4	332072	6257077
589	Corymbia citriodora	1	15	7	Fair	Fair	Medium	Medium	Medium	650	7.8	2.8	Trees to be Retained		2	4	332088	6257082
590	Syncarpia glomulifera	2	11	5	Fair	Poor	Medium	Medium	Medium	450	5.4	2.4	Trees to be Retained		2	4	332107	6257073

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m) Impact	Offset/replacement	Area	Мар	Easting Northing
591	Syncarpia glomulifera	1	10	3	Good	Poor	Medium	Medium	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	4	332111 6257054
592	Ligustrum sinense	10	4	2	Fair	Poor	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required - Exempt species (Willoughby City Council)	2	4	332122 6257056
593	Ligustrum sinense	10	4	2	Fair	Poor	Short	Low	Low	250	3.0	1.8	Trees to be Retained		2	4	332121 6257083
594	Eucalyptus pilularis	3	11	3	Fair	Fair	Medium	Low	Low	500	6.0	2.5	Trees to be Retained		2	4	332138 6257076
596	Eucalyptus scoparia	1	15	6	Poor	Fair	Short	Medium	Low	650	7.8	2.8	Direct Impact	Replacement planting required	2	4	332254 6257047
597	Eucalyptus saligna	1	16	4	Good	Fair	Medium	Medium	Medium	500	6.0	2.5	Direct Impact	Replacement planting required	2	4	332273 6257051
598	Eucalyptus microcorys	3	11	3	Good	Poor	Short	Low	Low	300	3.6	2.0	Potential Impact	Replacement planting required	2	4	332280 6257064
599	Lophostemon confertus	1	9	5	Fair	Fair	Medium	Low	Low	450	5.4	2.4	Potential Impact	Replacement planting required	2	4	332290 6257061
2407	Casuarina cunninghamiana	1	11	5	Fair	Poor	Medium	Medium	Low	550	6.6	2.6	Direct Impact	Replacement planting required	2	4	332152 6256908
2408	Casuarina cunninghamiana	1	10	5	Good	Poor	Medium	Medium	Low	550	6.6	2.6	Direct Impact	Replacement planting required	2	4	332141 6256900
8562	Eucalyptus saligna	1	7	3	Fair	Fair	Medium	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	4	332293 6256988
8577	Lophostemon confertus	1	7	4	Fair	Poor	Medium	Medium	Medium	600	7.2	2.7	Direct Impact	Replacement planting required	2	4	332201 6256943
9577	Lophostemon confertus	1	7	4	Fair	Poor	Medium	Medium	Medium	600	7.2	2.7	Direct Impact	Replacement planting required	2	4	332231 6256961
9704	Eucalyptus sp.	1	10	2	Good	Fair	Medium	Medium	Medium	200	2.4	1.7	Direct Impact	Replacement planting required	2	4	332153 6256895
9705	Eucalyptus sp.	1	10	2	Fair	Fair	Medium	Medium	Medium	200	2.4	1.7	Direct Impact	Replacement planting required	2	4	332161 6256900
9706	Corymbia maculata	1	8	3	Fair	Fair	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	4	332174 6256907
9707	Corymbia maculata	1	8	3	Fair	Fair	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	4	332181 6256911
9708	Eucalyptus nicholii	1	6	2	Fair	Poor	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required - Exempt species (Willoughby City Council)	2	4	332196 6256923
99543	Jacaranda mimosifolia	2	4	3	Fair	Poor	Short	Low	Low	150	2.0	1.5	Trees to be Retained		2	4	332137 6256848
99544	Brachychiton acerifolius	2	5	2	Fair	Poor	Short	Low	Low	200	2.4	1.7	Trees to be Retained		2	4	332141 6256841
478	Allocasuarina littoralis	2	10	4	Good	Fair	Medium	Medium	Medium	700	8.4	2.8	Direct Impact	Replacement planting required	2	5	332545 6257021
487	Eucalyptus saligna	3	16	3	Good	Fair	Medium	Medium	Medium	500	6.0	2.5	Direct Impact	Replacement planting required	2	5	332540 6257101
488	Eucalyptus saligna	1	16	8	Good	Fair	Medium	High	Medium	750	9.0	2.9	Potential Impact	Replacement planting required	2	5	332502 6257103
489	Angophora costata	1	15	6	Good	Poor	Medium	Medium	Medium	600	7.2	2.7	Direct Impact	Replacement planting required	2	5	332541 6257087
490	Eucalyptus saligna	1	18	7	Fair	Fair	Medium	High	Medium	900	10.8	3.2	Potential Impact	Replacement planting required	2	5	332544 6257119

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m) Impact	Offset/replacement	Area	Мар	Easting Northing
491	Eucalyptus saligna	1	15	6	Fair	Poor	Short	Medium	Medium	650	7.8	2.8	Direct Impact	Replacement planting required	2	5	332546 6257112
492	Syncarpia glomulifera	4	14	5	Good	Good	Medium	High	High	600	7.2	2.7	Potential Impact	Replacement planting required	2	5	332519 6257110
493	Eucalyptus saligna	1	15	8	Good	Fair	Medium	High	Medium	850	10.2	3.1	Potential Impact	Replacement planting required	2	5	332496 6257103
494	Eucalyptus saligna	2	18	3	Fair	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	2	5	332490 6257094
495	Eucalyptus saligna	4	13	4	Fair	Fair	Medium	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332485 6257081
