APPENDIX H

Dendrobium Mine Extension Project

 Road Transport AssessmentPrepared for: Illawarra Metallurgical Coal

23 March 2022
The Transport Planning Partnership
E: info@ttpp.net.au

Dendrobium Mine Extension Project

 Road Transport AssessmentClient: Illa wa ra Metallurgical Coal
Version: Draft 05
Date: 23 March 2022
TIPP Reference: 21149

Quality Record

Version	Date	Prepared by	Approved by	Signature
Final	$23 / 03 / 2022$	PJD	PJD	Phalton

Table of Contents

1 Introduction 1
2 Dendrobium Mine 5
2.1 Dendrobium Pit Top 6
2.1.1 Location and Access 6
2.1.2 Workforce 6
2.1.3 Deliveries and Visitors 7
2.2 Kemira Valley Coal Loading Facility 7
2.2.1 Location and Access 7
2.2.2 Workforce 7
2.2.3 Deliveries and Visitors 7
2.3 Dendrobium CPP 8
2.4 Shaft Numbers 1, 2 and 3 8
2.5 Traffic Management Plan 8
2.6 Cordeaux Pit Top 10
3 Dendrobium Mine Extension Project 11
3.1 Project Description 11
3.2 Dendrobium Pit Top 12
3.3 Kemira Valley Coal Loading Facility 12
3.4 Dendrobium CPP 13
3.5 Shaft Numbers 1, 2 and 3 13
3.6 Shaft Site No. 5A 13
3.7 Cordeaux Pit Top 14
3.8 Traffic Assessment Sc ena rios 14
4 Existing Road Environment. 15
4.1 Road Network 15
4.2 Railway Level C rossings 17
4.3 TFNSW Traffic Volume Data 18
4.4 Traffic Surveys 2017 21
4.5 Traffic Survey 2021 25
4.6 Road Crash History 26
4.6.1 Cordeaux Road 28
4.6.2 Hary Graham Drive and Mount Keira Road 28
4.6.3 Picton Road 29
transport planning
4.7 Dendrobium Mine Traffic 29
4.7.1 Dendrobium Mine Traffic Distribution 30
4.7.2 Dendrobium Pit Top 31
4.7.3 Kemira Valley Coal Loading Facility 33
4.7.4 Dendrobium CPP 34
4.8 Maldon to Dombarton Rail Coridor 35
5 Project Traffic Generation 36
5.1 Construction Traffic 36
5.1.1 Dendrobium Pit Top 36
5.1.2 Shaft Site No. 5A 38
5.1.3 Regional Operations Centre 40
5.2 Operational Traffic 40
5.2.1 Dendrobium Pit Top 41
5.2.2 Shaft Site No. 5A 42
6 Impacts of the Project 43
6.1 Future Traffic Volumes 43
6.1.1 Dendrobium Pit Top 43
6.1.2 Shaft Site No. 5A 45
6.2 Operation of Intersections 45
6.2.1 Dendrobium Pit Top 46
6.2.2 Shaft Site No. 5A 47
6.3 Car Parking 48
6.3.1 Dendrobium Pit Top 48
6.3.2 Shaft Site No. 5A 48
6.4 Kemira Valley Rail Level C rossings 48
6.5 Road Safety 49
6.6 Oversize and Overmass Vehic les 49
6.7 Dangerous Goods Vehic les 50
6.8 Construction Water Transportation (Option) 50
6.9 Mitigation Mea sures 52
7 Summary and Conclusions 53
7.1 Summary 53
7.2 Conclusions 56

Tables

Table 1.1: Coverage of SEARs Relevant to the Road Transport Environment 1
Table 2.1: Underground Operational Shifts at Dendrobium Pit Top 6
Table 4.1: AADTVolumes at TfNSW Count Stations (vehic les per day) 18
Table 4.2: C haracteristic s of Average Weekday Traffic on Picton Road near Wilton 20
Table 4.3: 2017 Da ily Traffic by Day of the Week (vehic les per day) 22
Table 4.4: Average Weekday Daily Traffic Composition (\%) 23
Table 4.5: Average Weekday Peak Hour Traffic 2017 (vehic les per hour) 24
Table 4.6: Dendrobium Pit Top Survey 2021 25
Table 4.7: C rash Types on Project Access Routes (1 October 2015 to 30 September 2020) 27
Table 4.8: Direct Employee Directional Travel to/from Dend robium Mine 30
Table 4.9: Dendrobium Pit Top Vehicle Trips by Type 32
Table 4.10: Dendrobium Pit Top Vehicle Trip Distribution 33
Table 4.11: Kemira Valley Coal Loading Facility Vehicle Trips by Type 34
Table 5.1: Dendrobium Pit Top C onstruction Vehic le Trips by Type 37
Table 5.2: Shaft Site No. 5A C onstruction Vehic le Trips by Type 40
Table 5.3: Dendrobium Pit Top Additional Operational Vehicle Trips by Type 42
Table 6.1: Average Weekday Traffic on Cordeaux Road East of Stones Road - No Project. 43
Table 6.2: Forecast Average Weekday Traffic on Cordeaux Road East of Stones Road 44
Table 6.3: Forecast Average Weekday Traffic on Picton Road near Wilton 45
Table 6.4: Intersection Level of Service C riteria 46
Table 6.5: Dendrobium Pit Top and Cordeaux Road Intersection Operating Conditions 46
Table 6.6: Cordeaux Dam Road and Picton Road Intersection Operating Conditions 2023 47
Table 6.7: C ordeaux Dam and Picton Road Intersection 2023 with Water Transportation 51
Table 7.1: Cordea ux Road East of Stones Road Future Traffic Volumes 55
Figures
Figure 1.1: Regional Location 2
Figure 1.2: General Arrangement of the Project. 3
Figure 4.1: IFNSW Traffic Count Station Locations 19
Figure 4.2: Picton Road Average Weekday Hourly Traffic 2021 21
Figure 4.3: Surveyed Average Weekday Hourly Traffic 2017 24
Figure 4.4: Dendrobium Pit Top 15-minute Vehicle Movements 2021 26

Appendices

A. TRAFFIC SURVEYS
B. ROAD CRASH DATA
C. SIDRA OUTPUTS

1 Introduction

This Road Transport Assessment report has been prepared to accompany an application for Infrastructure Approval for the Dend robium Mine Extension Project (the Project). The Dendrobium Mine is an underground coal mine situated in the Southem Coalfield of New South Wales (NSW) a pproximately 8 kilometres (km) west of Wollongong (Figure 1.1).

Illa warra Coal Holdings Pty Ltd (Illawa rra Metallurgic al Coal [IMC]), a wholly owned subsidiary of South32 Limited (South32), is the owner and operator of the Dendrobium Mine.

Development Consent DA 60-03-2001 for the Dendrobium Mine was granted by the NSW Minister for Urban Affa irs and Planning under the NSW Environmental Planning and Assessment Act 1979 (EP\&A Act) in November 2001. The Dendrobium Mine extracts coal from the Wonga willi Seam (also known asthe No 3 Seam) within Consolidated Coal Lease (CCL) 768 using underground longwall mining methods. The Dendrobium Mine includes five approved underground mining domains, named Areas 1, 2, 3A, 3B and 3C. Longwall mining is currently being undertaken in Area 3B, with extraction largely complete in Areas 1, 2 and 3A (Figure 1.1). The Dendrobium Mine has an approved operational capacity of up to 5.2 million tonnes per a nnum (Mtpa) of run-of-mine (ROM) c oal until 31 December 2030.

The Project would support the extraction of a pproximately 31 million tonnes of ROM coal from Area 5 (Figure 1.2), within CCL 768. The life of the Project includes longwall mining in Area 5 up to approximately 31 December 2034, and ongoing use of existing surface facilities (including for the handling of Area 3C ROM coal) until 2041^{1}.

This report has been prepa red to address the Secretary's Environmental Assessment Requirements (SEARs) relating to the road transport environment. Inputs to the SEARs from a uthorities relevant to the road transport environment have also been considered in the preparation of this a ssessment. The coverage of the relevant SEARs is set out in Table 1.1.

