North**Connex**

Building for the future

The new state **transurban**

Environmental Impact Statement

Submissions and Preferred Infrastructure Report Chapters 9 - 12 and Appendices

November 2014

RMS/Pub: 14.478 ISBN 978-1-925093-99-5

Roads and Maritime Services

NorthConnex

Submissions and preferred infrastructure report

NOVEMBER 2014

Prepared by AECOM Australia Pty Ltd Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 2 8934 0000 F +61 2 8934 0001 www.aecom.com ABN 20 093 846 925

AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of Roads and Maritime Services and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on Roads and Maritime Services' description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by Roads and Maritime Services and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Contents

Vo	lume	1	
Glo	ssary o	f terms and abbreviations	xi
Exe	cutive	Summary	xxi
1	Intro	oduction	41
1.1	The	project	41
1.2	Stat	utory context	42
1.3	Purp	bose of the document	
2		rifications – Air quality	
2.1	•	pose of this chapter	
2.2		pter outline	
2.3 2.4		nges since the exhibition of the environmental impact statement ect description	
2.4	2.4.1	Road grade and tunnel design	
	2.4.2	Ventilation system and facilities	
2.5		tilation system design criteria	
	2.5.1	Design capacity of the project's ventilation system	
	2.5.2	Compliance with design criteria and operational monitoring	
2.6	Asse	essment philosophy and conservatism	
	2.6.1	Approach taken to the assessment	63
	2.6.2	Assumptions and conservatism	65
2.7	Traft	fic volumes and assessment scenarios	75
	2.7.1	Forecast traffic volumes	75
	2.7.2	Scope of the operational air quality impact assessment	109
	2.7.3	Assessment scenarios	121
2.8	Emis	ssions inventories	129
	2.8.1	Emission factors	129
	2.8.2	Project tunnel emissions inventories	
	2.8.3	Surface road emissions inventories	
2.9		nnel air quality	
	2.9.1	Design and intended operation of the ventilation system	
	2.9.2	In-tunnel air quality for air quality impact assessment scenarios	
	2.9.3	Variability of in-tunnel air quality	
2.10		eorological data and modelling	
	2.10.1		
		Wind data from the Sydney airport	
	2.10.3	Validation of the CALMET and MM5 models	
	2.10.4	Calm and low wind speed conditions	
	2.10.5		
	2.10.6	Local meteorological monitoring data	

2.11 A	mbient air quality	206
2.11	.1 Approach taken for the project	206
2.11	.2 Approach to particulate matter concentrations (PM _{2.5})	211
2.11	.3 Representativeness of background air quality data	213
2.12 L	ocal and regional terrain	219
2.12	.1 Terrain data used in the air quality impact assessment	219
2.12	.2 Sensitivity analysis of terrain data	220
2.13 D	ispersion modelling	222
2.13	.1 Receiver location grids	222
2.13	.2 Ventilation outlet modelling (CALPUFF)	225
2.13	.3 Surface road modelling (CAL3QHCR)	232
2.14 P	ost-processing of model outputs	247
2.14	.1 Cumulative impacts – consideration of background air quality	247
	.2 Atmospheric reactions – oxides of nitrogen	
2.15 C	perational impact assessment	303
2.15	.1 Air quality modelling results (increased ventilation outlet height)	304
	 .2 Further analysis of air quality modelling results (increased ventilation outlet ht) 309 	
2.15	.3 Conclusions	343
2.16 C	onstruction air quality	347
2.16	.1 Overview of relevant construction activities	347
2.16	.2 Tunnel excavation	348
2.16	.3 Construction program	353
2.16	.4 Construction plant and equipment	354
2.16	.5 Spoil and waste disposal	355
2.16	.6 Construction vehicles	356
2.16	.7 Construction emission sources	356
2.16	.8 Construction motor vehicles and plant	357
2.16	.9 Earth moving, excavation and demolition	358
2.16	.10 Construction water treatment	360
2.16	.11 Construction air quality management	361
3 C	larifications – Ventilation system design	. 363
3.1 A	vailability and effectiveness of in-tunnel air treatment systems	363
3.1.1	Availability of in-tunnel air treatment technologies	363
3.1.2	2 International experience	366
3.1.3	3 Summary	369
3.2 A	Iternative ventilation design configurations	370
3.2.7	1 Options and alternatives	370
3.2.2	2 Scenario 1 – Changes in ventilation outlet height	372
3.2.3	3 Scenario 2 – Relocation of northern and southern ventilation outlets	389
3.2.4	4 Scenario 3 – Addition of intermediate ventilation outlet(s)	403
3.2.	5 Scenario 4 – Changes in ventilation flow rates	423

	3.2.6	Scenario 5 – Treatment of in-tunnel air or ventilation discharges	428
	3.2.7	Summary of scenario analysis	436
4	Cla	rifications – Other issues	443
4.1	Use	of generators to power road headers prior to mains power connection	443
	4.1.1	Description	443
	4.1.2	Environmental assessment	444
4.2	Sou	thern ventilation offtake	445
	4.2.1	Description	445
	4.2.2	Environmental assessment	445
4.3	Stor	age of materials at the Darling Mills Creek construction compound (C2) .	449
	4.3.1	Description	449
	4.3.2	Environmental assessment	449
4.4	Pos	tioning of noise barriers near Coral Tree Drive	453
	4.4.1	Description	453
	4.4.2	Environmental assessment	454
4.5	Con	struction noise mitigation and management measures	
	4.5.1	Description	465
	4.5.2	Environmental assessment	469

Volume 2

5	Con	nmunity involvement	483
5.1	Cons	sultation overview	483
5.2	Cons	sultation activities	483
	5.2.1	Static display of the environmental impact statement	484
	5.2.2	Advertisements in local and regional publications	485
	5.2.3	Community drop-in sessions	485
	5.2.4	Air quality forum	486
	5.2.5	Staffed static displays	486
	5.2.6	Letters, emails and phone calls	487
	5.2.7	1800 number and project email	487
	5.2.8	Project overview document	488
	5.2.9	Project fact sheets and brochures	488
	5.2.10	Community updates	489
	5.2.11	Website updates	489
	5.2.12	Meetings with property owners	489
	5.2.13	Meetings and briefings with stakeholders	
	5.2.14	Other consultation activities	491