496	Pittosporum undulatum	10	4	2	Fair	Fair	Medium	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332516 6257078
497	Syncarpia glomulifera	1	10	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332513 6257090
498	Syncarpia glomulifera	3	6	3	Fair	Fair	Medium	Medium	Medium	250	3.0	1.8	Direct Impact	Replacement planting required	2	5	332500 6257081
506	Allocasuarina littoralis	5	5	3	Fair	Fair	Short	Low	Low	200	2.4	1.7	Direct Impact	Replacement planting required	2	5	332531 6257082
507	Eucalyptus saligna	1	5	3	Fair	Poor	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332523 6257080
508	Eucalyptus saligna	1	16	4	Fair	Poor	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Replacement planting required	2	5	332480 6257079
509	Eucalyptus microcorys	1	9	3	Good	Fair	Medium	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332473 6257078
510	Eucalyptus saligna	3	18	7	Fair	Fair	Medium	Medium	Medium	750	9.0	2.9	Direct Impact	Biodiversity Offset Scheme	2	5	332476 6257089
511	Eucalyptus microcorys	6	9	4	Fair	Fair	Medium	Low	Low	450	5.4	2.4	Direct Impact	Replacement planting required	2	5	332467 6257076
512	Eucalyptus microcorys	1	15	6	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	2	5	332456 6257084
513	Pittosporum undulatum	1	7	4	Poor	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Biodiversity Offset Scheme	2	5	332455 6257091
514	Syncarpia glomulifera	1	16	10	Good	Good	Long	High	High	850	10.2	3.1	Direct Impact	Biodiversity Offset Scheme	2	5	332449 6257091
515	Eucalyptus microcorys	2	15	6	Good	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Biodiversity Offset Scheme	2	5	332435 6257076
516	Eucalyptus saligna	5	5	2	Fair	Fair	Medium	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	5	332429 6257060
517	Eucalyptus saligna	1	15	7	Good	Fair	Medium	Medium	High	850	10.2	3.1	Direct Impact	Biodiversity Offset Scheme	2	5	332416 6257070
518	Eucalyptus saligna	2	9	3	Fair	Fair	Medium	Low	Low	400	4.8	2.3	Direct Impact	Biodiversity Offset Scheme	2	5	332418 6257083
519	Eucalyptus saligna	5	10	4	Fair	Fair	Medium	Medium	Medium	500	6.0	2.5	Direct Impact	Replacement planting required	2	5	332404 6257073
521	Eucalyptus saligna	7	6	2	Fair	Fair	Short	Low	Low	200	2.4	1.7	Direct Impact	Replacement planting required	2	5	332533 6257014
522	Allocasuarina littoralis	6	8	3	Fair	Fair	Short	Medium	Medium	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332529 6257013
523	Eucalyptus saligna	5	8	3	Fair	Fair	Medium	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332521 6257007
524	Agonis flexuosa	1	6	3	Fair	Poor	Short	Low	Low	450	5.4	2.4	Direct Impact	Replacement planting required	2	5	332517 6257004
525	Allocasuarina littoralis	2	6	2	Fair	Fair	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	5	332515 6257014
			L									l	1		1		

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting	Northing
526	Melaleuca quinquenervia	1	5	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332507	6257002
527	Eucalyptus saligna	3	7	3	Fair	Fair	Medium	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332509	6257000
528	Allocasuarina littoralis	4	7	3	Fair	Fair	Medium	Medium	Medium	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332502	6257007
529	Eucalyptus saligna	2	5	3	Fair	Good	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332500	6256994
530	Allocasuarina littoralis	1	6	2	Fair	Fair	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332504	6256997
531	Allocasuarina littoralis	5	6	3	Fair	Fair	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332496	6256993
532	Melaleuca quinquenervia	1	5	3	Fair	Fair	Short	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332492	6256989
533	Allocasuarina littoralis	3	6	2	Fair	Fair	Medium	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332488	6256986
534	Allocasuarina littoralis	5	7	3	Fair	Poor	Medium	Low	Low	150	2.0	1.5	Direct Impact	Replacement planting required	2	5	332482	6256994
535	Eucalyptus saligna	2	5	2	Fair	Poor	Short	Medium	Medium	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332484	6256979
536	Eucalyptus saligna	5	7	3	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332473	6256989
537	Melaleuca quinquenervia	2	6	3	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332479	6256981
538	Allocasuarina littoralis	1	11	5	Fair	Poor	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Replacement planting required	2	5	332473	6256975
