14 Marine Ecology Impact Assessment

Assessment of potential impacts to marine ecological values from Project construction and operational phase activities was undertaken in two stages. Stage 1 involved a preliminary risk analysis to identify sensitive ecological receptors that could be impacted by each project activity, the pathways by which potential impact could occur and the type of impact (pulse, press or catastrophic).

Potential impacts were considered in further detail in Stage 2 based on information provided in the Project 30% design report (AECOM, 2019a) that describes the ocean outfall pipeline alignment, diffuser design and anticipated construction methods; and findings from the dispersion modelling report (AECOM, 2019c) that predicts the behaviour and dilution of the treated wastewater plume in the near-field and far field and the predicted water quality impacts (Elgin, 2021).

14.1 Approach

Assessing potential impacts of the Project construction and operational phases to marine ecological receptors and values was undertaken in a qualitative risk analysis which considered the Project design information and data gathered during the preparation of this report, with the following key elements:

- 1. Upgrade of STP processes to improve wastewater quality
- 2. Construction and operation of ocean outfall for disposal of treated wastewater
- 3. Decommission of beach-face outfall
- 4. Decommissioning dunal ex-filtration ponds
- 5. Ongoing beneficial re-use of treated wastewater.

Potential sensitive receptors:

- Threatened and protected species marine mammals and fish listed under FM Act, BC Act and or EPBC Act
- Marine habitats and communities of Merimbula Bay that includes -
 - Soft sediment habitat (Type 3 fish habitat)
 - o Soft sediment infauna and epifauna communities
 - Sub-tidal rocky reef communities (Type 2 fish habitat)
 - Fish assemblage
 - Intertidal reef communities
 - Phytoplankton and drift algae
- Estuarine habitats and communities Merimbula Lake and Pambula River estuary.

Environmental Values to be protected:

- Estuarine and marine waters aquaculture
- Recreational and commercial fishing
- Abalone fishery.

The risk analysis was undertaken using a matrix of likelihood and consequence definitions developed for assessing risks associated with identified hazards / impacts to marine ecological receptors and environmental values. The likelihood and consequence definitions and risk ratings tables are included as **Tables 14-1, 14-2**, and **14-3** below.

Table 14-1	Marine ecology impact likelihood definitions
------------	--

LIKELIHOOD LEVEL	Rare 1	Unlikely 2	Possible 3	Likely 4	Almost Certain 5	
Likelihood of impacts	Never reported for this situation, but still plausible within the timeframe (< 5%)	Uncommon, but has been known to occur elsewhere. Expected to occur here only in specific circumstances within the timeframe (5-30%)	Some clear evidence exists to suggest this is possible in this situation within the timeframe (30-50%)	Expected to occur in this situation within the timeframe (50-90%)	A very large certainty that this will occur in this situation within the timeframe (>90%)	

Table 14-2 Qualitative measures of consequence applicable to the spatial scale of the Project area for marine ecology values

CONSEQUENCE	Insignificant 1	Minor 2	Moderate 3	Major 4	Catastrophic 5
Environmental Value	No measureable negative impacts on habitats and/or biotic assemblages are or will be evident against natural variations	Barely measurable negative impacts on habitats and/or biotic assemblages are or will be evident compared to total habitat area or abundance of biota against natural variations.	Measurable and on-going negative impacts on habitats and/or biotic assemblages are or will be evident in one or more locations. Nevertheless, both the level and the percentage of habitats and/or biotic assemblages affected have not or will not influence their overall recovery capacity, and a change in the overall trophic/community structure isn't and will not be evident.	Substantial measureable and on- going negative impacts on habitats and/or biotic assemblages are or will be evident in in one or more locations, and the proportion of habitats and/or biotic assemblages affected will influence the recovery capacity of the habitats and/or biotic assemblages, with some clear shifts in the overall trophic/community structure and function	The level of habitat and/or biotic assemblages negatively affected endangers their long- term survival, and will result in extreme changes to the region's trophic/community structure as well as the function of the remaining habitat and/or biotic assemblages.
Abalone	No measureable negative effect on abalone or abalone habitat will be evident against natural variations	Barely measureable negative effect on abalone or abalone habitat will be evident against natural variations	Measureable negative effect to abalone (i.e. reduced abundance) or abalone habitat localised to some Merimbula Bay reefs. Level of effect may be short-term and does not influence overall capacity of species recovery.	Measureable and on-going negative effect to abalone (i.e. reduced abundance) and abalone habitat on reefs within Merimbula Bay. Level of effect will influence overall capacity of species recovery. Commercial fishery of Merimbula Bay reefs impaired.	Abalone and abalone habitat negatively affected (i.e. reduced abundance) within Merimbula Bay, with limited prospect of species recovery. Commercial fishery of Merimbula Bay reefs no longer viable.

CONSEQUENCE	Insignificant 1	Minor 2	Moderate 3	Major 4	Catastrophic 5
Sub-tidal Rocky Reef Assemblage (Invertebrates and Algae)	No measureable effect on subtidal assemblage will be evident against natural variations	Barely measureable negative effect on subtidal assemblages against natural variations	Measureable negative effect (i.e. reduced species diversity and abundance) on subtidal assemblage localised to reefs closest to mixing zone	Measureable and on-going negative effect (i.e. reduced species diversity and abundance) to subtidal assemblages of reefs closest to mixing zone, with potential effect extending futher to one or more other rocky reef locations	Subtidal reef assemblages of Merimbula Bay negatively affected and changes to the broader trophic/community structure of those areas likely.
Intertidal Shore Assemblage	No measureable effect on intertidal assemblage will be evident against natural variations	Barely measureable negative effect on intertidal assemblages against natural variations	Measureable negative effect (i.e. reduced species diversity and abundance) on intertidal assemblage at one or more locations within to Merimbula Bay	Measureable and on-going negative effect (i.e. reduced species diversity and abundance) to intertidal assemblages within Merimbula Bay with potential effect extending to one or more locations beyond Merimbula Bay	Intertidal assemblages of Merimbula Bay negatively affected and changes to the broader trophic/community structure of those areas likely.
Soft Sediment Infauna	No measureable effect on infauna assemblage will be evident against natural variations	Barely measureable negative effect on infauna assemblage (i.e. reduced species diversity and abundance) within the mixing zone would be evident compared to broader Merimbula Bay against natural variations	Measureable negative effect (i.e. reduced species diversity and abundance) on infauna assemblage localised to the mixing zone, and evidence that effect potentially extends outside the mixing zone. A change in the overall trophic/community structure within or outside the mixing zone would not be evident	Measureable and on-going negative effect (i.e. reduced species diversity and abundance) to infauna assemblage outside the mixing zone, including negative effect(s) extending to one or more locations in broader Merimbula Bay. Change in local infauna assemblage causing broader change in trophic/community structure at those locations possible.	Infauna assemblage negatively affected beyond the mixing zone, and changes to the trophic/community structure of those areas likely.
Phytoplankton	No measureable negative or positive effect on phytoplankton assemblage will be evident against natural variations	Barely measureable negative or positive effect on phytoplankton assemblage within the mixing zone would be evident compared to broader Merimbula Bay against natural variations	Measureable negative or positive effect (i.e. reduced or increased species diversity and abundance) on phytoplankton assemblage localised to the mixing zone, and evidence that effect potentially extends outside the mixing zone. A change in the overall trophic/community structure within or outside the mixing zone would not be evident	Measureable and on-going negative or positive effect (i.e. reduced or increased species diversity and abundance) outside the mixing zone, including negative or positive effect(s) extending to one or more locations in broader Merimbula Bay. Change in local phytoplankton assemblage causing broader change in trophic/community structure at those locations possible	Phytoplankton assemblage negatively or positivley affected beyond the mixing zone, and changes to the trophic/community structure of those areas likely

CONSEQUENCE	Insignificant 1	Minor 2	Moderate 3	Major 4	Catastrophic 5
Fish Assemblage	No measureable negative effect on fish assemblage will be evident against natural variations	Barely measurable negative effect on fish assemblage (i.e. reduced species diversity and abundance) within the mixing zone would be evident compared to broader sand habitat of Merimbula Bay against natural variations	Measureable negative effect (i.e. reduced species diversity and abundance) on fish assemblage localised to the mixing zone, and evidence that effect potentially extends outside the mixing zone to broader sand habitat areas of Merimbula Bay. A change in the overall trophic/community structure within or outside the mixing zone would not be evident	Measureable and on-going negative effect (i.e. reduced species diversity and abundance) outside the mixing zone, including negative effect(s) extending to one or more locations. Change in fish assemblage causing broader change in trophic/community structure at those locations possible	Fish assemblage negatively affected beyond the mixing zone, such that some species no longer locally present, and changes to the trophic/community structure of those areas likely
Threatened and protected marine species (<i>FM Act,</i> <i>BC Act, EPBC Act</i>)	No measureable negative impacts on threatened or protected species are or will be evident against natural variations	Barely measurable negative impacts on threatened or protected species are or will be evident against natural variation. Nevertheless, there are either no substantial negative impacts or only extremely few mortalities within 5-10 years, and there is not and will not be a measurable effect on local population status of protected species or recovery of threatened species	Many individuals of a threatened or protected species are or will be measurably negatively affected. Nevertheless, no on-going impact on local dynamics or overall number of individuals is or will be evident, and the impact has not or will not significantly affect population status of protected species or recovery of already threatened species	Substantial measurable and on- going negative impacts that are or will affect the number of individuals of protected species and recovery of already threatened species	The ongoing level of mortality has or will generate significant additional declines to already threatened or protected species leading to potential local extinction in NSW

Table 14-3Risk ratings matrix

				Consequence		
		Insignificant 1	Minor 2	Moderate 3	Major 4	Catastrophic 5
	Almost Certain 5	Low 5	Medium 10	High 15	High 20	High 25
p	Likely 4	Minimal 4	Low 8	Medium 12	High 16	High 20
Likelihood	Possible 3	Minimal 3	Low 6	Low 9	Medium 12	High 15
	Unlikely 2	Minimal 2	Minimal 4	Low 6	Low 8	Medium 10
	Rare 1	Minimal 1	Minimal 2	Minimal 3	Minimal 4	Low 5

LEGEND:

High Risk	Unacceptable level of risk. Measures to reduce risk to a lower level required.
Medium Risk	Risk may be considered acceptable. Routine and cost-effective measures required to reduce and/or manage risk.
Low Risk	Tolerable level of risk that can be managed by routine procedures, or, no further measures to manage the risk are required.
Minimal Risk	Acceptable level of risk with no further mitigation measures required.

14.2 Potential Project Impacts to Marine Ecology

14.2.1 Construction phase impacts

Construction phase activities include establishing the proposed ocean outfall pipeline in two sections:

- Section one STP to a location beyond surf zone: underground trenchless drilling method.
- Section two Location beyond surf zone to offshore pipeline termination point: laying of pipeline on seabed floor and covering with rock or concrete mattresses.

Construction of pipeline section one is not expected to cause impacts to marine ecological values and has not been assessed. Construction of pipeline section two would involve laying a 450 mm diameter pipeline directly over the seabed and anchoring with either a cover of concrete mattress and/ or rock armour.

Potential impacts to marine ecological receptors and values from the proposed construction activities associated with establishing section two of the pipeline include:

- Introduction or translocation of an invasive marine pest (IMP) via construction vessels and equipment
- Disturbance and loss of Type 3 soft sediment habitat establishing the pipeline and diffuser infrastructure
- Noise impact from construction activities, vessels and equipment
- Vessel or cable strike
- Accidental spill from construction vessels and equipment causing water pollution
- Disturbance of sediments resulting in a turbidity plume

• Reduced opportunities for future marine waters aquaculture

14.2.2 Operational phase impacts

Potential impact to marine ecological receptors and values from the Project operational phase relate primarily to how the discharge of treated wastewater would impact the water quality of Merimbula Bay and the scale of that impact. Assessment of operational phase impacts was based on key findings from the *Water Quality Technical Report* (Elgin, 2021) that identified the following water quality impacts:

- Discharge of nutrients and toxicants above MWQOs to the mixing zone that includes oxides of nitrogen (NOx), ammonia, total phosphorus, orthophosphate, faecal coliforms, enterococci, aluminium, arsenic, copper, iron, lead, selenium and zinc.
- Reduced salinity in the mixing zone due to freshwater discharge that can result in mortality or reduced fitness of stenohaline species.
- Discharge of suspended sediment load, organic particulate material, nutrients and toxicants settling to seabed zone around the diffuser and within the mixing zone.

These impacts were also considered in the context of proposed upgrades to STP treatment processes relevant to the disposal of treated wastewater at the ocean outfall. Upgrades include PAC dosing for enhanced phosphorus removal and UV treatment for improved removal of virus, bacteria and pathogens. Other potential upgrade option includes tertiary filtration if required, that would provide improved removal of aluminium and additional removal of protozoa, viruses, bacteria, TSS and BOD. However, this is noted as a project uncertainty that may not be included. Therefore, the impact assessment is based on no tertiary filtration. It is understood that BVSC also has a long-term strategy to upgrade the reticulated water system that should result in reduction of copper and zinc concentrations in the wastewater stream.

In assessing risks from operational phase impacts, the following water quality and dispersion modelling assumptions were adopted:

- Under most conditions and the majority of time (estimated at 99%), a mixing zone of 25 m is required to
 achieve necessary dilution to meet MWQOs. Ecological receptors within this mixing zone area is limited
 to soft sediment habitat and its epifauna and infauna communities. Fish and cetaceans would transit
 through this mixing zone on an intermittent basis. Potential impacts associated with treated wastewater
 discharge on marine communities are most likely to be detected within the predicted mixing zone of 25 m.
 Detection of impacts beyond this zone becomes less likely due to the high levels of dilution achieved over
 the relatively short distance.
- There would be minor instances where treated wastewater may discharge at higher concentrations, such as during wet weather flows or at licence discharge limits that may also coincide with weak ocean current conditions. Under this modelled worse-case scenario, the mixing zone required to achieve all MWQOs is predicted to occur within 200 m from the diffuser location. Based on weak currents being in the lower 10th percentile and higher concentrations at upper 90th percentile, these combined conditions are predicted a minority, or 1%, of the time. Ecological receptors in this larger mixing zone is also limited to soft sediment habitat and its epifauna and infauna communities.
- The nearest receptors of subtidal and intertidal reef communities, Merimbula Offshore Artificial Reef (OAR), estuarine systems of Merimbula Lake and Pambula River estuary have the following distances from the proposed diffuser location:
 - \circ Hunter Reef ~1400 m to the south-east.
 - Rocky reef shorelines of Haycock Point ~2,000 m to the south south-west.
 - \circ Rocky reef shorelines of Long Point ~2,300 m to the north.
 - Merimbula Offshore Artificial Reef (OAR) ~1,000 m to the north-east;

 Estuary entrances to Merimbula Lake and Pambula River ~2,700 m to 3,000 m to the southwest, west and northwest.

The above receptors are located beyond the modelled mixing zones, both for discharge under normal conditions expected for the majority of time (25 m), and at a modelled worse-case scenario expected a minority of time (200 m).

 Discharge of treated wastewater to Merimbula Bay has occurred since 1971, including from the existing beach-face outfall since 1974. The replacement of the beach face outfall to ocean outfall results in a change of distance from wastewater discharge point to the above receptors. For example, the distance to receptors of Merimbula Lake and Pambula River estuary increases substantially with the ocean outfall compared to the existing beach face outfall. Conversely, ecological receptors of Hunter Reef, Haycock Point and Long Point and the OAR are closer to the proposed ocean outfall than the beach-face outfall.

14.3 Risk Analysis and Key Issues

The outcomes of the risk analysis are summarised in **Table 14-4** with detailed comments and rationale underlying the risk evaluation provided in **Table 14-5**.

- Risk analysis of potential project impacts found that there would be no high risks to marine ecological receptors or values.
- For construction phase activities, the majority of potential impacts can be effectively managed at low risk levels with the implementation of routine control measures. Exceptions include the physical disturbance and loss of Type 3 soft sediment habitat and impact to the soft sediment infauna and epifauna communities during establishment of the ocean outfall pipeline and diffuser infrastructure, and the potential introduction of a marine pest, both considered a medium risk.
- For operational phase activities, predicted water quality impacts would typically be confined to a 25 m near-field mixing zone most of the time, extending to 200 m under worse-case conditions that may occur a minor proportion of the time. Marine ecological receptors within the mixing zone is limited to Type 3 minimally sensitive soft sediment habitat and the above water column. Potential changes to the soft sediment infauna community from the discharge of treated wastewater to the mixing zone is considered a medium risk while potential changes to the phytoplankton community is considered a minimal risk. The risk to other ecological receptors and values associated with Type 2 rocky reef habitats within Merimbula Bay were considered minimal to low based on their distance to the mixing zone.
- Additionally, a number of impacts were considered not applicable (NA) to one or more ecological receptors or values, and these were not assessed where relevant (**Table 14-4**).

The risk analysis was used to identify key issues associated with the Project. Key issues were determined by consideration of the level of risk, sensitivity of the ecological value (i.e. threatened species, habitat and community type) to threat/s, and scale of the potential impact relative to the overall extent of the ecological value within the broader Merimbula Bay environment.

Key issues identified from the risk analysis include:

- Potential introduction or translocation of marine pest during construction works
- Noise impacts from construction activities, vessels and equipment to marine mammals
- Vessel or cable strike to marine mammals
- Accidental spill of fuel, oil or other harmful substances from construction vessels
- Disturbance and loss of Type 3 soft sediment habitat
- Discharge of treated wastewater at the ocean outfall to Type 3 soft sediment habitat

A discussion of the key issues is provided in **Section 14.4** below

Table 14-4. Summary of project activities, potential hazards and risk level to marine ecological receptors and values (post mitigation)

						MARINE E	COLOGICAL	RECEPTORS an	d VALUES					
Project Activity	Potential Hazard / Threat	Threatened and Migratory Marine Mammals	Threatened and Protected Fish	Type 3 soft sediment marine habitat	Type 2 subtidal rocky reef habitat and communities	Abalone and abalone fishery	Fish assemblage	Soft sediment infauna communities	Intertidal reef communities	Phytoplankton	Drift algae	Estuarine communities	Aquaculture	Recreational and Commercial fishing
	Noise impact from construction vessels and equipment	Low *	Low *	NA	NA	NA	Minimal	NA	NA	NA	NA	NA	NA	NA
	Vessel or cable strike	Low *	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mobilisation of construction vessels	Accidental spill of fuel, oil or other harmful substances from construction vessels	Low *	Low *	Low *	Low *	Low *	Low *	Low *	NA	NA	NA	NA	NA	NA
Establishing Section 2 pipeline	Disturbance and loss of Type 3 soft sediment habitat	Minimal	NA	Medium	NA	NA	Low	Medium	NA	NA	NA	NA	NA	NA
covering with rock or concrete mattress	Reduced opportunities for future marine waters aquaculture	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Low	NA
	Introduction or translocation of marine pest to local waters	NA	NA *	Low*	Low*	Low*	Low*	Low*	NA	NA	NA	NA	NA	Low*
	Disturbance of sediments resulting in a turbidity plume	NA	NA	NA	Minimal	Minimal	NA	NA	NA	NA	NA	NA	NA	NA
	Discharge or suspended sediment, particuate organic matter (POM), and toxic contaminants such as metals that exceed MWQOs within mixing zone with potential to bioaccumulate in biota greater than natural background lower	Low	Low	Medium *	Minimal	Minimal	Low	Medium *	Minimal	NA	NA	Minimal	NA	Low
Discharge of treated effluent at ocean outfall	Discharge of effluent resulting in marine waters with reduced salinity within the mixing zone**	Low	Minimal	Medium *	Minimal	Minimal	Minimal	Medium *	Minimal	NA	NA	Minimal	NA	Minimal
NOTE	Discharge of nutrients in treated effluent to mixing zone	Low	Low	Medium *	Minimal	Minimal	Low	Medium *	Minimal	Minimal	Minimal	Minimal	Low	Low

NOTE:

* = Key project issue specific to marine ecological receptor or value

** = The mixing zone is defined as a radius of 25 m from the diffuser 99% of the time and a 200 m radius 1% of the time

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
POTENTIAL CONSTRU	CTION PHASE IMPACTS TO TI	HREATENED MARINE SPECIES						
Mobilisation of construction vessels Establishing Section 2 pipeline covering with rock or concrete mattress	Noise impact from construction vessels and equipment	Potential mortality, impairment or behavioural impacts to threatened marine mammals (cetaceans and pinnipeds)	Possible 3	Moderate 3	Low 9	Noise disturbance will be limited to continuous, steady state, vessel noise that is not expected to be outside the range of ambient noise already occurring in Merimbula Bay from recreational, charter and commercial vessels. Based on modelling potential noise disturbance, the permanent threshold shift (PTS) exclusion zone for marine mammal is present within this zone). The temporary threshold shift (TTS) exclusion zone for marine mammals is 2.3 km (<i>i.e.</i> construction activity shutdown in event a marine would be short-term, localised and marine mammals within the vicinity of construction activities would avoid or move away from the area as required. The risk of noise levels from proposed construction methods causing permanent or temporary impairment to a threatened marine mammal is considered low.	Recommended control measures to mitigate risk of noise impacts to marine mammals during construction phase based on pilling guidelines (SA Govt 2012) and includes: - Contruction phase works to be undertaken outside of whale migration periods - Adopt recommended saftey zones of 170 m shut- down zone, and 2.3 km watch zone. Construction activities must be stopped as soon as is practical if a cetacean enters or appears within the shutdown zone. - Vessels to have a trained marine mammal observer (MMO) onboard to record observations of when a cetacean or pinniped enters the watch zone - Prior to commencing activities, suggest watch zone be clear of marine mammals for period of at least 10 minutes	Low 6
	Vessel or cable strike	Injury or mortality to marine mammals caused by vessel strike	Possible 3	Moderate 3	Low 9	Construction works would require vessels and materials to mobilise from Twofold Bay to Merimbula Bay. Construction activities broadly include towing the pipeline to site, anchoring vessels, laying pipeline into position, and anchoring pipeline with protective concrete mattress or rock armour. The risk of vessel strike during mobilisation to or works at the study area is most likely to involve slower moving marine mammals such as whales, with seals or dolphins considered at lower risk of vessel strike as they can easily out manoeuvre approaching vessels. Vessel strike has the potential to cause injury and or death depending on vessel size, travel speed and species involved. Cable strike is related to anchor cables that stretch and slacken in the water column. Cables or anchor lines may strike marine fauna, causing slashing injury. Risk of cable strike is considered higher for inquisitive young whales, dolphins and seals, compared to older individuals and potential risk of cable strike increases at night due to reduced visibility.	Control measures to be adopted to reduce risk of vessel or cable strike include: - Contruction phase works to be undertaken outside of whale migration periods - Vessels to adopt safe travel speeds no greater than 10 knots when mobilising to site - Slower speeds adopted in event marine mammal is observed - Vessels maintain 300 m exclusion zone with all whales en-route to and from construction site - trained crew, active management such as daily observations and review of of reported marine mammal activity	Low 6
	Accidental spill of fuel, oil or other harmful substances from construction vessels	Impacts to water quality of Merimbula Bay with harmful substances potentially impacting threatened species	Possible 3	Major 4	Medium 12	Potential water pollution resulting from vessel accidental spill would typically involve light hydrocarbon fuels as opposed to heavy HC fraction with impact most likley confined to surface waters. Risk to threatened fish assessed as minimal with risk to marine mammals initially assessed as medium with risk redcued to low with control measures.	Implement environmental management measures to reduce risk of accidental spills and outlines spill response plan for addressing (i.e. containment and clean-up) a spill event should one occur.	Low 6
	Disturbance and loss of Type 3 soft sediment habitat	Loss of habitat that is critical to the survival of threatened species	Rare 1	Insignificant 1	Minimal 1	No threatened marine species or critical habitat will be affected by the disturbance and loss of Type 3 soft sediment habitat	none	Minimal 1
POTENTIAL OPERATO	NAL PHASE IMPACTS TO THR	EATENED MARINE SPECIES						
Discharge of treated wasterwater at ocean outfall	Discharge of suspended sediments, organic particulate material, nutrients and toxic contaminants such as metals to mixing zone impacting threatened species	Potential adverse impact to threatened or protected species via direct exposure to dilute wasterwater in the mixing zone	Possible 3	Minor 2	Low 6	Threatened marine species including cetaceans and pinnipeds may transit the mixing zone and be exposed to highly dilute treated wasterwater. This would occur on an infrequent basis and for short time periods. Exposure levels are not likley to have an adverse impact to any threatened marine species. Migratory marine mammals would be similarly exposed to highly dilute wasterwater discharging from other ocean outfalls along the NSW coastline. The threat likelihood is possible though the consequence of the exposure considered minor. Overall the threat risk is considered low.	none	Low 6

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
POTENTIAL CONSTRU	CTION PHASE IMPACTS TO T	YPE 3 SOFT SEDIMENT MARINE	HABITATS					
3 Establishing Section 2 pipeline covering with rock or concrete mattress Ai	Disturbance and loss of Type 3 soft sediment habitat	Loss of sand habitat that may cause negative effect on the faunal assemblages that rely on sand habitat within Merimbula Bay in terms of their diversity and abundance.	Almost certain 5	Minor 2	Medium 10	Loss of sand habitat is an unavoidable impact. Section 2 pipeline construction would involve laying the proposed 450 mm diameter pipeline directly on the seafloor and anchoring with a protective cover of concrete mattress and or rock armour along its 2.7 km length. The construction footprint over the seabed is conservatively estimated at 1.6 m wide by 2,700 m long, or 4,320 m ² . This would result in the direct disturbance and loss of 0.00432 km ² Type 3 unconsolidated sand habitat, considered minimally sensitive with regard to fish habitat. Based on estimate of 12 km ² of sand habitat within the study area. The scale of the sand habitat lost to the Project is minor and is unlikely to have a long-term negative effect on the faunal assemblages that rely on sand habitat within the stucture may have an overall positive effect on species diversity and abundance creating habitat opportunities for species that require hard substrata.	No control measure is available to mitigate the loss of sand habitat. Construction of the pipeline and diffuser infrastructure would result in loss of Type 3 fish habitat but a gain of Type 2 fish habitat, the latter recognised as being more valuable in terms of fish habitat. Construction of the pipeline is unlikely to have a long- term negative effect on faunal assemblages of sand habitat. The pipeline infrastructure would constitute a change from sandy seabed habitat to hard substrate habitat effectively resulting in the creation of an artificial reef that may result in a net positive effect on species diversity and abundance in the central region of Merimbula Bay. This may also result in improved recreational fishing opportunities within the	Medium 10
	Accidental spill of fuel, oil or other harmful substances from construction vessels	Impacts to water quality of Merimbula Bay with harmful substances potentially sinking to sandy seabed	Possible 3	Major 4	Medium 12	Potential water pollution resulting from vessel accidental spill would typically involve light hydrocarbon fuels as opposed to heavy HC fraction with impact most likley confined to surface waters. Risk to benthic habitat from accidential spill is assessed as low with control measures.	Implement environmental management measures to reduce risk of accidental spills and outlines spill response plan for addressing (i.e. containment and clean-up) a spill event should one occur.	Low 6
	Introduction or translocation of marine pest to local waters	Potential for colonisation of soft-sediment habitats at the construction site by IMPs that have preference for soft sediment habitat such as European fan worm and New Zealand Screwshell	Possible 3	Major 4	Medium 12	Three IMPs reported from the Port of Eden, 30 km to the south (Pollard et al. 2003) that are not yet reported from Merimbula Bay include the dinoflagellate Alexandrium catenella, European fan worm (Sabella spallanzanii) and the New Zealand Screwshell (Maoricolpus roseus). The latter is known to occur on the continental shelf off Merimbula but is not known to be present within the embayment. Of these IMPs, the European fan worm with its ability to establish in high densities and potentially alter the community composition of soft sediment habitats could pose a risk of introduction.	Implement environmental management measures to reduce risk of IMP in accordance with National Marine Pest Plan 2018-2023.	Low 8
POTENTIAL CONSTRU	CTION PHASE IMPACTS TO S	UBTIDAL REEF INVERTEBRATE	AND ALGAL	COMMUNITIES				
Mobilisation of construction vessels	Introduction or Translocation of marine pest to local waters	IMPs such as Caulerpa taxifolia, northem Pacific seastar and Undaria pinnatifida have the potential to alter the community structure of nearby rocky reefs such that community commosition may be adversely	Possible 3	Major 4		Neither Caulerpa taxifolia, northern Pacific seastar or Undaria pinnatifida are yet known from Twofold Bay. Potential threat exists for vessels mobilising to the Project site from other areas to carry IMPs new to the region.	Implement environmental management measures to reduce risk of IMP in accordance with National Marine Pest Plan 2018-2023.	Low 8
	Accidental spill of fuel, oil or other harmful substances from construction vessels	Impacts to water quality of Merimbula Bay with harmful substances potentially sinking and smothering rocky reef habitat and communities.	Possible 3	Major 4	Medium 12	Potential water pollution resulting from vessel accidental spill would typically involve light hydrocarbon fuels as opposed to heavy HC fraction with impact most likley confined to surface waters and small in scale. Risk to subtidal rocky reef communities is considered low with control measures.	Implement environmental management measures to reduce risk of accidental spills and outlines spill response plan for addressing (i.e. containment and clean-up) a spill event should one occur.	Low 6
Establishing Section 2 pipeline covering with rock or concrete	Disturbance of sediments resulting in a turbidity plume	Short-term, localised increase in turbidity, potential for smothering of subtidal communities of rocky reef habitat	Unlikely 2	Minor 2	Minimal 4	Construction method may cause localised turbidity plume though of small scale and short-term event. Due to long distance from the construction site to subtidal reef areas, it is considered highly unlikely that a localised turbidity plume at the construction footprint would affect reef areas and deposit enough sediment so as to permanently alter the reef and cause an adverse effect on those communities.	none	Minimal 4
mattress	Accidental spill of fuel, oil or other harmful substances from construction vessels	As above	Unlikely 2	Moderate 3	Low 6	As above	As above - Implement spill response plan	Low 6

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
POTENTIAL OPERATIC	NAL PHASE IMPACTS TO SU	BTIDAL SUBTIDAL REEF INVER	TEBRATE AN	ID ALGAL COM	MUNITIES			
Discharge of treated wastewater at ocean outfall	Discharge of suspended sediments, organic particulate material, nutrients and toxic contaminants such as metals to mixing zone	Potential change to subtidal rocky reef community structure, including shift in macroalgal community composition and abundance of sessile filter feeders (i.e. altered food resources and habitat structure)	Unlikely 2	Minor 2	Minimal 4	Dispersion modelling shows that the disposal of treated wasterwater containing elevated levels of nutrients and metals to the North-Short diffuser at 30 m depth would meet MWQQs within 5 - 25 m of the diffuser under normal conditions and 200 m under worse-case flow conditions. The nearest subtidal rocky reef community is 1,400 m to south-east at Hunter Reef with rocky reef communities of Long Point and Haycock Point greater than 2,000 m outside the modelled mixing zone. Based on these distances, it is considered highly unlikely that the discharge of treated wasterwater at the North-Short diffuser would have any detectable adverse effect on rocky-reef assemblages.	WQ monitoring undertaken as part of operational compliance.	Minimal 4
POTENTIAL CONSTRU	CTION PHASE IMPACTS TO A	BALONE						
of Mobilisation of construction vessels A of	Introduction or Translocation of marine pest to local waters	IMPs such as Caulerpa taxifolia, northem Pacific seastar have the potential to alter the community structure of nearby rocky reefs such that abalone may be adversely affected	Possible 3	Major 4	Medium 12	Neither <i>Caulerpa taxifolia</i> or northern Pacific seastar are yet known from Twofold Bay. Potential threat exists for vessels mobilising to the Project site from other areas to carry IMPs new to the region.	Implement environmental management measures to reduce risk of IMP in accordance with National Marine Pest Plan 2018-2023.	Low 8
	Accidental spill of fuel, oil or other harmful substances from construction vessels	Impacts to water quality of Merimbula Bay with harmful substances potentially sinking to crevices and abalone habitat on rocky reefs	Possible 3	Major 4	Medium 12	Construction area is distant from reef areas and unlikely to affect abalone habitat. Fuel spills is likely to be of light hydrocarbon fraction as opposed to heavy HC fraction and small in scale. Risk to subtidal rocky reef communities and abalone is considered low with control measures.	Implement environmental management measures to reduce risk of accidental spills and outlines spill response plan for addressing (i.e. containment and clean-up) a spill event should one occur.	Low 6
Establishing Section 2 pipeline covering with rock or concrete	Disturbance of sediments resulting in a turbidity plume	Short-term, localised increase in turbidity, potential to smothering of rocky reef habitats of abalone	Unlikely 2	Minor 2	Minimal 4	Construction method may cause localised turbidity plume though of small scale and short-term event. Due to long distances from construction site to subtidal reef areas, considered highly unlikely to deposit enough sediment so as to permanently alter the reef and cause adverse effect	none	Minimal 4
mattress	Accidental spill of fuel, oil or other harmful substances from construction vessels	As above	Possible 3	Moderate 3	Low 9	As above	As above - Implement spill response plan	Low 6
POTENTIAL OPERATIC	NAL PHASE THREATS TO AB	ALONE						
Discharge of treated wasterwater at ocean outfall	Discharge of suspended sediments, organic particulate material and toxic contaminants settling onto rocky reefs around adjacent headlands	Changes to community structure of rocky reefs from increased sedimentation such that abalone populations decline	Unlikely 2	Minor 2	Minimal 4	Upgrade project is expected to result in discharge of a higher quality wasterwater that meets marine water quality objectives including low levels of suspended solids at the mixing zone boundary. Distance between the mixing zone and the subtidal rocky reef habitat where abalone populations exist (Long Point and Haycock Point) is greater than 2,000 m, and considerable dilution of suspended sediment is likely to occur over this distance. Should there be settling of fine silt onto the subtidal rocky reefs, it would be minimal and temporary, with the high natural variability in strength of wave action likely re-suspend and remove fine sediments during swells larger than that at the time of deposition. For these reasons, increases in turbidity and sedimentation from construction activities is considered a minimal risk in terms of the potential to impact on the abalone population inhabiting the Merimbula Bay reefs habitat.	none	Minimal 4

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
	Discharge of wasterwater resulting in marine waters with reduced salinity within the mixing zone	Lethal and sub-lethal impacts to abalone	Unlikely 2	Minor 2	Minimal 4	Abalone reefs are greater than 2,000 m outside the modelled mixing zone. Blacklip abalone have been shown to be physiologically tolerant of moderately low salinity (i.e. down to 25 ppt) environments (Edwards, 2003).	none	Minimal 4
	Discharge of nutrients in treated wasterwater to mixing zone	Stimulus for increased frequency of microalgal blooms that have potential to impact abalone	Possible 3	Moderate 3	Low 9	Phytoplankton blooms naturally occur in Merimbula Bay and regionally, rarely does a bloom occur that may be considered harmful to abalone and the abalone fishery with an incident reported from Twofold Bay in 2016. While the Project may provide stimulus for increased primary productivity within the 25 m mixing zone, it would be localised and small in scale such that potential effects on the overall phytoplankton assemblage (i.e. change in species composition and abundance) would be masked by changes driven by environmental factors operating at broader bioregional, ocean basin scales.	WQ monitoring undertaken as part of operational compliance	Low 9
Discharge of treated wasterwater at ocean outfall L	20118	Changes to subtidal rocky reef community structure, including shift in macroalgal community composition and abundance of sessile filter feeders (i.e. altered food resources and habitat for abalone)	Possible 3	Moderate 3	Low 9	Nutrient load predicted to meet MWQOs within 25 m mixing zone under normal conditions and 200 m mixing zone under worse-case flow conditions. Abalone reefs are greater than 2,000 m outside the modelled mixing zone. Unlikely that discharge of nutrients in wasterwater will have any detectable effect on rocky-reef assemblages that would cause adverse impact to abalone.	WQ monitoring undertaken as part of operational compliance	Low 9
	Levels of toxic contaminants with potential to bioaccumulate greater than natural background levels	Lethal and sub-lethal impacts to abalone, potential to impact on the local commercial abalone fishery in the form of reduced consumer confidence in the local product	Unlikely 2	Major 4	Low 8	MWQOs for metals would be achieved within 5-25 m of the diffuser location and abalone reefs are unlikely to be affected by dilute treated wasterwater in modelled normal conditions or worse-case flow conditions. e.	WQ monitoring undertaken as part of operational compliance. Tertiary sand filtration will reduce levels of metals in treated wasterwater.	Low 8
POTENTIAL CONSTRU	CTION PHASE IMPACTS TO F	ISH ASSEMBLAGE						
	Noise impact from construction vessels and equipment	Potential mortality, impairment or behavioural impacts to fish with swim bladders involved in hearing	Unlikely 2	Minor 2	Minimal 4	Noise impacts will be limited to continuous, steady state, vessel noise. The temporary threshold shift (TTS) exclusion zone for fish is 120 m AECOM (2020) indicating that fish within this distance of construction activities may be affected. No threatened fish species or habitat critical to species survival would be affected by noise. Noise levels from proposed construction methods are not expected to be outside the range of ambient noise already occurring in Merimbula Bay from recreational, charter and commercial vessels. Noise effects would be short-term, localised and fish within the vicinity of construction activities would avoid or move away from the area as required. The risk of noise disturbance to fish is considered minimal	None relevant to fish	Minimal 4
Mobilisation of construction vessels	Introduction or translocation of marine pest to local waters	IMPs such as European fan worm <i>has</i> potential to alter the community composition of soft sediment habitat that could indirectly affect fish assemblage of that habitat.	Possible 3	Major 4	Medium 12	Three IMPs reported from the Port of Eden, 30 km to the south (Pollard et al. 2003) that are not yet reported from Merimbula Bay include the dinoflagellate Alexandrium catenella, European fan worm (Sabella spallanzanii) and the New Zealand Screwshell (Maorico)purs roseus). The latter is known to occur on the continental shelf off Merimbula but is not known to be present within the study area of the embayment. Of these IMPs, the European fan worm with its ability to establish in high densities and potentially alter the community composition of soft sediment habitat could indirectly affect the fish assemblage associated with that habitat through potential change in food resource availability. However, very little work has been done on the impacts of the European fan worm and its effects at an ecosystem level (DPI, 2020).	Implement environmental management measures to reduce risk of IMP in accordance with National Marine Pest Plan 2018-2023.	Low 8
	Accidental spill of fuel, oil or other harmful substances from construction vessels	Impacts to water quality of Merimbula Bay with harmful substances potentially impacting fish.	Unlikely 2	Moderate 3	Low 6	Potential water pollution resulting from vessel accidental spill would typically involve light hydrocarbon fuels as opposed to heavy HC fraction with impact most likely confined to surface waters and small in scale. Risk to fish assemblage is considered low.	Implement environmental management measures to reduce risk of accidental spills and outlines spill response plan for addressing (i.e. containment and clean-up) a spill event should one occur.	Low 6

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
Establishing Section 2 pipeline covering with rock or concrete mattress	Disturbance and loss of Type 3 soft sediment habitat	Loss of habitat that may result in decrease in fish diversity and abundance	Possible 3	Minor 2	Low 6	Construction of the pipeline will result in the loss of 4,320 m ² of Type 3 sand habitat, considered minimally sensitive with regard to fish habitat. Overall this represents a 0.04% loss of Type 3 sand habitat mapped within the study area. The scale of the sand habitat lost to the Project is minor and is unlikely to have a negative effect on the fish assemblage that relies on sand habitat within Merimbula Bay in terms of their diversity and abundance.	none	Low 6
maxiooo	Accidental spill of fuel, oil or other hamful substances from construction vessels	As above	Possible 3	Moderate 3	Low 9	As above	As above - Implement spill response plan	Low 6
POTENTIAL OPERATIC	ONAL PHASE THREATS TO FIS	SH ASSEMBLAGE						
Discharge of treated wasterwater at ocean	Discharge of levels of metals that exceed MWQOs within mixing zone with potential to bioaccumulate in fish greater than natural background levels	Lethal and sub-lethal impacts to fish that transit that mixing zone, potential for metal bioaccumulation to result in reduced confidence in the quality of local fish resources	Possible 3	Minor 2	Low 6	MWQOs for metals would be achieved within 5 - 25 m of the diffuser location under normal conditions and 200 m under worse case conditions. Fish may transit the mixing zone intermittently, and exposure would be infrequent such that lethal or sublethal effects are possible. It is possible that some fish species may be attracted to the mixing zone due to localised increases in food availability and structure provided by the pipeline and diffuser. The fish assemblage associated with sand habitat at the diffuser location and within a 200 m radius buffer is characterised by low diversity and low abundances. While there may be some effect to fish on sand habitats from exposure to metals, the effect may be limited to a few fish species that naturally occur at low abundances within the proposed mixing zone. Thus, the overall scale of the effect would be considered small and inpact to fish assemblage of sand habitats across the broader area minor.	WQ monitoring undertaken as part of operational compliance.	Low 6
outfall	Discharge of wasterwater resulting in marine waters with reduced salinity within the mixing zone	Reduced saminity within mixing zone may favour fish that can tolerate a broader range of salinity compared to stenohaline species, those that prefer a narrow range of	Unlikely 2	Minor 2	Minimal 4	None of the fish observed in the study are considered stenohaline species and the zone of reduced salinity would have minimal risk to the fish assemblage.	none	Minimal 4
	Discharge of nutrients in treated wasterwater to mixing zone	Salimulus for increased primary productivity leading to increased food resources and altered fish assemblage i.e. increased abundance of planktiveous fish	Possible 3	Minor 2	Low 6	Discharge of elevated levels of dissolved nutrients to the mixing zone may have an indirect positive effect on fish assemblage, with increased abundance of planktivorous fish such as Mado and baitfish. Overall impact of nutrient discharge on fish assemblage is low.	WQ monitoring undertaken as part of operational compliance	Low 9
POTENTIAL CONSTRU	CTION PHASE IMPACTS TO S	OFT SEDIMENT INFAUNA AND E	EPIFAUNA					
Mobilisation of construction vessels Establishing Section 2 pipeline covering with rock or concrete mattress	Disturbance and loss of Type 3 soft sediment habitat	Loss of sand habitat directly below the construction footprint that may have localised negative effect on the infauna and epifauna assemblages	Almost certain 5	Minor 2	Medium 10	Loss of sand habitat is an unavoidable impact. As mentioned above, it is estimated that construction of Section 2 pipeline and diffuser would result in the direct disturbance and loss of 0.00432 km ² Type 3 unconsolidated sand habitat, considered minimally sensitive with regard to fish habitat. Based on estimate of 12 km ² of sand habitat within the study area, this represents a 0.04% loss of Type 3 soft sediment habitat mapped within the study area. The scale of the sand habitat lost to the Project is minor and is unlikely to have a long-term negative effect on the faunal assemblages that rely on sand habitat within Merimbula Bay in terms of their diversity and abundance. This includes the sessile epifauna such as the great sea pen (Sarcoptilus grandis) and benthic infauna acommunity. Benthic infauna includes	No control measure is available to mitigate the loss of sand habitat and epifauna or benthic infauna commuities within the construction footprint.	Medium 10
	Accidental spill of fuel, oil or other harmful substances from construction vessels	Impacts to water quality of Merimbula Bay with harmful substances potentially sinking to benthos and impacting benthic infauna community	Unlikely 2	Moderate 3	Low 6	Potential water pollution resulting from vessel accidental spill would typically involve light hydrocarbon fuels as opposed to heavy HC fraction with impact most likely confined to surface waters and small in scale. Risk to benthic infauna and epifauna is considered low.	Implement environmental management measures to reduce risk of accidental spills and outlines spill response plan for addressing (i.e. containment and clean-up) a spill event should one occur.	Low 6

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
POTENTIAL OPERATIO	DNAL PHASE IMPACTS TO SO	FT SEDIMENT INFAUNA AND EF	PIFAUNA					
Discharge of treated wasterwater at ocean outfall	Discharge of suspended sediments, particulate organic material (POM), nutrients and toxic contaminants such as metals to mixing zone	Potential change in sediment chemistry within the near field mixing zone resulting in altered community composition of infauna and sessile epifauna assemblages compared to areas outside of the mixing zone	Likely 4	Moderate 3	Medium 12	Dispersion modelling shows that the disposal of treated wasterwater to the North-Short diffuser at 30 m depth would meet MWQOs within 5 - 25 m of the diffuser under normal conditions and 200 m under worse-case flow conditions. The scale of potential impact is directly related to the exposure to the wasterwater plume. Changes to sediment chemistry may occur due to deposition of particulate organic material leading to enrichment of sediments and or depletion of oxygen. As wasterwater quality is characterised by relatively low levels of suspended solids, the pathway by which sediments may become enriched is if nutrient levels stimulate excessive phytoplankton growth that will deliver additional particulate organic matter to the benthos. Should changes to sediment chemistry occur from the Project, these would likely to be limited to the near-field mixing zone of 25 m radius from the diffuser with some level of change to the benthics infauna community possible. It is then expected that the magnitude and likelihood of potential change would decrease with increasing distance from the outfall and the ability to becomes less likely.	STP upgrades to improve treated wasterwater quality. Operational phase monitoring to include: - water quality - infauna and sediment collected from sites within and outside the mixing zone to assess potential impacts from discharge of treated wasterwater.	Medium 12
POTENTIAL CONSTRU	CTION PHASE IMPACTS TO IN	TERTIDAL ROCKY SHORE CON	IMUNITY					
Mobilisation of construction vessels Establishing Section 2 pipeline covering with rock or concrete mattres	Accidental spill of fuel, oil or other harmful substances from construction vessels	Impacts to water quality of Merimbula Bay with harmful substances potentially impacting intertidal shorelines	Possible 3	Major 4	Medium 12	Potential water pollution resulting from vessel accidental spill would typically involve light hydrocarbon fuels as opposed to heavy HC fraction with impact most likely confined to surface waters that could spread towards intertidal shorelines of Haycock Point and Long Point depending on prevailing weather conditions. Lower shore heights would most likely be affected by a spill event. The negative effects of a potential spill event would likely be short-term, and while loss of some taxa may occur, it is expected that it would not influence the overall recovery capacity of the habitats and communities. Risk to intertidal shorelines is assessed as low with control measures.	Implement environmental management measures to reduce risk of accidental spills and outlines spill response plan for addressing (i.e. containment and clean-up) a spill event should one occur.	Low 6
POTENTIAL OPERATIO	ONAL PHASE IMPACTS TO INT	ERTIDAL INTERTIDAL ROCKY S	HORE COMM	IUNITY				
Discharge of treated wasterwater at ocean outfall	Discharge of suspended sediments, organic particulate material, nutrients and toxic contaminants such as metals to mixing zone	Potential change to intertidal reef community structure, including shift in macroalgal community composition	Rare 1	Insignificant 1	Minimal 1	Intertidal reef areas of Haycock Point and Long Point are 2,000 m and 2,300 m distal to the diffuser location and would not be affected by the dispersing wasterwater plume. There would be minimal risk to intertidal areas from the construction and or operational phases of the Project.		Minimal 1
POTENTIAL OPERATIO	ONAL PHASE THREATS TO PH	YTOPLANKTON						
Discharge of treated wasterwater at ocean outfall	Discharge of nutrients in treated wasterwater to mixing zone	Change in phytoplankton assemblage species composition and abundance that can be distinguished from ambient background conditions	Unlikely 2	Minor 2	Minimal 4	The discharge of nutrients to the mixing zone would provide a localised stimulus for increased primary productivity where it is expected that majority of this nutrient load would be assimilated by phytoplankton within the 25 m mixing zone. However, the overall effect this may have on the phytoplankton assemblage of Merimbula Bay is considered minimal. This finding is based on the nutrient discharge being localised, small in scale compared to episodic nutrient inputs from upwellings and catchment flood events, and an understanding that phytoplankton assemblage dynamics of Merimbula Bay (i.e. change in species composition and abundance) are more likely to be influenced by environmental factors operating at broader bioregional, ocean basin scales.	none	Minimal 4
POTENTIAL OPERATIO	ONAL PHASE THREATS TO DR	IFT ALGAE						

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
Discharge of treated wasterwater at ocean outfall	Discharge of nutrients in treated wasterwater to mixing zone	Increased occurrence of drift algae biomass, in scale and frequency, greater than what already occurs on an episodic basis.	Unlikely 2	Minor 2	Minimal 4	The discharge of treated wasterwater to the North-Shott diffuser at 30 m depth would include levels of nutrients that exceed MWQOs including oxides of nitrogen (NOx), ammonia, total phosphorus, and orthophosphate. Dispersion modelling shows that under most conditions, nutrient levels would dilute rapidly and meet MWQOs or natural background conditions within a 25 m mixing zone. As the wasterwater would be buoyant and rise upwards in the water column, it is likely that majority of this nutrient load would be assimilated by phytoplankton within the mixing zone with only a minor proportion available to other marine flora in the mixing zone that includes benthic microalgae and may include drift algae on occasion when present within Merimbula Bay.		Minimal 4

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
POTENTIAL OPERATIO	DNAL PHASE THREATS TO ES	TUARIES						
Discharge of treated wasterwater at ocean outfall	Discharge of suspended sediments, organic particulate material, nutrients and toxic contaminants such as metals to mixing zone impacting estuarine values	Potential for dilute treated wasterwater to enter Merimbula or Pambula Lake	Unlikely 2	Minor 2	Minimal 4	Under existing conditions of treated wasterwater disposal via the beach-face outfall, modelling indicates highly dilute treated wasterwater (at 1,000 - 10,000 times dilution) can enter Merimbula Lake under certain current conditions. Dispersion modelling shows that the disposal of wasterwater to the North-Short diffuser at 30 m depth would meet MWQOs within 5 - 25 m of the diffuser under normal conditions and 200 m under worse case conditions. The treated wasterwater plume would not impact estuaries. The Project represents a reduction in risk level with regards to estuaries compared to existing conditions. Diffuse source pollution in stormwater runoff includes elevated levels of suspended sediment, nutrients and microbiological parameters that exceed estuary WQOs, and poses a greater threat to estuary values than the discharge of treated wasterwater at the proposed outfall.	WQ monitoring undertaken as part of operational compliance including sites at the entrance of both estuaries.	Minimal 4
POTENTIAL CONSTRU	CTION PHASE IMPACTS TO A	QUACULTURE						
Establishing Section 2 pipeline covering with rock or concrete mattress	Reduced opportunities for future marine waters aquaculture	Reduced area of Merimbula Bay that would be considered for future marine waters aquaculture under the current constraint criteria set out in MWSAS (DPI, 2018)	Likely 4	Minor 2	Low 8	According to the constraint criteria set out in MWSAS (DPI, 2018), marine waters aquaculture operations would not be permissible within 1 km of sewage outfall pipelines or protection zones for submarine cables. Therefore, construction of the North-Short pipeline and outfall diffuser would reduce the area of Merimbula Bay available for future marine waters aquaculture by approximately 50%. It should be noted that this finding is provisional pending further update to the SEPP (Primary Production and Rural Development) 2019 that adopts the recommendations of the MWSAS (DPI, 2018). Threat level is assessed as likely under the current MWSAS (assuming current constraint recommendations are adopted in the SEPP), and consequence level deemed minor based on understanding that there is no current registered interest in developing marine waters aquaculture in Merimbula Bay, and that the central bay region that would be excluded for aquaculture applications due to the establishment of the pipeline, is exposed to all weather conditions and unlikely to be a suitable location for the forms of marine waters aquaculture permitted within Merimbula Bay. There are other nearby locations such as Twofold Bay where marine waters aquaculture operations are likely to be preferred in terms of protection from damaging	none	Low 8
POTENTIAL OPERATIO	ONAL PHASE THREAT TO AQU	JACULTURE						
Discharge of treated wasterwater at ocean outfall	Discharge of nutrients in treated wasterwater to mixing zone impacting estuarine aquaculture	Potential for increased risk of toxic algal bloom impacting estuarine aquaculture	Unlikely 2	Minor 2	Minimal 4	Ceasing the beach-face outfall and discharging wasterwater instead via the proposed North-Short outfall would improve wasterwater dispersion, with modelling indicating MWQOs would be met within a 25 m mixing zone of the discharge point for the majority of the time. Under worse-case conditions that may occur a small proportion of time (i.e. wet weather flows coinciding with stagnant ocean currents). MWQOs would be met within 200 m of the discharge point. Given the estuary entrances are located 2,700 - 3,000 m away from the proposed North-Short outfall location, there is minimal risk that diluted treated wasterwater will enter the estuaries at concentrations sufficient to trigger an algal bloom above what already occurs on an intermittent basis due to stormwater and catchment inputs. The following are potential benefits to estuarine aquaculture as a result of the Project: • Moving the discharge point from the current beach-face location out into the Bay eliminates the risk of wasterwater being entrained in the surf zone where it has more potential to disperse parallel to the beach and towards the estuary entrances. • Ceasing wasterwater disposal to the dunal ex-filtration ponds would be expected to improve groundwater quality beneatt the ponds over time.	WQ monitoring undertaken as part of operational compliance including sites at the entrance of both estuaries.	Minimal 4

PROJECT ACTIVITY	POTENTIAL HAZARD / THREAT	POTENTIAL IMPACT	Likelihood	Consequence	Pre-Control RISK LEVEL	Comment	Control Measure to Mitigate Risk	Post-Control RISK LEVEL
Discharge of treated wasterwater at ocean outfall	Discharge of nutrients in treated wasterwater to mixing zone impacting marine waters aquaculture	Potential for increased risk of toxic algal bloom impacting future marine waters aquaculture	Possible 3	Minor 2	Low 6	Phytoplankton blooms occur on a large geographic scale and the seasonal influence of the East Australian Current (EAC) is an important factor controlling phytoplankton dynamics in south-eastern Australia. Occasionally these blooms may include high abundances of a potentially harmful taxa that can pose a threat to marine waters aquaculture as has previously occurred in Twofold Bay. While the Project may provide stimulus for increased primary productivity within the 25 m mixing zone, it would be localised and unlikely to generate a bloom at a scale that would cause adverse impact to marine aquaculture beyond what may already occur under existing environmental factors operating at broader bioregional, ocean basin scales.	WQ monitoring undertaken as part of operational compliance.	Low 6
POTENTIAL OPERATIO	DNAL PHASE THREATS TO RE	CREATIONAL AND COMMERCIA	L FISHING					
Discharge of treated wasterwater at ocean outfall	Discharge of suspended sediments, organic particulate material, nutrients and toxic contaminants such as metals to mixing zone	Potential for adverse impacts to fish assemblage of Merimbula Bay impacting opportunities for recreational and commercial fishing	Unlikely 2	Minor 2		Potential effects by the Project to fish species important to local recreational and commercial fishing (i.e. Australian salmon, sardine, mullet and snapper) considered the species life history, migratory patterns and the scale of predicted water quality impact to a 25 m mixing zone over sand habitat. Consideration was also given to the proximity of the Project to recreational fishing assets such as Merimbula OAR, approximately ~1000 m away. The Project includes proposed upgrades to the STP that would result in improved wasterwater quality and disposal of treated wasterwater at the proposed outfall would provide improved dispersion of the treated wasterwater compared to the current beach-face outfall which has been in use since 1971. Overall, it is unlikely that the fish assemblage of Merimbula Bay and those occurring at the Merimbula OAR would be adversely affected by the Project. Therefore, the risk to commercial and recreational fishing within Merimbula Bay from the Project is considered minimal, including taking into account the potential risk of bioaccumulation. The Project may result in a net positive effect on fish diversity and abundance in the central region of Merimbula Bay that may also result in improved recreational fishing opportunities within the vicinity of the pipeline.	none	Minimal 4

14.4 Key Issues

14.4.1 Potential introduction or translocation of marine pest during construction works

Introduced marine pest (IMP) species pose a serious threat to biodiversity and marine primary production in NSW (DPI, 2008). They can foul marine infrastructure, alter marine habitats, outcompete or prey on native species and put at risk Australia's fisheries and aquaculture industries. They may be introduced in various ways, including in ballast waters, attached to the hulls of domestic or international ships, or imported deliberately as aquarium or aquaculture species (DPI, 2008).

The <u>Introduction of non-indigenous fish and marine vegetation to the coastal waters of New South Wales</u> is listed as a key threatening process (KTP) under the FM Act and is considered with regards to its potential impact to the marine habitats and communities at the study area and broader Merimbula Bay.

The potential risk exists for the introduction or translocation of an IMP to Merimbula Bay from Twofold Bay via construction vessels. The most likely pathway for introduction of an IMP to Merimbula Bay would be via transport of organisms or their eggs or cysts attached to hulls of construction vessels, equipment or in ballast water of vessels.

Three IMPs reported from the Port of Eden, Twofold Bay, 30 km to the south (Pollard *et al.* 2003) that are not yet reported from Merimbula Bay include the dinoflagellate *Alexandrium catenella*, European fan worm (*Sabella spallanzanii*) and the New Zealand Screwshell (*Maoricolpus roseus*).

- Alexandrium catenella can exist as resting cysts within soft sediments. As the project would not be
 disturbing or moving sediments at the Port of Eden, the likelihood that this dinoflagellate would be
 translocated to Merimbula Bay is low. Whilst Alexandrium catenella was not reported in phytoplankton
 monitoring undertaken as part of this marine ecology assessment, it has been previously reported in low
 abundance from Merimbula Lake between 2012-2013 (refer Section 9 Phytoplankton).
- For the European fan worm to be introduced to Merimbula Bay, it would first need to be transported as larval phase in ballast waters, and those ballast waters then to be released at Merimbula Bay. In the southern hemisphere, spawning of *S. spallanzanii* has been reported to occur during autumn to winter period, and coincides with falling water temperatures (11-14 °C, Port Phillip Bay in Currie *et al.* 2000). Based on this, it can be assumed that the highest risk period for translocating *S. spallanzani* larvae in ballast water from Port of Eden to Merimbula Bay would typically be the winter to early spring period of July to September when local waters are typically coolest.
- The New Zealand screwshell is already known to occur in deeper waters of the continental shelf off Merimbula but is not present within the study area of the embayment. If conditions at Merimbula Bay were suitable for the species, then it would likely already be present. The risk of translocating this species via vessels and equipment is considered low.
- Another two IMPs reported from Twofold Bay include the Pacific oyster and European green shore crab (*Carcinus maenus*). Both species are already known to occur within the estuarine habitats of Merimbula and Pambula Lakes.

Other IMPs not yet detected in Twofold Bay but that are considered possible high risk to coastal waters of the Twofold Shelf Bioregion more broadly include the Yellowfin goby, Japanese goby, Northern Pacific seastar, *Caulerpa taxifolia* and Japanese kelp (*Undaria pinnatifida*). These IMPs could also pose a threat to habitats and species at Merimbula Bay. Overall, the potential risk of introducing an IMP during construction phase activities is considered a medium risk that can be reduced to a low risk by implementing routine control measures in accordance with the *National Marine Pest Plan 2018-2020* and outlined in **Section 15 – Environmental Management**.

14.4.2 Noise impacts from construction vessels and equipment to marine mammals

Noise disturbance from the Project include vessel and equipment noise during construction activities. These include vessel movements, establishing the pipeline and diffuser infrastructure on the seabed, and anchoring the pipeline with protective concrete mattress or rock armour. Noise from these activities is classified as non-impulsive, steady-state continuous noise as opposed to impulsive noise such as from activities involving pile driving, explosions, and airgun shots.

Marine fauna that are most likely to be affected by construction noise are marine mammals that include whales, dolphins and seals. Exposure to anthropogenic underwater noise can interfere with key life functions of marine mammals (*i.e.* foraging, mating, nursing, resting, migrating) by impairing hearing sensitivity, masking acoustic signals, eliciting behavioural responses, or in extreme cases (if the receptor is close enough to the noise source for long enough) possible physiological stress and / or injury.

A number of listed threatened and protected marine mammals have a high likelihood of occurrence at the study area and are known to be sensitive to noise. These include southern right whales, humpback whales, orcas, bottlenose dolphins and seals. An assessment of underwater noise by AECOM (refer **Chapter 21 Noise (Underwater)** of the EIS) identified zones within which noise impacts to marine mammals may be expected to occur. The zone of potential hearing injury, where there is potential risk of permanent physiological impact to low frequency cetaceans (i.e. humpback whale and southern right whale) is modelled to potentially occur within a 170 m radius from the source noise. Temporary hearing injury (referred to as TTS) for low frequency cetaceans may occur within a radius of 2.3 km from the noise source. For high frequency cetaceans (i.e. orca and dolphins) there is a potential risk of TTS occurring within an 85 m radius of source noise and for seals the potential risk of TTS may occur within 70 m radius of source noise. The zone of potential responsiveness (i.e. where any of the above marine mammals may show a behavioural response, such as avoidance) is considered to be within a 16 km radius of the noise source.

The risk of noise impacts to whales can be reduced by timing construction works outside of whale migration periods, where practicable and introducing safety zones (**Section 15 – Environmental Management**). Of the marine mammals that may occur within the Project area, there is high likelihood for the humpback whale to occur during its southerly migration between late August and early November, with dolphins and seals occurring in Merimbula Bay all year round. At a local level, the approximate 30 m depth contour of Merimbula Bay appears to be the western edge of the southerly migratory pathway for humpback whale. Individuals, mothers and calves were observed following this depth contour commencing offshore from Long Point south to Hunter Reef then south-east to Haycock Point.

The southern right whale is rarely seen in Merimbula Bay with the most recent sighting in 2016 and generally considered rare in NSW (Smith, 2001). Similarly, the orca is rarely seen in nearshore coastal waters, preferring to forage along the edge of the continental shelf with the last regional sighting in Twofold Bay in 2015.

The risk of noise impacts can be further reduced to low by implementing control measures such as safety zones (shut-down zones and watch zones) based on hearing threshold limits for those marine fauna likely to occur in the Project area. A shut-down zone of 170 m radius from the noise source would be implemented during June and November (humpback and southern right whale migration periods) and would result in works being shut-down (when safe to do so) if a whale is seen within this zone. A watch zone of 2.3 km radius, from the noise source, would also be implemented during June and November and result in marine fauna observers continuously monitoring for whale activity within this zone.

Noise modelling results indicate that permanent hearing (PTS) threshold levels for dolphins and seals would not be exceeded during Project construction activities, therefore no shut down zone is required. A 500 m watch zone would be implemented for dolphin and seals during noise generating activities.

Marine fauna observers (MFOs) would be present during all underwater noise generating activities and would record all marine fauna observed during shifts.

Dolphins and seals are exposed to regular boating traffic in Merimbula Bay for recreational, commercial and

charter fishing purposes and are therefore regularly exposed to noise levels similar to those that are anticipated to be generated by the Project. They are therefore considered a lower risk of exposure to underwater noise generated from the Project. Dolphins may also be disturbed by construction vessels resulting in altered foraging behaviour (*i.e.* preference to move away to another area). Any potential change in their foraging and migratory behaviour is expected to be short-term. Control measures would be implemented to effectively mitigate the risk of these impacts, such as a safety zone of 500 m, vessel speed limits and MFOs.

Birds and fish are generally considered to be less likely affected by construction noise and would avoid or move away from the area as required. However, it is now understood that fish with swim bladders are sensitive to noise disturbance although the physiological effects from noise are not yet well understood (Hawkins and Popper, 2017; Popper and Hawkins, 2019). As the works would be conducted over soft sediment habitat characterised by a fish assemblage of lower diversity and abundance compared to rocky reef habitats (**Section 6 – Fish Assemblage**) and that does not contain habitat critical to the survival of a threatened or protected fish species, the risk of noise impacts to fish is considered minimal.

Noise levels from the proposed construction activities are expected to be similar to the range of ambient steady state noise that already occurs in Merimbula Bay from recreational, charter and commercial vessels. Noise effects would be short-term, localised and it is considered that marine mammals and fish within the vicinity of construction activities would avoid or move away from the area as required. However, due to the sensitivity of marine mammals as listed threatened or protected species, the potential risk of non-impulsive underwater noise is considered a key issue that can be effectively managed at low level with adoption of routine mitigation measures during construction (Section 15 – Environmental Management).

14.4.3 Vessel or cable strike to marine mammals

Construction works would require vessels and materials to mobilise from Twofold Bay to Merimbula Bay. Construction activities broadly may include towing the pipeline to site, anchoring vessels, laying pipeline into position, and anchoring pipeline with protective concrete mattress or rock armour.

Vessel strike to marine fauna is a world-wide problem (Marsh et al., 2003) and there is a clear relationship between the number of vessels within a given area and the incidence of vessel strike. The risk of vessel strike during mobilisation to or during works at the study area is most likely to involve slower moving marine mammals such as whales, with seals or dolphins considered at lower risk of vessel strike as they can easily out manoeuvre approaching vessels. Vessel strike has the potential to cause injury and or death depending on vessel size, travel speed and species involved.

Cable strike is related to anchor cables that stretch and slacken in the water column. Cables or anchor lines may strike marine fauna, causing slashing injury. Risk of cable strike is considered higher for inquisitive young whales, dolphins and seals, compared to older individuals and potential risk of cable strike increases at night due to reduced visibility.

The potential risk of vessel or cable strike is related to the number of individuals in the area, which is also related to the species seasonal migration period. The risk of vessel or cable strike is considered low with the risk further reduced by adopting routine control measures during construction phase activities (**Section 15 – Environmental Management**).

14.4.4 Accidental spill of fuel, oil or other harmful substances from construction vessels

There is the potential for hazardous substances (*ie.* fuels, oils and other construction vessel related fluids) to accidently enter the water through spills or leaks from construction vessels and/or equipment. Water pollution resulting from vessel accidental spill would typically impact the water surface initially and depending on the scale of the spill and prevailing weather conditions, could potentially spread towards intertidal shorelines Long Point, Haycock Point or beach zone. In the event of large spill event that could not be contained and managed, there may be changes in chemical composition over subsequent days such that various product components would become mixed into the water column and/or may potentially sink and impact the benthos that could

include sandy seabed or rocky reef habitat.

The risk of accidental spill is initially assessed as a medium risk to marine fauna that occur or forage near surface waters such as marine mammals and birds with fish and subtidal communities considered at low risk of impact. The potential risk can be reduced by implementing a range of routine control measures to protect water quality during the construction phase that would be outlined in a Construction Environmental Management Plan (CEMP). Measures would typically include procedures for storage and use of fuel, oil and hydraulic fluids and a spill response plan (Section 15 – Environmental Management).

14.4.5 Disturbance and loss of Type 3 soft sediment habitat

Pipeline construction comprises laying the proposed 450 mm diameter pipeline directly on the seafloor (from the HDD riser location) and anchoring with a protective cover of concrete mattress and or rock armour along its 2.7 km length. The construction footprint over the seabed is conservatively estimated at 1.6 m wide by 2,700 m long, or 4,320 m². This would result in the direct disturbance and loss of 0.00432 km² Type 3 soft sediment habitat, considered minimally sensitive with regard to fish habitat. Based on estimate of 12 km² of soft sediment habitat within the study area, this represents a 0.04% loss of Type 3 soft sediment habitat mapped within the study area.

Establishing the pipeline infrastructure would result in the smothering of soft sediment infauna and epifauna that occur directly below the pipeline footprint. The impact on infauna is expected to be minimal as infauna are highly mobile and can move to adjacent habitat. Epifauna such as the sessile great sea pen (*Sarcoptilus grandis*) or mobile comb sand star (*Astopecten vappa*) present along the pipeline alignment could be lost due to direct physical damage during the placemnt of rock armour over the pipeline. Few individuals of the great sea pen were noted during surveys, conservatively estimated at one per 10,000 m², and the potential loss of a few individuals is not expected to have an adverse effect on the local population. Similarly, the comb sand star is distributed throughout Merimbula Bay and while a few individuals may be lost during construction of the pipeline, that loss would not have an adverse effect on the local population.

No control measure is available to mitigate the loss of soft sediment habitat and infauna or epifauna directly below the construction footprint. The scale of the soft sediment habitat lost to the Project would be minor and is unlikely to have a long-term negative effect on the faunal assemblages that rely on soft sediment habitat within Merimbula Bay in terms of their diversity and abundance.

Conversely, establishment of the pipeline infrastructure with concrete mattress and or rock armour protection along its length constitutes a change from soft sediment habitat to hard substrate habitat, effectively resulting in the creation of an artificial reef. Any available hard substrate placed in the marine environment provides habitat opportunity in the short-term for a wide range of colonising sessile invertebrates such as ascidians, bryozoans, sponges, barnacles, oysters and mussels. The pipeline and diffuser are also likely to be colonised by various macroalgae. In effect, by laying the pipeline on the seabed rather than trenching and burial, the Project is creating an artificial reef that over the long-term would become colonised by sessile invertebrates and algae and be considered Type 2 fish habitat.

Over the long-term, or for some periods, the pipeline may become buried by sand. Intermittent sand burial and sand scour of hard substrates is a naturally occurring process in the marine environment that can contribute to increased species diversity due to the intermediate disturbance that provides both early and late successional species an opportunity to establish. Therefore, the Project may result in a net positive effect on species diversity and abundance in the central region of Merimbula Bay.

Construction of the pipeline and diffuser infrastructure would result in loss of Type 3 fish habitat but a gain of Type 2 fish habitat, the latter recognised as being more valuable in terms of fish habitat. This may also result in improved recreational fishing opportunities within the vicinity of the pipeline providing an overall beneficial outcome.

14.4.6 Discharge of treated wastewater at the ocean outfall to Type 3 soft sediment habitat

The discharge of treated wastewater at the ocean outfall poses a medium risk to Type 3 soft sediment habitat

and the infauna community occurring within the predicted mixing zone. The risk of impact to all other receptors and values was assessed as minimal to low based on the rapid dilution of wastewater and distance to the mixing zone as discussed in the relevant report sections (Section 3 Subtidal reef invertebrate and algal community, Section 4 Abalone, Section 5 Fish assemblage, Section 8 Intertidal rocky shore communities, Section 9 Phytoplankton, Section 10 Drift algae, Section 11 Estuarine communities, and Section 12 Aquaculture).

The potential impact to Type 3 soft sediment habitat is a change in sediment chemistry that could arise from the deposition of particulate organic material (POM) and contaminants absorbed to particles discharged in treated wastewater. Accumulation of deposited POM can cause localised enrichment of sediments and or depletion of oxygen within those sediments. The benthic infauna community of Type 3 soft sediment habitats are known to be sensitive to such changes and the potential effects of enrichment associated with wastewater discharges has been widely studied both in Australia (Otway, 1995; Scanes and Philip, 1995) and overseas (Warwick, 1993; Gray and Elliot, 2009; Puente and Diaz, 2015). Typical effects include altered community structure (i.e. change is species richness and abundance), and changes in the proportions of opportunistic-sensitive species or trophic groups.

The soft sediment infauna community is comprised typically of variable proportions of three main taxon groups – polychaete worms, crustacea, and molluscs, as well as other minor groups (nemerteans, sipunculids, cnidarians, echinoderms and fish). Among these, particular polychaete worm taxa have been identified as useful bio-indicators of organic enrichment as they tend to be tolerant of hypoxic conditions and proliferate under organically enriched conditions. One such example, commonly used as an bio-indicator of eutrophic systems, is the polychaete genus *Capitella* (Pearson and Rosenberg, 1978; Macleod and Forbes, 2004; Edgar et al., 2005; Weisberg et al., 2008). Other polychaete families that are considered indicators of pollution include Spionidae, Orbiniidae, Cirratulidae, Neridae, Nephtyidae, Dorvilleidae, Goniadidae, Hesionidae, Lumbrineridae and Phyllodocidae (Pearson and Rosenberg, 1978). Among studies somewhat relevant to Merimbula Bay are the studies associated with monitoring the environmental impact of wastewater discharge from the Sydney deep water outfalls (Otway, 1995; Scanes and Philip, 1995; Leadbitter, 1996; Philip and Pritchard, 1996). Long-term effects on the soft sediment infauna community noted at two of Sydney deep water outfall sites were increased abundance of crustaceans Anthurid and Paranthurid isopods, with an overall decrease in polychaete worm diversity noted at one site (Otway, 1995; Scanes and Philip, 1995).

While impacts to infauna communities from wastewater discharges are well documented, the scale of the potential impact is related to the hydrodynamic environment, volume and quality of wastewater being discharged, with higher energy environments such as deep water oceanic settings at lower risk of POM accumulation near the outfall. For the three Sydney deep water outfalls, the daily discharge volume ranges between 126 and 498 ML per day (from Table 1 in Puente and Diaz, 2015), that is many magnitudes greater than the current daily average dry weather (ADW) discharge volume at Merimbula of 1.4 ML per day. Furthermore, future average daily disposal volumes are forecast to decrease to 1.1 ML from the current 1.4 ML (Section 1.3). As described in Section 1.4, treated wastewater at Merimbula is characterised by typically low total suspended sediment load (median TSS = 5 mg/L), with intermittent higher suspended loads discharged during wet weather flows. Historical exceedance of the TSS discharge limit (30 mg/L) occurred six times over 10-year period and is attributed to microalgae growth within the wastewater storage pond prior to discharge. The discharge of freshwater microalgae in wastewater represents a potential food-source for filterfeeding invertebrates and zooplankton and may provide some benefit in the marine environment. Furthermore, TSS of ambient ocean waters can often be higher than that contained in wastewater discharge, particularly during upwelling events and catchment flood flow discharges. Overall, existing wastewater quality is very clear and the risk of POM accumulation to sediments within the mixing zone over the long-term is considered low to medium noting that upgrades to the STP will result in further improvements in wastewater quality.