5.3	Ong	poing consultation during construction and commissioning	491
5.4	Ong	poing consultation during operation	
6	Sul	bmissions received	493
6.1		pondents	
6.2		erview of the issues raised	
	6.2.1	Government agencies	
	6.2.2	Local councils	
	6.2.3	Other key stakeholders	
	6.2.4	Community	
7		sponses to key stakeholder submissions	
7.1		vernment agencies	
	7.1.1	Environment Protection Authority	
	7.1.2	NSW Health	
	7.1.3	Fisheries NSW	
	7.1.4	Agriculture NSW	587
	7.1.5	Crown Lands	587
	7.1.6	NSW Office of Water	587
	7.1.7	Office of Environment and Heritage	609
	7.1.8	Office of Environment and Heritage – Heritage Council	615
7.2	Loc	al councils	619
	7.2.1	Hornsby Shire Council	619
	7.2.2	The Hills Shire Council	667
	7.2.3	Ku-ring-gai Council	675
7.3	Pea	k groups and advisory organisations	717
	7.3.1	National Roads and Motorists' Association (NRMA)	717
	7.3.2	Public Health Association of Australia	719
	7.3.3	Woolcock Institute of Medical Research	736
	7.3.4	Asthma Foundation of NSW	754
7.4	Sch	ools	761
	7.4.1	Abbotsleigh	761
	7.4.2	Loreto Normanhurst	762
	7.4.3	Knox Grammar School	768
7.5	Chu	Irches and places of worship	769
	7.5.1	Chinese and Australian Baptist Church	769
	7.5.2	St Paul's Anglican Church	772
7.6	Hos	pitals and aged care facilities	774
	7.6.1	Sydney Adventist Hospital	774
7.7	Eleo	cted representatives	
	7.7.1	The Hon Barry O'Farrell MP – State Member for Ku-ring-gai	781
	7.7.2	Mr Matt Kean MP – State Member for Hornsby	785
	7.7.3	Dr Mehreen Faruqi MLC – Member of the NSW Legislative Council	788
	7.7.4	The Hon Philip Ruddock MP – Federal Member for Berowra	795

	7.7.5	
Vo	lume	3
Res	sponse	to community submissions 801
8.1	Stra	tegic justification and project need801
	8.1.1	Need for the project
	8.1.2	Justification
	8.1.3	Project funding
	8.1.4	Tolling and heavy vehicle regulation
8.2	Proj	ect development and alternatives815
	8.2.1	Strategic alternatives
	8.2.2	Options development
	8.2.3	Tender process and alternative tender designs
	8.2.4	Preferred tender design refinements
	8.2.5	Selection of surface infrastructure locations
	8.2.6	Out of scope
8.3	Proj	ject
	8.3.1	Construction program
	8.3.2	Construction methods
	8.3.3	Location and layout of construction compounds
	8.3.4	Operational design
8.4	Plar	nning and statutory requirements
	8.4.1	Approval process
	8.4.2	Adequacy and independence of the environmental impact statement
	8.4.3	Statutory requirements and other approvals
8.5	Con	sultation901
	8.5.1	Level and quality of consultation901
	8.5.2	Consultation during exhibition
	8.5.3	Future consultation
	8.5.4	Endorsements of other submissions
8.6	Con	struction traffic
	8.6.1	Traffic numbers and routes
	8.6.2	Network performance
	8.6.3	Public transport and emergency services
	8.6.4	Impacts to pedestrians and cyclists939
	8.6.5	Traffic safety943
8.7	Ope	erational traffic
	8.7.1	Traffic forecasts and modelling947
	8.7.2	Network performance
	8.7.3	Pedestrians and cyclists
	8.7.4	Traffic safety

	8.7.5	Incident response	971
8.8	Con	struction noise and vibration	973
	8.8.1	Airborne noise	973
	8.8.2	Ground-borne noise	978
	8.8.3	Vibration from surface works	979
	8.8.4	Vibration from tunnelling works	
	8.8.5	Traffic noise	
	8.8.6	Noise from out of hours works	
	8.8.7	Traffic noise from out of hours works	989
	8.8.8	Cumulative noise impacts	
	8.8.9	Property damage and existing condition surveys	
8.9	Ope	rational noise and vibration	
	8.9.1	Traffic noise	
	8.9.2	Vibration	
	8.9.3	Noise attenuation	
	8.9.4	Provision and location of noise barriers	999
	8.9.5	At-property acoustic treatment	1006
	8.9.6	Noise from ancillary facilities	
	8.9.7	Modelling and assessment methodology	1010
8.10	Con	struction air quality	1018
	8.10.1	Dust generation	
	8.10.2	Emissions from plant and equipment	1019
	8.10.3	Odour impacts during construction	1020
8.11	Ope	rational air quality	1021
		Assessment methodology	
		Ventilation system	
	8.11.3	Impacts around the northern ventilation outlet	
	8.11.4	Impacts around the southern ventilation outlet	
	8.11.5	Tunnel support facilities	
	8.11.6	In-tunnel air quality	
	8.11.7	Air quality improvements along Pennant Hills Road	1070
	8.11.8	Air quality monitoring	1070
	8.11.9	Odour impacts	1073
	8.11.10) Impacts from surface roads	1074
8.12		lth	
	8.12.1	Assessment methodology	1077
	8.12.2	Impacts around the northern ventilation outlet	
		Impacts around the southern ventilation outlet	
	8.12.4	In-tunnel	
	8.12.5	Asthma	
	8.12.6	Benefits along Pennant Hills Road	

8.12.7	Noise and vibration	
8.12.8	General health impacts	
8.13 Urba	an design, landscape character and visual amenity	
8.13.1	Construction light spill	1099
8.13.2	Construction visual impact	1100
8.13.3	Operational landscape character impact	1101
8.13.4	Operational visual impact	1103
8.13.5	Operational urban design and landscaping	1109
8.13.6	Operational light spill	1114
8.14 Biod	iversity	1117
8.14.1	Vegetation clearing	1117
8.14.2	Impacts to endangered ecological species	1119
8.14.3	Aquatic environment and changes to hydrology	1121
8.14.4	Indirect and other impacts	1122
8.14.5	Biodiversity management and offsets	1123
8.15 Soci	al and economic	1125
8.15.1	Social and community impacts	1125
8.15.2	Construction amenity and traffic	1127
8.15.3	Operational amenity and traffic	1130
8.15.4	Impacts to economic output	1132
8.16 Hydr	ogeology and soils	1133
8.16.1	Construction erosion and sedimentation	1133
	Construction groundwater impacts	
8.16.3	Settlement	1134
8.16.4	Operational groundwater impacts	1137
8.17 Surfa	ace water	1139
8.17.1	Construction water quality, treatment and discharge	1139
8.17.2	Construction hydrology and flooding	1139
8.17.3	Operational drainage infrastructure	1140
8.17.4	Operational water quality, treatment and discharge	1140
8.17.5	Operational hydrology and flooding	1142
8.18 Non-	Aboriginal heritage	1143
8.18.1	Direct impacts to heritage items	1143
8.18.2	Impacts to heritage conservation areas	1144
8.18.3	Potential indirect impacts	1145
8.19 Abor	iginal heritage	1149
8.19.1	Potential impacts to Aboriginal heritage items	1149
	l use and property	
8.20.1	Property acquisition	1153
8.20.2	Utility and local road impacts	1155
8.20.3	Future development impacts and opportunities	1157
8.20.4	Property values	1158