539	Eucalyptus sp.	1	8	3	Poor	Poor	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	5	332521	6256978
540	Ulmus parvifolia	1	9	6	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Trees to be Retained		2	5	332497	6256949
541	Eucalyptus tereticornis	1	8	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Replacement planting required	2	5	332473	6256950
542	Angophora costata	3	10	5	Fair	Good	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Replacement planting required	2	5	332451	6256968
543	Allocasuarina littoralis	1	12	6	Fair	Fair	Medium	Medium	Medium	600	7.2	2.7	Direct Impact	Replacement planting required	2	5	332454	6256961
544	Angophora costata	1	9	4	Poor	Fair	Short	Medium	Low	450	5.4	2.4	Direct Impact	Replacement planting required	2	5	332445	6256961
545	Eucalyptus microcorys	1	16	9	Good	Good	Medium	High	High	800	9.6	3.0	Trees to be Retained		2	5	332366	6256926
546	Eucalyptus saligna	3	6	3	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Replacement planting required	2	5	332450	6256976
547	Eucalyptus microcorys	3	14	6	Good	Good	Long	High	High	700	8.4	2.8	Trees to be Retained		2	5	332446	6256927
548	Banksia integrifolia	4	6	2	Good	Fair	Medium	Low	Low	300	3.6	2.0	Trees to be Retained		2	5	332435	6256942
549	Angophora costata	1	8	5	Good	Fair	Medium	Medium	Medium	400	4.8	2.3	Trees to be Retained		2	5	332423	6256953
550	Banksia integrifolia	1	6	4	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Potential Impact	Replacement planting required	2	5	332421	6256967
551	Angophora costata	1	9	4	Poor	Poor	Short	Low	Low	450	5.4	2.4	Potential Impact	Replacement planting required	2	5	332415	6256975
552	Eucalyptus saligna	5	6	3	Fair	Good	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332444	6256982

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting	Northing
553	Eucalyptus saligna	4	10	3	Fair	Fair	Short	Low	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332465	6256987
554	Allocasuarina littoralis	6	8	2	Fair	Poor	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	5	332458	6256993
555	Angophora costata	4	7	3	Fair	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332439	6256987
556	Banksia integrifolia	4	5	2	Fair	Fair	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	5	332436	6256993
557	Allocasuarina littoralis	5	7	2	Fair	Fair	Short	Low	Low	200	2.4	1.7	Direct Impact	Replacement planting required	2	5	332451	6257001
558	Eucalyptus saligna	4	6	3	Good	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332432	6257003
559	Casuarina cunninghamiana	1	6	3	Good	Fair	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	5	332383	6256997
560	Eucalyptus saligna	1	10	4	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332366	6256997
561	Acacia longifolia	1	7	3	Good	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332326	6256992
562	Eucalyptus saligna	1	7	3	Fair	Fair	Medium	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332304	6256989
600	Allocasuarina littoralis	3	12	4	Good	Poor	Short	Low	Low	500	6.0	2.5	Potential Impact	Replacement planting required	2	5	332302	6257058
2393	Angophora floribunda	1	13	6	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Replacement planting required	2	5	332384	6257058
2394	Angophora floribunda	1	12	4	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332382	6257060
2395	Angophora floribunda	2	11	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	5	332379	6257058
2396	Angophora costata	1	7	3	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332381	6257057
2416	Eucalyptus saligna	3	10	4	Fair	Fair	Medium	Low	Low	450	5.4	2.4	Direct Impact	Replacement planting required	2	5	332393	6257086
2417	Eucalyptus saligna	1	15	8	Fair	Poor	Medium	Medium	Medium	700	8.4	2.8	Potential Impact	Replacement planting required	2	5	332389	6257098
9562	Eucalyptus saligna	1	7	3	Fair	Fair	Medium	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	5	332312	6256990
9652	Eucalyptus microcorys	1	12	5	Fair	Fair	Medium	Medium	Medium	650	7.8	2.8	Potential Impact	Replacement planting required	2	5	332414	6257102
9653	Eucalyptus microcorys	1	12	5	Fair	Fair	Medium	Medium	Medium	650	7.8	2.8	Potential Impact	Replacement planting required	2	5	332423	6257097
9654	Eucalyptus microcorys	1	12	5	Fair	Fair	Medium	Medium	Medium	650	7.8	2.8	Potential Impact	Replacement planting required	2	5	332419	6257094