Another pathway by which sediments may become enriched is if the discharge of dissolved nutrients to the water column stimulates excessive phytoplankton growth that could then deliver additional POM to the benthos. The threat of dissolved nutrient load discharged to the mixing zone and its potential effect on the

phytoplankton community and risk of increased occurrence of algal blooms was assessed in **Section 9** – **Phytoplankton**. It was concluded that the discharge of nutrients to the mixing zone would provide a localised stimulus for increased primary productivity where it is expected that the majority of this nutrient load would be assimilated by phytoplankton within the 25 m mixing zone. However, the overall effect this may have on the phytoplankton assemblage of Merimbula Bay would be minimal. This finding is based on the nutrient discharge being localised, small in scale compared to episodic nutrient inputs from upwellings and catchment flood events, and an understanding that phytoplankton assemblage dynamics of Merimbula Bay (i.e. change in species composition and abundance) are more likely to be influenced by environmental factors operating at broader bioregional, ocean basin scales.

Should changes to sediment chemistry occur from the Project, these would likely to be limited to the near-field mixing zone of 25 m radius from the diffuser with some level of change to the soft sediment infauna community possible. It is then expected that the magnitude and likelihood of potential change would decrease with increasing distance from the outfall and the ability to detect change beyond the mixing zone, if some change has occurred, becomes less likely.

Control measures to mitigate risk of potential impact to the soft sediment infauna community include proposed STP upgrades of PAC dosing for enhanced phosphorous removal and UV disinfection to remove microbial contaminants. If required, a mitigation measure to reduce the risk of metals in the treated wastewater would be the addition of tertiary filtration. Dispersion modelling shows that MWQOs for metals would be achieved within 5 to 25 m from the diffuser and risk of metals to the mixing zone and water quality is already considered low. Tertiary filtration if required, would improve removal of metals and other contaminants from the wastewater stream. However, with dissolved nutrients requiring the highest dilution and effectively defining the extent of the mixing zone, further metal removal would not change the mixing zone extent and would be unlikely to be justified from a metal removal perspective.

It is recommended that soft sediment infauna monitoring at sites within and outside the mixing zone form a key element of operational phase environmental monitoring. Combined with water quality monitoring, an appropriately designed infauna and sediment quality monitoring program would provide a useful approach for validating assumptions of dispersion modelling, the extent of the mixing zone and predicted impacts on water quality and sediment quality from the Project.

14.5 Cumulative impact

Cumulative impact considers the potential interactions among the various Project impacts and the integrity and resilience of the marine communities of Merimbula Bay. As the majority of the potential impacts to marine ecological receptors and values were assessed as minimal to low, the risk of cumulative impact from interactions between those impacts is unlikely to change the conclusions of this assessment.

Cumulative impact also considers the interaction between the potential Project impacts and other environmental stressors already acting upon the marine habitats and communities of Merimbula Bay. The marine habitats and communities of Merimbula Bay have evolved with and are adapted to the coastal processes acting on the local environment that includes tidal flows, ocean currents, and local climatic conditions. Together these processes directly influence ambient water quality and environmental conditions that change on a seasonal basis. The integrity and resilience of the marine communities within Merimbula Bay are directly related to potential changes in coastal processes acting at the local level. It is considered unlikely that the Project, in its construction or operation, would result in any detectable impact on coastal processes within Merimbula Bay (refer to **Chapter 10 Coastal Processes** of the EIS). Therefore, it is also unlikely that the Project would have a detrimental effect on the integrity or resilience of the marine communities.

The primary threat to the integrity and resilience of marine communities in Merimbula Bay and the broader Twofold Shelf Bioregion is climate change and its predicted impacts on the marine environment. South-east Australia is considered a global hot spot for ocean warming, occurring at around four times the global average

(~0.7°C Century⁻¹), due to increased strength, southward penetration and separation point of the EAC (Hobday et al. 2006, Ridgway 2007, Cetina-Heredia *et al.*, 2014). Predicted impacts to the NSW marine environment include:

- altered ocean currents and nutrients
- climate and sea temperature rise
- ocean acidification
- altered storm and cyclone activity
- sea level rise as well as associated indirect changes to species interactions.

For the marine environment, habitat related impacts are predicted to include changes to abundance of macroalgae, changes in distribution of sub-tidal and intertidal assemblages, and changes in phytoplankton activity. Changes to marine habitats and productivity regimes would have flow-on effects for other trophic levels including fish assemblages and top order predators that include seabirds, cetaceans (whales and dolphins) and pinnipeds (seals).

Potential cumulative impacts from marine climate change operating at broad ocean basin scales to coastal processes poses a greater risk to marine habitats and communities in Merimbula Bay than the proposed Project.

Merimbula STP Upgrade and Ocean Outfall Concept Design and Environmental Assessment Marine Ecology Assessment – Environmental Management

15 Environmental Management

A Construction Environmental Management Plan (CEMP) would be prepared for the Project that would include control measures to mitigate risks associated with key project issues that are provided below.

15.1 Proposed mitigation for introduction or translocation of invasive marine pest

The risk of translocating an IMP during construction phase activities is considered a medium risk. It is expected that construction vessels would adopt standard environmental management practices and controls that meet the broad objectives of the *National Marine Pest Plan 2018-2023* to mitigate the risk.

Minimum control measures include:

- All contractors must undertake a vessel risk assessment prior to mobilising the vessel to site. This
 would include an inspection of all vessels and equipment considered uncertain or at high risk for
 introduction of invasive marine pest (IMP). Any vessel or equipment mobilising to site from outside of
 Australia would automatically be considered high risk and an IMP inspection required.
- Construction vessel antifouling must be maintained to avoid the attachement and potential translocation of IMPs from Twofold Bay.
- No sediments from Twofold Bay are to be disturbed or carried by construction vessels en-route to Merimbula Bay.
- Ballast water management procedures to be adopted by all construction vessels and barges in accordance with the <u>Australian Ballast Water Management Requirements</u> (DAWE, 2020).

15.2 Proposed mitigation for underwater noise disturbance impacts

A Construction Noise and Vibration Management Plan (CNVMP) would be prepared for the Project as part of the CEMP. The Plan would include underwater noise and vibration mitigation measures, including implementing safety zones.

The CNVMP should include general feasible and reasonable work practices as identified in 'Section 6 Work practices' of the *Interim Construction Noise Guideline* (ICNG) (Department of Environment and Climate Change (DECC), 2009).

The CNVMP would include the following measures as a minimum:

- undertake works during standard construction hours where practicable;
- works undertaken between June to November during the whale migration period (southern right and humpback whale southern migrations) would be avoided where possible, or otherwise minimised; if work is required within this period adopt a safety shut-down zone of 170 m and a safety watch zone of 2.3 km where work activity would either be temporarily halted or varied in event that a LF cetacean occurs within these zones;
- works undertaken outside of June to November period would implement a safety watch zone of 500 m where marine mammals (dolphins and seals) will be observed and recorded, no shut down zone is required;
- vessels are to have a trained marine fauna observer (MFO) onboard during all underwater noise generation activities, to record observations of when a cetacean or pinniped enters the 2.3 km safety watch zone. All marine fauna sightings are to be recorded;
- prior to commencing noise disturbance activities, the watch zone is to be clear of marine mammals for a period of at least 10 minutes;
- all injured marine mammals should be immediately reported to <u>ORRCA</u> (02 94153333) and National

Merimbula STP Upgrade and Ocean Outfall Concept Design and Environmental Assessment Marine Ecology Assessment – Environmental Management

Parks and Wildlife Service Merimbula office (02 64955000); and implement vessel speed limits to reduce vessel noise.

15.3 Proposed mitigation for accidential spills

Routine control measures to protect water quality during construction phase would be outlined in a Construction Environmental Management Plan (CEMP). The CEMP would outline the following minimum control measures to mitigate the risk of accidental spill of hazardous substances from construction vessels and equipment:

- All contractor vessels to demonstrate a spill response plan that includes procedures, roles and responsibilities. The plan should include contact details of authorities that are to be notified in the event of a spill including NSW EPA.
- Spill response plan to be included as part of general site works induction
- All contractor vessels to carry spill response kits
- Secure and safe storage of all fuels, oils and fluids for construction equipment

15.4 Proposed mitigation for vessel impacts to marine mammals

The project CEMP would also include provisions for mitigating risk of vessel strike and vessel noise to whales when mobilising to site.

Control measures to be adopted to reduce risk of vessel or cable strike include:

- Construction phase works to be undertaken outside of peak whale migration periods (June to November) where practicable
- Vessels to adopt safe travel speeds no greater than 10 knots when mobilising to site
- Vessels maintain a 300 m exclusion zone with all whales en-route to and from construction site
- Slower speeds adopted in event a whale is observed within 100 m of the vessel
- Vessels are to have a trained marine fauna observer (MFO) onboard to record observations of marine fauna when transiting in vessls

Merimbula STP Upgrade and Ocean Outfall Concept Design and Environmental Assessment Marine Ecology Assessment – Environmental Management

15.6 Environmental Monitoring

As part of operational licence requirements, it is expected that water qualiy monitoring of marine and estuarine waters would need to be undertaken as a key performance indicator of environmental compliance. The monitoring program would have the objective of assessing marine water quality at sites inside and outside the treated wastewater mixing zone against MWQO trigger values to ensure sensitive receptors and environmental values are protected.

Details for a proposed water quality monitoring program are included in the *Water Quality Technical Report* (Elgin, 2021). It is anticipated the data from the water quality monitoring program would be used in an initial screening process of results against MWQO trigger values for protection of nearby receptors and environmental values. In the event trigger values were exceeded in frequency and/or magnitude, contingency actions would typically include:

- Confirming result(s) with follow up sampling.
- Checking treated wastewater quality at the STP for any significant changes.
- Assessing regional factors such as fluvial/rainfall event outflows from Merimbula and Pambula estuaries and marine upwelling.
- More detailed Tier 2 risk assessment of potentially impacted receptor and/or values such as, benthic infauna, recreational beach users, aquaculture, fish or shellfish.

A marine ecological monitoring program may also be undertaken with a similar risk-based approach. Components for a marine ecological monitoring program would be based on risk of impact as indicated by water quality monitoring and may include:

- Soft sediment infauna monitoring to validate assumptions of dispersion modelling, the extent of the mixing zone and predicted impacts on water quality.
- In event that sediment metal concentrations within the mixing zone increase over time, the potential risk exists for bioaccumulation pathway from infauna to fish. This would trigger additional sampling of fish for bioaccumulative contaminants to assess whether the pathway for bioaccumulation is complete.
- Monitoring the pipeline and diffuser infrastructure to validate predictions regarding enhancement of local biodiversity through creation of Type 2 habitat.
- A strategy for operational phase monitoring of abalone populations in the form of a two-data-source approach to be able to quickly detect potential changes to Merimbula Bay abalone populations, and accurately and reliably assess whether any changes detected could reasonably be attributable to treated wastewater discharge though the risk is assessed as minimal to low.
 - o Source 1 would involve analysis of fishery-dependent CPUE data
 - Source 2 would involve analysis of fishery-independent data in the form of diver field surveys of abalone abundance and population size structure.

Such a two-pronged approach would mitigate the risk of erroneous conclusions based on observed trends in changes in abalone population health and structure interpreted from just a single source of data lacking independence (i.e. CPUE) (Rotherham *et al.* 2011). Alternatively, a two-stage approach could be implemented, for which Source 2 data (field surveys) would only be required if triggered by Stage 1 (i.e. if the results of CPUE analysis indicated a potential problem with the fisheries at Haycock Point and/or Long Point, or if the CPUE data were assessed to be inadequate).

16 References

- Abalone Council (2016). Assessment of abalone stocks in NSW. Submission to the TAC setting process for 2017, Abalone Council of NSW, October 2016.
- ABARES (2020). Australian fisheries and aquaculture statistics 2016. Australian Bureau of Agricultural and Resource Economics and Sciences.
- AECOM (2019a). 30% Concept Design Report Merimbula STP and Deep Ocean Outfall. Prepared for Bega Valley Shire Council, 6 December 2019.
- AECOM (2019c). Merimbula Ocean Outfall Dispersion Modelling Report. Prepared for Bega Valley Shire Council, 20 December 2019.
- AECOM (2017a). Report 'Design Criteria Merimbula STP and Deep Ocean Outfall Concept Design and Environmental Assessment' (Draft). 31 October 2017.
- AECOM (2017b). Merimbula STP Upgrade and Deep Ocean Outfall, Transmittal Advice No. E01. 12 December 2017.
- AECOM (2013). Desktop Ecological Assessment of the Potential Impacts on Merimbula Lake from Dunal Exfiltration of Effluent. Prepared for Bega Valley Shire Council, March 2013.
- AECOM (2020). Underwater Noise assessment, 9 September 2020.
- Ajani P, Hallegraeff G, Allen D, Coughlan A, Richardson AJ, Armand L, et al. (2016). Establishing baselines: a review of eighty years of phytoplankton diversity and biomass in southeastern Australia. *Oceanography and Marine Biology - An Annual Review*.
- Ajani PA, Allen AP, Ingleton T, Armand L. (2014a). A decadal decline in relative abundance and a shift in microphytoplankton composition at a long-term coastal station off southeast Australia. *Limnology and Oceanography*. 59(2): 519-31.
- Ajani P, Allen AP, Ingleton T, Armand L. (2014b). Erratum: A decadal decline in relative abundance and a shift in phytoplankton composition at a long-term coastal station off southeast Australia. *Limnology and Oceanography*. 59(6): 2240-2.
- Ajani P, Brett S, Krogh M, Scanes P, Webster G, Armand L. (2013c) The risk of harmful algal blooms (HABs) in the oyster-growing estuaries of New South Wales, Australia. *Environmental Monitoring and Assessment*.185(6): 5295-316.
- Ajani P, Lee R, Pritchard T, Krogh M. (2001). Phytoplankton dynamics at a long-term coastal station off Sydney, Australia. *Journal of Coastal Research*. 34: 60-73.
- Ajani, P., Roberts, D.E., Smith, A. and Krogh, M. (1999). The effect of sewage on two bioindicators at Port Stephens, NSW Australia. *Ecotoxicology*, 8: 253-267.
- ALA (2020). Atlas of Living Australia, URL: https://www.ala.org.au/
- ALCW (2020). Atlas of Life in Coastal Wilderness Sightings Records, https://atlasoflife.org.au/
- AMA (2016). Infauna Survey Offshore Disposal Location. Specialist study undertaken for the Eden Harbour-Breakwater Wharf Extension. Australasian Marine Associates, 7 September 2016.
- Andrew, N.L. and Underwood, A.J. (1989). Patterns of abundance in the sea urchin *Centrostephanus rodgersii* on the central coast of New South Wales. *Journal of Experimental Marine Biology and Ecology* 131, 61-80.
- Andrew, N.L., Worthington, D.G., Brett, P.A., Bentley, N., Chick, R.C., and Blount, C. (1998). Interactions between the abalone fishery and sea urchins in New South Wales. FRDC Project No. 93/102.
- Andrew, N.L. and O'Neill, A.L. (2000). Large-scale patterns in habitat structure on subtidal rocky reefs in New

South Wales. Marine and Freshwater Research, 51: 255-263.

- Andrew, N.L. and Underwood, A.J. (1992). Associations and abundance of sea urchins and abalone on shallow subtidal reefs in Southern New South Wales. *Aust. J. Marine and Freshwater Research*, **43**: 1547-59.
- ANZECC (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. 2000.
- ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. 2018.
- Bebbington, G.N., Mackay, N.J., Chvojka, R., Williams, R.J., Dunn, A., Auty, E.H. (1977). Heavy metals, selenium and arsenic in nine species of Australian commercial fish. Aust. J. Mar. Freshwater Res., 1977, 28, 277-86.
- Bega Valley Shire Council (2017). Policy 4.07 Water and Sewerage Services. November 2017.
- Bega Valley Shire Council (2009). Procedure 4.06.3 Liquid Trade Waste. September 2009.
- Bega Valley Shire Council (2017). BVSC influent and effluent data for the site in spreadsheet file entitled 'Merimbula STP influent and effluent quality data_kb02112017.xls.' 2017.
- Bellgrove, A., Clayton, M.N., and Quinn, G.P. (1997). Effects of secondarily treated sewage effluent on intertidal macroalgal recruitment processes. *Marine Freshwater Research*, 48, pp. 137-146.
- Bennett, I., Pope, E.C. (1953). Intertidal zonation of the exposed rocky shores of Victoria, together with a rearrangement of the biogeographical provinces of temperate Australian shores. Marine and Freshwater Research 4: 105-159.
- Birch and Apostolatos (2013). Use of sedimentary metals to predict metal concentrations in black mussel (Mytilus galloprovincialis) tissue and risk to human health (Sydney estuary, Australia). Env. Sci. and Pol. Research, 20-8, August 2013.
- Breen, D.A., Avery, R.P. and Otway, N.M. (2005). Broadscale biodiversity assessment of the Batemans Shelf and Twofold Shelf marine bioregion. Final Report for the NSW Marine Parks Authority 2005.
- BMT-WBM (2017). NSW marine estate threat risk assessment report.
- Brown, V.B., Davies, S.A. and Synnot, R.N. (1990). Long-term monitoring of the effects of treated sewage effluent on the intertidal macroalgae community near Cape Schanck, Victoria, Australia. *Botanica Marina* **33**, 85-98.
- Burridge, T.R., Portellia, T., and Ashton, P. (1996). Effect of sewage effluents on germination of three marine brown algal macrophytes. *Marine Freshwater Research*, 47, pp. 1009-1014.
- Carbery, M., O'Connor, W., Thavamani, P. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 2018.
- Cardno (2012). Pambula River Estuary Processes study, Prepared for Bega Valley Shire Council, Final Report - 27 April 2012.
- Cardno (2012). Southern Bluefin Tuna Species Impact Statement. Report prepared for NSW DPI, 2012.
- CEE (2000). Marine Biological Impacts Study Part I. Existing Discharges, Report No. CHEIS R09, in Coffs Harbour Sewerage Strategy Environmental Impact Statement Report, Coffs Harbour City Council 2000.
- Cetina-Heredia, P., Roughan, M., van Sebille, E., Coleman, M.A. (2014). Long-term trends in the East Australian Current separation latitude and eddy driven transport. J. Geophys. Res. Oceans, 119, 4351-4366.
- Clarke, K.R. and Warwick, R.M. (2001). A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216: 265-278
- COA (2015). South-east Marine Region Profile A description of the ecosystems, conservation values and uses of the South-east Marine Region. Commonwealth of Australia, 2015.

- Cole, M., Lindeque, P., Halsband, C., Galloway, T.S. (2011). Microplastics as contaminants in the marine environment: A review. Mar. Pol. Bulletin, 62 (2011) 2588-2597.
- Corbeil, S., and Berthe, F.C.J. (2009). Disease and Mollusc Quality. In: Shumway, S.E., and Rodrick, G.E. (Eds.) Shellfish Safety and Quality. Woodhead Publishing, UK.
- Coutin, P. C., Cashmore, S., and Sivakumuran, K. P. (2003). Assessment of the snapper fishery in Victoria. Fisheries Research and Development Corporation Final Report 97/127.
- Creese, R.G., Glasby, T.M., West, G. and Gallen, C. (2009). *Mapping the habitats of NSW estuaries*. Report to the Hunter Central Rivers Catchment Management Authority, September 2009. Available online at URL: http://www.dpi.nsw.gov.au/data/assets/pdf_file/0004/306625/AE_2009_Output-<u>1575_Creese-et-al_Habitat-Mapping-Final-Report-113_REPORT.pdf</u>
- Currie, D.R., McArthur, M.A., and Cohen, B.F. (2000). Reproduction and distribution of the invasive European fanworm Sabella spallanzanii (Polychaeta: Sabellidae) in Port Phillip Bay, Victoria, Australia. *Mar. Biol.* 136, 645–56.
- Dafforn, K.A., Kelaher, B.P., Simpson, S.L., Coleman, M.A., Hutchings, P.A., Clark, G.F., Knott, N.A., Doblin, M.A., Johnston, E.L. (2013). Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants. *PLoS One* 8: e77018.
- Dalton, S. (2005). State of Knowledge of the NSW Sapphire Coast Marine Environment. Envirofund Project.
- Dakin WJ, Colefax A. (1933). The marine plankton of the coastal waters of New South Wales. 1. The chief planktonic forms and their seasonal distribution. Proceedings of Linnean Society of New South Wales. 58: 186-222.
- Dakin WJ, Colefax A. (1940). The plankton of the Australian coastal waters of New South Wales. Part 1. University of Sydney, Department of Zoology Monograph 1:303-14.
- Dauvin, J. and Ruellet, T. (2006). Polychaete/Amphipod Ratio Revisited. *Marine Pollution Bulletin* 55 (1-6), 215-224.
- DAWE (2020). <u>National Conservation Values Atlas Biologically Important Areas</u>, Australian Government Department of Agriculture Water and Environment, accessed June 2020.
- DAWE (2020). Infection with *Perkinsus olseni*. In: Aquatic animal diseases significant to Australia: identification field guide, 5th edition. Australian Government Department of Agriculture, Water and the Environment, Canberra.
- DAWR (2018). Marine Pest Plan 2018–2023: the National Strategic Plan for Marine Pest Biosecurity. Department of Agriculture and Water Resources, Canberra.
- Day, J.H. and Hutchings, P. (1984). Descriptive notes on the flora and fauna of Merimbula, Pambula and Back Lakes, New South Wales. Aust. Zool. 21(3): 269-289.
- Dean, H. (2008). The use of polychaetes (Annelida) as indicator species of marine pollution: a review. *Revista de Biologia Tropical* 56, 11-38.
- DECC (2006). NSW Water Quality and River Flow Objectives, Towamba and Genoa River. 2006.
- DECC (2005). Marine Water Quality Objectives for NSW Ocean Waters South Coast. October 2005.
- DECCW (2010). Seabed habitat mapping of the continental shelf of NSW. DECCW report 2010/1057, December 2010.
- DECCW (2011). State of the catchments 2010 Estuaries and Coastal Lakes Southern Rivers region. Available online at URL: http://www.environment.nsw.gov.au/resources/soc/southernrivers/10603SRestuarine.pdf
- DPI (2013). Policy and Guidelines for Fish Habitat Conservation and Management

DPI (2008). NSW Invasive Species Plan 2008 - 2015. NSW, Department of Primary Industries, August 2008.

- DPI (2012). Black Rockcod (*Epinephelus daemelii*) Recovery Plan, 2nd Edition.
- DPI (2014). Southern Bluefin Tuna (Thunnus maccoyii) Primefact 1382, December 2014, First Edition.
- DPI (2015). Black Rockcod (*Epinephelus daemelii*) Primefact 189, June 2015, 2nd Edition
- DPI (2016). DPI Fisheries submission to the DP&E Secretary's Environmental Assessment Requirements (SEARs), letter dated 30/5/2016.
- DPI (2017). Commercial fisheries catch data 2009 to 2017 for Pambula area, provided to Elgin Associates per email request dated 23 July 2017.
- DPI (2018a). Southern fish trawl fishery closures, DPI website URL: <u>https://www.dpi.nsw.gov.au/fishing/closures/commercial/southern-fish-trawl-fishery-closures/water-closed-to-ocean-trawl-for-the-southern-fish-trawl-fishery</u>
- DPI (2018b). Merimbula Offshore Artificial Reef, DPI website URL: <u>https://www.dpi.nsw.gov.au/fishing/recreational/resources/artificial-reef/merimbula-offshore-artificial-reef</u>
- DPI (2020). Priority Action Statement Actions for Southern Bluefin Tuna, website accessed June 2020
- DPI (2020a). Disease issues in wild fish and wild shellfish. Information webpage at: https://www.dpi.nsw.gov.au/fishing/aquatic-biosecurity/recreational-waterway-users/wildfish-shellfish
- DPI (2020b). Marine Pests *Caulerpa taxifolia*. Information webpage at: <u>https://www.dpi.nsw.gov.au/fishing/aquatic-biosecurity/pests-diseases/marine-pests/found-in-</u> <u>nsw/caulerpa-taxifolia</u>
- DPI (2020c). Marine Pests Black-striped mussel. Information webpage at: <u>https://www.dpi.nsw.gov.au/fishing/aquatic-biosecurity/pests-diseases/marine-pests/found-in-australia/black-striped-mussel</u>
- DPI (2020d). NSW Blue Mussel spat translocation protocol (Twofold Bay to Jervis Bay). V2, 6 May 2020. OUT18/11739.
- DPI (2020e). Sea Urchin and Turban Shell Restricted Fishery. Information webpage at: https://www.dpi.nsw.gov.au/fishing/commercial/fisheries/sea-urchin-and-turban-shell-restricted
- DoE (2014). Recovery Plan for the Grey Nurse Shark (*Carcharias Taurus*), Commonwealth Dept. of Sustainability, Environment, Water, Population and Communities, 2013.
- Doney S.C. (2006). Oceanography Plankton in a warmer world. Nature. 444(7120): 695-6.
- Dorsal (2020). Shark Reporting URL: https://www.dorsalwatch.com/report/
- Doubleday, Z., Mayfield, S., Gorfine, H., and Worthington, D. (2011). Abalone, blacklip and greenlip *Haliotis rubra* and *H. Laevigata*, individual species assessment. In: Pecl, G.T., Doubleday, Z., Ward, T., Clarke, S., Day, J., Dixon, C., Frusher, S., Gibbs, P., Hobday, A., Hutchinson, N., Jennings, S., Jones, K., Li, X., Spooner, D. and Stoklosa, R. Risk Assessment of Impacts of Climate Change for Key Marine Species in South Eastern Australia. Fisheries Research and Development Corporation, Project 2009/070.
- DSEWPaC (2013). Draft issues paper for the Grey Nurse Shark (*Carcharias Taurus*), Commonwealth Dept. of Sustainability, Environment, Water, Population and Communities, 2013.
- DSEWPaC (2013). Recovery Plan for the White Shark (Carcharodon carcharias).
- DSEWPaC (2013). Issues Paper for the White Shark (Carcharodon carcharias).
- DSEWPaC (2012). Conservation Management Plan for the Southern Right Whale.

- Edgar, G.J., Macleod, C.K., Mawbey, R.B., Shields, D. (2005). Broad-scale effects of marine salmonid aquaculture on macrobenthos and the sediment environment in southeastern Tasmania. Journal of Experimental Marine Biology and Ecology 327: 70-90.
- Edwards, S. (2003). Assessment of the physiological effect of altered salinity on greenlip (*Haliotis laevigata*) and blacklip (*Haliotis rubra*) abalone using respirometry. *Aquaculture Research*, 34 (14): 1361-65.
- Elgin (2013a). Merimbula Bay Algal Bloom Study. Report prepared for Bega Valley Shire Council, 9 January 2013.
- Elgin (2013b). Ecological Assessment of the Potential Impacts on Merimbula Lake from dunal exfiltration of effluent Supplementary Report. Prepared for Bega Valley Shire Council, 5 March 2013.
- Elgin (2014a). Merimbula Lake Estuary Health Monitoring Report Series No.5, Report prepared for BVSC, 21 February 2014.
- Elgin (2014b). Pambula Lake Estuary Health Monitoring Report Series No.10, Report prepared for BVSC, 5 February 2014.
- Elgin (2017). Progress Report 12 of 12 (Data collected in April 2017) Merimbula Background Ocean Water Quality Monitoring, dated 14 May 2017. Includes compiled WQ dataset 2014-2017 and Baseline Sediment Quality
- Elgin (2021). Water Quality Technical Report Merimbula STP upgrade and ocean outfall EIS. Prepared for AECOM, February 2021.
- Environment Australia (2017). Directory of Important Wetlands in Australia. URL: <u>http://www.environment.gov.au/water/wetlands/australian-wetlands-database/directory-important-wetlands</u>
- Fabris, G. Turoczy, N.J. and Stagnitto, F. (2006). Trace metal concentrations in edible tilsue of snapper, flathead, lobster, and abalone from coastal waters of Victoria, Australia. *Ecotoxicology and Environmental Safety*, 63: 286-292.
- Fairweather, P.G. (1990). Sewage and the biota on seashores: assessment of impact in relation to natural variability. Environmental Monitoring and Assessment 14, 197-210.
- Falkowski, P.G., Barber, R.T., Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. *Science*. 281(5374): 200-6.
- Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schofield, O., et al. (2004). The evolution of modern eukaryotic phytoplankton. *Science*. 305(5682): 354-60.
- Falkowski, P.G., Oliver, M.J. (2007). Mix and match: how climate selects phytoplankton. *Nature Reviews Microbiology*. 5(10): 813-9.
- Fetterplace, L.C., Davis, A. R., Neilson, J.M., Taylor, M.D., Knott, N.A. (2016). Active acoustic tracking suggests that soft sediment fishes can show site attachment: a preliminary assessment of the movement patterns of the blue-spotted flathead (Platycephalus caeruleopunctatus). Anim Biotelemetry (2016) 4:15.
- Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. *Science*. 281(5374): 237-40.
- Fonseca, G., Hutchings, P., Gallucci, F. (2011). Meiobenthic communities of seagrass beds (Zostera capricorni) and unvegetated sediments along the coast of New South Wales, Australia. *Estuarine, Coastal and Shelf Science* 91: 69-77.
- FSANZ (2016). Standard 1.4.1 Contaminants and natural toxicants. Food Standards Australia New Zealand, 2016
- FSANZ (2017). Schedule 19 Maximum levels of contaminants and natural toxicants. Food Standards

Australia New Zealand 2017.

- FSANZ (2001). Generally Expected Levels (GELs) for Metal Contaminants. Food Standards Australia New Zealand July 2001.
- Gallegos, C.L., Jordan, T.E., Hedrick, S.S. (2010). Long-term dynamics of phytoplankton in the Rhode River, Maryland (USA). *Estuaries and Coasts*. 33(2): 471-84.
- Gibbs, P., Collins, A., Collett, L. (1980). Effect of otter prawn trawling on the macrobenthos of a sandy substratum in a New South Wales estuary. Marine and Freshwater Research 31: 509-516.
- Gibbs, P. and Jones, K. (2011). Australian Salmon Arripis trutta and A. truttaceus, individual species assessment, In: Pecl GT, Doubleday Z, Ward T, Clarke S, Day J, Dixon C, Frusher S, Gibbs P, Hobday A, Hutchinson N, Jennings S, Jones K, Li X, Spooner D, and Stoklosa R. Risk Assessment of Impacts of Climate Change for Key Marine Species in South Eastern Australia. Fisheries Research and Development Corporation, Project 2009/070.
- Gilbert, P.M. (2020). Harmful algae at the complex nexus of eutrophication and climate change. Harmful algae 91 (2020) 101583
- Gladstone, W., Lindfield, S., Coleman, M. and Kelaher, B. (2012). Optimisation of baited remote underwater video sampling designs for estuarine fish assemblages. *J. Exp. Mar. Biol.* 429: 28-35.
- Glasby, T. and Kingsford, M. (1994). *Atypichys strigatus* (Pisces: Scorpididae): An opportunistic planktivore that responds to benthic disturbances and cleans other fishes. Austral Ecology, 19, 385-394.
- Glasby, T.M., Gibson, P.T., West, G., Davies, P., and Voerman, S. (2015). Range and habitat associations of the native macroalga *Caulerpa filiformis* in New South Wales, Australia. *Marine and Freshwater Research*, **66(11)**: 1018-1026.
- Gorfine, H.K., Hart, A.M., and Callan, M.P. (1996). Evaluation of methods to assess abalone abundance. Final report to Fisheries Research and Development Corporation, FRDC project 93/100.
- Gorski, J., and Nugegoda, D. (2006). Sublethal toxicity of trace metals to larvae of the blacklip abalone, *Haliotis rubra. Environmental Toxicology and Chemistry*, 25(5): 1360-67.
- Government of South Australia (2012). Underwater Piling Activities Noise Guidelines. Department of Planning, Transport and Infrastructure.
- Grant, B.R. (1971). Variation in silicate concentration at Port Hacking station, Sydney, in relation to phytoplankton growth. *Australian Journal of Marine and Freshwater Research*. 22: 49-54.
- Grant, B.R., and Kerr, J.D. (1970). Phytoplankton numbers and species at Port Hacking station and their relationship to the physical environment. *Australian Journal of Marine and Freshwater Research*. 21: 35-45.
- Gray, J.S. and Elliot, M. (2009). Ecology of Marine Sediments From Science to Management, Second Edition, Oxoford University Press 2009, 225 pp.
- Grigg, R.W. (1994). Effects of sewage discharge, fishing pressure and habitat complexity on coral ecosystems and reef fishes in Hawaii. *Marine Ecology Progress Series* 103, 25-34.
- Grigg, R.W. (1995). Coral reefs in an urban embayment in Hawaii: a complex case history controlled by natural and anthropogenic stress. *Coral Reefs* 14, 253-266.
- Hallegraeff., G, Beardall. J., Brett. S., Doblin., M., Thompson., P. (2012). Phytoplankton. In A Marine Climate Change Impacts and Adaptation. Report Card for Australia 2012.
- Hallegraeff GM. (1981). Seasonal study of phytoplankton pigments and species at a coastal station off Sydney: Importance of diatoms and the nanoplankton. Marine Biology. 61(2): 107-18.

Hallegraeff GM, Reid DD. (1986). Phytoplankton species successions and their hydrological environment at a

coastal station off Sydney. Australian Journal of Marine and Freshwater Research. 37: 361-77.

- Harasti, A.D., Malcolmb, H., Gallen, C., Coleman, M.A, Jordan, A., and Knott, N.A. (2015). Appropriate set times to represent patterns of rocky reef fishes using baited video. Journal of Experimental Marine Biology and Ecology, 463, pp. 173–180
- Hart, A.M., Gorfine, H.K. and Callan, M.P. (1997). Abundance estimation of blacklip abalone (*Haliotis rubra*) I.
 An analysis of diver-survey methods used for large-scale monitoring. *Fisheries Research* 29 (2): 159-169.
- Hawkins, A.D. and Popper, A. N. (2017). A sound approach to assessing the impact of undrwater noise on marine fishes and invertebrates. ICES Journal of Marine Science 74(3): 635-651.
- Heads of EPAs Australia (2020). PFAS National Environment Management Plan. January 2020.
- Henry, G. W., and Lyle, J. M. (2003). The National Recreational and Indigenous Fishing Survey. Australian Government Department of Agriculture, Fisheries and Forestry, Canberra.
- Hill, K.L., Rintoul, S.R., Coleman, R., Ridgway KR. (2008). Wind forced low frequency variability of the East Australia Current. *Geophysical Research Letters*. 35(8): L08602.
- Hobday, A.J., Hartmann, K. (2006). Near real-time spatial management based on habitat predictions for a longline bycatch species. *Fisheries Management and Ecology*. 13(6): 365-80.
- Hobday, A.J., Okey, T.A., Poloczanska, E.S., Kunz, T.J., and Richardson, A.J. (eds) (2006). Impacts of climate change on Australian marine life: Part C. Literature Review. Report to the Australian Greenhouse Office, Canberra, Australia. September 2006.
- Humphrey GF. (1960). The concentration of planktonic pigments in Australian waters.: CSIRO Division of Fisheries and Oceanography Technical Paper. p. 27.
- Humphrey GF. (1963). Seasonal variations in plankton pigments in waters off Sydney. *Australian Journal of Marine and Freshwater Research*.14(1):24-36.
- Hutchinson, N. (2011). Snapper *Chrysophrys auratus*, individual species assessment, In: Pecl GT, Doubleday Z, Ward T, Clarke S, Day J, Dixon C, Frusher S, Gibbs P, Hobday A, Hutchinson N, Jennings S, Jones K, Li X, Spooner D, and Stoklosa R. Risk Assessment of Impacts of Climate Change for Key Marine Species in South Eastern Australia. Fisheries Research and Development Corporation, *Project 2009/070.*
- INFOMAR (2017). Integrated Mapping For the Sustainable Development of Ireland's Marine Resource, website URL: <u>http://www.infomar.ie/</u>
- IWC (2001). Right Whales: worldwide status. International Whaling Commission Eds: PB Best, JL Bannister, RL Brownell and GP Donovan. *Journal of Cetacean Research and Management* Special Issue 2, 309pp.
- Jeffrey, S.W., and Carpenter, S.M. (1974). Seasonal succession of phytoplankton at a coastal station off Sydney. *Australian Journal of Marine and Freshwater Research*. 25: 361-9.
- Jones, G. and Candy, S. (1981). Effects of dredging on the macrobenthic infauna of Botany Bay. *Marine and Freshwater Research* 32: 379-398.
- Leadbitter D. (1996). Sewage and the community—One view of Sydney's deepwater outfalls, the environmental monitoring programme and the future of sewage disposal. Marine Pollution Bulletin 33: 269-272.
- Lemly, A.D., 1996. Wastewater discharge may be most hazardous to fish during winter. *Environmental Pollution* 93, 169-174.
- Liggins, G.W., and Upston, J. (2010). Investigating and managing the Perkinsus-related mortality of blacklip

abalone in NSW. Final report to Fisheries Research and Development Corporation, FRDC project 2004/084. Industry & Investment NSW – Fisheries Final Report Series No. 120 ISSN 1837-2112.

- Lincoln-Smith, M. (2003). Aquatic Ecology in Environmental Impact Assessment EIA Guideline. NSW Department of Planning, May 2003.
- Lobban, C.S. and Harrison, P.J. (1994). Seaweed ecology and physiology. Cambridge University Press 1994.
- Love, M.S., Axell, B., Morris, P., Collins, R., Brooks, A., 1987. Life history and fishery of the Californian scorpionfish, *Scorpaena guttata*, within the southern Californian Bight. *Fish. Bull.* 85, 99-116.
- Keller, K., Smith, J.A., Lowry, M.B., Taylor, M.D., and Suthers, I.M. (2017). Multispecies presence and connectivity around a designed artificial reef. Marine and Freshwater Research, 68, 1489-1500.
- Macleod, C., Forbes, S. (2004). Guide to the assessment of sediment condition at marine finfish farms in Tasmania. Hobart: Tasmanian Aquaculture and Fisheries Institute, University of Tasmania.
- Marine and Earth Sciences (2018). Phase 1 Merimbula Ocean Outfall Project Geophysical Investigations, Merimbula, New South Wales. 12 February 2018.
- Marsh, H., Arnold, P., Freeman, M., Haynes, D., Laist, D., Read, A. and Kasuya, T. (2003). Strategies for conserving marine mammals. Marine Mammals: Fisheries, Tourism and Management Issues. Victoria, Australia: CSIRO Publishing, 1-19.
- McClintock, S. (2012). Trace metals in marine food species (*Saccosteria commercialis, Metapenaus macleaya, Girella tricuspidata* and *Platycephalus fuscus*) from Lake Illawarra, New South Wales. Honours Thesis, University of Wollongong, October 2012.
- McInerney, P., Rees, G., and Joehnk, K. (2020). The sweet relief of rain after bushfires threatens disaster for our rivers. The Conversation: <u>https://theconversation.com/the-sweet-relief-of-rain-after-bushfires-</u> <u>threatens-disaster-for-our-rivers-129449</u>
- McVay, I.R., Maher, W.A., Krikowa, F., Ubrhien, R. (2018). Metal concentrations in waters, sediments and biota of the far south-east coast of New South Wales, Australia, with an emphasis on Sn, Cu and Zn used as marine antifoulant agents. Environ Geochem Health, 21 November 2018.
- Meehan, A.J. (1997). Historical changes in seagrass, mangrove and saltmarsh communities in Merimbula and Pambula Lake. Honours thesis (unpubl.), Environmental Science Unit, University of Wollongong.
- MHL (2015). Proposed Merimbula Deep Outfall. Relative Hydrodynamic Merits of Different Outfall Locations. Manly Hydrualics Laboratory report MHL2418, prepared for Bega Valley Shire Council, 17 November 2017.
- Mundy, C., Stobart, B., Green, C., Ferguson, G., Burnell, O., Chick, R., Mayfield, S., and Hart, A. (2018) Blacklip abalone *Haliotis rubra rubra*, in Carolyn Stewardson et al. (Eds), Status of Australian fish stocks reports 2016, Fisheries Research and Development Corporation, Canberra.
- Newell, B., Molloy, R., and Fox, D. (1999). Environmental Impact Assessment and Review of Effluent Disposal Options for Eastern Treatment Plant. Final report prepared by CSIRO for Melbourne Water Corporation. ISBN 0 643 06060 X
- NLWRA (2001). National Land and Water Resources Audit Estuary Assessment Framework for non-pristine estuaries.
- NSW EPA (2014). Environment Protection Licence 1741, issued to Bega Valley Shire Council. December 2014.
- NSW EPA (2016). Plastic microbeads in products and the environment. July 2016.
- OEH (2017). Estuaries of NSW: Physical characteristics, tidal surveys and hydrographic surveys. URL: http://www.environment.nsw.gov.au/estuaries/list.htm

OISAS (2006). The NSW Oyster Industry Sustainable Aquaculture Strategy, DPI 2006.

- OISAS (2016). The NSW Oyster Industry Sustainable Aquaculture Strategy, DPI 2016.
- Otway, N.M. (1995). Assessing impacts of deepwater sewage disposal: A case study from New South Wales, Australia. *Marine Pollution Bulletin*, 31(4-12), pp. 347-354.
- Pan, Y. and Rao, D.V.S. (1997). Impacts of domestic sewage effluent on phytoplankton from Bedford Basin, Eastern Canada. Marine Pollution Bulletin, 34(12): 1001-1005.
- Pearson, T., Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev 16: 229-311.
- Philip. N. and Pritchard, T. (1996). Australia's first deepwater sewage outfalls: Design considerations and environmental performance monitoring. *Marine Pollution Bulletin* 33: 140-146.
- Pollard, D. A. and Rankin, B. K. (2003). Port of Eden, introduced marine pest species study. NSW Fisheries Office of Conservation, Cronulla.
- Popper, A.N. and Hawkins, A.D. (2019). An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. J Fish Biology 94: 692-713.
- Pritchard T, Lee R, Ajani P, Rendell P, Black K. (2001). How Do Ocean Outfalls Affect Nutrient Patterns in Coastal Waters of New South Wales, Australia? *Journal of Coastal Research*, p96-109.
- Pritchard T, Lee R, Ajani P. (1999). Anthropogenic and oceanic nutrients in NSW's dynamic coastal waters and their effect on phytoplankton populations. Coasts & Ports' 99: Challenges and Directions for the New Century; Proceedings of the 14th Australasian Coastal and Ocean Engineering Conference and the 7th Australasian Port and Harbour Conference. p.511.
- Puente, A. and Diaz, R.J. (2015). Response of benthos to ocean outfall discharges: does a general pattern exist? Marine Pollution Bulletin 101: 174-181.
- Rees, M. J., Knott, N. A., Fenech, G. V. and Davis, A. R. (2015). Rules of attraction: enticing pelagic fish to mid-water remote underwater video systems (RUVS). *Marine Ecology Progress Series*, 529, pp. 213-218.
- Richardson AJ, Poloczanska ES (2008). Ocean science Under-resourced, under threat. *Science*, 320(5881): 1294-5.
- Ridgway, K., and Hill, K. (2012). East Australian Current. In *A Marine Climate Change Impacts and Adaptation Report Card for Australia* (Eds ES Poloczanska, AJ Hobday and AJ Richardson)
- Ridgway, K.R., Godfrey, J.S. (1997). Seasonal cycle of the East Australian Current. *Journal of Geophysical Research-Oceans*, 102: 22921-36.
- Ridgway, K.R. (2007). Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophysical Research Letters 34, L13613
- RLS (2017). Reef Life Survey Data Portal, URL: http://reeflifesurvey.imas.utas.edu.au/portal/search
- Roberts, D.E., Smith, A., Ajani, P. and Davis, A.R. (1998). Rapid changes in encrusting marine assemblages exposed to anthropogenic point-source pollution: a 'Beyond BACI' approach. *Marine Ecology Progress Series* 163: 213-224.
- Roberts, D.E. and Scanes, P.R. (1999). Spatial patterns in the macrobenthic assemblages inhabiting kelp (Ecklonia radiata) forests exposed to sewage effluent. *Aust. J. of Ecotoxicology*, 5: 89-102.
- Scandol, J., Rowling, K. and Graham, K. Eds (2008) Status of Fisheries Resources in NSW 2006/07, NSW Dept. of Primary Industries, Cronulla.
- Scanes, P.R., Philip, N. (1995). Environmental impact of deepwater discharge of sewage off Sydney, NSW,

Merimbula STP Upgrade and Ocean Outfall Concept Design and Environmental Assessment Marine Ecology Assessment - References

Australia. Marine Pollution Bulletin 31: 343-346.

- Scanes, P., Coade, G., Doherty, M. and Hill, R. (2007). Evaluation of the utility of water quality based indicators of estuarine lagoon condition in NSW, Australia. Estuarine, Coastal and Shelf Science 74: 306-319.
- Seitz, R.D. and Lipicus, R.N. (2001). Variation in top-down and bottom-up control of marine bivalves at differing spatial scales. ICES *Journal of Marine Science, Journal Du Conseil* 58(3). 689-699.
- Siddall, R., Pike, A.W., McVicar, A.H. (1994). Parasites of flatfish in relation to sewage sludge dumping. *Journal* of Fish Biology 45, 193-209.
- Sim, V.X., Dafforn, K.A., Simpson, S.L., Kelaher, B.P., Johnston, E.L. (2015). Sediment contaminants and infauna associated with recreational boating structures in a multi-use marine park. *PLoS One* 10: e0130537.
- Skinner, C. Turoczy, N.J., Jones, P.L., Barnett, D. and Hodges, R. (2004). Food Chemistry, 85: 351-356.
- Smith, S.D.A. and Simpson, R.D. (1993). Effects of pollution on holdfast macrofauna of the kelp Ecklonia radiate discrimination at different taxonomic levels. *Marine Ecology Progress Series* 96, pp. 199-208.
- Smith S. D. A., Simpson R. D. and Higgins W. D. (1995). Organochlorine Pesticide and Heavymetal Residues in Red Morwong from Coffs Harbour Coastal Waters: Results of Pilot Study. Report to NSW Public Works Department, Coffs Harbour, 20 pp.
- Smith, A.K., and Suthers, I.M. (1999). Effects of sewage effluent discharge on the abundance, condition and mortality of hulafish, *Trachinops taeniatus* (Plesiopidae). *Environmental Pollution*, 106, pp. 97-106.
- Smith, P.J. (2001). Review of the Conservation Status of Marine Mammal Species in NSW. A report to the NSW Scientific Committee. NSW National Parks and Wildlife Service. Hurstville NSW.
- Southern Divers and Total Hydrographic (2017). Merimbula Offshore Artificial Reef Acoustic Survey. Prepared for NSW Department of Industry. May 2017.
- Southall, B.L., Finneran, J.J., Reichmuth, C., Nachtigall, P.E., Ketten, D.R., Bowles, A.E., Ellison, W.T., Nowacek, D.P. and Tyack, P.L. (2019). Marine mammal noise exposure criteria: updated scientific recommendations for residual hearing effects. Aquatic Mammals 45(2): 125-232.
- TACC Committee (2019). Report and Determination 2019 Abalone Fishery. Report by NSW Total Allowable Catch Setting and Review Committee (Mapstone, B., Crosthwaite, K., Pascoe, S. Sainsbury, K.), 19 November 2018.
- TEL (2005). Penguin Head Ocean Release Monitoring, Marine Ecology, Stage IV. January 2005.
- TEL (2007). Fishery Management Strategy for the NSW Abalone Fishery. Prepared by The Ecology Lab on behalf of: NSW Department of Primary Industries and Shareholders of the NSW Commercial Abalone Fishery, April 2007.
- TEL (2008). Milton-Ulladulla Sewerage Augmentation Ocean Release Monitoring: Analysis of pre- and postcommissioning surveys of intertidal and subtidal habitats. Report No. 60/0506 delivered by The Ecology Lab to Manly Hydraulics Laboratory, February 2008.
- Tsai, C. (1975). Effects of Sewage Treatment Plant Effluents on Fish: A Review of Literature (CRC Publication No. 36). University of Maryland, MD.
- Underwood, A.J., Kingsford, M.J., and Andrew, N.L. (1991). Patterns in shallow subtidal marine assemblages along the coast of New South Wales. *Australian Journal of Ecology*, 6, pp. 231-249.
- Warwick R.M. and Clarke, K.R. (1991) A comparison of methods for analysing changes in benthic community structure. J. Mar. Biol. Assoc. U.K. 71: 225 244.

Merimbula STP Upgrade and Ocean Outfall Concept Design and Environmental Assessment Marine Ecology Assessment - References

- Waters, J.M., Wernberg, T., Connell, S.D., Thomsen, M.S., Zuccarello, G.C., Kraft, G.T., Sanderson, J.C., West, J.A., Gurgel, C.F. (2010). *Australia's marine biogeography revisited: Back to the future?* Austral Ecology 35: 988-992.
- Webb, McKeown and Associates (1997). Merimbula Lake and Back Lake Estuary Management Plan and Management Study Summary. Prepared for BVSC, January 1997.
- Weisberg, S.B., Thompson, B., Ranasinghe, J.A., Montagne, D.E., Cadien, D.B., Dauer, D.M., Diener, D., Oliver, J., Reish, D.J., Velarde, R.G. (2008). The level of agreement among experts applying best professional judgment to assess the condition of benthic infaunal communities. ecological indicators 8: 389-394.
- West, L.D, Stark, K.E., Murphy, J.J., Lyle, J.M. and Ochwada-Doyle, F.A. (2015). Survey of Recreational Fishing in New South Wales and the ACT, 2013/14, NSW DPI – Fisheries Final Report Series No. 149, December 2015.
- West, R.J. and Jones, M.V. (2001). Shallow water fish communities of New South Wales South coast estuaries. FRDC Project 97/204.
- White, I. (2001). Safeguarding Environmental Conditions for Oyster Cultivation in New South Wales. Centre for Resource and Environmental Studies, Australian National University. Report to Healthy Rivers Commission. http://www.hrc.nsw.gov.au/site/pdf/reports/oysters_final.pdf.
- Southall, B.L., Finneran, J.J., Reichmuth, C., Nachtigall, P.E., Ketten, D.R., Bowles, A.E., Ellison, W.T., Nowacek, D.P., Tyack, P.L. (2019). Marine Mammal Noise Exposure Criteria: Updated Scientific Recommendations for Residual Hearing Effects. *Aquatic Mammals*, 45(2), 125-232.
- Wilson, N.G., Stiller, J. and Rouse, G.W. (2016). Barriers to gene flow in common seadragons (Syngnathidae: *Phyllopteryx taeniolatus*), *Conservation Genetics* 18 (1), 53-66.
- Young, D.R., Moore, M.D., Jan, T.-K., and Eganhouse, R.P. (1981). Metal in Seafood organisms near a large California municipal outfall. *Marine Pollution Bulletin*, 12 (4): 134-138.

Merimbula STP Upgrade and Ocean Outfall Concept Design and Environmental Assessment Marine Ecology Assessment - Limitations

17 Limitations

Elgin Associates Pty Ltd has prepared this report for the sole use of AECOM in accordance with generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Marine Ecology Work Plan dated 18 October 2017.

The methodology adopted and sources of information used by Elgin Associates are outlined in this report. Elgin Associates has made no independent verification of this information beyond the agreed scope of works and Elgin Associates assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to Elgin Associates was false.

Information for this report was gathered between December 2017 and February 2021 and is based on the conditions encountered and information reviewed during that period up to the time of preparation. Elgin Associates disclaims responsibility for any changes that may have occurred after this time. Opinions and recommendations contained in this report are based upon information gained during desktop study and fieldwork and information provided from government authorities' records and other third parties. The information in this report is considered to be accurate at the date of issue and reflects at the site at the dates sampled. This document and the information contained herein should only be regarded as validly representing the site conditions at the time of the fieldwork unless otherwise explicitly stated in a preceding section of this report.

This report should be read in full together with all other reports referenced by this report. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

SUB-TIDAL ASSESSMENT

1. Data Analysis

Cluster Analysis

Cluster analysis was undertaken to identify groups of samples (i.e. quadrats) from each transect that were composed of similar species assemblages that could be attributed to one of the broad sub-tidal habitat types as described by Underwood et al. (1991). Based on the clusters identified, these groupings were then used for further analysis to describe community composition.

The cluster analysis revealed groupings at 40% similarity level as shown in the dendogram in **Figure A1**. The dendogram presents the full set of 331 quadrats (as samples) on the x axis, and the y axis defining a similarity level at which two samples or groups are considered to have fused.

A factor named 'Habitat40' was created to assign each quadrat to the corresponding groupings a-e. These groupings were investigated further using MDS and SIMPER functions in Primer.

Species Diversity and Community Composition

Species diversity was estimated by total taxa count (*i.e.* taxon richness as *S*) and community composition of the sub-tidal habitats was explored using a combination of CLUSTER analysis, MDS ordinations, and SIMPER, all multivariate statistical methods available in software PRIMER. The raw data were fourth root transformed to down-weight the influence of highly abundant species in

describing community structure. Data transformation balances the contributions from common and rare species in the measure of similarity between two samples. Using the transformed species counts and percent cover data, Bray-Curtis similarities/dissimilarities between samples were calculated and patterns in community structure were evaluated by portraying these results in a two-dimensional ordination using non-metric multidimensional scaling (nMDS). The 'stress' value is an indication of how well the high-dimensional relationships among the samples are represented in a two-dimensional MDS plot with values near to zero providing best representation.

MDS ordination was used to investigate similarities and patterns within the Habitat40 groups identified in cluster analysis. The MDS ordination of the Habitat40 groups shows five groups of points clustering together based on the 40% similarity (**Figure A2**), indicating that samples within each group are closely related. The stress value of 0.12 indicate that the plot is a reliable ordination, and that the position of each sample relative to other samples within the same group are well placed in the ordination.

Figure A2 MDS plot of sub-tidal habitat samples by Habitat40 factor created using cluster analysis

The habitat groups identified by cluster analysis were confirmed as being significantly different (ANOSIM global R-value 0.9; p=0.1). SIMPER was then used to identify the most dominant taxa or substrates contributing to the patterns observed in the dendogram (**Figure A1**) and MDS ordination (**Figure A2**). Outputs from the SIMPER analysis are reported in **Table A1**.

The 'Habitat' code was assigned based on an assessment of the taxa and/or substrate that contributed to each cluster (A-E) and comparing to habitats described in DECCW (2010). For each of the habitat types - Deep Reef (A), Mixed Algae / Fringe habitat (B), *Ecklonia* (C), Barrens habitat (D), Turf habitat (E) – greater than 90% of the similarity between samples was contributed by only three or four species or substrates (**Table A1**).

-				-				
CODE	HABITAT	Avg Sim	SPECIES	Av. Abund	Av. Sim	Sim/ SD	Contrib%	Cum.%
Α	DEEP REEF	67.77	Sand (SND)	2.6	38.06	3.13	56.16	56.16
(n=12)			Ecklonia radiata (ECK)	1.88	21.23	1.42	31.32	87.48
•			Codium fragile (COD)	1.2	8	0.64	11.8	99.29
В	MIXED ALGAE /	79.92	Sargassum sp. (SAR)	2.53	25.02	16.99	31.31	31.31
(n=4)	FRINGE		Cystophora moniliformis (CYS)	2.18	19.89	3.96	24.89	56.2
•			Phyllospora comosa (PHY)	1.85	18.52	8.63	23.17	79.37
			Ecklonia radiata (ECK)	1.53	9.77	0.91	12.23	91.6
С	ECKLONIA	51.21	Ecklonia radiata (ECK)	2.49	28.7	2.66	56.03	56.03
(n=127)			Geniculate coralline algae (GCA)	1.33	9.44	0.84	18.44	74.47
-			Turf Community (TUR)	1.14	6.04	0.59	11.8	86.27
			Sargassum sp. (SAR)	0.79	3.17	0.44	6.19	92.47
D	BARREN	67.17	Bare Rock (REEF)	3	38.74	3.94	57.68	57.68
(N=161)			Centrostephanus rodgersii	1.34	12.74	1.44	18.97	76.65
			Limpet sp	1.45	11.8	1.11	17.56	94.21
Е	TURF	54.84	Turf Community (TUR)	2.54	30.87	2.32	56.3	56.3
(n=25)			Sand (SND)	1.68	14.43	1	26.32	82.63

Table A1SIMPER results for the five habitat groups identified in the MDS plot and thespecies/substrates that contribute to the similarity.

2. Descriptions of sub-tidal habitats at Haycock Point

Bare Rock (REEF)

Barrens Habitat

Barrens habitat was the most common sub-tidal habitat sampled at Haycock Point recorded within 161 quadrats representing 48% of total quadrats sampled. Barrens habitat was encountered on all sides of Haycock Point ranging from 4 to 19 m depth. The highest proportion of barrens habitat was observed along transects on the northern side of Haycock Point.

1

5.06

0.49

9.23

91.85

A total of thirteen (13) taxa were recorded from barrens habitat including three (3) mobile invertebrates, two (2) sessile invertebrates and six (6) algal taxa. Species richness per sample ranged from one to six with overall mean species richness of 2.6. The overall low mean species richness is because seven of the species observed in barrens habitat were relatively rare, recorded in fewer than 11% of total samples.

In terms of percentage cover, barrens habitat is characterised overwhelmingly by bare rock (mean cover 85%) with sessile invertebrates (sponge and bryozoans) and turfing algae the next most dominant community components with mean cover of 4% and 6% respectively. Other minor community components recorded within barrens habitat represented by less than 1% mean cover include foliose algae *Ecklonia radiata*, *Cystophora moniliformis, Sargassum* sp., non-geniculate coralline algae and geniculate coralline algae (*Corallina officinalis* and *Amphiroa anceps*). Encrusting non-geniculate coralline algae (appears as pink rock) is the most common algae in barrens habitat, as it is able to tolerate the intense grazing pressure of urchins and other gastropods.

Three grazing invertebrates were recorded in barrens habitat that included the long-spined urchin *Centrostephanus rodgersii*, tent shell *Astralium tentoriiforme*, and limpets. The mean density of individuals for each of the grazing invertebrates includes:

- Centrostephanus rodgersii 6.8 individuals per m²;
- Limpets (*Cellana tramoserica, Scutellastra chapmani* and *Patelloida insignis*) 14.2 individuals per m²; and
- Astralium tentoriiforme 0.2 individuals per m².

The density of *Centrostephanus rodgersii* observed in Barrens habitat in this study is comparable with previous surveys of urchins at Haycock Point where densities of over 50 individuals per 10 m² have been reported by Andrew and O'Neill (2000) equivalent to 5 individuals per 1 m². The pattern of low species diversity is common to barrens habitat throughout NSW (Underwood *et al* 1991; Andrews and Underwood 1989) and is not unexpected given the grazing pressure of *Centrostephanus rodgersii* that maintains a typically bare rock surface devoid of foliose canopy-forming brown algae.

Ecklonia habitat

Ecklonia habitat, dominated by the canopy forming kelp *Ecklonia radiata*, was recorded in 127 quadrats occurring on all sides of Haycock Point ranging from 4 to 17m depth. The highest proportion of *Ecklonia* habitat was observed along transects on the southern side (n=67) of Haycock Point with less *Ecklonia* habitat recorded on the northern (n=46) and eastern aspects (n=14).

A total of eighteen (18) taxa were recorded from *Ecklonia* habitat including three (3) mobile invertebrates, seven (7) sessile invertebrates and eight (8) algal taxa. However, species richness per sample ranged from one to eight with a mean species richness of 3.5. The overall low mean species richness is because majority of species observed in *Ecklonia* habitat were relatively rare, recorded in fewer than 14% of total samples.

In terms of percentage cover, *Ecklonia* habitat is characterised by four dominant community components that include (in order dominance):

- Ecklonia radiata (mean cover 47%).
- Turfing algae (mean cover 15.5%) that consists of varying proportions of small brown algae such as *Sphacelaria* sp., *Halopteris* sp., *Zonaria* sp., *Lobophora* variegata, and *Padina* sp.
- Geniculate coralline algae (mean cover of 13.8%) that includes *Corallina officinalis* and *Amphiroa anceps*.
- Sargassum spp. (mean cover 7.4%).

Other algal species recorded within *Ecklonia* habitat in minor proportions (i.e. <2% cover) include brown algae *Cystophora moniliformis* and *Phyllospora comosa*, and the green alga *Codium fragile*. Sessile invertebrates are also minor components of *Ecklonia* habitat that include bryozoans (*Membranipora* sp. and lace bryozoan), stalked ascidian (*Pyura gibbosa*), and encrusting sponges. Bare rock is also a minor component comprising less than 3% mean cover.

Three mobile invertebrates were recorded in *Ecklonia* habitat that included the carnivorous trumpet shell *Cabestana spengleri*, and herbivores such as the long-spined urchin (*Centrostephanus rodgersii*) and limpets. The urchin *Centrostephanus rodgersii* was recorded in low numbers with mean density of 0.64 individuals per m². The mean density of limpets and *Cabestana* were 0.09 and 0.03 individuals per m² respectively.

It is acknowledged that the low abundance and diversity of mobile invertebrates recorded in *Ecklonia* habitat is likely an artefact of the drop camera quadrat method as cryptic species and individuals occurring below the *Ecklonia* canopy are not visible in quadrat photographs.

Mixed Algae-Fringe Habitat

Mixed algae–fringe habitat was recorded in only four quadrats on the northern side of Haycock Point in 6 to 7 m depth. A total of six algal species were recorded with mean species richness of 4.8 per sample. In terms of percentage cover, mixed algae-fringe habitat is characterised by six algal taxa that include (in order dominance):

- Sargassum spp. (mean cover 42%).
- Cystophora moniliformis (mean cover 28%).
- Ecklonia radiata (mean cover 13%).
- *Phyllospora comosa* (mean cover 12%).
- Turfing algae (mean cover 4%) that consists of varying proportions of small brown algae such as *Sphacelaria* sp., *Halopteris* sp., *Zonaria* sp., *Lobophora variegata*, and *Padina sp.*.
- Geniculate coralline algae (mean cover of 1%) that includes *Corallina officinalis* and *Amphiroa anceps.*

No mobile invertebrates were recorded from within mixed algae–fringe habitat although this is likely to be an artefact of the method for the same reasons discussed for *Ecklonia* habitat above.

Turf Habitat

Turf habitat, dominated by a variety of small turfing macroalgal species, was recorded in 25 quadrats and occurred on all sides of Haycock Point in 8 to 17 m depth. A total of thirteen (13) taxa were recorded from turf habitat including three (3) mobile invertebrates, four (4) sessile invertebrates and six (6) algal taxa. Mean species richness per sample ranged from one to five with a mean species richness of 2.6. In terms of percent cover, turf habitat is characterised by three dominant community components that include (in order dominance):

- Turfing algae (mean cover 56%) that consists of varying proportions of small brown algae such as *Sphacelaria* sp., *Halopteris* sp., *Zonaria* sp., *Lobophora* variegata, and *Padina* sp.
- Sand (mean cover 24%).
- Bare rock (mean cover 12%).

Other algal species recorded within turf habitat in minor proportions (i.e. <1% cover) include brown algae *Ecklonia radiata* and *Phyllospora comosa*, the green alga *Codium fragile*, geniculate coralline algae and encrusting non-geniculate coralline algae. Sessile invertebrates are also relative minor components (i.e. 1-3% cover) of turf habitat that include bryozoans, colonial cnidarians, and sponges.

Three mobile invertebrates were recorded in turf habitat that included the carnivorous gastropod *Dicathais orbita,* and herbivores long-spined urchin (*Centrostephanus rodgersii*), and limpets. The urchin *Centrostephanus rodgersii* was recorded in low numbers with mean density of 0.12 individuals per m². The mean density of limpets and *Dicathais* were 0.08 and 0.23 individuals per m² respectively.

Deep reef habitat

Deep reef habitat (relative to the other shallower habitats) was recorded in 12 quadrats and was found at the reef margins adjacent to sand and consequently, sand covering the reef is a common feature. A total of five (5) taxa were recorded from deep reef habitat including three (3) algae and two (2) sessile invertebrates. Mean species richness per sample ranged from one to four with a mean species richness of 1.8.

In terms of percent cover, deep reef habitat is characterised by three dominant community components that include (in order dominance):

- Sand over reef (mean cover 54%);
- Ecklonia radiata (mean cover 25%); and
- Green alga *Codium fragile* (mean cover 14%)

Sessile invertebrates that include sponges and the stalked ascidian *Pyura gibbosa* are relative minor community components (*i.e.* 1-3% cover) of deep reef habitat.

No mobile invertebrates were recorded from within the deep reef habitat sampled. The absence of mobile invertebrates may be attributed to the high percent cover of sand and lack of bare rock that is a preferred substrate for grazing invertebrates such as urchins, limpets and gastropods.

Appendix A-2 Species list for shallow sub-tidal habitats at Haycock Point

APPENDIX A-2. List of invertebrates and algae recorded on subtidal reef transects at Haycock Point, NSW. *Note: Species list compiled from review of both quadrat photos and video footage.*

					SITE										
Phylum	Class	Order	Family	Taxon	2	3	4	5	6	7	8	9	10	11	12
INVERTEBRATES															
Annelida	Polychaeta	Sabellida	Serpulidae	Galeolaria caespitiosa	х			х		х			х		
Arthropoda (subphylum	Hexanauplia	Sessilia	Balanidae	Austromegabalanus nigrescens	x	x								x	x
Crustacea)				Balanus trigonus	х										
				Small barnacle sp.	х	х	х	х			х		х		х
Bryozoa	Gymnolaemata	Cheilostomatida	Membraniporidae	Membranipora sp.	х	х	х	х	х	х	х	х	х	х	х
				Filamentous bryozoan	х				х		х			х	х
				Lace byrozoan	х			х						х	х
			Watersiporidae	Watersipora sp.	х			х						х	х
Chordata	Ascidiacea	Stolidobranchia	Pyuridae	Pyura gibbosa	х	х	х	х				х			
				Pyura stolonifera				х		х	х	х			
				Pyura spinifera					х					х	
			Herdmania sp.									х			
Cnidaria A	Anthozoa	Scleractinia	Scleractinia incertae sedis	Plesiastrea sp.	х						х				х
		Actiniaria	Sagartiidae	Anthothoealbocincta											
				Colonial cnidarian					х		х			х	
				Feather hydroid					х					х	
Echinodermata	Echinoidea	Diadematoida	Diadematidae	Centrostephanus rodgersii	x	x	x	x		x	x	x	x		x
	Asteroidea	Spinulosida	Echinasteridae	Plectaster decanus									х		
Mollusca	Gastropoda	Neogastropoda	Muricidae	Dicathais orbita											
		Lepetellida	Haliotidae	Haliotis rubra											
		Littorinimorpha	Ranellidae	Cabestana spengleri								х			
		Patellogastropoda	Nacellidae	Cellana tramoserica		х	х	х			х		х		х
			Lottiidae	Patelloida insignis		х	х	х			х		х		х
			Patellidae	Scutellastra chapmani		х	х	х			х		х		х
		Trochida	Turbinidae	Astralium tentoriiforme	х	х	х								
				Lunella torquata											
	Bivalvia	Mytilida	Mytilidae	Mytilus galloprovincialis											
Porifera	Demospongiae	Polymastiida	Polymastiidae	Polymastia sp.					х		х			х	
				Various sponge sp.	х	х			х		х		х	х	х
				Unknown green encrusting sponge sp.	x	х		x			x				x

APPENDIX A-2. List of invertebrates and algae recorded on subtidal reef transects at Haycock Point, NSW. *Note: Species list compiled from review of both quadrat photos and video footage.*

		-								SITE					
Phylum	Class	Order	Family	Taxon	2	3	4	5	6	7	8	9	10	11	12
ALGAE						<u> </u>	<u> </u>						<u> </u>		
Chlorophyta	Ulvophyceae	Bryopsidales	Codiaceae	Codium fragile	х	х			х			х		х	[
Ochrophyta	Phaeophyceae	Dictyotales	Dictyotaceae	Lobophora variegata											
				Padina sp.											х
				Zonaria sp.					х	х					
		Ectocarpales	Scytosiphonaceae	Colpomenia sinuosa			х			х	х				
		Fucales	Seirococcaceae	Phyllospora comosa	х	х						х			х
			Sargassaceae	Sargassum sp.	х	х	х			х	х	х		х	х
		Laminariales		Cystophora moniliformis	х	х	х			х	х	х	х		х
		Laminariales	Lessoniaceae	Ecklonia radiata	х	х	х	х	х	х	х	х	х	х	х
		Sphacelariales	Sphacelariaceae	Sphacelaria sp.				х	х						
			Stypocaulaceae	Halopteris sp.											
				Filamentous brown algae					х		х			х	х
Rhodophyta	Florideophyceae	Bonnemaisoniales	Bonnemaisoniaceae	Delisea pulchra											
		Corallinales	Corallinaceae	Geniculate coralline algae (Amphiroa anceps & Corallina officinalis)	x	x	x	x	x	x	x	x	x	x	x
		Corallinales	Corallinaceae	non-geniculate encrusting coralline algae	x	x	x		x	x	x	x	x		x
		Plocamiales	Plocamiaceae	Plocamium sp.											
				Unid. red algae sp.					х						1

Note

Taxonomy follows currently accpeted nomenclature from:

WoRMS Editorial Board (2017), World Register of Marine Species, Available from URL: http://www.marinespecies.org_at VLIZ, Accessed 2017-03-32

Appendix A-3 Species list for intermediate reef

Appendix A-3. List of invertebrates and algae recorded on intermediate subtidal reefs at Hunter Reef, Haycock Point and Long Point. Note: Taxon list compiled from review of both photo quadrats and video footage.

				Locati	ion Hunt	Hunter Reef		laycock	Long Point	
				Rou	-	2	1	2	1	2
Phyllum	Class	Order	Family	Taxon	A1	A2	B1	B2	D1	D2
Invertebrates		l	I		-	1	1	n	1	
Annelida	Polychaeta	Sabellida	Sabellidae	Sabellastarte sp.						
Bryozoa	Gymnolaemata	Cheilostomatida	Adeonidae	Adeona grisea		Х		Х	Х	Х
			Steginoporellidae	Steginoporella truncata	Х	Х	Х	Х	Х	Х
			Phidoloporidae	Triphyllozoon moniliferum	Х	Х		Х	Х	Х
I.				Unidentified Bryozoa Hard Fenestrate_1						
				Unidentified Bryozoa Hard Fenestrate_2						
				Unidentified Bryozoa Hard Fenestrate_3				Х		Х
				Unidentified Bryozoa Hard Massive_1	Х		Х			
				Unidentified Bryozoa Soft Dendroid_1	х		Х		Х	Х
				Unidentified Bryozoa Soft Foliaceous_1		Х				
				Unidentified Bryozoa_1			Х			Х
Chordata	Ascidiacea	Stolidobranchia	Pyuridae	Cnemidocarpa pedata	Х	Х	Х	Х	Х	Х
				Herdmania grandis			Х		Х	
				Pyura spinifera	Х	Х	Х	Х	Х	Х
		Aplousobranchia	Polycitoridae	Polycitor giganteus						
				Polycitor sp.	Х	Х				
				Unidentified Colonial Ascidian_1	Х	Х		Х		Х
Cnidaria	Anthozoa	Alcyonacea	Nephtheidae	Capnella gaboensis			Х	Х		Х
			Isididae	Sphaerokodisis australis	х		Х	Х		Х
			Primnoidae	Primnoella australasiae	Х	Х	Х	Х	Х	Х
		Scleractinia	Coscinaraeidae	Coscinaraea mcneilli		Х		Х	Х	Х
			Dendrophylliidae	Balanophyllia sp.		Х	Х	Х		Х
				Unidentified Black Coral Arborescent_1			Х	Х		
				Unidentified Black Coral Branching Fleshy_1		Х				Х
				Unidentified Black Coral Fern-frond_1			Х	Х	Х	Х
				Unidentified Black Coral Rigid Fan_1			Х	Х	Х	
				Unidentified Black Coral Rigid Fan_2						
				Unidentified Hydrocoral Branching_1		Х	Х	Х		
				Unidentified Hydrocoral Branching_2		Х	Х	Х	Х	Х
				Unidentified Hydrocoral Branching_3				Х		Х
			`	Unidentified Hydrocoral Branching_4			Х	Х		Х
				Unidentified Hydroid_1						
				Unidentified Hydroid_2						
				Unidentified Hydroid_3		Х		Х		
				Unidentified Anemone_1						
				Unidentified Cnidarian_1						<u> </u>
				Unidentified Cnidarian_2	х	Х		Х		Х
				Unidentified Cnidarian_3						
				Unidentified Cnidarian_4	х	Х	Х			Х
				Unidentified Cnidarian_5		Х	Х	Х		
				Unidentified Cnidarian_6	1	1		х	1	1

Appendix A-3. List of invertebrates and algae recorded on intermediate subtidal reefs at Hunter Reef, Haycock Point and Long Point. Note: Taxon list compiled from review of both photo quadrats and video footage.