Table 1.1: Coverage of SEARs Relevant to the Road Transport Environment

Coverage of SEARs	Relevant Section(s)
10. Transport - including:	
an assessment of the likely transport impacts of the development on the capacity, condition, safety and effic iency of the sumrounding transport network, and any required upgrades or operational mea suresto minimise transport impacts;	Section 6
details of how the development would interact with the Maldon to Dombarton rail coridor and an assessment of the risksto rail assets and the future operational capacity of the comidorfrom mining operations, undertaken in consultation with the asset owners.	Section 4.8

[^0]

transport planning

The remainder of this report is set out as follows:

- Section 2 describes the existing operating conditions at the Dendrobium Mine.
- Section 3 describes the proposed Project.
- Section 4 assesses the existing road transport environment in the vicinity of the Project, including the road network, historic and current traffic volumes, a nd road safety history of releva nt routes. The existing traffic generated by Dendrobium Mine on the road network is quantified and the implications of the proposed Project on the traffic generated by the Dendrobium Mine during construction activity and during ongoing operational activity is reviewed.
- Section 5 assesses the future road environment with the Project and other background changes to traffic conditions, including future intersection operating conditions, roadway capacity, and road safety. It identifies mitigation measures to satisfa ctorily a c commodate the future traffic demands.
- Section 6 assesses the potential impacts associated with the Project.
- Section 7 presents a summary of the investigation, a nd its conclusions.
transport planning

2 Dendrobium Mine

The Dend robium Mine is loc ated in the Southem Coalfield of NSW, a pproximately 8 km west of Wollongong, in the vicinity of Mount Kembla Village (Figure 1.1). It is located within the Wollongong City Council, Wingec a mibee Shire Council and Wollondilly Shire Council Local Govemment Areas.

Existing approvals relating to the Dendrobium Mine include Development Consent DA 60-03-2001 (as modified) issued under the EP\&A Act, Approval Decision (EPBC 2001/214) issued under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999, and CCL 768 issued under the NSW Mining Act 1992.

Construction of the Dendrobium Mine commenced in J anuary 2002, with longwall mining commencing in April 2005. Five areas are approved for underground mining, na med Areas 1, 2, 3A, 3B and 3C. Longwall mining is currently being undertaken in Area 3B, with extraction being la rgely complete in Areas 1, 2 a nd 3 A . Monitoring and remediation/rehabilitation activities continue to be undertaken by IMC in previous mining areas.

Existing surface facilities for the Dend robium Mine include:

- the Dendrobium Pit Top;
- Kemira Valley Coal Loading Facility;
- Kemira Valley Rail Line;
- Dendrobium Coal Preparation Plant (CPP), located within the Port Kembla Steelworks precinct; and
- Dendrobium Shaft Numbers 1, 2 and 3.

The Dendrobium Mine curently extractscoal from the Wonga willi Seam within Area 3, with an approved operationalcapacity of up to 5.2 Mtpa of ROM coal. The approved life of the Dendrobium Mine under Development Consent DA 60-03-2001 is to 31 December 2030.

ROM coal is transported from underground workings to the Kemira Valley Coal Loading Facility via an underground conveyor network reaching the surface via the Kemira Valley tunnel. Coal is then sized and stockpiled at the Kemira Valley Coal Loading Facility prior to transport by tra in to the Dendrobium CPP within the Port Kembla Steelworks via the Kemira Va lley Rail Line.

ROM coal from the Dendrobium Mine is processed at the Dendrobium CPP, which is located within the Port Kembla Steelworksprecinct. Product coal is delivered from the Dendrobium CPP to the Port Kembla Steelworks or Port Kembla Coal Terminal (PKCT) for transport to Liberty Primary Steel Whyalla Steelworks or export. Coal wash is transported by road from the Dendrobium CPP to the West Cliff Colliery Coal Wash Emplacement. Coal wash is also supplied to third parties as an engineering fill material or for other benefic ial uses.

The Dendrobium Mine operates on a continuous basis (24 hours perday, seven daysper week). Trainstravelling between the Kemira Valley Coal Loading Facility and Dendrobium CPP along the Kemira Valley Rail Line do not travel between 11 pm and 6 a m, unless written a pproval is obtained from the Environment Protection Authority (EPA) foremergency use of the rail line. Heavy vehicle access to and from some surface facilities is restricted to specific hours as per the Drivers Code of Conduct (Section 2.5).

2.1 Dendrobium Pit Top

2.1.1 Location and Access

The Dendrobium Pit Top Access is off Cordeaux Road, a pproximately 4.9 km from the Princes Highway. This is the main site access used by employees, contractors, visitors a nd delivery vehicles associated with the Dendrobium Mine activity.

The intersection of Cordeaux Road with the Dendrobium Pit Top Access is a T-intersection with no a uxiliary storage ortum lanes. At the intersection, the access road is very wide, and the road to the main carpark lies at an acute angle to Cordeaux Road, rather than within the preferred range of 70 to 90 degrees. The impact of this alignment has been mitigated by providing a painted median and kerb extensions to assist drivers to align their vehicle when tuming into or out of Cordeaux Road. Sight distance at the intersection is satisfactory for both entering and exiting vehicles. Exiting vehic les a re controlled with a "STOP" sign and delineation.

2.1.2 Workforce

The Dendrobium Mine curently employs or contracts approximately 500 personnel at the Dendrobium Pit Top, including underground workers, surface staff, wa rehouse and workshop staff. The current roster and shift a rrangements for the underground workforce, which makes up the majority of the workforce at the Dendrobium Pit Top, are summa rised in Table 2.1.

Table 2.1: Underground Operational Shifts at Dendrobium Pit Top

		rsonnel Prese			
	Employees	Contractors	Total		
Weekdays (Monday to Thursday)					
Day Shift	62	58	120	6:00 a m	4:00 pm
Aftemoon Shift	45	55	100	2:00 pm	12:00 a m
Night Shift	40	60	100	10:00 pm	8:00 a m
Weekend (Friday to Sunday)					
Day Shift	42	43	85	6:00 a m	6:00 pm
Night Shift	45	35	80	8:00 pm	8:00 a m

transport planning
The primary contracting company transports workers to and from the Dendrobium Pit Top using 22 -seat C oaster buses. The busestravel to the Dendrobium Pit Top from a site on Marley Place at Una nderra, where carparking, showerand locker facilities are provided forthose workers. Two buses are used per shift across both weekdays and weekends, transporting up to 42 contractors per shift.

2.1.3 Deliveries and Visitors

On average, the Dendrobium Pit Top receives approximately 20 delivenies perday. Deliveries are generally made by either rigid trucks or semitrailers. Deliveries by heavy vehic les must oc cur within the allowable times specified in the Drivers' Code of Conduct (Section 2.5).

The number of visitors to the Dendrobium Mine varies from day to day. Based on review of one month of sign-in data at the Dendrobium Pit Top from 2017, there is an average of four visitors perday. The data indic ate that on many dayshowever, there are no visitors. On the days during which there were visitorsto the Dendrobium Pit Top, there was an average of 11 to 12 visitors perday.

2.2 Kemira Valley Coal Loading Facility

2.2.1 Location and Access

The Kemira Valley Coal Loading Facility is used by a limited number of employees, visitors and delivery vehicles, and is accessed from StonesRoad.

The Kemira Valley Coal Loading Facility Access extends northwards from Stones Road, and contains a number of one lane sections that require drivers to stop and give way to traffic in the opposing direction. Signage relating to these requirements includesa standard "STOP" sign, a non-standard sign stating "STOP \& LOOK ONE LANE CARRIAGEWAY NO OVERTAKING OR PASSING ENTERING TRAFFIC HAS RIGHTOF WAY" as well as an advisory speed sign for trucks of 40 kilometres per hour (km/h).

2.2.2 Workforce

The Kemira Valley Coal Loading Facility is used by a limited number of employees, being primarily equipment operators and site supervisors.

2.2.3 Deliveries and Visitors

Medium to heavy vehic les require access to the site to transport equipment and materials (approximately three deliveries on a typical day). Vehicles also regularly access the site for maintenance and environmental monitoring.
transport planning

2.3 Dendrobium CPP

The Dendrobium CPP is loc ated within the Port Kembla Steelworks precinct, and is a ccessed via an intersection on the northem side of Flinders Street.

The Dendrobium CPP operates 24 hours perday and seven days per week, with some 14 employees and up to seven contractors during nomal operations. The workforce operates rotating 12 -hour shifts (7.00 am to 7.00 pm and 7.00 pm to 7.00 am), and carparking is provided on site for the employees. The Dendrobium CPP attracts very few visitors.

There are occasional shutdown periods at the Dendrobium CPP to undertake maintenance activities. During these limited periods of up to three weeks duration on an annual basis, production isceased, and a shutdown maintena nce workforce of a pproximately 200 contractors is tempora rily required at the Dendrobium CPP.

Coal wash haulage between the Dendrobium CPP and West Cliff Coal Wash Emplacement is currently undertaken by haul trucksoperating under the Appin Mine Project (Bulli Seam Operations Project Approval 08_0150), which permits this haulage activity until the end of the Appin Mine in 2041.