	8.20.5	Compensation11	60
	8.20.6	Property damage11	61
8.21	Haza	ards and risk11	63
	8.21.1	Construction tunnelling risks11	63
	8.21.2	Electric and magnetic fields11	64
	8.21.3	Incidents in the tunnel11	64
	8.21.4	Bushfires11	69
8.22	Reso	ources and waste11	71
	8.22.1	Construction spoil management and management11	71
	8.22.2	Other construction waste11	73
	8.22.3	Construction resource use11	73
	8.22.4	Operational resource use11	74
	8.22.5	Peak oil11	74
8.23	Gree	enhouse gas and climate change11	77
	8.23.1	Construction greenhouse gas emissions11	77
	8.23.2	Operational greenhouse gas emissions11	77

Volume 4

9	Pre	eferred Infrastructure Report	1179
9.1	Ove	erview	
9.2	Incr	eased height of the ventilation outlets (plus five metres)	
	9.2.1	Description of changes	1181
	9.2.2	Environmental overview of changes	
	9.2.3	Ambient air quality	1181
	9.2.4	Human health	
	9.2.5	Operational visual impacts	
9.3	Bus	movements from the Pioneer Avenue compound (C8)	
	9.3.1	Description of changes	
	9.3.2	Environmental overview of changes	
	9.3.3	Construction traffic and transport	
	9.3.4	Construction traffic noise	
	9.3.5	Summary and justification	
9.4	Ame	ended construction haulage routes	
	9.4.1	Description of changes	
	9.4.2	Environmental overview of changes	
	9.4.3	Construction traffic and transport	
	9.4.4	Construction traffic noise	
	9.4.5	Summary and justification	
9.5	Add	litional construction use at the Junction Road compound (C11)	
	9.5.1	Description of changes	
	9.5.2	Environmental overview of changes	

	9.5.3	Construction traffic and transport	1279
	9.5.4	Construction noise and vibration	1279
	9.5.5	Summary and justification	
9.6	Addi	tional property acquisition at the Wilson Road compound (C6)	
	9.6.1	Description of changes	
	9.6.2	Environmental overview of changes	
9.7	Cond	clusion	
10	Rev	ised summary of mitigation measures	1285
11	Con	clusion and next steps	1313
12	Refe	erences	1315

Appendices

Appendix A	Stakeholder identification numbers
Appendix B	Wind roses

9 Preferred Infrastructure Report

9.1 Overview

During and subsequent to the exhibition of the environmental impact statement, five changes have been made to the project described in the environmental impact statement. These changes are a result of ongoing design development, refinement of construction methods or in response to concerns raised in public submissions and other community and stakeholder engagement mechanisms. These five changes are:

- Increase in the height of the northern and southern ventilation outlets by five metres based on the outcome of further consideration of alternative ventilation design configurations documented in **Section 3.2** of this report.
- Increase in bus movements per hour from the Pioneer Avenue compound (C8), to maximise use of this facility and to minimise potential construction employee traffic and parking impacts on the road network surrounding the other construction compounds.
- Amended construction haulage routes for the southern interchange compound (C5), the Trelawney Street compound (C7) and the northern interchange compound (C9) to reduce impacts on local residential roads.
- Inclusion of additional uses at the Junction Road compound (C11), to allow for construction materials laydown and improve construction phase management.
- Additional property acquisition at the Wilson Road compound (C6) to provide safe access arrangements.

Bracketed references to construction compounds are consistent with those used throughout the environmental impact statement.

9.2 Increased height of the ventilation outlets (plus five metres)

9.2.1 Description of changes

Based on further analysis of ventilation system design options and alternatives presented in **Section 3.2** of this report, an increase in the height of the northern and southern ventilation outlets by five metres has been identified as a feasible and reasonable measure to optimise the ventilation systems and further reduce the ambient air quality impacts and associated human health risks as a result of operation of the project.

As such, the project is proposed to be amended to increase the ventilation outlet heights by five metres.

9.2.2 Environmental overview of changes

The increase in ventilation outlet height from that presented in the environmental impact statement has been reviewed to identify relevant potential environmental impacts for further, more detailed assessment. This review has concluded that an increase in the height of the ventilation outlets would result in changes to:

- Ambient air quality. Further assessment of ambient air quality impacts has therefore been conducted, and is included in **Section 9.2.3**.
- Human health impacts. Further assessment of human health impacts has therefore been conducted, and is included in **Section 9.2.4**.
- Operational visual impacts. Further assessment of operational visual impacts has therefore been conducted, and is included in **Section 9.2.5**.

The change in ventilation outlet height would not affect other environmental and land use impacts. In particular, the noise and vibration performance of the ventilation outlets is not anticipated to change as a result of the increase in ventilation outlet height.

9.2.3 Ambient air quality

The increased height of the ventilation outlets would alter the potential ambient air quality impacts of the project. As part of the revised air quality impact assessment, changes have been made to the assessment methodology to address relevant issues raised in submissions, including those from the Environment Protection Authority, NSW Health and various members of the community. Key changes have included:

- Increased resolution in the receiver grid applied around each ventilation outlet (ie reduced receiver grid spacing).
- Application of higher resolution topographic data.
- Revision of future projections of vehicle fleet fuel mix, to reflect an increased use of diesel fuel in the future).
- Amendment to the ozone limiting method equation to take into account a NO₂:NO_x ratio of 16 per cent, as recommended by the Environment Protection Authority.

A summary of how these changes have been made to the air quality impact assessment is provided in **Table 9-1**. Full details of the methodology, assumptions and inputs that have been applied to this air quality impact assessment are provided in **Chapter 2** of this report.

Issue raised with the EIS assessment	Change made to the assessment approach
Receiver grid spacing of 150 metres may be too coarse.	 The receiver grid has been recalculated for the following refined spacings: 25 metre spacing for an area of 500 metres by 500 metres centred on each ventilation outlet. 50 metre spacing for an area of 1,000 metres by 1,000 metres centred on each ventilation outlet. 100 metre spacing for an area of 4,000 metres by 4,000 metres centred on each ventilation outlet.
The 90 metre SRTM topographic data used to determine the receiver grid elevations may be too coarse or may not reflect local conditions.	The topographic data have been re-extracted using five metre resolution Land and Property Information (LPI) data. The elevations of the discrete receivers and the ventilation outlet locations have been identified using this revised data.
Vehicle fleet composition data was based on 2013 Australia Bureau of Statistics data. This may potentially underestimate the future percentage of diesel vehicles as sales trends show an increase in diesel passenger vehicles.	2008 and 2013 Australian Bureau of Statistics data have been used to extrapolate predicted fleet compositions for 2019 and 2029. The data have then been used when calculating vehicle emissions to inform the project's emissions inventory. The emission rates in the air quality dispersion model have been adjusted accordingly.
Ozone limiting method (OLM) equation does not reflect the ratio of NO_2 : NO_x identified from the NSW vehicle fleet by the Environment Protection Authority.	The ozone limiting method calculation has been amended to reflect a NO_2 : NO_x of 16 per cent, as detailed in the response to the submission made by the Environment Protection Authority (refer to Section 7.1.1.3 of this report).