				Loc	cation	Hunte	r Reef	Outer l	Haycock	Long	Point
				I	Round	1	2	1	2	1	2
Phyllum	Class	Order	Family	Taxon		A1	A2	B1	B2	D1	D2
Echinodermata	Asteroidea	Spinulosida	Echinasteridae	Plectaster decanus				Х	Х	Х	Х
		Valvatida	Asterodiscididae	Asterodiscides truncatus					Х		
			Goniasteridae	Fromia polypora							
				Nectria ocellata		Х					
				Pentagonaster duebeni			Х	Х	Х		
	Echinoidea	Cidaroida	Cidaridae	Phyllacanthus parvispinus		Х	Х		Х		Х
	Ophiuroidea	Euryalida	Gorgonocephalidae	Astrosierra amblyconus					Х		Х
				Unidentified Basket Star_1							
Mollusca	Gastropoda			Unidentified Gastropod_1							
				Unidentified Gastropod_2							
				Unidentified Gastropod 3							
				Unidentified Gastropod 4							
				Unidentified Gastropod 5							
		-		Unidentified Gastropod 6							Х
	Cephalopoda	Octopoda		Unidentified Octopus 1				Х			
Porifera	in the second se			Unidentified Sponge Barrel_1		Х	Х	Х	Х		Х
	-			Unidentified Sponge Barrel 2							
				Unidentified Sponge Creeping/Ramose_1		х	Х	Х	х	Х	Х
				Unidentified Sponge Creeping/Ramose 2		x	Λ	X	~	X	~
				Unidentified Sponge Cup/Goblet 1		X	х	X	х	X	х
	-			Unidentified Sponge Encrusting 1		X	x	X	X	X	X
	-			Unidentified Sponge Encrusting 2		^	X	x	^	X	^
				Unidentified Sponge Encrusting_3		Х	X	X	х	X	х
						X	X	X	X	X	X
				Unidentified Sponge Encrusting_4		~		X	X		
				Unidentified Sponge Encrusting_5		х	X		V	X	X X
				Unidentified Sponge Encrusting_6		X	X		Х	Х	
				Unidentified Sponge Encrusting_7							Х
				Unidentified Sponge Encrusting_8		Х	Х	Х			
				Unidentified Sponge Encrusting_9		Х	Х	Х	Х	Х	Х
				Unidentified Sponge Encrusting_10							
				Unidentified Sponge Encrusting_11				Х			
				Unidentified Sponge Encrusting_12			Х	Х	Х	Х	Х
				Unidentified Sponge Encrusting_13			Х	Х	Х	Х	Х
				Unidentified Sponge Encrusting_14					Х		Х
				Unidentified Sponge Encrusting_15			Х	Х		Х	
				Unidentified Sponge Encrusting_16			Х	Х	Х	Х	Х
				Unidentified Sponge Encrusting_17			Х	Х	Х	Х	Х
				Unidentified Sponge Encrusting_18		Х	Х				L
				Unidentified Sponge Encrusting_19			Х	Х	Х	Х	Х
				Unidentified Sponge Encrusting_20			Х	Х		Х	Х
				Unidentified Sponge Encrusting_21		Х	Х	Х	Х	Х	Х
				Unidentified Sponge Encrusting_22		Х	Х		Х		Х
				Unidentified Sponge Encrusting_23		Х				Х	
				Unidentified Sponge Encrusting_24							Х
				Unidentified Sponge Erect Branching_1		Х	Х				
				Unidentified Sponge Erect Branching_2		Х	Х	Х	Х	Х	Х
				Unidentified Sponge Erect Branching_3			Х	Х	Х	Х	Х
				Unidentified Sponge Erect Branching_4				Х			Х
				Unidentified Sponge Erect Branching_5		Х	Х	Х	Х		Х
				Unidentified Sponge Erect Branching_6		Х					
				Unidentified Sponge Erect Branching_7		Х	Х	Х	Х		Х
		1		Unidentified Sponge Erect Branching 8		Х	Х	Х			х

Appendix A-3. List of invertebrates and algae recorded on intermediate subtidal reefs at Hunter Reef, Haycock Point and Long Point. Note: Taxon list compiled from review of both photo quadrats and video footage.

				Location		n Hunter Reef		Outer Haycock		Long Point	
					Round	1	2	1	2	1	2
Phyllum	Class	Order	Family	Taxon		A1	A2	B1	B2	D1	D2
				Unidentified Sponge Erect Branching_9		Х				Х	
				Unidentified Sponge Erect Branching_10					Х		
				Unidentified Sponge Erect Branching_11			Х	х	Х	Х	Х
				Unidentified Sponge Erect Branching_12					Х		Х
				Unidentified Sponge Erect Branching_13							Х
				Unidentified Sponge Erect Palmate_1							
				Unidentified Sponge Incomplete Cup/Fan_1			Х				
				Unidentified Sponge Incomplete Cup/Fan_2		Х	Х	х	Х	Х	Х
				Unidentified Sponge Laminar_1				Х			
				Unidentified Sponge Laminar_2			Х	Х	Х	Х	Х
				Unidentified Sponge Laminar_3				Х			
				Unidentified Sponge Laminar_4			Х	Х	Х		
				Unidentified Sponge Laminar_5				Х			Х
				Unidentified Sponge Laminar_6				Х		Х	
				Unidentified Sponge Laminar_7				Х			
				Unidentified Sponge Massive_1			Х	Х	Х	Х	
				Unidentified Sponge Massive_2		Х	Х	Х	Х	Х	Х
				Unidentified Sponge Massive 3				Х			Х
				Unidentified Sponge Massive 4							
				Unidentified Sponge Massive 5		Х	Х	Х			
				Unidentified Sponge Massive 6			Х		Х		
				Unidentified Sponge Massive 7	- 1						
				Unidentified Sponge Massive 8				Х			
				Unidentified Sponge Massive 9							
				Unidentified Sponge Massive 10				Х	Х	Х	
				Unidentified Sponge Massive 11			Х	Х	Х		
				Unidentified Sponge Massive_12			Х	х		Х	
				Unidentified Sponge Massive 13			Х		Х		х
				Unidentified Sponge Massive 14			Х		Х		
				Unidentified Sponge Massive 15			X		X		Х
				Unidentified Sponge Massive Ball 1		Х	Х	Х	х		
				Unidentified Sponge Massive Ball 2				X			х
				Unidentified Sponge Massive Cryptic 1				X	х	Х	
Algae										<u> </u>	!
Rhodophyta				Macroalgae Encrusting Red Calcareous		Х	Х	Х	Х	Х	Х
				Macroalgae Encrusting Red Non Calcareous		~	X				
				Macroalgae Unknown 1			~	х			
				Macroalgae Unknown 2				~		х	
				Macroalgae Unknown 3			Х			~	
				Macroalgae Unknown 3			~		х		

ABALONE ASSESSMENT

APPENDIX B

Appendix B-1. Boundary definition of abalone management Areas, Subzones and Spatial Management Units (from Abalone Council 2019).

Appendix 1. Map of NSW (top left) showing two insets for the the central coast (left) from Terrigal to Narooma, and for the south coast (right) from Narooma to Cape Howe. Subzones are coloured to highlight adjacent subzones and overlapping labels are not shown, Areas are numbered from 1 to 21 in blue, with blue borders shown between Areas, and Spatial Management Units (SMU) are numbered with borders in red from I to IV. Insets are shown in the MGA 1994, Zone 56 Projection.

APPENDIX B

Appendix B-1. Boundary definition of abalone management Regions (from TACC Committee 2019).

Figure A6.1. The NSW Coast showing marine parks and regions by which the commercial abalone fishery is classified by the Department of Primary Industries. Figure courtesy NSW DPI.

APPENDIX B

Appendix B-2 Abalone Survey Sites

Given the commercial sensitivity of this information, the location of survey sites is not provided in public versions of this report.

Appendix B-3 Abalone Count Data

Site/Transect	Dauth	Discon	Descriptor	GoPro	Transect	Small	Medium	Large
Site/Transect	Depth	Diver	Bearing	Camera #	Interval	0-60	60-117	>117
S1T1	3-6m	NY	NW 350	#3	0-10	0	0	0
					11-20	0	0	0
					21-30	0	0	0
					31-40	0	3	1
					41-50	0	12	6
S1T2	3-6m	PM	SE 160	#1	0-10	0	0	0
					11-20	0	0	0
					21-30	1	0	0
					31-40	0	0	0
					41-50	0	0	0
S1T3	3-6m	NY	NE 30	#3	0-10	0	0	0
					11-20	0	0	0
					21-30	0	0	0
					31-40	0	1	0
					41-50	0	0	0
S1T4	3-6m	PM	NW 340	#1	0-10	0	1	5
					11-20	0	10	10
					21-30	3	18	15
					31-40	0	0	0
					41-50	0	0	0
				•	TOTAL	4	45	37
S2T1	5-6m	NY	SE 120	#3	0-10	0	0	0
					11-20	0	0	0
					21-30	0	0	0
					31-40	0	0	0
					41-50	0	0	0
S2T2	5-6m	LF	SE 160	#2	0-10	0	0	0
					11-20	0	0	0
					21-30	0	0	0
					31-40	0	3	0
					41-50	0	0	10
S2T3	5-6m	NY	NW 290	#3	0-10	0	0	0
					11-20	0	3	1
					21-30	0	0	0
					31-40	0	0	0
					41-50	0	20	5
S2T4	5-6m	LF	NW 300	#2	0-10	0	0	0
					11-20	0	0	0
					21-30	0	1	0
					31-40	0	3	0
					41-50	0	7	1
		1	1	1	TOTAL	0	37	17

Appendix B-3. Abalone count data recorded at Haycock Point, 7-9 January 2018

c:				GoPro	Transect	Small	Medium	Large
Site/Transect	Depth	Diver	Bearing	Camera #	Interval	0-60	60-117	>117
S3T1	6-9m	NY	SE 120	#3	0-10	0	14	2
					11-20	0	0	0
					21-30	0	0	0
					31-40	0	0	0
					41-50	0	0	0
S3T2	6-9m	NY	SW 230	#3	0-10	0	2	0
					11-20	0	1	1
					21-30	0	2	1
					31-40	0	17	5
					41-50	0	1	9
S3T3	6-9m	LF	SE 120		0-10	1	7	9
					11-20	0	3	3
					21-30	0	0	0
					31-40	0	1	0
					41-50	0	0	0
S3T4	6-9m	LF	SW 230		0-10	0	0	0
					11-20	0	12	12
					21-30	3	9	6
					31-40	1	7	9
					41-50	0	1	4
		-		•	TOTAL	5	77	61
S4T1	7m	NY	NW 330	#4	0-10	0	0	0
					11-20	0	1	1
					21-30	0	0	0
					31-40	0	4	1
					41-50	0	1	0
S4T2	7m	PM	NW 320		0-10	0	2	2
					11-20	0	1	4
					21-30	0	0	2
					31-40	0	4	5
					41-50	0	1	4
S4T3	7m	NY	SE 160	#4	0-10	0	0	0
					11-20	0	0	1
					21-30	0	0	2
			1		31-40	0	2	0
			1		41-50	0	0	1
S4T4	7m	PM	SE 130		0-10	0	3	0
			1		11-20	0	0	0
			1		21-30	0	0	0
			1		31-40	5	12	2
			1		41-50	2	4	0
		1	1		TOTAL	7	35	25

Appendix B-3. Abalone count data	recorded at Haycock Point, 7-9 January 2018
----------------------------------	---

Cite /Transact	Dauth	Diver	Beering	GoPro	Transect	Small	Medium	Large
Site/Transect	Depth	Diver	Bearing	Camera #	Interval	0-60	60-117	>117
S5T1	5m	LF	NE 40	#1	0-10	0	3	1
					11-20	0	1	0
					21-30	0	0	0
					31-40	0	0	0
					41-50	0	0	0
S5T2	5m	PM	NE50	#2	0-10	0	1	4
					11-20	0	5	15
					21-30	0	4	2
					31-40	0	3	0
					41-50	0	0	0
S5T3	5m	LF	W 270	#1	0-10	0	7	7
					11-20	0	6	5
					21-30	0	16	6
					31-40	0	8	2
					41-50	0	10	2
S5T4	5m	PM	W260	#2	0-10	0	6	4
					11-20	1	12	6
					21-30	1	22	3
					31-40	2	35	3
					41-50	0	16	4
				•	TOTAL	4	155	64
S6T1	7m	NY	SW 230	#1	0-10	0	0	0
					11-20	0	0	0
					21-30	0	1	0
					31-40	0	14	6
					41-50	0	0	0
S6T2	7m	LF	SW 230	#2	0-10	1	3	1
					11-20	1	6	1
					21-30	0	5	2
					31-40	0	1	2
					41-50	2	12	0
S6T3	7m	NY	E 80	#1	0-10	0	2	0
					11-20	0	14	3
					21-30	0	5	0
					31-40	0	5	16
					41-50	0	0	0
S6T4	7m	LF	E 90	#2	0-10	0	2	2
					11-20	0	13	6
					21-30	1	2	0
					31-40	0	9	1
					41-50	0	2	1
		1			TOTAL	5	96	41

Appendix B-3	. Abalone count d	lata recorded at Ha	aycock Point, 7-9	January 2018
--------------	-------------------	---------------------	-------------------	--------------

APPENDIX C

FISH ASSEMBLAGE

APPENDIX C-1. List of fish species recorded between	Batemans Bay (NSW) and Mallacoota (VIC	C) and those observed in BVSC region and the study
---	--	--

Ordor	E-mil	T	0	Threatene	d Species	Recorded by RLS in	Observed in Study Area ⁴
Order	Family	Taxon	Common name	EPBC Act 1999 ¹	FM Act 1994 ²	BVSC region ³	
Bony Fishes (Act	inopterygii)						
Anguilliformes	Muraenidae	Gymnothorax prasinus	Yellow moray			x	x
Aulopiformes	Aulopidae	Latropiscis purpurissatus	Sergeant baker			x	х
Beryciformes	Trachichthyidae	Optivus agastos	Violet roughy			x	
Beryciformes	Trachichthyidae	Trachichthys australis	Roughy			х	
Bleniformes	Hemiramphidae	Hyporhamphus australis	Eastern sea garfish			x	
Clupeiformes	Clupeidae	Clupeiformes spp.	Herring, anchovy				
Enoplosidae	Enoplosidae	Enoplosus armatus	Old wife			x	х
Gasterosteiformes	Pegasidae	Pegasus spp.	Seamoths		р		
Gladiformes	Moridae	Lotella rhacina	Rock cod				
Gladiformes	Moridae	Pseudophycis barbata	Southern bastard codling				
Gobiesociformes	Gobiesocidae	Aspasmogaster liorhyncha	Smooth-snout clingfish				
Gobiesociformes	Gobiesocidae	Aspasmogaster tasmaniensis	Tasmanian clingfish			х	
Gobiesociformes	Gobiesocidae	Cochleoceps orientalis	Eastern cleaner-clingfish				
Perciformes	Acanthuridae	Acanthurus nigrofuscus	Brown surgeonfish			х	
Perciformes	Acanthuridae	Acanthurus olivaceus	Orangespot surgeonfish				
Perciformes	Acanthuridae	Prionurus maculatus	Yellowspotted sawtail				
Perciformes	Acanthuridae	Prionurus microlepidotus	Sixplate sawtail				
Perciformes	Aplodactylidae	Aplodactylus arctidens	Marblefish			x	х
Perciformes	Aplodactylidae	Aplodactylus lophodon	Rock cale			x	х
Perciformes	Apogonidae	Rhabdamia cypselurus	Swallowtail cardinalfish				
Perciformes	Apogonidae	Siphamia cephalotes	Wood's siphonfish			x	
Perciformes	Arripidae	Arripis trutta	Australian salmon			х	xx
Perciformes	Berycidae	Centroberyx affinis	Nannygai			х	х
Perciformes	Blenniidae	Blenniid spp.	Blennies			x	
Perciformes	Blenniidae	Parablennius intermedius	Horned blenny			x	
Perciformes	Blenniidae	Petroscirtes fallax	Yellow/Deceiver fangblenny				
Perciformes	Blenniidae	Plagiotremus rhinorhynchos	Blue-lined fangblenny			x	
Perciformes	Blenniidae	Plagiotremus tapeinosoma	Piano fangblenny			x	
Perciformes	Bovichtidae	Bovichtus angustifrons	Horny thornfish				
Perciformes	Callionymidae	Eocallionymus papilio	Painted stinkfish				
Perciformes	Carangidae	Pseudocaranx georgianus	Silver trevally			x	x
Perciformes	Carangidae	Seriola lalandi	Yellowtail Kingfish			x	
Perciformes	Carangidae	Trachurus novaezelandiae	Yellowtail horse mackerel			x	x
Perciformes	Chaetodontidae	Chaetodon guentheri	Crochet butterflyfish				
Perciformes	Cheilodactylidae	Cheilodactylus fuscus	Red Morwong			x	x
Perciformes	Cheilodactylidae	Cheilodactylus spectabilis	Banded Morwong			x	xx
Perciformes	Cheilodactylidae	Cheilodactylus nigripes	Magpie perch				xx
Perciformes	Cheilodactylidae	Nemadactylus douglasii	Blue Morwong			x	x
Perciformes	Cheilodactylidae	Nemadactylus valenciennesi	Queen Morwong				
Perciformes	Chironemidae	Chironemus georgianus	Western kelpfish				
Perciformes	Chironemidae	Chironemus marmoratus	Eastern Kelpfish			x	х
Perciformes	Cirrhitidae	Cirrhitichthys aprinus	Spotted hawkfish				
Perciformes	Clinidae	Cristiceps aurantiacus	Golden weedfish				
Perciformes	Clinidae	Cristiceps australis	Southern crested weedfish				
Perciformes	Clinidae	Heteroclinus heptaeolus	Ogilby's weedfish			x	
Perciformes	Clinidae	Heteroclinus nasutus	Large-nose weedfish				
Perciformes	Clinidae	Heteroclinus perspicillatus	Common weedfish			x	
Perciformes	Clinidae	Heteroclinus roseus	Rosy weedfish				
Perciformes	Clinidae	Heteroclinus tristis	Sharp-nose weedfish				
Perciformes	Clinidae	Heteroclinus whiteleggii	Banded weedfish				
Perciformes	Clinidae	Heteroclinus wilsoni	Wilson's weedfish				
Perciformes	Creediidae	Limnichthys fasciatus	Barred sand burrower				
Perciformes	Cyttidae	Cyttus australis	Silver Dory				х
Perciformes	Dinolestidae	Dinolestes lewini	Longfin pike			x	х
Perciformes	Gerreidae	Parequula melbournensis	Silverbelly			x	
Perciformes	Gobiidae	Callogobius depressus	Flathead goby				
Perciformes	Gobiidae	Eviota spp.	Dwarfgobies				
Perciformes	Gobiidae	Nesogobius spp.	Gobies				

APPENDIX C-1. List of fish species recorded between Batemans Bay (NSW) and Mallacoota (VIC) and those observed in BVSC region and the study

				Threatene	d Species	Recorded by RLS in BVSC region ³	Observed in Study Area ⁴
Order	Family	Taxon	Common name	EPBC Act 1999 ¹	FM Act 1994 ²		
Perciformes	Kyphosidae Girell	Girella cyanea	Blue drummer/ Bluefish		<u>р</u>		
Perciformes	Kyphosidae	Girella elevata	Black drummer		P	x	
Perciformes	Kyphosidae	Girella tricuspidata	Luderick			x	x
Perciformes	Kyphosidae	Girella zebra	Zebra fish				х
Perciformes	Kyphosidae	Kyphosus sydneyanus	Silver drummer			x	
Perciformes	Kyphosidae	Scorpis aequipinnis	Sea sweep			x	
Perciformes	Kyphosidae	Scorpis lineolata	Silver sweep			х	x
Perciformes	Labridae	Achoerodus viridis	Eastern blue groper			х	x
Perciformes	Labridae	Anampses caeruleopunctatus	Bluespotted wrasse			х	
Perciformes	Labridae	Austrolabrus maculatus	Black-spotted wrasse			х	
Perciformes	Labridae	Coris dorsomacula	Pale-barred coris				
Perciformes	Labridae	Coris picta	Comb wrasse			x	
Perciformes	Labridae	Coris sandeyeri	Sandager's wrasse				
Perciformes	Labridae	Dotalabrus aurantiacus	Castelnau's wrasse			х	
Perciformes	Labridae	Eupetrichthys angustipes	Snakeskin wrasse			х	
Perciformes	Labridae	Halichoeres nebulosus	Nebulous wrasse			x	
Perciformes	Labridae	Labroides dimidiatus	Bluestreak cleaner wrasse	1		x	
Perciformes	Labridae	Notolabrus fucicola	Yellow-saddled wrasse			x	
Perciformes	Labridae	Notolabrus gymnogenis	Crimson-banded wrasse			x	х
Perciformes	Labridae	Notolabrus tetricus	Blue-throated wrasse			x	х
Perciformes	Labridae	Ophthalmolepis lineolatus	Maori wrasse			х	х
Perciformes	Labridae	Pictilabrus laticlavius	Senator wrasse			х	х
Perciformes	Labridae	Pseudolabrus guentheri	Gunther's wrasse				
Perciformes	Labridae	Pseudolabrus luculentus	Orange wrasse			х	
Perciformes	Labridae	Pseudolabrus mortonii	Rosy wrasse				
Perciformes	Labridae	Stethojulis interrupta	Brokenline/Cutribbon wrasse			x	
Perciformes	Labridae	Suezichthys arquatus	Painted rainbow wrasse				
Perciformes	Labridae	Thalassoma amblycephalum	Bluntheaded wrasse				
Perciformes	Labridae	Thalassoma lunare	Moon wrasse				
Perciformes	Latridae	Latridopsis forsteri	Bastard trumpeter			x	х
Perciformes	Microcanthidae	Atypichthys strigatus	Australian mado			x	х
Perciformes	Microdesmidae	Ptereleotris evides	Blackfin dartfish				
Perciformes	Monodactylidae	Schuettea scalaripinnis	Eastern pomfred				
Perciformes	Mullidae	Parupeneus multifasciatus	Manybar goatfish				
Perciformes	Mullidae	Parupeneus spilurus	Blackspot goatfish			x	
Perciformes	Mullidae	Upeneichthys lineatus	Bluestriped goatfish				
Perciformes	Mullidae	Upeneichthys sp	Goatfish			x	х
Perciformes	Mullidae	Upeneichthys vlamingii	Bluespotted goatfish			x	
Perciformes	Odacidae	Heteroscarus acroptilus	Rainbow cale			x	x
Perciformes	Odacidae	Olisthops cyanomelas	Herring cale			x	x
Perciformes	Pempherididae	Parapriacanthus elongatus	Elongate bullseye				
Perciformes	Pempherididae	Pempheris affinis	Black-tipped bullseye			x	
Perciformes	Pempherididae	Pempheris compressa	Smallscale bullseye			x	xx
Perciformes	Pempherididae	Pempheris multiradiata	Bigscale bullseye				xx
Perciformes	Pentacerotidae	, Pentaceropsis recurvirostris	Longsnout boarfish				xx
Perciformes	Pinguipedidae	Parapercis allporti	Eastern Barred Grubfish				x
Perciformes	Plesiopidae	Paraplesiops bleekeri	Eastern blue devil	1	р		
Perciformes	Plesiopidae	Trachinops taeniatus	Eastern hulafish	1		x	x
Perciformes	Pomacentridae	Abudefduf sexfasciatus	Scissortail sergeant	1			
Perciformes	Pomacentridae	Abudefduf vaigiensis	Indo-Pacific sergeant				
Perciformes	Pomacentridae	Chromis hypsilepis	Onespot Puller			x	х
Perciformes	Pomacentridae	Chrysiptera rollandi	Rolland's demoiselle				
Perciformes	Pomacentridae	Mecaenichthys immaculatus	Immaculate damsel	1		x	
Perciformes	Pomacentridae	Parma microlepis	White-ear scalyfin			x	х
Perciformes	Pomacentridae	Parma unifasciata	Girdled scalyfin				
Perciformes	Pomacentridae	Parma victoriae	Victorian scalyfin				
Perciformes	Pomacentridae	Pomacentrus australis	Australian damsel				İ
Perciformes	Pomacentridae	Pomacentrus coelestis	Neon damselfish			x	İ
Perciformes	Scombridae	Sarda australis	Australian bonito				
Perciformes	Scombridae	Thunnus maccoyii	Southern bluefin tuna	1	е		t

APPENDIX C-1. List of fish species recorded between Batemans Bay (NSW) and Mallacoota (VIC) and those observed in BVSC region and the study

.		_		Threatene	d Species	Recorded by RLS in	Observed in Study Area ⁴
Order	Family	Taxon	Common name	EPBC Act 1999 ¹	FM Act 1994 ²	BVSC region ³	
Perciformes	Serranidae	ranidae Acanthistius cinctus	Yellowbanded perch				
Perciformes	Serranidae	Acanthistius ocellatus	Eastern wirrah			x	х
Perciformes	Serranidae	Caesioperca lepidoptera	Butterfly perch			x	х
Perciformes	Serranidae	Caesioperca rasor	Barber Perch				х
Perciformes	Serranidae	Epinephelus daemelii	Black cod	V	V		
Perciformes	Serranidae	Hypoplectrodes annulatus	Blackbanded seaperch			x	
Perciformes	Serranidae	Hypoplectrodes maccullochi	Half-banded seaperch			x	x
Perciformes	Serranidae	Hypoplectrodes nigroruber	banded seapearch			x	xx
Perciformes	Sillaginidae	Sillago bassensis	Southern School Whiting				
Perciformes	Sillaginidae	Sillago flindersi	Eastern School Whiting				х
Perciformes	Sparidae	Acanthopagrus australis	Yellowfin bream				
Perciformes	Sparidae	Sparus aurata	Snapper			x	x
Perciformes	Sparidae	Rhabdosargus sarba	Goldlined seabream			x	
Perciformes	Sphyraenidae	Sphyraena novaehollandiae	Australian barracuda			~	
Perciformes	Tripterygiidae	Enneapterygius rufopileus	Redcal triplefin				
Perciformes	Tripterygiidae	Trinorfolkia clarkei	Clarke's triplefin			x	
Perciformes	Zanclidae	Zanclus cornutus Moorish idol				<u> </u>	
Pleuronectiformes	Paralichthyidae	Pseudorhombus jenynsii	Smalltoothed flounder				
Scorpaeniformes	Aploactinidae	Aploactisoma milesii	Southern velvetfish				
		Platycephalus bassensis	Sand flathead				v
Scorpaeniformes	Platycephalidae	3 1					x
Scorpaeniformes	Platycephalidae	Platycephalus caeruleopunctatus	Bluespotted flathead				x
Scorpaeniformes	Platycephalidae	Platycephalus fuscus	Dusky flathead				
Scorpaeniformes	Platycephalidae	Thysanophrys cirronasa	Tasselsnout flathead				
Scorpaeniformes	Scorpaenidae	Centropogon australis	Eastern fortescue				
Scorpaeniformes	Scorpaenidae	Neosebastes scorpaenoides	Common gurnard perch				
Scorpaeniformes	Scorpaenidae	Scorpaena cardinalis	Cook's scorpionfish			x	
Scorpaeniformes	Scorpaenidae	Scorpaena jacksoniensis	Eastern red scorpionfish				х
Scorpaeniformes	Scorpaenidae	Scorpaena papillosa	Red rock cod			х	
Siluriformes	Plotosidae	Cnidoglanis macrocephalus	Estuary cobbler			х	
Sygnathiformes	Fistulariidae	Fistularia petimba	Red cornetfish	р	р		
Sygnathiformes	Fistulariidae	Fistularia commersonii	Smooth flutefish	р	р		
Sygnathiformes	Syngnathidae	Hippocampus whitei	White's seahorse	р	р		
Sygnathiformes	Syngnathidae	Phyllopteryx taeniolatus	Weedy seadragon	р	р		
Syngnathiformes	Syngnathidae	Hippocampus abdominalis	Big-belly seahorse	р	р		
Syngnathiformes	Syngnathidae	Lissocampus runa	Javelin Pipefish	р	р		
Syngnathiformes	Syngnathidae	Solegnathus spinosissimus	Spiny pipehorse	р	р		
Syngnathiformes	Syngnathidae	Stigmatopora argus	Spotted pipefish	р	р		
Syngnathiformes	Syngnathidae	Stigmatopora nigra	Widebody pipefish	р	р		
Syngnathiformes	Syngnathidae	Urocampus carinirostris	Hairy pipefish	р	р		
Syngnathiformes	Syngnathidae	Vanacampus margaritifer	Mother-of-pearl pipefish	р	р		
Syngnathiformes	Syngnathidae	Vanacampus phillipi	Port Phillip pipefish	р	р		
Tetradontiformes	Diodontidae	Dicotylichthys punctulatus	Threebar porcupinefish				xx
Tetradontiformes	Diodontidae	Diodon nicthemerus	Slenderspine porcupine fish			x	
Tetradontiformes	Monacanthidae	Acanthaluteres spilomelanurus	Bridled leatherjacket				
Tetradontiformes	Monacanthidae	Acanthaluteres vittiger	Toothbrush leatherjacket			x	х
Tetradontiformes	Monacanthidae	Brachaluteres jacksonianus	Southern pygmy leatherjacket				
Tetradontiformes	Monacanthidae	Eubalichthys bucephalus	Black reef leatherjacket			x	xx
Tetradontiformes	Monacanthidae	Eubalichthys mosaicus	Mosaic leatherjacket			x	х
Tetradontiformes	Monacanthidae	Meuschenia flavolineata	Yellow-striped leatherjacket			x	х
Tetradontiformes	Monacanthidae	Meuschenia freycineti	Six-spined leatherjacket			x	х
Tetradontiformes	Monacanthidae	Meuschenia scaber	Velvet leatherjacket			x	x
Tetradontiformes	Monacanthidae	Meuschenia trachylepis	Yellowfin leatherjacket			x	
Tetradontiformes	Monacanthidae	Meuschenia venusta	Stars and stripes leatherjacket			x	
Tetradontiformes	Monacanthidae	Monacanthidae sp	Leatherjacket				x
Tetradontiformes	Monacanthidae	Nelusetta ayraudi	Chinaman leatherjacket				x
Tetradontiformes	Monacanthidae	Scobinichthys granulatus	Rough leatherjacket			x	x
Tetradontiformes	Ostraciidae	Anoplocapros inermis	Eastern smooth boxfish			x	^
			Smooth toadfish			~	
Tetradontiformes	Tetraodontidae Tetraodontidae	Tetractenos glaber Tetractenos hamiltoni	Common toadfish				
Tetradontiformes							

		_		Threateneo	d Species	Recorded by RLS in	Observed	
Order	Family	Taxon	Common name	EPBC Act 1999 ¹	FM Act 1994 ²	BVSC region ³	in Study Area ⁴	
Rays and Sharks	(Elasmobranchii)	•	·					
Carcharhiniformes	Carcharhinidae	Carcharhinus brachyurus	Bronze Whaler Shark				x	
Carcharhiniformes	Scyliorhinidae	Cephaloscyllium laticeps	Draughtboard shark			х	х	
Carcharhiniformes	Sphyrnidae	Sphyrna lewini	Scalloped hammerhead shark		е			
Carcharhiniformes	Triakidae	Galeorhinus galeus	School shark				x	
Carcharhiniformes	Triakidae	Mustelus antarcticus	Gummy shark				x	
Heterodontiformes	Heterodontidae	Heterodontus galeatus	Crested hornshark					
Heterodontiformes	Heterodontidae	Heterodontus portusjacksoni	Port Jackson shark			х	x	
Lamniformes	Lamnidae	Carcharodon carcharias	Great white shark	v	v			
Lamniformes	Lamnidae	Lamna nasus	Porbeagle	р				
Lamniformes	Odontaspididae	Carcharias taurus	Grey nurse/ Sand tiger shark	се	се			
Myliobatiformes	Dasyatidae	Dasyatis brevicaudata	Smooth stingray			х	х	
Myliobatiformes	Dasyatidae	Dasyatis thetidis	Thorntail stingray					
Myliobatiformes	Myliobatidae	Myliobatis australis	Southern eagle ray				x	
Myliobatiformes	Urolophidae	Trygonoptera imitata	Eastern shovelnose stingaree			х	х	
Myliobatiformes	Urolophidae	Trygonoptera mucosa	Western shovelnose stingaree					
Myliobatiformes	Urolophidae	Trygonoptera testacea	Common stingaree			х	x	
Myliobatiformes	Urolophidae	Urolophus cruciatus	Banded stingaree				х	
Myliobatiformes	Urolophidae	Urolophus kapalensis	Kapala stingaree			х	х	
Myliobatiformes	Urolophidae	Urolophus paucimaculatus	Sparsely-spotted stingaree				х	
Myliobatiformes	Urolophidae	Urolophus sp	Stingaree sp.				x	
Orectolobiformes	Brachaeluridae	Brachaelurus waddi	Blind shark					
Orectolobiformes	Orectolobidae	Orectolobus maculatus	Gilf wobbegong			х		
Orectolobiformes	Orectolobidae	Orectolobus maculatus	Spotted wobbegong			х		
Orectolobiformes	Orectolobidae	Orectolobus ornatus	Ornate wobbegong					
Pristiophoriformes	Pristiophoridae	Pristiophorus nudipinnis	Southern sawshark				х	
Rajiformes	Rajidae	Spiniraja whitleyi	Melbourne Skate				х	
Rhinopristiformes	Rhinobatidae	Aptychotrema rostrata	Eastern Shovelnose Ray				х	
Rhinopristiformes	Rhinobatidae	Trygonorrhina fasciata	Eastern fiddler ray			х	х	
Scyliorhinidae	Scyliorhinidae	Scyliorhinid spp.	Catsharks					
Torpediniformes	Hypnidae	Hypnos monopterygius	Coffin ray					
	TOTALS	208		1		93	73	

APPENDIX C-1. List of fish species recorded between Batemans Bay (NSW) and Mallacoota (VIC) and those observed in BVSC region and the study

Note

Taxonomy follows currently accpeted nomenclature from:

WoRMS Editorial Board (2020). World Register of Marine Species. Available from URL: http://www.marinespecies.org.

¹ EPBC Act = Commonwealth Environment Protection Biodiversity Conservation Act 1999

² FM Act = NSW Fisheries Managament Act 1994

p = protected, v = vulnerable, endangered, ce = critically endangered, pe = presumed extinct

³ Observed in one or more RLS (2017) sites in the Bega Valley Shire region

⁴ Observed in study area during marine ecology investigations (2-10 November 2017, 10 October 2019). X = recorded with BRUV, xx = recorded in tow video or observed by divers

APPENDIX C-2. Rank order of average annual catch (gross kg) for Pambula area based on reported commercial wild harvest in years 2009/10 to 2016/16.

Species Code	CommonName	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16	2016/17	AVERAGE ANNUAL CATCH
SAL-01	Australian Salmon	456.1	95.9	97250.9	66560.9	5927.8	16357.3	14123	119850	(gross kg) 40,077.7
PIL-01	Australian Sardine	2070	0500.4	0074.4	0405.0	5505 4	21052	28510	54257	34,606.3
ABA-01 COC-02	Blacklip Abalone Estuary Cockle	3679 1176.5	6508.4 11954	8674.1 3888	9195.6 5917.1	5525.4 2573	4138.8 1333	3142.6	4286.8	5,643.8 4,473.6
LUD-01	Luderick	3573.7	874.3	1063.7	4631.7	3162.3	3861.3	94		2,465.9
WHI-01	Eastern School Whiting	3047.5	425	3216.2	256	130	107.4	900	300	1,047.8
TRE-01 FLA-04	Silver Trevally Tiger Flathead	1810.6 766	418.5	270.3 959.3	1858 936	990.5 955	1853 990	70 620	349	1,038.7 796.5
SHK-24	Gummy Shark	2246.2	212.1	1099.3	1688.3	594.3	110.3	20	10	747.6
GAR-01	Eastern Sea Garfish	363.8	1328.1		146.4		468.2		862.7	633.8
MAC-01 TAI-01	Blue Mackerel Tailor	87.8	80.1	70 38.3	6 507.8	904 1160.1	1246 1102.6	134		556.5 444.4
BRM-01	Yellowfin Bream	237.1	69.9	169.2	1083.6	344.6	557.3	134		410.3
MUL-01	Sea Mullet	1054.7	154	24.8	82.9	635.5	495.2			407.9
MUL-03	Fantail Mullet	4	<u></u>		25.3	380.9	1104.7	80		319.0
JKT-02 EEL-01	Ocean Jacket Longfin Eel	655	60		477 127	400 771.9	239 10.6	50		313.5 303.2
FLA-01	Flathead (other)			285.3	222.4	385	283.9			294.2
WHI-02	Sand Whiting	471.3	16.6		264.4	74.1	564.8			278.2
SNA-01 SHK-41	Snapper Draughtboard Shark	126.7 956	10	571.4 31	194.8 69.5	796.6 12.3	181		7	269.6 267.2
JKT-01	Leatherjacket (other)	488.5		142	615.2	12.5	3			252.7
YEL-01	Yellowtail Scad						83.6	360		221.8
SQU-01	Pencil Squid	100		400.5	14					207.3
MAC-06 RAY-01	Jack Mackerel Stingrays/Stingarees	180 98.5	82.2	165.7	189.1	210	208			180.0 158.9
TUN-02	Skipjack Tuna		02.2	285	26					155.5
MIX-01	Species Identification Pending	159.5		146.4	348.9	94.4	14			152.6
MOR-01 BRM-02	Grey Morwong Black Bream	372.5 67.8	10.0	107.9	2.5 30.2	145 371.2	38.3 81.8		13	113.2 112.6
JKT-03	Black Bream Estuary Leatherjacket (rough/fanbelly)	69	12.2 3.5		30.2 441.5	371.2	81.8 21			112.6
DOR-01	John Dory	276.5	40	3.5	221.8	62	65.6	50		102.8
SHK-12	Bronze Whaler	45.2		22.5	85.1	207.3				90.0
SHK-18 KIN-01	Sharpnose Sevengill Shark Yellowtail Kingfish	97.5 70.5		80 253.5	17	7.9	21			88.8 74.0
TUN-07	Albacore	70.5		255.5	17	73.3	21			73.3
MAC-04	Frigate Mackerel	73								73.0
FLA-03	Bluespotted Flathead	30		125.6	32	3	149	80	72	70.2
SHK-55 SHK-36	Ghost Shark (Inc. Elephant) Eastern Angelshark	33			38		70 135.5			70.0 68.8
CUT-02	Cuttlefish (other)	26	40	40	28	197	133.8	15		68.5
CAL-01	Southern Calamari	135		31.5	56	98	77	10		67.9
SHK-51	Eastern Shovelnose Ray	8		61.3	211.5	23.8	26			66.1
SHK-42 FLA-02	Saddled Swellshark Dusky Flathead	173.8	55.8	127.5 16.8	4 76.1	12	44.9			65.8 63.2
SHK-21	Southern Dogfish (Protected since February 2013)	110.0	63	10.0	10.1					63.0
CAT-01	Eeltail Catfish (cobblers)	92.5	12.4	17.4	86.9	22.5	120.7			58.7
CUT-01 WAH-01	Giant Cuttlefish	105.5 82		10 23	46.1					53.9 52.5
LAT-01	Blue Warehou Latchet	123		98.9	15	12	23	40		52.0
GUR-01	Red Gurnard	66		50	109.5		3	25	22	45.9
SCO-01	Eastern Red Scorpionfish						45.6			45.6
SHK-37 SQU-02	Australian Angelshark Gould's Squid (Arrow)	64		60		30	20			45.0 42.0
MUL-02	Sand Mullet	2	16.1		47.3		51	84		40.1
RED-01	Redfish			2.7		69				35.9
MUL-10	Mulloway	5	48.7	6.8	64.8	32.6	52.7	37		35.1
MUL-06 JKT-04	Red Mullet (Goatfish-undifferentiated) Sixspine Leatherjacket (Reef)	76.5 30		30	7 5	11	30.5 59.9	37		32.4 31.2
OCT-02	Maori Octopus (South Coast)	00			26.6	61.9	24	10		30.6
SHK-34	Scalloped Hammerhead (Protected since May 2012)			30						30.0
SHK-50 SHK-52	Whitespotted Guitarfish Giant Shovelnose Ray	30 30								30.0 30.0
COD-01	Bastard Red Cod	30		2.9	55.5					29.2
WRA-01	Southern Maori Wrasse	40					41.5		6	29.2
SHK-49	Eastern Flddler Ray	30	25.8	40.5		07	00.5	40	<u> </u>	27.9
BOA-01 SHK-30	Giant Boarfish Thresher Shark	48.5		13.5	27.2	37	29.5	10		27.7 27.2
OCT-01	Trawl Octopus (Hammer, North Coast)	57		13	25.5	17.1	22.2			27.0
SQU-04	Luminous Bay Squid (Bottle)	0.1.5	25							25.0
BLU-01 WHI-04	Blue-Eye Trevalla Trumpeter Whiting	24.5					12	37		24.5 24.5
GAR-02	River Garfish	23.5					12	51		23.5
PER-08	Pearl Perch	-			23.5					23.5
SHK-01	Sandbar Shark			24.5	15		16.5			18.7
SHK-38 BID-01	Banded Wobbegong Common Silverbiddy			7.4	27.1		17			17.3 17.0
MOR-03	Jackass Morwong				17					17.0
CAT-02	Forktail Catfishes	16								16.0
MUL-04 TUN-01	Goldspot Mullet Yellowfin Tuna	16				16				16.0 16.0
SHK-33	Great Hammerhead (Protected since May 2012)			15.3		10				15.3
TAR-01	Tarwhine	30.3			4.5	13.2	7			13.8
SHK-46	Southern Sawshark	20.5		21			7		5	13.4
MIX-02 SHK-26	Fisheries Compliance Investigation School Shark	26.6		1.8	6.3		12			12.0 11.6
WRA-03	Bluethroat Wrasse	20.0		1.0	0.3		8.4		14.1	11.8
CRA-08	Male Mud Crab					16.6	4.4			10.5
SHK-11	Bull Shark				10.2					10.2
GOA-01 SHK-47	Blacksaddle Goatfish Common Sawshark			5	13				10	10.0 9.0
OCT-03	Pale Octopus (South Coast)	15.5		5	10	2				8.8
LIN-02	Rock Ling			8.5						8.5
CRA-02	Male Blue Swimmer Crab	8		8.4	8.3	2.8	14.2			8.3
MUL-05 FLO-01	Pinkeye Mullet Flounders (large/small) toothed/slender	7.9 16.5			5		2			7.9 7.8
SHK-06	Tiger Shark				7.7					7.7

APPENDIX C-2. Rank order of average annual catch (gross kg) for Pambula area based on reported commercial wild harvest in years 2009/10 to 2016/16.

Species Code	CommonName	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16	2016/17	AVERAGE ANNUAL CATCH (gross kg)
SHK-03	Dusky Whaler				7.4					7.4
PER-02	Ocean Reef Perch			7						7.0
WRA-02	Crimsonband Wrasse						12.8		1	6.9
MOR-02	Red Morwong	9.5					3.5			6.5
WIR-01	Eastern Wirrah	4					3		9.4	5.5
BUG-01	Balmain Bug					5				5.0
SHK-19	Dark-tailed Dogfisher				5					5.0
SOL-02	Black Sole	3.2			2.8	1.8	11.8			4.9
COB-01	Cobia						4.8			4.8
SHK-28	Shortfin Mako			4.6						4.6
MAC-05	School Mackerel	4.5								4.5
PRN-01	King Prawn						4.5			4.5
EEL-02	Southern Shortfin Eel					3.5				3.5
SER-01	Sergeant Baker	3								3.0
SOL-01	Sole (other)	0.4		3.4			4.5			2.8
MOR-04	Blue Morwong			2.3						2.3
WHI-05	King George Whiting	2								2.0
PIK-01	Longfin Pike	1							2.5	1.8
SHK-35	Smooth Hammerhead	3			0.5					1.8
SHK-43	Whitefin Swellshark	1.5								1.5
SNA-04	Rosy Snapper	1.5								1.5
SWE-10	Sweep								1.5	1.5
EEL-04	Eastern Conger Eel					1.3				1.3
BLA-01	Rock Blackfish	1								1.0
LIN-01	Pink Ling			0.7						0.7
BON-01	Australian Bonito									
FLA-05	Marbled Flathead									
MUS-01	Blue Mussel									
PIP-01	Pipi									
SWE-01	Sweetlip									
WHE-01	Whelks									
WOR-01	Beachworms (Polychaete Worms)									
	Total	24523.2	22876.4	120407.3	97971.4	27645.1	58006.3	48501.6	180079	72501.3

Note Data Source: NSW DPI (Excluding Rock Lobster and Sea Urchin & Turban Shell fisheries due to privacy), Pambula area as at 25-08-2017

Note: Reported commercial wild harvest landings data alone is not a robust indicator of abundance due to Environmental, Economic, Social and Legislative factors.

IMAGES OF HABITATS AND DEPTH SAMPLED USING BAITED UNDERWATER VIDEO (BRUV)

APPENDIX C-3

Plate 1. BRUV deployments 01 to 08.

APPENDIX C-3

Plate 2. BRUV deployments 09 to 16.

APPENDIX C-3

Plate 3. BRUV deployments 17 to 24.

Plate 4. BRUV deployments 25 to 30.

APPENDIX C-4. Fish taxa and maxN observations recorded	by BRU	/ survey on sand, reef	f and macroalgal habitats,	Merimbula Bay.

FAMILY Bony Fishes (Actine Aplodactylidae Aplodactylidae		DATE LOCATION	3/11/17 HR	3/11/17	3/11/17	3/11/17	4/11/17	4/11/17	8/11/17
Bony Fishes (Actino Aplodactylidae			HR	1					
Bony Fishes (Actino Aplodactylidae				HR	HP	HP	HR	HR	HP
Bony Fishes (Actino Aplodactylidae		DEPTH (M)	29	28	20	21	23	20	21
Bony Fishes (Actino Aplodactylidae		HABITAT	reef	reef	macroalgae	sand	reef	reef	sand
Bony Fishes (Actino Aplodactylidae	GENUS SPECIES	COMMON NAME							
Aplodactylidae									<u> </u>
				<u>г</u>			<u>г</u>	r	1
ADIOUACIVIIUAE	Aplodactylus arctidens	Marblefish Rock cale				1			
Aulopidae	Aplodactylus lophodon Latropiscis purpurissatus	Sergeant baker		1					
Berycidae	Centroberyx affinis	Nannygai	1	1					
Carangidae	Pseudocaranx georgianus	Silver trevally		7	1	1	1		
Carangidae	Trachurus novaezelandiae	Yellowtail horse mackerel		23	18	45			21
Cheilodactylidae	Cheilodactylus fuscus	Red Morwong	1	2	2				
Cheilodactylidae	Nemadactylus douglasii	Blue Morwong		1	1	1	1	1	
Chironemidae	Chironemus marmoratus	Eastern Kelpfish							
Cyttidae	Cyttus australis	Silver Dory			1				
Dinolestidae	Dinolestes lewini	Longfin pike		6			10		
Enoplosidae	Enoplosus armatus	Old wife		2					<u> </u>
Kyphosidae Kyphosidao	Girella tricuspidata	Luderick Zobra fish		+			+	<u> </u>	<u> </u>
Kyphosidae Kyphosidae	Girella zebra Scorpis lineolata	Zebra fish Silver sweep	4	3	2		17	3	<u> </u>
Kypnosidae Labridae	Achoerodus viridis	Eastern blue groper	4	3	۷		17	3	<u> </u>
Labridae	Notolabrus gymnogenis	Crimson-banded wrasse	1						
Labridae	Notolabrus tetricus	Blue-throated wrasse			1			1	
Labridae	Ophthalmolepis lineolatus	Maori wrasse	2	1	3	2	2	2	
Labridae	Pictilabrus laticlavius	Senator wrasse			1	1			
Latridae	Latridopsis forsteri	Bastard trumpeter					1		
Microcanthidae	Atypichthys strigatus	Australian mado	6	35	7	110			
Monacanthidae	Acanthaluteres vittiger	Toothbrush leatherjacket			1				
Monacanthidae	Eubalichthys mosaicus	Mosaic leatherjacket	1				1		
Monacanthidae	Meuschenia flavolineata	Yellow-striped leatherjacket						2	
Monacanthidae	Meuschenia freycineti	Six-spined leatherjacket	1	1			1		
Monacanthidae	Meuschenia scaber	Velvet leatherjacket	8	2			1	1	
Monacanthidae Monacanthidae	Monacanthidae sp Nelusetta ayraudi	Leatherjacket Chinaman leatherjacket					1		
Monacanthidae	Scobinichthys granulatus	Rough leatherjacket							<u> </u>
Mullidae	Upeneichthys sp	Goatfish				1	1		
Muraenidae	Gymnothorax prasinus	Yellow moray	2	1	1	·	2	3	
Odacidae	Heteroscarus acroptilus	Rainbow cale				1	_		
Odacidae	Olisthops cyanomelas	Herring cale			1	3			
Platycephalidae	Platycephalus bassensis	Sand flathead							
Platycephalidae	Platycephalus caeruleopunctatus	Bluespotted flathead							3
Plesiopidae	Trachinops taeniatus	Eastern hulafish							
	Pseudorhombus sp.	Flounder							
	Parapercis allporti	Eastern Barred Grubfish							
Pomacentridae	Chromis hypsilepis	Onespot Puller						10	
Pomacentridae	Parma microlepis	White-ear scalyfin		1	2				
Scorpaenidae Scorpaenidae	Scorpaena jacksoniensis Centropogon australis	Eastern red scorpionfish Eastern Fortesque		2					
Serranidae	Acanthistius ocellatus	Eastern wirrah							
Serranidae	Caesioperca lepidoptera	Butterfly perch					2	2	1
Serranidae	Caesioperca rasor	Barber Perch		1			_		
Serranidae	Hypoplectrodes maccullochi	Half-banded seaperch		1					
Sillaginidae	Sillago flindersi	Eastern School Whiting							20
Sparidae	Sparus aurata	Snapper		3	2	1	2	1	
Rays and Sharks (E	Elasmobranchii)								
Carcharhinidae	Carcharhinus brachyurus	Bronze Whaler Shark							
Dasyatidae	Dasyatis brevicaudata	Smooth stingray				1			
Heterodontidae	Heterodontus portusjacksoni	Port Jackson shark			1		<u> </u>		<u> </u>
Triakidae	Galeorhinus galeus	School shark	4	4			1		<u> </u>
Triakidae Muliobatidae	Mustelus antarcticus Muliopatis australis	Gummy shark	1	1		4	1	<u> </u>	<u> </u>
Myliobatidae Rhinobatidae	Myliobatis australis Aptychotrema rostrata	Southern eagle ray Eastern Shovelnose Ray		1		1	1		
Rhinobatidae	Trygonorrhina fasciata	Eastern fiddler ray		ł			ł	1	1
Rajidae	Spiniraja whitleyi	Melbourne Skate		1			1	1	<u> </u>
Scyliorhinidae	Cephaloscyllium laticeps	Draughtboard shark							<u> </u>
Urolophidae	Trygonoptera testacea	Common stingaree		1	1			t	1
Urolophidae	Urolophus kapalensis	Kapala stingaree							
Urolophidae	Urolophus paucimaculatus	Sparsely-spotted stingaree							
Urolophidae	Urolophus cruciatus	Banded stingaree							
		SPECIES RICHNESS	11	21	17	13	16	10	4

¹ Observed in study area using BRUV during Stage 1 fieldwork (3-9 November 2017), Stage 2 fieldwork (10 October 2019)
 Taxonomy follows currently accpeted nomenclature from: WoRMS Editorial Board (2020). World Register of Marine Species. Available from URL: http://www.marinespecies.org.

		BRUV #	BRUV08	BRUV09	BRUV10	BRUV11	BRUV12	BRUV13	BRUV14
		DATE	8/11/17	6/11/17	6/11/17	8/11/17	8/11/17	8/11/17	8/11/17
		LOCATION	HP	HP	HP	HR	HR	HP	HP
		DEPTH (M)	22	10	10.5	39	39	5	8
		HABITAT	sand	sand	sand	sand	reef	macroalgae	-
FAMILY	GENUS SPECIES	COMMON NAME						-	
Bony Fishes (Acti	nontorygii)				L		L	1	l
· ·		Marthlafiah	-	1		[1	[
Aplodactylidae Aplodactylidae	Aplodactylus arctidens Aplodactylus lophodon	Marblefish Rock cale						1	
Aulopidae	Latropiscis purpurissatus	Sergeant baker							
Berycidae	Centroberyx affinis	Nannygai							
Carangidae	Pseudocaranx georgianus	Silver trevally			1	30			2
Carangidae	Trachurus novaezelandiae	Yellowtail horse mackerel	24		98	3			16
Cheilodactylidae	Cheilodactylus fuscus	Red Morwong							
Cheilodactylidae	Nemadactylus douglasii	Blue Morwong					1		
Chironemidae	Chironemus marmoratus	Eastern Kelpfish							
Cyttidae	Cyttus australis	Silver Dory							
Dinolestidae	Dinolestes lewini	Longfin pike			1				1
Enoplosidae	Enoplosus armatus	Old wife							
Kyphosidae	Girella tricuspidata	Luderick							1
Kyphosidae	Girella zebra	Zebra fish			_			40	
Kyphosidae	Scorpis lineolata	Silver sweep			4		2	13	1
Labridae	Achoerodus viridis	Eastern blue groper			1		1		1
Labridae Labridae	Notolabrus gymnogenis Notolabrus tetricus	Crimson-banded wrasse			2			1	
Labridae	Ophthalmolepis lineolatus	Blue-throated wrasse Maori wrasse			4		2		
Labridae	Pictilabrus laticlavius	Senator wrasse			4		2	1	
Latridae	Latridopsis forsteri	Bastard trumpeter						1	
Microcanthidae	Atypichthys strigatus	Australian mado					1	61	111
Monacanthidae	Acanthaluteres vittiger	Toothbrush leatherjacket					- 1	01	
Monacanthidae	Eubalichthys mosaicus	Mosaic leatherjacket							
Monacanthidae	Meuschenia flavolineata	Yellow-striped leatherjacket							
Monacanthidae	Meuschenia freycineti	Six-spined leatherjacket							
Monacanthidae	Meuschenia scaber	Velvet leatherjacket					2		
Monacanthidae	Monacanthidae sp	Leatherjacket							
Monacanthidae	Nelusetta ayraudi	Chinaman leatherjacket		1			2		
Monacanthidae	Scobinichthys granulatus	Rough leatherjacket		2					
Mullidae	Upeneichthys sp	Goatfish							
Muraenidae	Gymnothorax prasinus	Yellow moray			2			1	
Odacidae	Heteroscarus acroptilus	Rainbow cale							
Odacidae	Olisthops cyanomelas	Herring cale						2	1
Platycephalidae	Platycephalus bassensis	Sand flathead							
Platycephalidae	Platycephalus caeruleopunctatus	Bluespotted flathead	4			4	1		
Plesiopidae	Trachinops taeniatus	Eastern hulafish							
Paralichthyidae	Pseudorhombus sp.	Flounder							
Pinguipedidae	Parapercis allporti	Eastern Barred Grubfish							
Pomacentridae	Chromis hypsilepis	Onespot Puller							
Pomacentridae	Parma microlepis	White-ear scalyfin					1		
Scorpaenidae	Scorpaena jacksoniensis	Eastern red scorpionfish							
Scorpaenidae	Centropogon australis	Eastern Fortesque			4				
Serranidae	Acanthistius ocellatus	Eastern wirrah	L		1		2	ł	
Serranidae	Caesioperca lepidoptera	Butterfly perch					2		
Serranidae Serranidae	Caesioperca rasor Hypoplectrodes maccullochi	Barber Perch					2	+	
Serranidae Sillaginidae	Hypoplectrodes maccullochi Sillago flindersi	Half-banded seaperch Eastern School Whiting	22				2	1	
Shagindae	Sparus aurata	Snapper	22			5	1	1	
Rays and Sharks		lonappei		1	1	5	· ·	1	1
Carcharhinidae	Carcharhinus brachyurus	Bronze Whaler Shark							
Dasyatidae	Dasyatis brevicaudata	Smooth stingray		1				1	
Heterodontidae	Heterodontus portusjacksoni	Port Jackson shark		İ				1	
Triakidae	Galeorhinus galeus	School shark							
Triakidae	Mustelus antarcticus	Gummy shark							
Myliobatidae	Myliobatis australis	Southern eagle ray		1					
Rhinobatidae	Aptychotrema rostrata	Eastern Shovelnose Ray	1						
Rhinobatidae	Trygonorrhina fasciata	Eastern fiddler ray	2	1		1			
Rajidae	Spiniraja whitleyi	Melbourne Skate							
Scyliorhinidae	Cephaloscyllium laticeps	Draughtboard shark							
Urolophidae	Trygonoptera testacea	Common stingaree		1	1				
	Urolophus kapalensis	Kapala stingaree							
Urolophidae									
Urolophidae Urolophidae	Urolophus paucimaculatus	Sparsely-spotted stingaree							
		Sparsely-spotted stingaree Banded stingaree	5	5	1 11	5	12	7	7

Note

¹ Observed in study area using BRUV during Stage 1 fieldwork (3-9 November 2017), Stage 2 fieldwork (10 October 2019)
 Taxonomy follows currently accpeted nomenclature from:
 <u>WoRMS Editorial Board (2020). World Register of Marine Species. Available from URL: http://www</u>

		BRUV #	BRUV15	BRUV16	BRUV17	BRUV18	BRUV19	BRUV20
		DATE	8/11/17	9/11/17	9/11/17	9/11/17	9/11/17	9/11/17
		LOCATION	HR	HP	HR	HR	HP	HP
		DEPTH (M)	13	16	35	29	24	15
		HABITAT	reef	macroalage	reef	reef	reef	sand
FAMILY	GENUS SPECIES	COMMON NAME						
Bony Fishes (Actii	nopterygii)							
Aplodactylidae	Aplodactylus arctidens	Marblefish		1				
Aplodactylidae	Aplodactylus lophodon	Rock cale						
Aulopidae	Latropiscis purpurissatus	Sergeant baker			2	1		
Berycidae Carangidae	Centroberyx affinis Pseudocaranx georgianus	Nannygai Silver trevally		3	1		1	1
Carangidae	Trachurus novaezelandiae	Yellowtail horse mackerel		4			2	26
Cheilodactylidae	Cheilodactylus fuscus	Red Morwong		2		1		1
Cheilodactylidae	Nemadactylus douglasii	Blue Morwong	2	1	3	1	2	2
Chironemidae	Chironemus marmoratus	Eastern Kelpfish		2				1
Cyttidae	Cyttus australis	Silver Dory						
Dinolestidae	Dinolestes lewini Enoplosus armatus	Longfin pike	1	2			1	<u> </u>
Enoplosidae Kyphosidae	Enoplosus armatus Girella tricuspidata	Old wife Luderick		2			1	<u> </u>
Kyphosidae	Girella zebra	Zebra fish				1		1
Kyphosidae	Scorpis lineolata	Silver sweep	16	7	21	14	5	5
Labridae	Achoerodus viridis	Eastern blue groper				1		1
Labridae	Notolabrus gymnogenis	Crimson-banded wrasse		2			1	
Labridae	Notolabrus tetricus	Blue-throated wrasse	1	1				
Labridae Labridae	Ophthalmolepis lineolatus Pictilabrus laticlavius	Maori wrasse Senator wrasse	1	2		2	2	1
Latridae	Latridopsis forsteri	Bastard trumpeter						
Microcanthidae	Atypichthys strigatus	Australian mado	16	72	10	10	5	23
Monacanthidae	Acanthaluteres vittiger	Toothbrush leatherjacket						
Monacanthidae	Eubalichthys mosaicus	Mosaic leatherjacket						
Monacanthidae	Meuschenia flavolineata	Yellow-striped leatherjacket						
Monacanthidae	Meuschenia freycineti	Six-spined leatherjacket	1		1	1		1
Monacanthidae Monacanthidae	<i>Meuschenia scaber</i> Monacanthidae sp	Velvet leatherjacket Leatherjacket				2	1	
Monacanthidae	Nelusetta ayraudi	Chinaman leatherjacket					3	
Monacanthidae	Scobinichthys granulatus	Rough leatherjacket						
Mullidae	Upeneichthys sp	Goatfish			1			1
Muraenidae	Gymnothorax prasinus	Yellow moray	7	2	4	4	8	
Odacidae	Heteroscarus acroptilus	Rainbow cale		1		-		
Odacidae Platycephalidae	Olisthops cyanomelas Platycephalus bassensis	Herring cale Sand flathead		2				
Platycephalidae	Platycephalus caeruleopunctatus	Bluespotted flathead					1	1
Plesiopidae	Trachinops taeniatus	Eastern hulafish				10		
Paralichthyidae	Pseudorhombus sp.	Flounder						
Pinguipedidae	Parapercis allporti	Eastern Barred Grubfish						
Pomacentridae	Chromis hypsilepis	Onespot Puller	15			-		
Pomacentridae	Parma microlepis	White-ear scalyfin	<u>1</u> 1	4	1	3	4	
Scorpaenidae Scorpaenidae	Scorpaena jacksoniensis Centropogon australis	Eastern red scorpionfish Eastern Fortesque	1	1	1	1	1	
Serranidae	Acanthistius ocellatus	Eastern wirrah	3				1	1
Serranidae	Caesioperca lepidoptera	Butterfly perch			1	2	2	
Serranidae	Caesioperca rasor	Barber Perch					3	
Serranidae	Hypoplectrodes maccullochi	Half-banded seaperch			1	1	4	
Sillaginidae	Sillago flindersi	Eastern School Whiting			~			
Sparidae Rays and Sharks	Sparus aurata	Snapper		1	2	1	1	L
Carcharhinidae	Carcharhinus brachyurus	Bronze Whaler Shark		1		1		1
Dasyatidae	Dasyatis brevicaudata	Smooth stingray		1	1	1		1
Heterodontidae	Heterodontus portusjacksoni	Port Jackson shark					1	1
Triakidae	Galeorhinus galeus	School shark						
Triakidae	Mustelus antarcticus	Gummy shark						
Myliobatidae	Myliobatis australis	Southern eagle ray		1				
Rhinobatidae	Aptychotrema rostrata	Eastern Shovelnose Ray				-		
Rhinobatidae Rajidae	Trygonorrhina fasciata Spiniraja whitleyi	Eastern fiddler ray Melbourne Skate					<u> </u>	+
Kajidae Scyliorhinidae	Cephaloscyllium laticeps	Draughtboard shark				1		1
Urolophidae	Trygonoptera testacea	Common stingaree						
Urolophidae	Urolophus kapalensis	Kapala stingaree						
Urolophidae	Urolophus paucimaculatus	Sparsely-spotted stingaree						
Urolophidae	Urolophus cruciatus	Banded stingaree						
		SPECIES RICHNESS	12	20	13	17	20	14

¹ Observed in study area using BRUV during Stage 1 fieldwork (3-9 November 2017), Stage 2 fieldwork (10 October 2019) Taxonomy follows currently accpeted nomenclature from: WoRMS Editorial Board (2020), World Register of Marine Species, Available from URL: http://www

		BRUV #	BRUV21	BRUV22	BRUV23	BRUV24	BRUV25	BRUV26	BRUV27
		DATE	10/10/19	10/10/19	10/10/19	10/10/19	10/10/19	10/10/19	10/10/19
		LOCATION	MB						
		DEPTH (M)	30	30	27	28	33	21	40
		HABITAT	sand						
FAMILY	GENUS SPECIES	COMMON NAME							
Bony Fishes (Acti	nopterygii)	-	1	1	1		1	1	
Aplodactylidae	Aplodactylus arctidens	Marblefish							
Aplodactylidae	Aplodactylus lophodon	Rock cale							
Aulopidae	Latropiscis purpurissatus	Sergeant baker							
Berycidae	Centroberyx affinis	Nannygai							
Carangidae	Pseudocaranx georgianus	Silver trevally		1					96 1
Carangidae Cheilodactylidae	Trachurus novaezelandiae Cheilodactylus fuscus	Yellowtail horse mackerel Red Morwong							- 1
Cheilodactylidae	Nemadactylus douglasii	Blue Morwong							
Chironemidae	Chironemus marmoratus	Eastern Kelpfish							
Cyttidae	Cyttus australis	Silver Dory							
Dinolestidae	Dinolestes lewini	Longfin pike							
Enoplosidae	Enoplosus armatus	Old wife							
Kyphosidae	Girella tricuspidata	Luderick							
Kyphosidae	Girella zebra	Zebra fish							
Kyphosidae	Scorpis lineolata	Silver sweep							
Labridae	Achoerodus viridis	Eastern blue groper							
Labridae Labridae	Notolabrus gymnogenis Notolabrus tetricus	Crimson-banded wrasse Blue-throated wrasse							
Labridae	Ophthalmolepis lineolatus	Maori wrasse							
Labridae	Pictilabrus laticlavius	Senator wrasse							
Latridae	Latridopsis forsteri	Bastard trumpeter							
Microcanthidae	Atypichthys strigatus	Australian mado							
Monacanthidae	Acanthaluteres vittiger	Toothbrush leatherjacket							
Monacanthidae	Eubalichthys mosaicus	Mosaic leatherjacket							
Monacanthidae	Meuschenia flavolineata	Yellow-striped leatherjacket							
Monacanthidae	Meuschenia freycineti	Six-spined leatherjacket							
Monacanthidae	Meuschenia scaber	Velvet leatherjacket							
Monacanthidae	Monacanthidae sp	Leatherjacket							
Monacanthidae	Nelusetta ayraudi	Chinaman leatherjacket					1		
Monacanthidae	Scobinichthys granulatus	Rough leatherjacket							
Mullidae	Upeneichthys sp	Goatfish							-
Muraenidae Odacidae	Gymnothorax prasinus Heteroscarus acroptilus	Yellow moray Rainbow cale							
Odacidae	Olisthops cyanomelas	Herring cale							
Platycephalidae	Platycephalus bassensis	Sand flathead		2	1		3		
Platycephalidae	Platycephalus caeruleopunctatus	Bluespotted flathead	3	3	3	2	Ū	4	3
Plesiopidae	Trachinops taeniatus	Eastern hulafish							
Paralichthyidae	Pseudorhombus sp.	Flounder	1						
Pinguipedidae	Parapercis allporti	Eastern Barred Grubfish							1
Pomacentridae	Chromis hypsilepis	Onespot Puller							
Pomacentridae	Parma microlepis	White-ear scalyfin							
Scorpaenidae	Scorpaena jacksoniensis	Eastern red scorpionfish							
Scorpaenidae	Centropogon australis	Eastern Fortesque	1	2	2	1	1		
Serranidae	Acanthistius ocellatus	Eastern wirrah							
Serranidae	Caesioperca lepidoptera	Butterfly perch							
Serranidae Serranidae	Caesioperca rasor Hypoplectrodes maccullochi	Barber Perch Half-banded seaperch							
Serranidae Sillaginidae	Sillago flindersi	Eastern School Whiting		20	5	1	5	5	
Sparidae	Shiago hindersi Sparus aurata	Snapper		20				5	
Rays and Sharks		1							
Carcharhinidae	Carcharhinus brachyurus	Bronze Whaler Shark							
Dasyatidae	Dasyatis brevicaudata	Smooth stingray							
Heterodontidae	Heterodontus portusjacksoni	Port Jackson shark			3			1	
Triakidae	Galeorhinus galeus	School shark							
Triakidae	Mustelus antarcticus	Gummy shark					1		
Myliobatidae	Myliobatis australis	Southern eagle ray		1					
Rhinobatidae	Aptychotrema rostrata	Eastern Shovelnose Ray					3		
Rhinobatidae	Trygonorrhina fasciata	Eastern fiddler ray		4	1		1	2	2
Rajidae Saulia triaidae	Spiniraja whitleyi	Melbourne Skate			1				
Scyliorhinidae	Cephaloscyllium laticeps	Draughtboard shark			1				
Urolophidae Urolophidae	Trygonoptera testacea	Common stingaree Kapala stingaree							
Urolophidae Urolophidae	Urolophus kapalensis Urolophus paucimaculatus	Sparsely-spotted stingaree							
Urolophidae	Urolophus cruciatus	Banded stingaree		1					
	2.3007140 01401440	SPECIES RICHNESS	3	8	8	3	7	4	5
			5	34	17	4	15	12	103

Note

¹ Observed in study area using BRUV during Stage 1 fieldwork (3-9 November 2017), Stage 2 fieldwork (10 October 2019)
 Taxonomy follows currently accpeted nomenclature from:
 <u>WoRMS Editorial Board (2020). World Register of Marine Species. Available from URL: http://www</u>

		BRUV #	BRUV28	BRUV29	BRUV30
		DATE	10/10/19	10/10/19	10/10/19
		LOCATION	MB	MB	MB
		DEPTH (M)	35.9	31.3	27
		HABITAT	sand	sand	sand
FAMILY	GENUS SPECIES				
Bony Fishes (Actin			1	1	1
Aplodactylidae	Aplodactylus arctidens	Marblefish			
Aplodactylidae Aulopidae	Aplodactylus lophodon Latropiscis purpurissatus	Rock cale Sergeant baker			
Berycidae	Centroberyx affinis	Nannygai			
Carangidae	Pseudocaranx georgianus	Silver trevally			1
Carangidae	Trachurus novaezelandiae	Yellowtail horse mackerel	1	10	1
Cheilodactylidae	Cheilodactylus fuscus	Red Morwong			
Cheilodactylidae	Nemadactylus douglasii	Blue Morwong	-	-	
Chironemidae	Chironemus marmoratus	Eastern Kelpfish			
Cyttidae	Cyttus australis	Silver Dory			
Dinolestidae	Dinolestes lewini	Longfin pike			
Enoplosidae	Enoplosus armatus	Old wife			
Kyphosidae	Girella tricuspidata	Luderick			
Kyphosidae	Girella zebra	Zebra fish			
Kyphosidae	Scorpis lineolata	Silver sweep			
Labridae Labridae	Achoerodus viridis Notolabrus gymnogenis	Eastern blue groper Crimson-banded wrasse			
Labridae	Notolabrus gymnogerns Notolabrus tetricus	Blue-throated wrasse			
Labridae	Ophthalmolepis lineolatus	Maori wrasse			
Labridae	Pictilabrus laticlavius	Senator wrasse			
Latridae	Latridopsis forsteri	Bastard trumpeter			
Microcanthidae	Atypichthys strigatus	Australian mado			
Monacanthidae	Acanthaluteres vittiger	Toothbrush leatherjacket			
Monacanthidae	Eubalichthys mosaicus	Mosaic leatherjacket			
Monacanthidae	Meuschenia flavolineata	Yellow-striped leatherjacket			
Monacanthidae	Meuschenia freycineti	Six-spined leatherjacket		1	
Monacanthidae	Meuschenia scaber	Velvet leatherjacket			
Monacanthidae	Monacanthidae sp	Leatherjacket			
Monacanthidae	Nelusetta ayraudi	Chinaman leatherjacket			
Monacanthidae	Scobinichthys granulatus	Rough leatherjacket			
Mullidae Muraenidae	Upeneichthys sp Gymnothorax prasinus	Goatfish Yellow moray			
Odacidae	Heteroscarus acroptilus	Rainbow cale			
Odacidae	Olisthops cyanomelas	Herring cale			
Platycephalidae	Platycephalus bassensis	Sand flathead	4	4	2
Platycephalidae	Platycephalus caeruleopunctatus		1	1	1
Plesiopidae	Trachinops taeniatus	Eastern hulafish			
Paralichthyidae	Pseudorhombus sp.	Flounder			
Pinguipedidae	Parapercis allporti	Eastern Barred Grubfish			
Pomacentridae	Chromis hypsilepis	Onespot Puller			
Pomacentridae	Parma microlepis	White-ear scalyfin			
Scorpaenidae	Scorpaena jacksoniensis	Eastern red scorpionfish			
Scorpaenidae	Centropogon australis	Eastern Fortesque			1
Serranidae	Acanthistius ocellatus	Eastern wirrah			
Serranidae	Caesioperca lepidoptera	Butterfly perch Barber Perch			
Serranidae Serranidae	Caesioperca rasor Hypoplectrodes maccullochi	Half-banded seaperch			
Sillaginidae	Sillago flindersi	Eastern School Whiting	2	7	15
Sparidae	Sparus aurata	Snapper			
Rays and Sharks					•
Carcharhinidae	Carcharhinus brachyurus	Bronze Whaler Shark			
Dasyatidae	Dasyatis brevicaudata	Smooth stingray			
Heterodontidae	Heterodontus portusjacksoni	Port Jackson shark	1	1	1
Triakidae	Galeorhinus galeus	School shark			
Triakidae	Mustelus antarcticus	Gummy shark			
Myliobatidae	Myliobatis australis	Southern eagle ray			
Rhinobatidae	Aptychotrema rostrata	Eastern Shovelnose Ray			
Rhinobatidae	Trygonorrhina fasciata	Eastern fiddler ray		2	2
Rajidae	Spiniraja whitleyi	Melbourne Skate			
Scyliorhinidae	Cephaloscyllium laticeps	Draughtboard shark		1	
Urolophidae	Trygonoptera testacea	Common stingaree		4	
Urolophidae	Urolophus kapalensis	Kapala stingaree		1	4
Urolophidae Urolophidae	Urolophus paucimaculatus Urolophus cruciatus	Sparsely-spotted stingaree Banded stingaree		1	1
oloiopilluae	oroiophus ciuciatus		F	40	•
		SPECIES RICHNESS	5	10	9

Note

¹ Observed in study area using BRUV during Stage 1 fieldwork (3-9 November 2017), Stage 2 fieldwork (10 October 2019)
 Taxonomy follows currently accpeted nomenclature from:
 <u>WoRMS Editorial Board (2020). World Register of Marine Species. Available from URL: http://www</u>

IMAGES OF FISH TAXA RECORDED IN BAITED REMOTE UNDERWATER VIDEO (BRUV) SURVEYS

Plate 1. Sharks and Rays.