The Dendrobium CPP Ac cess intersects with Flinders Street, Port Kembla at a T-intersection a pproximately 600 metres (m) from Five Islands Road. The intersection has a single approach and single departure lane on each approach, and vehiclesexiting the access road are controlled with a "STOP" sign and pavement marking. The access road has a posted speed limit of $40 \mathrm{~km} / \mathrm{h}$ and Flinders Street has a speed limit of $60 \mathrm{~km} / \mathrm{h}$. This employee access road to the Dendrobium CPP also servicesbatteries and gasprocessing facilities unrelated to the Dendrobium Mine.

There is limited interaction between heavy vehic les assoc iated with IMC'soperations and BlueScope Steel Limited's (BlueScope Steel) operations on the shared BlueScope Steel access road.

2.4 Shaft Numbers 1, 2 and 3

The existing Dendrobium Shaft Sites are prima rily unattended sites, with access generally oc curing intermittently up to several times a week prima rily for maintena nce inspections or forspecific maintenance or upgrade works.

2.5 Traffic Management Plan

The Dendrobium Mine Traffic Management Plan (TMP) (Illa wa rra C oal, 2021) addresses the management of road traffic and rail movements associated with the operation of the Dendrobium Mine a nd associated infrastruc ture, a nd a ims to:

- Ensure compliance with Development Consent conditions and any undertakings made by South 32 to the community with respect to traffic management;
- Ensure that South32's polic ies a nd intemal company requirements are met with respect to traffic management;
- Minimise the potential for traffic conflict and/or personal injury resulting from traffic generated by the Dendrobium Mine;
- Create a road environment where all road users feel safe; and
- Successfully enforce a Drivers' Code of Conduct for all personnel associa ted with Dendrobium, including a monitoring and reporting process.

The Dendrobium Drivers' Code of Conduct aimsto:
minimise the impacts of traffic associated with the Dendrobium Mine on local residents by reducing noise and limiting traffic, resulting in a safer traffic environment foreveryone.

The Code of Conduct prohibitsaccess to and from the Dendrobium Pit Top, Kemira Valley Coal Loading Facility and Dendrobium Shaft Number 1 by vehicles other than personnel passenger vehicles during specific hours. Allowable travel times for vehicles other than personnel passenger vehic les are:

- Monday to Friday 7:00 am to 8:00 am;
- Monday to Friday 9:30 am to 2:30 pm;
- Monday to Friday 4:00 pm to 5:00 pm; and
- Saturdays 8:00 am to 1:00 pm.

A 24-hour community call line is in place for residents to report breaches of the TMP or Drivers' Code of Conduct. All complaints are investigated, disciplinary action may be taken, and penalties issued (donation to a charity) for non-compliance. IMC's records of complaints made by members of the community indicate that over FY2020 and FY2021, 27 complaints were made regarding traffic issues, of which, 19 were made by one member of the community and the remaining eight were made by six individual community members.

The Transport Planning Partnership (TTPP) has reviewed the complaints recorded over the six months from J a nuary to J une 2021, over which time, 12 complaints were received with respect to mine-related traffic on the public road network. These are broadly identified as follows:

- Six complaints related to potentially speeding heavy vehicles on Cordeaux Road. In most cases, the vehicle and driver were able to be identified, however, speedscould not be verified as the trucks were not fitted with a GPS tracking system. One of the contractor's fleet is being upgraded to have tracking systems installed.
transport planning
- Three complaints related to heavy vehic le movements outside of the allowable times, with the following noted:
- the driver did not usually deliver to the Dendrobium Mine and was unaware of the Drivers' Code of Conduct;
- the driver waited outside the village until the allowable time however the truck clock was incorrect; and
- the exit boom gate opened automatic ally when the truck approached to exit, rather than the driver manually requesting that it be opened. An additional control was installed on the boom gate to prevent a recurence.
- Two complaints related to vehicles parked on Cordeaux Road. In each case, staff attempted to find the driver and have the vehicle removed, and a reminder on parking protocol was issued to all staff.
- One complaint related to damage caused by a truck tuming from Stones Road to Cordeaux Road. The truck company wascontacted about the incident, and the damage repaired the following day.

2.6 Cordeaux Pit Top

The Cordea ux Pit Top is not currently part of the existing Dendrobium Mine, but is used to support IMC operations such asexploration, survey and environmental monitoring. The Cordeaux Pit Top is associated with the Cordeaux Colliery, which is a non-producing IMC mine undercare and maintenance. The Cordeaux Pit Top entry is located off Picton Road approximately 11 km from its intersection with Mount Ousley Road. The Cordeaux Pit Top is used by a pproximately 70 employees, visitors and deliveries.
transport planning

3 Dendrobium Mine Extension Project

3.1 Project Description

The Project would include the following a ctivities:

- longwall mining of the Bulli Seam in a new underground mining area (Area 5);
- development of underground roadways existing Dendrobium Mine underground areas (namely Area 3) to Area 5;
- use of existing Dendrobium Mine underground roadways and drifts for personnel and materia ls access, ventila tion, dewatering a nd other a ncilla ry activities related to Area 5;
- development of new surface infrastructure associated with mine ventilation, gas ma na gement and abatement, water ma na gement and other ancillary infrastruc ture;
- handling and processing of up to 5.2 Mtpa of ROM coal;
- extension of underground mining operations within Area 5 until a pproximately 2035;
- use of the existing Dendrobium Pit Top, Kemira Valley Coal Loading Facility, Dendrobium CPP and Dendrobium Shafts with minor upgrades and extensions to 2041;
- transport of sized ROM coal from the Kemira Valley Coal Loading Facility to the Dendrobium CPP via the Kemira Valley Rail Line;
- handling and processing of coal from the Dendrobium Mine (including the Project) and IMC's Appin Mine (if required) at the Dendrobium CPP to 2041;
- delivery of product coal from the Dend robium CPP to the Port Kembla Steelworks for domestic use or to the PKCTfor transport to Liberty Primary Steel Whyalla Steelworks or export;
- transport of coal wash by road to customers for engineering purposes (e.g. civil construction fill), for other benefic ial uses a nd/or for empla cement at the West Cliff Sta ge 3 and Sta ge 4 Coal Wash Emplacement;
- development and rehabilitation of the West Cliff Stage 3 Coal Wash Emplacement (noting that opportunities for beneficial use of coal wash would be maximised);
- continued use of the Cordeaux Pit Top for mining support activities such as exploration, environmental monitoring, survey, rehabilitation, administration a nd other ancilla ry activities;
- progressive development of sumps, pumps, pipelines, waterstorages a nd other water management infrastructure;
- controlled release of excess water in accordance with the conditions of Environment Protection Lic ence 3241 and/or benefic ial use;
transport planning
- monitoring, rehabilitation and remediation of subsidence a nd other mining effects; and
- other a ssoc iated infrastruc ture, plant, equipment a nd a ctivities.

Project construction a ctivity would require a short term workforce of a pproximately 100 Full Time Equivalent (FIE) workers, made up of the following:

- 40 construction workers based at Shaft Site No. 5A;
- 40 exec ution team workers:
- a pproximately 25 workers based at the Regional Operations Centre at the PKCT;
- a pproximately 10 workers based at Shaft Site No. 5 A; a nd
- approximately 5 workers based at the Dendrobium Pit Top.
- 20 miscella neous workers based at the Dendrobium Pit Top.

The Project operational activity would require the ongoing employment of the existing operational workforce plus an additional 50 development crew workers based at the Dendrobium Pit Top.

3.2 Dendrobium Pit Top

With regard to the road transport environment at the Dendrobium Pit Top, the Project proposes:

- short term employment of up to 60 people during construction activities, with 25 workers based on-site and the remaining 35 workers based off-site (Section 3.1);
- ongoing employment of the existing operational workforce plus an additional 50 development crew workers; and
- construction of an additional carparking area, located to the south of Cordeaux Road and accessed via Cordeaux Road east of the Dendrobium Pit Top Access Road.

3.3 Kemira Valley Coal Loading Facility

With regard to the road transport environment at the Kemira Valley Coal Loading Facility, the Project proposes:

- minor construction and development activities, consistent with existing short term maintenance and upgrade works;
- no changesto operational activities; a nd
- no changesto accessarrangements.
transport planning

3.4 Dendrobium CPP

With regard to the road transport environment at the Dendrobium CPP, the Project proposes:

- minor construction and development activities, consistent with existing short term maintenance and upgrade works;
- no changes to operational activities;
- no changes to maintenance shutdown a rrangements; and
- no changesto access arrangements.

3.5 Shaft Numbers 1, 2 and 3

The Project does not propose any changes to the activities at the existing Dendrobium Shaft Numbers 1, 2 and 3, with ongoing conditions being consistent with existing operations (Section 2.4).