9655	Eucalyptus saligna	1	10	5	Good	Good	Medium	Medium	Medium	700	8.4	2.8	Direct Impact	Replacement planting required	2	5	332413	6257089
9656	Eucalyptus saligna	1	14	6	Good	Good	Medium	Medium	Medium	800	9.6	3.0	Potential Impact	Replacement planting required	2	5	332454	6257103
9657	Allocasaurina littoralis	2	7	3	Fair	Fair	Short	Low	Low	250	3.0	1.8	Potential Impact	Replacement planting required	2	5	332448	6257098
9658	Eucalyptus paniculata	1	8	3	Poor	Poor	Short	Low	Low	500	6.0	2.5	Potential Impact	Replacement planting required	2	5	332444	6257103
9659	Eucalyptus saligna	2	10	6	Good	Good	Medium	Medium	Medium	600	7.2	2.7	Potential Impact	Replacement planting required	2	5	332436	6257104
9660	Eucalyptus sp.	8	10	3	Fair	Fair	Short	Low	Low	300	3.6	2.0	Potential Impact	Replacement planting required	2	5	332473	6257106

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting Northing
9661	Eucalyptus citridora	1	10	6	Fair	Poor	Medium	Medium	Medium	550	6.6	2.6	Trees to be Retained		2	5	332376 6257070
9662	Casaurina cunninghamiana	1	10	6	Good	Poor	Medium	Medium	Medium	700	8.4	2.8	Trees to be Retained		2	5	332374 6257073
9663	Eucalyptus citridora	1	10	6	Fair	Fair	Medium	Medium	Medium	700	8.4	2.8	Trees to be Retained		2	5	332375 6257068
82417	Eucalyptus saligna	1	16	7	Good	Good	Medium	Medium	High	800	9.6	3.0	Potential Impact	Replacement planting required	2	5	332386 6257107
92417	Eucalyptus saligna	1	12	7	Good	Good	Medium	Medium	High	700	8.4	2.8	Potential Impact	Replacement planting required	2	5	332398 6257108
98541	Eucalyptus tereticornis	1	8	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Replacement planting required	2	5	332459 6256939
99541	Eucalyptus tereticornis	1	8	3	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Potential Impact	Replacement planting required	2	5	332466 6256944
99603	Eucalyptus sp.	1	10	8	Fair	Fair	Medium	Medium	Medium	500	6.0	2.5	Trees to be Retained		2	5	332362 6257087
99604	Casuarina glauca	1	12	11	Good	Good	Medium	Medium	Medium	600	7.2	2.7	Trees to be Retained		2	5	332362 6257097
461	Eucalyptus saligna	3	12	3	Fair	Fair	Medium	Low	Low	400	4.8	2.3	Potential Impact	Replacement planting required	2	6	332756 6257175
462	Eucalyptus saligna	1	20	11	Good	Fair	Medium	High	High	2000	24.0	4.4	Potential Impact	Replacement planting required	2	6	332753 6257168
463	Eucalyptus microcorys	1	8	3	Fair	Poor	Short	Low	Low	400	4.8	2.3	Potential Impact	Replacement planting required	2	6	332745 6257164
464	Allocasuarina littoralis	1	9	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	2	6	332736 6257156
465	Syncarpia glomulifera	2	9	5	Good	Good	Medium	High	High	650	7.8	2.8	Potential Impact	Replacement planting required	2	6	332710 6257156
466	Eucalyptus saligna	2	15	5	Good	Fair	Medium	Medium	Medium	600	7.2	2.7	Trees to be Retained		2	6	332692 6257157
467	Eucalyptus microcorys	1	10	3	Fair	Good	Medium	Medium	Medium	500	6.0	2.5	Trees to be Retained		2	6	332697 6257159
473	Eucalyptus saligna	3	5	2	Fair	Poor	Short	Low	Low	300	3.6	2.0	Direct Impact	Biodiversity Offset Scheme	2	6	332729 6257119
474	Allocasuarina littoralis	1	7	3	Fair	Poor	Short	Low	Low	400	4.8	2.3	Direct Impact	Replacement planting required	2	6	332611 6257060
475	Melaleuca quinquenervia	2	10	3	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Replacement planting required	2	6	332581 6257038
476	Casuarina cunninghamiana	1	10	6	Fair	Poor	Medium	Medium	Low	550	6.6	2.6	Direct Impact	Replacement planting required	2	6	332575 6257035
477	Eucalyptus saligna	7	7	2	Fair	Poor	Short	Low	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	6	332561 6257029
479	Syzygium paniculatum	3	5	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	6	332587 6257023
480	Acacia sp.	1	10	3	Poor	Poor	Short	Low	Low	500	6.0	2.5	Direct Impact	Replacement planting required	2	6	332603 6257030
481	Syzygium paniculatum	4	4	2	Good	Poor	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	6	332623 6257040
482	Shinus areira	1	8	7	Good	Fair	Medium	Medium	Medium	950	11.4	3.2	Direct Impact	Replacement planting required	2	6	332582 6257021
483	Corymbia maculata	1	14	7	Good	Good	Long	High	High	600	7.2	2.7	Potential Impact	Replacement planting required	2	6	332554 6256996
484	Eucalyptus saligna	3	11	3	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Replacement planting required	2	6	332615 6257140
1	l .	1	1	1		1	1	1	I.								