A. Eastern fiddler ray (*Trygonorrhina fasciata*), B. Eastern Shovelnose Ray (*Aptychotrema rostrata*),
C. Banded stingaree (*Urolophus cruciatus*), D. Common stingaree (*Trygonoptera testacea*), E.
Southern eagle ray (*Myliobatis australis*), F. Smooth stingray (*Dasyatis brevicaudata*), G. Port
Jackson shark (*Heterodontus portusjacksoni*), H. Bronze whaler shark (*Carcharhinus brachyurus*), I.
School shark (*Galeorhinus galeus*), J. Gummy shark (*Mustelus antarcticus*).

Plate 2. Sharks and Rays.

A. Draughtboard shark (*Cephaloscyllium laticeps*), **B.** Melbourne skate (*Spiniraja whitleyi*), **C.** Kapala stingaree (*Urolophus kapalensis*), **D.** Southern sawshark (*Pristiophorus nudipinnis*)

Note

Southern sawshark was recorded in BRUV28 after the 30 minute video analysis.

Plate 3. Leatherjackets (Family Monacanthidae)

A. Chinamans leatherjacket – juvenile (*Nelusetta ayraudi*), B. Mosaic leatherjacket (*Eubalichthys mosaicus*), C. Six-spined leatherjacket (*Meuschenia freycineti*), D. Rough leatherjacket (*Scobinichthys granulatus*), E. Velvet leatherjacket (*Meuschenia scaber*), F, G. Color variants of Velvet Leatherjacket (*Meuschenia scaber*), H. Tootbrush leatherjacket (*Acanthaluteres vittiger*), I. Yellow-striped leatherjacket (*Meuschenia flavolineata*).

Plate 4. Wrasses (Family Labridae)

A. Eastern Blue Groper (*Achoerodus viridis*), B. Crimson-banded wrasse (*Notolabrus gymnogenis*),
C. Blue-throated wrasse – male (*Notolabrus tetricus*), D. Blue-throated wrasse – female (*Notolabrus tetricus*), E. Maori wrasse (*Ophthalmolepis lineolatus*), F. Senator wrasse (*Pictilabrus laticlavius*).

Plate 5. Mados (Family Microcanthidae) and Drummers (Family Kyphosidae)A. Australian Mado (Family Microcanthidae - *Atypichthys strigatus*), B. Silver sweep (Family

Kyphosidae - *Scorpis lineolata*), **C.** Zebra fish (Family Kyphosidae *- Girella zebra*), **D.** Luderick (Family Kyphosidae *- Girella tricuspidata*)

Plate 6. Family Serranidae

A. Butterfly perch (*Caesioperca lepidoptera*), **B.** Half-banded sea perch (*Hypoplectrodes maccullochi*), **C.** Barber perch (*Caesioperca rasor*), **D.** Eastern Wirrah (*Acanthistius ocellatus*).

Plate 7. Various other families

A. Old wife (Family Enoplosidae - *Enoplosus armatus*), B. Longfin pike (Family Dinolestidae - *Dinolestes lewini*), C. Snapper (Family Sparidae - *Sparus aurata*), D. Sergeant Baker (Family Aulopidae - *Latropiscis purpurissatus*), E. Silver trevally (Family Carangidae - *Pseudocaranx georgianus*), F. Yellowtail horse mackerel (Family Carangidae - *Trachurus novaezelandiae*), G. Herring cale (Family Odacidae - *Olisthops cyanomelas*), H. Rainbow cale (Family Odacidae - *Heteroscarus acroptilus*).

Plate 8. Various other families

A. Blue morwong (Family Cheiodactylidae - Nemadactylus douglasii), B. Red morwong (Family Cheiodactylidae - Cheilodactylus fuscus).
C. Eastern kelpfish (Family Chironemidae - Chironemus marmoratus), D. Bastard trumpeter (Family Latridae - Latridopsis forsteri), E. Rock cale (Family Aplodactylidae - Aplodactylus lophodon),
F. Marblefish (Family Aplodactylidae - Aplodactylus arctidens), G. One spot puller (Family Pomacentridae - Chromis hypsilepis), H. White-ear scalyfin (Family Pomacentridae - Chromis hypsilepis), I. Eastern hulafish (Family Plesiopidae - Trachinops taeniatus), J. Eastern hulafish (image from Fishes of Australia website).

Plate 9. Various other families

A. Silver dory - juvenile (Family Cyttidae - *Cyttus australis*), **B.** Goatfish (Family Mullidae - *Upeneichthys* sp). **C.** Nannygai (Family Berycidae - *Centroberyx affinis*), **D.** Eastern red scorpionfish (Family Scorpaenidae - *Scorpaena jacksoniensis*), **E.** Eastern school whiting (Family Sillaginidae - *Sillago flindersi*), **F.** Yellow moray (Family Muraenidae - *Gymnothorax prasinus*), **G.** Bluespotted flathead (Family Platycephalidae - *Platycephalus caeruleopunctatus*).

Plate 10. Various other families

A. Sand flathead (Family Platycephalidae - *Platycephalus bassensis*), **B.** Flounder (Family Paralichthyidae - *Pseudorhombus sp.*). **C.** Eastern Barred Grubfish (Family Pinguipedidae - *Parapercis allporti*), **D.** Eastern fortesque (Family Scorpaenidae - *Centropogon australis*).

IMAGES OF FISH AND CEPHALOPOD TAXA RECORDED USING OTHER SURVEY METHODS (TOW VIDEO, DIVING)

Plate 1. Various other fish taxa.

A. Banded morwong (Family Cheilodactylidae - *Cheilodactylus spectabilis*), B. Threebar porcupinefish (Family Diodontidae - *Dicotylichthys punctulatus*), C. Bigscale bullseye (Family Pempherididae - *Pempheris multiradiata*), D. Smallscale bullseye (Family Pempherididae - *Pempheris compressa*), E. Longsnout boarfish (Family Pentacerotidae - *Pentaceropsis recurvirostris*), F. Black reef leatherjacket (Family Monocanthidae - *Eubalichthys bucephalus*), G. Australian salmon (Family Arripidae - *Arripis trutta*).

Plate 2. Cephalopoda (Cuttlefish, Squid, Octopus)

A. Cuttlefish (Family Sepiidae - *Sepia sp.*), **B.** Octopus (Family Octopodidae - *Octopus* sp.), **C.** Southern calamari (Family Loliginidae - *Sepioteuthis australis*).

Bioaccumulation Risk to Fish and Shellfish

Field data sheets and Sample Photos

Table Mussel and Abalone sample locations

Site Code	Location	Coordinates/WP T	Sample Code	Sample Weight (g)	Comment (composite)	
			M1-Mytilus01	60	composite of 4 individuals, flesh	
		S36.94027°	M1-Mytilus02	65	composite of 4 individuals, flesh	
M1	Hunter Reef	E149.94557°	M1-Mytilus03	73	composite of 4 individuals, flesh	
			M1-Mytilus04	66	composite of 4 individuals, flesh	
			M2-Mytilus01	60	composite of 4 individuals, flesh	
MO	Llovesek Deint	S36.94771°	M2-Mytilus02	70	composite of 4 individuals, flesh	
M2	Haycock Point	E149.93810°	M2-Mytilus03	72	composite of 4 individuals, flesh	
			M2-Mytilus04	56	composite of 4 individuals, flesh	
			M3-Mytilus01	85	composite of 4 individuals, flesh	
M3	Long Point	S36.90295°	M3-Mytilus02	62	composite of 4 individuals, flesh	
IVIS	Long Fornt	E149.93644°	M3-Mytilus03	80	composite of 4 individuals, flesh	
			M3-Mytilus04	78	composite of 4 individuals, flesh	
			M4-Mytilus01	90	composite of 4 individuals, flesh	
M4	Tura Head	S36.85748°	M4-Mytilus02	82	composite of 4 individuals, flesh	
		E149.94900°	M4-Mytilus03	95	composite of 4 individuals, flesh	
			M4-Mytilus04	90	composite of 4 individuals, flesh	
				M5-Mytilus01	50	composite of 6 individuals, flesh
M5	Lennards Island	S37.01682°	M5-Mytilus02	35	composite of 6 individuals, flesh	
		E149.94790°	M5-Mytilus03	34	composite of 6 individuals, flesh	
			M5-Mytilus04	40	composite of 6 individuals, flesh	
			A1-Haliotis01	127	1 individual, flesh	
		S37.01682°	A1-Haliotis02	112	1 individual, flesh	
A1	Lennards Island	E149.94790°	A1-Haliotis03	125	1 individual, flesh	
			A1-Haliotis04	140	1 individual, flesh	
			A2-Haliotis01	122	1 individual, flesh	
A2	Haycock Point	S36.94771°	A2-Haliotis02	133	1 individual, flesh	
	-	E149.93810°	A2-Haliotis03	120	1 individual, flesh	
			A2-Haliotis04	103	1 individual, flesh	
		S36.90295°	A3-Haliotis01	98	1 individual, flesh	
		E149.93644°	A3-Haliotis02	96	1 individual, flesh	
A3	Long Point	S36.90306°	A3-Haliotis03	101	1 individual, flesh	
		E149.93273°	A3-Haliotis04	118	1 individual, flesh	
		S36.84799°	A4-Haliotis01	112	1 individual, flesh	
		E149.93966°	A4-Haliotis02	125	1 individual, flesh	
A4	Tura Head	S36.85748°	A4-Haliotis03	120	1 individual, flesh	
		E149.94900°	A4-Haliotis04	118	1 individual, flesh	

Mussel samples from location M4 – Tura Head

Mussel samples from location M1 – Hunter Reef

Mussel samples from location M2 – Haycock Point

Mussel samples from location M3 – Long Point

Mussel samples from location M5 – Lennards Island

Abalone samples from location A1 – Lennards Island

Abalone samples from location A3 – Long Point

Abalone samples from location A4 – Tura Head

Abalone samples from location A2 – Haycock Point

A AND A REPORT			
Project Name	Merimbula EIS Stage 2	Date	29 Jalig
Sampling Personnel	APNUT	Time	1030 - 1130.
Naterway Newbula Bo	٩.	Zone OAP .	
Sample ID FALANAI AND ADA		Photograph (Y/N)	
F2 - platycol		N	
Biota Species (Common)	thead	(Latin)	
Field Mass (g)	neuo.	Length (cm)	
Angling Species (Y/N)	•	Angling Legal Size (Y/N)	N
Catch Location: Merudou	a OAR		
GPS Coordinates/Waypoint(s)	36° 54.811; 149	•56,133	
hive			
Sample Bagging: Laboratory Analysis:		QAQC SOP	
Sample Bagging:		Sample Labelling: 2	
and man			az ·
U	{		ing .
Sign-Off		Name	and t
U	}		ng -
sign-Off Sample ID F2 - Platyc02	}	Name Photograph (Y/N) Ý	ng .
Sign-Off Sample ID F2 - MatycO2 Biota Species (Common)		Name Photograph (Y/N)	ng .
Sign-Off Sample ID F2 - Platyc02 Biota Species (Common) Flo	lihea d	Name Photograph (Y/N) Ý	my .
Sign-Off Sample ID F2 - Matyc02 Biota Species (Common) Flo	lihea d	Name Photograph (Y/N) ' (Latin)	
Sign-Off Sample ID F2 - Platyc02 Biota Species (Common) Field Mass (g)	ihea J	Name Photograph (Y/N) 'Y (Latin) Length (cm) 29cm	
Sign-Off Sample ID F2 - MatycO2 Biota Species (Common) Field Mass (g) Angling Species (Y/N)	ihead OAR	Name Photograph (Y/N) 'Y (Latin) Length (cm) 29cm	
Sign-Off Sample ID F2 - Platyc02 Biota Species (Common) Field Mass (g) Angling Species (Y/N) Catch Location: GPS Coordinates/Waypoint(s) Catch Method	11/201 2) OAR 360 37, 811; 140	Name Photograph (Y/N) Y (Latin) Length (cm) 2900 Angling Legal Size (Y/N) Solor, 133	
Sign-Off Sample ID F2 - MatycO2 Biota Species (Common) Field Mass (g) Angling Species (Y/N) Catch Location: GPS Coordinates/Waypoint(s) Catch Method Laboratory Analysis: Method	11/201 2) OAR 360 37, 811; 140	Name Photograph (Y/N) Y (Latin) Length (cm) 29cm Angling Legal Size (Y/N) Solo 56. 133 QAQC Sop	
Sign-Off Sample ID F2 - Platyc02 Biota Species (Common) Field Mass (g) Angling Species (Y/N) Catch Location: GPS Coordinates/Waypoint(s) Catch Method	11/201 2) OAR 360 37, 811; 140	Name Photograph (Y/N) Y (Latin) Length (cm) 29cm Angling Legal Size (Y/N) Solo 133	N

elgin

Sample ID example:

Sign-Off

Biota Sampling Sheet

HI_20180508_PLASPP_01

Name

Biota Sampling	Sheet		elgin associates
Project Name	Merimbula EIS Stage 2	Date	29/9/9
Sampling Personnel	M.AR	Time	with
Waterway Membula		zone OAR	
Sample ID F2-Platyc 03	0	Photograph (Y/N)	
Biota Species (Common) Flai	thead.	(Latin)	
Field Mass (g)		Length (cm) 4 3	UM
Angling Species (Y/N)		Angling Legal Size (Y/N)	N,
	OAL		
GPS Coordinates/Waypoint(s)	36054.811)	149-56,133.	
Catch Method	rine		
Laboratory Analysis:	metas	QAQC 50P	
Sample Bagging:	Buy	Sample Labelling: Boy	X
Sign-Off	ç	Name	0
Sample ID FL-Platyc	04	Photograph (Y/N)	
Biota Species (Common)	lead	(Latin)	
Field Mass (g) 989		Length (cm) 27cm	1
Angling Species (Y/N)	1	Angling Legal Size (Y/N)	
Catch Location:	AR		
GPS Coordinates/Waypoint(s)	360 54.811 ;	1490 86:133	
Catch Method	ne		С. С. С. С. С. С. С. С. С. С. С. С. С. С
Laboratory Analysis:	etaly	QAQC Sop	
Sample Bagging:	nalo Bay	Sample Labelling: ြနယ္	,
Sign-Off	D	Name	

Sample ID example:

HI_20180508_PLASPP_01

Biota Sampling	Sheet		lelgin
Project Name	Merimbula EIS Stage 2	Date	
Complian David		bute	27/10/19
Sampling Personnel	NM.AR	Time	830-1030
Waterway Tura Head	~	Zone Mensula Ba	
Sample ID			5
F4- Ratic	01	Photograph (Y/N)	
Biota Species (Common)	thead the	(Latin)	
Field Mass (g) 197		Length (cm) 31	
Angling Species (Y/N)		Angling Legal Size (Y/N)	N
Catch Location: Tura	lend 30		
GPS Coordinates/Waypoint(s)	Tura B1	360 57 522 1100	51 020
Catch Method	Line	36° 52.533 2 149	J T/050
Laboratory Analysis: Mon		QAQC Sor	
Sample Bagging:	Bug	Sample Labelling: Bay	
Sign-Off		Name	
Sample ID F4 - Plata	1002	Photograph (Y/N)	
Biota Species (Common) Aa	thead	(Latin)	
Field Mass (g) 259		Length (cm) 34	
Angling Species (Y/N) 🛛 🌱		Angling Legal Size (Y/N)	1
Catch Location:	Head		
GPS Coordinates/Waypoint(s)	Twa BI 36	s 52.533 ; 149	°57°030
Catch Method	ina n	5 52.5 55 114	0100
aboratory Analysis:	Fab	QAQC SOP	
ample Bagging: hab	Bay	Sample Labelling: Bay	

Sample ID example:

HI_20180508_PLASPP_01

Biota Sampling	Sheet		elgin associates
Project Name	Merimbula EIS Stage 2	Date	
Sampling Personnel			2/10/19
	NIME	Time	830-1030
Waterway Membulc B	ig - North	Zone Tura Hear	
Sample ID F4 - Ral	403	Photograph (Y/N)	,
Biota Species (Common)	lathead	(Latin)	
Field Mass (g) 254	2	Length (cm) 34CN	\ \
Angling Species (Y/N)	7	Angling Legal Size (Y/N)	
Catch Location: Tura	read		
GPS Coordinates/Waypoint(s)	Tura BI	36.52.533; 14	9057 620
Catch Method	1	10 02.0 901 14	N 31.02
Laboratory Analysis:	2	QAQC SOP.	
Sample Bagging: Lob Ba		Sample Labelling:	
Sign-Off		() Name	
Sample ID FG - Plat	4 c 04	Photograph (Y/N)	
Diete Creation (Common)	head	(Latin)	
Field Mass (g) 154		Length (cm)	
Angling Species (Y/N)	4	Angling Legal Size (Y/N)	Ν
Catch Location: Tura H	ead		
GPS Coordinates/Waypoint(s)	/ .	6052,533;140	1257.030
Catch Method			
aboratory Analysis: Metab		QAQC SOP	
Sample Bagging:	baax	Sample Labelling: Buy	
ign-Off	0	Name)

2

Sample ID example:

HI_20180508_PLASPP_01
Biota Sampling	Sheet		elgin			
Project Name	Merimbula EIS Stage 2	Date				
Someline Devel	Lis Stage 2	Date	2/10/19			
Sampling Personnel	NY, AR	Time	1100-1145			
Waterway Quand		zone Mermoula Bu				
		Induce be	1 - South			
Sample ID F3 ~ Plat	mc 01	Photograph (Y/N)	1			
Biota Species (Common)	thead	(Latin)				
Held Wass (g) 311		Length (cm) 37				
Angling Species (Y/N))	Angling Legal Size (Y/N)	7			
Catch Location:	1010)			
GPS Coordinates/Waypoint(s)	Quan B1 -	36° 58, 600; 1	49056 46			
catch wethod hive			11 50,000			
Laboratory Analysis: Neta	b.	QAQC SOP				
Sample Bagging: Lab B	and	Sample Labelling: Boy				
Sign-Off	1	Name				
Sample ID F3 - Plat	1002	Photograph (Y/N)				
Biota Species (Common)	thead	(Latin)				
Field Mass (g) 197		Length (cm) 32				
Angling Species (Y/N)		Angling Legal Size (Y/N)	N)			
Catch Location:	dolo					
GPS Coordinates/Waypoint(s)	Quan B1	ti alia				
Catch Method	0	•				
Laboratory Analysis: Me	teils.	QAQC 50P				
Sample Bagging:	Ban	Sample Labelling: BG	.q			
Sign-Off	0	Name	9			

Sample ID example: HI_20180508_PLASPP_01

WaterwayNume1100 - 1145WaterwayQUUIDEDZoneMontrade, Bay SouthSample IDF3 - Platc 03Photograph (Y/N)Biota Species (Common)Pathlead(Latin)Field Mass (g)169Length (cm)Angling Species (Y/N)Angling Legal Size (Y/N)YCatch Location:QuuidditeGPS Coordinates/Waypoint(s)Quan BlCatch MethodLimeLaboratory Analysis:MetalsSample Bagging:LabLab BaySample Labelling:Lab Cordinates (Common)FlatheadLaboratory Analysis:MetalsSample IDF3 - Platy c oryPhotograph (Y/N)YBiota Species (Common)FlatheadField Mass (g)302Angling Species (Y/N)Angling Legal Size (Y/N)Gatch Location:QuandoloGPS Coordinates/Waypoint(s)QuantesLaboratory Analysis:MetalsSample IDF3 - Platy c oryPhotograph (Y/N)YCatch Location:QuandoloGPS Coordinates/Waypoint(s)QuantesLaboratory Analysis:MetalsQAQCSol	Biota Sampling S	Sheet		elgin
Sampling Personnel AL NY. Time 1100-1145 Sample ID F3 - Platic O3 Photograph (Y/N) Y Biota Species (Common) Plathead (Latin) Field Mass (g) 169 Length (cm) 31 Angling Species (Y/N) Angling Legal Size (Y/N) N Catch Location: Quardolo GPS Coordinates/Waypoint(s) Quar B1 Catch Method Live Laboratory Analysis: Metals OAQC SoP Sample ID F3 - Plathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Y Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Y Catch Location: Quardolo Sign-Off Name Sample ID F3 - Plathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Y Catch Location: Quardolo GPS Coordinates/Waypoint(s) Quar B1 Catch Method Live Laboratory Analysis: Metals OAQC SoP	Project Name	Morimhula FIC Charles	-	
Waterway QUUNDED Time 1100-1145 Waterway QUUNDED Zone Membodia Bowy South Sample ID F3 - Platic O3 Photograph (Y/N) T Biota Species (Common) Hathead ILatin) Field Mass (g) 169 Length (cm) 31 Angling Species (Y/N) Angling Legal Size (Y/N) Y Catch Location: Quandeb Geven B1 Catch Method Geven B1 Catch Method Live Laboratory Analysis: Metals QAQC SoP Sample ID F3 - Platy c off Name Sample Labelling: Lab Sample ID F3 - Platy c off Photograph (Y/N) Y Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Angling Legal Size (Y/N) Y Catch Location: Quandeb Guandeb Guandeb Geve Sample Labelling: Angling Legal Size (Y/N) Y Catch Location: Quandeb Guandeb Guandeb Guandeb Catch Method Live<		interimbula EIS Stage 2	Date	24040
Waterway Quaddo Zone Mentada Bay South Sample ID F3 - Platic 03 Photograph (Y/N) T Biota Species (Common) Adhead (Latin) Field Mass (g) 169 Length (cm) 31 Angling Species (Y/N) Angling Legal Size (Y/N) M Catch Location: Quaddob GPS Coordinates/Waypoint(s) Quad Bl Catch Method Line Laboratory Analysis: Metals OAQC Sof Sample Bagging: Lab Bay Sample Labelling: Lab Sign-Off Name Sample ID F3 - Platy C of Photograph (Y/N) T Biota Species (Common) Adhead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Angling Legal Size (Y/N) Y Catch Location: Quaddob GPS Coordinates/Waypoint(s) Quaddob Sign-Off Name Sample ID F3 - Platy C of Photograph (Y/N) Y Catch Location: Quaddob GPS Coordinates/Waypoint(s) Quaddob Catch Location: Quaddob GPS Coordinates/Waypoint(s) Quaddob Catch Method Line Laboratory Analysis: Metals QAQC Sof	Sampling Personnel	10 121	Time	
Sample ID F3 - Platic 03 Photograph (Y/N) Biota Species (Common) Addread (Latin) Field Mass (g) 169 Length (cm) 31 Angling Species (Y/N) Angling Legal Size (Y/N) γ Catch Location: Quandoto GPS Coordinates/Waypoint(s) Quan B1 Catch Method Line Laboratory Analysis: Metals OAQC Sof Sample Bagging: Lab Bay Sample Labelling: Lab Sign-Off Name Sample ID F3 - Platy c of Photograph (Y/N) γ Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) γ Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quan B1 Catch Laboratory Analysis: Metals OAQC Sof Sample ID F3 - Platy c of Photograph (Y/N) γ Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) γ Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quan B1 Catch Method Line Laboratory Analysis: Metals QAQC Sof	Webe	M. M.	inne	1100-1145
Sample ID F3 - Platic O3 Biota Species (Common) Angling Species (Common) Field Mass (g) Angling Species (Y/N) Catch Location: Cuchdob GPS Coordinates/Waypoint(s) Catch Method Laboratory Analysis: Metals Sample Labelling: Lab Bay Sample Labelling: Lab Bay Sample Labelling: Sample Labelling: Lab Bay Sample Labelling: Sample Labelling: Lab Bay Sample Labelling: Sample waterway Birundo		Zone M		
F3 -Platic O3Photograph (Y/N)Biota Species (Common)AddressField Mass (g)169Angling Species (Y/N)Angling Legal Size (Y/N)Catch Location:QuandoloGPS Coordinates/Waypoint(s)QuandolCatch MethodLimeLaboratory Analysis:MetalsSample Bagging:LabSample IDF3 -F3 -Platyc ofPhotograph (Y/N)YBiota Species (Common)FlathleadField Mass (g)302Angling Species (Y/N)YCatch Location:QuandoloGress Coordinates/Waypoint(s)Length (cm)Sample IDF3 -F3 -Platyc ofPhotograph (Y/N)YBiota Species (Common)FlathleadCatch Location:QuandoloGPS Coordinates/Waypoint(s)QuandoloGPS Coordinates/Waypoint(s)QuandoloCatch MethodLimeLaboratory Analysis:MetalsQAQCSoft		20	11 territoria t	Day Douth
Biota Species (Common) Addread (Latin) Field Mass (g) 169 Length (cm) 31 Angling Species (Y/N) Angling Legal Size (Y/N) J Catch Location: Quardoho GPS Coordinates/Waypoint(s) Quar B1 Catch Method Live Laboratory Analysis: Metals QAQC Sof Sample Bagging: Lab Bay Sample Labelling: Lab Sign-Off Name Sample ID F3- Platy c of Photograph (Y/N) J Biota Species (Common) Flathread (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) M Catch Location: Quardoho GPS Coordinates/Waypoint(s) Quar-B1 Catch Method Live Laboratory Analysis: Metals QAQC Sof	Sample ID			1
Field Mass (g) 169 Length (cm) 31 Angling Species (Y/N) Angling Legal Size (Y/N) Angling Legal Size (Y/N) N Catch Location: Quardata Quardata Sample Labelling: N Catch Method Linne Sample Bagging: Name Sample Labelling: Lab Sign-Off Name Sample ID F3- Platy c Photograph (Y/N) Y Biota Species (Common) Facthlead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Y Angling Legal Size (Y/N) Y Catch Location: Quardata GPS Coordinates/Waypoint(s) Quardata Length (cm) 35 Angling Legal Size (Y/N) Y Catch Location: Quardata Guardata Length (cm) 35 Angling Legal Size (Y/N) Y Catch Location: Quardata Quardata Gaurdata Laboratory Analysis: Method Linne Laboratory Analysis: Method Linne QAQC Sa Sa	F3- P	latic 03	Photograph (Y/N)	
Inter mass (g) 169 Length (cm) 31 Angling Species (Y/N) Angling Legal Size (Y/N) 1 Catch Location: Quandata GPS Coordinates/Waypoint(s) Quan B1 Catch Method Guan B1 Laboratory Analysis: Metals QAQC Sample Bagging: Indo Bay Sample Labelling: Indo Sign-Off Name Sample ID F3 - Platy c off Photograph (Y/N) Y Biota Species (Common) Flathead (Latin) Italing Field Mass (g) 302 Angling Species (Y/N) Y Angling Legal Size (Y/N) Y Catch Location: Quandala Length (cm) 35 Angling Species (Y/N) Y Angling Legal Size (Y/N) Y Catch Location: Quandala Guandala Length (cm) 35 Catch Location: Quandala Guandala Length (cm) 35 Catch Method Guandala Guandala Length (cm) 35 Laboratory Analysis: Metala QAQC ScR	Biota Species (Common)	head	(Latin)	
Angling Species (Y/N) Angling Legal Size (Y/N) Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quan Bl Catch Method Guan Bl Laboratory Analysis: Metals Sample Bagging: Lab Bay Sample Bagging: Lab Bay Sign-Off Name Sample ID F3 - Platy c off Field Mass (g) 302 Angling Species (Common) Flathead Field Mass (g) 302 Angling Species (Y/N) Y Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quan-Bl Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quan-Bl Catch Method Luce Laboratory Analysis: Metals		TENEN	Longth (and)	
Angling Legal Size (Y/N) Angling Legal Size (Y/N) Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quan Bl Catch Method Line Laboratory Analysis: Metals Sample Bagging: hab hab Sample Labelling: Sign-Off Name Sample ID F3- F3- Platycory Biota Species (Common) Flathead Field Mass (g) 302 Angling Species (V/N) Y Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quandolo GPA GPA Geach GPA Sample ID F3- Field Mass (g) 302 Angling Species (V/N) Y Angling Species (Y/N) Angling Legal Size (Y/N) Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quantities Laboratory Analysis: Metals				
GPS Coordinates/Waypoint(s) GPS Coordinates/Waypoint(s) Catch Method Laboratory Analysis: Metals Sample Bagging: Lab Bay Sign-Off Sample ID F3- Platyc of Biota Species (Common) Flathead Field Mass (g) So2 Angling Species (Y/N) Catch Location: Quandolo GPS Coordinates/Waypoint(s) Catch Method Laboratory Analysis: Metals QAQC 50	Ч		Angling Legal Size (Y/N)	2
GPS Coordinates/Waypoint(s) Guan Bl Catch Method Laboratory Analysis: Metals Sample Bagging: Lab Bay Sign-Off Sample ID F3- Platyc of Photograph (Y/N) Y Biota Species (Common) Flathead Length (cm) 35 Angling Species (Y/N) Y Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quan-Bl Catch Method Laboratory Analysis: Metals QAQC 50		andoho		
Laboratory Analysis: Metals QAQC Sof Sample Bagging: Lab Bay Sample Labelling: Lab Sign-Off Name Sample ID F3- Platyc of Photograph (Y/N) Y Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Angling Legal Size (Y/N) Y Catch Location: Quadolo GPS Coordinates/Waypoint(s) Quar B) Catch Method Line Laboratory Analysis: Metals QAQC Sof	GPS Coordinates/Waypoint(s)		the second second	
Laboratory Analysis: Metals QAQC Soft Sample Bagging: hab Bay Sample Labelling: hab Sign-Off Name Sample ID F3 - Platyc off Photograph (Y/N) Y Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Y Angling Legal Size (Y/N) Y Catch Location: Quadala Guadala Catch Method Line Laboratory Analysis: Metals QAQC Soft				
Sample Bagging: Lab Bay Sample Labelling: Lab Sign-Off Name Sample ID F3- Platyc of Photograph (Y/N) Y Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Y Catch Location: Quaddolo GPS Coordinates/Waypoint(s) Quar B) Catch Method Lime Laboratory Analysis: Metals QAQC Sof	Il aboratory Analysis	1	QAQC	8
Sign-Off Name Sample ID F3- Platyc o'Y Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Angling Species (Y/N) Y Catch Location: Quandolo GPS Coordinates/Waypoint(s) Catch Method Laboratory Analysis: Metab QAQC 50	Sample Bagging:	Bay	Sample Labelling:	Take 1
Sample ID F3- Platyc og Photograph (Y/N) y Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) y Angling Legal Size (Y/N) y Catch Location: Quandolo GPS Coordinates/Waypoint(s) Quan-B) Catch Method Line Laboratory Analysis: Metab QAQC 50	Sign-Off	ð	•	
Biota Species (Common) Flathead (Latin) Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) Y Angling Legal Size (Y/N) Y Catch Location: Quadala GPS Coordinates/Waypoint(s) Quar. B) Catch Method Lime Laboratory Analysis: Metab QAQC SQL		4 4		
Field Mass (g) 302 Length (cm) 35 Angling Species (Y/N) 1 Angling Legal Size (Y/N) Y Catch Location: Quadala GPS Coordinates/Waypoint(s) Quadala Catch Method Live Laboratory Analysis: Matada		latyc of		
Angling Species (Y/N) 7 Catch Location: Quandials GPS Coordinates/Waypoint(s) Quan-B) Catch Method Line Laboratory Analysis: Metals QAQC Sof	Biota Species (Common)	athead	(Latin)	
Catch Location: Quandialo GPS Coordinates/Waypoint(s) Quan-B) Catch Method Line Laboratory Analysis: Metab QAQC Sof	Field Mass (g) 302		Length (cm) 35	
GPS Coordinates/Waypoint(s) Quar B) Catch Method Lime Laboratory Analysis: Metals QAQC Sof	Angling Species (Y/N)		Angling Legal Size (Y/N)	Ч
GPS Coordinates/Waypoint(s) Quar B) Catch Method Lime Laboratory Analysis: Metals QAQC Sof	Catch Location:	andolo		I.
Laboratory Analysis: METALS QAQC Sof	GPS Coordinates/Waypoint(s	\wedge		
Metals	Catch Method			200A
Sample Bagging:	Laboratory Analysis: Me	ials	QAQC Sol	
has your Dog	Sample Bagging: Lab	Bay	Sample Labelling: BO	q
Sign-Off Name	Sign-Off	0	<i></i>	0

Sample ID example:

HI_20180508_PLASPP_01

Biota San	pling Sheet
-----------	-------------

Biota Sampling S	Sheet	1.75	lelgin		
Project Name	Merimbula EIS Stage 2	Date	2/10/19		
Sampling Personnel	AR, NY.	Time	1200-1245		
Waterway Meimuler 9	by	Zone Nerth - hang	Shart-Mid		
	0				
Sample ID FI - Plat	7001	Photograph (Y/N)			
Biota Species (Common)	alhead	(Latin)			
Field Mass (g) 289		Length (cm) 38			
Angling Species (Y/N)		Angling Legal Size (Y/N)	M		
Catch Location: North	Algenment - h	and Short mich	20int -		
GPS Coordinates/Waypoint(s)	NLS Mid 2	01/13/04 Mich 60 55-516; 140	0 56.614		
Catch Method					
Laboratory Analysis: Meta	B	QAQC SOP			
Sample Bagging:		Sample Labelling: Bay			
Sign-Off		Name (3		
Sample ID FI- Platy		Photograph (Y/N)			
Biota Species (Common) Flaf	head	(Latin)			
Field Mass (g) 324		Length (cm) 37			
Angling Species (Y/N)		Angling Legal Size (Y/N)	Ч		
Catch Location: NHA	Algoment - hay	Shet mapout	Ċ.		
GPS Coordinates/Waypoint(s)		300 55-516; 1	1.11.11		
Catch Method	~e		a.		
Laboratory Analysis: Meto	6	QAQC SC	90		
Sample Bagging:	boy	Sample Labelling: Bo	xy		
Sign-Off	U	Name			

Sample ID example:

HI_20180508_PLASPP_01

Biota Sampling Sheet

Biota Samplin	g Sheet		🔪 elgin
Project Name	Merimbula EIS Stage 2	Date	2/10/19
Sampling Personnel	W1.AL	Time	1200-1245
Waterway Meyub	ula Bay	zone Nath-Le	my Short (ma)
Sample ID	8		
. FI	Platyc 03	Photograph (Y/N)	7
Biota Species (Common)	Autherd	(Latin)	4.9
Field Mass (g) 319		Length (cm) 39	
Angling Species (Y/N)	4	Angling Legal Size (Y/N)	Y
Catch Location: No.A.	Algoment - hay	hat and fort	and the second s
iPS Coordinates/Waypoint(s	NLS-Mid	36055.516;14	4. 80, 614
atch Method			
aboratory Analysis:	tal	QAQC SUP	
ample Bagging: With	Bay	Sample Labelling:	
gn-Off	0	Name	
imple ID Fl - Ac	atyc 04	Photograph (Y/N)	944 - 2 C 3
ota Species (Common)	Hallead	(Latin)	- 10
eld Mass (g) 225		Length (cm) 34	
gling Species (Y/N)		Angling Legal Size (Y/N)	M
tch Location: North	. Abgiment - hay	Shark mid-po	int
S Coordinates/Waypoint(s)	NLS-Mid.		1
tch Method	Ve l	1	
ooratory Analysis: Me	tab	QAQC SUP	
nple Bagging: hab	tab Bay	Sample Labelling: Bay	k
n-Off	0	Name)

Sample ID example:

HI_20180508_PLASPP_01

Flathead samples from location F1 – Merimbula Bay within 500 m radius buffer of 'North-Short' diffuser location, and north of Hunter Reef

Flathead samples from location F2 – Merimbula Bay close to Merimbula Offshore Artificial Reef, 1,000m north of 'North-Short' diffuser location.

Flathead samples from location F3 – Quondolo Point, outside of Merimbula Bay, southern reference location.

Flathead samples from location F4 – Tura Beach, outside of Merimbula Bay, northern reference location.

Flathead liver tissue samples (composite from four individuals) from each location F1 to F4.

APPENDIX D-2

Laboratory Analytical Results

CERTIFICATE OF ANALYSIS

Work Order	ES1932847	Page	: 1 of 6	
Client	ELGIN ASSOCIATES PTY LTD	Laboratory	: Environmental Division Sy	dney
Contact	: MR NICK YEE	Contact	: Peter Ravlic	-
Address	: PO BOX 829	Address	: 277-289 Woodpark Road S	Smithfield NSW Australia 2164
	BEGA NSW, AUSTRALIA 2550			
Telephone	: +61 02 8003 4590	Telephone	: +6138549 9645	
Project	: JN19231	Date Samples Received	: 17-Oct-2019 08:50	ANUTU.
Order number	: JN19231	Date Analysis Commenced	: 05-Nov-2019	
C-O-C number	:	Issue Date	: 07-Nov-2019 15:55	
Sampler	:			Hac-MRA NATA
Site	: Merimbula EIS Stage 2			
Quote number	: ME/755/18			
No. of samples received	: 20			Accredited for compliance with
No. of samples analysed	: 20			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Biota samples analysed and reported as received.

Page : 3 of 6 Work Order : ES1932847 Client : ELGIN ASSOCIATES PTY LTD Project : JN19231

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	F2-Platyc01	F2-Platyc02	F2-Platyc03	F2-Platyc04	F2-Platyc04Comp
	Cl	ient sampli	ng date / time	29-Sep-2019 10:30	29-Sep-2019 10:40	29-Sep-2019 10:50	29-Sep-2019 11:00	29-Sep-2019 00:00
Compound	CAS Number	LOR	Unit	ES1932847-001	ES1932847-002	ES1932847-003	ES1932847-004	ES1932847-005
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	5	18	20	5	44
EG035T: Total Recoverable	Mercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Page : 4 of 6 Work Order : ES1932847 Client : ELGIN ASSOCIATES PTY LTD Project : JN19231

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	F4-Platyc01	F4-Platyc02	F4-Platyc03	F4-Platyc04	F4-Platyc04Comp
	Cli	ient samplii	ng date / time	02-Oct-2019 08:30	02-Oct-2019 09:00	02-Oct-2019 10:00	02-Oct-2019 10:30	02-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	ES1932847-006	ES1932847-007	ES1932847-008	ES1932847-009	ES1932847-010
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	17	6	17	5	36
EG035T: Total Recoverable I	Mercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Page : 5 of 6 Work Order : ES1932847 Client : ELGIN ASSOCIATES PTY LTD Project : JN19231

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	F3-Platyc01	F3-Platyc02	F3-Platyc03	F3-Platyc04	F3-Platyc04Comp
	Cli	ient samplii	ng date / time	02-Oct-2019 11:00	02-Oct-2019 11:15	02-Oct-2019 11:30	02-Oct-2019 11:45	02-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	ES1932847-011	ES1932847-012	ES1932847-013	ES1932847-014	ES1932847-015
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	6	5	5	<5	40
EG035T: Total Recoverable I	Mercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Page : 6 of 6 Work Order : ES1932847 Client : ELGIN ASSOCIATES PTY LTD Project : JN19231

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	F1-Platyc01	F1-Platyc02	F1-Platyc03	F1-Platyc04	F1-Platyc04Comp
	Cl	ient sampli	ng date / time	02-Oct-2019 12:00	02-Oct-2019 12:15	02-Oct-2019 12:30	02-Oct-2019 12:45	02-Oct-2019 00:00
Compound	CAS Number	LOR	Unit	ES1932847-016	ES1932847-017	ES1932847-018	ES1932847-019	ES1932847-020
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	6	<5	5	6	44
EG035T: Total Recoverable M	Mercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

QUALITY CONTROL REPORT

Work Order	: ES1932847	Page	: 1 of 3	
Client	ELGIN ASSOCIATES PTY LTD	Laboratory	: Environmental Division	Sydney
Contact	: MR NICK YEE	Contact	: Peter Ravlic	
Address	: PO BOX 829 BEGA NSW, AUSTRALIA 2550	Address	: 277-289 Woodpark Roa	ad Smithfield NSW Australia 2164
Telephone	: +61 02 8003 4590	Telephone	: +6138549 9645	
Project	: JN19231	Date Samples Received	: 17-Oct-2019	
Order number	: JN19231	Date Analysis Commenced	: 05-Nov-2019	
C-O-C number	:	Issue Date	: 07-Nov-2019	
Sampler				HAC-MRA NATA
Site	: Merimbula EIS Stage 2			
Quote number	: ME/755/18			Accreditation No. 825
No. of samples received	: 20			Accredited for compliance with
No. of samples analysed	: 20			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: BIOTA						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES	(QC Lot: 2682654)							
ES1932847-001	F2-Platyc01	EG005-B: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005-B: Chromium	7440-47-3	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Zinc	7440-66-6	5	mg/kg	5	17	102	No Limit
S1932847-010	F4-Platyc04Comp	EG005-B: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005-B: Chromium	7440-47-3	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Zinc	7440-66-6	5	mg/kg	36	41	14.7	No Limit
G035T: Total Reco	overable Mercury by FII	MS (QC Lot: 2682655)							
S1932847-001	F2-Platyc01	EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1932847-010	F4-Platyc04Comp	EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: BIOTA			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLo	ot: 2682654)							
EG005-B: Cadmium	7440-43-9	1	mg/kg	<1	0.306 mg/kg	84.7	70.0	130
EG005-B: Chromium	7440-47-3	2	mg/kg	<2	1.87 mg/kg	84.6	70.0	130
EG005-B: Cobalt	7440-48-4	2	mg/kg	<2				
EG005-B: Copper	7440-50-8	5	mg/kg	<5	15.9 mg/kg	95.2	70.0	130
EG005-B: Lead	7439-92-1	5	mg/kg	<5				
EG005-B: Nickel	7440-02-0	2	mg/kg	<2	1.36 mg/kg	87.0	70.0	130
EG005-B: Selenium	7782-49-2	5	mg/kg	<5	3.56 mg/kg	97.2	70.0	130
EG005-B: Silver	7440-22-4	2	mg/kg	<2				
EG005-B: Zinc	7440-66-6	5	mg/kg	<5	52.2 mg/kg	99.2	70.0	130
EG035T: Total Recoverable Mercury by FIMS(C	CLot: 2682655)							
EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.41 mg/kg	76.9	70.0	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: BIOTA				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	_imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2682654)						
ES1932847-001	F2-Platyc01	EG005-B: Cadmium	7440-43-9	6.25 mg/kg	95.0	70.0	130
		EG005-B: Chromium	7440-47-3	25 mg/kg	95.6	70.0	130
		EG005-B: Cobalt	7440-48-4	25 mg/kg	95.0	70.0	130
		EG005-B: Copper	7440-50-8	25 mg/kg	94.2	70.0	130
		EG005-B: Lead	7439-92-1	25 mg/kg	92.2	70.0	130
		EG005-B: Nickel	7440-02-0	25 mg/kg	94.1	70.0	130
		EG005-B: Zinc	7440-66-6	25 mg/kg	130	70.0	130
EG035T: Total Red	coverable Mercury by FIMS (QCLot: 2682655)						
ES1932847-001	F2-Platyc01	EG035-B: Mercury	7439-97-6	5 mg/kg	84.0	70.0	130

	QA/QC Compliance	Assessment to assist witl	h Quality Review
Work Order	ES1932847	Page	: 1 of 4
ient	ELGIN ASSOCIATES PTY LTD	Laboratory	: Environmental Division Sydney
ontact	: MR NICK YEE	Telephone	: +6138549 9645
roject	: JN19231	Date Samples Received	: 17-Oct-2019
te	: Merimbula EIS Stage 2	Issue Date	: 07-Nov-2019
ampler	:	No. of samples received	: 20
Order number	: JN19231	No. of samples analysed	: 20

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: BIOTA					Evaluatior	n: × = Holding time	breach ; ✓ = With	in holding tin
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)T: Total Metals by ICP-AES								
Frozen Sample (EG005-B)								
F4-Platyc01,	F4-Platyc02,	02-Oct-2019	05-Nov-2019	30-Mar-2020	~	05-Nov-2019	30-Mar-2020	✓
F4-Platyc03,	F4-Platyc04,							
F4-Platyc04Comp,	F3-Platyc01,							
F3-Platyc02,	F3-Platyc03,							
F3-Platyc04,	F3-Platyc04Comp,							
F1-Platyc01,	F1-Platyc02,							
F1-Platyc03,	F1-Platyc04,							
F1-Platyc04Comp								
Frozen Sample (EG005-B)								
F2-Platyc01,	F2-Platyc02,	29-Sep-2019	05-Nov-2019	27-Mar-2020	1	05-Nov-2019	27-Mar-2020	 ✓
F2-Platyc03,	F2-Platyc04,							
F2-Platyc04Comp								
EG035T: Total Recoverable Mercury by F	IMS							
Frozen Sample (EG035-B)								
F4-Platyc01,	F4-Platyc02,	02-Oct-2019	05-Nov-2019	30-Mar-2020	1	06-Nov-2019	30-Mar-2020	 ✓
F4-Platyc03,	F4-Platyc04,							
F4-Platyc04Comp,	F3-Platyc01,							
F3-Platyc02,	F3-Platyc03,							
F3-Platyc04,	F3-Platyc04Comp,							
F1-Platyc01,	F1-Platyc02,							
F1-Platyc03,	F1-Platyc04,							
F1-Platyc04Comp	- -							
Frozen Sample (EG035-B)								
F2-Platyc01,	F2-Platyc02,	29-Sep-2019	05-Nov-2019	27-Mar-2020	1	06-Nov-2019	27-Mar-2020	✓
F2-Platyc03,	F2-Platyc04,							
F2-Platyc04Comp								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: BIOTA		Evaluation: * = Quality Control frequency not within specification ; - = Quality Control freque					
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Metals in Biota by ICP-AES	EG005-B	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035-B	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Metals in Biota by ICP-AES	EG005-B	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035-B	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Metals in Biota by ICP-AES	EG005-B	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035-B	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Metals in Biota by ICP-AES	EG005-B	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035-B	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Metals in Biota by ICP-AES	EG005-B	BIOTA	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the material. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards.
Total Mercury by FIMS	EG035-B	ΒΙΟΤΑ	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in biota	EN69	ΒΙΟΤΑ	In house: Referenced to USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils.

EC4020047

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1932847		
Client: ELGIN ASSOCIATES PTY LTDContact: MR NICK YEEAddress: PO BOX 829BEGA NSW, AUSTRALIA 2550		Contact: Peter RavAddress: 277-289 V	ental Division Sydney /lic Noodpark Road Smithfield tralia 2164
E-mail Telephone Facsimile	: nick.yee@elgin.com.au : +61 02 8003 4590 : +61 03 8648 6336	E-mail : peter.ravli Telephone : +6138549 Facsimile : +61-2-878	
Project Order number C-O-C number Site Sampler	: JN19231 : JN19231 : : Merimbula EIS Stage 2 :		ELGASS0015 (ME/755/18) 13 B3 & ALS QC Standard
Dates Date Samples Rece Client Requested D Date		Issue Date Scheduled Reporting Date	: 17-Oct-2019 • 07-Nov-2019
Delivery Deta Mode of Delivery No. of coolers/boxe Receipt Detail	: Carrier	Security Seal Temperature No. of samples received / analysed	 Intact. 1.6 - Ice Bricks present 20 / 20

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The absence of this summary table indicates that all samples have been received
 within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Biota (inc. mercury)

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the EG005/EG035-B laboratory and displayed in brackets without a time component

Matrix: BIOTA

Laboratory sample ID	Client sampling date / time	Client sample ID	BIOTA - I Metals in
ES1932847-001	29-Sep-2019 10:30	F2-Platyc01	✓
ES1932847-002	29-Sep-2019 10:40	F2-Platyc02	✓
ES1932847-003	29-Sep-2019 10:50	F2-Platyc03	✓
ES1932847-004	29-Sep-2019 11:00	F2-Platyc04	✓
ES1932847-005	29-Sep-2019 00:00	F2-Platyc04Comp	✓
ES1932847-006	02-Oct-2019 08:30	F4-Platyc01	✓
ES1932847-007	02-Oct-2019 09:00	F4-Platyc02	✓
ES1932847-008	02-Oct-2019 10:00	F4-Platyc03	✓
ES1932847-009	02-Oct-2019 10:30	F4-Platyc04	✓
ES1932847-010	02-Oct-2019 00:00	F4-Platyc04Comp	✓
ES1932847-011	02-Oct-2019 11:00	F3-Platyc01	✓
ES1932847-012	02-Oct-2019 11:15	F3-Platyc02	✓
ES1932847-013	02-Oct-2019 11:30	F3-Platyc03	✓
ES1932847-014	02-Oct-2019 11:45	F3-Platyc04	✓
ES1932847-015	02-Oct-2019 00:00	F3-Platyc04Comp	✓
ES1932847-016	02-Oct-2019 12:00	F1-Platyc01	✓
ES1932847-017	02-Oct-2019 12:15	F1-Platyc02	✓
ES1932847-018	02-Oct-2019 12:30	F1-Platyc03	1
ES1932847-019	02-Oct-2019 12:45	F1-Platyc04	1
ES1932847-020	02-Oct-2019 00:00	F1-Platyc04Comp	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

LUKE FINLEY		
- A4 - AU Tax Invoice (INV)	Email	luke.finley@elgin.com.au
NICK YEE		
 *AU Certificate of Analysis - NATA (COA) 	Email	nick.yee@elgin.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	nick.yee@elgin.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	nick.yee@elgin.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nick.yee@elgin.com.au
- A4 - AU Tax Invoice (INV)	Email	nick.yee@elgin.com.au
- Chain of Custody (CoC) (COC)	Email	nick.yee@elgin.com.au
- EDI Format - ENMRG (ENMRG)	Email	nick.yee@elgin.com.au
- EDI Format - ESDAT (ESDAT)	Email	nick.yee@elgin.com.au

LIENT	Elgin Associates Pty Ltd						SAMPLER:	Nie	Kyee 1	Maran Kaber B.	ALS Environmental Pty Li
DDRE	SS / OFFICE: First Floor, 45-47 Church St	, Bega, NS	W, 2550				MOBILE:	TÖ	400 265234	0420 981 345	277-289 Woodpark Rd,
ROJE	CT MANAGER (PM): Nick Yee						PHONE				Smithfield, NSW, 2164, ph: 02 8784 8555
ROJE	TID: JUNE SN192	31					EMAIL REPORT TO):	nick.yee@elgin.com.au		
ITE: N	lerimbula EIS Stage 2			P.O. No.: JN4024	JN 19231		EMAIL INVOICE TO	: (if different	to report)	•	,
RESUL	S REQUIRED (Date): Standard TAT			QUOTE NO .: ME	755/18 V2		ANALYSIS REQUIR	ED			
2.1.011.00000000	BORATORY USE ONLY	_	COMMENTS / S	PECIAL HANDLING	/ STORAGE OR DISPOS	SAL:	Ğ				
OOLE	R SEAL (circle appropriate)					Ъ°,					
Please keep all samples in extended storage fo					possible additional analysi	is at later time	ບ້ອ				
ALS to underake dissection of organs for analy indicated on COC				of organs for analysis	s (flesh or liver), including	compositing if	Cd, Cr, Ni, Se, ∠				
HALLE											
	SAMPLE INFORMATION (note:	<u>S = Soil, V</u>	V=Water, B=Biota)	······································	CONTAINER INFO	DRMATION	Metals Pb, Hg,	НОГР			
u av	SAMPLE ID	MATRIX		Time	Type / Code	Total bottle:		Ĭ	Compositin	g Instructions if applicable	Biota Organ for Analysis
1	F2-Piatyedi	B	29/9/19	1030	Bar		\checkmark				Flesh
Z	F2-Platyc02	2	291919	1040	Bay	1					Flesh
3	F2- Matricos	G	2919119	1090	Bay	1					Flesh
4	F2 - Platric Ou	B	29/9/14	1100	Bog	1	✓	1		<u></u>	Flesh
5	F2- Plator coll-dy Comp	B	2919119	1030-1100	Condosite	13	 ✓ 	$\left(\mathbf{n} \right)$	Composite livers	want 01-04 above	hiver,
6	F4- Natic Di	B	2/10/19	830	Bay	1	-				Flesh
7	F4- Matyco2	в	2/10/19	0900	Bai	1			·		Flah
8	F4- Mat 203	B	2110/19	1000	Baz					*	Flesh
9	F4-Platyco4	B	2/10/19	1030	Baa				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Flesh
\mathbf{v}	F4-Patycol-04 Comp	8	2/10/19	830-030	Composite	81		Ð	Comparte huros fear	n F4-01 -04 above	Liver
I					l l				1		
										,	
		RE	LINQUISHED BY:		<u>aterie</u>	~			RECEIVED BY		METHOD OF SHIPMENT
lame:	NICHOLAS YEE	100	AP		Date: 8/10/1	9				9/10/1A 9/1	Con' Note No:
	Associates	fresh .	<u> </u>	-	Time: 14:30 Date:		Of: Name:	ali	In The	17/10/2019	Transport Col
lame:)f:			and the second se		Time:		Of:		u	- FILLOLOG	Transport Co:

Telephone : +61-2-8784 8555

COC Page __ of __ 2

CLIENT: Elgin Associates Pty Ltd				· · · · · · · · · · · · · · · · · · ·		7	1.5		1 1	
ADDRESS / OFFICE: First Floor, 45-47 Churc	St Bona N			· · · · · · · · · · · · · · · · · · ·		SAMPLER:		we'tee	/ Andraw Koberts	ALS Environmental Pty L
PROJECT MANAGER (PM): Nick Yee	1 35, Dega, N	319, 2330				MOBILE:		2400 365 234	10420981345	277-289 Woodpark Rd, Smithfield, NSW, 2164,
PROJECT ID: JANDERS INAS		······				PHONE		·		ph: 02 8784 8555
SITE: Merimbula EIS Stage 2			P.O. No.: JN-19	M19721	· · · · · · · · · · · · · · · · · · ·	EMAIL REPORT T		nick.yee@elgin.com.au		,
RESULTS REQUIRED (Date): Standard TAT			QUOTE NO.: ME/			EMAIL INVOICE T		nt to report)		,
OR LABORATORY USE ONLY		COMMENTS / S		/ STORAGE OR DISPO	CAL.	ANALYSIS REQU				
OOLER SEAL (circle appropriate)				7010101010	SAL.	ື້ວິ				
						ъ Š				
itact Yes No (NA)	Please ke	ep all samples in e	xtended storage for p	ossible additional analys	is at later time					
	ALC to us				·	Metals - Cd, Cr, Cr, Pb, Hg, Ni, Se, Ag,				
AMPLE TEMPERATURE 5.22	indicated	on COC	or organs for analysis	(flesh or liver), including	compositing if	, ⁶ , 0	·			
NILLED: No						Ŭ Ž				
SAMPLE INFORMATION (n	te: S = Soil, V	V=Water, B=Biota)		CONTAINER INFO	ORMATION	Hals	9			
D SAMPLE ID	MATRIX	DATE	Тіте	Type / Code	Total bottle	Po, a	НОГР	Composi	ting Instructions if applicable	Biota Organ for Analysis
1 F3- Hatycol	<u> </u>	2110/19	1100	Ban	1					Hish
12 F3- Patricoz	B	2/10/19	1115	Bay	1					
13 F3- Patrico3	B	2 wing	1130	<u> </u>		1			<u> </u>	Fish
14 P3 - Matric 04	B	2110hg	1145	Gaing			'			Fesh
15 F3-Patric di-d4 Come		2/10/19	110-1145	Berg	21			Conson Le la mar 1	Color	Flesh
il FI- Natycoi	B	210/19	1200	$\frac{Ding}{2}$		<u> </u>	-+	comparte mers p	on F3/01-04 above	Liver
17 FI- Antric 92	B			Beig					·	Fich
	B	2110/19	1215	Bary						Flesh
		2110/19	1230	Bay	<u> </u>	V				Flesh
M FI- Hatic by	B	216/19	1245	Baig	\ \		F .			Fish
20 FI-Matric Ø1-04 Grip	B	2/10/19	1200-1245	Bay	61			COMONTE TIVERS	tion FI 101-04 above	Liver
				~ 3				T		
							(
	RE	LINQUISHED BY:						RECEIVED	2	
ame:				Date:		Name:	Tran!		9/1-119	METHOD OF SHIPMENT Con' Note No:
f:Elgin Associates				Time:		Of:	M	AP	an	
ame:				Date:		Name:	shale	ila	17/10/2019	Transport Co:
)f:			!	Time:	·	Of:			OS SOAM >	

sy.

المتعار الم

COC Page def

Telephone : +

CERTIFICATE OF ANALYSIS Work Order : ES2014199 Page : 1 of 10 Amendment :1 Client Laboratory ELGIN ASSOCIATES PTY LTD : Environmental Division Sydney Contact : MR NICK YEE Contact : Peter Ravlic Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO BOX 829 **BEGA NSW. AUSTRALIA 2550** Telephone : +61 02 8003 4590 Telephone : +6138549 9645 Project Bioaccumulation Study **Date Samples Received** : 27-Apr-2020 09:00 Order number : JN19231 Date Analysis Commenced : 18-May-2020 C-O-C number · ____ Issue Date : 21-May-2020 20:24 Sampler : NICK YEE Site : Merimbula EIS Stage 2 Quote number : ME/755/18 Accreditation No. 825 No. of samples received : 36 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 36

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Biota samples analysed and reported as received.

Page	: 3 of 10
Work Order	: ES2014199 Amendment 1
Client	: ELGIN ASSOCIATES PTY LTD
Project	: Bioaccumulation Study

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	M1 - Mytilus 01	M1 - Mytilus 02	M1 - Mytilus 03	M1 - Mytilus 04	M2 - Mytilus 01
	Cl	ient samplii	ng date / time	24-Apr-2020 09:20	24-Apr-2020 09:20	24-Apr-2020 09:20	24-Apr-2020 09:20	24-Apr-2020 09:45
Compound	CAS Number	LOR	Unit	ES2014199-001	ES2014199-002	ES2014199-003	ES2014199-004	ES2014199-005
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	2	2	2	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	14	21	12	11	12
EG035T: Total Recoverable M	Mercury by FIMS							·
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	M2 - Mytilus 02	M2 - Mytilus 03	M2 - Mytilus 04	M3 - Mytilus 01	M3 - Mytilus 02
	Cl	ient sampli	ng date / time	24-Apr-2020 09:45	24-Apr-2020 09:45	24-Apr-2020 09:45	24-Apr-2020 09:00	24-Apr-2020 09:00 ES2014199-010
Compound	CAS Number	LOR	Unit	ES2014199-006	ES2014199-007	ES2014199-008	ES2014199-009	
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	9	15	18	7	17
EG035T: Total Recoverable I	Mercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	M3 - Mytilus 03	M3 - Mytilus 04	M4 - Mytilus 01	M4 - Mytilus 02	M4 - Mytilus 03
	Cl	ient sampli	ng date / time	24-Apr-2020 09:00	24-Apr-2020 09:00	24-Apr-2020 08:19	24-Apr-2020 08:19	24-Apr-2020 08:19 ES2014199-015
Compound	CAS Number	LOR	Unit	ES2014199-011	ES2014199-012	ES2014199-013	ES2014199-014	
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	8	32	6	12	10
EG035T: Total Recoverable I	Mercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	M4 - Mytilus 04	M5 - Mytilus 01	M5 - Mytilus 02	M5 - Mytilus 03	M5 - Mytilus 04
	Cl	ient samplii	ng date / time	24-Apr-2020 08:19	24-Apr-2020 10:30	24-Apr-2020 10:30	24-Apr-2020 10:30	24-Apr-2020 10:30
Compound	CAS Number	LOR	Unit	ES2014199-016	ES2014199-017	ES2014199-018	ES2014199-019	ES2014199-020
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	1	1	<1	1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	5	25	20	13	25
EG035T: Total Recoverable I	Mercury by FIMS						-	
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	A1 - Haliotis 01	A1 - Haliotis 02	A1 - Haliotis 03	A1 - Haliotis 04	A2 - Haliotis 01
	Cl	ient sampli	ng date / time	24-Apr-2020 10:30	24-Apr-2020 10:30	24-Apr-2020 10:30	24-Apr-2020 09:45	24-Apr-2020 00:00
Compound	CAS Number	LOR	Unit	ES2014199-021	ES2014199-022	ES2014199-023	ES2014199-024	ES2014199-025
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	14	14	17	15	14
EG035T: Total Recoverable I	Mercury by FIMS						-	
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	A2 - Haliotis 02	A2 - Haliotis 03	A2 - Haliotis 04	A3 - Haliotis 01	A3 - Haliotis 02
	Cl	ient sampli	ng date / time	24-Apr-2020 09:45	24-Apr-2020 09:45	24-Apr-2020 09:45	24-Apr-2020 09:00	24-Apr-2020 09:00
Compound	CAS Number	LOR	Unit	ES2014199-026	ES2014199-027	ES2014199-028	ES2014199-029	ES2014199-030
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	14	11	11	13	12
EG035T: Total Recoverable I	Mercury by FIMS						-	
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Sub-Matrix: BIOTA (Matrix: BIOTA)		Client sample ID		A3 - Haliotis 03	A3 - Haliotis 04	A4 - Haliotis 01	A4 - Haliotis 02	A4 - Haliotis 03
	Cl	ient sampli	ng date / time	24-Apr-2020 09:00	24-Apr-2020 09:00	24-Apr-2020 07:50	24-Apr-2020 07:50	24-Apr-2020 08:19 ES2014199-035
Compound	CAS Number	LOR	Unit	ES2014199-031	ES2014199-032	ES2014199-033	ES2014199-034	
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES							
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	<2	<2	<2	<2	<2
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	<2
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	<5
Lead	7439-92-1	5	mg/kg	<5	<5	<5	<5	<5
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Zinc	7440-66-6	5	mg/kg	12	15	9	17	11
EG035T: Total Recoverable I	Mercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Analytical Results

Sub-Matrix: BIOTA (Matrix: BIOTA)		Clie	ent sample ID	A4 - Haliotis 04	 	
	Cli	ent samplii	ng date / time	24-Apr-2020 08:19	 	
Compound	CAS Number	LOR	Unit	ES2014199-036	 	
				Result	 	
EG005(ED093)T: Total Metals b	y ICP-AES					
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	<2	 	
Cobalt	7440-48-4	2	mg/kg	<2	 	
Copper	7440-50-8	5	mg/kg	<5	 	
Lead	7439-92-1	5	mg/kg	<5	 	
Nickel	7440-02-0	2	mg/kg	<2	 	
Selenium	7782-49-2	5	mg/kg	<5	 	
Silver	7440-22-4	2	mg/kg	<2	 	
Zinc	7440-66-6	5	mg/kg	9	 	
EG035T: Total Recoverable Me	ercury by FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	

QUALITY CONTROL REPORT · ES2014199 Work Order Page : 1 of 5 :1 Amendment ELGIN ASSOCIATES PTY LTD Laboratory : Environmental Division Sydney Contact : MR NICK YEE Contact : Peter Ravlic Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO BOX 829 **BEGA NSW. AUSTRALIA 2550** Telephone Telephone : +6138549 9645 : +61 02 8003 4590 Date Samples Received : Bioaccumulation Study : 27-Apr-2020 Order number : JN19231 Date Analysis Commenced : 18-May-2020 Issue Date · 21-May-2020 C-O-C number · ____ Sampler · NICK YEE : Merimbula EIS Stage 2 Quote number : ME/755/18 Accreditation No. 825 No. of samples received : 36 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 36

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

Project

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: BIOTA						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
G005(ED093)T: Tot	tal Metals by ICP-AES((QC Lot: 3026272)							
ES2014199-001	M1 - Mytilus 01	EG005-B: Cadmium	7440-43-9	1	mg/kg	2	2	0.00	No Limit
		EG005-B: Chromium	7440-47-3	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Zinc	7440-66-6	5	mg/kg	14	17	19.7	No Limit
ES2014199-010 N	M3 - Mytilus 02	EG005-B: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005-B: Chromium	7440-47-3	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Zinc	7440-66-6	5	mg/kg	17	16	9.32	No Limit
G005(ED093)T: Tot	al Metals by ICP-AES((QC Lot: 3026275)							
ES2014199-021	A1 - Haliotis 01	EG005-B: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005-B: Chromium	7440-47-3	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit

Page	: 3 of 5
Work Order	: ES2014199 Amendment 1
Client	: ELGIN ASSOCIATES PTY LTD
Project	: Bioaccumulation Study

Sub-Matrix: BIOTA						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 3026275) - continued							
ES2014199-021	A1 - Haliotis 01	EG005-B: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Zinc	7440-66-6	5	mg/kg	14	14	0.00	No Limit
ES2014199-030	A3 - Haliotis 02	EG005-B: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005-B: Chromium	7440-47-3	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005-B: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005-B: Zinc	7440-66-6	5	mg/kg	12	12	0.00	No Limit
EG035T: Total Rec	overable Mercury by Fli	MS (QC Lot: 3026273)							
ES2014199-001	M1 - Mytilus 01	EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES2014199-010	M3 - Mytilus 02	EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EG035T: Total Rec	overable Mercury by Fl	MS (QC Lot: 3026274)			·				
ES2014199-021	A1 - Haliotis 01	EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES2014199-030	A3 - Haliotis 02	EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: BIOTA				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES	(QCLot: 3026272)								
EG005-B: Cadmium	7440-43-9	1	mg/kg	<1	0.306 mg/kg	90.3	70.0	130	
EG005-B: Chromium	7440-47-3	2	mg/kg	<2	1.87 mg/kg	85.2	70.0	130	
EG005-B: Cobalt	7440-48-4	2	mg/kg	<2					
EG005-B: Copper	7440-50-8	5	mg/kg	<5	15.9 mg/kg	95.3	70.0	130	
EG005-B: Lead	7439-92-1	5	mg/kg	<5					
EG005-B: Nickel	7440-02-0	2	mg/kg	<2	1.36 mg/kg	94.8	70.0	130	
EG005-B: Selenium	7782-49-2	5	mg/kg	<5	3.56 mg/kg	75.6	70.0	130	
EG005-B: Silver	7440-22-4	2	mg/kg	<2					
EG005-B: Zinc	7440-66-6	5	mg/kg	<5	52.2 mg/kg	91.0	70.0	130	
EG005(ED093)T: Total Metals by ICP-AES	(QCLot: 3026275)								
EG005-B: Cadmium	7440-43-9	1	mg/kg	<1	0.306 mg/kg	91.7	70.0	130	
EG005-B: Chromium	7440-47-3	2	mg/kg	<2	1.87 mg/kg	102	70.0	130	
EG005-B: Cobalt	7440-48-4	2	mg/kg	<2					
EG005-B: Copper	7440-50-8	5	mg/kg	<5	15.9 mg/kg	94.0	70.0	130	
EG005-B: Lead	7439-92-1	5	mg/kg	<5					
EG005-B: Nickel	7440-02-0	2	mg/kg	<2	1.36 mg/kg	122	70.0	130	
EG005-B: Selenium	7782-49-2	5	mg/kg	<5	3.56 mg/kg	83.2	70.0	130	
EG005-B: Silver	7440-22-4	2	mg/kg	<2					
EG005-B: Zinc	7440-66-6	5	mg/kg	<5	52.2 mg/kg	90.5	70.0	130	
EG035T: Total Recoverable Mercury by Fl	IMS (QCLot: 3026273)								
EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.41 mg/kg	71.9	70.0	130	
EG035T: Total Recoverable Mercury by Fl	IMS (QCLot: 3026274)								
EG035-B: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.41 mg/kg	75.6	70.0	130	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: BIOTA	Jb-Matrix: BIOTA			Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3026272)						
ES2014199-001	M1 - Mytilus 01	EG005-B: Cadmium	7440-43-9	6.25 mg/kg	127	70.0	130
		EG005-B: Zinc	7440-66-6	25 mg/kg	125	70.0	130

5 of 5
ES2014199 Amendment 1
ELGIN ASSOCIATES PTY LTD
Bioaccumulation Study

Sub-Matrix: BIOTA	Jb-Matrix: BIOTA			Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3026275)						
ES2014199-021	A1 - Haliotis 01	EG005-B: Zinc	7440-66-6	25 mg/kg	123	70.0	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 3026273)						
ES2014199-001	M1 - Mytilus 01	EG035-B: Mercury	7439-97-6	5 mg/kg	88.7	70.0	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 3026274)						
ES2014199-021	A1 - Haliotis 01	EG035-B: Mercury	7439-97-6	5 mg/kg	95.7	70.0	130

ork Order	ES2014199	Page	. 4
ork Order	: E32014133	Faye	: 1 of 5
nendment	:1		
ent	ELGIN ASSOCIATES PTY LTD	Laboratory	: Environmental Division Sydney
ntact	: MR NICK YEE	Telephone	: +6138549 9645
t	: Bioaccumulation Study	Date Samples Received	: 27-Apr-2020
	: Merimbula EIS Stage 2	Issue Date	: 21-May-2020
ler	: NICK YEE	No. of samples received	: 36
number	: JN19231	No. of samples analysed	: 36

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: BIOTA					Evaluation	i: × = Holding time	breach ; ✓ = Withi	n holding tin
Method		Sample Date	Sample Date Extraction / Preparation Analysis		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)T: Total Metals by ICP-AES								
Frozen Sample (EG005-B)								
M1 - Mytilus 01,	M1 - Mytilus 02,	24-Apr-2020	18-May-2020	21-Oct-2020	~	18-May-2020	21-Oct-2020	✓
M1 - Mytilus 03,	M1 - Mytilus 04,							
M2 - Mytilus 01,	M2 - Mytilus 02,							
M2 - Mytilus 03,	M2 - Mytilus 04,							
M3 - Mytilus 01,	M3 - Mytilus 02,							
M3 - Mytilus 03,	M3 - Mytilus 04,							
M4 - Mytilus 01,	M4 - Mytilus 02,							
M4 - Mytilus 03,	M4 - Mytilus 04,							
M5 - Mytilus 01,	M5 - Mytilus 02,							
M5 - Mytilus 03,	M5 - Mytilus 04,							
A1 - Haliotis 01,	A1 - Haliotis 02,							
A1 - Haliotis 03,	A1 - Haliotis 04,							
A2 - Haliotis 01,	A2 - Haliotis 02,							
A2 - Haliotis 03,	A2 - Haliotis 04,							
A3 - Haliotis 01,	A3 - Haliotis 02,							
A3 - Haliotis 03,	A3 - Haliotis 04,							
A4 - Haliotis 01,	A4 - Haliotis 02,							
A4 - Haliotis 03,	A4 - Haliotis 04							

Page	: 3 of 5
Work Order	ES2014199 Amendment 1
Client	: ELGIN ASSOCIATES PTY LTD
Project	: Bioaccumulation Study

Matrix: BIOTA					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIM	s							
Frozen Sample (EG035-B)								
M1 - Mytilus 01,	M1 - Mytilus 02,	24-Apr-2020	18-May-2020	21-Oct-2020	1	19-May-2020	21-Oct-2020	✓
M1 - Mytilus 03,	M1 - Mytilus 04,							
M2 - Mytilus 01,	M2 - Mytilus 02,							
M2 - Mytilus 03,	M2 - Mytilus 04,							
M3 - Mytilus 01,	M3 - Mytilus 02,							
M3 - Mytilus 03,	M3 - Mytilus 04,							
M4 - Mytilus 01,	M4 - Mytilus 02,							
M4 - Mytilus 03,	M4 - Mytilus 04,							
M5 - Mytilus 01,	M5 - Mytilus 02,							
M5 - Mytilus 03,	M5 - Mytilus 04,							
A1 - Haliotis 01,	A1 - Haliotis 02,							
A1 - Haliotis 03,	A1 - Haliotis 04,							
A2 - Haliotis 01,	A2 - Haliotis 02,							
A2 - Haliotis 03,	A2 - Haliotis 04,							
A3 - Haliotis 01,	A3 - Haliotis 02,							
A3 - Haliotis 03,	A3 - Haliotis 04,							
A4 - Haliotis 01,	A4 - Haliotis 02,							
A4 - Haliotis 03,	A4 - Haliotis 04							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: BIOTA				Evaluatio	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Metals in Biota by ICP-AES	EG005-B	4	36	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035-B	4	36	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Metals in Biota by ICP-AES	EG005-B	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035-B	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Metals in Biota by ICP-AES	EG005-B	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035-B	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Metals in Biota by ICP-AES	EG005-B	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035-B	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Metals in Biota by ICP-AES	EG005-B	BIOTA	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the material. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards.
Total Mercury by FIMS	EG035-B	ΒΙΟΤΑ	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in biota	EN69	ΒΙΟΤΑ	In house: Referenced to USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2014199		
Client	ELGIN ASSOCIATES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR NICK YEE	Contact	: Peter Ravlic
Address	: PO BOX 829 BEGA NSW, AUSTRALIA 2550	Address	277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: nick.yee@elgin.com.au	E-mail	: peter.ravlic@alsglobal.com
Telephone	: +61 02 8003 4590	Telephone	: +6138549 9645
Facsimile	: +61 03 8648 6336	Facsimile	: +61-2-8784 8500
Project	: Bioaccumulation Study	Page	: 1 of 3
Order number	: JN19231	Quote number	: EM2018ELGASS0015 (ME/755/18)
C-O-C number	:	QC Level	: NEPM 2013 B3 & ALS QC Standard
Site	: Merimbula EIS Stage 2		
Sampler			
Dates			
Date Samples Rec	eived : 27-Apr-2020 09:00	Issue Date	: 28-Apr-2020
Client Requested	Due : 19-May-2020	Scheduled Reporti	ng Date : 19_May_2020

Date	: 19-May-2020	Scheduled Reporting Date	19-May-2020
Delivery Details			
Mode of Delivery	: Carrier	Security Seal	: Intact.
No. of coolers/boxes	: 1	Temperature	: 6.4'C - Ice present
Receipt Detail	:	No. of samples received / analysed	: 36 / 36

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The absence of this summary table indicates that all samples have been received
 within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Biota (inc. mercury)

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the EG005/EG035-B laboratory and displayed in brackets without a time component

Matrix: BIOTA

Laboratory sample ID	Client sampling date / time	Client sample ID	BIOTA - E(Metals in B
ES2014199-001	24-Apr-2020 09:20	M1 - Mytilus 01	
ES2014199-002	24-Apr-2020 09:20	M1 - Mytilus 02	✓
ES2014199-003	24-Apr-2020 09:20	M1 - Mytilus 03	✓
ES2014199-004	24-Apr-2020 09:20	M1 - Mytilus 04	1
ES2014199-005	24-Apr-2020 09:45	M2 - Mytilus 01	1
ES2014199-006	24-Apr-2020 09:45	M2 - Mytilus 02	✓
ES2014199-007	24-Apr-2020 09:45	M2 - Mytilus 03	1
ES2014199-008	24-Apr-2020 09:45	M2 - Mytilus 04	1
ES2014199-009	24-Apr-2020 09:00	M3 - Mytilus 01	✓
ES2014199-010	24-Apr-2020 09:00	M3 - Mytilus 02	1
ES2014199-011	24-Apr-2020 09:00	M3 - Mytilus 03	✓
ES2014199-012	24-Apr-2020 09:00	M3 - Mytilus 04	1
ES2014199-013	24-Apr-2020 08:19	M4 - Mytilus 01	✓
ES2014199-014	24-Apr-2020 08:19	M4 - Mytilus 02	✓
ES2014199-015	24-Apr-2020 08:19	M4 - Mytilus 03	✓
ES2014199-016	24-Apr-2020 08:19	M4 - Mytilus 04	1
ES2014199-017	24-Apr-2020 10:30	M5 - Mytilus 01	✓
ES2014199-018	24-Apr-2020 10:30	M5 - Mytilus 02	✓
ES2014199-019	24-Apr-2020 10:30	M5 - Mytilus 03	✓
ES2014199-020	24-Apr-2020 10:30	M5 - Mytilus 04	✓
ES2014199-021	24-Apr-2020 10:30	A1 - Haliotis 01	✓
ES2014199-022	24-Apr-2020 10:30	A1 - Haliotis 02	✓
ES2014199-023	24-Apr-2020 10:30	A1 - Haliotis 03	✓
ES2014199-024	24-Apr-2020 09:45	A1 - Haliotis 04	✓
ES2014199-025	24-Apr-2020 00:00	A2 - Haliotis 01	✓
ES2014199-026	24-Apr-2020 09:45	A2 - Haliotis 02	✓
ES2014199-027	24-Apr-2020 09:45	A2 - Haliotis 03	✓
ES2014199-028	24-Apr-2020 09:45	A2 - Haliotis 04	✓
ES2014199-029	24-Apr-2020 09:00	A3 - Haliotis 01	✓
ES2014199-030	24-Apr-2020 09:00	A3 - Haliotis 02	✓
ES2014199-031	24-Apr-2020 09:00	A3 - Haliotis 03	1
ES2014199-032	24-Apr-2020 09:00	A3 - Haliotis 04	✓
ES2014199-033	24-Apr-2020 07:50	A4 - Haliotis 01	1
ES2014199-034	24-Apr-2020 07:50	A4 - Haliotis 02	 ✓
ES2014199-035	24-Apr-2020 08:19	A4 - Haliotis 03	1

Issue Date	: 28-Apr-2020
Page	: 3 of 3
Work Order	ES2014199 Amendment 0
Client	: ELGIN ASSOCIATES PTY LTD

			BIOTA - EG005/EG035-B Metals in Biota (inc. mercury)
ES2014199-036	24-Apr-2020 08:19	A4 - Haliotis 04	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ANDREW ROBERTS

 *AU Certificate of Analysis - NATA (COA) 	Email	andrew.roberts@elgin.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	andrew.roberts@elgin.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	andrew.roberts@elgin.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	andrew.roberts@elgin.com.au
- Chain of Custody (CoC) (COC)	Email	andrew.roberts@elgin.com.au
- EDI Format - ESDAT (ESDAT)	Email	andrew.roberts@elgin.com.au
- EDI Format - XTab (XTAB)	Email	andrew.roberts@elgin.com.au
LUKE FINLEY		
- A4 - AU Tax Invoice (INV)	Email	luke.finley@elgin.com.au
NICK YEE		
 *AU Certificate of Analysis - NATA (COA) 	Email	nick.yee@elgin.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	nick.yee@elgin.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	nick.yee@elgin.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nick.yee@elgin.com.au
- A4 - AU Tax Invoice (INV)	Email	nick.yee@elgin.com.au
- Chain of Custody (CoC) (COC)	Email	nick.yee@elgin.com.au
- EDI Format - ESDAT (ESDAT)	Email	nick.yee@elgin.com.au
- EDI Format - XTab (XTAB)	Email	nick.yee@elgin.com.au

			(
CHAIN OF CUSTODY DOCUMENTATION		<u></u>							Environmental Division) 1
CLIENT: Elgin Associates Pty Ltd								Sydney		
ADDRESS / OFFICE: First Floor, 45-47 Church St, Bega, NSW, 2550		· · · · · · · · · · · · · · · · · · ·		MOBILE:		0400	365 234		Work Order Reference	
PROJECT MANAGER (PM). Nick Yee				PHONE				. <u> </u>	ES2014199	
PROJECT ID: JN19231 BIONCE UMULATION S. SITE: Merimbula Els Stage 2				EMAIL REPORT TO:			m.au andrew.robert			1.
RESULTS REQUIRED (Date): Standard TAT	P.O. No.: JN1923 QUOTE NO.: ME/			ANALYSIS REQUIRED	merentior	port) mick, yee @eigin	.com.au luke.finley@	yeigin.com.au	MANANA MATANG MANANA MANANA MINI ATAN	1.
		/ STORAGE OR DISPOSAL:		ANAL TSIS REQUIRED		· · · ·				
COOLER BEAL (circle appropriate)		TUTORNOL ON DOIL COAL.		ซี						
	les in extended storage for p	ossible additional analysis at I	later time	Gr, Co, G. Zn						
SAMPLE TEMPERALIZE	of 0.5 mg/kg			Metals - Cd, Cr, Cr, Pb, Hg, Ni, Se, Ag,					Telephone : + 61-2-8784 8555	
CHECED Yes No	13°			음 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	٩					
SAMPLE INFORMATION (note: S = Soil, W=Water B=		CONTAINER INFORM Type / Code	Total bottle	Pb, t	НОГР		Compating Instructure	a if applicable	Bisto Overse for Anatori	
1 MI-Myhilus ol 8 24/9		BAG	1 Jonan Donne			composite	•F 4 indivi	dmills 609	Biota Organ for Analysis	ำ
2 MI-Myhilusoz B 24/4		2465	1	V		1	<u> </u>	659	Flesh	1 Haran Dark
3 M1 - Mytilns 03 B 24/4/		BA4	,			4	u 4 4	736	Plush	- Hunter Reef
Y MI-Myhilus OY B 24/4		BAG	1						Plesh	
5 M2- Myhilusol B 24/4		BACS	- /		<u> </u>	4		<u>663</u> 605	Plash	í
6 M2 - Myhilnsoz B 24/4		BAG	+			<u>.</u>		704	Fler	III. A.P.
7 M2 - Myhluso3 B 24/4		BAG	+				<u> </u>	723	Flesh	Haycock Pr
8 M2 - Myrilus 04 B 24/4		Bre	<u> </u>			·····	¥			}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-	<u> </u>	, 565	Flesh	2
		384	(ļ	4	• 4 •	, 853	fleih	
		BA-G	<u> </u>			4	v (¢	, 62g	Fluch	flong Point
4 M3-Myriaso3 B 24/4		BAG	1	-	 	~	n () -	, 80 4	Flash	
12 M3-Myst 4504 B 241		84 Gr	1.			N	<u>a ((a</u>	, 785	Flesh	ļ
13 M4-My 5/4501 B 24/4		BALS					4 (f #	209	Pleh	1
14 M4-Myhilm 02 B 24/4		BACE	<u> </u>		L	અ	<u> </u>	823	Flesh	1- TURA MOAD
15 My-Mykihiso3 & ZULY		Bact	1		L	-	<u> </u>	. 952	Flesh	L TURA MEAD
No MY-MYATUDOY B 24/4		BAG	1			~		, 900	flesh	J
17 M5-Mypilus 01 & 24/4/		329	1			C ¹	4 6 v	50,	flech	1
18 M5-Myhilus 02 8 24/4/		Btg				4	- 6 -	35 9	Auch	+ Lanede Is.
11 M5-Myhilwo3 B 24/4		BNE				~	- 6 -	34 9	fleth	
~ 15- Myrilus 04 B 24/4	120 10:30	Bre				~	- 6 -	403	Sterh	5
		THAT A	20	<u></u>						
RELINQUISH	ED BY:				!	L	CEIVED BY	· · · · · · · · · · · · · · · · · · ·	METHOD OF SHIPMENT	
Name: Nicheowas Yor		Date: 27 4 20		Name: MD	(Z8[4]-	6	Con' Note No:	
Of:Elgin Associates		Time: 14:00		of: A		Y	······································	a		
Name:Of:		Date:		Name:					Transport Co:	
1 <u>01.</u>		Time:		Of:				<u> </u>		

.