Table 9-1	Changes to dispersion model inputs
-----------	------------------------------------

Table 9-2 summarises the outcomes of the revised air quality dispersion modelling, under forecast traffic volumes in 2019 and 2029, and for 'design analysis A' (the worst case traffic scenario). Modelling outputs are presented as project contributions (without the addition of background pollutant concentrations), for direct comparison with modelling outcomes for the original ventilation outlet heights (as presented in the environmental impact statement).

Table 9-3 presents the outcomes of the air quality modelling included in the environmental impact statement and compares them with the outcomes of the revised air quality dispersion modelling. As expected with an increase in ventilation outlet height, most ground level concentrations of emissions would decrease by a significant percentage (up to 60 per cent reduction in some cases), although it is recognised that the concentrations were originally very low and remain very low. However, counterintuitively, some peak ground level concentrations of emissions are predicted to increase, despite the increase in ventilation outlet heights. This would only occur for one hour in three years and is still within the applicable impact assessment criteria.

Further analysis has identified the cause of this increase in some peak ground level concentrations as the same rare meteorological conditions that produced the infrequent elevated NO_2 concentrations presented in the environmental impact statement. This issue has been discussed in response to the submission received from the Environment Protection Authority (refer to **Section 7.1.1.3** of this report) and is analysed in more detail below.

			Predicted m	aximum proje	ct contributior	ns (μg/m³)			
Pollutant	Averaging period	Value		With project – forecast traffic in 2019		With project – forecast traffic in 2029		Design analysis A	
			Northern ventilation outlet	Southern ventilation outlet	Northern ventilation outlet	Southern ventilation outlet	Northern ventilation outlet	Southern ventilation outlet	standards (μg/m³)
	24 hour maximum	Peak project contribution	1.0	0.6	1.3	1.2	1.8	1.9	50
		% of criterion	2.0%	1.3%	2.6%	2.4%	3.6%	3.9%	-
PM ₁₀	Annual average	Peak project contribution	0.05	0.05	0.08	0.06	0.12	0.11	30
		% of criterion	0.2%	0.2%	0.3%	0.2%	0.4%	0.4%	-
	24 hour maximum	Peak project contribution	1.0	0.6	1.2	1.1	1.7	1.8	25
PM _{2.5}		% of reporting standard	2.5%	4.8%	4.5%	6.8%	7.3%	2.5%	-
PIVI _{2.5}	Annual average	Peak project contribution	0.05	0.04	0.08	0.05	0.11	0.11	8
	Annual average	% of reporting standard	0.6%	0.5%	1.0%	0.7%	1.4%	1.3%	-
	1 hour maximum	Peak project contribution	54.3	69.0	58.3	76.0	70.4	91.8	246
NO		% of criterion	22.1%	28.0%	23.7%	30.9%	28.6%	37.3%	-
NO ₂	Annual average	Peak project contribution	0.6	0.8	0.8	1.3	1.3	1.8	62
		% of criterion	1.0%	1.3%	1.3%	2.0%	2.1%	2.9%	-
СО	1 hour maximum	Peak project contribution	181.8	48.4	217.5	57.9	172.0	114.5	100,000
		% of criterion	0.18%	0.05%	0.22%	0.06%	0.17%	0.11%	-

Table 9-2 Revised predicted air quality outcomes for project operation in 2019, 2029 and design analysis A (increased ventilation outlet height)

			Predicted maximum project contributions (µg/m³)							
Pollutant	Averaging period	Value	With project – forecast traffic in 2019		With project – forecast traffic in 2029		Design analysis A		Impact assessment criteria/	
			Northern ventilation outlet	Southern ventilation outlet	Northern ventilation outlet	Southern ventilation outlet	Northern ventilation outlet	Southern ventilation outlet	standards (μg/m³)	
	8 hour maximum	Peak project contribution	36.0	17.2	45.5	31.5	59.0	51.5	30,000	
		% of criterion	0.12%	0.06%	0.15%	0.10%	0.20%	0.17%	-	
Total VOC	1 hour 99.9th	Peak project contribution	2.6	1.7	3.5	2.3	5.4	4.2	29 [*]	
	percentile	% of criterion	9.1%	5.8%	12.2%	8.0%	18.5%	14.6%	-	
PAHs	1 hour 99.9th	Peak project contribution	0.0005	0.0003	0.0006	0.0004	0.0011	0.0008	0.4**	
-	percentile	% of criterion	0.12%	0.08%	0.15%	0.10%	0.27%	0.21%	-	
* as benzo(a	a)pyrene	** as benzene	÷	•			•	•		

			Predicted maximum project contributions (μg/m³)							
Pollutant	Averaging	Design	With project - traffic in 2019		With project - traffic in 2029		Design analysis A		Impact assessment criteria	
	period	Ū	Northern ventilation outlet	Southern ventilation outlet	Northern ventilation outlet	Southern ventilation outlet	Northern ventilation outlet	Southern ventilation outlet	(μg/m ³)	
	24 hour	+5 metre ventilation outlet	1.02*	0.65	1.28	1.18	1.80	1.93	- 50	
	maximum	EIS predictions	0.95	1.39	1.37	2.14	2.23	3.13	50	
PM ₁₀		% change	7%*	-53%	-7%	-45%	-19%	-38%		
1 10110	Annual	+5 metre ventilation outlet	0.05	0.05	0.08	0.06	0.12	0.11	- 30	
	average	EIS predictions	0.09	0.11	0.11	0.13	0.17	0.26	30	
		% change	-41%	-60%	-25%	-58%	-32%	-57%		
	24 hour	+5 metre ventilation outlet	0.96*	0.62	1.20	1.13	1.70	1.82	- 25	
	maximum	EIS predictions	0.90	1.34	1.30	2.01	2.11	2.97		
PM _{2.5}		% change	7%*	-54%	-7%	-44%	-19%	-39%		
F IVI2.5	Annual	+5 metre ventilation outlet	0.05	0.04	0.08	0.05	0.11	0.11	0	
	average	EIS predictions	0.08	0.11	0.10	0.13	0.16	0.25	- 8	
		% change	-41%	-60%	-25%	-59%	-31%	-57%		
	1 hour	+5 metre ventilation outlet	54.3	69.0**	58.3	76.0**	70.4	91.8	246	
NO ₂	maximum	EIS predictions	68.9	61.8	74.6	65.0	114.8	98.2		
		% change	-21%	12%**	-22%	17%**	-39%	-7%		