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting Northing
485	Eucalyptus saligna	3	20	11	Good	Fair	Medium	High	High	700	8.4	2.8	Direct Impact	Replacement planting required	2	6	332555 6257111
486	Syncarpia glomulifera	4	12	6	Good	Fair	Long	High	High	450	5.4	2.4	Potential Impact	Replacement planting required	2	6	332557 6257135
499	Allocasuarina littoralis	5	12	3	Fair	Poor	Short	Low	Medium	500	6.0	2.5	Direct Impact	Replacement planting required	2	6	332556 6257096
500	Angophora costata	1	15	5	Good	Fair	Medium	Medium	Medium	500	6.0	2.5	Direct Impact	Replacement planting required	2	6	332549 6257091
501	Allocasuarina littoralis	10	9	3	Fair	Fair	Short	Low	Low	350	4.2	2.1	Direct Impact	Replacement planting required	2	6	332592 6257114
502	Pittosporum undulatum	10	6	3	Fair	Poor	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	6	332583 6257131
503	Pittosporum undulatum	8	6	3	Fair	Fair	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	6	332609 6257124
504	Allocasuarina littoralis	4	11	3	Fair	Fair	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	6	332602 6257116
505	Pittosporum undulatum	5	4	3	Fair	Fair	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	6	332565 6257111
520	Allocasuarina littoralis	8	9	4	Fair	Fair	Medium	Low	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	6	332548 6257037
2397	Eucalyptus saligna	6	7	4	Fair	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Replacement planting required	2	6	332666 6257057
2398	Angophora floribunda	8	6	3	Fair	Fair	Medium	Low	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	6	332677 6257046
2399	Eucalyptus punctata	1	15	5	Good	Fair	Medium	Medium	Medium	600	7.2	2.7	Direct Impact	Replacement planting required	2	6	332666 6257024
2400	Eucalyptus sp.	6	5	2	Fair	Fair	Medium	Medium	Medium	400	4.8	2.3	Direct Impact	Replacement planting required	2	6	332675 6257035
2401	Pinus sp.	1	8	3	Fair	Fair	Medium	Medium	Medium	500	6.0	2.5	Direct Impact	Replacement planting required	2	6	332677 6257008
2402	Cinnamomum camphora	1	7	4	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Direct Impact	Replacement planting required - Exempt species (Willoughby City Council)	2	6	332681 6257002
2403	Angophora floribunda	5	7	3	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Direct Impact	Replacement planting required	2	6	332655 6257082
2404	Casuarina glauca	10	5	1	Fair	Poor	Short	Low	Low	100	2.0	1.5	Direct Impact	Replacement planting required	2	6	332640 6257066
2405	Casuarina glauca	1	11	3	Fair	Fair	Medium	Medium	Medium	450	5.4	2.4	Direct Impact	Replacement planting required	2	6	332629 6257062
2406	Pinus radiata	1	22	12	Fair	Fair	Medium	High	Medium	1000	12.0	3.3	Direct Impact	Replacement planting required	2	6	332743 6257110
9664	Exotic sp.	1	5	2	Fair	Poor	Short	Low	Low	250	3.0	1.8	Direct Impact	Replacement planting required	2	6	332657 6257040
9665	Casaurina sp.	3	5	2	Fair	Fair	Medium	Low	Low	200	2.4	1.7	Direct Impact	Replacement planting required	2	6	332736 6257121
9666	Quercus robur	1	6	4	Fair	Fair	Medium	Medium	Medium	500	6.0	2.5	Direct Impact	Replacement planting required	2	6	332755 6257122
9667	Casaurina sp.	3	6	2	Fair	Fair	Short	Low	Low	100	2.0	1.5	Direct Impact	Biodiversity Offset Scheme	2	6	332721 6257106
9668	Eucalyptus sp.	5	4	2	Fair	Fair	Short	Low	Low	100	2.0	1.5	Direct Impact	Biodiversity Offset Scheme	2	6	332708 6257102
9669	Syncarpia glomulifera	1	8	3	Good	Good	Medium	Medium	Medium	300	3.6	2.0	Trees to be Retained		2	6	332730 6257098

No.	Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting	Northing
9670	Leptospermum sp.	1	4	2	Good	Fair	Short	Low	Low	100	2.0	1.5	Trees to be Retained		2	6 3	332731	6257104
9712	Eucalyptus scoparia	1	8	4	Fair	Fair	Short	LOw	Low	400	4.8	2.3	Trees to be Retained		2	6 3	332617	6256946
9713	Eucalyptus sp.	1	5	0	Fair	Fair	Medium	Medium	Medium	350	4.2	2.1	Trees to be Retained		2	6 3	332640	6256957
9714	Eucalyptus scoparia	1	8	4	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Trees to be Retained		2	6 3	332663	6256975
9715	Eucalyptus punctata	1	12	5	Good	Fair	Medium	Medium	Medium	550	6.6	2.6	Trees to be Retained		2	6 3	332707	6256963
92399	Eucalyptus punctata	1	12	3	Fair	Poor	Short	Low	Low	300	3.6	2.0	Direct Impact	Replacement planting required	2	6 3	332652	6257047
95464	Allocasuarina littoralis	1	9	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Potential Impact	Replacement planting required	2	6 3	332709	6257145