COC Page _____ of _2

CHAIN OF CUSTODY D	OCUMENTA	TION				<u></u>					
LIENT: Elgin Associates Pty Ltd DDRESS / OFFICE: First Floor, 45-47 C	burch St Rana New	2550	· · · · · ·		÷	SAMPLER: MOBILE;	N	0400 365 234	6	ALS Environmental Pty Ltd, 277-289 Woodpark Rd,	
PROJECT MANAGER (PM): Nick Yee	idren ot, bega, nori	2500				PHONE	J	0400 -0003		Smithfield, NSW, 2164,	
	munation	STUDY				EMAIL REPORT TO:			rew.roberts@elain.com.au	ph: 02 8784 8555	
SiTE: Merimbula EIS Stage 2			P.O. No.: JN19231				ifferent to r	epan) nick.yee@elgin.com.au	ike.finley@elgin.com.au		
RESULTS REQUIRED (Date): Standard TAT			QUOTE NO .: ME/7	/ STORAGE OR DISPOSAL:	· · · · · ·	ANALYSIS REQUIRED					
CHLADDINICATION CALL COLER GEAL (circle appropriate)	er	COMMENTS/	SPECIAL HANDLING	7 STORAGE OR DISPOSAL	···	ð.					
nfaut Yes Mg	Please k	eep all samples in ex	tended storage for po	ossible additional analysis at	later time	Ag. Zh					
AMPLE TEMPERATURE		Copper LOR of 0.5 n	ng/kg	· · · · · · · · · · · · · · · · · · ·		Ni, Se, A					
240.00 Yes No		. 17 store .	· · · · · · · · · · · · · · · · · · ·			, si ŝi	6				
AB ID . SAMPLE INFORMA	MATRI		Time	CONTAINER INFORM Type / Code	Total bottle	õ. I. I. Metals - Pb, Hg,	НОГР	0	Instructions if applicable		
zi Al-Halioh's Ol	B	24/4/20	10:30	BA G	1			×1 individue		Biota Organ for Analysis	7
12 AI-HORISTIS 02	B	24/4/20	10:30	BAG	1			4 4	, 112g	FLESH	1 en mardo
13 Al- Halions 03	B	24/1/20	10:30	BALA	1	17		u 4	125 9	FLESH	
24 Al-Haliotis 04	8	24/4/20	10:20	BALF	1	1 7		* 4	140 9	FIETH	flennerds:
is A2-Heliotis of	8	24/4/10	9:45	BAG	1			·· 4	, 122 5	Plash	1
26 A2-Holishis 02	8	24/4/10	9:45	BAY	1			v 4	, 133 9	Plash	- Hoycode A
17 AZ-Halishi 03	8	24/4/20	9:45	Bth	1				120 9	Plesh	Fright
18 A2-Haliohij04	8	24/4/20	9:45	BAG	1			u u	, 103,9	Flesh	ļ
24 A3-Holiohisol	ß	24/4/20	9:00	BAU	1			ب	, 98 g	Flest	ว์
10 A3-Holiotiso2	3	24/4/20	9:00	BAG	1				. 965	Plest	Linna R.
>1 A3-Haliohis 03	ß	24/2/20	9:00	BACT	1			u •	1019	Alei2	fingfo.
12 A3-Holiohisoy	ß	24/4/00	9:00	BAG	(<u>н</u>	(18.9	Reih	ļ
37 Ag- Haliotis OI	В	24/4/20	4:50	BAY	1				112 3	Flesh	7
34 A4- Holiohis 02		24/4/200	1:20	804	1			. es	1259	Plush	LTURA He
x A4- Holinhroz	В	24/4/20	8:19	BAG	/		L	<u> </u>	(204	Plub	Fierrie
36 AU - HOMONSOY	В	24/4/20	8-11	BAG	1			~ ~	1185	Flesh	5
				-	Į						
				10100	16				······································	· · · · · · · · · · · · · · · · · · ·	
lame: Nicrounds		RELINQUISHED BY:		Date: 27/4/20	<u>, </u>			RECEIVED BY	T of ute -	METHOD OF SHIPMENT	
Aame: NICCOMPACT 5	100			Date: 27/9/20		Name: FA	n-		2814/~~	Con' Note No:	
lame:		·····		Date:		Name:	7	1	· · · · · · · · · · · · · · · · · · ·	Transport Co:	
Х:				Time:		Of:					

Stage 1 Pilot Study

Soft Sediment Infauna and Epifauna Community

Site Code	Distance (m)	Location	Depth (m)	Latitude	Longitude
SIS01	0	Haycock Point	30	-36.94971032	149.955045
SIS02	50	Haycock Point	30	-36.94926281	149.9555379
SIS03	200	Haycock Point	30	-36.94807744	149.9560322
SIS04	400	Haycock Point	30	-36.94661379	149.9575139
SIS05	0	Merimbula Bay	30	-36.92636185	149.9408416
SIS06	50	Merimbula Bay	30	-36.92627074	149.940171
SIS07	200	Merimbula Bay	30	-36.9257177	149.9386415
SIS08	400	Merimbula Bay	30	-36.9251562	149.9362847

Figure E1. Assessment of soft sediment infauna community - sampling design.

Sample collection and Processing

Sediment sampling was undertaken in accordance with guidelines provided in the CSIRO Handbook for Sediment Quality Assessment (CSIRO 2005) and Commonwealth of Australia National Assessment Guidelines for Dredging 2009 (NAGD 2009).

A Van-Veen grab sampler with capacity to sample 0.1m² area and 0.005m³ of sediment was deployed from the work vessel to collect surficial sediments at each site. Upon retrieval, the each sample was emptied into clean plastic tub for field measurement of pH and redox using a field chemistry kit.

Photos of each sediment sample were recorded along with notes describing sediment characteristics such as colour, presence of odours, and grain particle size. A subsample of sediments for chemistry

analysis were transferred into clean laboratory-supplied bags for laboratory analysis and placed in a chilled esky under chain of custody documentation.

Remaining sediments were sieved through 1.0mm mesh, with the retained sediment fraction bagged for taxonomic analysis of infauna. Infauna samples were initially fixed in 10% seawater formalinbierbrich scarlet stain solution and afterwards preserved in 70% ethanol with collection details logged.

Sediment particle size distribution graphs for benthic infauna sites at Haycock Point, 30m depth.

Sediment particle size distribution graphs for benthic infauna sites at Merimbula Bay, 30m depth.

									Нау	cock Poir	nt, 30m d	epth				
Phylum / Subphylum	Class	Order	Infraorder / Suborder	Family / Taxon	SIS01-1	SIS01-2	SIS01-3	SIS02-1	SIS02-2	SIS02-3	SIS03-1	SIS03-2	SIS03-3	SIS04-1	SIS04-2	SIS04-3
Crustacea	Hexanauplia			Copepoda												1
	Malacostraca	Amphipoda	Lysianassida	Amaryllididae	10		6	4	1	4	6		3	8	4	1
				Urohaustoriidae												
			Corophiida	Ischyroceridae				2			1	1	1			
				Caprellidae											1	
		Cumacea		Cumacea	1		1	7	2	7	3		2	2	2	4
		Decapoda	Brachyura	Grapsidae								2	1			
				Majidae												
			Anomura	Diogenidae - Paguristes tuberculatus												
			Caridea	Processidae - Processa australiensis				1	1						1	1
		Isopoda	Cymothoida	Anthuridae		2	4	2	1				2	6	1	1
				Cirolanidae												
				Gnathiidae			2	1		1						1
			Sphaeromatidea	Serolidae												
				Sphaeromatidae				1					2			
			Valvifera	Antarcturidae						1	3	1	4			1
		Tanaidacea		Tanaidacea	2		1		1	3	1	1		1	5	2
	Ostrocoda			Ostrocoda			1	1			1		1	3		1
Mollusca	Bivalvia	Venerida		Veneridae 1	12	12	14	5	13	28	8	9	2	4	4	4
		Venerida		Veneridae 2			1	1		1	1		1	4	2	2
		Venerida		Veneridae 3			1									
		Cardiida		Tellinidae		2	1			1					2	
		Anomalodesmata		Myochamidae		1						2		3	2	
		Imparidentia		Mactridae												
		Arcida		Arcidae												
		Pectinida		Pectinidae												1
	Gastropoda			Cylichnidae		1				1	1	1	2	1		
				Pyramidellidae						3			2			
				Scaphandridae							1			1		
				Acteonidae	1	1	1	1								
				Solariellidae	Ī			Ī								1
				Calyptraeidae	Ī		İ	Ī	İ			İ	İ			1
				Marginellidae	İ		1	İ	1		Ì	1	1	1		
	Scaphopoda			Scaphopoda	2	3	2	1			4		3	1		1

APPENDIX E1. List of soft sediment infauna taxa recorded at 30m depth at Haycock Point and Merimbula Bay.

					Haycock Point, 30m depth											
Phylum / Subphylum	Class	Order	Infraorder / Suborder	Family / Taxon	SIS01-1	SIS01-2	SIS01-3	SIS02-1	SIS02-2	SIS02-3	SIS03-1	SIS03-2	SISO3-3	SIS04-1	SIS04-2	SIS04-3
Annelida	Polychaeta	Amphinomida		Amphinomidae												
		Eunicida		Dorvilleidae					1							
				Eunicidae												
				Lumbrineridae	1	1										2
				Onuphidae	11	9	13	21	9	25	56	18	7	29	24	12
		Phyllodocida		Glyceridae								1				
				Nephtyidae		1										
				Nereididae		1	2									
				Phyllodocidae			4	1	4	1	3			1	3	6
				Sigalionidae										2		
				Syllidae												
		Sabellida		Sabellidae	10	2	16	6	6	20	32	6	16	39	20	9
		Spionida		Spionidae (sp. 1)		2	5	2								
		Terrebellidae		Ampharetidae										3		
				Cirratulidae 1	3	2	2	3	4	1	4			6	2	1
				Cirratulidae 2	1											
				Trichobranchidae												
				Magelonidae												
		Infraclass Scolecida		Maldanidae	37	5	25	50	64	102	207	42	51	128	38	44
				Opheliidae												
				Orbiniidae												
				Paraonidae												
Chelicerata	Pycnogonida			Pycnogonida												1
Nemertea				Nemertea					4		3	1			1	2
Echinodermata	Ophiuroidea			Ophiuroidea			1		1			15	1	3	1	
	Echinoidea			Fibulariella acuta									1	1		
	Holothuroidea			Holothuroidea			1									2
Chordata	Actinopterygii	Perciformes	Trachinoidei	Creediidae - Creedia haswelli							1					
Chordata	Leptocardii	Amphioxiformes		Lancelet	1		1	I	1	1	I		1	1		
Bryozoa				Bryozoa					1		2	3	1		2	1
Foraminifera				Foraminifera	1		1	I	1	1	2		1	5		1
Nematoda				Nematoda	1		1	I	1	1	I		1	2		1
				Total Abundance	90	45	104	108	113	199	340	103	103	252	115	99
				Richness	11	15	21	16	15	15	20	14	19	21	18	21

APPENDIX E1. List of soft sediment infauna taxa recorded at 30m depth at Haycock Point and Merimbula Bay.

Note

Taxonomy follows currently accpeted nomenclature from:

WoRMS Editorial Board (2017). World Register of Marine Species. Available from URL: http://www.marinespecies.org

Samples collected by Van Veen grab sampler and sieved through 1.0 mm mesh.

_					Merimbula Bay											
Phylum / Subphylum	Class	Order	Infraorder / Suborder	Family / Taxon	SISO5-1	SIS05-2	SISO5-3	SIS06-1	SISO6-2	SISO6-3	SIS07-1	SIS07-2	SIS07-3	SIS08-1	SIS08-2	SIS08-3
Crustacea	Hexanauplia			Copepoda							2					
	Malacostraca	Amphipoda	Lysianassida	Amaryllididae	21	17	24	5	33	1	4	14	14	16	4	3
				Urohaustoriidae			1		4	1			4	1		1
			Corophiida	Ischyroceridae	3	1	2		9			1		2		
				Caprellidae					1	1						
		Cumacea		Cumacea	4	9	2	2	8	3	4	5	5	10	2	4
		Decapoda	Brachyura	Grapsidae												
				Majidae							2					
			Anomura	Diogenidae - Paguristes tuberculatus	1	1	1	1	15	1	2	2	2			3
			Caridea	Processidae - Processa australiensis						1						
		Isopoda	Cymothoida	Anthuridae	3	2	2	2	2	2	4	2	1	4	4	3
				Cirolanidae								2				
				Gnathiidae	1					1	1					
			Sphaeromatidea	Serolidae			1				1		4			1
				Sphaeromatidae					2	1	1	41	1	1	1	13
			Valvifera	Antarcturidae												1
		Tanaidacea		Tanaidacea	13	16	11	2	18	11	19	38	22	27	5	13
	Ostrocoda			Ostrocoda	84	33	91	26	41	19	12	2	14	1	3	3
Mollusca	Bivalvia	Venerida		Veneridae 1	8	10	5		3	1	7	2	4			2
		Venerida		Veneridae 2												
		Venerida		Veneridae 3						1	1	1	1			
		Cardiida		Tellinidae	1		1	1			1	1		2		1
		Anomalodesmata		Myochamidae							1					
		Imparidentia		Mactridae				3								
		Arcida		Arcidae						2				1		
		Pectinida		Pectinidae							1		1			
	Gastropoda			Cylichnidae				1						1		
				Pyramidellidae							1					
				Scaphandridae												
				Acteonidae	1			l –						l –		1
				Solariellidae	1		1			2	2	1		2		
				Calyptraeidae	1						3	16	2	2		27
				Marginellidae										1		
1	Scaphopoda			Scaphopoda												

APPENDIX E1. List of soft sediment infauna taxa recorded at 30m depth at Haycock Point and Merimbula B

					Merimbula Bay											
Phylum / Subphylum	Class	Order	Infraorder / Suborder	Family / Taxon	SIS05-1	SIS05-2	SISO5-3	SIS06-1	SIS06-2	SISO6-3	SIS07-1	SIS07-2	SIS07-3	SIS08-1	SIS08-2	SIS08-3
Annelida	Polychaeta	Amphinomida		Amphinomidae						9	22	154	44	11		
		Eunicida		Dorvilleidae												
				Eunicidae	1											
				Lumbrineridae	5	1	5	5	10	13	13	8	22	12	8	8
				Onuphidae	11	10	9	4	37	18	10	49	12	87	9	14
		Phyllodocida		Glyceridae		4	2		3		1	3	1	4		2
				Nephtyidae												
				Nereididae		1				1	3	19		1		3
				Phyllodocidae	5	2	8	7	2	7	2	8	30	9	1	2
				Sigalionidae		1		1		2					1	1
				Syllidae		2	3	4		8	2	8	18	48	5	1
		Sabellida		Sabellidae			_	1		1		_			-	
		Spionida		Spionidae (sp. 1)	1	3			2		1					1
		Terrebellidae		Ampharetidae				2		2		2	3			1
			Cirratulidae 1		1		3				1					
				Cirratulidae 2	1						1		2			
				Trichobranchidae	2	3			2	2		1	2	2	1	2
				Magelonidae										1		
		Infraclass Scolecida		Maldanidae	1		1	2		3		2	2			
				Opheliidae	1											
				Orbiniidae	2	1		1	2			3				7
				Paraonidae	3	10	4	8	2			3	7	15		1
Chelicerata	Pycnogonida			Pycnogonida												
Nemertea				Nemertea		1	3		1	4			5	5	1	
Echinodermata	Ophiuroidea			Ophiuroidea	2	3	3		2	1	1	1	1	10	1	2
	Echinoidea			Fibulariella acuta												1
	Holothuroidea			Holothuroidea		1			2				1		1	-
Chordata	Actinopterygii	Perciformes	Trachinoidei	Creediidae - Creedia haswelli												1
Chordata	Leptocardii	Amphioxiformes		Lancelet	1		1	1	1							1
Bryozoa				Bryozoa								1			1	
Foraminifera				Foraminifera	I		1	I	1	1	l –			l –	3	1
Nematoda				Nematoda		12	1				12	1	6	55	44	
				Total Abundance	176	145	182	81	202	119	135	392	231	331	95	116
				Richness	24	24	23	20	23	28	29	30	28	27	18	22

APPENDIX E1. List of soft sediment infauna taxa recorded at 30m depth at Haycock Point and Merimbula B

Note

Taxonomy follows currently accpeted nomenclature from:

WoRMS Editorial Board (2017). World Register of Marine Species. Available from URL: http://www.marinespecies.org

Samples collected by Van Veen grab sampler and sieved through 1.0 mm mesh.

Appendix E2. Sediment Analytical Results

				FIELD PARAM	1ETERS ²	LABORATOR	Y PARAMETERS	3										
	Sample Type	Sample Date	Sample Time	рН	Redox	phi mean	Ammonia as N	Nitrite as N	Nitrate as N	NOx (Nitrite + Nitrate) as N	Total Kjeldahl Nitrogen as N	Total Nitrogen as N	Total Phosphoru s as P	Reactive Phosphorus as P	Total Organic Carbon	Aluminium (Al)	Beryllium (Be)	Arsenic (As)
Sample ID				pH unit	mV		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	mg/kg		mg/kg
		Limit of Reporting (LO	DR)	-	-		20	0.1	0.1	0.1	20	20	2	0.1	0.02	50		1
		ISQG-Low ¹		-	-		-		-	-			-	-	-	-	-	20
		ISQG-High ¹			-		-	-	-	-		-	-	-	-	-	-	70
		ground Data - Bentl (Bass Strait) - Won EES 2008					<20	<0.1	<0.1-0.546	<0.1-0.546		100-280		0.177-0.922	0.06-0.09			4.4-15
SIS01_9/11/17	SEDIMENT	9-Nov-17	-	7.3	215	363	<20	<0.1	<0.1	<0.1	80	80	91	3.2	0.08	150	-	1.52
SIS02_10/11/17	SEDIMENT	10-Nov-17	-	7.5	200	337	<20	<0.1	0.7	0.7	150	150	154	2.6	0.07	200	-	1.92
SIS03_10/11/17	SEDIMENT	10-Nov-17	-	7.4	116	332	<20	<0.1	<0.1	<0.1	90	90	106	3.1	0.06	190	-	1.53
SIS04_10/11/17	SEDIMENT	10-Nov-17	-	7.8	145	336	<20	<0.1	<0.1	<0.1	130	130	102	2.9	0.05	180	-	1.52
SIS05_10/11/17	SEDIMENT	10-Nov-17	-	7.9	164	642	<20	<0.1	<0.1	<0.1	100	100	274	1.4	0.07	560	-	10.5
SIS06_10/11/17	SEDIMENT	10-Nov-17	-	7.8	174	707	<20	<0.1	<0.1	<0.1	50	50	250	1	0.05	470	-	8.51
SIS07_10/11/17	SEDIMENT	10-Nov-17	-	8	171	1200	<20	<0.1	0.2	0.2	140	140	278	1.5	0.06	500	-	12.9
SIS08_10/11/17	SEDIMENT	10-Nov-17	-	7.8	160	1010	<20	<0.1	0.5	0.5	90	90	249	1.2	0.06	510	-	14.4

Note

¹ Interim Sediment Quality Guidelines (ANZECC/ARMCANZ 2000, CSIRO 2005)

³ Field parameters measured *insitu* using field-chem kit

⁴ Laboratory parameters reported by ALS Sydney

Shaded cells with bold text indicate guideline value has been exceeded.

Appendix E2. Sediment Analytical Results

						1	1			1	I			1	1					
	Sample Type	Sample Date	Sample Time	Iron (Fe)	Chromium (Cr)	Manganese (Mn)	Copper (Cu)	Zinc (Zn)	Nickel (Ni)	Selenium (Se)	Vanadium (V)	Antimony (Sb)	Barium (Ba)	Boron (B)	Cadmium (Cd)	Cobalt (Co)	Lead (Pb)	Molybdenum (Mo)	Silver (Ag)	Tin (Sn)
Sample ID				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg		mg/kg	
		Limit of Reporting (LO	OR)	50	1	10	1	1	1	0.1	2	0.5			0.1	0.5	1		0.1	
		ISQG-Low ¹		-	80	-	65	200	21	-	-	2	-	-	1.5	-	50	-	1	-
		ISQG-High ¹		-	370	-	270	410	52	-	-	25	-	-	10	-	220	-	3.7	-
		ground Data - Bent (Bass Strait) - Won EES 2008			<1-3.8		4.8-5.5	9.6-11.4	<1-1.3						<0.1		<1.0-1.3			
SIS01_9/11/17	SEDIMENT	9-Nov-17	-	800	2.5	<10	<1.0	<1.0	<1.0	<0.1	2.3	<0.50	-	-	<0.1	<0.5	<1.0	-	<0.1	-
SIS02_10/11/17	SEDIMENT	10-Nov-17	-	980	2.7	<10	<1.0	<1.0	<1.0	0.1	3.2	<0.50		-	<0.1	<0.5	<1.0	-	<0.1	-
SIS03_10/11/17	SEDIMENT	10-Nov-17	-	900	2.4	<10	<1.0	<1.0	<1.0	<0.1	2.6	<0.50	-	-	<0.1	<0.5	<1.0	-	<0.1	-
SIS04_10/11/17	SEDIMENT	10-Nov-17	-	960	2.4	<10	<1.0	<1.0	<1.0	<0.1	2.5	<0.50	•	-	<0.1	<0.5	<1.0	-	<0.1	-
SIS05_10/11/17	SEDIMENT	10-Nov-17	-	4720	5.8	<10	<1.0	2	<1.0	<0.1	12.5	<0.50	-	-	<0.1	<0.5	1.3	-	<0.1	-
SIS06_10/11/17	SEDIMENT	10-Nov-17	-	4030	5	<10	<1.0	1.4	<1.0	<0.1	11	<0.50	-	-	<0.1	<0.5	<1.0	-	<0.1	-
SIS07_10/11/17	SEDIMENT	10-Nov-17	-	4650	4.7	<10	<1.0	6.7	<1.0	<0.1	14.1	<0.50	-	-	<0.1	<0.5	<1.0	-	<0.1	-
SIS08_10/11/17	SEDIMENT	10-Nov-17	-	4960	5	<10	<1.0	1.7	<1.0	<0.1	14.4	0.88	-	-	<0.1	<0.5	1.1	-	0.6	-

Note

¹ Interim Sediment Quality Guidelines (ANZECC/ARMCANZ 2000, CSIRO 2005)

³ Field parameters measured *insitu* using field-chem kit

⁴ Laboratory parameters reported by ALS Sydney

Shaded cells with bold text indicate guideline value has been exceeded.

Appendix E2. Sediment Analytical Results

					OBSERVATIONS
	Sample Type	Sample Date	Sample Time	Mercury (Hg)	
Sample ID			20)	mg/kg	
		Limit of Reporting (L	DR)	0.01	
		ISQG-Low ¹		0.15	
		ISQG-High ¹		1	
		(ground Data - Bent : (Bass Strait) - Won EES 2008		<0.01-0.01	
		-			
SIS01_9/11/17	SEDIMENT	9-Nov-17	-	<0.01	SAND, light brown, fine to medium grained and uniform size.
SIS02_10/11/17	SEDIMENT	10-Nov-17	-	<0.01	SAND, brown, fine to medium grained, uniform size, sulphide odour, with lumps of black clay-sand
SIS03_10/11/17	SEDIMENT	10-Nov-17	-	<0.01	SAND, brown, fine to medium grained and uniform size, lumps of black clay-sand, no odour.
SIS04_10/11/17	SEDIMENT	10-Nov-17	-	<0.01	SAND, light brown with green tinge, fine to medium grained, uniform size, slight sulphide odour.
SIS05_10/11/17	SEDIMENT	10-Nov-17	-	<0.01	SAND, brown, medium to coarse grained, shell grit, slight odour.
SIS06_10/11/17	SEDIMENT	10-Nov-17	-	<0.01	SAND, brown, medium to coarse grained, shell grit, some pebble, slight sulphide odour.
SIS07_10/11/17	SEDIMENT	10-Nov-17	-	<0.01	SAND, brown, medium to coarse grained, shell grit, lumps of black clay-fine sand.
SIS08_10/11/17	SEDIMENT	10-Nov-17	-	<0.01	SAND, brown, medium to coarse grained, shell grit, lumps of black clay-fine sand.

Note

¹ Interim Sediment Quality Guidelines (ANZECC/ARMCANZ 2000, CSIRO 2005)

³ Field parameters measured insitu using field-chem kit

⁴ Laboratory parameters reported by ALS Sydney

Shaded cells with bold text indicate guideline value has been exceeded.

SEDIMENT CHARACTERISTICS

Sediment Sample	SIS01
Location Coordinates:	-36.94971032 149.955045
Lithology:	SAND, light brown, fine to medium grained and uniform size.
рН	7.3
Redox	215 mV
Photo	Sisol 31/1/2 31/1/2

Sediment Sample	SIS02
Location Coordinates:	-36.94926281 149.9555379
Lithology:	SAND, brown, fine to medium grained, uniform size, sulphide odour, with lumps of black clay-sand
рН	7.5
Redox	200 mV
Photo	SiSo2 Ioliniia

Sediment Sample	SIS03
Location Coordinates:	-36.94807744 149.9560322
Lithology:	SAND, brown, fine to medium grained and uniform size, lumps of black clay-sand, no odour.
рН	7.4
Redox	116 mV
Photo	S;S 0'3 10 11 17

Sediment Sample	SIS04
Location Coordinates:	-36.94661379 149.9575139
Lithology:	SAND, light brown with green tinge, fine to medium grained, uniform size, slight sulphide odour.
рН	7.8
Redox	145 mV
Photo	SiSo4 Lolull7

Sediment Sample	SIS05
Location Coordinates:	-36.92636185 149.9408416
Lithology:	SAND, brown, medium to coarse grained, shell grit, slight odour.
рН	7.9
Redox	164 mV
Photo	Siso5_lolulla

Sediment Sample	SIS06		
Location Coordinates:	-36.92627074 149.940171		
Lithology:	SAND, brown, medium to coarse grained, shell grit, some pebble, slight sulphide odour.		
рН	7.8		
Redox	174 mV		
Photo			

Sediment Sample	SIS07			
Location Coordinates:	-36.9257177 149.9386415			
Lithology:	SAND, brown, medium to coarse grained, shell grit, lumps of black clay-fine sand.			
рН	8			
Redox	171 mV			
Photo				

Sediment Sample	SIS08		
Location Coordinates:	-36.9251562 149.9362847		
Lithology:	SAND, brown, medium to coarse grained, shell grit, lumps of black clay-fine sand.		
рН	7.8		
Redox	160 mV		
Photo	Siso8 ioluli7		

LABORATORY CERTIFICATES

- CERTIFICATE OF ANALYSIS
- SAMPLE RECEIPT NOTIFICATION
- CHAIN OF CUSTODY

CERTIFICATE OF ANALYSIS

Work Order	ES1728487	Page	: 1 of 6
Client	ELGIN ASSOCIATES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR NICK YEE	Contact	: Peter Ravlic
Address	: PO BOX 829	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	BEGA NSW, AUSTRALIA 2550		
Telephone	: +61 02 8003 4590	Telephone	: +61-2-8784 8555
Project	: JN17169 MERIMBULA DEEP OCEAN OUTFALL - BENTHIC	Date Samples Received	: 14-Nov-2017 08:30
	FAUNA		
Order number	:	Date Analysis Commenced	: 16-Nov-2017
C-O-C number	:	Issue Date	21-Nov-2017 17:09
Sampler	:		
Site	:		
Quote number	: ME/222/17		Accreditation No. 825 Accredited for compliance with
No. of samples received	: 8		ISO/IEC 17025 - Testing
No. of samples analysed	: 8		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashesh Patel	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Raymond Commodore	Instrument Chemist	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• EA153: ALS does not hold NATA accreditation for Laser Particle Sizing.

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	SIS01_9/11/17	SIS02_10/11/17	SIS03_10/11/17	SIS04_10/11/17	SIS05_10/11/17
	Cl	ient samplii	ng date / time	09-Nov-2017 00:00	10-Nov-2017 00:00	10-Nov-2017 00:00	10-Nov-2017 00:00	10-Nov-2017 00:00
Compound	CAS Number	LOR	Unit	ES1728487-001	ES1728487-002	ES1728487-003	ES1728487-004	ES1728487-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @	⊉ 105-110°C)							
Moisture Content		1.0	%	31.8	38.2	30.2	31.2	30.0
EG005-SD: Total Metals in Sedim	ents by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	150	200	190	180	560
Iron	7439-89-6	50	mg/kg	800	980	900	960	4720
EG020-SD: Total Metals in Sedim	ents by ICPMS							
Antimony	7440-36-0	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Arsenic	7440-38-2	1.00	mg/kg	1.52	1.92	1.53	1.52	10.5
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	2.5	2.7	2.4	2.4	5.8
Copper	7440-50-8	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt	7440-48-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Lead	7439-92-1	1.0	mg/kg mg/kg	<1.0 <10	<1.0	<1.0	<1.0	1.3
Manganese	7439-96-5	10			<10 <1.0	<10	<10 <1.0	<10
Nickel	7440-02-0	1.0	mg/kg	<1.0		<1.0		<1.0
Selenium	7782-49-2	0.1	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	2.0	mg/kg	2.3	3.2	2.6	2.5	12.5
Zinc	7440-66-6	1.0	mg/kg	<1.0	<1.0	<1.0	<1.0	2.0
G035T: Total Recoverable Merc	ury by FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
K055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg	<20	<20	<20	<20	<20
K057G: Nitrite as N by Discrete	Analyser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EK058G: Nitrate as N by Discrete								
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	<0.1	0.7	<0.1	<0.1	<0.1
K059G: Nitrite plus Nitrate as N		lyeor	0.0					
Nitrite + Nitrate as N (Sol.)	(NOX) by Discrete Alla	0.1	mg/kg	<0.1	0.7	<0.1	<0.1	<0.1
K061G: Total Kjeldahl Nitrogen I	By Discroto Apolycor							
Total Kjeldahl Nitrogen as N	By Discrete Analyser	20	mg/kg	80	150	90	130	100
		20					100	100
EK062: Total Nitrogen as N (TKN Total Nitrogen as N	+ NOX)	20	mg/kg	80	150	90	130	100
_	 by Discrete Analyser	20	ilig/kg	ou	150	30	130	100

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Cli	ent sample ID	SIS01_9/11/17	SIS02_10/11/17	SIS03_10/11/17	SIS04_10/11/17	SIS05_10/11/17			
	Cli	ent sampli	ng date / time	09-Nov-2017 00:00	10-Nov-2017 00:00	10-Nov-2017 00:00	10-Nov-2017 00:00	10-Nov-2017 00:00			
Compound	CAS Number	LOR	Unit	ES1728487-001	ES1728487-002	ES1728487-003	ES1728487-004	ES1728487-005			
				Result	Result	Result	Result	Result			
EK067G: Total Phosphorus as P by Discrete Analyser - Continued											
Total Phosphorus as P		2	mg/kg	91	154	106	102	274			
EK071G: Reactive Phosphorus as P t	y discrete analyser										
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	3.2	2.6	3.1	2.9	1.4			
EP003: Total Organic Carbon (TOC) ii	n Soil										
Total Organic Carbon		0.02	%	0.08	0.07	0.06	0.05	0.07			

ub-Matrix: SEDIMENT Matrix: SOIL)			ent sample ID	SIS06_10/11/17	SIS07_10/11/17	SIS08_10/11/17	
	Cli	ient sampli	ng date / time	10-Nov-2017 00:00	10-Nov-2017 00:00	10-Nov-2017 00:00	
Compound	CAS Number	LOR	Unit	ES1728487-006	ES1728487-007	ES1728487-008	
				Result	Result	Result	
A055: Moisture Content (Dried @	2 105-110°C)						
Moisture Content		1.0	%	16.7	21.4	22.4	
G005-SD: Total Metals in Sedime	ents by ICP-AES						
Aluminium	7429-90-5	50	mg/kg	470	500	510	
Iron	7439-89-6	50	mg/kg	4030	4650	4960	
G020-SD: Total Metals in Sedime	ents by ICPMS						
Antimony	7440-36-0	0.50	mg/kg	<0.50	<0.50	0.88	
Arsenic	7440-38-2	1.00	mg/kg	8.51	12.9	14.4	
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	
Chromium	7440-47-3	1.0	mg/kg	5.0	4.7	5.0	
Copper	7440-50-8	1.0	mg/kg	<1.0	<1.0	<1.0	
Cobalt	7440-48-4	0.5	mg/kg	<0.5	<0.5	<0.5	
Lead	7439-92-1	1.0	mg/kg	<1.0	<1.0	1.1	
Manganese	7439-96-5	10	mg/kg	<10	<10	<10	
Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	<1.0	
Selenium	7782-49-2	0.1	mg/kg	<0.1	<0.1	<0.1	
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.6	
Vanadium	7440-62-2	2.0	mg/kg	11.0	14.1	14.4	
Zinc	7440-66-6	1.0	mg/kg	1.4	6.7	1.7	
G035T: Total Recoverable Mercu	ury by FIMS						
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	<0.01	
K055: Ammonia as N							
Ammonia as N	7664-41-7	20	mg/kg	<20	<20	<20	
K057G: Nitrite as N by Discrete							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	<0.1	
K058G: Nitrate as N by Discrete							
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	<0.1	0.2	0.5	
K059G: Nitrite plus Nitrate as N (
Nitrite + Nitrate as N (Sol.)	(NOX) by Discrete Alla	0.1	mg/kg	<0.1	0.2	0.5	
K061G: Total Kjeldahl Nitrogen B							1
Total Kjeldahl Nitrogen as N	by Discrete Analyser	20	mg/kg	50	140	90	
		20	ilig/kg	50	140	30	
K062: Total Nitrogen as N (TKN + Total Nitrogen as N	FNOX)	20	ma/ka	EO	140	00	
rotai Nitrogen as N		20	mg/kg	50	140	90	

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	SIS06_10/11/17	SIS07_10/11/17	SIS08_10/11/17	
	Clie	nt samplii	ng date / time	10-Nov-2017 00:00	10-Nov-2017 00:00	10-Nov-2017 00:00	
Compound	CAS Number	LOR Unit		ES1728487-006	ES1728487-007	ES1728487-008	
				Result	Result	Result	
EK067G: Total Phosphorus as P by Di	iscrete Analyser - Co	ntinued					
Total Phosphorus as P		2		250	278	249	
EK071G: Reactive Phosphorus as P b	y discrete analyser						
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	1.0	1.5	1.2	
EP003: Total Organic Carbon (TOC) in	Soil						
Total Organic Carbon		0.02	%	0.05	0.06	0.06	

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

Work Order:	ES1728487
Client:	ELGIN ASSOCIATES PTY LTD
Address:	PO BOX 829 BEGA NSW, AUSTRALIA 2550
Contact:	MR NICK YEE
Project:	JN17169 MERIMBULA DEEP OCEAN OUTFALL - BENTHIC FAUNA
Report Date:	21/11/2017
Samples Submitted:	14/11/2017

Report:

The particle size distribution of these samples was determined by Light-Scattering using a Mastersizer 3000 instrument.

This report contains data only for the fraction below 2mm. Any particles greater than 2mm were removed prior to analysis and are reported as a percentage of total mass in the table below.

Lab ID	Client ID	+ 2mm %
ES1728487 - 001	SIS01_9/11/17	0.04
ES1728487 - 002	SIS02_10/11/17	0.1
ES1728487 - 003	SIS03_10/11/17	0.03
ES1728487 - 004	SIS04_10/11/17	0.13
ES1728487 - 005	SIS05_10/11/17	0.72
ES1728487 - 006	SIS06_10/11/17	1.11
ES1728487 - 007	SIS07_10/11/17	2.62
ES1728487 - 008	SIS08_10/11/17	2.65

A detailed report for each sample is attached. Sampled by ELGIN ASSOCIATES PTY LTD; analysed as received.

Mulin

Michael Mercer Laboratory Analyst Soils and Sizings.

> Australian Laboratory Services Pty Ltd ABN 84 009 936 029 Part of the ALS Laboratory Group 5/585 Maitland Rd, Mayfield West NSW 2304 Australia Phone +61 2 40142500 Fax +61 2 49677382 www.alsglobal.com

Malvern Instruments Malvern

/11/2017 1:40:16 PM
/11/2017 1:40:16 PM
eraged
30
85
50 m²/kg
4 μm
3 μm
3 μm
- 5 μm
9 μm
Cumulative Volume (%)

				[Frequ 1:40:1	uency] - [17] ES17 6 PM	28487 - 00	Size Classe 1-20/11/2017	. [Unc	lersize] - [17] ES1 16 PM	728487 - 0	01-20/11/2017				
Result															
Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (μm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under
0.0100	0.00	0.0552	0.00	0.305	0.00	1.68	0.00	9.30	0.00	51.4	0.00	284	29.73	1570	100.00
0.0113	0.00	0.0624	0.00	0.345	0.00	1.90	0.00	10.5	0.00	58.0	0.00	321	42.15	1770	100.00
0.0128	0.00	0.0705	0.00	0.389	0.00	2.15	0.00	11.9	0.00	65.6	0.00	362	55.37	2000	100.00
0.0144	0.00	0.0796	0.00	0.440	0.00	2.43	0.00	13.4	0.00	74.1	0.00	409	68.19		
0.0163	0.00	0.0900	0.00	0.497	0.00	2.74	0.00	15.2	0.00	83.7	0.00	462	79.45		
0.0184	0.00	0.102	0.00	0.561	0.00	3.10	0.00	17.1	0.00	94.6	0.00	522	88.36		
0.0208	0.00	0.115	0.00	0.634	0.00	3.50	0.00	19.3	0.00	107	0.00	590	94.58		
0.0235	0.00	0.130	0.00	0.717	0.00	3.96	0.00	21.9	0.00	121	0.00	667	98.31		
0.0266	0.00	0.147	0.00	0.810	0.00	4.47	0.00	24.7	0.00	136	0.10	753	99.93		
0.0300	0.00	0.166	0.00	0.915	0.00	5.05	0.00	27.9	0.00	154	0.65	851	100.00		
0.0339	0.00	0.187	0.00	1.03	0.00	5.71	0.00	31.5	0.00	174	2.21	962	100.00		
0.0383	0.00	0.211	0.00	1.17	0.00	6.45	0.00	35.6	0.00	197	5.46	1090	100.00		
0.0433	0.00	0.239	0.00	1.32	0.00	7.29	0.00	40.2	0.00	222	11.01	1230	100.00		
0.0489	0.00	0.270	0.00	1.49	0.00	8.23	0.00	45.5	0.00	251	19.14	1390	100.00		

Malvern Instruments Malvern

Measurement Details	Measurement Details
Operator Name michael.mercer	Analysis Date Time 20/11/2017 2:55:54 PM
Sample Name ES1728487 - 002	Measurement Date Time 20/11/2017 2:55:54 PM
SOP File Name HydroLV.cfg	Result Source Averaged
Analysis	Result
Particle Name ALS	Span 0.986
Particle Refractive Index 1.550	Uniformity 0.305
Particle Absorption Index 0.100	Specific Surface Area 21.39 m ² /kg
Dispersant Name Water	D [3,2] 280 μm
Dispersant Refractive Index 1.330	D [4,3] 337 μm
Scattering Model Mie	Dv (10) 195 μm
Analysis Model General Purpose	Dv (50) 319 μm
Weighted Residual 0.66 %	Dv (90) 510 μm
Laser Obscuration 13.78 %	

Result															
Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under
0.0100	0.00	0.0552	0.00	0.305	0.00	1.68	0.00	9.30	0.00	51.4	0.62	284	38.14	1570	100.00
0.0113	0.00	0.0624	0.00	0.345	0.00	1.90	0.00	10.5	0.00	58.0	0.62	321	50.43	1770	100.00
0.0128	0.00	0.0705	0.00	0.389	0.00	2.15	0.00	11.9	0.00	65.6	0.62	362	62.80	2000	100.00
0.0144	0.00	0.0796	0.00	0.440	0.00	2.43	0.00	13.4	0.00	74.1	0.62	409	74.22		
0.0163	0.00	0.0900	0.00	0.497	0.00	2.74	0.00	15.2	0.00	83.7	0.62	462	83.86		
0.0184	0.00	0.102	0.00	0.561	0.00	3.10	0.00	17.1	0.02	94.6	0.62	522	91.21		
0.0208	0.00	0.115	0.00	0.634	0.00	3.50	0.00	19.3	0.08	107	0.63	590	96.19		
0.0235	0.00	0.130	0.00	0.717	0.00	3.96	0.00	21.9	0.16	121	0.72	667	99.07		
0.0266	0.00	0.147	0.00	0.810	0.00	4.47	0.00	24.7	0.25	136	1.21	753	99.97		
0.0300	0.00	0.166	0.00	0.915	0.00	5.05	0.00	27.9	0.35	154	2.60	851	100.00		
0.0339	0.00	0.187	0.00	1.03	0.00	5.71	0.00	31.5	0.45	174	5.46	962	100.00		
0.0383	0.00	0.211	0.00	1.17	0.00	6.45	0.00	35.6	0.55	197	10.32	1090	100.00		
0.0433	0.00	0.239	0.00	1.32	0.00	7.29	0.00	40.2	0.62	222	17.48	1230	100.00		
0.0489	0.00	0.270	0.00	1.49	0.00	8.23	0.00	45.5	0.62	251	26.89	1390	100.00		

Malvern Instruments

Measurement Details	Measurement Details
Operator Name michael.mercer	Analysis Date Time 20/11/2017 3:31:08 PM
Sample Name ES1728487 - 003	Measurement Date Time 20/11/2017 3:31:08 PM
SOP File Name HydroLV.cfg	Result Source Averaged
Analysis	Result
Particle Name ALS	Span 0.969
Particle Refractive Index 1.550	Uniformity 0.297
Particle Absorption Index 0.100	Specific Surface Area 20.44 m ² /kg
Dispersant Name Water	D [3,2] 294 μm
Dispersant Refractive Index 1.330	D [4,3] 332 μm
Scattering Model Mie	Dv (10) 195 μm
Analysis Model General Purpose	Dv (50) 313 μm
Weighted Residual 0.62 %	Dv (90) 499 μm
Laser Obscuration 18.32 %	
Frequency (compatible) and Undersize	
20 15- (3) 10- 5- 5-	Contraction of the second seco
0	10.0 100.0 1,000.0 10,000.0

				[Frequ 3:31:0	uency] - [56] ES17 8 PM	28487 - 00	Size Classe 3-20/11/2017	[Und	lersize] - [56] ES1 08 PM	728487 - 0	03-20/11/2017				
Result															
Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under
0.0100	0.00	0.0552	0.00	0.305	0.00	1.68	0.00	9.30	0.00	51.4	0.00	284	39.78	1570	100.00
0.0113	0.00	0.0624	0.00	0.345	0.00	1.90	0.00	10.5	0.00	58.0	0.00	321	52.41	1770	100.00
0.0128	0.00	0.0705	0.00	0.389	0.00	2.15	0.00	11.9	0.00	65.6	0.00	362	64.90	2000	100.00
0.0144	0.00	0.0796	0.00	0.440	0.00	2.43	0.00	13.4	0.00	74.1	0.00	409	76.21		
0.0163	0.00	0.0900	0.00	0.497	0.00	2.74	0.00	15.2	0.00	83.7	0.00	462	85.55		
0.0184	0.00	0.102	0.00	0.561	0.00	3.10	0.00	17.1	0.00	94.6	0.00	522	92.49		
0.0208	0.00	0.115	0.00	0.634	0.00	3.50	0.00	19.3	0.00	107	0.00	590	97.03		
0.0235	0.00	0.130	0.00	0.717	0.00	3.96	0.00	21.9	0.00	121	0.10	667	99.52		
0.0266	0.00	0.147	0.00	0.810	0.00	4.47	0.00	24.7	0.00	136	0.63	753	99.98		
0.0300	0.00	0.166	0.00	0.915	0.00	5.05	0.00	27.9	0.00	154	2.14	851	100.00		
0.0339	0.00	0.187	0.00	1.03	0.00	5.71	0.00	31.5	0.00	174	5.24	962	100.00		
0.0383	0.00	0.211	0.00	1.17	0.00	6.45	0.00	35.6	0.00	197	10.48	1090	100.00		
0.0433	0.00	0.239	0.00	1.32	0.00	7.29	0.00	40.2	0.00	222	18.12	1230	100.00		
0.0489	0.00	0.270	0.00	1.49	0.00	8.23	0.00	45.5	0.00	251	28.06	1390	100.00		

Malvern Instruments

Measurement Details	Measurement Details							
Operator Name michael.mercer	Analysis Date Time 20/11/2017 3:46:15 PM							
Sample Name ES1728487 - 004	Measurement Date Time 20/11/2017 3:46:15 PM							
SOP File Name HydroLV.cfg	Result Source Averaged							
Analysis	Result							
Particle Name ALS	Span 1.001							
Particle Refractive Index 1.550	Uniformity 0.308							
Particle Absorption Index 0.100	Specific Surface Area 20.38 m ² /kg							
Dispersant Name Water	D [3,2] 294 μm							
Dispersant Refractive Index 1.330	D [4,3] 336 μm							
Scattering Model Mie	Dv (10) 194 μm							
Analysis Model General Purpose	Dv (50) 316 μm							
Weighted Residual 0.63 %	Dv (90) 510 μm							
Laser Obscuration 23.48 %								

Result															
Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under	Size (µm)	% Volume Under
0.0100	0.00	0.0552	0.00	0.305	0.00	1.68	0.00	9.30	0.00	51.4	0.03	284	39.18	1570	100.00
0.0113	0.00	0.0624	0.00	0.345	0.00	1.90	0.00	10.5	0.00	58.0	0.03	321	51.38	1770	100.00
0.0128	0.00	0.0705	0.00	0.389	0.00	2.15	0.00	11.9	0.00	65.6	0.03	362	63.51	2000	100.00
0.0144	0.00	0.0796	0.00	0.440	0.00	2.43	0.00	13.4	0.00	74.1	0.03	409	74.64		
0.0163	0.00	0.0900	0.00	0.497	0.00	2.74	0.00	15.2	0.00	83.7	0.03	462	84.00		
0.0184	0.00	0.102	0.00	0.561	0.00	3.10	0.00	17.1	0.00	94.6	0.03	522	91.14		
0.0208	0.00	0.115	0.00	0.634	0.00	3.50	0.00	19.3	0.00	107	0.04	590	96.02		
0.0235	0.00	0.130	0.00	0.717	0.00	3.96	0.00	21.9	0.00	121	0.17	667	98.90		
0.0266	0.00	0.147	0.00	0.810	0.00	4.47	0.00	24.7	0.01	136	0.77	753	99.96		
0.0300	0.00	0.166	0.00	0.915	0.00	5.05	0.00	27.9	0.01	154	2.38	851	100.00		
0.0339	0.00	0.187	0.00	1.03	0.00	5.71	0.00	31.5	0.02	174	5.56	962	100.00		
0.0383	0.00	0.211	0.00	1.17	0.00	6.45	0.00	35.6	0.03	197	10.77	1090	100.00		
0.0433	0.00	0.239	0.00	1.32	0.00	7.29	0.00	40.2	0.03	222	18.25	1230	100.00		
0.0489	0.00	0.270	0.00	1.49	0.00	8.23	0.00	45.5	0.03	251	27.87	1390	100.00		

Malvern Instruments

Measurement Details	Measurement Details
Operator Name michael.mercer	Analysis Date Time 21/11/2017 8:49:46 AM
Sample Name ES1728487 - 005	Measurement Date Time 21/11/2017 8:49:46 AM
SOP File Name HydroLV.cfg	Result Source Averaged
	Devil
Analysis Particle Name ALS	Result
	Span 1.319
Particle Refractive Index 1.550	Uniformity 0.406
Particle Absorption Index 0.100	Specific Surface Area 19.60 m ² /kg
Dispersant Name Water	D [3,2] 306 μm
Dispersant Refractive Index 1.330	D [4,3] 642 μm
Scattering Model Mie	Dv (10) 274 μm
Analysis Model General Purpose	Dv (50) 609 μm
Weighted Residual 0.98 %	Dv (90) 1080 μm
Laser Obscuration 27.25 %	
Frequency (compatible) and Undersize	
15 (% 10	Comparison of the second secon
0.43.40 AIVI	0.72,70 AIVI
Result	
Size (μm) % Volume Under Size (μm) % Volume Under Size (μm) % Volume Under Size (μm) % Volume Under	Size (µm) % Volume Under Size (µm) % Volume Under Size (µm) % Volume Under Size (µm) % Volume Under
0.0100 0.00 0.0552 0.00 0.305 0.00 1.68 0.00 0.0113 0.00 0.0624 0.00 0.345 0.00 1.90 0.00	9.30 0.31 51.4 1.45 284 10.63 1570 99.67 10.5 0.38 58.0 1.63 321 13.23 1770 100.00

0.0100	0.00	0.0552	0.00	0.305	0.00	1.68	0.00	9.30	0.31	51.4	1.45	284	10.63	1570	99.67
0.0113	0.00	0.0624	0.00	0.345	0.00	1.90	0.00	10.5	0.38	58.0	1.63	321	13.23	1770	100.00
0.0128	0.00	0.0705	0.00	0.389	0.00	2.15	0.00	11.9	0.45	65.6	1.91	362	17.13	2000	100.00
0.0144	0.00	0.0796	0.00	0.440	0.00	2.43	0.00	13.4	0.53	74.1	2.32	409	22.55		
0.0163	0.00	0.0900	0.00	0.497	0.00	2.74	0.00	15.2	0.61	83.7	2.85	462	29.55		
0.0184	0.00	0.102	0.00	0.561	0.00	3.10	0.00	17.1	0.70	94.6	3.49	522	37.98		
0.0208	0.00	0.115	0.00	0.634	0.00	3.50	0.00	19.3	0.79	107	4.22	590	47.46		
0.0235	0.00	0.130	0.00	0.717	0.00	3.96	0.01	21.9	0.89	121	4.97	667	57.46		
0.0266	0.00	0.147	0.00	0.810	0.00	4.47	0.03	24.7	0.98	136	5.70	753	67.31		
0.0300	0.00	0.166	0.00	0.915	0.00	5.05	0.06	27.9	1.07	154	6.34	851	76.36		
0.0339	0.00	0.187	0.00	1.03	0.00	5.71	0.10	31.5	1.14	174	6.89	962	84.16		
0.0383	0.00	0.211	0.00	1.17	0.00	6.45	0.15	35.6	1.21	197	7.42	1090	90.42		
0.0433	0.00	0.239	0.00	1.32	0.00	7.29	0.20	40.2	1.26	222	8.05	1230	95.10		
0.0489	0.00	0.270	0.00	1.49	0.00	8.23	0.26	45.5	1.33	251	9.02	1390	98.18		

Malvern Instruments

Measurement Details	Measurement Details
Operator Name michael.mercer	Analysis Date Time 21/11/2017 9:08:09 AM
Sample Name ES1728487 - 006	Measurement Date Time 21/11/2017 9:08:09 AM
SOP File Name HydroLV.cfg	Result Source Averaged
Analysis	Result
Analysis Particle Name ALS	Span 1.324
Particle Name ALS Particle Refractive Index 1.550	Uniformity 0.410
	Specific Surface Area 13.56 m ² /kg
Particle Absorption Index 0.100	
Dispersant Name Water	D [3,2] 442 μm
Dispersant Refractive Index 1.330	D [4,3] 707 μm
Scattering Model Mie	Dv (10) 337 μm
Analysis Model General Purpose	Dv (50) 647 μm
Weighted Residual 0.94 %	Dv (90) 1190 μm
Laser Obscuration 20.99 %	
Frequency (compatible) and Undersize	
15 © 10 Esisten O 5 S -	Contraction of the second seco
0	L I I I I I I I I I I I I I I I I I I I
Size (µm) % Volume Under Size (µm) % Volume Under Size (µm) % Volume Under 0.0100 0.00 0.0552 0.00 0.305 0.00 1.68 0.00 0.0113 0.00 0.0624 0.00 0.345 0.00 1.90 0.00 0.0128 0.00 0.0705 0.00 0.389 0.00 2.15 0.00 0.0144 0.00 0.0795 0.00 0.440 0.00 2.33 0.00	Size (µm) % Volume Under Size (µm) % Volume Under Size (µm) % Volume Under Size (µm) % Volume Under 9.30 0.01 51.4 0.62 284 5.91 1570 98.10 10.5 0.02 58.0 0.75 321 8.50 1770 99.61 11.9 0.06 65.6 0.95 362 12.46 2000 100.00 13.4 0.12 74.1 1.22 409 17.95 100.00

0.0113	0.00	0.0624	0.00	0.345	0.00	1.90	0.00	10.5	0.02	58.0	0.75	321	8.50	1770	99.61
0.0128	0.00	0.0705	0.00	0.389	0.00	2.15	0.00	11.9	0.06	65.6	0.95	362	12.46	2000	100.00
0.0144	0.00	0.0796	0.00	0.440	0.00	2.43	0.00	13.4	0.12	74.1	1.22	409	17.95		
0.0163	0.00	0.0900	0.00	0.497	0.00	2.74	0.00	15.2	0.19	83.7	1.58	462	24.97		
0.0184	0.00	0.102	0.00	0.561	0.00	3.10	0.00	17.1	0.26	94.6	1.99	522	33.33		
0.0208	0.00	0.115	0.00	0.634	0.00	3.50	0.00	19.3	0.34	107	2.41	590	42.64		
0.0235	0.00	0.130	0.00	0.717	0.00	3.96	0.00	21.9	0.42	121	2.78	667	52.40		
0.0266	0.00	0.147	0.00	0.810	0.00	4.47	0.00	24.7	0.50	136	3.07	753	62.04		
0.0300	0.00	0.166	0.00	0.915	0.00	5.05	0.00	27.9	0.55	154	3.24	851	71.03		
0.0339	0.00	0.187	0.00	1.03	0.00	5.71	0.00	31.5	0.55	174	3.31	962	79.00		
0.0383	0.00	0.211	0.00	1.17	0.00	6.45	0.00	35.6	0.55	197	3.39	1090	85.74		
0.0433	0.00	0.239	0.00	1.32	0.00	7.29	0.00	40.2	0.55	222	3.68	1230	91.17		
0.0489	0.00	0.270	0.00	1.49	0.00	8.23	0.00	45.5	0.55	251	4.41	1390	95.29		

Malvern Instruments

Measureme	ent Details						Measure	ment Details	5					
	Opera	tor Name	michael.me	rcer					Analysis	Date Time	21/11/2017	10:13:31	AM	
	Sam	ple Name	ES1728487	- 007				Meas	surement	Date Time	21/11/2017	10:13:31	AM	
	SOP	File Name	HydroLV.cfg	9					Res	ult Source	Averaged			
Analysis							Result							
	Part	icle Name	ALS							Span	1.585			
	Particle Refrac	tive Index	1.550						ι	Iniformity	0.486			
	Particle Absorp	tion Index	0.100					s	pecific Su	rface Area	9.615 m²/kg	g		
	Dispers	ant Name	Water							D [3,2]	624 µm			
	Dispersant Refrac	tive Index	1.330							D [4,3]	1200 µm			
	Scatter	ing Model	Mie							Dv (10)	478 µm			
Analysis Model General Purpose										Dv (50)	1070 μm			
	Weighte	d Residual	1.48 %							Dv (90)	2170 μm			
	Laser Ol	oscuration	28.56 %											
Frequency (compatible) and Un	dersize												
15 - 10 - 4. 10 - 5 - 0.01 0.01					1 I I 728487 - 007-	10.0 Size Classes -21/11/2017	; (um)				111 1		100 50 50 10,000.0	Cumulative Volume (%)
Desult														
Result Size (µm) % Vo	olume Under Size (µm) %	Volume Under	Size (µm) %	Volume Under	Size (um)%	Volume Under	Size (µm) %	Volume Under	Size (µm) % V	olume Under	Size (µm) % Ve	olume Under	Size (µm) % V	olume Under
0.0100	0.00 0.0552	0.00	0.305	0.00	1.68	0.00	9.30	0.00	51.4	0.92	284	4.47	1570	74.65
0.0113 0.0128	0.00 0.0624 0.00 0.0705	0.00 0.00	0.345 0.389	0.00 0.00	1.90 2.15	0.00 0.00	10.5 11.9	0.00 0.00	58.0 65.6	1.03 1.14	321 362	5.03 5.89	1770 2000	81.14 86.73
0.0128	0.00 0.0796	0.00	0.389	0.00	2.15	0.00	13.4	0.00	74.1	1.14	409	7.21	2000	00.75
0.0163	0.00 0.0900	0.00	0.497	0.00	2.74	0.00	15.2	0.02	83.7	1.44	462	9.22		
0.0184	0.00 0.102	0.00	0.561	0.00	3.10	0.00	17.1	0.07	94.6	1.63	522	12.12		

0.0339	0.00	0.187	0.00	1.03	0.00	5.71	0.00	31.5	0.52	174	3.08
0.0383	0.00	0.211	0.00	1.17	0.00	6.45	0.00	35.6	0.62	197	3.41
0.0433	0.00	0.239	0.00	1.32	0.00	7.29	0.00	40.2	0.72	222	3.73
0.0489	0.00	0.270	0.00	1.49	0.00	8.23	0.00	45.5	0.82	251	4.07

0.00

0.00

0.00

0.00

3.50

3.96

4.47

5.05

0.00

0.00

0.00

0.00

19.3

21.9

24.7

27.9

0.00

0.00

0.00

0.00

0.634

0.717

0.810

0.915

0.0208

0.0235

0.0266

0.0300

0.00

0.00

0.00

0.00

0.115

0.130

0.147

0.166

0.15

0.23

0.33

0.42

107

121

136

154

1.86

2.13

2.43

2.75

590

667

753

851

962 1090

1230

1390

16.08

21.20

27.49

34.79

42.78

51.12

59.42

67.35

Malvern Instruments

Measurement Detail	S						Measu	rement Detai	ils					
	Oper	ator Name	michael.m	ercer			Analysis Date Time 21/11/2017 10:39:47 AM							
	San	nple Name	ES1728487	- 008			Measurement Date Time 21/11/2017 10:39:47 AM							
	SOP	File Name	HydroLV.c	fg					Re	esult Source	Averaged			
Apolycic							Result							
Analysis	Devi	ticle Name	ALS				Span 1.685							
Part	Particle Refractive Index 1.550									Span				
									Specific S	urface Area		'ka		
Particle Absorption Index 0.100 Dispersant Name Water									specific 5		581 μm	~y		
Dispersant Refractive Index 1.330											1010 μm			
		ring Model) 383 μm			
		ysis Model		irpose							869 μm			
		ed Residual									1850 μm			
		bscuration								,				
							L							
Frequency (compatil	ole) and Ur	ndersize												
15 10 Atisu On 5 -													-50	Cumulative Volume (%)
0	1 1 1 1	0.1		1.0	1 1	10.0	I	1	<mark> </mark> 0.0		1,000.0		<u> </u>	
			[Frequer 10:39:47	ncy] - [153] ES1 ' AM	1728487 - 00	Size Classe 8-21/11/2017	[Unde	ersize] - [153] ES 47 AM	1728487 - 00	8-21/11/2017				
Decult														
Result Size (µm) % Volume Under	Size (um)	% Volume Under	Size (um) %	6 Volume Under	Size (um)	% Volume Under	Size (um)	% Volume Under	Size (um)	6 Volume Under	Size (um)%	Volume Under	Size (um) %	Volume Under
0.0100 0.00	0.0552	0.00	0.305	0.00	1.68	0.00	9.30	0.00	51.4	0.54	284	5.56	1570	84.00
0.0113 0.00 0.0128 0.00	0.0624 0.0705	0.00 0.00	0.345 0.389	0.00 0.00	1.90 2.15	0.00 0.00	10.5 11.9	0.00 0.00	58.0 65.6	0.61 0.71	321 362	6.90 8.83	1770 2000	88.53 92.18
0.0128 0.00	0.0703	0.00	0.389	0.00	2.13	0.00	13.4	0.00	74.1	0.71	409	11.56	2000	52.10
0.0163 0.00	0.0900	0.00	0.497	0.00	2.74	0.00	15.2	0.01	83.7	1.01	462	15.24		
0.0184 0.00 0.0208 0.00	0.102 0.115	0.00 0.00	0.561 0.634	0.00 0.00	3.10 3.50	0.00 0.00	17.1 19.3	0.03 0.08	94.6 107	1.24 1.51	522 590	20.00 25.86		
0.0235 0.00	0.130	0.00	0.717	0.00	3.96	0.00	21.9	0.15	121	1.83	667	32.74		
0.0266 0.00	0.147	0.00	0.810	0.00	4.47	0.00	24.7	0.21	136 154	2.19	753 851	40.45		

0.00

0.00

0.00

0.00

0.00

0.0300

0.0339

0.0383

0.0433

0.0489

0.166

0.187

0.211

0.239

0.270

0.915

1.03

1.17

1.32

1.49

0.00

0.00

0.00

0.00

0.00

5.05

5.71

6.45 7.29

8.23

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

27.9

31.5

35.6

40.2

45.5

0.28

0.34

0.40

0.45

0.49

154

174

197

222

251

851

962 1090

1230

1390

2.58

3.00

3.44 3.97

4.63

48.62

56.86

64.78 72.07

78.51

QA/QC Compliance Assessment to assist with Quality Review

Work Order	ES1728487	Page	: 1 of 8
Client	ELGIN ASSOCIATES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR NICK YEE	Telephone	: +61-2-8784 8555
Project	IN17169 MERIMBULA DEEP OCEAN OUTFALL - BENTHIC	Date Samples Received	: 14-Nov-2017
	FAUNA		
Site	:	Issue Date	: 21-Nov-2017
Sampler	:	No. of samples received	: 8
Order number	:	No. of samples analysed	: 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Ν/	latrix:	SO	