Table 9-3 Comparison of revised air quality modelling results against EIS modelling results

NorthConnex

Submissions and preferred infrastructure report

			Predicted maximum project contributions (μg/m³)						
Pollutant	Averaging	Design	With project traffic in 2019			With project – forecast traffic in 2029		Design analysis A	
	period	U U	Northern ventilation outlet	Southern ventilation outlet	Northern ventilation outlet	Southern ventilation outlet	Northern ventilation outlet	Southern ventilation outlet	criteria (μg/m³)
	Annual	+5 metre ventilation outlet	0.6	0.8	0.8	1.3	1.3	1.8	- 62
	average	EIS predictions	1.4	1.2	1.7	1.4	2.5	2.4	
		% change	-55%	-31%	-53%	-10%	-47%	-24%	
	1 hour	+5 metre ventilation outlet	181.8**	48.4	217.5**	57.9	172.0	114.5	- 100,000
	maximum	EIS predictions	86.6	70.1	107.4	90.3	179.3	166.7	100,000
0		% change	110%**	-31%	103%**	-36%	-4%	-31%	
	8 hour	+5 metre ventilation outlet	36.0**	17.2	45.5	31.5	59.0	51.5	- 30,000
	maximum	EIS predictions	32.4	33.1	54.2	57.9	80.3	81.7	
		% change	11%**	-48%	-16%	-46%	-27%	-37%	
Fotal VOC	1 hour 99.9th	+5 metre ventilation outlet	2.63	1.67	3.53	2.33	5.35	4.24	- 29***
	percentile	EIS predictions	4.07	3.72	5.38	5.36	7.40	8.96	29
		% change	-35%	-55%	-35%	-56%	-28%	-53%	
	1 hour 99.9th	+5 metre ventilation outlet	0.0005	0.0003	0.0006	0.0004	0.0011	0.0008	- 0.4****
	percentile	EIS predictions	0.0007	0.0007	0.0009	0.0009	0.0015	0.0018	0.4
		% change	-34%	-54%	-31%	-56% as benzene	-28%	-53%	

When compared to the concentrations presented in the environmental impact statement, the increase in ventilation outlet heights by five metres generally results in a decrease in ground level concentrations. For the forecast traffic volumes, these decreases are:

- Annual average PM₁₀ and PM_{2.5} concentrations, up to 60 per cent at the southern ventilation outlet and up to 41 per cent at the northern ventilation outlet.
- Annual average nitrogen dioxide concentrations, up to 31 per cent at the southern ventilation outlet and up to 55 per cent at the northern ventilation outlet.
- Eight hour maximum carbon monoxide concentrations, up to 48 per cent at the southern ventilation outlet and up to 16 per cent at the northern ventilation outlet.
- Total volatile organic compounds, up to 56 per cent at the southern ventilation outlet and up to 35 per cent at the northern ventilation outlet.
- Polycyclic aromatic hydrocarbons, up to 56 per cent at the southern ventilation outlet and up to 34 per cent at the northern ventilation outlet.

There is, however, an increase in some pollutants for some averaging periods. As identified above some changes have been made to the dispersion modelling inputs and, therefore, the revised concentrations are not directly comparable with those presented in the environmental impact statement. These changes to the dispersion modelling input may explain some of these increases in pollutants. The meteorological conditions during these modelling outcomes have also been investigated. The period of this increase is limited to one day over three years (in the case of particulate matter) or one hour over three years (in the case of nitrogen dioxide and carbon monoxide).

A detailed analysis of the rare and infrequent meteorological conditions that cause predicted peak concentrations of some pollutants to increase is provided in **Section 2.15.2** of this report. This analysis demonstrates that these predicted peak pollutant concentrations are rare and not typical of normal conditions experienced during operation of the project.

Rare peak concentrations have been identified as being caused by predicted strong winds. As wind speed increases with height above the ground, the wind speeds occurring at the top of the increased ventilation outlets are higher than experienced at the top of the ventilation outlets as presented in the environmental impact statement.

When the ambient winds are higher than the exit velocity of the plume, such as occurs during the predicted peak concentrations, outlet tip downwash is more likely to occur (where the plume is quickly brought down towards ground level before any substantial dispersion can occur). Such conditions occur rarely (refer to **Section 2.15.2**), and while the ambient wind speeds calculated by the meteorological model are likely to be overestimates of actual conditions, it is possible for these conditions to occur. As such, the meteorological conditions and the associated pollutant predictions are considered to be valid, but conservative.

This issue can be further contextualised by considering the relative contributions of the project to ambient pollutant concentrations, as distinct from the contributions made by background air quality. A review of the pollutants which show increased concentrations is provided below (NO₂, CO and particulate matter (PM_{10} and $PM_{2.5}$).

Nitrogen dioxide

Figure 9-1 shows the frequency distribution for predicted nitrogen dioxide (one hour average) contributions at the most affected receiver location. The figure shows predictions for ventilation heights as presented in the environmental impact statement and with an increase in ventilation outlet height by five metres. Data are presented for 2019, being the year in which modelling outcomes have been identified as increasing above the predictions presented in the environmental impact statement.

Data presented in Figure 9-1 are also provided numerically in Table 9-4.

Figure 9-1 and Table 9-4 show:

- The maximum project contribution of nitrogen dioxide (one hour average) at the most affected location in 2019 (69 µg/m³) for the increased ventilation height configuration would be an unusual and infrequent event. Nitrogen dioxide concentrations of this level are only expected to occur for one hour in three years (around 0.004 per cent of the time).
- The peak value is nearly twice the second highest concentration, confirming the anomalous nature of the peak value.
- For all but four hours in the three year period assessed, the project contributions are expected to be less than $30 \ \mu g/m^3$ (12 per cent of the applicable criterion).
- Over a three year period, the contribution from the project is expected to represent less than four per cent of the applicable ambient air quality criterion for NO₂ (one hour average) (20 μg/m³) for 98 per cent of the time.
- The predicted concentrations for the increased ventilation outlet height configuration are clearly lower than the environmental impact statement predictions for the vast majority of the hours ranked between the third highest and 500th highest predicted concentrations. Beyond this, predicted concentrations for all scenarios (original ventilation outlet height and increased ventilation height are all very low (less than $10 \ \mu g/m^3$)
- Overall, with the exception of the singular peak concentration (one hour in three years), the project contribution of nitrogen dioxide to the airshed would be minor and less than that predicted in the environmental impact statement.