3.6 Shaft Site No. 5A

With regard to the road transport environment at Shaft Site No. 5A, the Project proposes:

- creation of a pproximately 40 jobsd uring construction activities, which would occur 24 hours perday, seven days per week;
- access by approximately 10 execution team workers (Section 3.1);
- access via the Cordeaux Dam access road off Picton Road, and then via fire trails and unsealed access roads; and
- use of the existing easement asa temporary carpark forconstruction personnel adjacent to Cordeaux Dam access road (or if preferred by WaterNSW, use of the existing Cordeaux Dam Pic nic Area parking, located approximately 700 m further down the access road orother area adjacent to the Picnic Area).

Once constructed, the Shaft Site No. 5A site would be primarily unattended, with access oc curing intermittently up to several times per week generally limited to specific maintenance or upgrade works, consistent with the existing Dendrobium Mine Shaft Sites (Section 2.4).
transport planning

3.7 Cordeaux Pit Top

IMC's mining support activities would continue at the Cordea ux Pit Top, consistent with current operations, noting that the Cordea ux Pit Top is not part of the Dendrobium Mine. No changesto current access arrangements for the Cordeaux Pit Top are proposed as part of the Project. The Cordeaux Pit Top is an approved development which would continue to be used by the Project. IMC would be prepared to surenderthe existing Wollongong Council consent (D74/134) a nd rely on any Infrastructure Approval for the Project.

3.8 Traffic Assessment Scenarios

The majority of Project construction activities would oc cur intermittently within a two-year period. Upgrade works at the Dendrobium Pit Top would occur during the first year (nominally 2023), and ventilation shaft construction and development would occur over both years (nomina lly 2023-24). The construction period scena rio a dopted for this a ssessment a ssumes construction a ctivities oc cur simulta neously at both the Dendrobium Pit Top and at Shaft Site No. 5A. These activities a re expected to occur in 2023.

The additional Project operational workforce is expected to peak in 2029, and then reduce as development crews in Area 5 are reduced. Those crews may however be transferred to mining of Area 3C, thus it is assumed that with the Project, the workforce may remain at the peak until a pproximately 2037. The operational period scena rio a dopted for this a ssessment is nominally 2037, with the peak workforce present at the Dendrobium Pit Top, combined with longerterm growth in background traffic.

In summary, the following scenarios have been adopted for this a ssessment of the potential road transport impacts of the Project:

- Construction phase, nominally in 2023, with construction a ctivity at both Dendrobium Pit Top and at Shaft Site No. 5A; and
- Operational phase (peak) in 2037, with peak operational workforce at the Dend robium Pit Top.
transport planning

4 Existing Road Environment

4.1 Road Network

The existing road network near the Dendrobium Mine is described below.
Princes Motorway (Route M1) is predominantly a dual caniageway motorway linking Waterfall in the south of Sydney to Mount Ousley Road and the lllawara Highway at Yallah. It follows a roughly parallel route to the Princes Highway to the Bulli Tops interchange, bypassing the Wollongong central business district. Mount Ousley Road is the portion of the Princes Motorway between the top of Bulli Pass and North Wollongong, where Mount Ousley Road extends to the Princes Highway. Mount Ousley Road typic ally has two or three travel lanes in each direction, with truck and buslanes for the slower moving vehic les on the steep grades.

Princes Highway (HW1) is a State and Regional Road linking Sydney to the Victorian border. It is a State Road from the southem end of the Princes Motorway at the Bulli Tops interchange via Bulli Pass and Bulli to Bellambi Lane, then via Bellambi Lane and Memorial Drive to the on/off ramps at Flinders Street, North Wollongong, then via Flinders Street, Keira Street and Crown Street, Wollongong to the junction with Five Islands Road at Unanderra. It is a Regional Road from the intersection of Five Islands Road at Unanderra via Dapto, to the intersection with the F6 Southem Freeway at Yallah.

Picton Road (Ma in Road 95) is a State Road, which extends from Mount Ousley Road at its south-eastem end to Pic ton at its north-westem end. There is an interchange at the intersection of Picton Road with the Hume Motorway, which allows all vehic le movements between the two routes. Similarly, at the intersection with Mount Ousley Road, an interchange permits all movements between the two routes.

Pic ton Road is identified in the draft lla warra-Shoalhaven Regional Tra nsport Plan (Transport for NSW [TfNSW], 2020a) as providing a "nationa lly signific a nt east-west transport link between Metro Wollongong and Westem Sydney. Picton Road comprises existing challenges in the areas of road safety, road geometry, and freight access, and demand is antic ipated to inc rease asthe Wilton and Greater Macarthur Growth Areascontinue to develop."

The Plan indic ates that by 2056, Pic ton Road is forecast to camy almost 70 percent (\%) of the total road freight task associated with the region, and that IfNSW will investigate opportunities to expand the network for Higher Productivity Vehicles (vehicles that can camy more payload than a B-double) on Pic ton Road and other key freight routes.

TfNSW is currently planning the duplication of Picton Road, which wasidentified in the NSW Freight and Ports Plan for 2018-2023 (TFNSW, 2018) as being key to meeting the demand for additional freight and improved safety. The Picton Road strategic business case, including preferred upgrades, is due to be completed in the second half of 2021, following which, work will start on concept and detailed design (TFNSW, 2020b).

A number of safety improvements have recently been completed on Picton Road in recent years, including changing line markings between Mount Keira Road and Mount Ousley Road to create a widened centre median, widening of Picton Road for approximately 2 km east of Cordeaux Dam Road, installation of a median bamier west of the Cordeaux Pit Top with widened centre lines and audio tactile line marking, installation of acceleration lanes from rest a reas, safety ba mier installation, provision of a fauna underpass and fauna fencing.

Cordeaux Road is a local road that providesaccess from Kembla Heights to the Princes Highway at Figtree, via Cordeaux Heights and Mount Kembla. The intersection of Cordeaux Road with the Princes Highway is controlled by a two-lane roundabout, with single entry and exit lanes on the Cordeaux Road leg. Most intersections along Cordeaux Road are proority-controlled T-intersections, with the exception of the signa lised intersection with Central Road. Cordeaux Road typically has a single travel lane in each direction with kerbside parking permitted, and a speed limit of $60 \mathrm{~km} / \mathrm{h}$.

There is two speed humps that provide thresholds to a $40 \mathrm{~km} / \mathrm{h}$ speed zone on Cordeaux Road at Mount Kembla, between immediately west of J a mes Road and east of Cudgee Crescent. Signage in this area indicates there is a full time "high pedestrian activity" $40 \mathrm{~km} / \mathrm{h}$ speed limit, a before and after school period $40 \mathrm{~km} / \mathrm{h}$ speed limit, and a truck and bus speed limit of $40 \mathrm{~km} / \mathrm{h}$.

Cordeaux Road climbs steeply through Mount Kembla to the Dendrobium Pit Top Access. An off-road cycleway is provided along the southem side of Cordeaux Road along most of its length from near the Princes Highway to the eastem end of the built-up area of Mount Kembla. There is a school crossing immediately south of Benjamin Road adjacent to Mount Kembla Public School.

West of the Dendrobium Pit Top Access, Cordeaux Road forms a two lane, two-way rural road, with a winding a lignment, na rrow or no shoulders, no footpaths, and several bends with advisory speeds of $35 \mathrm{~km} / \mathrm{h}$. West of the Dendrobium Pit Top Access, C ordeaux Road also provides a connection to Hary Graham Drive at a T-intersection, at which the westem approach of Cordeaux Road forms the minorleg. At that intersection, Cordeaux Road west is signposted as "no through road" and provides only local access to a small number of residences and fire trails.

Hary Graham Drive is a local road that provides a link from Cordeaux Road west of the Dendrobium Pit Top Access to Mount Keira Road. It typic ally hasa two lane, sealed caniageway and is signposted with an eight tonne load limit. Hary Graham Drive has a speed limit of $50 \mathrm{~km} / \mathrm{h}$ through Kembla Heights, inc reasing to $60 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{h}$ to Mount Keira Road. Within the Illa warra State Conservation Area, there is a number of short sections which are temporarily restricted to a single lane width, at which southbound traffic is required to give way.

Mount Keira Road is a local road which extends between Picton Road and the Princes Highway at West Wollongong, via Mount Keira. It is typically a two lane, two-way rural road, with varying shoulder widths, centre delineation and speed limits of $80 \mathrm{~km} / \mathrm{h}$ and $60 \mathrm{~km} / \mathrm{h}$.

Clive Bissell Drive provides a link from Mount Keira Road to Mount Ousley Road (Princes Motorway), where only left tum movements between Clive Bissell Drive a nd Mount Ousley Road are permitted. Clive Bissell Drive is a sealed two lane, two-way rural road, with unsealed shoulders, centre delineation and a posted speed limit of $60 \mathrm{~km} / \mathrm{h}$.