96464	Allocasuarina littoralis	1	9	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Potential Impact	Replacement planting required	2	6 3	332714	6257147
97464	Allocasuarina littoralis	1	9	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Potential Impact	Replacement planting required	2	6 3	332719	6257149
98464	Allocasuarina littoralis	1	9	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	2	6 3	332724	6257151
99464	Allocasuarina littoralis	1	9	2	Fair	Poor	Short	Low	Low	350	4.2	2.1	Potential Impact	Biodiversity Offset Scheme	2	6 3	332728	6257153
99554	Unidentified native species	1	4	3	Fair	Fair	Short	Medium	Medium	150	2.0	1.5	Potential Impact	Replacement planting required	2	6 3	332659	6256991
99555	Unidentified native species	1	4	4	Fair	Fair	Short	Medium	Medium	150	2.0	1.5	Potential Impact	Replacement planting required	2	6 3	332653	6256987
457	Eucalyptus saligna	3	15	4	Good	Fair	Medium	Medium	Medium	600	7.2	2.7	Potential Impact	Replacement planting required	2	7 3	332804	6257186
458	Eucalyptus saligna	5	9	4	Fair	Fair	Medium	Medium	Medium	450	5.4	2.4	Potential Impact	Replacement planting required	2	7 3	332852	6257200
459	Eucalyptus saligna	5	12	3	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Potential Impact	Replacement planting required	2	7 3	332781	6257179
460	Eucalyptus saligna	6	12	3	Good	Fair	Medium	Medium	Medium	500	6.0	2.5	Potential Impact	Replacement planting required	2	7 3	332768	6257175
468	Eucalyptus saligna	5	8	3	Good	Fair	Medium	Medium	Medium	450	5.4	2.4	Trees to be Retained		2	7 3	332894	6257161
469	Syncarpia glomulifera	10	7	3	Good	Fair	Medium	High	High	450	5.4	2.4	Potential Impact	Replacement planting required	2	7 3	332878	6257153
470	Syncarpia glomulifera	7	8	3	Good	Fair	Medium	High	High	450	5.4	2.4	Direct Impact	Biodiversity Offset Scheme	2	7 3	332848	6257155
471	Syzygium paniculatum	7	6	3	Good	Fair	Medium	Medium	Low	300	3.6	2.0	Potential Impact	Replacement planting required	2	7 3	332794	6257141
472	Grevillea robusta	1	10	4	Good	Poor	Short	Low	Low	400	4.8	2.3	Potential Impact	Replacement planting required - Exempt species (Willoughby City Council)	2	7 3	332803	6257144
99588	Eucalyptus sp.	1	5	3	Good	Fair	Medium	Medium	Medium	200	2.4	1.7	Trees to be Retained		2	8 3	331705	6256613
99589	Eucalyptus sp.	1	4	3	Fair	Poor	Short	Low	Low	200	2.4	1.7	Trees to be Retained		2	8 3	331740	6256635
99590	Melaleuca quinquenervia	1	10	9	Good	Good	Medium	High	High	1200	14.4	3.6	Trees to be Retained		2	8 3	331757	6256552
99591	Jacaranda mimosifolia	1	8	8	Good	Fair	Medium	Medium	Medium	500	6.0	2.5	Trees to be Retained		2	8 3	331746	6256559

Botanical Name	Trees in Group	Height (m)	Spread (m)	Health	Structure	ULE	Tree Significance	Retention Value	DBH (mm)	TPZ (m)	SRZ (m	Impact	Offset/replacement	Area	Мар	Easting Northing
Melaleuca quinquenervia	1	8	5	Fair	Fair	Medium	Medium	Medium	900	10.8	3.2	Trees to be Retained		2	8	331738 6256565
Melaleuca quinquenervia	1	4	4	Fair	Fair	Medium	Low	Low	200	2.4	1.7	Trees to be Retained		2	8	331731 6256568
Melaleuca quinquenervia	1	8	5	Good	Fair	Medium	Medium	Medium	700	8.4	2.8	Trees to be Retained		2	8	331718 6256571
Casuarina cunninghamiana	1	10	6	Poor	Poor	Short	Low	Low	400	4.8	2.3	Trees to be Retained		2	8	331690 6256564
Melaleuca quinquenervia	1	8	6	Good	Good	Long	High	High	750	9.0	2.9	Trees to be Retained		2	8	331652 6256585
Lophostemon confertus	1	8	7	Good	Good	Long	High	High	650	7.8	2.8	Trees to be Retained		2	8	331612 6256579
Chamaecyparis sp.	1	9	8	Good	Fair	Medium	Medium	Medium	700	8.4	2.8	Trees to be Retained		2	8	331596 6256585
Melaleuca quinquenervia	1	5	4	Fair	Fair	Medium	Medium	Medium	550	6.6	2.6	Trees to be Retained		2	8	331592 6256598
Angophora costata	1	9	11	Good	Good	Long	High	High	700	8.4	2.8	Trees to be Retained		2	8	331575 6256582
Angophora costata	1	11	11	Good	Good	Long	Medium	Medium	500	6.0	2.5	Trees to be Retained		2	8	331581 6256594
Angophora costata	1	15	12	Fair	Good	Medium	Medium	Medium	600	7.2	2.7	Trees to be Retained		2	8	331569 6256594