Project contribution (NO ₂ , one hour) (µg/m³)	Number of hours in three years	Percentage of hours in three years	Percentage of ambient air quality criterion
Maximum – 68.96 µg/m ³	1	0.004%	28%
35 µg/m ³ to 68.96 µg/m ³	2	0.008%	14% to 28%
30 µg/m ³ to 35 µg/m ³	1	0.004%	12% to 14%
20 µg/m3 to 30 µg/m ³	95	0.36%	8% to 12%
10 μg/m ³ to 20 μg/m ³	439	1.67%	4% to 8%
Total	538	2.0%	> 4%

Table 9-4 Frequency of NO₂ (one hour average) project contributions at the most affected location (2019 forecast traffic, increased ventilation outlet height)

Carbon monoxide

Figure 9-2 shows the frequency distribution for predicted carbon monoxide (one hour average) contributions at the most affected receiver location. The figure shows predictions for ventilation heights as presented in the environmental impact statement and with an increase in ventilation outlet height by five metres. Data are presented for 2019, being the year in which modelling outcomes have been identified as increasing above the predictions presented in the environmental impact statement.

Data presented in **Figure 9-2** are also provided numerically in **Table 9-5**. The figure and the table show:

- The maximum project contribution of carbon monoxide (one hour average) at the most affected location in 2019 (181.8 µg/m³) for the increased ventilation outlet height configuration would be an unusual and infrequent event. This peak concentration is predicted to occur for only one hour in three years (around 0.004 per cent of the time).
- The peak value is more than twice the second highest predicted concentration, confirming the anomalous nature of the peak value.
- Project contributions of less than $1 \mu g/m^3$ (ie less than 0.003 per cent of the applicable criterion) are predicted to occur more than 99 per cent of the time.
- The predictions for the increased ventilation outlet height configuration are clearly lower than the environmental impact statement predictions for the hours ranked between the fifth and 400th highest prediction concentration.
- Overall, the predicted project contribution of carbon monoxide to the airshed is considered would be minor and less than that predicted in the environmental impact statement.

Project contribution (CO, one hour) (μg/m³)	Number of hours in three years	Percentage of hours in three years	Percentage of ambient air quality criterion
Maximum – 181.8 µg/m ³	1	0.004%	0.6%
100 μg/m ³ to 181.8 μg/m ³	0	0%	0.3% to 0.6%
30 µg/m ³ to 100 µg/m ³	2	0.008%	0.1% to 0.3%
5 µg/m ³ to 30 µg/m ³	13	0.05%	0.02% to 0.1%
1 μ g/m ³ to 5 μ g/m ³	185	0.7%	0.003% to 0.02%
Total	201	0.8%	> 0.003%

Table 9-5 Frequency of CO (one hour average) project contributions at the most affected location (2019 forecast traffic, increased ventilation outlet height)

Particulate matter

Analysis of particulate matter has focused on $PM_{2.5}$, given its significance in terms of human health risks. The outcomes would be very similar for PM_{10} , noting the similarity in mass emissions of PM_{10} and $PM_{2.5}$ from the project's ventilation outlets.

Figure 9-3 shows the frequency distribution for predicted $PM_{2.5}$ (24 hour average) contributions at the most affected receiver location. The figure shows predictions for ventilation heights as presented in the environmental impact statement and with an increase in ventilation outlet height by five metres. Data are presented for 2019, being the year in which modelling outcomes have been identified as increasing above the predictions presented in the environmental impact statement.

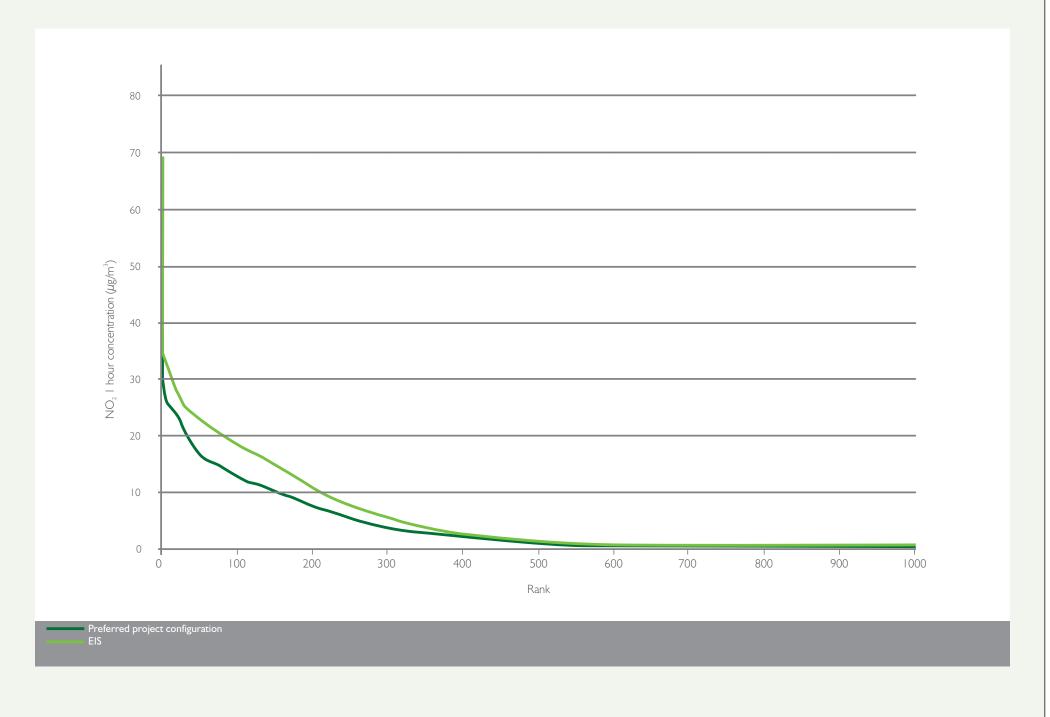
Data presented in **Figure 9-3** are also provided numerically in **Table 9-6**. The figure and the table show:

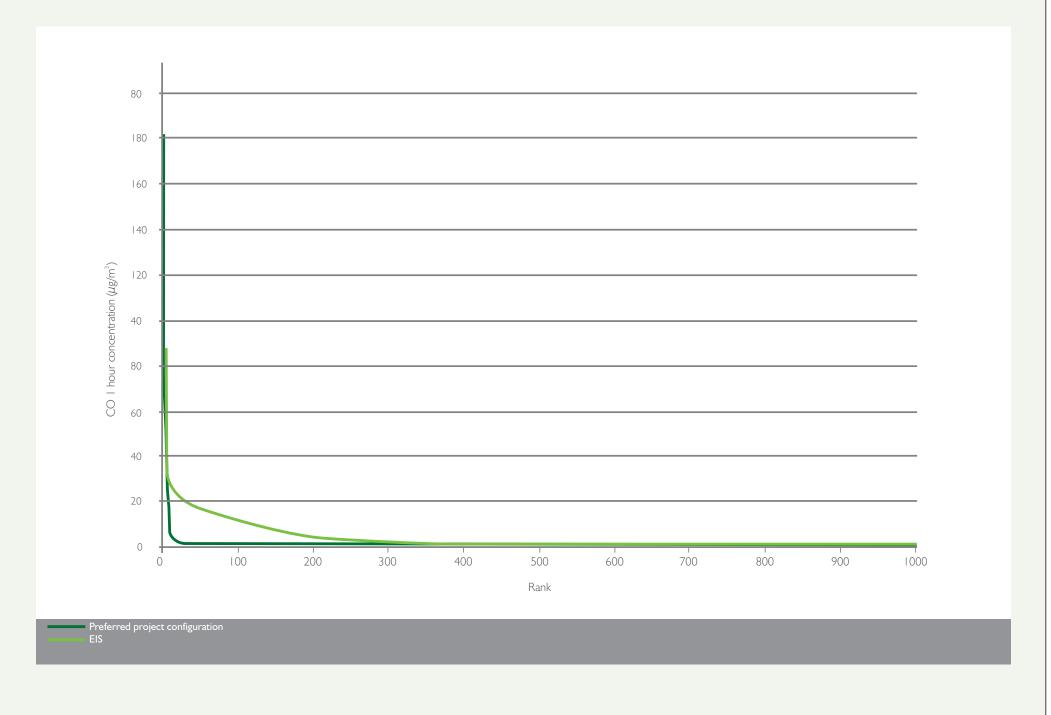
- The maximum project contribution of PM_{2.5} (24 hour average) at the most affected location in 2019 (0.96 μg/m³) would be an unusual and infrequent event. This peak concentration is predicted to occur for only one day in three years (around 0.09 per cent of the time).
- The peak value is more than twice the second highest concentration, confirming the anomalous nature of the peak concentration.
- The project contributions of PM_{2.5} (24 hour) are expected to be less than 0.05 µg/m³ (0.002 per cent of the advisory reporting standard) for more than 99 per cent of the time.
- The predicted project contributions for the increased ventilation outlet height configuration are clearly lower than the environmental impact statement predictions for the days ranked between third and 200th highest predicted concentrations.
- The project contribution of PM_{2.5} would be minor and less than that predicted in the environmental impact statement.

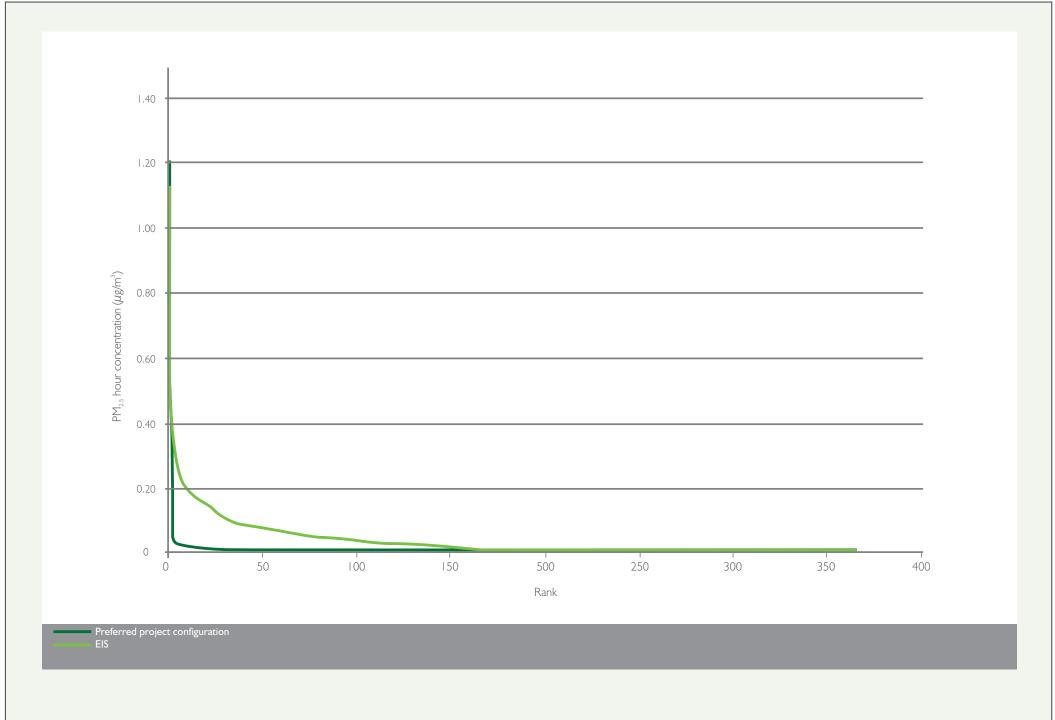
Project contribution (PM ₁₀ , 24 hour) (μg/m³)	Number of days in three years	Percentage of days in three years	Percentage of reporting standard	
Maximum – 0.96 µg/m ³	1	0.09%	2%	
0.4 μg/m ³ to 0.96 μg/m ³	0	0%	1% to 2%	
0.1 µg/m ³ to 0.4 µg/m ³	2	0.18%	0.% to 1%	
0.05 μg/m ³ to 0.1 μg/m ³	2	0%	0.02% to 0.2%	
0.01 µg/m ³ to 0.05 µg/m ³	144	13%	0.002% to 0.02%	
Total	149	14%	> 0.002%	

Table 9-6 Frequency of PM_{2.5} (24 hour average) project contributions at the most affected location (2019 forecast traffic, increased ventilation outlet height)

Conclusion


The outcome of this investigation into the peak concentrations is supported by the modelling predictions for total volatile organic compounds and polycyclic aromatic hydrocarbons, which are reported as 99.9th percentile concentrations (which exclude the peaks). The increased ventilation outlet height configuration results for these pollutants are between 28 per cent and 55 per cent lower than the environmental impact statement predictions. Furthermore, the predicted annual average concentrations for the increased ventilation outlet height configuration for the increased ventilation outlet height configurations for the increased ventilation outlet height configurations for the increased ventilation outlet height configuration.


Based on the analysis presented in **Section 2.15.2** of this report, the meteorological conditions that cause predicted peak ground level concentrations are rare events that would not be characteristic of typical conditions during operation of the project.


The analysis presented in **Section 2.15.2** has identified a number of factors affecting predicted short term average concentrations of emissions around the northern and southern

ventilation outlets. These include rare and infrequent meteorological conditions leading to outlet tip downwash, and conditions associated with onshore-offshore winds.