Cordeaux Dam Access extends south-west from Picton Road and provides access to the Cordea ux Dam grounds, recreational facilities, carparking and office, a nd to fire tra ils in the Upper Nepean State Conservation Area and surrounds. The access road is a sealed, two-lane two-way road with a posted speed limit of $70 \mathrm{~km} / \mathrm{h}$. has a single travel lane in each direction. Picton Road has dedicated left and right tum deceleration la nes for vehicle entering the Cordeaux Dam access road.

4.2 Railway Level C rossings

The Dendrobium Mine makes use of the Kemira Valley Rail Line to transport coal from the Kemira Valley Coal Loading Facility to the Dendrobium CPP, loc ated within the Port Kembla Steelworks precinct. Between the Kemira Valley Coal Loading Facility and Port Kembla Steelworks, the Kemira Valley Rail Line c rosses a number of roads, typic ally at grade-separated crossings. There are two level crossings along the Kemira Valley Rail Line, one being on Central Road south of Cordeaux Road and one on an unnamed access road off Ma rley Place at Una nderra.

The level crossing on Central Road is a ctively controlled, with fla shing lights a nd boom ams, and a dedicated gated pedestrian path on the westem side. Yellow cross-hatching on the road surface indic ates the area which drivers are expected to keep clear, noting that a queue of vehic les from the signals at the intersection of Central Road and Cordeaux Road could extend across the level crossing if not properly managed. Queuing space of a pproximately 40 m is provided between the signa lised intersection stop line a nd the cross hatched area at the level crossing. North of the level crossing, Central Road has two northbound travel lanes, thus up to 12 carscould queue (six in each lane) at the signals and rema in clear of the level crossing. Tum bays are provided on both a pproaches of C ordeaux Road, which allow any vehicleswaiting to tum into Central Road to remain clear of the through lanes.

The level crossing at Una nderra is controlled with signs a nd flashing lights. The unnamed road provides access to a single industrial site.

4.3 TfNSW Traffic Volume Data

TFNSW collects and publishes traffic volume data on classified roads throughout NSW. Annual Average Daily Traffic (AADT) data on roadsnear the Dendrobium Mine has been collated from the TFNSW data over the past ten years. AADT is the average number of vehicles passing the survey location perday, measured over one year. At some locations, reported volumes are for one direction of travel only, which are noted in Table 4.1. Survey locations are presented in Figure 4.1.

Table 4.1: AADTVolumes at TiNSW Count Stations (vehic les per day)

Road and Location	2012	2013	2014	2015	2016	2017	2018	2019	2020	$\begin{aligned} & \text { Jan- } \\ & \text { Jun } \\ & 2021 \end{aligned}$
Picton Road - East of J anderra Lane, Wilton (Station 07406)	15,586	8,580 ${ }^{\text {A }}$	-	-	-	-	-	-	-	-
Picton Road - North of Mount Keira Road, Cordeaux (Station 6178-PR)	-	-	-	17,112	18,958	19,988	20,032	10,033 ${ }^{\text {A }}$	9,420 ${ }^{\text {a }}$	10,723 ${ }^{\text {A }}$
Picton Road - East of Mount Keira Road, Cataract (Station PICTON)	10,484	-	-	-	-	-	-	-	-	-
Picton Road - South of Macarthur Drive, Wilton (Station 06179)	-	-	-	8,623 ${ }^{\text {B }}$	9,580 ${ }^{\text {B }}$	19,668	19,851	20,506	19,122	21,838
Princes Highway - East of Five Islands Road, Unanderac (Station 7217)	-	-	-	10,636	10,655	10,876	10,926	10,963	10,548	10,785
Five Islands Road East of Lake Avenue, Spring Hill (Station 07097)	38,960	40,817	40,915	40,691	41,362	37,560	41,534	-	-	-
Princes Highway South of Princes Motorway, Bulli (Station 07747)	11,975	12,131	12,782	12,992	12,666	12,982	-	-	-	-
Princes Motorway - West of New Mt Pleasant Road, Mount Keira (Station MOHVCS)	-	-	-	-	51,800	53,769	53,083	54,183	77,864	53,578
Princes Motorway West of Nolan Street, Una nderra (Station 07594)	58,897	62,168	62,250	64,802	66,190	34,751 ${ }^{\text {D }}$	61,370	-	-	-

Source TFNSW (2020c) A Westbound only, B Eastbound only, C Southbound only, D Northbound only

Table 4.1 demonstrates that the arterial roads in the region of the Dendrobium Mine camy signific a nt volumes of traffic.

LEGEND
Dendrobium Mining Lease Road Railway National Park, Nature Reserve and State Conservation Area Historic Mine Workings Declared Catchment Area Dendrobium Underground Mining Area Existing Mine (DA 60-03-2001)
Dendrobium Underground Mining Area Extension Project

Source: Geoscience Australia, (2006); Department of Industry (2018); Department Finance, Services \& Innovation (2018);

III
 IIIE

Illawarra Coa
DENDROBIUM M INE
Traffic Survey Locations

The TFNSW survey station on Picton Road near Wilton (06179) is a pemanent classifier station, which providesadditional data about the average weekday traffic characteristic sat that loc ation during 2018, 2019, 2020 and 2021 (J a nuary to J une only), presented in Table 4.2.

Table 4.2: Characteristics of Average Weekday Traffic on Picton Road near Wilton

Year	Eastbound		Westbound	
	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles
Daily (vehic les perday)				
2017	7,725	2,674	7,425	2,771
2018	7,707	2,813	7,449	2,790
2019	7,988	2,902	7,751	2,805
2020	7,333	2,948	6,984	2,941
2021 J an-J un	8,327	3,186	7,931	3,240
AM Peak Hour 7 am to 8 am (vehic les per hour)				
2017	520	195	611	193
2018	535	202	612	191
2019	577	216	612	189
2020	486	228	561	191
2021 J an-J un	543	248	612	214
PM Peak Hour 4 pm to 5 pm (vehic les per hour)				
2017	779	163	579	158
2018	771	167	579	154
2019	781	169	627	167
2020	712	167	557	167
2021 J an-J un	801	183	615	188

The 2021 data in Table 4.2 indic ates that Picton Road is presently carying approximately 22,700 vehic les per weekday, with 1,600 vehic les per hour during the moming peak hour, and 1,800 vehicles per hour in the evening peak hour. Over the five years of data the following is noted:

- the moming peak hour consistently occurred between 7:00 a m and 8:00 am;
- the evening peak hour consistently occurred between 4:00 pm and 5:00 pm;
- the peak hour volumes were consistently a pproximately 7\% (AM peak) a nd 8\% (PM peak) of the total da ily volumes;
- during the moming peak hour, the traffic is reasonably evenly split between eastbound (48.5\%) and westbound (51.5\%); and
- during the evening peak hour, the eastbound demand (55.3\%) is somewhat higher than the westbound demand (44.7\%).

It is noted that NSW public health orders that impact travel beha viour commenced at the end of J une 2021, and so the data does not include any period in 2021 impacted by travel restrictions. The growth in traffic on Picton Road over the five years presented above was not linear, with a decrease from 2019 to 2020. Over the four years from 2017 to 2021, the average weekday da ily traffic inc reased by 10% a c ross a ll vehic les.

Figure 4.2 presents the hourly distribution of traffic on Pic ton Road by direction during 2021.
Figure 4.2: Picton Road Average Weekday Hourly Traffic 2021

4.4 Traffic Surveys 2017

A program of traffic surveys was undertaken by Matrix Traffic and Transport Data on behalf of IMC during March and April 2017. The program included surveys of vehicle tuming movements between 5:30 am and 8:30 am, and between 2:00 pm and 5:00 pm on Thursday 30 March 2017 at the intersections of:

- Cordeaux Road and the Dendrobium Pit Top Access Road;
- Cordeaux Road and Stones Road; and
- Picton Road and the Cordeaux Pit Top Access Road.

The program included automatic tube counter (ATC) surveys over one week from 30 March to 5 April 2017 on:

- Dendrobium Pit Top Access Road (excluding the visitor car park);
- Cordeaux Pit Top Access Road;
- Kemira Valley Coal Loading Facility Access Road; and
- Cordeaux Road in Mount Kembla.

The ATC on the Dendrobium Pit Top Access was located west of the intersection of the access with Cordeaux Road, and so did not record vehiclesentering or exiting the car parking area to the east of the intersection. That eastem carpark contained some 30 formal and informal car parking spaces, inc luding six designated visitor parking spaces, and was used by a mix of staff a nd visitors. The survey included trips made to and from the main car parking area at the Dendrobium Pit Top, which contained approximately 120 car parking spaces at the time of the surveys.