	Melaleuca quinquenervia Melaleuca quinquenervia Melaleuca quinquenervia Casuarina cunninghamiana Melaleuca quinquenervia Lophostemon confertus Chamaecyparis sp. Melaleuca quinquenervia Angophora costata Angophora costata	Melaleuca quinquenervia 1 Melaleuca quinquenervia 1 Melaleuca quinquenervia 1 Casuarina cunninghamiana 1 Melaleuca quinquenervia 1 Lophostemon confertus 1 Chamaecyparis sp. 1 Melaleuca quinquenervia 1 Angophora costata 1 Angophora costata 1	Melaleuca quinquenervia 1 8 Melaleuca quinquenervia 1 4 Melaleuca quinquenervia 1 8 Casuarina cunninghamiana 1 10 Melaleuca quinquenervia 1 8 Lophostemon confertus 1 8 Chamaecyparis sp. 1 9 Melaleuca quinquenervia 1 5 Angophora costata 1 9 Angophora costata 1 11	Melaleuca quinquenervia 1 8 5 Melaleuca quinquenervia 1 4 4 Melaleuca quinquenervia 1 8 5 Casuarina cunninghamiana 1 10 6 Melaleuca quinquenervia 1 8 6 Lophostemon confertus 1 8 7 Chamaecyparis sp. 1 9 8 Melaleuca quinquenervia 1 5 4 Angophora costata 1 9 11 Angophora costata 1 11 11	Melaleuca quinquenervia 1 8 5 Fair Melaleuca quinquenervia 1 4 4 Fair Melaleuca quinquenervia 1 8 5 Good Casuarina cunninghamiana 1 10 6 Poor Melaleuca quinquenervia 1 8 6 Good Lophostemon confertus 1 8 7 Good Chamaecyparis sp. 1 9 8 Good Melaleuca quinquenervia 1 5 4 Fair Angophora costata 1 9 11 Good Angophora costata 1 11 11 Good	Metaleuca quinquenervia 1 8 5 Fair Fair Melaleuca quinquenervia 1 4 4 Fair Fair Metaleuca quinquenervia 1 8 5 Good Fair Casuarina cunninghamiana 1 10 6 Poor Poor Metaleuca quinquenervia 1 8 6 Good Good Lophostemon confertus 1 8 7 Good Good Chamaecyparis sp. 1 9 8 Good Fair Metaleuca quinquenervia 1 5 4 Fair Fair Angophora costata 1 11 11 Good Good	Metaleuca quinquenervia 1 8 5 Fair Fair Medium Metaleuca quinquenervia 1 4 4 Fair Fair Medium Metaleuca quinquenervia 1 8 5 Good Fair Medium Casuarina cunninghamiana 1 10 6 Poor Poor Short Metaleuca quinquenervia 1 8 6 Good Good Long Lophostemon confertus 1 8 7 Good Good Long Chamaecyparis sp. 1 9 8 Good Fair Medium Metaleuca quinquenervia 1 5 4 Fair Fair Medium Angophora costata 1 9 11 Good Good Long Angophora costata 1 11 11 Good Good Long	Metaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Metaleuca quinquenervia 1 4 4 Fair Fair Medium Low Metaleuca quinquenervia 1 8 5 Good Fair Medium Medium Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Melaleuca quinquenervia 1 8 6 Good Good Long High Lophostemon confertus 1 8 7 Good Good Long High Chamaecyparis sp. 1 9 8 Good Fair Medium Medium Metaleuca quinquenervia 1 5 4 Fair Fair Medium Medium Angophora costata 1 9 11 Good Good Long High Angophora costata 1 11 11 Good Good Long Medium	Metaleuca quinquenervia185FairFairMediumMediumMediumMetaleuca quinquenervia144FairFairMedium LowLowMetaleuca quinquenervia185GoodFairMedium MediumMediumCasuarina cunninghamiana1106PoorPoorShortLowLowMetaleuca quinquenervia186GoodGoodLongHighHighLophostemon confertus187GoodGoodLongHighHighChamaecyparis sp.198GoodFairMediumMediumMediumMetaleuca quinquenervia154FairFairMediumMediumMediumAngophora costata1911GoodGoodLongHighHighAngophora costata11111GoodGoodLongMediumMedium	Metaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 Melaleuca quinquenervia 1 8 6 Good Good Long High High 750 Lophostemon confertus 1 8 7 Good Good Long High High 650 Chamaecyparis sp. 1 9 8 Good Fair Medium Medium Medium 700 Melaleuca quinquenervia 1 5 4 Fair Fair Medium Medium Medium 550 Angophora costata 1 11 11 Good	Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium 900 10.8 Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 Melaleuca quinquenervia 1 8 6 Good Good Long High High 750 9.0 Lophostemon confertus 1 8 7 Good Good Long High High 650 7.8 Chamaecyparis sp. 1 9 8 Good Fair Medium Medium Medium 700 8.4 Melaleuca quinquenervia 1 5 4 Fair Fair Medium Medium Medium 550 <td>Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 10.8 3.2 Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 1.7 Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 2.8 Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 2.3 Melaleuca quinquenervia 1 8 6 Good Good Long High High 750 9.0 2.9 Lophostemon confertus 1 8 7 Good Good Long High High 650 7.8 2.8 Chamaecyparis sp. 1 9 8 Good Fair Medium Medium Medium 550 6.6 2.6 Angophora costata 1 9</td> <td>Melaleuca quinquenervia185FairFairMediumMediumMedium90010.83.2Trees to be RetainedMelaleuca quinquenervia144FairFairMediumLowLow2002.41.7Trees to be RetainedMelaleuca quinquenervia185GoodFairMediumMedium7008.42.8Trees to be RetainedCasuarina cunninghamiana1106PoorPoorShortLowLow4004.82.3Trees to be RetainedMelaleuca quinquenervia186GoodLongHigh7509.02.9Trees to be RetainedLophostemon confertus187GoodGoodLongHighHigh6507.82.8Trees to be RetainedChamaecyparis sp.198GoodFairMediumMediumMedium7008.42.8Trees to be RetainedMelaleuca quinquenervia154FairFairMediumMedium5506.62.6Trees to be RetainedAngophora costata1911GoodGoodLongHighHigh7008.42.8Trees