Quality Control Sample Type		unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Control Samples (LCS)					
TKN as N By Discrete Analyser	2	15	13.33	14.29	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
Total Mercury by FIMS (Low Level)	0	14	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	in holding tim	
Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content (Dried @ 105-110°C)									
Soil Glass Jar - Unpreserved (EA055) SIS01_9/11/17		09-Nov-2017				16-Nov-2017	23-Nov-2017	✓	
Soil Glass Jar - Unpreserved (EA055)									
SIS02_10/11/17,	SIS03_10/11/17,	10-Nov-2017				16-Nov-2017	24-Nov-2017	 ✓ 	
SIS04_10/11/17,	SIS05_10/11/17,								
SIS06_10/11/17,	SIS07_10/11/17,								
SIS08_10/11/17									
EG005-SD: Total Metals in Sediments by ICP-A	AES								
Soil Glass Jar - Unpreserved (EG005-SD)									
SIS01_9/11/17		09-Nov-2017	16-Nov-2017	08-May-2018	✓	16-Nov-2017	08-May-2018	✓	
Soil Glass Jar - Unpreserved (EG005-SD)									
SIS02_10/11/17,	SIS03_10/11/17,	10-Nov-2017	16-Nov-2017	09-May-2018	1	16-Nov-2017	09-May-2018	 ✓ 	
SIS04_10/11/17,	SIS05_10/11/17,								
SIS06_10/11/17,	SIS07_10/11/17,								
SIS08_10/11/17									
EG020-SD: Total Metals in Sediments by ICPM	IS								
Soil Glass Jar - Unpreserved (EG020-SD)									
SIS01_9/11/17		09-Nov-2017	16-Nov-2017	08-May-2018	1	16-Nov-2017	08-May-2018	✓	
Soil Glass Jar - Unpreserved (EG020-SD)									
SIS02_10/11/17,	SIS03_10/11/17,	10-Nov-2017	16-Nov-2017	09-May-2018	1	16-Nov-2017	09-May-2018	✓	
SIS04_10/11/17,	SIS05_10/11/17,								
SIS06_10/11/17,	SIS07_10/11/17,								
SIS08_10/11/17									

Page	: 3 of 8
Work Order	: ES1728487
Client	: ELGIN ASSOCIATES PTY LTD
Project	: JN17169 MERIMBULA DEEP OCEAN OUTFALL - BENTHIC FAUNA

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	n holding tim
Method		Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T-LL) SIS01_9/11/17		09-Nov-2017	16-Nov-2017	07-Dec-2017	4	17-Nov-2017	07-Dec-2017	~
Soil Glass Jar - Unpreserved (EG035T-LL) SIS02_10/11/17, SIS04_10/11/17, SIS06_10/11/17, SIS08_10/11/17	SIS03_10/11/17, SIS05_10/11/17, SIS07_10/11/17,	10-Nov-2017	16-Nov-2017	08-Dec-2017	5	17-Nov-2017	08-Dec-2017	~
EK055: Ammonia as N								
Soil Glass Jar - Unpreserved (EK055) SIS01_9/11/17		09-Nov-2017				21-Nov-2017	08-May-2018	~
Soil Glass Jar - Unpreserved (EK055) SIS02_10/11/17, SIS04_10/11/17, SIS06_10/11/17, SIS08_10/11/17	SIS03_10/11/17, SIS05_10/11/17, SIS07_10/11/17,	10-Nov-2017				21-Nov-2017	09-May-2018	~
EK057G: Nitrite as N by Discrete Analyser								
Soil Glass Jar - Unpreserved (EK057G) SIS01_9/11/17		09-Nov-2017	17-Nov-2017	08-May-2018	1	17-Nov-2017	08-May-2018	~
Soil Glass Jar - Unpreserved (EK057G) SIS02_10/11/17, SIS04_10/11/17, SIS06_10/11/17, SIS08_10/11/17	SIS03_10/11/17, SIS05_10/11/17, SIS07_10/11/17,	10-Nov-2017	17-Nov-2017	09-May-2018	1	17-Nov-2017	09-May-2018	•
EK059G: Nitrite plus Nitrate as N (NOx) by Disci	rete Analyser							
Soil Glass Jar - Unpreserved (EK059G) SIS01_9/11/17		09-Nov-2017	17-Nov-2017	08-May-2018	1	17-Nov-2017	08-May-2018	1
Soil Glass Jar - Unpreserved (EK059G) SIS02_10/11/17, SIS04_10/11/17, SIS06_10/11/17, SIS08 10/11/17	SIS03_10/11/17, SIS05_10/11/17, SIS07_10/11/17,	10-Nov-2017	17-Nov-2017	09-May-2018	~	17-Nov-2017	09-May-2018	1
EK061G: Total Kjeldahl Nitrogen By Discrete Ana	alyser							
Soil Glass Jar - Unpreserved (EK061G) SIS01_9/11/17		09-Nov-2017	17-Nov-2017	08-May-2018	1	17-Nov-2017	08-May-2018	1
Soli Glass Jar - Unpreserved (EK061G) SIS02_10/11/17, SIS04_10/11/17, SIS06_10/11/17, SIS08_10/11/17,	SIS03_10/11/17, SIS05_10/11/17, SIS07_10/11/17,	10-Nov-2017	17-Nov-2017	09-May-2018	~	17-Nov-2017	09-May-2018	*

Page	: 4 of 8
Work Order	: ES1728487
Client	: ELGIN ASSOCIATES PTY LTD
Project	: JN17169 MERIMBULA DEEP OCEAN OUTFALL - BENTHIC FAUNA

Matrix: SOIL					Evaluatior	: × = Holding time	breach ; ✓ = Withi	n holding tim	
Method	Method Sector		Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EK067G: Total Phosphorus as P by Discr	rete Analyser								
Soil Glass Jar - Unpreserved (EK067G)									
SIS01_9/11/17		09-Nov-2017	17-Nov-2017	08-May-2018	✓	17-Nov-2017	08-May-2018	✓	
Soil Glass Jar - Unpreserved (EK067G)									
SIS02_10/11/17,	SIS03_10/11/17,	10-Nov-2017	17-Nov-2017	09-May-2018	1	17-Nov-2017	09-May-2018	✓	
SIS04_10/11/17,	SIS05_10/11/17,								
SIS06_10/11/17,	SIS07_10/11/17,								
SIS08_10/11/17									
EK071G: Reactive Phosphorus as P by d	iscrete analyser								
Soil Glass Jar - Unpreserved (EK071G)									
SIS01_9/11/17		09-Nov-2017	17-Nov-2017	08-May-2018	1	17-Nov-2017	08-May-2018	✓	
Soil Glass Jar - Unpreserved (EK071G)									
SIS02_10/11/17,	SIS03_10/11/17,	10-Nov-2017	17-Nov-2017	09-May-2018	1	17-Nov-2017	09-May-2018	✓	
SIS04_10/11/17,	SIS05_10/11/17,								
SIS06_10/11/17,	SIS07_10/11/17,								
SIS08_10/11/17									
EP003: Total Organic Carbon (TOC) in So	bil								
Pulp Bag (EP003)									
SIS01_9/11/17		09-Nov-2017	20-Nov-2017	07-Dec-2017	1	20-Nov-2017	07-Dec-2017	\checkmark	
Pulp Bag (EP003)									
SIS02_10/11/17,	SIS03_10/11/17,	10-Nov-2017	20-Nov-2017	08-Dec-2017	1	20-Nov-2017	08-Dec-2017	✓	
SIS04_10/11/17,	SIS05_10/11/17,								
SIS06_10/11/17,	SIS07_10/11/17,								
SIS08_10/11/17	_								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
uchi Ammonia	EK055	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
loisture Content	EA055	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard
itrite and Nitrate as N (NOx)- Soluble by Discrete nalyser	EK059G	2	19	10.53	10.00	~	NEPM 2013 B3 & ALS QC Standard
itrite as N - Soluble by Discrete Analyser	EK057G	1	8	12.50	10.00	~	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	2	15	13.33	9.52	✓	NEPM 2013 B3 & ALS QC Standard
tal Fe and Al in Sediments by ICPAES	EG005-SD	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	2	14	14.29	10.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	2	20	10.00	10.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	2	14	14.29	10.00		NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)						-	
uchi Ammonia	EK055	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
trite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
nalyser		4	0	40.50	F 00		
itrite as N - Soluble by Discrete Analyser	EK057G	1	8	12.50	5.00	<u>∕</u>	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	2	15	13.33	14.29	*	NEPM 2013 B3 & ALS QC Standard
otal Fe and Al in Sediments by ICPAES	EG005-SD	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	3	14	21.43	15.00	✓	NEPM 2013 B3 & ALS QC Standard
ethod Blanks (MB)							
uchi Ammonia	EK055	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
itrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
nalyser							
itrite as N - Soluble by Discrete Analyser	EK057G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	1	15	6.67	4.76	✓	NEPM 2013 B3 & ALS QC Standard
tal Fe and Al in Sediments by ICPAES	EG005-SD	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	1	20	5.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	: 6 of 8
Work Order	: ES1728487
Client	: ELGIN ASSOCIATES PTY LTD
Project	: JN17169 MERIMBULA DEEP OCEAN OUTFALL - BENTHIC FAUNA

Matrix: SOIL	Evaluation: * = Quality Control frequency not within specification ; 🗸 = Quality Control frequency within spec								
Quality Control Sample Type		С	ount	Rate (%)			Quality Control Specification		
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation			
Matrix Spikes (MS)									
Buchi Ammonia	EK055	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Analyser									
Nitrite as N - Soluble by Discrete Analyser	EK057G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Reactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TKN as N By Discrete Analyser	EK061G	1	15	6.67	4.76	✓	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS (Low Level)	EG035T-LL	0	14	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard		
Total Metals in Sediments by ICPMS	EG020-SD	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosporus By Discrete Analyser	EK067G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Fe and Al in Sediments by ICPAES	EG005-SD	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3). LORs per NODG
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.
Total Mercury by FIMS (Low Level)	EG035T-LL	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Buchi Ammonia	EK055	SOIL	In house: Referenced to APHA 4500-NH3 B&G, H Samples are steam distilled (Buchi) prior to analysis and quantified using titration, FIA or Discrete Analyser.
Nitrite as N - Soluble by Discrete Analyser	EK057G	SOIL	In house: Referenced to APHA 4500-NO3- B. Nitrite in a water extract is determined by direct colourimetry by Discrete Analyser.
Nitrate as N - Soluble by Discrete Analyser	EK058G	SOIL	In house: Referenced to APHA 4500-NO3- F. Nitrate in the 1:5 soil:water extract is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	EK059G	SOIL	In house: Thermo Scientific Method D08727 and NEMI (National Environmental Method Index) Method ID: 9171. This method covers the determination of total oxidised nitrogen (NOx-N) and nitrate (NO3-N) by calculation, Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by direct colourimetry by Discrete Analyser.
TKN as N By Discrete Analyser	EK061G	SOIL	In house: Referenced to APHA 4500-Norg-D Soil samples are digested using Kjeldahl digestion followed by determination by Discrete Analyser.
Total Nitrogen as N (TKN + NOx) By Discrete Analyser	EK062G	SOIL	In house: Referenced to APHA 4500 Norg/NO3- Total Nitrogen is determined as the sum of TKN and Oxidised Nitrrogen, each determined seperately as N.
Total Phosporus By Discrete Analyser	EK067G	SOIL	In house: Referenced to APHA 4500 P-B&F This procedure involves sulfuric acid digestion and quantification using Discrete Analyser.
Reactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	SOIL	In house: Referenced to APHA 4500 P-F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (

Analytical Methods	Method	Matrix	Method Descriptions
Total Organic Carbon	EP003	SOIL	In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	SOIL	In house: Referenced to APHA 4500 Norg- D; APHA 4500 P - H. Macro Kjeldahl digestion.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Dry and Pulverise (up to 100g)	GEO30	SOIL	#

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	ES1728487		
Client Contact Address	ELGIN ASSOCIATES PTY LTD MR NICK YEE PO BOX 829 BEGA NSW, AUSTRALIA 2550	Contact: Peter RAddress: 277-28	imental Division Sydney avlic 9 Woodpark Road Smithfield ustralia 2164
E-mail Telephone Facsimile	: nick.yee@elgin.com.au : +61 02 8003 4590 : +61 03 8648 6336	Telephone : +61-2-8	avlic@alsglobal.com 3784 8555 3784 8500
Project Order number C-O-C number Site	 JN17169 MERIMBULA DEEP OCEAN OUTFALL - BENTHIC FAUNA 		7ELGASS0003 (ME/222/17) 2013 B3 & ALS QC Standard
Sampler	:		
Dates Date Samples Receir Client Requested Du Date		Issue Date Scheduled Reporting Date	: 14-Nov-2017 [:] 21-Nov-2017
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	Is : Undefined : 1 :	Security Seal Temperature No. of samples received / analyse	: Not Available : 14.5'C ed : 8 / 8

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- TOC analysis will be conductd by ALS Brisbane.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- PSD analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

....

tasks, that are inclu If no sampling default 00:00 on is provided, the laboratory and component Matrix: SOIL Laboratory sample	displayed in bra	the sampling time will g. If no sampling date	SOIL - EA055-103 Moisture Content	SOIL - EA153 Particle Size Analysis of Soils by Laser	SOIL - EK067G (Solids) Total Phosphorus as P by Discrete Analyser	SOIL - EK071G (solids) Reactive Phosphorus as P By Discrete	SOIL - EP003 Total Organic Carbon (TOC) in Soil	SOIL - NT-8S NH3, NO2, NO3, NOX, TKN, TN, TP	SOIL - SD-03 Metals by ICPMS (15 metals + low level Hg)
ID ES1728487-001	<i>date / time</i> 09-Nov-2017 00:00	SIS01 9/11/17	ώΣ ν	οŭ V	Ω Ĕ	<u>ہ م</u>	o ⊨	ω Z	ω Σ
ES1728487-002	10-Nov-2017 00:00	SIS02 10/11/17	· •		· •	· •	· •	· •	· •
ES1728487-003	10-Nov-2017 00:00	SIS03_10/11/17	•	•	•	•	•	•	· •
		_							
ES1728487-004	10-Nov-2017 00:00	SIS04_10/11/17	✓	✓	✓	✓	✓	✓	✓
ES1728487-005	10-Nov-2017 00:00	SIS05_10/11/17	✓	 ✓ 	✓	✓	 ✓ 	✓	✓
ES1728487-006	10-Nov-2017 00:00	SIS06_10/11/17	✓	✓	✓	✓	✓	✓	✓
ES1728487-007	10-Nov-2017 00:00	SIS07_10/11/17	✓	✓	✓	✓	✓	✓	✓
ES1728487-008	10-Nov-2017 00:00	SIS08_10/11/17	✓	✓	✓	✓	✓	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

LUKE FINLEY

EGNETIMEET		
- A4 - AU Tax Invoice (INV)	Email	luke.finley@elgin.com.au
NICK YEE		
 *AU Certificate of Analysis - NATA (COA) 	Email	nick.yee@elgin.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	nick.yee@elgin.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	nick.yee@elgin.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nick.yee@elgin.com.au
- A4 - AU Tax Invoice (INV)	Email	nick.yee@elgin.com.au
- Chain of Custody (CoC) (COC)	Email	nick.yee@elgin.com.au
- EDI Format - ENMRG (ENMRG)	Email	nick.yee@elgin.com.au
- EDI Format - ESDAT (ESDAT)	Email	nick.yee@elgin.com.au

211112 r Î SycIney Work Order Reference ES1728487 Environmental Division Nevert All samples frozen OFN OW BY / Date: TUC BYER PTV JOTWARN Lab. CER WU Telephone : + 61-2-6784 6555 & Joan y PO / Internal States Journale / Courier: 105 D 3 RECEIVED BY: J Alysis: ____ 4-11-17 QC semple Additional Information DATE/TIME: 1 Story P A State of ANALYSIS REQUIRED including SUITES (NB. Suile Codes must be listed to attract suite price) RISBANE: 32 SHAND STREET, STAFFORD QLD 4053 equined). OR LABORATORY USE ONLY Ph: D7 3243 7222 Email: samples.brisbane@alsenviro.com bottle required) or Dissolved (field filterer RELINQUISHED BY: DATE/TIME: Grain Size Particle Distribution (Circle) E2153 × × × × × -× ~ COC SEQUENCE NUMBER (C Where Wetals are required, specify Total (unlikered Total Organic Carbon × × × × × × EP003 RECEIVED BY: илия × × × × P04 × × × × DATE/TIME: enororiqeoria letoT 780XB × × × × × × × NEWCASTLE: 5 ROSEGUM RUAD, WARABROOK NSW 2304 Ph: 02 4968 9433 Email: 5amples.newcastle@alsenvirs.com RELINQUISHED BY: 10.00m (EHN 'XON 'ZON 'EON 'N () stu DATERTIME 13/11/17 RECO × * ~ **503 - TOTAL METALS (**AI, Fe, Sb, As, Cd, Cr, Co, Cu, Pb, Mn, Ni, Se, Ag, V, Zn, Hg) × × × × CONTAINER INFORMATION TOTAL TURNAROUND REQUIREMENTS ; (Standard TAT may be longer for some lests e.g.. Ultra Trace monma ALS QUOTE NO.: SY/585/17 3 (m 3 4 TYPE & PRESERVATIVE (refer to cooles below) W.C SYDNEY: 277 WOODPARK ROAD, SMITHFIELD NSW 2175 Ph: 02.8784.8555 Email: samples..ydney@alsenviro.com CONTACT PH: 0400 365 234 EDD FORMAT (or default): 1 MATRIX SAMPLER MOBILE: ŝ n s Ø s ŋ s s COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: MARINE SEDIMENTS ł) PROJECT: JN17169 Merimbula Deep Ocean Outfall - Benthic Fauna DATE / TIME 11/01 i)/o rofu 10/11 ີ 10/4 10/11 2" ...SAMPLE DETAILS MATRIX: Solid(S) Water(W) D OFFICE: 1st Floor, 45-47 CHURCH ST, BEGA, NSW 2550 ľ CHAIN OF CUSTODY 51506-10/11/17 9,505-19 "/17 41/1/ bu-bosis Siso4-10/1117 JisoB_10/11/17 Sisoz_10/11/17 Siso2 10/1/17 Email Reports to: nick.yee@elgin.com.au Fi)11/1-10515 Email Invoice to: nick.yee@elgin.com.au SAMPLE ID PROJECT MANAGER: NICK YEE COC emailed to ALS? (YES) / NO) CLIENT: ELGIN ASSOCIATES Ŀ ediment Container Codes ORDER NUMBER: USE ONLY LAB 10 SAMPLER: 50 ENN $^{\circ}$ \mathcal{O}

Intertidal Rocky Shore Community

Phylum	Class	Order	Family	Taxon	S	hore He	ight
		0.001			High	Mid	Low
NVERTEBRAT							
Mollusca Gastropoda	Littorinimorpha	Littorinidae	Austrolittorina unifasciata	Х	х	х	
				Bembicium nanum		х	
		Neogastropoda	Muricidae	Tenguella marginalba		х	
				Dicathais orbita			х
		Cycloneritimorpha	Neritidae	Nerita atramentosa	Х	х	
			Trochidae	Austrocochlea porcata		х	х
				Austrocochlea concamerata		х	
			Nacellidae	Cellana tramoserica		х	х
			Lottiidae	Patelloida latistrigata	Х	х	х
			Lottiidae	Patelloida alticostata		х	Х
				Patelloida mufria		х	х
			Fissurellidae	Montfortula rugosa		х	х
			Patellidae	Scutellastra peronii			х
	-	Siphonariida	Siphonariidae	Siphonaria diemensis		х	х
	Polyplacophora	Chitonida	Chitonidae	Sypharochiton pelliserpentis			L
				Onithochiton quercinus			х
Arthropoda Maxillipoda (subphylum Crustacea)	Maxillipoda	Sessilia	Tetraclitidae	Tesseropora rosea		х	х
			Tetraclitella purpurascens		х		
		Catophragmidae	Catomerus polymerus		х		
		Cthamalidae	Chamaesipho tasmanica	х	х		
				Chthamalus antennatus		х	
Cnidaria	Anthozoa	Actinaria	Actiniidae	Actinia tenebrosa		х	х
		Actinaria	Actiniidae	Oulactis mucosa			х
Chordata	Ascidiacea	Stolibranchia	Pyuridae	Pyura stolonifera-praeputialis			х
Echinodermata	Echinoidea (urchin	Camarodonta	Echinometridae	Heliocidaris erythrogramma			х
	Asteroidea	Valvatida	Asterinidae	Meridiastra sp.			х
Annelida	Polychaeta	Sabellida	Serpulidae	Galeolaria caespitiosa			х
ALGAE						r	
Ochrophyta	Phaeophyceae	Ralfsiales	Ralfsiaceae	Ralfsia sp.		х	х
		Ectocarpales	Chordariales	Leathesia difformis			х
		Fucales	Sargassaceae	Sargassum sp.			х
			Hormosiraceae	Hormosira banksii		х	х
			Seirococcaceae	Phyllospora comsosa			х
		Dictyotales	Dictyotaceae	Padina sp.			х
		-		Dictyota dichotoma			х
		Scytothamnales	Splachnidiaceae	Splachnidium rugosum		х	
Rhodophyta	Bangiophyceae	Bangiales	Bangiaceae	Porphyra lucasii	х		ļ
Rhodophyta	Florideophyceae	Ceramiales	Rhodomelaceae	Laurencia sp.			х
				Chondrophycus sp.			х
		Corallinales	Corallinaceae	Corallina officinalis			х
				Amphiroa anceps			х
				non-geniculate encrusting coralline algae			х
		Gigartinales	Cystocloniaceae	Hypnea sp.			х
		Gelidales	Gelidiaceae	turfing red algae (Gelidium/Gelidiella spp.)		ļ	х
Chlorophyta	Ulvophyceae	Ulvales	Ulvaceae	Ulva spp.		х	х
		Bryopsidales	Codiaceae	Codium Iucasii			x
		Cladophorales	Cladophoraceae	filamentous green algae		х	х
				(Cladophora/Rhizoclonium/Chaetomorpha spp.)		
		1		TOTAL TA		23	35

Appendix F-1. List of inverteb	rates and algae recorded on intertid	al reef at Haycock Point, NSW.
--------------------------------	--------------------------------------	--------------------------------

Note Taxa recorded during field survey conducted at low tide on 1 December 2017 and 2 January 2018. Taxonomy follows currently accpeted nomenclature from: WoRMS Editorial Board (2017). World Register of Marine Species. Available from URL: http://www.marinespecies.org

Appendix F-2. Low Shore Intertidal Community Data

SAMPLE							S1T1						
SITE and TRANSECT	S1T1Q1	S1T1Q2	S1T1Q3	S1T1Q4	S1T1Q5	S1T1Q6	S1T1Q7	S1T1Q8	S1T1Q9	S1T1Q10	S1T1Q11	S1T1Q12	S1T1Q13
Austrolittorina unifasciata		0	0	0q.	0	0	•	0	0	e : : a : e	e : : · a : :	0	0111010
Austrocochlea porcata													
Dicathais orbita	3				3		3				1	1	
Cellana tramoserica	5	3	5	2	8	8	1	1		5	10	13	6
Siphonaria diemenensis	1	Ū		-									6
Patelloida latistrigata					36	2	1	1					11
Patelloida alticostata							1				1		
Patelloida mufria												10	
Montfortula rugosa					1						2		
Scutellastra chapmani					-								
Scutellastra peronii	7	7	2	3	14	10	6	2	7		8	4	4
Onithochiton quercinus	-	-		-					-		-	2	1
Meridiastra sp	1	3	3	1			1		1			_	
Heliocidaris erythrogramma	· ·	<u> </u>											
BARE ROCK	12	4	6	10	26	8	8	2	8	2	8	2	8
Saccostrea glomerata	.=		Ŭ							_	Ŭ	_	Ŭ
Actinia tenebrosa													
Oulactis mucosa													
Pyura stolonifera	56	56	58	46	24	24	28	36	42	32	38	58	52
Galeolaria	14	16	6	10	6	4	8			2	8		4
Tesseropora rosea (live)					2	2				_			
turfing algae (<i>Gelidium/Gelidiella</i> spp)					2	<u> </u>		2					
Encrusting non-geniculate coralline	10	14	8	4	6	2	12	4	22		16	26	26
Corallina officinalis				2	24	16	2		4	8	10	20	
Foliose red										-		2	
Amphiroa													
Hypnea sp.													
Laurencia sp.					4			2	4				
Chondrophycus									2				
Sargassum spp	8	2	10	22	2	36	40	52	14	56	16	12	4
Splanchnidum rugosum	-				_								
Hormosira		2	6	4									
Encrusting algae (<i>Ralfsia</i>)		4	6		4	4		2					6
Padina sp.													
Dictyota dichotoma									2				
Phyllospora comosa													
Lethesia sp.													
Ulva		2				4	2				4		
green filamentous (cladophora/chaetomorpha)									2				
Codium lucasii				2									
Taxon richness gastropods	4	2	2	2	5	3	5	3	1	1	5	4	4
Taxon richness Invertebrates	1	1	1	1	0	0	1	0	1	0	0	1	1
Taxon richness sessile	4	7	6	7	9	8	6	6	8	4	6	4	5
Taxon richness	9	10	9	10	14	11	12	9	10	5	11	9	10
% Cover	100	100	100	100	100	100	100	100	100	100	100	100	100

Appendix F-2. Low Shore Intertidal Com

SAMPLE						5	61T2					
SITE and TRANSECT	S1T2Q1	S1T2Q2	S1T2Q3	S1T2Q4	S1T2Q5			S1T2Q8	S1T2Q9	S1T2Q10	S1T2Q11	S1T2Q12
Austrolittorina unifasciata		• · ·						1				
Austrocochlea porcata			5									
Dicathais orbita											1	
Cellana tramoserica								5	4			
Siphonaria diemenensis								1	1			
Patelloida latistrigata								6				
Patelloida alticostata												
Patelloida mufria								2				
Montfortula rugosa	1		1	2			2					
Scutellastra chapmani												
Scutellastra peronii						2		4	3	2	6	7
Onithochiton quercinus	1					1						
Meridiastra sp	4											1
Heliocidaris erythrogramma				1	l							1
BARE ROCK	2	2				2		6	10	2		
Saccostrea glomerata												1
Actinia tenebrosa												
Oulactis mucosa	2											
Pyura stolonifera			4	6	6	2	16	8	50	48	32	24
Galeolaria									2			
Tesseropora rosea (live)								2				
turfing algae (Gelidium/Gelidiella spp)	10	6										
Encrusting non-geniculate coralline				4		2	2		2	6	2	12
Corallina officinalis	44	54	80	54	36	40	48	48				6
Foliose red												
Amphiroa	2	6		2	28	16	2					
Hypnea sp.												
Laurencia sp.					4		8	20		4		
Chondrophycus		4		2								
Sargassum spp	4	6			4	2	4	4	20	36	66	52
Splanchnidum rugosum												
Hormosira	8		2				8					
Encrusting algae (Ralfsia)				4			2	2	16	4		6
Padina sp.												
Dictyota dichotoma												
Phyllospora comosa					22	34		4				
Lethesia sp.	4	20	12	20			2					
Ulva	2		2	8		2	8	6				
green filamentous (cladophora/chaetomorpha)												
Codium lucasii	22	2										
Taxon richness gastropods	1	0	2	1	0	1	1	6	3	1	2	1
Taxon richness Invertebrates	2	0	0	1	0	1	0	0	0	0	0	0
Taxon richness sessile	9	7	5	8	6	7	10	8	5	5	3	5
Taxon richness	12	7	7	10	6	9	11	14	8	6	5	6
% Cover	100	100	100	100	100	100	100	100	100	100	100	100

Appendix F-2. Low Shore Intertidal Com

	-						0.74					
SAMPLE							S2T1					
SITE and TRANSECT	S2T1Q1	S2T1Q2	S2T1Q3	S2T1Q4	S2T1Q5	S2T1Q6	S2T1Q7	S2T1Q8	S2T1Q9	S2T1Q10	S2T1Q11	S2T1Q12
Austrolittorina unifasciata												
Austrocochlea porcata												
Dicathais orbita								1				
Cellana tramoserica					1			1	1			
Siphonaria diemenensis	2							1	1	2		
Patelloida latistrigata										12		
Patelloida alticostata												
Patelloida mufria							1			1		
Montfortula rugosa	5	3	1		1		1					
Scutellastra chapmani												
Scutellastra peronii	3	1										
Onithochiton quercinus	1											
Meridiastra sp						1	2		2	1		
Heliocidaris erythrogramma											-	
BARE ROCK	2	2				2	2	2	4		6	2
Saccostrea glomerata												
Actinia tenebrosa												
Oulactis mucosa											-	
Pyura stolonifera	4	4	10	8					6	4	2	22
Galeolaria										2		
Tesseropora rosea (live)												
turfing algae (Gelidium/Gelidiella spp)		2	4								-	
Encrusting non-geniculate coralline		8									2	2
Corallina officinalis	84	58	40	18	72	44	38	58	50	36	28	34
Foliose red												
Amphiroa							6	4	22	10	32	8
Hypnea sp.					-		2					
Laurencia sp.	2	2			6			12	4	4	-	1.5
Chondrophycus		2		2	6	24	24	2	10	8	6	10
Sargassum spp		2			8	4	6	4		4	2	4
Splanchnidum rugosum												
Hormosira												
Encrusting algae (<i>Ralfsia</i>)								<u>^</u>				
Padina sp.					-	2	2	6				2
Dictyota dichotoma	4	8	4.0	70	8	14	8	6		14		8
Phyllospora comosa	4	12	46	72		4	8				20	
Lethesia sp.						6	4	4	4	2		4
Ulva								2				
green filamentous (cladophora/chaetomorpha)												
Codium lucasii										16	2	4
Taxon richness gastropods	3	2	1	0	2	0	2	3	2	3	0	0
Taxon richness Invertebrates	1	0	0	0	0	1	1	0	1	1	0	0
Taxon richness sessile	5	9	4	4	5	7	9	9	6	10	8	10
Taxon richness	9	11	5	4	7	8	12	12	9	14	8	10
% Cover	100	100	100	100	100	100	100	100	100	100	100	100

Appendix F-2. Low Shore Intertidal Com

SAMPLE	S2T2 S2T2Q1 S2T2Q2 S2T2Q3 S2T2Q4 S2T2Q5 S2T2Q6 S2T2Q7 S2T2Q8 S2T2Q9 S2T2Q10 S2T2Q11 S2T2Q12											
SITE and TRANSECT	S2T2Q1	S2T2Q2	S2T2Q3	S2T2Q4	S2T2Q5	S2T2Q6	S2T2Q7	S2T2Q8	S2T2Q9	S2T2Q10	S2T2Q11	S2T2Q12
Austrolittorina unifasciata												
Austrocochlea porcata												1
Dicathais orbita	2	1										
Cellana tramoserica	3	2										
Siphonaria diemenensis	1						1					
Patelloida latistrigata	5											
Patelloida alticostata												
Patelloida mufria												
Montfortula rugosa	2	20		2						1		8
Scutellastra chapmani												
Scutellastra peronii	2											6
Onithochiton quercinus	1		2	2								
Meridiastra sp			5	7			1					
Heliocidaris erythrogramma	2		2	3			1					
BARE ROCK	2	4		2			10				2	
Saccostrea glomerata												
Actinia tenebrosa												
Oulactis mucosa												
Pyura stolonifera	48	52	10	20	12		68	2	2	22	14	40
Galeolaria	4	2										
Tesseropora rosea (live)												
turfing algae (Gelidium/Gelidiella spp)												
Encrusting non-geniculate coralline	10	20	2								2	
Corallina officinalis	2	4	44	46	40	56	2	54	58	52	44	34
Foliose red												
Amphiroa	4	8	16	18	14	6		4	16	4	4	2
Hypnea sp.											-	
Laurencia sp.	2										2	
Chondrophycus						4		2	2		-	
Sargassum spp	2	4			2	4					6	2
Splanchnidum rugosum											-	
Hormosira						-					2	2
Encrusting algae (<i>Ralfsia</i>)	14					2	6				2	8
Padina sp.			40		10				<u>^</u>			
Dictyota dichotoma	10	0	12		10	00	4.4	0.0	2	10		2
Phyllospora comosa	12	6	4.0		6	26	14	30	4	10	4	2
Lethesia sp.			10	8	6	2		6	8	2	14	4
Ulva								2	2	4		
green filamentous (cladophora/chaetomorpha)					10						<u> </u>	
Codium lucasii	0		6	6	10	0	4	0	6	6	4	4
Taxon richness gastropods	6	3	0	1	0	0	1	0	0	1	0	3
Taxon richness Invertebrates	2	0	3	3	0	0	2	0	0	0	0	0
Taxon richness sessile	9	7	7	5	8	7	4	7	9	7	11	10
Taxon richness	17	10	10	9	8	7	7	7	9	8	11	13
% Cover	100	100	100	100	100	100	100	100	100	100	100	100

PHYTOPLANKTON ASSEMBLAGE

Appendix G-1. Total phytoplankton species list from five separate studies conducted from 1965 to 2012 at a long term coastal station offshore from Sydney – Port Hacking 100m (PH_{100m}). Note - taxa known to produce toxins in Australia are shaded in grey.

Actinocyclus spp. Amphidinium turbo Amphisolenia sp. Anthosphaera spp. Asteromphalus hookeri Bacteriastrum furcatum Bacteriastrum varians Biddulphia mobiliensis Brachidinium spp. Cerataulina pelagica Ceratium arietinum Ceratium concilians Ceratium falcatum Ceratium gibberum Ceratium inflatum Ceratium lineatum Ceratium massiliense Ceratium spp. Ceratium trichoceros Ceratoneis closterium Chaetoceros affine Chaetoceros curvisetus Chaetoceros didymus Chaetoceros lorenzianus Chaetoceros spp. Chrysochromulina spp. Climacosphenia sp. Cochlodinium sp. Corethron spp. Coscinodiscus radiatus Cryptomonads spp. Dactyliosolen fragilissimus Dactyliosolen spp. Dictyocha octonaria Dinophysis acuta Dinophysis fortii Dinophysis ovum Dinophysis sphaerica Dinophysis truncata Diplopsalis lenticula Discosphaera spp. Ditylum sol Entomoneis sp. Eucampia zodiacus Fragilariopsis oceanica Goniodoma spp. Gonyaulax minima Gonyaulax spp. Guinardia delicatula/Dactyliosolen fragillissimus Guinardia striata Gyrodinium spp. Helicotheca tamesis Hemiaulus membranaceus Heterosigma spp. Hyalodiscus stelliger Lauderia borealis Leptocylindrus danicus Leptocylindrus spp.

Akashiwo spp. Amphisolenia bidentata Amphora hendeyi Asterionellopsis glacialis Asteromphalus spp. Bacteriastrum hyalinum Bellerochea spp. Biddulphia spp. Cerataulina bergonii Cerataulina pentagonum Ceratium buceros Ceratium declinatum Ceratium furca Ceratium gravidum Ceratium karsteni Ceratium longissimum Ceratium pentagonum Ceratium tenue Ceratium tripos cf. Alexandrium sp Chaetoceros atlanticus Chaetoceros danicus Chaetoceros diversum Chaetoceros peruvianus Chaetoceros subtilis Climacodium frauenfeldianum Coccolithophorid spp. Corethron criophilum Corythodinium elegans/tesselatum Coscinodiscus spp. Cyclotella sp. Dactyliosolen mediterraneus Detonula pumila Dictyocha spp. Dinophysis caudata Dinophysis miles Dinophysis rotundata Dinophysis spp. Diploneis fusca Diplopsalis sphaerica Dissodinium sp. Ebria tripartita Eucampia cornuta Euglena spp. Fragilariopsis spp. Gonyaulax digitale Gonyaulax pacifica Guinardia cylindrus Guinardia flaccida

Gymnodinium flavum Helicosphaera spp. Hemiaulus hauckii Hemiaulus spp. Histioneis hyalina Karenia spp. Lauderia spp. Leptocylindrus mediterraneus Leptocylindrus spp./Cerataulina spp. Amphidinium spp. Amphisolenia globifera Amphora spp. Asteromphalus heptactis Bacillaria sp. Bacteriastrum spp. Biddulphia chinensis Brachidinium capitatum Cerataulina chapmanii Cerataulina spp. Ceratium candelabrum Ceratium extensum Ceratium fusus Ceratium horridum Ceratium kofoidii Ceratium macroceros Ceratium platycorne Ceratium teres Ceratium vultur cf. Trigonium sp. Chaetoceros compressus Chaetoceros decipiens Chaetoceros eibenii Chaetoceros secundum Chaetoceros teres Climacodium spp. Cocconeis spp. Corethron pennatum Coscinodiscus concinnis Coscinodiscus wailesii Dactyliosolen blavyanus Dactyliosolen phuketensis Dictyocha fibula Dinophysis acuminata Dinophysis dens Dinophysis mitra Dinophysis schroederi Dinophysis tripos Diploneis spp. Diplopsalis spp. Ditylum brightwelli Emiliania huxleyi/Gephyrocapsa oceania Eucampia spp. Eutreptiella spp. Fragilariopsis striatula Gonyaulax kofoidii Gonyaulax polygramma Guinardia delicatula Guinardia spp.

Gymnodinium spp. Helicotheca spp. Hemiaulus indicus Heterocapsa triquetra Histoneis tubifera Lauderia annulata Leptocylindricus spp. Leptocylindrus minimus Licmophora spp.

Licomorpha abbreviata Melanodinium nigricans Melosira nummuloides Mesodinium rubrum Miniscula spp. Nitzschia bicapitata Nitzschia pacifica Odontella aurita Ornithocercus sp. Oxytoxum coronatum **Oxytoxum** laticeps Oxytoxum obliqum Oxytoxum spp. Phalacroma argus Phalacroma rotundatum Planktoniella spp. Podolampas elegans Proboscia alata Prorocentrum compressum Prorocentrum lima Prorocentrum rostratum Prorocentrum triestinum Protoperidinium crassipes Protoperidinium elegans Protoperidinium minusculus Protoperidinium orbiculare Protoperidinium pentagonum Protoperidinium steini Pseudo-nitzschia spp. Ptychodiscus sp. Pyrocystis robusta Rhizosolenia cf. fallax Rhizosolenia delicatula Rhizosolenia spp. Rhodomonas spp. Skeletonema spp. Stephanopyxis spp. Striatella unipunctata Synedra spp. Tetraselmis spp. Thalassionema spp. Thalassiosira decipiens Thalassiosira rotula Thalassiothrix elongata Thalassiothrix sp./Lioloma sp.

Lioloma spp. Melosira crenulata Melosira polaris Meuniera membranacea Navicula septentrionalis Nitzschia brightwellii Nitzschia spp. Odontella sp. Oxytoxum caudatum Oxytoxum curvatum **Oxytoxum** longiceps Oxytoxum scolopax Oxytoxum turbo Phalacroma doryphorum Plagioselmis spp. Pleurosigma sp./Gyrosigma sp. Podolampas palmipes Pronoctiluca sp. Prorocentrum dentatum Prorocentrum micans Prorocentrum schilleri Protoperidinium bipes Protoperidinium decipiens Protoperidinium excentricum Protoperidinium monacanthum Protoperidinium ovatum Protoperidinium pyriforme Protoperidinium tenuissimum Pseudosolenia spp. Pyramimonas spp. Pyrophacus horologicum Rhizosolenia cf. imbricata Rhizosolenia robusta Rhizosolenia stolterfothii Scrippsiella spp. Stauroneis spp. Stephanopyxis turris Strombidium spp. Syracosphaera cf. pulchra Thalassionema frauenfeldii Thalassiosira cf. partheneia Thalassiosira fragillissima Thalassiosira spp. Thalassiothrix frauenfeldii Thalassiothrix spp.

Lithodesmium spp. Melosira moniliformis Melosira spp. Micromonas spp. Navicula spp. Nitzschia longissima Noctiluca scintillans Ornithocercus magnificus Oxytoxum cf. nanum Oxytoxum gladiolus Oxytoxum milneri Oxytoxum sphaeoideum Phaeocystis spp. Phalacroma ovum Planktoniella sol Pleurosigma spp. Podolampas spinifer Pronoctiluca spinifera Prorocentrum gracile Prorocentrum minimum Prorocentrum spp. Protoperidinium breve Protoperidinium divergens Protoperidinium globulus Protoperidinium oceanicum Protoperidinium pellucidum Protoperidinium spp. Protoperidinium tuba Ptychodiscus noctiluca Pyrocystis lunula Pyrophacus spp. Rhizosolenia cf. styliformis Rhizosolenia setigera Rhizosolenia styliformis Scrippsiella trochoidea Stephanopyxis palmeriana Striatella spp. Synedra acus Syracosphaera spp. Thalassionema nitzschioides Thalassiosira condensata Thalassiosira gravida Thalassiosira subtilis Thalassiothrix nitzschioides Trichodesmium erythraeum

Appendix G-2. Merimbula Lake (site 2) phytoplankton enumeration (total species counts) from two sampling periods from 12/6/2012 to 10/6/2012 and from 3/8/2014 to 9/6/2015 (Data provided by NSW Food Authority and Microalgal Services)

Taxon		12/6/2012 to 10/6/2013	3/8/2014 to 9/6/2015		
Diatoms		Max cells ⁻¹	Max cells ⁻¹		
Acanthoceras	sp.	0	0		
Achnanthes	sp.	0	5000		
Actinocyclus	sp.	0	0		
Actinoptychus	sp.	0	0		
Amphora	sp.	9000	10000		
Anaulus	australis	0	0		
Ardissonea	crystallina	0	0		
Asterionellopsis	glacialis	0	4000		
Asteromphalus	heptactis	0	0		
Asteromphalus	sarcophagus	0	170000		
Attheya	sp.	0	0		
Aulacoseira	sp.	0	0		
Auliscus	sp.	0	0		
Bacillaria	paxillifera	0	7500		
Bacteriastrum	elegans	0	55000		
Bellerochea	malleus	0	0		
Biddulphia	sp.	0	0		
Biddulphiopsis	sp.	0	0		
Campylodiscus	sp.	0	0		
Cerataulina	pelagica	30000	14000		
Ceratoneis	closterium	160000	245000		
Chaetoceros	spp.	876000	200000		
Climacodium	sp.	0	0		
Climacosphaenia	sp.	0	0		
Cocconeis	spp.	24000	6000		
Corethron	criophilum	0	0		
Coscinodiscus	spp.	5000	10000		
Cyclophora	tenuis	0	30000		
Cyclotella	spp.	22000	65000		
, Cymbella	sp.	0	0		
Dactyliosolen	antarcticus	18000	85000		
Dactyliosolen	fragilissimus	30000	20000		
Dactyliosolen	phukutensis	50000	0		
Dactyliosolen	sp.	0	0		
Detonula	pumilla	0	1500		
Diploneis	sp.	3000	0		
Ditylum	brightwellii	0	0		
Encyonema	sp.	0	0		
Entomoneis	sp.	5000	26000		
Eucampia	zodiacus	30000	10000		
Eunotia	sp.	0	0		
Fallacia	sp.	0	0		
Fragilaria	sp.	14000	10000		
Fragilariopsis	sp.	0	0		
Gomphonema	sp.	0	0		
Grammotophora	serpentina	8000	0		
Guinardia	delicatula	0	15000		
Guinardia	flaccida	0	2000		
Guinardia	striata	20000	42000		

Gyrosigma	spp.	0	0
Haslea	wawrikae	0	500
Helicotheca	tamesis	0	0
Hemiaulus	sp.	0	2500
Hemidiscus	sp.	0	0
Hyalodiscus	sp.	0	0
Lauderia	annulata	0	10000
Leptocylindrus	danicus	55000	100000
Leptocylindrus	mediterraneus	0	0
Leptocylindrus	minimus	70000	4500000
Licmophora	sp.	6000	10000
Lioloma	pacifica	5000	30000
Lithodesmium	sp.	0	0
Mastogloea	sp.	0	0
Melosira	sp.	0	0
Membraneis	sp.	0	0
Meunieria	membranacea	0	0
Minidiscus	trioculatus	8000	41000
Minutocellus	scriptua	4000	25000
Naviculoid	spp.	25000	25000
Nitzschia		35000	20000
Nitzschia	spp. longissima	0	0
Nitzschia		0	0
Odontella	sigmoidea	0	0
Paralia	sp. sulcata	0	2000
Pinnularia Dissistrasia	sp.	0	0
Plagiotropis	sp.	0	2000
Planktoniella	sol	0	0
Pleurosigma	sp.	2000	5000
Proboscia Desude mitrashim	alata	10000	10000
Pseudo-nitzschia	spp.	0	0
Pseudo-nitzschia	delicatissima group	21500	320000
Pseudo-nitzschia	fraudulenta/australis	1000	8500
Pseudo-nitzschia	cf. galaxiae	0	0
Pseudo-nitzschia	heimii	0	0
Pseudo-nitzschia	multistriata	0	24000
Pseudo-nitzschia	pungens/multiseries	1500	30000
Pseudo-nitzschia	subcurvata	0	0
Pseudo-nitzschia	subpacifica/heimii	1000	14000
Pseudo-nitzschia	dolorosa/turgidula	0	1000
Pseudosolenia	calcar-avis	0	0
Rhizosolenia	spp.	5000	4000
Rhizosolenia	setigera	0	30000
Rhopalodia	sp.	0	0
Skeletonema	costatum	4000000	1480000
Stauroneis	sp.	0	0
Stephanopyxis	turris	0	0
Striatella	unipunctata	4000	5000
Surirella	sp.	0	500
Synedra	sp.	0	0
Tabellaria	sp.	0	0
Thalassionema	sp.	20000	10000
Thalassiosira	sp.	12000	65000
Thalassiosira	cf. mala	120000	285000

Thalassiothrix	sp.	0	0
Triceratium	spp.	0	0
Trigonium	sp.	0	0
Urosolenia	eriensis	0	0
Dinoflagellates			
Akashiwo	sanguinea	100	0
Alexandrium	total	0	0
Alexandrium	affine	0	0
Alexandrium	catenella/fundyense	50	0
Alexandrium	fraterculus	0	0
Alexandrium	insuetum	100	150
Alexandrium	margalefi	0	100
Alexandrium	minutum	0	0
Alexandrium	ostenfeldii	0	50
Alexandrium	pseudogonyaulax	500	1000
Alexandrium	tamarense	0	0
Alexandrium	sp.	0	0
Amphidinium	sp.	15000	5000
Amphidinium	carterae	0	0
Amylax	sp.	0	0
Ceratium	biceps	0	0
Ceratium	candelabrum	0	0
Ceratium	concillians	0	0
Ceratium	furca	12000	500
Ceratium	fusus	0	500
Ceratium	hirundinella	0	0
Ceratium	lineatum	0	1000
Ceratium	macroceros	0	0
Ceratium	pentagonum	0	0
Ceratium	setaceum	0	0
Ceratium	symmetricum	0	0
Ceratium	tenue	0	500
Ceratium	teres	0	0
Ceratium	tripos	0	0
Ceratocorys	horridum	0	0
Coolia	monotis	0	0
Cochlodinium	sp.	0	4000
Corythodinium	constrictum	0	0
Corythodinium	tesselatum	0	0
Dinophysis	acuminata	100	200
Dinophysis	acuta	0	50
Dinophysis	caudata	4050	800
Dinophysis Dinophysis	fortii	0	0
Dinophysis	hastata	0	0
Dinophysis/Phalacroma	mitra	0	0
Dinophysis/Phalacroma Dinophysis/Phalacroma	rotundatum	200	100
		0	0
Dinophysis Diplopsalid	tripos	U	4000
Diplopsalid Fragilidium	spp.	^	
Fragilidium	subglobosum	0	0
Gambierdiscus	sp.	800	450
Goniodoma	sp.	0	0
Gonyaulax	spp.	0	10000
Gymnodinioid	spp.	72000	150000

Gymnodinium	cf. impudicum	200	0
Gyrodinium	spp.	20000	20000
Heterocapsa	spp.	0	0
Heterocapsa	rotundata	35000	45000
Karenia	brevis	0	0
Karenia	mikimotoi	0	0
Karenia	papilionacea	0	50
Karenia	sp.	0	1500
Karlodinium	spp.	500	500
Katodinium	sp.	6000	500
Kryptoperidinium	foliaceum	0	0
Lepidodinium	chlorophorum	0	10000
Lingulodinium	polyedrum	0	0
Mesoporus	perforatus	0	1000
Noctiluca	scintillans	50	100
Oblea	sp.	0	0
Ornithocercus	magnificus	0	0
Ostreopsis	sp.	50	250
Oxyphysis	oxytoxoides	0	0
Oxyrrhis	marina	0	0
, Oxytoxum	scolopax	0	0
Oxytoxum	spp.	0	1000
Peridinium	sp.	12000	45000
Peridinium	quinquecorne	0	0
Podolampas	sp.	0	0
Polykrykos	schwartzii	500	1500
Preperidinium	meuneri	0	0
Pronoctiluca	spinifera	0	1000
Prorocentrum	sp.	0	0
Prorocentrum	compressum	0	0
Prorocentrum	cordatum	39000	8500
Prorocentrum	dentatum	0	4500
Prorocentrum	emarginatum	100	0
Prorocentrum	excavatum	0	0
Prorocentrum	gracile	6000	12000
Prorocentrum	lima	50	100
Prorocentrum	lima var. marina	50	0
Prorocentrum	micans	0	0
Prorocentrum	rhathymum	1200	3500
Prorocentrum	rostratum	0	0
Prorocentrum	triestinum	4000	16000
Protoceratium	reticulatum	0	0
Protoperidinium	spp.	4000	15000
Protoperidinium	avellana	0	0
Protoperidinium	bipes	0	0
Protoperidinium	brevipes	0	0
Protoperidinium	claudicans	0	0
Protoperidinium	conicum	0	0
Protoperidinium	crassipes	0	0
Protoperidinium		0	0
· · · · · · · · · · · · · · · · · · ·	depressum	0	0
Protoperidinium	divergens		
Protoporidinium	alaganc		
Protoperidinium Protoperidinium	elegans latissimum	0 0	0

Protoperidinium	minutum	0	0
Protoperidinium	nudum	0	0
Protoperidinium	oceanicum	0	0
Protoperidinium	oblongum	0	0
Protoperidinium	obtusum	0	0
Protoperidinium	pallidum/pellucidum	0	0
Protoperidinium		0	0
Protoperidinium	pentagonum punctulatum	0	0
Protoperidinium	steinii	0	0
Protoperidinium		0	0
Protoperidinium	subinerme subpyriforme		
	1,7,3	0	0
Protoperidinium	thorianium	0	0
Pyrocystis Pyrophagus	lunula	0	0
Pyrophacus	horologium		
Scrippsiella Sinonbusis	trochoidea	3000	20000
Sinophysis	microcephala	0	0
Takayama Thaondining	pulchella	450	1000
Thecadinium	sp.	0	0
Torodinium	sp.	0	1000
Warnowia	sp.	0	0
Chrysophytes			
Calycomonas	sp.	0	15000
Dinobryon	sp.	25000	15000
Meringiosphaera	mediterranea	4000	40000
Ochromonas	spp.	12000	30000
Paraphysomonas	spp.	0	0
Prymnesiophytes			
Acanthoica	sp.	0	0
Calciopappus	caudatus	16000	10000
Calciosolenia	sp.	0	0
Chrysochromulina	spp.	176000	114000
Corymbellus	sp.	0	0
Emiliania	huxlevi	48000	90000
Gephyrocapsa	oceanica	0	0
Paraphysomonas	sp.	0	0
Phaeocystis	pouchetii colonies	0	0
Phaeocystis	pouchetii cells	0	0
Prymnesium	patellifera	0	2000
Syracosphaera		0	2000
Unidentified	sp.	0	0
onidentified	spp.	0	0
Cryptophytes			
Campylomonas	reflexa	0	0
Chroomonas	spp.	0	0
Cryptomonas	sp.	0	0
Goniomonas	truncata	0	0
Hemiselmis	sp.	93000	120000
Leucocryptos	marina	8000	10000
Plagioselmis	prolonga	104000	95000
Rhodomonas	salina	0	5000
Rhodomonas	sp.	0	0
Storeatula	major	0	0

Teleaulax	acuta	20000	25000
Chlorophytes			
Ankistrodesmus	sp.	0	0
Arthrodesmus	sp.	0	0
Brachiomonas	sp.	0	0
Carteria		0	0
Chlamydomonas	sp.	0	0
Chlorella	sp.	0	0
Closterium	sp.		0
	sp.	0	
Crucigenia	sp.	0	0
Klebsormidium	sp.	0	0
Oltmansiellopsis	lineata	0	0
Oocystis	sp.	0	0
Pediastrum	sp.	0	0
Scenedesmus	sp.	0	0
Spirogyra	sp.	0	0
Staurastrum	sp.	0	0
Xanthidium	sp.	0	0
Unidentified	filament	0	0
Unidentified	colonial cells	0	0
Prasinophytes			
Micromonas	pusilla	0	0
Cymbomonas	tetramitiformis	0	10000
Halosphaera	viridis	25000	2000
Nephroselmis	pyriformis	8000	12000
Prasinopapilla	sp.	0000	500
Pterosperma		18000	15000
Pyramimonas	sp.	70000	75000
Tetraselmis	spp.	83000	60000
	spp.	83000	00000
Euglenophyta			
Euglena	spp.	0	0
Eutreptiella	spp.	12000	20000
Phacus	spp.	0	0
Trachelomonas	spp.	0	0
Cyanoprokaryota			
Anabena	sp.	0	0
Aphanothece	sp.	0	0
Arthrospira	sp.	0	0
Gloeocapsa	sp.	0	0
Merismopedia	sp.	0	0
Microcystis	aeruginosa	0	0
Microcystis	sp.	0	0
Microcystis	viridis	0	0
Oscillatoria	sp.	0	0
Phormidium	sp.	0	0
Planktolyngbya	sp.	0	0
Pseudanabaena	sp.	0	0
Rhabdoderma	sp.	0	0
Spriulina	sp.	0	0
Synechococcus	sp.	0	0

Trichodesmium	erythraeum	0	0
Other			
Actinomonad	sp	0	0
Apedinella	spinifera	28000	16000
Bicosoeca	spp.	78000	0
Chattonella	spp.	0	500
Diaphanoeca	grandis	0	0
Ebria	tripartita	5000	1000
Dictyocha	fibula	0	500
Dictyocha	octonaria	150	2500
Fibrocapsa	japonica	0	2500
Heterosigma	akashiwo	0	4500
Pedinella	sp.	0	0
Pseudochattonella	sp.	0	1000
Pseudopedinella	pyriforme	0	0
Stephanoeca	sp.	12000	0
Telonema	subtilis	0	0
Unidentified	amoeba	0	0
Unidentified	bodonids	20000	0
Unidentified	choanoflagellates	5000	5000
Unidentified	coccoid cells (5µm)	0	0
Unidentified	coccoid cells (8µm)	0	0
Unidentified	flagellates	27000	8000
Unidentified	heterotrophic flagellates	5000	0

Appendix G-3. Phytoplankton Action Limits (PALs) for harvest area closure which are used to trigger sampling of shellfish flesh (Appendix 6 in NSW Marine Biotoxin Management Plan 2015).

Alexandrium minutum#PSFAlexandrium ostenfeldii#PSFAlexandrium catenella#PSF	200 200 200	500 500 500	5000 5000
	200		5000
Alexandrium catenella# PSF		500	
	200	000	5000
Alexandrium tamarense# PSF	200	500	5000
Alexandrium spp#. PSF	? (?)		
Gymnodinium catenatum PSF	o 1000 mu other she	ssels 2000 5000 Illfish	5000
Pseudonitzschia (P.multiseries ASF & P.australis)*	50,000	500,000	N/A
Pseudonitzschia delicatissima ASF group - historically non-toxic in Australia	?(?) 500,000		N/A
Karenia cf brevis NSF	9 1000		5000
Dinophysis acuminata DSF	P 1000		N/A
Dinophysis acuta DSF	500		N/A
Dinophysis caudata DSF	500		N/A
Dinophysis fortii DSF	500		N/A
Dinophysis hastata DSF	500		N/A
Dinophysis mitra DSF	500		N/A
Dinophysis rotundata DSF	500		N/A
Phytoplankton species Tox	in Trigger samplin (cells pe	g# area pending	Close harvest Issue public health g flesh testing warning (cells per litre)
Dinophysis tripos DSF	P 500		N/A
Total Dinophysis spp. DSF	p 500		N/A
Prorocentrum lima DSF	p 500		N/A

Note: For Pseudonitzschia spp. risk remains high for a minimum of two weeks post bloom crash.

The cell levels within each toxin group are cumulative, eg 600 cells/l of both *D. acuta* and *D. fortii* would mean a total count of 1200 cells/l, exceeding the critical level to initiate flesh testing.

Alexandrium species may be difficult to identify when numbers are low. If any doubt exists, they should be treated as potentially toxic.

* Species within the Pseudo-nitzchia groups are difficult to identify. The toxic species of most concern in each group are listed for those laboratories that have capacity to identify these algae to species level. Otherwise all algae within these groups should be considered potentially toxic.

Table G-4. Summary of physico-chemical water quality at Phytoplankton monitoring sites (surface and bottom waters)

Site	Date D/M/Y D/M/Y	Time HH:MM:SS hh:mm:ss	Surface / Bottor	m Depth meters	s Temp C C	SpCond ເ uS/cm	ppt	рН	Turbid+ I NTU	NI ChI ug/L ug/L	ODOsat %	% ODO mg/L mg/L	Latitude Deg DD.dddd	Longitude Deg DD.dddd
HAY30	21/11/17	08:49:16	surface	1.1	15.48	53279	35.18	8.10	0.0	1.1	105.5	8.49	-36.949650°	149.955500°
HAY30	21/11/17	09:09:05	bottom	29.2	13.32	53305	35.10	8.00	0.0	1.5	90.1	7.58	-36.949650°	149.955500°
HAY30	1/10/19	9:15:04	surface	1.0	15.2	53364	35.24	8.13	-76.9	-0.6	-2.2	8.74	-36.949650°	149.955500°
HAY30	1/10/19		bottom	21.9	14.83	53369	35.23	8.11	-75.6	0.1	6.7	8.48	-36.949650°	149.955500°
HAY30	29/1/20	8:40:13	surface	0.4	21.21	54059	35.8	8.18	-85.9	-0.8	-0.3	7.48	-36.949650°	149.955500°
HAY30	29/1/20	8:58:14	bottom	29.6	17.06	53849	35.63	8.08	-79.7	0.2	0.5	5.97	-36.949650°	149.955500°
HAY30	7/4/20	10:10:26	surface	0.2	19.04	49690	32.58	8.27	-93.3	3.1	0.3	7.66	-36.949650°	149.955500°
HAY30	7/4/20	10:27:57	bottom	31.0	14.74	53915	35.62	8.15	-86.2	-0.3	1.8	6.82	-36.949650°	149.955500°
QUON20	21/11/17	9:27:46	surface	1.1	15.88	53284	35.2	8.09	0.1	1.2	111.5	8.90	-36.976028°	149.937250°
QUON20	21/11/17	9:43:33	bottom	20.2	12.87	53272	35.08	7.97	0.2	0.8	78	6.62	-36.976028°	149.937250°
QUON20	1/10/19	8:06:29	surface	1.1	14.83	53368	35.23	8.08	-74.1	-0.4	-2.4	8.76	-36.976028°	149.937250°
QUON20	1/10/19	8:24:50	bottom	23.2	14.79	53344	35.2	8.11	-75.6	-0.1	10.2	8.58	-36.976028°	149.937250°
QUON20	29/1/20	7:41:33	surface	0.6	21.31	54049	35.79	8.08	-80.6	-0.8	0.3	7.42	-36.976028°	149.937250°
QUON20	29/1/20	7:55:45	bottom	23.0	18.29	53926	35.7	8.08	-79.9	-0.3	1.3	6.57	-36.976028°	149.937250°
QUON20	7/4/20	9:10:40	surface	0.2	15.85	53949	35.69	8.16	-87	-0.7	1.5	7.50	-36.976028°	149.937250°
QUON20	7/4/20	9:27:39	bottom	23.3	14.73	53935	35.64	8.13	-84.7	1.8	1.3	6.64	-36.976028°	149.937250°
MBWQ40	21/11/17	8:05:42	surface	1.1	16.14	53198	35.14	8.12	0.1	1.7	110.1	8.75	-36.919722°	149.953472°
MBWQ40	21/11/17	8:29:27	bottom	40.5	11.19	52921	34.73	7.93	0.1	0.1	73.5	6.48	-36.919722°	149.953472°
MBWQ40	1/10/19	10:15:04	surface	1.1	15.85	53383	35.27	8.16	-78.9	-0.6	-1.9	8.88	-36.919722°	149.953472°
MBWQ40	1/10/19	10:25:47	bottom	40.6	14.67	53369	35.21	8.08	-73.9	-0.2	-1.7	7.95	-36.919722°	149.953472°
MBWQ40	29/1/20	9:25:34	surface	0.5	21.19	54038	35.78	8.18	-86.2	-0.8	-1.3	7.46	-36.919722°	149.953472°
MBWQ40	29/1/20	9:44:52	bottom	39.6	16.79	53853	35.62	8.07	-79.1	-0.5	0.6	5.78	-36.919722°	149.953472°
MBWQ40	7/4/20	11:12:23	surface	0.5	21.1	54211	35.91	8.34	-98	-0.8	2.9	7.47	-36.919722°	149.953472°
MBWQ40	7/4/20	11:18:11	bottom	40.2	14.25	53926	35.61	8.16	-86.2	-0.1	0.4	6.45	-36.919722°	149.953472°
MBWQ20	21/11/17	10:13:28	surface	1.1	17.06	53290	35.22	8.11	0.1	1.2	112.3	8.76	-36.919778°	149.917805°
MBWQ20	21/11/17	10:23:39	bottom	19.1	13.68	53375	35.19	7.99	1.3	3.5	81.7	6.82	-36.919778°	149.917805°
MBWQ20	1/10/19	12:06:31	surface	1.0	15.17	53394	35.26	8.14	-77.3	-0.5	-2.3	8.87	-36.919778°	149.917805°
MBWQ20	1/10/19	12:17:20	bottom	19.3	14.87	53392	35.24	8.13	-76.6	1.0	2.6	8.88	-36.919778°	149.917805°
MBWQ20	29/1/20	10:10:12	surface	0.5	21.44	54013	35.76	8.19	-87	-1.0	0.6	7.49	-36.919778°	149.917805°
MBWQ20	29/1/20	10:21:11	bottom	19.5	20.7	53989	35.75	8.18	-86.1	-0.7	0.3	7.01	-36.919778°	149.917805°
MBWQ20	7/4/20	11:40:17	surface	0.3	17.27	54673	36.25	8.38	-99.3	1.7	0.3	7.86	-36.919778°	149.917805°
MBWQ20	7/4/20	11:47:01	bottom	18.8	14.84	53873	35.6	8.16	-86.5	23.9	6	7.07	-36.919778°	149.917805°
TURA20	21/11/17	7:23:16	surface	1.1	14.86	53042	34.99	8.03	0.1	3.6	110.8	9.04	-36.877935°	149.942080°
TURA20	21/11/17	7:36:37	bottom	21.0	13.42	53265	35.1	7.98	0.4	3.1	82	6.89	-36.877935°	149.942080°
TURA20	1/10/19	11:19:07	surface	1.1	15.95	53429	35.31	8.17	-79.1	-0.5	-2.2	9.01	-36.877935°	149.942080°
TURA20	1/10/19	11:29:27	bottom	21.4	14.96	53181	35.09	8.11	-75.5	1.6	0.2	8.47	-36.877935°	149.942080°
TURA20	29/1/20	10:52:20	surface	0.5	21.64	53995	35.75	8.19	-86.9	-0.8	0.9	7.59	-36.877935°	149.942080°
TURA20	29/1/20	11:04:00	bottom	19.5	20.81	53992	35.75	8.19	-86.7	-0.6	0.2	7.24	-36.877935°	149.942080°
TURA20	7/4/20	12:15:19	surface	0.3	18.45	54081	35.82	8.27	-93.7	-0.8	0.8	7.67	-36.877935°	149.942080°
TURA20	7/4/20	12:21:31	bottom	19.7	15.35	53929	35.65	8.18	-87.9	6.7	2.8	7.14	-36.877935°	149.942080°

Appendix G-5. List of phytoplankton species recorded from Merimbula Bay region (species list compiled from analysis of vertical net tows collected across 5 sites).