Over the six hours surveyed at the intersection of the Dendrobium Pit Top Access with Cordeaux Road, approximately 95\% of traffic using the Dendrobium Pit Top Access Road approached from ordeparted to Cordeaux Road east. Of the traffic accessing the Cordeaux Pit Top, a pproximately 89\% approached from or departed to Picton Road east.

The surveyed daily traffic volumes recorded during the ATC survey program are summarised in Table 4.3.

Table 4.3: 2017 Daily Traffic by Day of the Week (vehicles per day)

Location	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Dendrobium Pit Top Access RoadA	526	601	569	545	401	195	192
Kemira Valley Coal Loading Facility Access Road	33	37	44	36	25	18	20
Cordeaux Road	3,230	3,574	3,758	3,509	3,774	3,412	2,894
Cordeaux Pit Top Access Road	107	116	123	97	73	66	4

A excludestraffic to/from the visitor parking area at Dendrobium Pit Top.
The results indic ate that traffic conditions on the Dendrobium Mine access roads on weekdays a re distinctly different from those on weekend days, and distinctly lower on the Friday compared with the other weekdays. In contrast, surveyed daily traffic on Cordeaux Road was at its highest on Friday and the surveyed volume on the Saturday was greater than on the Monday.

The traffic surveys also provide data on the composition of the traffic based on the Austroads Vehicle Classific ations. Light vehic lesinclude motorcycles, cars, va ns, four-wheel drives (4WDs), and utilities (including those towing a trailer or caravan). Heavy rigid vehicles include single unit trucks a nd buses including some of the longer wheelba se 4WDs and utilities, and articulated vehicles include semi-trailers, rigid trucks with trailers, B-doubles a nd road trains. Review of the surveyed traffic composition against the observed conditions indic a tes that many of the heavy vehicles recorded on the Dendrobium Pit Top Access Road ATC were utilities and 4WDs that would be considered as light vehic les (less than 4.5 tonnes gross vehicle mass) rather than trucks or buses. Table 4.4 presents the surveyed classifications of vehicles over the average weekday daily.

Table 4.4: Average Weekday Daily Traffic Composition (\%)

Location	Light	Heavy Rigid	Heavy Articulated
Dendrobium Pit Top Access Road A	89.9	9.8	0.3
Kemira Valley Coal Loading Facility Access Road	84.0	16.0	0.0
Cordeaux Road	94.0	5.6	0.4
Cordeaux Pit Top Access Road	86.4	2.9	

A excludestraffic to/from the visitor parking a rea at Dendrobium Pit Top.

The spread of traffic throughout the average weekday is such that the busiest hour at each of the surveyed locations does not necessarily coincide. This is shown in Figure 4.3, which demonstrates that Cordeaux Road experiencestwo distinct peak hours in the moming and aftemoon, however these do not necessa rily coincide with the peaks associated with the Dendrobium Pit Top and Kemira Valley Coal Loading Facility a c cesses.

Figure 4.3: Surveyed Average Weekday Hourly Traffic 2017

Table 4.5 summarises the volumes surveyed during the busiest hour in the moming (midnight to midday) and busiest hour in the evening (midday to midnight) on the average weekday, and the time at which the busiest hour occured at each location.

Table 4.5: Average Weekday Peak Hour Traffic 2017 (vehic les per hour)

Location	AM Peak Hour	Vehicles	PM Peak Hour	Vehicles
Dendrobium Pit Top Access RoadA	$5: 00$ a m to $6: 00 \mathrm{am}$	69	$4: 00 \mathrm{pm}$ to $5: 00 \mathrm{pm}$	56
Kemira Valley Coal Loading Facility Access Road	$7: 00 \mathrm{am}$ to $8: 00 \mathrm{am}$	5	$3: 00 \mathrm{pm}$ to $4: 00 \mathrm{pm}$	3
Cordeaux Road	$8: 00 \mathrm{am}$ to 9:00 am	329	$4: 00 \mathrm{pm}$ to $5: 00 \mathrm{pm}$	342
Cordeaux Pit Top Access Road	$7: 00 \mathrm{am}$ to $8: 00 \mathrm{am}$	14	$3: 00 \mathrm{pm}$ to $4: 00 \mathrm{pm}$	14

A excludestraffic to/from the visitor pa rking a rea at Dendrobium Pit Top.

4.5 Traffic Survey 2021

At the time of the surveys in 2017, the workforce at the Dendrobium Pit Top was indicatively 400 people, with two development units in use. A third development unit was introduced in FY2018, and a fourth in FY2020, with inc reases in workers attending the site each day. The car park at the Dendrobium Pit Top hasalso been upgraded and extended over that time, with some additional 80 spaces available. It is rea sonable to expect that those changes would have impacted the number of vehic lestravelling to and from the Dendrobium Pit Top on a typical day.

To quantify how the changes in workforce and carparking have impacted traffic conditions at the Dendrobium Pit Top, a supplementary survey was undertaken at the intersection of Cordeaux Road and the Dendrobium Pit Top Access Road overa 24 -hour period on Wednesday 21 J uly 2021. IMC advised that with the exception of non-essential visitors to the Dendrobium Pit Top, operations were normal at that time. The survey wasconducted on a Wednesday with consideration of the 2017 survey results which suggest that Wednesday traffic generation wasconsistent with the average weekday (excluding Friday) traffic generation.

In addition to identifying each vehicle as light or heavy, the survey a lso separately identified the mini-buses used to transport contractors to and from the Dendrobium Pit Top. Key findings of the survey are summarised in Table 4.6 over the day and for the peak hours for traffic generated by the Dendrobium Pit Top.

Table 4.6: Dendrobium Pit Top Survey 2021

	Light	Mini Bus	Heavy	Total
Daily (vehiclesper day)	789	11	33	833
AM Peak Hour $4: 45$ am to 5:45 a m (vehiclesper hour)	143	0	0	143
PM Peak Hour $3: 45$ pm to 4:45 pm (vehiclesper hour)	126	1	0	127

Over the 24 hour period, 48 of the vehicle movements were to or from Cordeaux Road west of the Dendrobium Pit Top, and 781 were to or from Cordeaux Road east of the Dendrobium Pit Top (two vehic lesperformed a u-tum exiting then re-entering the Dendrobium Pit Top, generating four vehic le trips). This is consistent with the findings of the results of the intersection survey in 2017 which found that approximately 95% of traffic using the Dendrobium Pit Top Access Road approached from ordeparted to Cordeaux Road east (Section 4.4).

The distribution of the traffic into and out of the Dendrobium Pit Top is presented in Figure 4.4, which shows the number of vehicle movements each 15 minute period throughout the day. This shows the inbound traffic peaking in the period prior to the shift start times (6:00 a m, 2:00 pm and 10:00 pm) and the outbound traffic peaking at the shift end times (4:00 pm, 12:00 am and 8:00 am).

Figure 4.4: Dendrobium Pit Top 15-minute Vehicle Movements 2021

4.6 Road Crash History

Road crash information was obta ined from TfNSW over the period between 1 October 2015 and 30 September 2020 for those roads relevant to the Project. The data include crashes which conform to the national guidelines for reporting and classifying road vehicle crashes based on the following criteria:

- The crash was reported to the police.
- The crash occurred on a road open to the public.
- The crash involved at least one moving vehicle.
- The crash involved at least one person being killed or injured or at least one motor vehicle being towed away.

Crash data were obtained and reviewed forkey access routes used by vehic les travelling to and from the Dendrobium Mine:

- Cordeaux Road between Princes Highway and Hary Graham Drive;
- Harry Graham Drive between Cordeaux Road and Mount Keira Road;
- Mount Keira Road between Harry Graham Drive and Picton Road;
- Picton Road between Mount Keira Road at Cataract to Macarthur Drive at Wilton; and
- Local roads in Mount Kembla.

Table 4.7 summa rises the number of general crash types recorded on each route described above. All crashes reported in the Mount Kembla local area occured on Cordeaux Road, and are therefore reported under Cordeaux Road results. Over the investigation period and routes reviewed, a total of 77 crashes occurred on those routes, resulting in five people being killed, 32 people being seriously injured, and 24 people being moderately injured.