to be RetainedAngophora costata11111GoodGoodLongMediumMedium5006.02.5Trees to be Retained</td> <td>Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 10.8 3.2 Trees to be Retained Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 1.7 Trees to be Retained Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 2.8 Trees to be Retained Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 2.3 Trees to be Retained Melaleuca quinquenervia 1 8 6 Good Good Lom High 750 9.0 2.9 Trees to be Retained Lophostemon confertus 1 8 7 Good Good Long High High 650 7.8 2.8 Trees to be Retained Chamaecyparis sp. 1 9 8 Good Goo</td> <td>Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 10.8 3.2 Trees to be Retained 2 Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 1.7 Trees to be Retained 2 Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 2.8 Trees to be Retained 2 Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 2.3 Trees to be Retained 2 Melaleuca quinquenervia 1 8 6 Good Good Long High High 650 7.8 2.8 Trees to be Retained 2 Lophostemor confertus 1 9 8 Good Fair Medium Medium Medium 700 8.4 2.8 Trees to be Retained 2</td> <td>Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 10.8 3.2 Trees to be Retained 2 8 Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 1.7 Trees to be Retained 2 8 Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 2.8 Trees to be Retained 2 8 Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 2.3 Trees to be Retained 2 8 Melaleuca quinquenervia 1 8 6 Good Good Log High Trees to be Retained 2 8 Lophostemon confertus 1 8 7 Good Good Long High High 650 7.8 2.8 Trees to be Retained 2</td>	Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 10.8 3.2 Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 1.7 Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 2.8 Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 2.3 Melaleuca quinquenervia 1 8 6 Good Good Long High High 750 9.0 2.9 Lophostemon confertus 1 8 7 Good Good Long High High 650 7.8 2.8 Chamaecyparis sp. 1 9 8 Good Fair Medium Medium Medium 550 6.6 2.6 Angophora costata 1 9	Melaleuca quinquenervia185FairFairMediumMediumMedium90010.83.2Trees to be RetainedMelaleuca quinquenervia144FairFairMediumLowLow2002.41.7Trees to be RetainedMelaleuca quinquenervia185GoodFairMediumMedium7008.42.8Trees to be RetainedCasuarina cunninghamiana1106PoorPoorShortLowLow4004.82.3Trees to be RetainedMelaleuca quinquenervia186GoodLongHigh7509.02.9Trees to be RetainedLophostemon confertus187GoodGoodLongHighHigh6507.82.8Trees to be RetainedChamaecyparis sp.198GoodFairMediumMediumMedium7008.42.8Trees to be RetainedMelaleuca quinquenervia154FairFairMediumMedium5506.62.6Trees to be RetainedAngophora costata1911GoodGoodLongHighHigh7008.42.8Trees to be RetainedAngophora costata11111GoodGoodLongMediumMedium5006.02.5Trees to be Retained	Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 10.8 3.2 Trees to be Retained Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 1.7 Trees to be Retained Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 2.8 Trees to be Retained Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 2.3 Trees to be Retained Melaleuca quinquenervia 1 8 6 Good Good Lom High 750 9.0 2.9 Trees to be Retained Lophostemon confertus 1 8 7 Good Good Long High High 650 7.8 2.8 Trees to be Retained Chamaecyparis sp. 1 9 8 Good Goo	Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 10.8 3.2 Trees to be Retained 2 Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 1.7 Trees to be Retained 2 Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 2.8 Trees to be Retained 2 Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 2.3 Trees to be Retained 2 Melaleuca quinquenervia 1 8 6 Good Good Long High High 650 7.8 2.8 Trees to be Retained 2 Lophostemor confertus 1 9 8 Good Fair Medium Medium Medium 700 8.4 2.8 Trees to be Retained 2	Melaleuca quinquenervia 1 8 5 Fair Fair Medium Medium Medium 900 10.8 3.2 Trees to be Retained 2 8 Melaleuca quinquenervia 1 4 4 Fair Fair Medium Low Low 200 2.4 1.7 Trees to be Retained 2 8 Melaleuca quinquenervia 1 8 5 Good Fair Medium Medium Medium 700 8.4 2.8 Trees to be Retained 2 8 Casuarina cunninghamiana 1 10 6 Poor Poor Short Low Low 400 4.8 2.3 Trees to be Retained 2 8 Melaleuca quinquenervia 1 8 6 Good Good Log High Trees to be Retained 2 8 Lophostemon confertus 1 8 7 Good Good Long High High 650 7.8 2.8 Trees to be Retained 2