Based on the results provided, the increase in ventilation outlet heights results in an overall decrease in concentrations with the exception of a very small number of hours that are characterised by outlet tip downwash conditions. These downwash conditions are not common and can be considered a rare event and not likely to result in regular ongoing elevated pollutant concentrations. The analysis presented above also demonstrates that although onshore-offshore wind switch occur regularly, the frequency of these conditions leading to an elevated ground level concentration is very low (so as to be an extreme outlier in the data set).

9.2.4 Human health

As shown above, the relevant concentration levels for oxides of nitrogen, carbon monoxide, volatile organic compounds and polycyclic aromatic hydrocarbons all decrease as a result of the increased ventilation outlet height and, as such, all remain below the level at which adverse health outcomes are expected to occur. Consistent with the approach for the environmental impact statement, these pollutants have not been carried forward for more detailed assessment. As the human health risk assessment is concerned with long term (or chronic) exposures to pollutants, the short term (or acute) increases in pollutants over those presented in the environmental impact statement would not result in increased health risks and have, therefore, not been considered further.

Human health risks associated with emissions from the project's ventilation outlets are principally a function of chronic (longer term) exposure to $PM_{2.5}$. Changes in human health risks as a consequence of increasing the height of the ventilation outlets would therefore be similar to the predicted reductions in annual average $PM_{2.5}$ concentrations.

Table 9-7 summarises estimated increases in incidence of primary health indicators as a result of increasing the ventilation outlet height by five metres and includes a comparison with the same data presented in the environmental impact statement for 15 metre ventilation outlets. Similar changes in health outcomes would be expected for the other health indicators examined as part of the environmental impact statement (secondary health indicators, exposure to diesel particulate matter and asthma).

The results show a decrease in annual incidence for all primary health indicators by between 25 per cent and 50 per cent when compared to the health indicators presented in the environmental impact statement. These health effects are very low and significantly less than the normal variability in cases per year in the population.

Primary health indicator	Baseline incidence per year	Normal incidence variability (cases per year)	Increased incid year) - EIS	ence (cases per	Increased incidence (cases per year) – increased ventilation outlet height		
	(per 100,000)		2019	2029	2019	2029	
Northern ventilation outlet							
Mortality from all causes (≥ 30 years of	1,087	1	0.03	0.04	0.02	0.03	
age)							
Rate of hospitalisation with	23,352	40	0.02	0.03	0.01	0.02	
cardiovascular disease (≥ 65 years of							
age)							
Rate of hospitalisation with respiratory	8,807	17	0.005	0.005	0.003	0.004	
disease (≥ 65 years of age)							
Southern ventilation outlet							
Mortality from all causes (≥ 30 years of	1,087	1	0.03	0.03	0.01	0.01	
age)							
Rate of hospitalisation with	23,352	40	0.02	0.02	0.01	0.01	
cardiovascular disease (≥ 65 years of							
age)							
Rate of hospitalisation with respiratory	8,807	17	0.004	0.004	0.002	0.002	
disease (≥ 65 years of age)							

Table 9-7 Estimated increases in incidence of primary health effects (per year) – increased ventilation outlet heights

9.2.5 Operational visual impacts

The increased height of the ventilation outlets would alter the extent of visual impacts associated with these facilities. The urban design and landscaping treatments of these facilities are not proposed to be altered, although it is noted that this would be subject to the future development of the Urban Design and Landscape Plan for the project. As identified in Appendix D of the environmental impact statement, this plan would be developed in consultation with the local community and the relevant local council(s).

A revised assessment of the potential visual impacts from the two ventilation outlets is provided below.

Northern ventilation facility

Figure 9-4 illustrates the theoretical visibility (the visual envelope) of the northern ventilation facility from the surrounding area. This figure shows the visibility based on the ventilation outlet height within the environmental impact statement, and the increased visibility based on an increased height of five metres. This shows the increased height results in a marked increase in the visibility of the ventilation outlet as the new outlet height would be visible above screening features such as vegetation and existing noise walls.

This increased visibility, however, is of a discrete raised element of the facility and, for the majority of receivers, would be viewed as a relatively small component within the broader landscape.

Revised artist's impressions of the facility from surrounding residential areas and from the M1 Pacific Motorway are provided in **Figure 9-5** to **Figure 9-7**. Revised visual impact ratings are presented in **Table 9-8**.

As the increased ventilation outlet height only affects a discrete component of the facility, it would not result in a significant change in the visual impacts for the most affected receivers. The overall visual impact rating would be consistent with that described in the environmental impact statement.

Southern ventilation facility

Figure 9-8 illustrates the theoretical visibility of the southern ventilation facility from the surrounding area. This figure shows the visibility based on the ventilation outlet height within the environmental impact statement, and the increased visibility based on an increased height of five metres. This shows the increased height results in a slight increase in the visibility of the operational infrastructure.

This increased visibility is of a discrete raised element of the broader motorway operations complex and, for the majority of receivers, would be viewed as a small component within the broader landscape.

Revised artist's impressions of the facility from surrounding residential areas and from Pennant Hills Road are provided in **Figure 9-9** to **Figure 9-11**. Revised visual impact ratings are presented in **Table 9-8**.

As the increased height only affects a discrete component of the larger motorway operations complex, it would not result in a significant change in the visual impacts for the most affected receivers. The overall visual impact rating would be consistent with that described in the environmental impact statement.

Table 9-8	Operational visual impact assessment – increased ventilation outlet height
-----------	--

Dessiver			EIS			+5 metres	
Receiver number	Receiver	Sensitivity of receivers	Magnitude of change	Overall rating	Sensitivity of receivers	Magnitude of change	Overall rating
Northern ve	ntilation facility						
1	Residential – Woonona Avenue and Bareena Avenue	High to moderate	High to moderate	High to moderate	High to moderate	High to moderate	High to moderate
2	Motorists – M1 Pacific Motorway	Moderate to low	Moderate to low	Moderate to low	Moderate to low	Moderate to low	Moderate to low
Southern ve	entilation facility/ motorway operation	s complex				1	
1	Residential – Gum Grove Place	High to moderate	High to moderate	High to moderate	High to moderate	High to moderate	High to moderate
2	Residential – Karloon Road/ Eaton Road intersection	High	High	High	High	High	High
3	Residential – Coral Tree Drive	Moderate	High to moderate	High to moderate	Moderate	High to moderate	High to moderate
4	Motorists – Pennant Hills Road/ Hills M2 Motorway interchange	Low	Low	Low	Low	Low	Low
5	Motorists – Copeland Road/ Pennant Hills Road intersection	Low	Low	Low	Low	Low	Low

Figure 9-4 Northern ventilation facility visual envelope map