Table 4.7: Crash Types on Project Access Routes (1 October 2015 to 30 September 2020)

Route	Route Length (km)	$\begin{aligned} & \text { ᄃ } \\ & \text { 粊 } \\ & \frac{0}{0} \\ & \mathbf{d} \end{aligned}$		suọjouna 6u!soddo			$\begin{aligned} & \text { 음 } \\ & \frac{y}{y} \\ & \frac{9}{4} \\ & 0 \end{aligned}$					$\begin{aligned} & \overline{0 N} \\ & \hline 10 \end{aligned}$
Cordeaux Road	5.3	-	1	2	2	-	-	2	7	4	-	18
Hamy Graham Drive	7.5	-	-	1	1	-	-	2	-	8	1	13
Mount Keira Road	2.8	-	-	1	-	-	-	-	-	-	-	1
Picton Road	17.2	-	3	3	7	-	1	6	16	8	-	44
Mt Kembla local roads	-	-	-	-	-	-	-	-	-	-	-	-
Total Crashes by Type		-	4	7	10	-	1	10	23	20	1	76
Fatalities		-	-	1	-	-	1	-	3	-	-	5
Serious Injuries		-	1	3	1	-	2	9	9	8	-	32
Moderate Injuries		-	3	2	2	-	1	3	8	4	1	24

Table 4.7 demonstrates that over all the roads investigated, 53 of the reported crashes involved a single vehicle, the majority of which left the camiageway. These run-off-road (ROR) crashes (including all "off-path" crashes) made up 43 of the 76 reported crashes over all routes. Australian Road Research Board (2011) states that known causes of RO R crashes include:

- driver beha viours such as speed, inattention, avoidance manoeuvres, errant vehic les;
- driver impaiment including fatigue, alcohol, drugs, mood state;
- road conditions such as ho rizonta I a lignment, shoulder defic ienc ies, slippery surface, poordelineation, damaged surfaces;
- vehicle failure; and
- environmental conditions such as rain, fog, snow, livestock or native fa una.

4.6.1 Cordeaux Road

A summary of the key characteristics of crashes that occurred on Cordeaux Road over the period investigated is presented in Appendix B. Key aspects of the road crash history are:

- No crashes involved a heavy rigid or artic ulated truck.
- One crash occurred at the intersection of Cordeaux Road with the Dendrobium Pit Top Access. That crash occurred at 4:00 pm on 29 August 2016, in fine weather on a dry road surface and in daylight conditions. A car that tuming right into the Dendrobium Pit Top struck an eastbound light truck on Cordeaux Road. Neither speeding norfatigue were nominated ascontributing factors to the crash.
- No crashes occurred in the $40 \mathrm{~km} / \mathrm{h}$ zone on Cordeaux Road during the school zone hours.
- Three crashes oc curred at the rounda bout at the intersection of Cordea ux Road with Princes Highway, one of which involved the sudden illness of the driver, and one of which involved speeding.
- A fatal crash occ urred, a p proximately 500 m west of Willia m J ames Drive, in the $60 \mathrm{~km} / \mathrm{h}$ speed limit zone, at 3:15 pm on 21 February 2020. The crash involved an eastbound car travelling at excessive speed, which left the carmageway on a straight section and struck a utility pole. The crash occurred in overcast weather on a dry road surface and in daylight conditions. Speeding was nominated as a contributing factor.

4.6.2 Hamy Graham Drive and Mount Keira Road

A summary of the key characteristics of crashes that occ ured on Hamy Graham Drive and Mount Keira Road combined overthe period investigated is presented in Appendix B. Key aspects of the road crash history are:

- No crashes involved a heavy rigid or a rticulated truck.
- Two crashes occurred at or near the hairpin bend in Hamy Graham Road a pproximately 2 km north of Mount Kembla. The bend is signposted in both directions with an advisory speed of $25 \mathrm{~km} / \mathrm{h}$, wa ming signs for the hairpin bend and chevrons on the outside of the bend. Speeding was nominated as a contributing factor in both crashes, one of which involved a northbound motorcycle which struck an object on the carriageway, and the other involved a southbound light truck which left the camiageway to the left on the right hand bend and struck the guardrail. Both crashes occured on a dry road surface, in fine weather and in daylight conditions.
- Two crashes oc curred on the sweeping bend near the intersection of Morans Road. That bend is not signposted, and it is noted that vegetation grows close to the edge of the camiageway on the inside of the bend. Speeding was nominated as a contributing factor to both crashes, one of which involved a northbound motorcycle which lost control on the caniageway on a dry road surface in fine weather and daylight conditions. The other involved a southbound carwhich left the camiageway to the left on the left-hand bend and struck an object, and occurred on a wet road surface in overcast weather and darkness.
- Three crashes occurred at or near bends in Harry Graham Drive approximately 2 km from Mount Keira Road. Speeding was nominated as a contributing factor in two of those crashes, both of which involved the vehicle (one motorcycle, one car) leaving the carmiageway. In third crash, a southbound carwason the incorrect side of the road and struck a northbound carhead on.

4.6.3 Picton Road

A summary of the key characteristic sof crashes that occured on Pic ton Road over the period investigated is presented in Appendix B. Key aspects of the road crash history are:

- No crashes occurred at or nearthe intersection with Cordeaux Dam access road.
- Two crashes oc curred at or near the intersection with the Cordeaux Pit Top Access Road in 2018, however neither were related to conflicting vehicles at the intersection. Both were single-vehicle crashes involving the vehicle leaving the camiageway on the straight length of Picton Road, and fatigue was nominated asa contributing factor in both crashes.
- Fourcrashes occurred at the intersection of Picton Road with Mount Keira Road, one of which was not related to conflicting vehicles at the intersection. The other three crashes involved a vehicle tuming right out of Mount Keira Road striking a westbound vehicle in Picton Road. Two of those involved a driver disobeying the traffic controls, and the other involved a speeding vehicle.
- There wasa notable decrease in crashes from 2018 to 2019, noting that progressive upgrades have been undertaken on Picton Road.

4.7 Dendrobium Mine Traffic

Review of the traffic survey data demonstrates that the traffic generated by the Dendrobium Mine in the Mount Kembla area (i.e. the Dendrobium Pit Top and Kemira Valley Coal Loading Facility combined) is distinctly lower on Friday than the other weekdays. This is due to the changed shift arrangements over the weekend compared with weekdays, with those changes occ uming from Friday aftemoon through to early Monday moming. To consider typic al daily conditions relating to Dendrobium Mine traffic generation, TTPP has therefore considered an average day over Monday to Thursday rather than overall weekdays.

4.7.1 Dendrobium Mine Traffic Distribution

4.7.1.1 Workforce

The residential postcodes of the direct employee workforce were reviewed to determine the likely distribution of routes used by the workforce travelling to and from the Dendrobium Mine. The results are summarised in Table 4.8, which compares the current workforce characteristics with that of similar data collected in 2017.

Table 4.8: Direct Employee Directional Travel to/from Dendrobium Mine

Route to/from	2017	2021
North via Princes Highway	24.8	25.2
South via Princes Highway	7.8	8.2
South via Princes Motorway	36.0	35.8
East via The Avenue IslandsRoad	11.2	9.4
West via Picton Road	7.0	2.7
Local	10.5	11.8

Table 4.8 suggests that the distribution of the workforce has remained relatively stable. It is noted that a portion of the traffic to/from the north via the Princes Highway would use the Princes Motorway at West Wollongong. Some of those drivers travelling to/from the Princes Motorway (north) may choose to use Hary Graham Drive and Mount Keira Road to access Mount Ousley Road via Picton Road or Clive Bissell Drive. The latter would only be used by outbound traffic from the Dendrobium Mine, because only left tum movements are permitted between C live Bissell Drive and Mount Ousley Road.

Altematively, drivers travelling to/from the north a long the Princes Highway may choose to use Gibsons Road between the Princes Highway and Cordeaux Road, or remain on Cordeaux Road to the Princes Highway when travelling between the Princes Highway and the Dendrobium Pit Top.

Similarly, a portion of the drivers assumed to travel to and from the north (e.g. to/from suburbs of south or south-west Sydney) may choose to travel via Harry Graham Drive, Mount Keira Road and Picton Road, depending on their final destination.

As desc ribed (Section 2.1.2), the contracting company transports workers to and from the Dendrobium Pit Top from a site on Marley Place at Unanderra. Two buses a re used per shift a cross both weekdays and weekends, transporting up to 42 contractors per shift. It is expected that the buses travel via Marley Place, Five Islands Road, Princes Highway and Cordeaux Road.

The balance of the contractors who do not travel by bus would travel in private or company vehicles. The distribution of those contractortrips on the road network is assumed to be consistent with that of the direct employee workforce.

4.7.1.2 Visitors and Deliveries

The results of the intersection survey in 2021 confirm that all heavy vehic le movements to and from the Dendrobium Pit Top entered or exited the site via Cordeaux Road east of the Dendrobium Pit Top. The Project would not change this a rrangement.