TAXON	21/11/17	1/10/19	29/1/20	7/4/20
Diatoms (43 taxa)				
Asteromphalus heptactis (Brébisson) Ralfs		x		
Bacteriastrum sp Shadbolt	х	x		х
Cerataulina pelagica (Cleve) Hendey	х	х	х	
Chaetoceros spp. Ehrenberg	х	х	х	х
Ceratoneis (Cylindrotheca) closterium Ehrenberg	х		х	х
<i>Climacosphenia</i> sp. Ehrenberg		х		х
Cocconeis sp. Ehrenberg		х		х
Dactyliosolen blavyanus (Peragallo) Hasle			х	
cf. Dactyliosolen phuketensis (Sundström) Hasle	х			
Detonula pumila (Castracane) Gran	х	х		
Diploneis sp. Ehrenberg ex Cleve	х			
Ditylum brightwellii (West) Grunow		х		
Entomoneis sp. Ehrenberg		х		
Eucampia cornuta (Cleve) Grunow	х			
Eucampia zodiacus Ehrenberg	x			х
Guinardia flaccida (Castracane) Peragallo	x			х
Guinardia striata (Stolterfoth) Hasle	x			х
Helicotheca tamesis Ricard		х		
Hemiaulus hauckii Grunow ex van Heurck				х
Hemiaulus membranaceus Cleve				х
Lauderia annulata Cleve	x	х		
Leptocylindrus danicus Cleve	x	х	х	
Leptocylindrus minimus Gran		х	х	х
Licmophora sp. Agardh	x	x		х
Meuniera membranacea (Cleve) Silva		x	х	х
Navicula spp. Bory	x	x		х
Nitzschia spp. Hassall	x			
Pleurosigma spp. Smith/Gyrosigma spp. Hassall	x			
Proboscia alata (Brightwell) Sundström	x		х	
Pseudo-nitzschia spp. Peragallo	x	x	х	х
Rhizosolenia cf. setigera Brightwell	x		х	
Rhizosolenia cf. imbricata gp. Brightwell	x	х	х	
Rhizololenia cf. styliformis Brightwell				х
Skeletonema japonicum Zingone & Sarno				х
Skeletonema sp. Greville			х	
Stephanopyxis turris (Greville) Ralfs		х		
Thalassionema frauenfeldii (Grunow) Hallegraeff	x			х
Thalassiosira cf. mala/partheneia Cleve	x	x		
Thalassiosira gravida Cleve	x	x		
Thalassiosira spp./Porosira spp. Cleve	x			х
Thalassiothrix sp. Cleve & Grunow/Lioloma sp. Hasle in Hasle & Syvertsen	x		x	х
Unidentified pennate diatom spp.	x	x		x
Unidentified centric diatom spp.	x	х		х

Merimbula STP Upgrade and Ocean Outfall Concept Design and Environmental Assessment - Marine Ecology Assessment

TAXON	21/11/17	1/10/19	29/1/20	7/4/20
Dinoflagellates (35 taxa)				
Alexandrium sp. Halim		х	x	х
Amphisolenia bidentata Schröder				х
Ceratium furca (Ehrenberg) Claparéde & Lachmann	х			
Ceratium spp. Schrank	x			
Corythodinium elegans (Pavillard) Taylor				х
Dinophysis acuminata Claparède & Lachmann	х	х	x	х
Dinophysis caudata Saville-Kent	х		x	х
Dinophysis tripos Gourret	х		x	х
Gonyaulax sp. Deising	x			
Heterocapsa sp. Stein	х		x	
Heterocapsa triquetra (Ehrenberg) Stein				х
Karenia sp. Hansen & Moestrup	х			
Noctiluca scintillans (Macartney) Kofoid et Swezy	х		x	х
Phalachroma rotundatum (Claparede & Lachmann) Kofoid and Michener				х
Podolampus elegans Schütt				х
Prorocentrum compressum (Bailey) Abé ex Dodge			x	
Prorocentrum dentatum Stein				х
Prorocentrum emarginatum Fukuyo		х		
Prorocentrum gracile Schütt	х		x	х
Prorocentrum micans Ehrenberg				х
Prorocentrum rhathymum Loeblich, Sherley & Schmidt				x
Prorocentrum triestinum Schiller			x	х
Protoperidinium spp. Bergh	x	х	x	х
Pyrophacus steinii (Schiller) Wall & Dale			x	
Scrippsiella trochoidea (Stein) Balech ex Loeblich III	x	x	x	x
Tripos furca (Ehrenberg) Gómez (previously Ceratium furca)	~	x	x	x
Tripos fusus (Ehrenberg) Gómez (previously <i>Ceratium fusus</i>)		x	x	
Tripos candelabrus (Ehrenberg) Gómez (previously Ceratium candelabrum)		x	x	
Tripos kofoidii (Jörgenen) F.Gómez		X	^	x
Tripos massiliensis (Gourret) Gómez (previously Ceratium tripos var. massiliense)			x	~
Tripos muelleri (previously Ceratium tripos (Müller) Nitzsch)			x	x
Tripos lineatus (previously Ceratium lineatum (Ehrenberg) Cleve)			x	~
Tripos pentagonus (syn. Ceratium pentagonum Gourret)			^	x
Tripos trichoceros (syn. Ceratium trichoceros (Ehrenberg) Kofoid)				x
Gymnodinoid spp.	х	x	x	x
Dictyochophytes (1 taxon)	<u></u>		A	~
Dictyocha octonaria Ehrenberg	x	х		x
Prasinophytes (3 taxa)				^
Apedinella sp. Throndsen				v
				x
Pyramimonas sp. Schmarda		x		x
Eutreptiella sp. da Cunha		x		x
Cryptomonads (1 taxa)				
Unidentified chryptomonad spp.				X
Coccolithophorids (1 taxon)				
Emiliana huxleyi (Lohmann) Hay & Mohler /Gephyrocapsa oceánica Kamptner			x	х
Cyanobacteria (1 taxon)				
Trichodesmium erythraeum Ehrenberg			х	х
Taxon Richness by Event	42	35	33	51

Appendix G-6	Merimbula Bay	phytoplankton coun	ts (cells/mL) from wate	r samples collected a	at 0.5m depth
--------------	---------------	--------------------	-------------------------	-----------------------	---------------

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BA
Date	21/11/17	21/11/17	21/11/17	21/11/17	21/11/17	21/11/17
Dinoflagellates						
Actiniscus_pentasterias	0	0	0	0	0	0
cf_Alexandrium_sp	0	0	0	0	0	0
Amphidinium_sp	0	0	0	0	0	0
Amphisolenia_sp.	0	0	0	0	0	0
Amphisolenia_bidentata	0	0	0	0	0	0
Brachydinium_capitatum Ceratium candelabrum	0	0	0	0	0	0
Ceratium_concilians	0	0	0	0	0	0
Ceratium_contortum	0	0	0	0	0	0
 Ceratium_falcatum	0	0	0	0	0	0
Ceratium_furca	0	3	0	0	0	3
Ceratium_fusus	0	0	0	0	0	0
Ceratium_gravidum	0	0	0	0	0	0
Ceratium_incisum	0	0	0	0	0	0
Ceratium_kofoidii	0	0	0	0	0	0
Ceratium_longiorstrum	0	0	0	0	0	0
Ceratium_lineatum	0	0	0	0	0	0
Ceratium_cf_macroceros Ceratium_cf_pentagonum	0	0	0	0	0	0
Ceratium_cf_pentagonum Ceratium_symmetricum	0	0	0	0	0	0
Ceratium_symmetricum Ceratium_tenue	0	0	0	0	0	0
Ceratium_trichoceros	0	0	0	0	0	0
Ceratium_tripos	0	0	0	0	0	0
Ceratium vultur	0	0	0	0	0	0
 Ceratium_spp.	0	0	0	0	0	0
Ceratocorys_sp.	0	0	0	0	0	0
Cladopyxis_brachiolata	0	0	0	0	0	0
Cochlodinium_sp.	0	0	0	0	0	0
Corythodinium_elegans/tesselatum	0	0	0	0	0	0
Dinophysis_acuminata	0	0	0	0	0	0
Dinophysis_acuta	0	0	0	0	0	0
Dinophysis_caudata	0	0	0	0	0	0
Dinophysis_dens	0	0	0	0	0	0
Dinophysis_fortii Dinophysis_mitra	0	0	0	0	0	0
Dinophysis_mitru Dinophysis_schuettii	0	0	0	0	0	0
Dinophysis_tripos	0	0	0	0	0	0
Dissodinium_sp.	0	0	0	0	0	0
Gonyaulax_sp.	0	0	0	0	0	0
Gyrodinium_sp.	0	0	0	0	0	0
Karenia_sp.	0	0	0	0	0	0
Karlodinium_sp.	0	0	0	0	0	0
Gymnodinium_sp	0	0	1	0	0	1
Heterocapsa_sp.	6	10	4	6	14	40
Heterocapsa_triquetra	0	0	0	0	0	0
Histioneis_sp.	0	0	0	0	0	0
Noctiluca_scintillans	0	0	0	0	0	0
Ostreopsis_sp. Ornithoceros_cf_magnificus	0	0	0	0	0	0
Ornithoceros_cj_magnificus Ornithoceros cf thumii	0	0	0	0	0	0
Ornithoceros sp.	0	0	0	0	0	0
Oxytoxum_sp	0	0	0	0	0	0
Phalachroma_argus	0	0	0	0	0	0
Phalachroma_rotundatum	0	0	0	0	0	0
Podolampas_bipes	0	0	0	0	0	0
Podolampas_elegans	0	0	0	0	0	0
Pronoctiluca_sp.	0	0	0	0	0	0
Prorocentrum_compressum	0	0	0	0	0	0
Prorocentrum_concarvum	0	0	0	0	0	0
Prorocentrum_dentatum	0	0	0	0	0	0
Prorocentrum_rhyathymum Prorocentrum_micans	0	0	0	0	0	0
Prorocentrum_micans Prorocentrum_minimum	0	0	0	0	0	0
Prorocentrum_minimum Prorocentrum_gracile	1	3	0	6	10	20
Prorocentrum_gruche	0	0	0	0	0	0
Prorocentrum_triestmum	0	0	0	0	0	0
Protoperidinium_spp.	1	0	1	0	0	2
Pseliodinium sp.	0	0	0	0	0	0

Appendix G-6 Merimbula Bay phytoplankto	on counts (cells/mL) from water samples collected at 0.5m depth
---	---

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	21/11/17	21/11/17	21/11/17	21/11/17	21/11/17	21/11/17
Ptychodiscus_sp.	0	0	0	0	0	0
Pyrocystis_lunula	0	0	0	0	0	0
Pyrophacus_steinii	0	0	0	0	0	0
Pyrophacus_sp.	0	0	0	0	0	0
Scrippsiella_trochoidea	0	4	0	6	10	20
Gymnodinoid_sp.	0	0	0	0	0	0
Diatoms	0	0	0	0	0	0
Actinocyclus_sp. Amphora_sp.	0	0	0	0	0	0
Amphora_sp. Asterionellopsis_glacialis	0	0	0	0	0	0
Asteromphalus sp	0	0	0	0	0	0
Asteromphalus heptactis	0	0	0	0	0	0
Bacteriastrum_spp.	9	10	4	18	8	49
Bacillaria_sp.	0	0	0	0	0	0
Belloerochea_horologicales	0	0	0	0	0	0
Cerataulina_pelagica	16	24	37	39	39	155
Chaetoceros_<10 mm	34	9	13	10	18	84
Chaetoceros_>10 mm	21	49	27	75	53	225
Climacodium_frauenfeldianum	0	0	0	0	0	0
Climacosphenia_sp.	0	0	0	0	0	0
Cocconeis_sp.	0	0	0	0	0	0
Corethron_sp	0	0	0	0	0	0
Coscinodiscus_sp	0	0	0	0	0	0
Cyclotella_sp.	0	0	0	0	0	0
Ceratoneis_longissima/closterium	1	1	1	0	0	3
Dactyliosolen_blavyanus	0	0	0	0	0	0
Detonula_pumila	6 0	0	3 0	12 0	0	21 0
Diploneis_sp Ditylum_brightwelli	0	0	0	0	0	0
Eucampia_cornuta	0	0	0	2	2	4
Eucampia_contata Eucampia_zodiacus	0	0	0	2	4	6
Entomoneis_sp.	0	0	0	0	0	0
Fragillaria sp.	0	0	0	0	0	0
Guinardia_delicatula/Dactyliosole	0	0	0	0	0	0
Guinardia flaccida	0	1	0	0	4	5
Guinardia striata	0	0	0	0	6	6
 Helicotheca tamesis	0	0	0	0	6	6
Hemialus_hauckii	0	0	0	0	0	0
Hemialus_membranaceus	0	0	0	0	0	0
Lauderia_annulata	4	0	0	0	0	4
Leptocylindricus_minimus/mediter						
raneus	0	0	0	0	0	0
Leptocylindrus_danicus	10	12	7	29	26	84
Licmophora_cfgracilis	0	1	0	0	0	1
Lithodesmium_cfundulatum	0	0	0	0	0	0
Mastogloia_sp.	0	0	0	0	0	0
Melosira_nummuloides	0	0	0	0	0	0
Meuniera_membranacea	0	0	0	0	0	0
Navicula_sp	0	0	1	0	2	3
Nitzschia_sp. Nitzschia_bicapitata	0	0	1	0	0	1
Odontella sp.	0	0	0	0	0	0
Odontella sinensis	0	0	0	0	0	0
Planktoniella_sol	0	0	0	0	0	0
Pleurosigma/Gyrosigma_sp	0	1	0	0	2	3
	U U	-			6	12
Pseudonitzschia spp.	0	3	1	2	0	
		3 53	1 52	2 41	47	233
Pseudonitzschia_spp.	0					233 4
Pseudonitzschia_spp. Proboscia_alata	0 40	53	52	41	47	
Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizololenia_cf_styliformis Rhizosolenia_cf_imbricata	0 40 3	53 1	52 0 0 0	41 0	47 0	4
Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizololenia_cf_styliformis	0 40 3 0	53 1 0	52 0 0	41 0 0	47 0 0	4 0
Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizololenia_cf_styliformis Rhizosolenia_cf_imbricata Rhizosolenia_cf_fallax Skeletonema_sp.	0 40 3 0 0 0 0	53 1 0 0 0 0	52 0 0 0 0 0	41 0 0 0 0 0	47 0 0 0 0 0	4 0 0 0 0
Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizololenia_cf_styliformis Rhizosolenia_cf_imbricata Rhizosolenia_cf_fallax Skeletonema_sp. Stephanopyxis_turris	0 40 3 0 0 0 0 0 0	53 1 0 0 0 0 0	52 0 0 0 0 0 0 0	41 0 0 0 0 0 0 0	47 0 0 0 0 0 0	4 0 0 0 0 0
Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizololenia_cf_styliformis Rhizosolenia_cf_imbricata Rhizosolenia_cf_fallax Skeletonema_sp. Stephanopyxis_turris Suriella_sp.	0 40 3 0 0 0 0 0 0 0 0	53 1 0 0 0 0 0 0 0 0	52 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 0 0 0	47 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0
Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizololenia_cf_styliformis Rhizosolenia_cf_imbricata Rhizosolenia_cf_fallax Skeletonema_sp. Stephanopyxis_turris Suriella_sp. Thalassionema_frauenfeldii	0 40 3 0 0 0 0 0 0 0 0	53 1 0 0 0 0 0 0 0 0 0	52 0 0 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 0 0 0	47 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0
Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizololenia_cf_styliformis Rhizosolenia_cf_imbricata Rhizosolenia_cf_fallax Skeletonema_sp. Stephanopyxis_turris Suriella_sp.	0 40 3 0 0 0 0 0 0 0 0	53 1 0 0 0 0 0 0 0 0	52 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 0 0 0	47 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	21/11/17	21/11/17	21/11/17	21/11/17	21/11/17	21/11/17
Thalassiosira_spp.	13	4	10	18	16	61
Thalassiothrix/Lioloma_sp.	0	0	0	0	0	0
cfTrigonium_sp.	0	0	0	0	0	0
Unidentified_pennate_diatom	1	1	4	2	4	12
Unidentified_centric_diatom	0	0	0	0	0	0
Prasinophyceae				-		
Pyramimonas_sp.	0	0	0	0	0	0
Eutreptiella_sp.	0	0	0	0	0	0
Apedinella sp.	0	0	0	0	0	0
Cryptophyceae						
Cryptomonads	0	0	0	0	0	0
Euglenophyceae						
Euglenoid_sp.	0	0	0	0	0	0
Phacus_sp.	0	0	0	0	0	0
Raphidophyceae						
Chatonella_ovata	0	0	0	0	0	0
Unidentified_raphidophyte	0	0	0	0	0	0
Coccolithophorids						
Emiliana/Gephyrocapsa	0	0	0	0	0	0
Silicoflagellates						
Dictyocha_fibula	0	0	0	0	0	0
Dictyocha_octonaria	0	0	0	0	0	0
Ebria_tripartita	0	0	0	0	0	0
Cyanobacteria						
Trichodesmium_erythraeum	0	0	0	0	0	0
Other						
Unidentified_flagellates	0	0	1	0	0	1
Choanoflagellates	0	0	0	0	0	0
Total Abundance (cells/mL)	167	190	168	272	279	1076
Total Taxon Count	16	18	17	16	20	30

 $\label{eq:constraint} \textbf{Appendix G-6} \hspace{0.1in} \text{Merimbula Bay phytoplankton counts (cells/mL) from water samples collected at 0.5m depth}$

Summary of Major Phytoplankton Groups (cells/L)

	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION			
	21/11/17	21/11/17	21/11/17	21/11/17	21/11/17	21/11/17			
Dinoflagellates	8000	20000	6000	18000	34000	86000			
Diatoms	159000	170000	161000	254000	245000	989000			
Prasinophyceae	0	0	0	0	0	0			
Cryptophyceae	0	0	0	0	0	0			
Euglenophyceae	0	0	0	0	0	0			
Raphidophyceae	0	0	0	0	0	0			
Coccolithophorids	0	0	0	0	0	0			
Silicoflagellates	0	0	0	0	0	0			
Cyanobacteria	0	0	0	0	0	0			
Other	0	0	1000	0	0	1000			
TOTAL ABUNDANCE (cells/L)	167000	190000	168000	272000	279000	1076000			

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	1/10/19	1/10/19	1/10/19	1/10/19	1/10/19	1/10/19
Dinoflagellates						
Actiniscus_pentasterias	0	0	0	0	0	0
cf_Alexandrium_sp	0	0	0	6	0	6
Amphidinium_sp	0	0	0	0	0	0
Amphisolenia_sp.	0	0	0	0	0	0
Amphisolenia_bidentata	0	0	0	0	0	0
Brachydinium_capitatum Ceratium candelabrum	0	0	0	0	0	0
Ceratium concilians	0	0	0	0	0	0
Ceratium contortum	0	0	0	0	0	0
Ceratium falcatum	0	0	0	0	0	0
Ceratium_furca	0	0	0	0	0	0
Ceratium_fusus	0	0	0	0	0	0
Ceratium_gravidum	0	0	0	0	0	0
Ceratium_incisum	0	0	0	0	0	0
Ceratium_kofoidii	0	0	0	0	0	0
Ceratium_longiorstrum	0	0	0	0	0	0
Ceratium_lineatum	0	0	0	0	0	0
Ceratium_cf_macroceros Ceratium_cf_pentagonum	0	0	0	0	0	0
Ceratium_cy_pentagonum Ceratium_symmetricum	0	0	0	0	0	0
Ceratium_tenue	0	0	0	0	0	0
Ceratium trichoceros	0	0	0	0	0	0
Ceratium_tripos	0	0	0	0	0	0
Ceratium_vultur	0	0	0	0	0	0
Ceratium_spp.	0	0	0	0	0	0
Ceratocorys_sp.	0	0	0	0	0	0
Cladopyxis_brachiolata	0	0	0	0	0	0
Cochlodinium_sp.	0	0	0	0	0	0
Corythodinium_elegans/tesselatum	0	0	0	0	0	0
Dinophysis_acuminata Dinophysis_acuta	0	0	<u> </u>	0	0	0
Dinophysis_acata	0	0	0	0	0	0
Dinophysis_dens	0	0	0	0	0	0
Dinophysis_fortii	0	0	0	0	0	0
Dinophysis_mitra	0	0	0	0	0	0
Dinophysis_schuettii	0	0	0	0	0	0
Dinophysis_tripos	0	0	0	0	0	0
Dissodinium_sp.	0	0	0	0	0	0
Gonyaulax_sp.	0	0	0	0	0	0
Gyrodinium_sp.	0	0	0	0	0	0
Karenia_sp. Karlodinium_sp.	0	0	0	0	0	0
Gymnodinium_sp	0	6	0	0	0	6
Heterocapsa_sp.	0	0	0	0	0	0
Heterocapsa_triquetra	0	0	0	0	0	0
Histioneis_sp.	0	0	0	0	0	0
Noctiluca_scintillans	0	0	0	0	0	0
Ostreopsis_sp.	0	0	0	0	0	0
Ornithoceros_cf_magnificus	0	0	0	0	0	0
Ornithoceros_cf_thumii	0	0	0	0	0	0
Ornithoceros_sp.	0	0	0	0	0	0
Oxytoxum_sp Phalachroma_argus	0	0	0	0	0	0
Phalachroma_rotundatum	0	0	0	0	0	0
Podolampas_bipes	0	0	0	0	0	0
Podolampas_elegans	0	0	0	0	0	0
Pronoctiluca_sp.	0	0	0	0	0	0
Prorocentrum_compressum	0	0	0	0	0	0
Prorocentrum_concarvum	0	0	0	0	0	0
Prorocentrum_dentatum	0	0	0	0	0	0
Prorocentrum_rhyathymum	0	0	0	0	0	0
Prorocentrum_micans	0	0	0	0	0	0
Prorocentrum_minimum Prorocentrum_gracile	0	0	0	0	0	0
Prorocentrum_gracile Prorocentrum triestinum	0	0	0	0	0	0
Prorocentrum_triestinum Prorocentrum sp.	0	0	0	0	0	0
						-
Protoperidinium_spp.	0	4	0	0	0	4

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	1/10/19	1/10/19	1/10/19	1/10/19	1/10/19	1/10/19
Ptychodiscus_sp.	0	0	0	0	0	0
Pyrocystis_lunula	0	0	0	0	0	0
Pyrophacus_steinii	0	0	0	0	0	0
Pyrophacus_sp.	0	0	0	0	0	0
Scrippsiella_trochoidea	0	2	3	6	0	11
Gymnodinoid_sp.	0	0	0	0	0	0
Diatoms		0	0		0	0
Actinocyclus_sp.	0	0	0	0	0	0
Amphora_sp. Asterionellopsis_glacialis	0	0	0	0	0	0
Asteromphalus_sp	0	0	0	0	0	0
Asteromphalus_heptactis	0	0	0	6	0	6
Bacteriastrum_spp.	29	4	0	0	0	33
Bacillaria sp.	0	0	0	0	0	0
Belloerochea_horologicales	0	0	0	0	0	0
Cerataulina_pelagica	0	0	3	0	6	9
Chaetoceros_<10 mm	0	0	0	0	0	0
Chaetoceros_>10 mm	442	55	360	419	18	1294
Climacodium_frauenfeldianum	0	0	0	0	0	0
Climacosphenia_sp.	0	0	0	0	0	0
Cocconeis_sp.	0	0	0	0	0	0
Corethron_sp	0	0	0	0	0	0
Coscinodiscus_sp	0	0	0	0	0	0
Cyclotella_sp.	0	0	0	0	0	0
Ceratoneis_longissima/closterium	0	0	0	0	0	0
Dactyliosolen_blavyanus Detonula pumila	0	0	0	0	0	0
Diploneis_sp	0	0	0	0	0	0
Ditylum_brightwelli	0	0	0	0	0	0
Eucampia cornuta	0	0	0	0	0	0
Eucampia_zodiacus	0	0	0	0	0	0
Entomoneis sp.	0	0	0	0	0	0
, Fragillaria_sp.	0	0	0	0	0	0
Guinardia_delicatula/Dactyliosole	0	0	0	0	0	0
Guinardia_flaccida	0	0	0	0	0	0
Guinardia_striata	0	0	0	0	0	0
Helicotheca_tamesis	0	0	0	0	0	0
Hemialus_hauckii	0	0	0	0	0	0
Hemialus_membranaceus	0	0	0	0	0	0
Lauderia_annulata	0	6	0	0	0	6
Leptocylindricus_minimus/mediter						
raneus	18	4	0	0	0	22
Leptocylindrus_danicus	18	8	0	0	0	26
Licmophora_cfgracilis	0	0	0	0	0	0
Lithodesmium_cfundulatum	0	0	0	0	0	0
Mastogloia_sp. Malasira_nummulaidas	0	0	0	0	0	0
Melosira_nummuloides	0	0	0	0	0	0
Meuniera_membranacea	0	0	0	0	0	0
Navicula_sp Nitzschia sp.	0	0	0	0	0	0
Nitzschia_bicapitata	0	0	0	0	0	0
Odontella_sp.	0	0	0	0	0	0
Odontella_sinensis	0	0	0	0	0	0
Planktoniella_sol	0	0	0	0	0	0
_ Pleurosigma/Gyrosigma_sp	0	0	0	0	0	0
Pseudonitzschia_spp.	77	59	50	30	29	245
Proboscia_alata	0	0	0	0	0	0
Rhizosolenia_setigera	0	0	0	0	0	0
Rhizololenia_cf_styliformis	0	0	0	0	0	0
Rhizosolenia_cf_imbricata	0	14	3	24	12	53
Rhizosolenia_cf_fallax	0	0	0	0	0	0
Skeletonema_sp.	0	0	0	0	0	0
Stephanopyxis_turris	0	0	0	0	18	18
Suriella_sp.	0	0	0	0	0	0
Thalassionema_frauenfeldii	0 436	0 132	0	0	0	0
Thalacciocira of narthanaia		1.37	183	212	732	1695
Thalassiosira_cf_partheneia Thalassiosira_cf_punctigera	4 <u>30</u> 0	0	0	0	0	0

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	1/10/19	1/10/19	1/10/19	1/10/19	1/10/19	1/10/19
Thalassiosira_spp.	0	0	0	0	0	0
Thalassiothrix/Lioloma_sp.	0	0	0	0	0	0
cfTrigonium_sp.	0	0	0	0	0	0
Unidentified_pennate_diatom	0	0	3	0	0	3
Unidentified_centric_diatom	0	0	0	0	0	0
Prasinophyceae						•
Pyramimonas_sp.	0	0	3	0	0	3
Eutreptiella_sp.	0	0	3	0	0	3
Apedinella sp.	0	0	0	0	0	0
Cryptophyceae						
Cryptomonads	0	0	0	0	0	0
Euglenophyceae		•			•	
Euglenoid_sp.	0	0	0	0	0	0
Phacus_sp.	0	0	0	0	0	0
Raphidophyceae						
Chatonella_ovata	0	0	0	0	0	0
Unidentified_raphidophyte	0	0	0	0	0	0
Coccolithophorids						
Emiliana/Gephyrocapsa	12	6	3	0	0	21
Silicoflagellates						
Dictyocha_fibula	0	0	0	0	0	0
Dictyocha_octonaria	0	0	0	0	0	0
Ebria_tripartita	0	0	0	0	0	0
Cyanobacteria			•			·
Trichodesmium_erythraeum	0	0	0	0	0	0
Other						
Unidentified_flagellates	18	4	12	18	0	52
Choanoflagellates	0	0	0	0	0	0
Total Abundance (cells/mL)	1062	304	629	721	815	3531
Total Taxon Count	9	13	12	8	6	22

Summary of Major Phytoplankton Gr

	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION			
	1/10/19	1/10/19	1/10/19	1/10/19	1/10/19	1/10/19			
Dinoflagellates	0	12000	6000	12000	0	30000			
Diatoms	1032000	282000	602000	691000	815000	3422000			
Prasinophyceae	0	0	6000	0	0	6000			
Cryptophyceae	0	0	0	0	0	0			
Euglenophyceae	0	0	0	0	0	0			
Raphidophyceae	0	0	0	0	0	0			
Coccolithophorids	12000	6000	3000	0	0	21000			
Silicoflagellates	0	0	0	0	0	0			
Cyanobacteria	0	0	0	0	0	0			
Other	18000	4000	12000	18000	0	52000			
TOTAL ABUNDANCE (cells/L)	1062000	304000	629000	721000	815000	3531000			

	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20
Dinoflagellates						
Actiniscus_pentasterias	0	0	0	0	0	0
cf_Alexandrium_sp	0	0	1	0	0	1
Amphidinium_sp	0	0	0	0	0	0
Amphisolenia_sp.	0	0	0	0	0	0
Amphisolenia_bidentata	0	0	0	0	0	0
Brachydinium_capitatum	0	0	0	0	0	0
Ceratium_candelabrum Ceratium_concilians	0	0	0	0	0	0
Ceratium_contortum	0	0	0	0	0	0
Ceratium falcatum	0	0	0	0	0	0
Ceratium_furca	2	0	0	0	0	2
 Ceratium_fusus	0	0	0	0	0	0
Ceratium_gravidum	0	0	0	0	0	0
Ceratium_incisum	0	0	0	0	0	0
Ceratium_kofoidii	0	0	0	0	0	0
Ceratium_longiorstrum	0	0	0	0	0	0
Ceratium_lineatum	0	0	0	0	0	0
Ceratium_cf_macroceros	0	0	0	0	0	0
Ceratium_cf_pentagonum Ceratium_symmetricum	0	0	0	0	0	0
Ceratium_symmetricum Ceratium tenue	0	0	0	0	0	0
Ceratium trichoceros	0	0	0	0	0	0
Ceratium_tripos	0	0	0	0	0	0
 Ceratium_vultur	0	0	0	0	0	0
Ceratium_spp.	0	0	0	0	0	0
Ceratocorys_sp.	0	0	0	0	0	0
Cladopyxis_brachiolata	0	0	0	0	0	0
Cochlodinium_sp.	0	0	0	0	0	0
Corythodinium_elegans/tesselatum	0	0	0	0	0	0
Dinophysis_acuminata Dinophysis acuta	0	0	0	0	0	0
Dinophysis_acata	0	0	0	0	0	0
Dinophysis_dens	0	0	0	0	0	0
Dinophysis fortii	0	0	0	0	0	0
Dinophysis_mitra	0	0	0	0	0	0
Dinophysis_schuettii	0	0	0	0	0	0
Dinophysis_tripos	0	0	0	0	0	0
Dissodinium_sp.	0	0	0	0	0	0
Gonyaulax_sp.	0	0	0	0	0	0
Gyrodinium_sp. Karenia_sp.	0	0	0	0	0	0
Karlodinium sp.	0	0	0	0	0	0
Gymnodinium sp	0	0	0	0	0	0
Heterocapsa_sp.	6	0	0	0	0	6
Heterocapsa_triquetra	0	0	0	0	0	0
Histioneis_sp.	0	0	0	0	0	0
Noctiluca_scintillans	2	0	0	0	0	2
Ostreopsis_sp.	0	0	0	0	0	0
Ornithoceros_cf_magnificus	0	0	0	0	0	0
Ornithoceros_cf_thumii	0	0	0	0	0	0
Ornithoceros_sp.	0	0	0	0	0	0
Oxytoxum_sp Phalachroma argus	0	0	0	0	0	0
Phalachroma rotundatum	0	0	0	0	0	0
Podolampas_bipes	0	0	0	0	0	0
Podolampas_elegans	0	0	0	0	0	0
Pronoctiluca_sp.	0	0	0	0	0	0
Prorocentrum_compressum	2	0	0	0	0	2
Prorocentrum_concarvum	0	0	0	0	0	0
Prorocentrum_dentatum	0	0	0	0	0	0
Prorocentrum_rhyathymum	0	0	0	0	0	0
Prorocentrum_micans	0	0	0	0	0	0
Prorocentrum_minimum Prorocentrum gracile	0	0	0	0	0	0 8
Prorocentrum_gracile Prorocentrum triestinum	2	0	3	0	3 0	5
Prorocentrum sp.	0	0	0	0	0	0
		0	0	0	0	2
Protoperidinium_spp.	2	0	0	0	0	Ζ.

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20
Ptychodiscus_sp.	0	0	0	0	0	0
Pyrocystis_lunula	0	0	0	0	0	0
Pyrophacus_steinii	0	0	0	0	0	0
Pyrophacus_sp.	0	0	0	0	0	0
Scrippsiella_trochoidea	0	2	1	2	0	5
Gymnodinoid_sp.	2	0	1	0	0	3
Diatoms Actinocyclus sp.	0	0	0	0	0	0
Amphora_sp.	0	0	0	0	0	0
Asterionellopsis_glacialis	0	0	0	0	0	0
Asteromphalus_sp	0	0	0	0	0	0
Asteromphalus_heptactis	0	0	0	0	0	0
Bacteriastrum_spp.	0	0	0	0	0	0
Bacillaria_sp.	0	0	0	0	0	0
Belloerochea_horologicales	0	0	0	0	0	0
Cerataulina_pelagica	0	6	0	0	0	6
Chaetoceros_<10 mm	0	0	0	0	0	0
Chaetoceros_>10 mm	0	0	3	0	0	3
Climacodium_frauenfeldianum	0	0	0	0	0	0
Climacosphenia_sp.	0	0	0	0	0	0
Cocconeis_sp.	0	0	0	0	0	0
Corethron_sp	0	0	0	0	0	0
Coscinodiscus_sp	0	0	0	0	0	0
Cyclotella_sp.	0	0	0	0	0	0
Ceratoneis_longissima/closterium	6 0	0	3	1	0	10 0
Dactyliosolen_blavyanus Detonula_pumila	0	0	0	0	0	0
Diploneis_sp	0	0	0	0	0	0
Ditylum_brightwelli	0	0	0	0	0	0
Eucampia cornuta	0	0	0	0	0	0
Eucampia_zodiacus	0	0	0	0	0	0
Entomoneis sp.	0	0	0	0	0	0
 Fragillaria_sp.	0	0	0	0	0	0
Guinardia_delicatula/Dactyliosole	0	6	1	0	0	7
Guinardia flaccida	0	0	0	0	0	0
Guinardia_striata	0	0	0	0	0	0
Helicotheca_tamesis	0	0	0	0	0	0
Hemialus_hauckii	0	0	0	0	0	0
Hemialus_membranaceus	0	0	0	0	0	0
Lauderia_annulata	0	0	0	0	0	0
Leptocylindricus_minimus/mediter						
raneus	2	9	0	0	0	11
Leptocylindrus_danicus	138	245	41	105	289	818
Licmophora_cfgracilis	0					
		0	0	0	0	0
Lithodesmium_cfundulatum	0	0	0	0	0	0
Mastogloia_sp.	0	0	0 0	0	0	0
Mastogloia_sp. Melosira_nummuloides	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea	0 0 0	0 0 0 0	0 0 0 4	0 0 0 0	0 0 0 0	0 0 0 4
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp	0 0 0 0	0 0 0 0 0	0 0 0 4 0	0 0 0 0 0	0 0 0 0 0	0 0 0 4 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp.	0 0 0 0 0	0 0 0 0 0 0	0 0 4 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 4 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 4 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 4 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp.	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 4 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 4 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 4 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp.	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 12	0 0 4 0 0 0 0 0 0 0 0 0 22	0 0 0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 21	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 56
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp. Proboscia_alata	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 12 3	0 0 4 0 0 0 0 0 0 0 0 22 1	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 21 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 5
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 3 0	0 0 4 0 0 0 0 0 0 0 0 0 22 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0	0 0 0 0 0 0 0 0 0 0 0 0 21 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizosolenia_cf_styliformis Rhizosolenia_cf_fallax	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 3 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 22 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 56 5 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizosolenia_cf_styliformis Rhizosolenia_cf_fallax Skeletonema_sp.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 22 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizosolenia_cf_styliformis Rhizosolenia_cf_fallax Skeletonema_sp. Stephanopyxis_turris	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizosolenia_cf_styliformis Rhizosolenia_cf_fallax Skeletonema_sp. Stephanopyxis_turris Suriella_sp.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizosolenia_cf_styliformis Rhizosolenia_cf_fallax Skeletonema_sp. Stephanopyxis_turris Suriella_sp. Thalassionema_frauenfeldii	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mastogloia_sp. Melosira_nummuloides Meuniera_membranacea Navicula_sp Nitzschia_sp. Nitzschia_bicapitata Odontella_sp. Odontella_sinensis Planktoniella_sol Pleurosigma/Gyrosigma_sp Pseudonitzschia_spp. Proboscia_alata Rhizosolenia_setigera Rhizosolenia_cf_styliformis Rhizosolenia_cf_fallax Skeletonema_sp. Stephanopyxis_turris Suriella_sp.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SITI	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20
Thalassiosira_spp.	4	0	0	0	0	4
Thalassiothrix/Lioloma_sp.	0	0	0	0	0	0
cfTrigonium_sp.	0	0	0	0	0	0
Unidentified_pennate_diatom	0	0	0	0	0	0
Unidentified_centric_diatom	0	0	0	0	0	0
Prasinophyceae						•
Pyramimonas_sp.	0	0	0	0	0	0
Eutreptiella_sp.	0	0	0	0	0	0
Apedinella sp.	0	0	0	0	0	0
Cryptophyceae						•
Cryptomonads	0	0	0	0	0	0
Euglenophyceae	•		•		•	
Euglenoid_sp.	0	0	0	0	0	0
Phacus_sp.	0	0	0	0	0	0
Raphidophyceae						•
Chatonella_ovata	0	0	0	0	0	0
Unidentified_raphidophyte	0	0	0	0	0	0
Coccolithophorids						
Emiliana/Gephyrocapsa	2	0	0	0	0	2
Silicoflagellates						•
Dictyocha_fibula	0	0	0	0	0	0
Dictyocha_octonaria	0	0	0	0	0	0
Ebria_tripartita	0	0	0	0	0	0
Cyanobacteria						
Trichodesmium_erythraeum	88	44	15	2	0	149
Other						
Unidentified_flagellates	2	0	2	12	3	19
Choanoflagellates	0	0	0	0	0	0
Total Abundance (cells/mL)	262	336	100	125	316	1139
Total Taxon Count	15	9	100	8	4	24

Summary of Major Phytoplankton Gr

	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION			
	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20			
Dinoflagellates	20000	2000	8000	3000	3000	36000			
Diatoms	150000	290000	75000	108000	310000	933000			
Prasinophyceae	0	0	0	0	0	0			
Cryptophyceae	0	0	0	0	0	0			
Euglenophyceae	0	0	0	0	0	0			
Raphidophyceae	0	0	0	0	0	0			
Coccolithophorids	2000	0	0	0	0	2000			
Silicoflagellates	0	0	0	0	0	0			
Cyanobacteria	88000	44000	15000	2000	0	149000			
Other	2000	0	2000	12000	3000	19000			
TOTAL ABUNDANCE (cells/L)	262000	336000	100000	125000	316000	1139000			

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	7/4/20	7/4/20	7/4/20	7/4/20	7/4/20	7/4/20
Dinoflagellates		I				
Actiniscus_pentasterias	0	0	0	0	0	0
cf_Alexandrium_sp	1	1	0	0	0	2
Amphidinium_sp	0	0	0	0	0	0
Amphisolenia_sp.	0	0	0	0	0	0
Amphisolenia_bidentata	0	0	0	0	0	0
Brachydinium_capitatum	0	0	0	0	0	0
Ceratium_candelabrum	0	0	0	0	0	0
Ceratium_concilians	0	0	0	0	0	0
Ceratium_contortum	0	0	0	0	0	0
Ceratium_falcatum Ceratium furca	0	0	0	0	0	0
Ceratium fusus	0	0	0	0	0	0
Ceratium_gravidum	0	0	0	0	0	0
Ceratium incisum	0	0	0	0	0	0
 Ceratium kofoidii	0	0	0	0	0	0
Ceratium_longiorstrum	0	0	0	0	0	0
Ceratium_lineatum	0	0	0	0	0	0
Ceratium_cf_macroceros	0	0	0	0	0	0
Ceratium_cf_pentagonum	0	0	0	0	0	0
Ceratium_symmetricum	0	0	0	0	0	0
Ceratium_tenue	0	0	0	0	0	0
Ceratium_trichoceros	0	0	0	0	0	0
Ceratium_tripos	0	0	0	0	0	0
Ceratium_vultur	0	0	0	0	0	0
Ceratium_spp.	0	0	0	0	0	0
Ceratocorys_sp.	0	0	0	0	0	0
Cladopyxis_brachiolata Cochlodinium sp.	0	0	0	0	0	0
Corythodinium_elegans/tesselatum	0	0	0	1	0	1
Dinophysis_acuminata	0	0	0	0	0	0
Dinophysis_acuta	0	0	0	0	0	0
Dinophysis caudata	0	0	0	0	0	0
Dinophysis_dens	0	0	0	0	0	0
Dinophysis_fortii	0	0	0	0	0	0
Dinophysis_mitra	0	0	0	0	0	0
Dinophysis_schuettii	0	0	0	0	0	0
Dinophysis_tripos	0	0	0	0	0	0
Dissodinium_sp.	0	0	0	0	0	0
Gonyaulax_sp.	0	0	0	0	0	0
Gyrodinium_sp.	0	0	0	0	0	0
Karenia_sp.	0	0	0	0	0	0
Karlodinium_sp. Gymnodinium sp	0	0	0	0 14	0	26
Heterocapsa sp.	0	8	0	14	2	11
Heterocapsa triquetra	0	0	0	0	0	0
Histioneis_sp.	0	0	0	0	0	0
Noctiluca_scintillans	0	0	0	0	0	0
Ostreopsis_sp.	0	0	0	0	0	0
Ornithoceros_cf_magnificus	0	0	0	0	0	0
Ornithoceros_cf_thumii	0	0	0	0	0	0
Ornithoceros_sp.	0	0	0	0	0	0
Oxytoxum_sp	0	0	0	0	0	0
Phalachroma_argus	0	0	0	0	0	0
Phalachroma_rotundatum	0	0	0	0	0	0
Podolampas_bipes	0	0	0	0	0	0
Podolampas_elegans	0	0	0	0	0	0
Pronoctiluca_sp. Prorocentrum_compressum	0	0	0	0	0	0
Prorocentrum_compressum Prorocentrum_concarvum	0	0	0	0	0	0
Prorocentrum_concarvum Prorocentrum_dentatum	0	1	1	2	0	4
Prorocentrum_rhyathymum	0	1	0	0	1	2
Prorocentrum micans	1	8	0	1	1	11
Prorocentrum minimum	0	0	1	0	0	1
Prorocentrum_gracile	0	0	1	0	0	1
Prorocentrum_triestinum	0	0	0	0	0	0
Prorocentrum_sp.	0	0	0	0	0	0
Protoperidinium_spp.	0	0	0	0	0	0
Pseliodinium_sp.	0	0	0	0	0	0

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	7/4/20	7/4/20	7/4/20	7/4/20	7/4/20	7/4/20
Ptychodiscus_sp.	0	0	0	0	0	0
Pyrocystis_lunula	0	0	0	0	0	0
Pyrophacus_steinii	0	0	0	0	0	0
Pyrophacus_sp.	0	0	0	0	0	0
Scrippsiella_trochoidea	0	2	0	4	0	6
Gymnodinoid_sp.	0	0	0	0	0	0
Diatoms Actinocyclus_sp.	0	0	0	0	0	0
Amphora_sp.	0	0	0	0	0	0
Asterionellopsis_glacialis	0	0	0	0	0	0
Asteromphalus_sp	0	0	0	0	0	0
Asteromphalus_heptactis	0	0	0	0	0	0
Bacteriastrum_spp.	0	0	0	0	0	0
Bacillaria_sp.	0	0	0	0	0	0
Belloerochea_horologicales	0	0	0	0	0	0
Cerataulina_pelagica	0	0	0	0	0	0
Chaetoceros_<10 mm	0	0	0	0	0	0
Chaetoceros_>10 mm	0	0	2	0	2	4
Climacodium_frauenfeldianum	0	0	0	0	0	0
Climacosphenia_sp.	0	1	0	0	0	1
Cocconeis_sp.	0	0	0	0	1	1
Corethron_sp	0	0	0	0	0	0
Coscinodiscus_sp	0	0	0	0	0	0
Cyclotella_sp. Ceratoneis_longissima/closterium	0	5	0	0	0	22
Dactyliosolen_blavyanus	0	0	3	6 0	3	0
Detonula_pumila	0	0	0	0	0	0
Diploneis_sp	0	0	0	0	0	0
Ditylum_brightwelli	0	0	0	0	0	0
Eucampia_cornuta	0	0	0	0	0	0
Eucampia_zodiacus	0	0	0	0	0	0
Entomoneis_sp.	0	0	0	0	0	0
Fragillaria_sp.	0	0	0	0	0	0
Guinardia_delicatula/Dactyliosole	0	0	0	0	0	0
Guinardia_flaccida	0	0	0	0	0	0
Guinardia_striata	0	0	1	0	0	1
Helicotheca_tamesis	0	0	0	0	0	0
Hemialus_hauckii	0	0	0	0	0	0
Hemialus_membranaceus	0	0	0	0	0	0
Lauderia_annulata	0	0	0	0	0	0
Leptocylindricus_minimus/mediter						
raneus	0	0	0	0	0	0
Leptocylindrus_danicus	0	0	0	0	0	0
Licmophora_cfgracilis	0	1	0	0	0	1
Lithodesmium_cfundulatum Mastogloia sp.	0	0	0	0	0	0
Melosira_nummuloides	0	0	0	0	0	0
Meuniera membranacea	0	0	0	0	0	0
Navicula_sp	0	0	0	0	2	2
Nitzschia_sp.	0	0	0	0	0	0
Nitzschia_bicapitata	0	0	0	0	0	0
Odontella_sp.	0	0	0	0	0	0
Odontella_sinensis	0	0	0	0	0	0
Planktoniella_sol	0	0	0	0	0	0
Pleurosigma/Gyrosigma_sp	0	0	0	0	0	0
Pseudonitzschia_spp.	0	0	2	6	1	9
Proboscia_alata	0	0	0	0	0	0
Rhizosolenia_setigera	0	0	0	0	0	0
Rhizololenia_cf_styliformis	0	0	0	0	0	0
Rhizosolenia_cf_imbricata	0	0	0	0	0	0
Rhizosolenia_cf_fallax	0	0	0	0	0	0
Skeletonema_sp.	2	2	0	0	1	5
Stephanopyxis_turris	0	0	0	0	0	0
Suriella_sp.	0	0	0	0	0	0
	0	0	0	0	0	0
Thalassionema_frauenfeldii Thalassiosira_cf_partheneia	0	0	0	0	0	0
Thalassionema_frauenjelali Thalassiosira_cf_partheneia Thalassiosira_cf_punctigera	0	0	0	0	0	0

SITE	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
Date	7/4/20	7/4/20	7/4/20	7/4/20	7/4/20	7/4/20
Thalassiosira_spp.	0	0	0	0	0	0
Thalassiothrix/Lioloma_sp.	0	0	0	0	0	0
cfTrigonium_sp.	0	0	0	0	0	0
Unidentified_pennate_diatom	0	1	0	0	0	1
Unidentified_centric_diatom	0	0	0	0	0	0
Prasinophyceae						
Pyramimonas_sp.	1	1	0	0	1	3
Eutreptiella_sp.	0	2	0	0	1	3
Apedinella sp.	2	5	0	0	1	8
Cryptophyceae						
Cryptomonads	5	4	2	7	5	23
Euglenophyceae		•			•	
Euglenoid_sp.	0	0	0	0	0	0
Phacus_sp.	0	0	0	0	0	0
Raphidophyceae						
Chatonella_ovata	0	0	0	0	0	0
Unidentified_raphidophyte	0	0	0	0	0	0
Coccolithophorids						0
Emiliana/Gephyrocapsa	19	25	8	15	19	86
Silicoflagellates						
Dictyocha_fibula	0	0	0	0	0	0
Dictyocha_octonaria	0	0	0	0	1	1
Ebria_tripartita	0	0	0	0	0	0
Cyanobacteria						
Trichodesmium_erythraeum	41	0	35	142	0	218
Other						
Unidentified_flagellates	0	0	0	0	0	0
Choanoflagellates	0	0	0	0	0	0
Total Abundance (cells/mL)	80	74	57	199	44	454
Total Taxon Count	10	17	11	11	16	65

Summary of Major Phytoplankton Gr

	TURA20	MBWQ20	MBWQ40	HAY30	QUON20	MERIMBULA BAY REGION
	7/4/20	7/4/20	7/4/20	7/4/20	7/4/20	7/4/20
Dinoflagellates	5000	27000	4000	23000	6000	65000
Diatoms	7000	10000	8000	12000	10000	47000
Prasinophyceae	3000	8000	0	0	3000	14000
Cryptophyceae	5000	4000	2000	7000	5000	23000
Euglenophyceae	0	0	0	0	0	0
Raphidophyceae	0	0	0	0	0	0
Coccolithophorids	19000	25000	8000	15000	19000	86000
Silicoflagellates	0	0	0	0	1000	1000
Cyanobacteria	41000	0	35000	142000	0	218000
Other	0	0	0	0	0	0
TOTAL ABUNDANCE (cells/L)	80000	74000	57000	199000	44000	454000

APPENDIX H

ESTUARIES

the glassy perchlet (*Ambassis jacksoniensis*) and luderick (*Girella tricuspidata*). Other economically important fish species caught were silver trevally (*Pseudocaranx dentex*) and Monacanthids, namely the Chinaman leatherjacket (*Nelusetta ayraudi*) and six-spined leatherjacket (*Meuschenia freycinetti*).

Table 4.18:	Total number of fish caught by each species, at the entrance of
	Pambula Lake during February and July 1998.

Family	Number caught
Species	
Engraulididae	1
Engraulis australis*	1
Syngnathidae	2
Stigmatophora argus	3
Stigmatophora nigra	7
Urocampus carinirostiis	5
Vanacampus poecilolaemus	60
Ambassidae	205
Ambassis jacksoniensis	295
Teraponidae	2
Pelates quadrilineatus	3
Pomatomidae Pomatomus saltator*	2
	Σ
Carangidae Pseudocaranx dentex*	65
Lethrinidae	05
Lethrinidae species	2
Mullidae	2
Parupeneus signatus	2
Girellidae	_
Girella tricuspidata*	376
Enoplosidae	
Enoplosus armatus	17
Labridae	
Achoerodus viridis*	1
Clinidae	
Cristiceps australis	2
Gobiidae	
Afurcagobius tamarensis	5
Gobiopterus semivestitus	25
Siganidae	
Siganus nebulosus	52
Monacanthidae	
Brachaluteres jacksonianus	1
Meuschenia freycineti*	46
Meuschenia trachylepis*	2
Nelusetta ayraudi*	48
Diodontidae	
Dicotylichthys punctulatus	1
TOTAL (nos. of species = 23)	1021

Table 4.39:Total number of fish caught by each species, at the entrance
location, central location and upper location within Merimbula
Lake during pooled across sampling events from July 1998 to July
2000. (* indicates species of commercial and/or recreational
importance.)

	NUMBER CAUGHT						
Family	Entrance	Central	Upper	Total			
Species							
Clupeidae							
Hyperlophus vittatus*	0	0	1	1			
Spratellloides robustus	9	0	0	9			
Hemiramphidae							
Hyporhamphus australis*	0	0	10	10			
Atherinidae							
Atherinasoma microstoma	175	592	669	1436			
Atherinasoma elongata	90	1	1	92			
Pseudomuglidae							
Psuedomugil signifer	0	0	5	5			
Syngnathidae							
Syngnathoides biaculeatus	0	7	5	12			
Vanacampus poecilolaemus	36	61	29	126			
Urocampus carinirostris	39	46	15	100			
Vanacampus phillipi	16	38	7	61			
Stigmatophora nigra	21	20	0	41			
Stigmatophora argus	38	67	58	163			
Scorpaenidae							
Centropogon australis	12	15	4	31			
Ambassidae	12	10	•	51			
Ambassis jacksoniensis	237	733	98	1068			
Terapontidae	207	100	20	1000			
Pelates quadrilineatus	18	30	4	52			
Apongonidae	10	50	·	52			
Apogon limenus	0	1	0	1			
Siphamia cephalotes	38	4	37	79			
Pomatomidae	50	,	51	17			
Pomatomus saltator*	1	0	9	10			
Carangidae	1	0		10			
Pseudocaranx dentex*	69	0	0	69			
Sparidae	09	0	0	0)			
Acanthopagrus australis*	5	12	0	17			
Chrysophrys auratus*	12	6	0	18			
Rhabdosargus sarba *	4	6	0	10			
Gerreidae	+	0	0	10			
Gerres subfasciatus*	0	31	45	76			
Mullidae	0	51	45	70			
Upeneuss species	1	0	0	1			
Upeneichthys species	1 3	0	0	13			
Parupeneus signatus*	5 4	0	0	5 4			
Girellidae	4	U	0	4			
	481	67	20	516			
Girella tricuspidata*	481	67	28	546			
Scorpididae	0	5	Ο	E			
Scorpis lineolatus*	0	5	0	5			
Enoplosidae	1	0	1	2			
Enoplosus armatus	1	0	1	2			
Mugilidae	0	00	2	0.4			
Myxus elongatus*	0	82	2	84			
Mugil cephalus*	0	11	21	32			

	NUMBER CAUGHT							
Family	Entrance	Central	Upper	Total				
Species								
Labridae								
Achoerodus viridis*	26	52	0	78				
Odacidae								
Haletta semifasciata	1	1	79	81				
Neodax balteatus	1	13	20	34				
Blennidae								
Petroscirtes lupus	5	10	1	16				
Clinidae								
Heteroclinus perspicillatus	0	3	3	6				
Cristiceps australis	0	3	3	6				
Gobiidae – subfamily Eleotridinae								
Philypnodon grandiceps	9	2	19	30				
Gobiidae								
Bathygobius kreffti	0	9	1	10				
Favonigobius lateralis	123	245	1	369				
Favonigobius exsquisites	0	30	0	30				
Amoya bifrenatus	4	14	3	21				
Amoya frenatus	30	8	23	61				
Afurcagobius tamarensis	26	40	1	67				
Pseudogobius olorum	7	0	0	7				
Redigobius macrostoma	3	2	35	40				
Gobiopterus semivestitus	4	2	0	6				
Siganidae								
Siganus nebulosus	18	2	0	19				
Bothidae								
Pseudorhombus arsius*	0	2	0	2				
Monacanthidae								
Acanthaluteres spilomelanurus	12	7	77	96				
Scobinichthys granulatus*	4	4	2	10				
Penicipelta vittiger*	2	0	0	2				
Monacanthus chinensis*	7	13	4	24				
Brachaluteres jacksoniensis	8	2	0	10				
Meuschenia freycineti*	64	16	26	106				
Meuschenia trachyylepis*	0	4	5	9				
Meuschenia species	2	20	8	30				
Nelusetta ayraudi	1	3	1	4				
Tetraodontidae	1	5	1					
Tetractenos hamiltoni	1	21	17	39				
Tetractenos glaber	10	30	6	46				
Diodontidae	10	50	0	10				
Dicotylichthys punctulatus	1	1	6	8				
Total individuals	1649	2393	1388	5430				
Total species	46	49	42	61				

Table 4.39 Continued

APPENDIX I

THREATENED SPECIES

Kingdom	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW status	Comm. status	Records
Animalia	Amphibia	Myobatrachidae	3131	Crinia parinsignifera		Eastern Sign-bearing Froglet	Ρ		1
Animalia	Amphibia	Myobatrachidae	3134	Crinia signifera		Common Eastern Froglet	Р		10
Animalia	Amphibia	Myobatrachidae	3042	Heleioporus australiacus		Giant Burrowing Frog	V,P	V	1
Animalia	Amphibia	Myobatrachidae	3058	Limnodynastes dumerilii		Eastern Banjo Frog	Р		2
Animalia	Amphibia	Myobatrachidae	3061	Limnodynastes peronii		Brown-striped Frog	Р		11
Animalia	Amphibia	Myobatrachidae	3103	Paracrinia haswelli		Haswell's Froglet	Р		1
Animalia	Amphibia	Myobatrachidae	3117	Pseudophryne bibronii		Bibron's Toadlet	Р		2
Animalia	Amphibia	Myobatrachidae	3329	Uperoleia sp.			Р		1
Animalia	Amphibia	Myobatrachidae	3302	Uperoleia tyleri		Tyler's Toadlet	Р		5
Animalia	Amphibia	Hylidae	3166	Litoria aurea		Green and Golden Bell Frog	E1,P	V	5
Animalia	Amphibia	Hylidae	3180	Litoria dentata		Bleating Tree Frog	Р		1
Animalia	Amphibia	Hylidae	3182	Litoria ewingii		Brown Tree Frog	Р		8
Animalia	Amphibia	Hylidae	3183	Litoria fallax		Eastern Dwarf Tree Frog	Р		1
Animalia	Amphibia	Hylidae	3190	Litoria jervisiensis		Jervis Bay Tree Frog	Р		2
Animalia	Amphibia	Hylidae	3204	Litoria peronii		Peron's Tree Frog	Р		14
Animalia	Amphibia	Hylidae	3215	Litoria verreauxii		Verreaux's Frog	Р		6
Animalia	Reptilia	Cheloniidae	2008	Eretmochelys imbricata		Hawksbill Turtle	Р	V	1
Animalia	Reptilia	Scincidae	2557	Eulamprus quoyii		Eastern Water-skink	Р		1
Animalia	Reptilia	Scincidae	2561	Eulamprus tympanum		Southern Water-skink	Р		1
Animalia	Reptilia	Scincidae	2450	Lampropholis delicata		Dark-flecked Garden	P		3
Animalia	Reptilia	Scincidae	2450	Lampropholis guichenoti		Sunskink Pale-flecked Garden	P		2
						Sunskink			
Animalia	Reptilia	Scincidae	T117	Lampropholis sp.		unidentified grass skink	Р		1
Animalia	Reptilia	Scincidae	2452	Saproscincus mustelinus		Weasel Skink	Р		1
Animalia	Reptilia	Scincidae	2580	Tiliqua scincoides		Eastern Blue-tongue	Р		2
Animalia	Reptilia	Agamidae	2194	Amphibolurus muricatus		Jacky Lizard	Р		4
Animalia	Reptilia	Agamidae	2182	Rankinia diemensis		Mountain Dragon	Р		5
Animalia	Reptilia	Varanidae	2283	Varanus varius		Lace Monitor	Р		4
Animalia	Reptilia	Pythonidae	2625	Morelia spilota		Carpet & Diamond Pythons	Р		2
Animalia	Reptilia	Pythonidae	5096	Morelia spilota spilota		Diamond Python	Р		3
Animalia	Reptilia	Elapidae	2640	Acanthophis antarcticus		Common Death Adder	Р		6
Animalia	Reptilia	Elapidae	2665	Drysdalia coronoides		White-lipped Snake	Р		1
Animalia	Reptilia	Elapidae	2805	Drysdalia rhodogaster		Mustard-bellied Snake	Р		2
Animalia	Reptilia	Elapidae	2693	Pseudechis porphyriacus		Red-bellied Black Snake	Р		4
Animalia	Reptilia	Elapidae	2699	Pseudonaja textilis		Eastern Brown Snake	Р		1
Animalia	Aves	Casuariidae	0001	Dromaius novaehollandiae		Emu	Р		2
Animalia	Aves	Phasianidae	0011	Coturnix ypsilophora		Brown Quail	Р		2
Animalia	Aves	Anatidae	0210	Anas castanea		Chestnut Teal	P		18
Animalia	Aves	Anatidae	0210	Anas gracilis		Grey Teal	P		13
Animalia	Aves	Anatidae	0211	Anas rhynchotis		Australasian Shoveler	P		13
Animalia	Aves	Anatidae	0208	Anas superciliosa		Pacific Black Duck	P		17
	Aves		0208			Hardhead	P		2
Animalia Animalia	-	Anatidae		Aythya australis Riziwa lobata			P		2
Animalia Animalia	Aves	Anatidae	0217	Biziura lobata Chapopatta jubata		Musk Duck			
	Aves	Anatidae	0202	Chenonetta jubata		Australian Wood Duck	P		21
Animalia	Aves	Anatidae	0203	Cygnus atratus		Black Swan	P		22
Animalia	Aves	Podicipedidae	0062	Poliocephalus poliocephalus		Hoary-headed Grebe	Р		2
Animalia	Aves	Podicipedidae	0061	Tachybaptus novaehollandiae		Australasian Grebe	Ρ		8
Animalia	Aves	Columbidae	0028	Columba leucomela		White-headed Pigeon	Р		1
Animalia	Aves	Columbidae	9931	Geopelia striata		Peaceful Dove	Р		21
Animalia	Aves	Columbidae	0044	Leucosarcia melanoleuca		Wonga Pigeon	Р		8
Animalia	Aves	Columbidae	0029	Macropygia amboinensis		Brown Cuckoo-Dove	Р		1
Animalia	Aves	Columbidae	0043	Ocyphaps lophotes		Crested Pigeon	Р		2
Animalia		Columbidae	0034	Phaps chalcoptera		Common Bronzewing	Р		26
Animalia	Aves		1	Phaps elegans		Brush Bronzewing	Р		20
	Aves	Columbidae	0035			0			
Animalia		Columbidae Columbidae	0035 0989	Streptopelia chinensis	*	Spotted Turtle-Dove			4
Animalia Animalia	Aves	Columbidae			*		P		
Animalia Animalia Animalia Animalia	Aves Aves Aves	Columbidae Podargidae	0989 0313	Streptopelia chinensis Podargus strigoides	*	Tawny Frogmouth	P		4
Animalia Animalia Animalia Animalia Animalia	Aves Aves Aves Aves	Columbidae Podargidae Caprimulgidae	0989 0313 0330	Streptopelia chinensis Podargus strigoides Eurostopodus mystacalis	*	Tawny Frogmouth White-throated Nightjar	Р		4 3 2
Animalia Animalia Animalia Animalia Animalia Animalia	Aves Aves Aves Aves Aves	Columbidae Podargidae Caprimulgidae Aegothelidae	0989 0313 0330 0317	Streptopelia chinensis Podargus strigoides Eurostopodus mystacalis Aegotheles cristatus	*	Tawny Frogmouth White-throated Nightjar Australian Owlet-nightjar	P P	C I K	4 3 2 4
Animalia Animalia Animalia Animalia Animalia	Aves Aves Aves Aves	Columbidae Podargidae Caprimulgidae	0989 0313 0330	Streptopelia chinensis Podargus strigoides Eurostopodus mystacalis	*	Tawny Frogmouth White-throated Nightjar	Р	C,J,K V	4 3 2

Kingdom	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW status	Comm. status	Records
Animalia	Aves	Procellariidae	0069	Ardenna pacificus		Wedge-tailed Shearwater	Р	J	2
Animalia	Aves	Procellariidae	0071	Ardenna tenuirostris		Short-tailed Shearwater	Р	J,K	5
Animalia	Aves	Procellariidae	0074	Fulmarus glacialoides		Southern Fulmar	Р		1
Animalia	Aves	Procellariidae	0955	Pterodroma nigripennis		Black-winged Petrel	V,P		1
Animalia	Aves	Procellariidae	0068	Puffinus gavia		Fluttering Shearwater	Р		1
Animalia	Aves	Spheniscidae	0005	Eudyptula minor		Little Penguin	Р		13
Animalia	Aves	Sulidae	0104	Morus serrator		Australasian Gannet	Р		4
Animalia	Aves	Anhingidae	8731	Anhinga novaehollandiae		Australasian Darter	Р		1
Animalia	Aves	Phalacrocoracidae	0100	Microcarbo melanoleucos		Little Pied Cormorant	Р		22
Animalia	Aves	Phalacrocoracidae	0096	Phalacrocorax carbo		Great Cormorant	Р		17
Animalia	Aves	Phalacrocoracidae	0098	Phalacrocorax fuscescens		Black-faced Cormorant	Р		1
Animalia	Aves	Phalacrocoracidae	0097	Phalacrocorax sulcirostris		Little Black Cormorant	Р		11
Animalia	Aves	Phalacrocoracidae	0099	Phalacrocorax varius		Pied Cormorant	Р		5
Animalia	Aves	Pelecanidae	0106	Pelecanus conspicillatus		Australian Pelican	Р		16
Animalia	Aves	Ardeidae	0977	Ardea ibis		Cattle Egret	Р	C,J	1
Animalia	Aves	Ardeidae	0186	Ardea intermedia		Intermediate Egret	Р	1	1
Animalia	Aves	Ardeidae	8712	Ardea modesta		Eastern Great Egret	Р	1	9
Animalia	Aves	Ardeidae	0189	Ardea pacifica		White-necked Heron	P		2
Animalia	Aves	Ardeidae	0197	Botaurus poiciloptilus		Australasian Bittern	E1,P	E	1
Animalia	Aves	Ardeidae	0193	Butorides striatus		Striated Heron	P		1
Animalia		Ardeidae	0195				P		2
	Aves		0185	Egretta garzetta		Little Egret White-faced Heron	P		2
Animalia	Aves	Ardeidae		Egretta novaehollandiae				6	
Animalia	Aves	Ardeidae	0191	Egretta sacra		Eastern Reef Egret	P	С	2
Animalia	Aves	Ardeidae	0192	Nycticorax caledonicus		Nankeen Night Heron	Р		2
Animalia	Aves	Threskiornithidae	0182	Platalea flavipes		Yellow-billed Spoonbill	Р		1
Animalia	Aves	Threskiornithidae	0181	Platalea regia		Royal Spoonbill	Р		3
Animalia	Aves	Threskiornithidae	0178	Plegadis falcinellus		Glossy Ibis	Р	С	1
Animalia	Aves	Threskiornithidae	0179	Threskiornis molucca		Australian White Ibis	Р		15
Animalia	Aves	Threskiornithidae	0180	Threskiornis spinicollis		Straw-necked Ibis	Р		3
Animalia	Aves	Accipitridae	0221	Accipiter fasciatus		Brown Goshawk	Р		2
Animalia	Aves	Accipitridae	0220	Accipiter novaehollandiae		Grey Goshawk	Р		2
Animalia	Aves	Accipitridae	0224	Aquila audax		Wedge-tailed Eagle	Р		2
Animalia	Aves	Accipitridae	0219	Circus approximans		Swamp Harrier	Р		3
Animalia	Aves	Accipitridae	0232	Elanus axillaris		Black-shouldered Kite	Р		6
Animalia	Aves	Accipitridae	0226	Haliaeetus leucogaster		White-bellied Sea-Eagle	V,P	С	27
Animalia	Aves	Accipitridae	0228	Haliastur sphenurus		Whistling Kite	Р		19
Animalia	Aves	Accipitridae	0225	Hieraaetus morphnoides		Little Eagle	V,P		2
Animalia	Aves	Accipitridae	0230	^^Lophoictinia isura		Square-tailed Kite	V,P,3		3
Animalia	Aves	Accipitridae	8739	^^Pandion cristatus		Eastern Osprey	V,P,3		1
Animalia	Aves	Falconidae	0239	Falco berigora		Brown Falcon	P		4
Animalia	Aves	Falconidae	0235	Falco longipennis		Australian Hobby	P		1
Animalia	Aves	Falconidae	0235	Falco peregrinus		Peregrine Falcon	P		2
Animalia	Aves	Falconidae	0237	Falco subniger		Black Falcon	V,P		1
				-					
Animalia	Aves	Rallidae	0059	Fulica atra		Eurasian Coot	P		4
Animalia	Aves	Rallidae	0056	Gallinula tenebrosa		Dusky Moorhen	Р		4
Animalia	Aves	Rallidae	0046	Gallirallus philippensis		Buff-banded Rail	P		5
Animalia	Aves	Rallidae	0045	Lewinia pectoralis		Lewin's Rail	Р		2
Animalia	Aves	Rallidae	0058	Porphyrio porphyrio		Purple Swamphen	Р		6
Animalia	Aves	Rallidae	0049	Porzana fluminea		Australian Spotted Crake	Р		2
Animalia	Aves	Rallidae	0050	Porzana pusilla		Baillon's Crake	Р		4
Animalia	Aves	Haematopodidae	0131	Haematopus fuliginosus		Sooty Oystercatcher	V <i>,</i> P		8
Animalia	Aves	Haematopodidae	0130	Haematopus longirostris		Pied Oystercatcher	E1,P		54
Animalia	Aves	Charadriidae	0140	Charadrius bicinctus		Double-banded Plover	Р		2
Animalia	Aves	Charadriidae	0143	Charadrius ruficapillus		Red-capped Plover	Р		3
Animalia	Aves	Charadriidae	0144	Elseyornis melanops		Black-fronted Dotterel	Р		14
Animalia	Aves	Charadriidae	0132	Erythrogonys cinctus		Red-kneed Dotterel	Р		1
Animalia	Aves	Charadriidae	0138	Thinornis rubricollis		Hooded Plover	E4A,P	V	7
Animalia	Aves	Charadriidae	0133	Vanellus miles		Masked Lapwing	P		36
Animalia	Aves	Scolopacidae	0157	Actitis hypoleucos		Common Sandpiper	P	C,J,K	1
Animalia	Aves	Scolopacidae	0166	Calidris alba		Sanderling	V,P	C,J,K	1
						-			
Animalia	Aves	Scolopacidae	0164	Calidris canutus		Red Knot	Р	E,C,J,K	2

	ſ	2017 10:50 PM	Species	Calantific Norma	Fundia	Common Name	NSW	Comm.	Records
Kingdom	Class	Family	Code	Scientific Name	Exotic	Common Name	status	status	
Animalia	Aves	Scolopacidae	0168	Gallinago hardwickii		Latham's Snipe	Р	C,J,K	10
Animalia	Aves	Scolopacidae	0153	Limosa lapponica		Bar-tailed Godwit	Р	C,J,K	4
Animalia	Aves	Scolopacidae	0149	Numenius madagascariensis		Eastern Curlew	Ρ	CE,C,J,K	7
Animalia	Aves	Scolopacidae	0150	Numenius phaeopus		Whimbrel	Р	C,J,K	3
Animalia	Aves	Scolopacidae	0155	Tringa brevipes		Grey-tailed Tattler	Р	C,J,K	2
Animalia	Aves	Stercorcariidae	0128	Stercorarius parasiticus		Arctic Jaeger	Р	J,K	1
Animalia	Aves	Laridae	0125	Chroicocephalus novaehollandiae		Silver Gull	Ρ		40
Animalia	Aves	Laridae	0112	Hydroprogne caspia		Caspian Tern	Р	C,J	2
Animalia	Aves	Laridae	0126	Larus pacificus		Pacific Gull	Р		1
Animalia	Aves	Laridae	0115	Thalasseus bergii		Crested Tern	Р		25
Animalia	Aves	Cacatuidae	0269	Cacatua galerita		Sulphur-crested Cockatoo	Р		9
Animalia	Aves	Cacatuidae	0268	^^Callocephalon fimbriatum		Gang-gang Cockatoo	V,P,3		19
Animalia	Aves	Cacatuidae	0267	Calyptorhynchus funereus		Yellow-tailed Black- Cockatoo	Р		23
Animalia	Aves	Cacatuidae	0265	^Calyptorhynchus lathami		Glossy Black-Cockatoo	V,P,2		11
Animalia	Aves	Cacatuidae	0273	Eolophus roseicapillus		Galah	Р		16
Animalia	Aves	Psittacidae	0281	Alisterus scapularis		Australian King-Parrot	P		13
Animalia	Aves	Psittacidae	0258	Glossopsitta concinna		Musk Lorikeet	P		15
Animalia	Aves	Psittacidae	0260	Glossopsitta pusilla		Little Lorikeet	V,P		15
Animalia	Aves	Psittacidae	0309	^^Lathamus discolor		Swift Parrot	E1,P,3	CE	14
Animalia	Aves	Psittacidae	8913	^^Pezoporus wallicus wallicus		Eastern Ground Parrot	V,P,3		1
Animalia	Aves	Psittacidae	0282	Platycercus elegans		Crimson Rosella	Р		28
Animalia	Aves	Psittacidae	0282	Platycercus eximius		Eastern Rosella	P		18
Animalia	Aves	Psittacidae	0295	Psephotus haematonotus		Red-rumped Parrot	P		10
Animalia	Aves	Psittacidae	9947	Trichoglossus haematodus		Rainbow Lorikeet	Р		38
Animalia	Aves	Cuculidae	0338	Cacomantis flabelliformis		Fan-tailed Cuckoo	Р		19
Animalia	Aves	Cuculidae	0337	Cacomantis pallidus		Pallid Cuckoo	P		15
Animalia	Aves	Cuculidae	0339	Cacomantis variolosus		Brush Cuckoo	P		1
Animalia	Aves	Cuculidae	0342	Chalcites basalis		Horsfield's Bronze-Cuckoo	Р		8
Animalia	Aves	Cuculidae	0343	Chalcites lucidus		Shining Bronze-Cuckoo	Р		12
Animalia	Aves	Cuculidae	0347	Eudynamys orientalis		Eastern Koel	Р		1
Animalia	Aves	Strigidae	0246	^^Ninox connivens		Barking Owl	V,P,3		1
Animalia	Aves	Strigidae	9922	Ninox novaeseelandiae		Southern Boobook	P		6
Animalia	Aves	Strigidae	0248	^^Ninox strenua		Powerful Owl	V,P,3		9
Animalia	Aves	Tytonidae	0250	^^Tyto novaehollandiae		Masked Owl	V,P,3		7
Animalia	Aves	Tytonidae	9924	^^Tyto tenebricosa		Sooty Owl	V,P,3		3
Animalia	Aves	Alcedinidae	0319	Ceyx azureus		Azure Kingfisher	Р		2
Animalia	Aves	Alcedinidae	0322	Dacelo novaeguineae		Laughing Kookaburra	Р		29
Animalia	Aves	Alcedinidae	0326	Todiramphus sanctus		Sacred Kingfisher	Р		6
Animalia	Aves	Coraciidae	0318	Eurystomus orientalis		Dollarbird	Р		1
Animalia	Aves	Menuridae	0350	Menura novaehollandiae		Superb Lyrebird	Р		12
Animalia	Aves	Climacteridae	0558	Cormobates leucophaea		White-throated Treecreeper	Р		24
Animalia	Aves	Ptilonorhynchidae	0679	Ptilonorhynchus violaceus		Satin Bowerbird	Р		5
Animalia	Aves	Maluridae	0529	Malurus cyaneus		Superb Fairy-wren	Р		132
Animalia	Aves	Maluridae	0536	Malurus lamberti		Variegated Fairy-wren	Р		4
Animalia	Aves	Maluridae	0526	Stipiturus malachurus		Southern Emu-wren	Р		4
Animalia	Aves	Dasyomithidae	0506	Pycnoptilus floccosus		Pilotbird	Р		1
Animalia	Aves	Acanthizidae	0486	Acanthiza chrysorrhoa		Yellow-rumped Thornbill	Р		26
Animalia	Aves	Acanthizidae	0470	Acanthiza lineata		Striated Thornbill	Р		42
Animalia	Aves	Acanthizidae	0471	Acanthiza nana		Yellow Thornbill	Р		3
Animalia	Aves	Acanthizidae	0475	Acanthiza pusilla		Brown Thornbill	Р		80
Animalia	Aves	Acanthizidae	0453	Gerygone olivacea		White-throated Gerygone	Р		3
Animalia	Aves	Acanthizidae	0488	Sericornis frontalis		White-browed Scrubwren	Р		66
Animalia	Aves	Acanthizidae	0494	Sericornis magnirostra		Large-billed Scrubwren	Р		2
Animalia	Aves	Pardalotidae	0565	Pardalotus punctatus		Spotted Pardalote	Р		31
	Aves	Pardalotidae	0976	Pardalotus striatus		Striated Pardalote	Р		4

Kingdom	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW status	Comm. status	Records
Animalia	Aves	Meliphagidae	0591	Acanthorhynchus tenuirostris		Eastern Spinebill	Р		39
Animalia	Aves	Meliphagidae	0638	Anthochaera carunculata		Red Wattlebird	Р		39
Animalia	Aves	Meliphagidae	0710	Anthochaera chrysoptera		Little Wattlebird	Р		44
Animalia	Aves	Meliphagidae	0603	Anthochaera phrygia		Regent Honeyeater	E4A,P	CE	1
Animalia	Aves	Meliphagidae	0614	Caligavis chrysops		Yellow-faced Honeyeater	Р		28
Animalia	Aves	Meliphagidae	0448	Epthianura albifrons		White-fronted Chat	V,P		21
Animalia	Aves	Meliphagidae	0593	Gliciphila melanops		Tawny-crowned Honeyeater	Р		2
Animalia	Aves	Meliphagidae	0619	Lichenostomus melanops		Yellow-tufted Honeyeater	Р		4
Animalia	Aves	Meliphagidae	0634	Manorina melanocephala		Noisy Miner	Р		1
Animalia	Aves	Meliphagidae	0633	Manorina melanophrys		Bell Miner	Р		81
Animalia	Aves	Meliphagidae	0605	Meliphaga lewinii		Lewin's Honeyeater	P		9
Animalia	Aves	Meliphagidae	0583	Melithreptus brevirostris		Brown-headed Honeyeater	P		12
Animalia	Aves	Meliphagidae	0578	Melithreptus lunatus		White-naped Honeyeater	P		12
							P		3
Animalia	Aves	Meliphagidae	0586	Myzomela sanguinolenta		Scarlet Honeyeater	٢		3
Animalia	Aves	Meliphagidae	0617	Nesoptilotis leucotis		White-eared Honeyeater	Р		3
Animalia	Aves	Meliphagidae	0645	Philemon corniculatus		Noisy Friarbird	Р		11
Animalia	Aves	Meliphagidae	0632	Phylidonyris niger		White-cheeked Honeyeater	Р		1
Animalia	Aves	Meliphagidae	0631	Phylidonyris novaehollandiae		New Holland Honeyeater	Р		38
Animalia	Aves	Meliphagidae	0630	Phylidonyris pyrrhoptera		Crescent Honeyeater	Р		7
Animalia	Aves	Meliphagidae	0625	Ptilotula penicillatus		White-plumed Honeyeater	Р		1
Animalia	Aves	Psophodidae	0436	Cinclosoma punctatum		Spotted Quail-thrush	P		2
Animalia	Aves	Psophodidae	0421	Psophodes olivaceus		Eastern Whipbird	P		37
Animalia	Aves	Neosittidae	0549	Daphoenositta		Varied Sittella	V,P		5
Animalia	Aves	Campephagidae	0424	chrysoptera Coracina novaehollandiae		Black-faced Cuckoo-shrike	Р		22
Animalia	Aves	Campephagidae	0425	Coracina papuensis		White-bellied Cuckoo-shrike	Р		1
Animalia	Aves	Campephagidae	0429	Coracina tenuirostris		Cicadabird	Р		1
Animalia	Aves	Campephagidae	0430	Lalage sueurii		White-winged Triller	Р		5
Animalia	Aves	Pachycephalidae	0408	Colluricincla harmonica		Grey Shrike-thrush	Р		27
Animalia	Aves	Pachycephalidae	9951	Falcunculus frontatus		,-	Р		1
Animalia	Aves	Pachycephalidae	0416	Falcunculus frontatus frontatus		Eastern Shrike-tit	P		7
Animalia	Aves	Pachycephalidae	0405	Pachycephala olivacea		Olive Whistler	V,P		4
			0398				P		19
Animalia	Aves	Pachycephalidae		Pachycephala pectoralis		Golden Whistler			
Animalia	Aves	Pachycephalidae	0401	Pachycephala rufiventris		Rufous Whistler	P		25
Animalia Animalia	Aves Aves	Oriolidae Artamidae	0671 8519	Oriolus sagittatus Artamus cyanopterus		Olive-backed Oriole Dusky Woodswallow	P V,P		14 16
Animalia	Aves	Artamidae	0700	cyanopterus Cracticus nigrogularis		Pied Butcherbird	Р		1
Animalia	Aves	Artamidae	0705	Cracticus tibicen		Australian Magpie	Р		34
Animalia	Aves	Artamidae	0702	Cracticus torquatus		Grey Butcherbird	Р		31
Animalia	Aves	Artamidae	0694	Strepera graculina		Pied Currawong	Р		30
Animalia	Aves	Artamidae	0697	Strepera versicolor		Grey Currawong	Р		5
Animalia	Aves	Rhipiduridae	0361	Rhipidura albiscapa		Grey Fantail	P		49
Animalia	Aves	Rhipiduridae	0364	Rhipidura leucophrys		Willie Wagtail	P		25
Animalia	Aves	Rhipiduridae	0362	Rhipidura rufifrons		Rufous Fantail	P		10
Animalia	Aves	Corvidae	0930	Corvus coronoides		Australian Raven	P		25
Animalia	Aves	Monarchidae	0415	Grallina cyanoleuca		Magpie-lark	P		20
Animalia	Aves	Monarchidae	0373	Monarcha melanopsis		Black-faced Monarch	P		3
Animalia	Aves	Monarchidae	9955	Myiagra inquieta		Restless Flycatcher	P		7
Animalia	Aves	Monarchidae	0365	Myiagra rubecula		Leaden Flycatcher	P		2
Animalia	Aves	Petroicidae	0303	Eopsaltria australis		Eastern Yellow Robin	P		59
				· ·					1
Animalia	Aves	Petroicidae	8367	Melanodryas cucullata cucullata		Hooded Robin (south- eastern form)	V,P		
Animalia	Aves	Petroicidae	0377	Microeca fascinans		Jacky Winter	Р		25
Animalia	Aves	Petroicidae	0380	Petroica boodang		Scarlet Robin	V <i>,</i> P		12
Animalia	Aves	Petroicidae	0382	Petroica phoenicea		Flame Robin	V,P		1
Animalia	Aves	Petroicidae	0384	Petroica rosea		Rose Robin	Р		5

Kingdom	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW status	Comm. status	Records
Animalia	Aves	Alaudidae	0993	Alauda arvensis	*	Eurasian Skylark			1
Animalia	Aves	Cisticolidae	0525	Cisticola exilis		Golden-headed Cisticola	Р		6
Animalia	Aves	Acrocephalidae	0524	Acrocephalus australis		Australian Reed-Warbler	Р		6
Animalia	Aves	Megaluridae	0509	Cincloramphus mathewsi		Rufous Songlark	Р		1
Animalia	Aves	Megaluridae	0522	Megalurus gramineus		Little Grassbird	Р		1
Animalia	Aves	Timaliidae	0574	Zosterops lateralis		Silvereye	Р		23
Animalia	Aves	Hirundinidae	0357	Hirundo neoxena		Welcome Swallow	Р		31
Animalia	Aves	Hirundinidae	0360	Petrochelidon ariel		Fairy Martin	Р		7
Animalia	Aves	Hirundinidae	0359	Petrochelidon nigricans		Tree Martin	Р		1
Animalia	Aves	Turdidae	0991	Turdus merula	*	Eurasian Blackbird			23
Animalia	Aves	Turdidae	0779	Zoothera lunulata		Bassian Thrush	Р		1
Animalia	Aves	Turdidae	7000	Zoothera sp.		unidentified ground thrush	Р		2
Animalia	Aves	Sturnidae	0999	Sturnus vulgaris	*	Common Starling			22
Animalia	Aves	Estrildidae	0662	Neochmia temporalis		Red-browed Finch	Р		52
Animalia	Aves	Estrildidae	0650	Stagonopleura bella		Beautiful Firetail	Р		1
Animalia	Aves	Estrildidae	0652	Stagonopleura guttata		Diamond Firetail	V,P		2
Animalia	Aves	Estrildidae	0655	Taeniopygia bichenovii		Double-barred Finch	Р		2
Animalia	Aves	Passeridae	0995	Passer domesticus	*	House Sparrow			11
Animalia	Aves	Motacillidae	0647	Anthus novaeseelandiae		Australian Pipit	Р		18
Animalia	Aves	Fringillidae	0996	Carduelis carduelis	*	European Goldfinch			4
Animalia	Mammalia	Ornithorhynchidae	1001	Ornithorhynchus anatinus		Platypus	Р		8
Animalia	Mammalia	Tachyglossidae	1003	Tachyglossus aculeatus		Short-beaked Echidna	Р		21
Animalia	Mammalia	Dasyuridae	1668	Antechinus agilis		Agile Antechinus	P		13
Animalia	Mammalia	Dasyuridae	1674	Antechinus stuartii		Brown Antechinus	P		3
Animalia	Mammalia	Dasyuridae	1033	Antechinus swainsonii		Dusky Antechinus	P		5
Animalia	Mammalia	Dasyuridae	1008	Dasyurus maculatus		Spotted-tailed Quoll	V,P	E	3
Animalia	Mammalia	Dasyuridae	1017	Phascogale tapoatafa		Brush-tailed Phascogale	V,P	-	2
Animalia	Mammalia	Dasyuridae	1017	Sminthopsis leucopus		White-footed Dunnart	V,P		1
Animalia	Mammalia	Dasyuridae	1800	Sminthopsis sp.		Dunnart	P		1
		Peramelidae	T081				Р		
Animalia	Mammalia		1081	Isoodon/Perameles sp.		unidentified Bandicoot	P		18 12
Animalia	Mammalia	Peramelidae		Perameles nasuta		Long-nosed Bandicoot	-	v	
Animalia	Mammalia	Phascolarctidae	1162	Phascolarctos cinereus		Koala	V,P	V	3
Animalia	Mammalia	Vombatidae	1165	Vombatus ursinus		Common Wombat	P		22
Animalia	Mammalia	Burramyidae	1150	Cercartetus nanus		Eastern Pygmy-possum	V,P		5
Animalia	Mammalia	Petauridae	1136	Petaurus australis		Yellow-bellied Glider	V,P		51
Animalia	Mammalia	Petauridae	1138	Petaurus breviceps		Sugar Glider	Р		16
Animalia	Mammalia	Pseudocheiridae	1129	Pseudocheirus peregrinus		Common Ringtail Possum	Р		15
Animalia	Mammalia	Acrobatidae	1147	Acrobates pygmaeus		Feathertail Glider	Р		4
Animalia	Mammalia	Phalangeridae	T082	Trichosurus sp.		brushtail possum	Р		5
Animalia	Mammalia	Phalangeridae	1113	Trichosurus vulpecula		Common Brushtail Possum	Р		16
Animalia	Mammalia	Potoroidae	T086	Potorous sp.		Potoroo	Р		2
Animalia	Mammalia	Potoroidae	1175	Potorous tridactylus		Long-nosed Potoroo	V,P	V	7
Animalia	Mammalia	Macropodidae	1265	Macropus giganteus		Eastern Grey Kangaroo	Р		23
Animalia	Mammalia	Macropodidae	1261	Macropus rufogriseus		Red-necked Wallaby	Р		7
Animalia	Mammalia	Macropodidae	T085	Macropus sp.		kangaroo / wallaby	Р		1
Animalia	Mammalia	Macropodidae	1242	Wallabia bicolor		Swamp Wallaby	Р		26
Animalia	Mammalia	Pteropodidae	1280	Pteropus poliocephalus		Grey-headed Flying-fox	V,P	V	13
Animalia	Mammalia	Pteropodidae	1281	Pteropus scapulatus		Little Red Flying-fox	Р		2
Animalia	Mammalia	Pteropodidae	T087	Pteropus sp.		Flying-fox	Р		36
Animalia	Mammalia	Rhinolophidae	1303	Rhinolophus megaphyllus		Eastern Horseshoe-bat	Р		1
Animalia	Mammalia	Molossidae	1324	Austronomus australis		White-striped Freetail-bat	Р		1
Animalia	Mammalia	Vespertilionidae	1349	Chalinolobus gouldii		Gould's Wattled Bat	Р		2
Animalia	Mammalia	Vespertilionidae	1351	Chalinolobus morio		Chocolate Wattled Bat	P		5
Animalia	Mammalia	Vespertilionidae	1372	Falsistrellus tasmaniensis		Eastern False Pipistrelle	V <i>,</i> P		3
Animalia	Mammalia	Vespertilionidae	1834	Miniopterus schreibersii oceanensis		Eastern Bentwing-bat	V,P		3
Animalia	Mammalia	Vespertilionidae	1335	Nyctophilus geoffroyi		Lesser Long-eared Bat	Р		11
Animalia	Mammalia	Vespertilionidae	1333	Nyctophilus gouldi		Gould's Long-eared Bat	P		7
Animalia	Mammalia	Vespertilionidae	T092	Nyctophilus sp.		long-eared bat	P		1
		Vespertilionidae		Scoteanax rueppellii		Greater Broad-nosed Bat			3
Animalia	Mammalia	- · · · · · · · · · · · · · · · · · · ·	1361				V,P		
Animalia	Mammalia	Vespertilionidae	1022	Vespadelus darlingtoni		Large Forest Bat	P		3
Animalia	Mammalia	Vespertilionidae	1378	Vespadelus regulus		Southern Forest Bat	Р		2

Data from the BioNet Atlas of NSW Wildlife website, which holds records from a number of custodians. The data are only indicative and cannot be considered a comprehensive inventory, and may contain errors and omissions. Species listed under the Sensitive Species Data Policy may have their locations denatured (^ rounded to 0.1°; ^^ rounded to 0.01°). Copyright the State of NSW through the Office of Environment and Heritage. Search criteria : Public Report of all Valid Records of Animals in selected area [North: -36.83 West: 149.84 East: 150 South: -36.97] returned a total of 3,333 records of 313 species. Report generated on 29/06/2017 10:50 PM

Kingdom	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW status	Comm. status	Records
Animalia	Mammalia	Vespertilionidae	T088	Vespadelus sp.		Unidentified Eptesicus	Р		1
Animalia	Mammalia	Vespertilionidae	1379	Vespadelus vulturnus		Little Forest Bat	Р		24
Animalia	Mammalia	Muridae	1412	Mus musculus	*	House Mouse			2
Animalia	Mammalia	Muridae	1395	Rattus fuscipes		Bush Rat	Р		30
Animalia	Mammalia	Muridae	1398	Rattus lutreolus		Swamp Rat	Р		6
Animalia	Mammalia	Muridae	1408	Rattus rattus	*	Black Rat			3
Animalia	Mammalia	Dugongidae	1558	Dugong dugon		Dugong	E1,P		3
Animalia	Mammalia	Otariidae	1543	Arctocephalus forsteri		New Zealand Fur-seal	V,P		1
Animalia	Mammalia	Otariidae	1882	Arctocephalus pusillus doriferus		Australian Fur-seal	V,P		2
Animalia	Mammalia	Otariidae	9040	Seal sp.		Unidentified Seal	Р		2
Animalia	Mammalia	Phocidae	1549	Hydrurga leptonyx		Leopard Seal	Р		3
Animalia	Mammalia	Canidae	1531	Canis lupus	*	Dingo, domestic dog			12
Animalia	Mammalia	Canidae	1532	Vulpes vulpes	*	Fox			96
Animalia	Mammalia	Felidae	1536	Felis catus	*	Cat			33
Animalia	Mammalia	Leporidae	1510	Oryctolagus cuniculus	*	Rabbit			8
Animalia	Mammalia	Neobalaenidae	1564	Caperea marginata		Pygmy Right Whale	Р		1
Animalia	Mammalia	Balaenopteridae	1575	Megaptera novaeangliae		Humpback Whale	V,P	V	15
Animalia	Mammalia	Physeteridae	1578	Physeter macrocephalus		Sperm Whale	V,P		1
Animalia	Mammalia	Ziphiidae	1593	Mesoplodon grayi		Gray's Beaked Whale	Р		1
Animalia	Mammalia	Delphinidae	1616	Delphinus delphis		Common Dolphin	Р		2
Animalia	Mammalia	Delphinidae	1600	Orcinus orca		Killer Whale	Р		1
Animalia	Mammalia	Delphinidae	1900	Tursiops truncatus		Bottlenose Dolphin	Р		3

Note

- 1 Sensitivity Class 1 (Sensitive Species Data Policy)
- 2 Sensitivity Class 2 (Sensitive Species Data Policy)
- 3 Sensitivity Class 3 (Sensitive Species Data Policy)
- CH Critical Habitat (Threatened Species Conservation Act 1995)
- E1 Endangered (Threatened Species Conservation Act 1995)
- E2 Endangered Population (Threatened Species Conservation Act 1995)
- E3 Endangered Ecological Community (Threatened Species Conservation Act 1995)
- E4 Presumed Extinct (Threatened Species Conservation Act 1995)
- E4A Critically Endangered (Threatened Species Conservation Act 1995)
- E4B Critically Endangered Ecological Community (Threatened Species Conservation Act 1995)
- FCE Critically Endangered Fish (Fisheries Management Act 1994)
- FE Endangered Fish (Fisheries Management Act 1994)
- FEC Endangered Ecological Community of Fish (Fisheries Management Act 1994)
- FEP Endangered Population of Fish (Fisheries Management Act 1994)
- FKTP Key Threatening Process of Fish (Fisheries Management Act 1994)
- FP Protected Fish (Fisheries Management Act 1994)
- FV Vulnerable Fish (Fisheries Management Act 1994)
- FX Extinct Fish (Fisheries Management Act 1994)
- KTP Key Threatening Process (Threatened Species Conservation Act 1995)
- P Protected (National Parks & Wildlife Act 1974)
- V Vulnerable (Threatened Species Conservation Act 1995)
- V2 Vulnerable Ecological Community (Threatened Species Conservation Act 1995)

Appendix I-2. Likelihood of occurrence of threatened species recorded or modelled to occur within a 5 km rac	adius of the project area.
--	----------------------------

Species Name	Common Name	Legal Status			Sauraa	Last Reported in	NOTES	Saar	Likelihood of
		EPBC Act	BC Act	FM Act	Source	BVSC region ¹	NOTES	Score	Occurrence ²
Cetaceans (whale	s and dolphins)	•					•		
Balaenoptera acutorostrata	Minke whale	w	Р	-	ALA	1990	Broadly distributed in Australian waters and it is likely that the whales occur right around the continent at various times of the year usually in offshore waters. Two records in BVSC region offshore from Tathra in 1990, >10km from the project area.	3	Unlikely
Balaenoptera borealis	Sei whale	V, W	Р	-	ALA	1991	Broadly distributed in southern temperate waters and often observed in areas of upwelling. One record in BVSC region from Twofold Bay in 1991.	3	Unlikely
Balaenoptera edeni	Bryde's whale	w	Р	-	ALA	1991	Found in temperate to tropical waters but rarely observed in NSW waters. Two records in BVSC region, both >10km from the project area.	3	Unlikely
Balaenoptera musculus	Blue whale	E, M, W	E	-	ALA	1996	Blue Whale sightings in Australian waters have been widespread, and it is likely that the whales occur right around the continent at various times of the year usually in offshore waters. There are no known aggregation areas near the project area. The most sighting in the BVSC region was at Twofold Bay in 1996.	3	Unlikely
Balaenoptera physalus	Fin whale	V, W	Р	-	ALA	1982	Broadly distributed in southern cool temperate waters and often observed in areas of upwelling. Rarely observed in BVSC region with two records in offshore waters, the most recent from 1982.	3	Unlikely
Caperea marginata	Pygmy right whale	M, W	Ρ	-	ALA	1989	Broadly distributed in southern temperate waters and often observed in areas of upwelling. Rarely observed in BVSC region with one record offshore from Haycock Point in 1989.	3	Unlikely
Eubalaena australis	Southern right whale	E, M, W	E	-	ALA	2016	The species migrates to coastal region of southern Australia for calving during winter period (June to August). Species is occasionally observed in coastal waters and embayments of the BVSC region where mothers and calves may be observed resting in shallow waters close to the beach. There are several records of the species occuring within Merimbula Bay but no records specifically with the Project area.	20	High
Megaptera novaeangliae	Humpback whale	V, M, W	v	-	Elgin	2020 *	Observed annually in Merimbula Bay during spring southerly migration (August to November). Groups of individuals and mothers and their calves were observed passing through the project area during marine ecology investigations in 2017, 2019, and 2020.	25	High
Orcinus orca	Killer whale, Orca	M, W	Р	-	ALA	2015	Inhabit all of worlds oceans with a total of nine records in the BVSC region since 1930, most recently reported in 2015 from Twofold Bay. Typically forages in offshore waters over the continental shelf.	15	Moderate
Delphinus delphis	Common dolphin	w	Р	-	Elgin	2020 *	Regularly observed in waters offshore to the BVSC coastal region all year. Groups of individuals were observed in the project area in October 2019.	25	High
Grampus griseus	Risso's dolphin	w	Р	-	ALA	-	The EPBC Act Protected Matters Search Tool indicates 'Species or species habitat may occur within area'. However, there are no confirmed records of this species in BVSC region.	2	Unlikely
Lagenorhynchus obscurus	Dusky dolphin	M, W	Р	-	ALA	-	The EPBC Act Protected Matters Search Tool indicates 'Species or species habitat may occur within area'. However, there are no confirmed records of this species in BVSC region.	2	Unlikely

Appendix I-2. Likelihood of occurrence of threatened species recorded or modelled to occur within a 5 km radius of the project area.

Species Name	Common Name	Legal Status			Sauraa	Last Reported in		Score	Likelihood of
		EPBC Act	BC Act	FM Act	Source	BVSC region ¹	NOTES	Score	Occurrence ²
Tursiops aduncus	Indian Ocean bottlenose dolphin	w	Р	-	ALA	2015	The EPBC Act Protected Matters Search Tool indicates 'Species or species habitat may occur within area'. One record of the species in Twofold Bay in 2015, >10km south of project area.	10	Low
Tursiops truncatus s. str.	Indo-Pacific Bottlenose dolphin	w	Ρ	-	Elgin	2020 *	Broadly distributed around the Australian coast found in temperate and tropical waters. Regularly observed in waters offshore to the BVSC coastal region all year. Groups of individuals were observed in the project area in 2020.	25	High
Other mammal									
Dugong dugon	Dugong	М	E	-	ALA	2016	Occur in wide shallow protected bays, wide shallow mangrove channels and in the lee of large inshore islands. Will also occupy deeper waters if their seagrass food is available. Five records of Dugong in BVSC region since 1986 with some of those records likely to be the same individual reported from different locations. Last sighted in Merimbula Lake in 2016. No suitable habitat (i.e. seagrass meadows) exists in the project area.	5	Unlikely
Pinnipeds (Seals)	•			-					
Arctocephalus forsteri	New Zealand fur-seal	L	V	-	ALA	2012	Colony of non-breeding New Zealand fur-seal exist at Montague Island 80 km to the north of the project area. New Zealand fur-seal are known to forage in waters offshore of Merimbula and Pambula including the project area.	25	High
Arctocephalus pusillus	Australian fur-seal	L	v	-	Elgin	2020 *	Colonies of non-breeding fur-seal exist at Montague Island 80 km to the north and Green Cape 40 km to the south of the project area respectively. Australian fur-seal are known to forage in waters offshore of Merimbula and Pambula with individuals sighted in 2017 during fieldwork including the project area.	25	High
Hydrurga leptonyx	Leopard Seal	L	Ρ	-	ALA	2002	There are a total of six confirmed records in BVSC region since 1970 with four records in the Merimbula-Pambula region. The last sighting was in 2002 on Haycock Beach. Typically inhabits in sub-antarctic waters. No suitable habitat exists in the project area.	1	Unlikely
Sea turtles						•			
Caretta caretta	Loggerhead turtle	E, L	Ρ	-	ALA	2014	Loggerhead turtles nest, forage and migrate across tropical northern Australia. One individual has been reported in BVSC region near Wallaga Lake in 2014. They are unlikely to frequent the waters of Merimbula Bay.	5	Unlikely
Chelonia mydas	Green turtle	V, M, L	Ρ	-	ALA	2000	Green turtles nest, forage and migrate across tropical northem Australia. One individual has been recorded >10km to the south of the project area in 2000. They are unlikely to frequent the waters of Merimbula Bay.	1	Unlikely
Dermochelys coriacea	Leatherback turtle	E, M, L	Ρ	-	ALA	-	This species has a broad oceanic distribution and is known to frequent temperate water in southern Australia for feeding but they breed in tropical areas. Rarely found close to the shore in Australia and known to feed and nest within the Great Barrier Reef World Heritage Areas with nesting recorded at Wreck Rock and adjacent beaches near Bundaberg, and sporadic nesting at other widely scattered sites in Queensland. No confirmed records in BVSC region. Suitable foraging habitat exists within the project area.	2	Unlikely
Eretmochelys imbricata	Hawksbill turtle	V, L	Ρ	-	ALA	2009	Hawksbill turtles nest, forage and migrate across tropical northern Australia. There are three records in BVSC region since 1989 with one record in Merimbula Lake. The last sighting was in 2009 north of Bermagui. They are unlikely to frequent Merimbula Bay and the project area.	5	Unlikely
Natator depressus	Flatback turtle	V, L	Ρ	-	ALA	-	Flat back turtles nest, forage and migrate across tropical northern Australia. No confirmed records in BVSC region.	1	Unlikely

Appendix I-2. Likelihood of occurrence of threatened species recorded or modelled to occur within a 5 kn	n radius of the project area.
--	-------------------------------

Species Name	Common Name	Legal Status			Source	Last Reported in	NOTES	Score	Likelihood of
		EPBC Act	BC Act	FM Act	Source	BVSC region ¹	NOTES	Score	Occurrence ²
Bony Fish									
Epinephelus daemelii	Black cod	V, L	-	~	ALA, pers. comm.	2005 / 2017	Found on coastal reefs, estuaries or in deep water offshore. The species has been reported from locations >30km to the south and north of Merimbula Bay with the last recorded sighting from Bermagui in 2005. Anectdotal reports from local spearfishers indicate individuals are regularly observed at Mowarry Point south of Eden. Suitable habitat exists within the project area.	15	Moderate
Thunnus maccoyii	Southem bluefin tuna	-	-	E	ALA	2017	Highly migratory species found in Australian oceanic waters from northwestern Australia, around southern Australia to NSW and the broader Pacific ocean. The southern bluefin tuna is targeted by fishers in waters offshore to the BVSC coast each year, typically during summer and autumn period coinciding with warmer currents. The species is usually observed in offshore waters but has been sighted within Merimbula Bay on occasion. Suitable foraging habitat exists within the protect area.	20	High
Syngnathiformes	Seahorses, pipefish, pipehorses, sea moths	L	-	Ρ	ALA, RLS	2017	Majority of species are typically found in seagrass and macroalgal habitats of estuaries and protected embayments. EPBC Protected Matters Search Tool indicates 28 spp. may occur within 5km radius of the project area. A total of 31 spp are known from NSW waters. Of these, only 10 species are recorded within the BVSC region and mostly from estuarine and sheltered environments. Two species that may be observed in habitats of Merimbula Bay at Long Point and Haycock Point include the bigbelly seahorse and weedy seadragon.	15	Moderate
Sharks			•						
Carcharias taurus	Grey nurse shark	CE	-	CE	ALA, RLS, Dorsal	2018	Grey nurse shark have been observed in coastal waters within the BVSC region with the the most recent sighting at Long Pont, Merimbula Bay in 2018. The closest known aggregation site critical to the species is Montague Island (80 km north of Merimbula). Suitable habitat (i.e. sand gutters and rocky reef) exists at the project site.	15	Moderate
Carcharodon carcharias	Great white shark	V, M, W	-	V	ALA, RLS, Dorsal	2020	Found in Ausralian coastal waters over a broad range. White shark individuals are sighted along the BVSC coast each year, typically in spring and summer coinciding with the southerly migration of humpback whales. The Great white shark was reported within Merimbula Bay on at least eight different occasions over 12-month period between January 2017 to May 2020 (Dorsal 2020).	15	Moderate
Lamna nasus	Porbeagle, Mackerel shark	L, M	-	-	ALA	-	Widley distributed in cold temperate marine waters of southem hemisphere and North Atlatintic ocean. Targeted by commecial fishers. Recorded from deep waters offshore the continental shelf.	2	Unlikely
Rhincodon typus	Whale shark	V, M, W	-	-	ALA	2012	The Whale Shark is most commonly found in WA, NT and QLD, with the main aggregation site at Ningaloo Reef (WA) and prefers waters between 21-25 degrees C. An indiviudal was briefly sighted at Tathra wharf in 2012 though its	3	Unlikely
Appendix I-2. Likelihood of occurrence of threatened species recorded or modelled to occur within a 5 km radiu	us of the project area.								
--	-------------------------								
--	-------------------------								

Species Name	Common Name	Legal Status			6 a	Last Reported in	NOTES	S	Likelihood of
		EPBC Act	BC Act	FM Act	Source	BVSC region ¹	NOTES	Score	Occurrence ²
Birds									
Actitis hypoleucos	Common Sandpiper	L	Ρ	-	ALA		Occur on intertidal mudflats in sheltered coastal areas, such as estuaries, bays, inlets and lagoons, and also around non-tidal swamps, lakes and lagoons near the coast, and ponds in saltworks and sewage farms. They are also recorded inland, though less often, including around ephemeral and permanent lakes, dams, waterholes and bore drains, usually with bare edges of mud or sand. No suitable babitat exists within the project area.	3	Unlikely
Apus pacificus	Fork-tailed Swift	L	-	-	ALA		Forages in low to very high airspace over varied habitat types. May aerially forage over the project area.	10	Low
Ardea alba	Great Egret, White Egret	L	-	-	ALA	2017	Prefer shallow water, particularly when flowing, but may be seen on any watered area, including damp grasslands. No suitable habitat exists within project area.	5	Unlikely
Ardea ibis	Cattle Egret	L	Р	-	ALA	2017	Occurs in tropical and temperate grasslands, wooded lands and terrestrial wetlands. No suitable habitat exists within project area.	5	Unlikely
Ardenna grisea	Sooty Shearwater	-	Р	-	ALA	2013	A migratory seabird that is known to nest on islands in NSW south of Port Stephens. Foraging habitat exists within the project area.	15	Moderate
Ardenna pacificus	Wedge-tailed Shearwater	-	Р	-	Elgin	2020 *	A migratory seabird that nests on islands off coast of NSW. Foraging habitat exists within the project area with indiviudals observed foraging during fieldwork in November 2017 and October 2020.	25	High
Ardenna tenuirostris	Short-tailed Shearwater	-	Р	-	Elgin	2020 *	A migratory seabird that nests along the eastern and southern coastlines of Australia. Foraging habitat exists within the project area with indiviudals observed foraging during fieldwork in November 2017 and October 2020.	25	High
Calidris acuminata	Sharp-tailed Sandpiper	L	-	-	ALA	2017	The Sharp-tailed Sandpiper prefers muddy edges of shallow fresh or brackish wetlands, with inundated or emergent sedges, grass, saltmarsh or other low vegetation. No suitable habitat exists within project area.	5	Unlikely
Calidris alba	Sanderling	-	V,P	-	ALA	2017	Often found in coastal areas on low beaches of firm sand, near reefs and inlets, along tidal mudflats and bare open coastal lagoons; individuals are rarely recorded in near-coastal wetlands. Limited suitable habitat exists in project area.	5	Unlikely
Calidris canutus	Red Knot, Knot	E, L	Р	-	ALA	2016	Gather in large flocks on the coast in sandy estuaries with tidal mudflats. No suitable habitat exists within project area.	5	Unlikely
Calidris ferruginea	Curlew Sandpiper	CE, L	-	-	ALA	2017	It generally occupies littoral and estuarine habitats, and in New South Wales is mainly found in intertidal mudflats of sheltered coasts. It also occurs in non-tidal swamps, lakes and lagoons on the coast and sometimes inland. It forages in or at the edge of shallow water, occasionally on exposed algal mats or waterweed, or on banks of beach -cast seagrass or seaweed. No suitable habitat exists within project area.	5	Unlikely
Calidris melanotos	Pectoral Sandpiper	L	-	-	ALA	-	The species is usually found in coastal or near coastal habitat but occasionally found further inland. Prefers coastal lagoons, estuaries, bays, swamps, lakes, inundated grasslands, saltmarshes, river pools, creeks, floodplains and artificial wetlands. Has not been recorded in southern NSW. No suitable habitat exists within the project area.	1	Unlikely
Catharacta skua	Great Skua	L	-	-	ALA	1972	A seabird commonly observed around southem Australia and has been sighted offshore from Merimbula Bay. Suitable foraging habitat exists within the project area.	3	Unlikely
Chroicocephalus novaehollandiae	Silver Gull	-	Р	-	Elgin	2020 *	Coastal, offshore waters; beaches, mudflats, estuaries, larger rivers, reservoirs, lakes; some inland. Suitable habitat present within project area.	25	High
Cuculus saturatus	Oriental Cuckoo, Himalayan Cuckoo	L	-	-	ALA		A migratory bird from northern hemisphere found in coastal and inland forest. Not observed from Merimbula-Pambula region. Suitable habitat exists within the project area.	3	Unlikely
Diomedea antipodensis	Antipodean Albatross	V, L	-	-	ALA		The Antipodean Albatross is endemic to New Zealand, however forages widely in open water in the south-west Pacific Ocean, Southern Ocean and the Tasman Sea, notably off the coast of NSW. Foraging habitat exists within the project area.	10	Low
Diomedea antipodensis gibsoni	Gibson's Albatross	V, L	V, P	-	ALA	2006	Gibson's Albatross has been recorded foraging between Coffs Harbour, NSW, and Wilson's Promontory, Victoria. There are no specific records from waters offshore of Merimbula Bay, NSW. Foraging habitat exists within the project area.	3	Unlikely

Appendix I-2. Likelihood of occurrence of threatened species recorded or modelled to occur within a 5 km radius of the project area.

Species Name	Common Name	Legal Status			Saura	Last Reported in		6	Likelihood of
		EPBC Act	BC Act	FM Act	Source	BVSC region ¹	NOTES	Score	Occurrence ²
Diomedea epomophora	Southern Royal Albatross	V, L	-	-	ALA		Has been observed in offshore waters south of Eden. Foraging habitat exists within the project area.	10	Low
Diomedea exulans	Wandering Albatross	V, L	-	-	ALA		Regularly observed foraging in waters offshore from Merimbula Bay. Foraging habitat exists within the project area.	15	Moderate
Diomedea sanfordi	Northern Royal Albatross	E, L	-	-	ALA		The Northern Royal Albatross ranges widely over the Southern Ocean, with individuals seen in Australian waters off south-eastern Australia. The Northern Royal Albatross feeds regularly in Tasmanian and South Australian waters, and less frequently in NSW waters. Foraging habitat exists within the project area.	10	Low
Eudyptula minor	Little Penguin	-	Ρ	-	Elgin	2020 *	Nearest breeding, nesting colonies are Montague Island and Gabo Island, approx 80km to the north and south of the project area respectively. Foraging habitat exists within the project area and individuals were observed foraging within Merimbula Bay during fieldwork in November 2017 and October 2020.	25	High
Fulmarus glacialoides	Southern Fulmar	-	Р	-	ALA		A seabird that breeds and nest on sub-antarctic islands and mainland Antarctica. Ocassionally observed foraging over waters in southern NSW. Suitable foraging habitat exists within the project area.	3	Unlikely
Gallinago hardwickii	Latham's Snipe, Japanese Snipe	L	Р	-	ALA		They usually inhabit open, freshwater wetlands with low, dense vegetation (e.g. swamps, flooded grasslands or heathlands, around bogs and other water bodies). No suitable habitat exists within the project area.	3	Unlikely
Gallinago megala	Swinhoe's Snipe	L	-	-	ALA		Boggy edges of vegetated wetlands, sewage and other ponds, stubbles, grasslands with shrubs, pastures. No suitable habitat exists within the project area.	3	Unlikely
Gallinago stenura	Pin-tailed Snipe	L	-	-	ALA		Favours wet grassy ground; edges of reedy swamps. No suitable habitat exists within the project area.	3	Unlikely
Haematopus fuliginosus	Sooty Oystercatcher	-	V,P	-	ALA		Favours rocky headlands, rocky shelves, exposed reefs with rock pools, beaches and muddy estuaries. Known to occur from a range of locations around Merimbula Bay including Long Point and Haycock Point. No suitable habitat exists within the project area.	10	Low
Haematopus Iongirostris	Pied Oystercatcher	-	E1,P	-	ALA	2017	Favours intertidal flats of inlets and bays, open beaches and sandbanks. Limited suitable habitat exists within the project area.	15	Moderate
Haliaeetus leucogaster	White-bellied Sea- Eagle	L	V, P	-	ALA	2017	Inhabits coastal areas, over islands, reefs, beaches, estuaries, lagoons and floodplains. Foraging habitat exists within the project area.	15	Moderate
Halobaena caerulea	Blue Petrel	V, L	-	-	ALA		A seabird of sub-antarctic islands and mainland Antarctica. Commonly observed around southern Australia. Has not been recorded in southern NSW. Suitable foraging habitat exists within the project area.	10	Low
Hirundapus caudacutus	White-throated Needletail	L	Р	-	ALA		A largely aerial migratory bird from northem hemisphere observed in large numbers across eastern and northem Australia. May forage over the project area.	10	Low
Hydroprogne caspia	Caspian Tem	-	Р	-	ALA		Coastal, offshore waters; beaches, mudflats, estuaries, larger rivers, reservoirs, lakes; some inland. Suitable habitat present within project area.	10	Low
Larus pacificus	Pacific Gull	-	Р	-	ALA		Typically found around southem Australia and Tasmania though is known from habitats around Merimbla Bay. Foraging habitat exists within the project area.	10	Low
Lathamus discolor	Swift Parrot	L	-	-	ALA		This migratory species has been recorded on the mainland from a variety of habitat types including dry and wet sclerophyll forest, forested wetlands, coastal swamp forests and heathlands. Suitable foraging habitat exists with the project area.	10	Low
Limosa lapponica	Bar-tailed Godwit	L	Р	-	ALA		Primarily a coastal species usually found in sheltered bays, estuaries and lagoons with large intertidal mudflats and/or sandflats. Known to occur inside Merimbula Lake. No suitable habitat exists in project area.	10	Low
Macronectes giganteus	Southern Giant-Petrel, Southern Giant Petrel	E, L	-	-	ALA	2013	The Southern Giant-Petrel is widespread throughout the Southern Ocean. Has been observed in waters ofshore from Merimbula Bay. Foraging habitat exists within the project area.	15	Moderate
Macronectes halli	Northern Giant Petrel	V, L	-	-	ALA	2017	Immature and some adult birds are commonly seen in offshore and inshore waters from around Fremantle (WA) to around Sydney (NSW). Has been observed in waters ofshore from Merimbula Bay. Foraging habitat exists within the project area.	15	Moderate

Appendix I-2. Likelihood of occurrence of threatened species recorded or modelled to occur within a 5 km radius of the project area.

Species Name	Common Name	Legal Status				Last Reported in	NOTES		Likelihood of
		EPBC Act	BC Act	FM Act	Source	BVSC region ¹	NUIES	Score	Occurrence ²
Merops ornatus	Rainbow Bee-eater	L	-	-	ALA		Most often found in open forests, woodlands and shrublands, and cleared areas, usually near water. It will be found on farmland with remnant vegetation and in orchards and vineyards. No suitable habitat exists within project area.	3	Unlikely
Microcarbo melanoleucos	Little Pied Cormorant	-	Ρ	-	ALA		Prefers inland wetlands but do occur in sheltered bays and inlets. No suitable habitat exists within the project area.	3	Unlikely
Monarcha melanopsis	Black-faced Monarch	L	Р	-	ALA		Found in rainforests, eucalypt woodlands, coastal scrub and damp gullies. It may be found in more open woodland when migrating. No suitable habitat exists within the project area.	3	Unlikely
Monarcha trivirgatus	Spectacled Monarch	L	-	-	ALA		Prefers thick understorey in rainforests, wet gullies and waterside vegetation, as well as mangroves. No suitable habitat exists within project area.	3	Unlikely
Morus serrator	Australasian Gannet	-	Ρ	-	Elgin	2019 *	Coastal bird usually breeding on islands or artificial structures. Foraging habitat exists within the project area with individuals observed within Merimbula Bay during fieldwork in November 2017 and October 2019.	25	High
Myiagra cyanoleuca	Satin Flycatcher	L	-	-	ALA		Inhabits heavily vegetated gullies in eucalypt-dominated forests and taller woodlands, and on migration, occur in coastal forests, woodlands, mangroves and drier woodlands and open forests. No suitable habitat exists within project area.	3	Unlikely
Neophema chrysogaster	Orange-bellied Parrot	CE, L	-	-	ALA		Orange-bellied Parrot spends winter mostly within 3 km of the coast in sheltered coastal habitats including bays, lagoons, estuaries, coastal dunes and saltmarshes. The species also inhabits small islands and peninsulas and occasionally saltworks and golf courses. Birds forage in low samphire herbland or taller coastal shrubland. No suitable habitat exists in project area.	3	Unlikely
Numenius madagascariensis	Eastern Curlew, Far Eastern Curlew	CE, L	Р	-	ALA		Found on intertidal mudflats and sandflats, often with beds of seagrass, on sheltered coasts, especially estuaries, mangrove swamps, bays, harbours and lagoons. Known to occur inside Merimbula Lake. No suitable habiat exists in the project area.	10	Low
Numenius minutus	Little Curlew, Little Whimbrel	L	-	-	ALA		Dry grasslands, floodplains, margins of drying swamps, tidal mudflats, airfields, playing fields, crops, commercial saltfields, sewage ponds. No suitable habitat exists within the project area.	3	Unlikely
Numenius phaeopus	Whimbrel	-	Ρ	-	ALA		Estuaries, mangroves, tidal flats, coral cays, exposed reefs, flooded paddocks, sewage ponds, bare grasslands, sports grounds, lawns. Known to occur inside Merimbula Lake. Marginal habitat exists within the project area.	10	Low
Pachyptila turtur	Fairy Prion	L	-	-	ALA		Breeds on subantarctic and cool temperate islands. Beachcast birds are found along the whole coast of NSW, and the species is common offshore along the entire Victorian coast. Recorded from Merimbula Bay and broader BVSC region. Foraging habitat exists within the project area.	10	Low
Pandion haliaetus	Osprey	L	-	-	ALA	2017	Favours coastal areas, especially the mouths of large rivers, lagoons and lakes. Feed on fish over clear, open water. Observed within the Merimbula coastal region. Foraging habitat exists within the project area.	15	Moderate
Phalacrocorax carbo	Great Cormorant	-	Р	-	ALA	2017	Prefers freshwater wetlands but also observed in coastal inlets and estuaries. Known from Merimbula and Pambula region. May forage in coastal habitats within the project area.	15	Moderate
Phalacrocorax fuscescens	Black-faced Cormorant	-	Ρ	-	Elgin	2019 *	Found primarily around southern Australian coastline where it breeds on rocky headlands, islands and inlets building nests of seaweed and driftwood. Known from the Merimbula and Pambula region and observed foraging within the project area.	25	High
Phalacrocorax sulcirostris	Little Black Cormorant	-	Ρ	-	ALA		Found throughout Australia, prefers freshwater wetlands but also observed in sheltered coastal waters. Known from Merimbula and Pambula estuaries. No suitable habitat exists within the project area.	10	Low
Phalacrocorax varius	Pied Cormorant	-	Ρ	-	Elgin	2019 *	Found throughout Australia, in marine habitats including estuaries, harbours and bays. It is also found in mangroves and on large inland wetlands in eastern Australia. Known from the Merimbula and Pambula region and observed foraging within the project area.	25	High
Phoebetria fusca	Sooty Albatross	V, L	-	-	ALA		The Sooty Albatross is a regular migrant to Australia, mostly in the autumn-winter months, occurring in offshore waters north to south-east Queensland, NSW, Victoria, Tasmania and South Australia. Not recorded from Merimbula Bay. Foraging habitat exists within the project area.	10	Low

Appendix I-2. Likelihood of occurrence of threatened species recorded or modelled to occur within a 5 km radius of the project area.

Species Name	Common Name	Legal Status			6 a	Last Reported in	NOTES	8	Likelihood of
		EPBC Act	BC Act	FM Act	Source	BVSC region ¹	NOTES	Score	Occurrence ²
Pterodroma nigripennis	Black-winged Petrel	-	V,P	-	ALA		A seabird that breeds and nest on sub-antarctic islands and mainland Antarctica. Ocassionally observed foraging over offshore waters in southern NSW. Foraging habitat exists within the project area.	10	Low
Puffinus carneipes	Flesh-footed Shearwater, Fleshy- footed Shearwater	L	-	-	ALA		Ranges throughout the Pacific and Indian oceans, with main breeding areas Lord Howe Island, New Zealand and along coast of Western Australia. Occasionally observed foraging in waters offshore from Merimbula. Foraging habitat exists within the project area.	15	Moderate
Puffinus gavia	Fluttering Shearwater	-	Р	-	ALA		Endemic to New Zealand and migrates to Australia and Solomon Islands. Occasionally observed foraging in waters offshore from Merimbula. Foraging habitat exists within the project area.	15	Moderate
Rhipidura rufifrons	Rufous Fantail	L	Р	-	ALA		Found in rainforest, dense wet forests, swamp woodlands and mangroves, preferring deep shade, and is often seen close to the ground. No suitable habitat exists within project area.	3	Unlikely
Rostratula benghalensis (sensu lato)	Painted Snipe	E, L	-	-	ALA		Prefers shallow terrestrial freshwater (occasionally brackish) wetlands, including temporary and permanent lakes, swamps and claypans. They also use inundated or waterlogged grassland or saltmarsh, dams, rice crops, sewage farms and bore drains. No suitable habitat exists within the project area.	3	Unlikely
Sternula albifrons	Little Tem	L	-	-	Elgin	2019*	Almost exclusively coastal, preferring sheltered environments; however may occur several kilometres from the sea in harbours, inlets and rivers. Suitable foraging habitat exists within the project area.	25	High
Thalassarche bulleri	Buller's Albatross, Pacific Albatross	V, L	-	-	ALA		Frequently observed off the coast from Coffs Harbour, south to Tasmania and west to Eyre Peninsula. Foraging habitat exists within the project area.	10	Low
Thalassarche cauta	Tasmanian Shy Albatross	V, L	V, P	-	ALA	2017	Shy Albatrosses appear to occur over all Australian coastal waters below 25° S. It is most commonly observed over the shelf waters around Tasmania and south eastern Australia. Foraging habitat exists within the project area.	15	Moderate
Thalassarche eremita	Chatham Albatross	E, L		-	ALA		The principal foraging range for this species is in coastal waters off eastern and southern New Zealand and Tasmania. Not likely to occur in waters off Merimbula Bay.	3	Unlikely
Thalassarche impavida	Campbell Albatross, Campbell Black- browed Albatross	V, L	-	-	ALA		Non-breeding birds are most commonly seen foraging over the oceanic continental slopes off Tasmania, Victoria and New South Wales. Foraging habitat exists within the project area.	10	Low
Thalassarche melanophris	Black-browed Albatross	V, L	-	-	ALA		Forages offshore from Antarctica to subtropical waters over upwellings and boundary currents. Has been observed offshore from Merimbula Bay. Foraging habitat is present within the project area.	10	Low
Thalassarche salvini	Salvin's Albatross	V, L	-	-	ALA		Salvin's Albatross is a non-breeding visitor to Australian waters, however it is possible that it frequents the Merimbula area during non-breeding periods. However, no sightings have been recorded.	10	Low
Thalassarche steadi	White-capped Albatross	V, L	-	-	ALA		The White-capped Albatross is probably common off the coast of south-east Australia throughout the year. Foraging habitat exists within the project area.	10	Low
Thalasseus bergii	Crested Tern	-	Р	-	ALA	2019*	Widespread around the Australian coastline. Known from Merimbula Bay. Foraging habitat exists within the project area.	20	High
Thinomis rubricollis rubricollis	Hooded Plover (eastem)	V, L	E4A,P	-	ALA		In south-eastern Australia Hooded Plovers prefer sandy ocean beaches, especially those that are broad and flat, with a wide wave-wash zone for feeding, much beachcast seaweed, and backed by sparsely vegetated sand-dunes for shelter and nesting. Limited suitable habitat exists within the project area.	10	Low
Tringa nebularia	Common Greenshank, Greenshank	L	-	-	ALA		Found in a wide variety of inland wetlands and sheltered coastal habitats of varying salinity. It occurs in sheltered coastal habitats, typically with large mudflats and saltmarsh, mangroves or seagrass. No suitable habitat exists within project area.	3	Unlikely

Notes

EPBC Act 1999 Status: L = listed marine species, V = vulnerable, E = endangered, CE = critically endangered, W = whales and other cetaceans, M = migratory.

NSW Biodiversity Conservation Act 2016 Status: E = endangered, V = vulnerable, P = protected.

NSW Fisheries Management Act 1994 Status: CE = critically endangered, V = vulnerable.

¹ Last reported occurrence in Bega Valley Shire Region according to ALA (2017), RLS (2017) and Dorsal (2018) databases, or confirmed by observations during marine ecology fieldwork*

³ Likelihood of occurrence score: 20-25 = high, 11-19 = Moderate, 6-10 = Low, Unlikely = 1-5 (Refer scoring criteria Table 13-1)

SIGNIFICANCE ASSESSMENTS

1. SIGNIFICANCE ASSESSMENTS (FM ACT)

Black Cod (Epinephelus daemelii)

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

The black cod (*Epinephelus daemelii*) is a large reef-dwelling species belonging to the grouper family (Serrandiae). It occurs in the warm temperate and subtropical waters of the south western Pacific including south-eastern Australia, Lord Howe Island, Norfolk Island, the Kermadec Islands and northern New Zealand. The species Australian range includes from southern Queensland to eastern Victoria, with the NSW coastline forming the species main range.

Black cod live to at least 65 years and can grow up to 1.7 metres in length and over 80 kilograms in weight (DPI, 2015). It is a protogynous hermaphrodite, first developing as a female and then changing into a male later in life when reaching approximately 100 - 110 cm in length. Within NSW, adults are considered most abundant north of Port Stephens and the central to south coast region of NSW is an important area for the recruitment of juveniles where they are known to recruit to intertidal shallow reefs and rock pools (Harasti *et al.*, 2014).

According to sighting records held by ALA (2017) and RLS (2017), there have been four recorded observations of the black cod in the BVSC region since 1972, none from Merimbula. These include Twofold Bay in 1972, Bitangabee Bay and Green Cape in 1989, and Bermagui in 2005. More regular sightings of black cod are reported from locations in the Eurobodalla shire region such as the Narooma breakwater and Montague Island (RLS 2017). With only 4 confirmed sightings since 1972, the occurrence of a local viable population of black cod in the BVSC region can be considered rare.

As the Project is situated on sandy seabed with the nearest rocky reef approximately 1,400 m to the south-east, and the effluent mixing zone typically a 25 m radius the majority of time, it is considered unlikely that the life cycle of the species would be disrupted such that a viable local population would be placed at risk of extinction.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction.

Not applicable – No endangered population of black cod is listed in NSW.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable - the species does not constitute an EEC.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the

Black Cod (Epinephelus daemelii)

threatened species, population or ecological community in the locality.

No area of habitat for black cod would be removed or modified or become fragmented as a result of the Project.

(e) Whether the action proposed is likely to have an adverse effect on any critical habitat (either directly or indirectly).

No critical habitat for black cod has been declared in NSW.

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan.

The black cod recovery plan (DPI, 2012) lists water pollution including sewage and stormwater discharges, estuarine outputs and marine debris, as a moderate risk with potential to negatively impact the species long-term viability in certain parts of its habitat and life cycle. The plan includes actions to address Objective 8: mitigate the impacts of water pollution on black cod.

The operational phase of the Project would result in the discharge of treated effluent to an ocean outfall at 30m depth over sandy sediments where it is expected to rapidly dilute and meet WQOs within a 25 m mixing zone. Potential impacts are expected to be confined to the mixing zone which is approximately 1400 m away from the nearest rocky reef habitat that may or may not be suitable for black cod.

It should be noted that treated sewage effluent has been discharged to a beach-face outfall at Merimbula Bay since 1971. The Project would result in the improved management of treated effluent providing a disposal option during peak wet weather events that currently, can result in episodic sewage overflows to Merimbula estuary that then poses a threat to estuarine values including oyster aquaculture. The Project also includes upgrades to the STP that would result in improved effluent quality and disposal at the proposed ocean outfall would provide improved dispersion of the treated effluent compared to the current beach-face outfall.

Overall, the Project is contributing to mitigating the potential impact of water pollution on black cod and it is unlikely that the species would be adversely affected by the Project. Therefore, the Project is consistent with objective 8 of the plan (DPI 2012).

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The Project as a whole is not considered a KTP. However, in relation to the recognised KTP - *introduction of non-indigenous fish and marine vegetation to the coastal waters of New South Wales*, a potential risk exists for this KTP to occur during Project construction activities. The Project construction phase would require vessels and materials to mobilise from Twofold Bay where a number of introduced marine pests (IMPs) are known to occur. The risk of translocating an IMP via construction vessels is considered a medium risk that can be reduced by implementing environmental management controls as discussed in Section 15.

Conclusion – The Project is unlikely to have adverse effects on black cod hence no SIS is required. The Project would result in improved effluent quality and improved dispersion such that WQOs of Merimbula Bay are met within a 25 m mixing zone. The Project is not a KTP to the species.

Southern bluefin tuna (Thunnus maccoyii)

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

Southern bluefin tuna (*Thunnus maccoyii*) are listed as endangered under the FM Act. They are a highly migratory pelagic fish, found in oceanic waters normally on the seaward side of the continental shelf. In Australian waters, they range from north-western Australia around southern Australia to northern NSW. The western boundary of the species migratory path lies within NSW State waters. Southern bluefin tuna are long-lived (up to 40 years) and can reach a maximum length of 2.35 metres with a weight of around 200kg, but rarely exceed 100kg in Australian waters (DPI, 2014). Both adult and juvenile SBT occur in NSW waters although the warm waters of the north-east Indian Ocean between Java and Australia is the only known spawning ground (Cardno, 2012).

The southern bluefin tuna is targeted by recreational fishers in BVSC coastal waters each year, typically during July to January period as the species migrates northwards. The species is usually observed in deep offshore waters along the continental shelf and rarely sighted within Merimbula Bay. However, in January 2018, a solitary SBT was observed in the Pambula broadwater likely having followed baitfish up the river (Merimbula News Weekly, 16 January 2018).

As the Project is situated within inshore coastal waters that the species may only transit on rare occasion, it is considered unlikely that the life cycle of the species would be disrupted such that a viable local population would be placed at risk of extinction. Pressures associated with overfishing are considered the key threat to the species viability.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction.

Not applicable – No endangered population of southern bluefin tuna is listed in NSW.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable - the species does not constitute an EEC.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the threatened species, population or ecological community in the locality.

No area of habitat for southern bluefin tuna would be removed or modified or become fragmented as a result of the Project.

(e) Whether the action proposed is likely to have an adverse effect on any critical habitat (either directly or indirectly).

No critical habitat for southern bluefin tuna has been declared in NSW.

Southern bluefin tuna (Thunnus maccoyii)

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan.

Currently, there is no recovery plan for southern bluefin tuna in NSW waters. However, a priority action statement (DPI 2020) and a species impact statement (Cardno, 2012) recommend improved monitoring and reporting to accurately estimate the recreational catch to inform appropriate species management and recovery.

The Project would adopt standard practices and mitigation measures to prevent or minimise potential impacts and it is expected that the Project would not impact the southern bluefin tuna or impede actions recommended for the species recovery. Therefore, the Project is consistent with the recovery actions stated in the priority action statement.

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The Project as a whole is not considered a KTP. However, in relation to the recognised KTP - *introduction of non-indigenous fish and marine vegetation to the coastal waters of New South Wales*, a potential risk exists for this KTP to occur during Project construction activities. The Project construction phase would require vessels and materials to mobilise from Twofold Bay where a number of IMPs are known to occur. The risk of translocating an IMP via construction vessels is considered a medium risk that can be reduced by implementing environmental management controls as discussed in **Section 15**.

Conclusion – The Project is unlikely to have adverse effects on southern bluefin tuna hence no SIS is required. The Project would result in improved effluent quality and improved dispersion such that WQOs of Merimbula Bay are met within a 25m mixing zone. The Project is not a KTP to the species.

Grey nurse shark (Carcharius taurus)

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

Grey nurse shark (GNS) is listed as Critically Endangered on both the NSW *FM* Act and *EPBC* Act. Grey nurse are a large shark native to subtropical to cool temperate waters, living to approximately 35 years (DPI, 2007). In NSW, GNS are typically found in coastal inshore waters, around rocky reefs and boulders or sand filled gutters in water depths of 15 - 40 m but also spend some time in deeper waters (DPI, 2007). They tend to be found in groups at specific locations known as aggregation sites. It is these aggregation sites that are considered habitat critical to the survival of the species.

The GNS has been reported from at least seven locations in the BVSC region (Refer Appendix 1 in DoE 2014) including at Tura Head and Twofold Bay, to the north and south of Merimbula Bay respectively. In addition, GNS sightings have been reported near to the Merimbula wharf on five occasions (2/12/2016, 8/4/2017, 12/10/2017, 21/1/2018, 11/12/2018 as listed by ALCW 2020). No GNS were observed during marine ecology field surveys undertaken for this Project. The nearest known aggregation site of the GNS considered critical to the species survival is Montague Island approximately 80km north of the study area (DoE, 2014).

As the Project is situated on sandy seabed with the nearest rocky reef approximately 1,400m to the south-east, and the effluent mixing zone typically a 25m radius the majority of time, it is considered

Grey nurse shark (Carcharius taurus)

unlikely that the life cycle of the species would be adversely effected such that a viable local population would be placed at risk of extinction.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction.

The entire population of GNS on the east coast of Australia is considered critically endangered with only those locations known as aggregation sites currently considered critical to the species survival. As mentioned above, the Project is unlikely to have an adverse effect on the life cycle of the species such that a viable population would be placed at risk of extinction.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable - the species does not constitute an EEC.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the threatened species, population or ecological community in the locality.

No area of habitat for GNS would be removed or modified or become fragmented as a result of the Project.

(e) Whether the action proposed is likely to have an adverse effect on any critical habitat (either directly or indirectly).

The nearest critical habitat for GNS is the aggregation site at Montague Island approximately 80km north of the study area. The Project would not impact on these sites.

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan.

The revised national recovery plan for GNS (DSEWPC, 2014) includes an action to address plan Objective 7: Improve the understanding of the threat of pollution and disease to the GNS.

The operational phase of the Project would result in the discharge of treated effluent to an ocean outfall at 30m depth over sandy sediments where it is expected to rapidly dilute and meet WQOs within a 25m mixing zone. Potential impacts are expected to be confined to the mixing zone which is approximately 1400m away from the nearest rocky reef habitat that represents the nearest potentially suitable habitat for grey nurse shark. The effects of water pollution on GNS are not yet clearly understood and large mobile fauna such as GNS may transit the mixing zone for short periods of time.

It should be noted that treated sewage effluent has been discharged to a beach-face outfall at Merimbula Bay since 1971. The Project would result in the improved management of treated effluent providing a disposal option during peak wet weather events that currently, can result in episodic

Grey nurse shark (*Carcharius taurus*)

sewage overflows to Merimbula estuary that then poses a threat to estuarine values including oyster aquaculture. The Project also includes upgrades to the STP that would result in improved effluent quality and disposal at the proposed ocean outfall would provide improved dispersion of the treated effluent compared to the current beach-face outfall.

Overall, the Project is contributing to mitigating the potential impact of water pollution on GNS and it is unlikely that the species would be adversely affected by the Project. Therefore, the Project is consistent with Objective 7 of the plan (DSEWPC, 2014).

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The Project as a whole is not considered a KTP. However, in relation to the recognised KTP - *introduction of non-indigenous fish and marine vegetation to the coastal waters of New South Wales*, a potential risk exists for this KTP to occur during Project construction activities. The Project construction phase would require vessels and materials to mobilise from Twofold Bay where a number of IMPs are known to occur. The risk of translocating an IMP via construction vessels is considered a medium risk that can be reduced by implementing environmental management controls as discussed in **Section 15**.

Conclusion – The Project is unlikely to have adverse effects on GNS hence no SIS is required. The Project would result in improved effluent quality and improved dispersion such that WQOs of Merimbula Bay are met within a 25m mixing zone. The Project is not a KTP to the species.

White shark (Carcharodon Carcharias)

(a) In the case of a threatened species, whether the action proposed is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

The White shark (*Carcharodon carcharias*) is a migratory species listed as Vulnerable under the *FM Act*. White sharks are found around south-eastern Australia from close inshore around rocky reefs, surf beaches and shallow coastal bays to outer continental shelf and slope areas. Their life cycle is poorly understood although evidence is emerging from tagging programs suggests both adults and juveniles can be wide ranging. Adult white sharks are more frequently observed in regions with high prey density, such as fur seal colonies, and are long-lived, living for 30 years or more (DSEWPaC 2013). Juveniles appear to aggregate seasonally in certain areas and in NSW, those areas include the coastal region between Newcastle and Forster.

White shark individuals are sighted along the BVSC coast each year, typically in spring to summer with the pattern of sightings coinciding with the southerly migration of humpback whales that occurs between September to November. No white sharks were observed during marine ecology field surveys undertaken for this Project.

Based on what is known of the species life cycle, migratory patterns and areas considered important to the species biology, it is unlikely that the Project would have an adverse effect on the life cycle of the species such that a viable local population would be placed at risk of extinction.

(b) In the case of an endangered population, whether the action proposed is likely to have an adverse effect on the life cycle of the species that constitutes the endangered population such that a viable local population of the species is likely to be placed at risk of extinction.

White shark (Carcharodon Carcharias)

There is no endangered population of white shark listed in NSW.

(c) In the case of an endangered ecological community or critically endangered ecological community, whether the action proposed:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable – the species does not constitute an EEC.

(d) In relation to the habitat of a threatened species, population or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the threatened species, population or ecological community in the locality.

No area of habitat for white shark would be removed or modified or become fragmented as a result of the Project.

(e) Whether the action proposed is likely to have an adverse effect on any critical habitat (either directly or indirectly).

Areas of critical habitat, those areas considered biologically important to the species include high density foraging sites, mostly around seal and sea lion colonies, and juvenile aggregation sites, where known. Based on this, the nearest critical habitat is Montague Island and Gabo Island that support colonies of fur seal. Both sites are approximately 80km from the study area and would not be adversely impacted by the Project.

(f) Whether the action proposed is consistent with the objectives or actions of a recovery plan or threat abatement plan.

The national recovery plan for white shark (DSEWPaC 2013) includes actions to address ten objectives. These are based on the principal threats of accidental or illegal catch by recreational and commercial fishers, mortality related to shark controls such as beach meshing or drumlining and protecting critical habitat. The Project is consistent with the objectives outlined in the recovery plan (DSEWPaC 2013).

(g) Whether the action proposed constitutes or is part of a key threatening process or is likely to result in the operation of, or increase the impact of, a key threatening process.

The Project as a whole is not considered a KTP. However, in relation to the recognised KTP - *introduction of non-indigenous fish and marine vegetation to the coastal waters of New South Wales*, a potential risk exists for this KTP to occur during Project construction activities. The Project construction phase would require vessels and materials to mobilise from Twofold Bay where a number of IMPs are known to occur. The risk of translocating an IMP via construction vessels is considered a medium risk that can be reduced by implementing environmental management controls as discussed in **Section 15**.

Conclusion – The Project is unlikely to have adverse effects on white shark hence no SIS is required. The Project would result in improved effluent quality and improved dispersion such that WQOs of Merimbula Bay are met within a 25m mixing zone. The Project is not a key threatening

White shark (Carcharodon Carcharias)

process to the species.

2. SYNGNATHIFORMES

Syngnathiformes are a unique group of bony fish including seahorses, seadragons, pipefish, pipehorses, ghostpipefish and seamoths. They are protected under the NSW *FM Act* and *EPBC Act* and there are currently up to 31 syngnathids (seahorse, pipefish, pipehorse and seadragon), four solenostomids (ghostpipefish) and two species of pegasids (seamoths) that are known to exist in NSW waters. Off the NSW coast, syngnathiformes are found in a variety of habitats ranging from deep reefs to coastal algae, weed or seagrass habitats, or around man-made structures such as jetties or mesh nets.

Ten members of Syngnathiformes have been reported from the BVSC region according to ALA (2020) and RLS (2017) databases, including:

- Bigbelly seahorse (*Hippocampus abdominalis*)
- Hairy pipefish (Urocampus carinirostris)
- Spotted pipefish (Stigmatopora argus)
- Widebody pipefish (*Stigmatipora nigra*)
- Port phillip pipefish (Vanacampus phillipi)
- Mother-of-pearl pipefish (Vanacampus margaritifer)
- Solegnathus sp.
- Javelin pipefish (Lissocampus runa)
- Smooth flutemouth (Fistularia commersonii)
- Weedy seadragon (*Phyllopteryx taeniolatus*)

The majority of these species are typically found in seagrass and algal habitats of estuaries and protected embayments. Three species that may occur on the rocky reef habitats of Merimbula Bay include the bigbelly seahorse and weedy seadragon.

The bigbelly seahorse has been reported from shallow habitats at Long Point and Merimbula Lake. The nearest reported population of the weedy seadragon is from *Posidonia* seagrass and algal habitats in East Boyd Bay (Wilson *et al.* 2016), approximately 30km south of the study area. Syngnathiformes were not observed in marine ecology field surveys undertaken for this Project.

As the Project would be situated over the sandy seabed with the nearest suitable habitat at Long Point more than 2 km to the north and at Haycock Point more than 2 km to the south, and the effluent mixing zone typically a 25 m radius majority of time and 200 m radius under worse-case scenario, it is considered unlikely that the Project would have adverse effects on members of the synganthiformes in terms of their life cycle and habitat requirements. Further detailed assessment of potential impacts to members of synganthiformes is deemed not required.

2.1. DISTRIBUTION OF THREATENED AND PROTECTED SPECIES LISTED UNDER FM ACT

Distribution records and predicted distribution range of Black cod, Grey nurse shark, Great white shark and Syngnathiformes as provided by ALA (2017) are shown in **Figure I-1**.

Figure I-1. Distribution records and predicted distribution range of Black cod, Grey nurse shark, Great white shark and Syngnathiformes as provided by ALA (2020).

3. SIGNIFICANCE ASSESSMENTS (BC Act)

New Zealand fur seal (Arctocephalus forsteri) and Australian fur seal (Arctocephalus pusillus)

(a) In the case of a threatened species, whether the proposed development or activity is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

New Zealand and Australian fur seals are listed as Vulnerable under the BC Act and as marine species on the EPBC Act. Colonies of non-breeding New Zealand and Australian fur-seal exist at Montague Island approximately 80 km to the north of the project area, and a colony of non-breeding Australian fur seal are known at Green Cape. Both seal species are known to forage in waters offshore of Merimbula and Pambula and solitary Australian fur seals were observed within the project area on multiple occasions during marine ecology investigations undertaken for this Project.

Seals may be disturbed by vessels during construction phase activities resulting in altered foraging behaviour during this period (*i.e.* preference to move away to another area). Any potential change in their foraging behaviour is expected to be short-term. Seals are exposed to regular boating traffic in the area from the recreational, commercial and charter fishing sector and easily avoid vessels when approached. Noise disturbance and water pollution from construction vessels also pose an impact to seals. However control measures would be adopted by the project to effectively mitigate the risk of these impacts (**Section 15 – Environmental Management**).

The Project is not likely to have an adverse effect on the life cycle of a threatened seal species such that a viable local population of the species is likely to be placed at risk of extinction.

(b) In the case of an endangered ecological community or critically endangered ecological community, whether the proposed development or activity:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable – No EECs occur within the marine environment of the study area.

(c) In relation to the habitat of a threatened species or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species or ecological community in the locality.

No area of habitat for the New Zealand fur seal or Australian fur seal would be removed or modified or become fragmented as a result of the Project.

(d) Whether the proposed development or activity is likely to have an adverse effect on any declared area of outstanding biodiversity value (either directly or indirectly).

No Area of Outstanding Biodiversity Value (AOBV) listed under the BC Act are located near to the study area and would not be impacted by the Project.

(e) Whether the proposed development or activity is or is part of a key threatening process or is likely to increase the impact of a key threatening process.

The Project is not a KTP as listed under the BC Act.

New Zealand fur seal (Arctocephalus forsteri) and Australian fur seal (Arctocephalus pusillus)

Conclusion – The Project is unlikely to have adverse effects on the New Zealand fur seal or Australian fur seal and as such the Project does not represent a KTP to the species.

Humpback whale (Megaptera novaeangliae)

(a) In the case of a threatened species, whether the proposed development or activity is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

Humpback whales are listed as Vulnerable on both the NSW *BC Act* and *EPBC Act*. The life cycle of humpback whales in the Southern Hemisphere involves feeding and advancement to maturity in the Southern Ocean during summer months, followed by northward migration during winter months (June to August) to reproduce and give birth in subtropical and tropical waters (Jefferson *et al.*, 1993).

Merimbula Bay is part of the biologically important area identified for the species and they are commonly observed within the embayment during their southern migration between August to November each year as they travel closer to the coastline with their calves. Locally, the western edge of the species southerly migratory pathway appears to follow the approximate 30 m depth contour of Merimbula Bay commencing offshore from Long Point south to Hunter Reef then south-east to Haycock Point. Individuals or mothers and calves may use Merimbula Bay for resting and foraging prior to moving southward. They are less likely to be observed in Merimbula Bay during their northward migration as they travel further offshore when heading north.

Project construction phase activities pose a potential impact to humpback whales through vessel strike, water pollution and underwater noise impacts should construction activities be undertaken during the species southerly migration. However, control measures can be implemented to effectively mitigate the risk of these impacts (**Section 15 – Environmental Management**). Whales may also be disturbed by construction vessels resulting in altered foraging and migratory behaviour (*i.e.* preference to move away to another area). Any potential change in their foraging and migratory behaviour is expected to be short-term.

The humpback whale migrates vast distances to reproduce and forage. The Project is not likely to have an adverse effect on the life cycle of the humpback whale such that a viable local population of the species is likely to be placed at risk of extinction.

(b) In the case of an endangered ecological community or critically endangered ecological community, whether the proposed development or activity:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable – No EECs occur within the marine environment of the study area.

(c) In relation to the habitat of a threatened species or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species or ecological community in the locality.

Humpback whale (Megaptera novaeangliae)

No area of habitat for the humpback whale would be removed or modified or become fragmented as a result of the Project.

(d) Whether the proposed development or activity is likely to have an adverse effect on any declared area of outstanding biodiversity value (either directly or indirectly).

No AOBV listed under the BC Act are located near to the study area so would not be impacted by the Project.

(e) Whether the proposed development or activity is or is part of a key threatening process or is likely to increase the impact of a key threatening process.

The Project is not a KTP as listed under the BC Act.

Conclusion – Control measures would be adopted to effectively mitigate risk of potential impacts such that the Project is unlikely to have adverse effects on humpback whale (**Section 15**). The Project does not represent a KTP to the species.

Southern Right whale (Eubalaena australis)

(a) In the case of a threatened species, whether the proposed development or activity is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

Southern right whales are listed as Endangered under both the NSW BC Act and EPBC Act. The species life cycle is based around summer feeding grounds in the Southern Ocean before migrating to warmer waters along the coastal region of southern Australia between winter and spring (June to August) to calve and breed (DSEWPaC, 2012). Southern right whales were subject to severe depletion across their range due to whaling in the late 18th and early 19th centuries and the current global population is estimated at 16,000 or between 16 - 27% of estimated pre-exploitation levels (IWC 2010). The Australian population of Southern right whales is comprised of two genetically distinct sub-populations, a south-west and south-east population. Whales visiting NSW waters belong to the south-east population that is considered very small. Documented sighting records suggest there are a growing series of biologically important areas (BIAs) for the south-east population that includes Disaster Bay and Twofold Bay. Although it is generally thought that mainly non-calving individuals are frequenting these areas.

Smith (2001) has estimated the total number of Southern right whales now visiting NSW in any one year to be less than ten. There are several records of the species occurring within Merimbula Bay with the most recent sighting in 2016. For the most part, sighting a Southern right whale in Merimbula Bay could be considered a rare occurrence.

Project construction phase activities pose a potential impact to Southern right whales through vessel strike, water pollution and underwater noise impacts. However, control measures can be adopted by the project to effectively mitigate the risk of these impacts (**Section 15 – Environmental Management**). Whales may also be disturbed by construction vessels resulting in altered foraging and migratory behaviour (*i.e.* preference to move away to another area). Any potential change in their foraging and migratory behaviour is expected to be short-term.

The Southern right whale migrates vast distances to reproduce and forage. The Project is not likely to have an adverse effect on the life cycle of the Southern right whale such that a viable local population of the species is likely to be placed at risk of extinction.

Southern Right whale (Eubalaena australis)

(b) In the case of an endangered ecological community or critically endangered ecological community, whether the proposed development or activity:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable – No EECs occur within the marine environment of the study area.

(c) In relation to the habitat of a threatened species or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species or ecological community in the locality.

No area of habitat for the southern right whale would be removed or modified or become fragmented as a result of the Project.

(d) Whether the proposed development or activity is likely to have an adverse effect on any declared area of outstanding biodiversity value (either directly or indirectly).

No AOBV listed under the BC Act are located near to the study area and would not be impacted by the Project.

(e) Whether the proposed development or activity is or is part of a key threatening process or is likely to increase the impact of a key threatening process.

The Project is not a KTP as listed under the BC Act.

Conclusion – Control measures would be implemented to effectively mitigate risk of potential impacts such that the Project is unlikely to have adverse effects on Southern right whale (**Section 15**). The Project does not represent a KTP to the species.

Orca (Orcinus orca)

(a) In the case of a threatened species, whether the proposed development or activity is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

Orca are listed as Protected under the *BC Act* and migratory under the *EPBC Act*. They inhabit all of the world's oceans but are generally more common in near-shore waters and areas of high productivity and often sighted around seal colonies and during whale migration periods. Their distributional range is not restricted by water temperature or depth. While

At the local level, nine records of orca have been reported in the BVSC region since 1930 (ALA, 2020), with the most recent report in 2015 from Twofold Bay. For the most part, sighting an orca in waters of the far south coast region could be considered a rare occurrence and they are unlikely to occur within Merimbula Bay. They are most likely to occur in offshore waters foraging along the edge of the East Australian boundary current.

Project construction phase activities pose a potential impact to Orca whales through vessel strike, water pollution and underwater noise impacts. However, control measures can be adopted by the

Orca (Orcinus orca)

project to effectively mitigate the risk of these impacts (**Section 15 – Environmental Management**). Orca may also be disturbed by construction vessels resulting in altered foraging and migratory behaviour (*i.e.* preference to move away to another area). Any potential change in their foraging and migratory behaviour is expected to be short-term.

Orca migrate vast distances to reproduce and forage. The Project is not likely to have an adverse effect on the life cycle of the Orca such that a viable local population of the species is likely to be placed at risk of extinction.

(b) In the case of an endangered ecological community or critically endangered ecological community, whether the proposed development or activity:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable - No EECs occur within the marine environment of the study area.

(c) In relation to the habitat of a threatened species or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species or ecological community in the locality.

No area of habitat for orca would be removed or modified or become fragmented as a result of the Project.

(d) Whether the proposed development or activity is likely to have an adverse effect on any declared area of outstanding biodiversity value (either directly or indirectly).

No AOBV listed under the *BC Act* are located near to the study area and would not be impacted by the Project.

(e) Whether the proposed development or activity is or is part of a key threatening process or is likely to increase the impact of a key threatening process.

The Project is not a KTP as listed under the BC Act.

Conclusion – Control measures would be implemented to effectively mitigate risk of potential impacts such that the Project is unlikely to have adverse effects on orca (**Section 15**). The Project does not represent a KTP to the species.

Common dolphin (*Delphinus delphis*) and Indo-Pacific bottlenose dolphin (*Tursiops truncatus s. str.*)

(a) In the case of a threatened species, whether the proposed development or activity is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction.

The common dolphin and Indo-Pacific bottlenose dolphin are listed as Protected under the *BC Act*. Both species have a wide global distribution including the Temperate East and South East Marine regions. The common dolphin mainly occurs in offshore waters while the Indo-Pacific bottlenose

Common dolphin (*Delphinus delphis*) and Indo-Pacific bottlenose dolphin (*Tursiops truncatus s. str.*)

dolphin prefers inshore coastal waters. Both species are regularly observed foraging across Merimbula Bay and the wider coastal waters of the BVSC region and both were sighted during marine ecology investigations for the Project. Merimbula Bay is not reported to be a breeding ground for either species.

Project construction phase activities pose a potential impact to dolphin species through vessel strike, water pollution and underwater noise impacts. Dolphins are exposed to regular boating traffic in the area from the recreational, commercial and charter fishing sector and are considered a lower risk of vessel strike as they can easily out manoeuvre approaching vessels. Dolphins may also be disturbed by construction vessels resulting in altered foraging behaviour (*i.e.* preference to move away to another area). Any potential change in their foraging and migratory behaviour is expected to be short-term. Control measures would be implemented to effectively mitigate the risk of these impacts (Section 15 – Environmental Management).

The Project is not likely to have an adverse effect on the life cycle of either the common dolphin or Indo-Pacific bottlenose dolphin such that a viable local population of the species is likely to be placed at risk of extinction.

(b) In the case of an endangered ecological community or critically endangered ecological community, whether the proposed development or activity:

(i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction.

Not applicable – No EECs occur within the marine environment of the study area.

(c) In relation to the habitat of a threatened species or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and (ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and (iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species or ecological community in the locality.

No area of habitat for the common dolphin or Indo-Pacific bottlenose dolphin would be removed or modified or become fragmented as a result of the Project.

(d) Whether the proposed development or activity is likely to have an adverse effect on any declared area of outstanding biodiversity value (either directly or indirectly).

No AOBV listed under the BC Act are located near to the study area so would not be impacted by the Project.

(e) Whether the proposed development or activity is or is part of a key threatening process or is likely to increase the impact of a key threatening process.

The Project is not a KTP as listed under the BC Act.

Conclusion – Control measures would be implemented to effectively mitigate risk of potential impacts such that the Project is unlikely to have adverse effects on common dolphin or Indo-Pacific bottlenose dolphin (**Section 15**). The Project does not represent a KTP to either species.

2.1.1 Migratory and Marine Birds

Twenty migratory and marine birds listed under the *BC Act* and or *EPBC Act* are considered to have moderate to high likelihood of occurrence within the study area. The project area offers suitable foraging habitat for these marine birds, though none are reliant on the area for roosting or nesting. Nine of the species listed in Table 2-2 were observed foraging or transiting over Merimbula Bay waters within the study area during marine ecology investigations including the Wedge-tailed shearwater, Short-tailed shearwater, Silver gull, Little Penguin, Australasian Gannet, Black–faced cormorant, Pied cormorant, Little tern and Crested tern.

Merimbula Bay represents a small proportion of the total area used for foraging by these species. Disturbance during construction phase may alter foraging behaviour for some species over the short-term but is not expected to cause adverse effects on a species life cycle or habitat. The Project would not cause a decline in food resources for any of the listed migratory or marine birds. A limited area of the beach zone that falls within the Project area may be used by some species for resting such as silver gull, little tern and crested tern. During construction phase, such species may avoid the beach zone until the disturbance has passed.

The Project is unlikely to have an adverse effect on any migratory or marine bird and thus no further assessment of significance is required.