The majority of deliveries are sourced from local suppliers in the Wollongong region. Non-local deliveries come from Newc astle, and to a lesser extent from Sydney. Delivery vehic les would thus be expected to use the Princes Highway and Cordeaux Road to travel to and from the Dendrobium Pit Top or Kemira Valley Coal Loading Facility. Those travelling from Newcastle or Sydney would access the Princes Highway from the Princes Motorway. Those tra velling from the local Wollongong region would access the Princes Highway at various locations depending on the origin of the trip.

Visitors to the Dendrobium Pit Top are also primarily sourced from the Wollongong region, and thustypically travel to and from the site via Cordeaux Road east.

4.7.2 Dendrobium Pit Top

At the time of the 2021 survey of Dendrobium Pit Top traffic (Section 4.5), non-essential visitors to the Dendrobium Pit Top were not permitted, thus any trips generated by those visitors under normal conditions were not captured by the survey. To account for this, TIPP has referred to the aforementioned records of visitors signing in to the Dendrobium Pit Top over one month in 2017. The change in workforce since that time is not expected to have impacted the number of visitors. The data indic ate that on average, there are four visitors per day, however this varies from day to day, with no visitors attending the Dendrobium Pit Top on many days. Considering only those days during which there were visitors to the Dendrobium Pit Top, there was an average of 11 to 12 visitors perday.

On this basis, TIPP has assumed that under normal conditions, 12 visitors may attend the Dendrobium Pit Top on any one day, which would generate 24 vehic le trips over the day. Visitors typic ally attend during daylight business hours 9:00 am to 5:00 pm, and for the purpose of this a ssessment, it has been assumed that up to four visitor vehic les may a pproach or depart the Dendrobium Pit Top during the aftemoon peak hour. It is unlikely that visitors attend the site during the early moming peak hour.

On the survey day, 33 heavy vehic le movements were recorded to a nd from the Dendrobium Pit Top. The Dendrobium Pit Top typic ally receives some 20 deliveries per day by heavy vehicles, therefore TIP has assumed that on any one day, up to 40 heavy vehicle movements may be generated by deliveries. For the purpose of this a ssessment, it has been assumed that up to two of the additional seven heavy vehicle movements above those surveyed may oc cur during the aftemoon peak hour, noting that those trips would occur only a fter 4:00 pm. It is unlikely that heavy vehicle deliveries would coincide with the early moming peak hour.

The resulting estimated trip generation of the Dendrobium Pit Top including visitors a nd a verage day deliveries is summa rised in Table 4.9.

Table 4.9: Dendrobium Pit Top Vehic le Tips by Type

Light							Mini Bus	Heavy ${ }^{\text {A }}$	Total
Workforce	789	11	0	800					
Visitor	24	0	0	24					
Deliveries	0	0	40	40					
Total	813	11	40	864					

AM Peak Hour 4:45 am to 5:45 am (vehic les per hour)

Workforce	143	0	0	143
Visitor	0	0	0	0
Deliveries	0	0	0	0
Total	143	0	0	143

PM Peak Hour 3:45 pm to 4:45 pm (vehic les per hour)

Workforce	126	1	0	127
Visitor	4	0	0	4
Deliveries	0	0	2	2
Total	130	1	2	133

A Heavy vehic les only permitted 7:00 am to 8:00 am, 9:30 am to 2:30 pm and 4:00 pm to 5:00 pm.
The distribution of the existing Dendrobium Pit Top traffic onto the surrounding roads has been estimated as summarised in Table 4.10.

Table 4.10: Dendrobium Pit Top Vehicle Tip Distribution

| Thip Type | Cordeaux Road East | | | | Cordeaux Road West | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Light | Mini Bus | Heavy ${ }^{\text {A }}$ | Total | Light | Mini Bus | Heavy $^{\boldsymbol{c}}$ | Total |
| Workforce | 741 | 11 | 0 | 752 | 48 | 0 | 0 | 48 |
| Visitor | 24 | 0 | 0 | 24 | 0 | 0 | 0 | 0 |
| Deliveries | 0 | 0 | 40 | 40 | 0 | 0 | 0 | 0 |
| Total | 765 | 11 | 40 | 816 | 48 | 0 | 0 | 48 |

AM Peak Hour 4:45 am to 5:45 am (vehic les per hour)

Workforce	134	0	0	134	9	0	0	9
Visitor	0	0	0	0	0	0	0	0
Deliveries	0	0	0	0	0	0	0	0
Total	134	0	0	134	9	0	0	9

PM Peak Hour 3:45 pm to 4:45 pm (vehic les per hour)

Workforce	118	1	0	119	8	0	0	8
Visitor	4	0	0	4	0	0	0	0
Deliveries	0	0	2	2	0	0	0	0
Total	122	1	2	125	8	0	0	8

A Heavy vehic les only permitted 7:00 am to 8:00 am, 9:30 am to 2:30 pm and 4:00 pm to 5:00 pm.

4.7.3 Kemira Valley Coal Loading Facility

Operations at the Kemira Valley Coal Loading Facility have not materially changed since the surveys were conducted in 2017, therefore the number of vehicle trips generated by the Kemira Valley Coal Loading Facility would also not have materially changed since that time. The 2017 survey results are therefore considered representative of existing conditions at the Kemira Valley Coal Loading Facility.

Review of the traffic survey data demonstratesthat the traffic generated by the Dendrobium Mine in the Mount Kembla area is distinctly lower on Friday than the other weekdays. This is due to the changed shift a rrangements over the weekend compared with weekdays, with those changes oc curing from Friday aftemoon through to early Monday moming. To considertypical daily conditions relating to traffic generation of the Kemira Valley Coal Loading Facility, TTPP has therefore considered an average day over Monday to Thursday only.

The number of vehic le trips generated by each of the type of vehicles overthe average day and peak hours has been estimated as shown in Table 4.11.

Table 4.11: Kemira Valley Coal Loading Facility Vehicle Trips by Type

	Light	Mini Bus	Heavy	Total
Daily (vehic les per day)				
Workforce	32	0	0	32
Visitor	0	0	0	0
Deliveries	0	0	6	6
Total	32	0	6	38
AM Peak Hour 7:00 am to 8:00 am (vehic les per hour)				
Workforce	5	0	0	5
Visitor	0	0	0	0
Deliveries	0	0	1	1
Total	5	0	1	6
PM Peak Hour 3:00 pm to 4:00 pm (vehic les per hour)				
Workforce	3	0	0	3
Visitor	0	0	0	0
Deliveries	0	0	0	0
Total	3	0	0	3

Based on the distributions described in Section 4.7.1, the significant majority of traffic to and from the Kemira Valley Coal Loading Facility would travel to and from the site via Cordeaux Road east.

4.7.4 Dendrobium CPP

The typic al workforce of 14 employees and up to seven contractors at the Dendrobium CPP operates rotating 12 -hour shifts (7.00 am to 7.00 pm and 7.00 pm to 7.00 am), and car parking is provided on site for the employees. The CPP attrac ts very few visitors.

On this basis, it is estimated that the Dendrobium CPP generates a pproximately 42 vehic le tripsperday asa result of the movement of the workforce to and from the site. It is estimated that access to battery service and gasprocessing facilities along the same employee access road generate approximately 50 vehicle tripsperday, noting that these trips are not associated with Dendrobium Mine activity.

During occasional shutdowns, up to 200 workers may be at the CPP, howeverthis is an infrequent event oc curring once peryearfor up to three weeks, and is not considered relevant to the day-to-day operation of the Dendrobium Mine.
transport planning

4.8 Maldon to Dombarton Rail Comidor

The Maldon to Dombarton Railway is a proposed 35 km single track rail freight line between the Main South Line at Maldon in the Southem Highlands and the Moss Vale Unanderra Line at Dombarton near Port Kembla. Construction on the line commenced but was suspended. In 2017, Infrastructure Australia did not recommend that the project be added to the Infrastructure Priority List asit would impose a net cost on the Australian economy and not justify its costs (Infrastruc ture Australia, 2017).

The rail comidor for the Maldon to Dombarton link diverges from the Ma in South line at Maldon via a triangular junction and heads in a south-easterly direction via a proposed bridge over the Nepean River before crossing beneath Hume Highway and Picton Road. It then proceeds to Wilton, over the Cordeaux River, passing through the Dendrobium Mining Lease and a proposed 4 km tunnel before joining the Moss Vale Unanderra line at Dombarton.

Considering the routes used by Dendrobium Mine road traffic (Section 4.7.1) and the a lignment of the proposed Maldon to Dombarton railway, it is anticipated that should construction of the railway proceed, there would be no interaction between rail traffic on the Maldon to Dombarton comidor and Dendrobium Mine road traffic. Access to the surface above the proposed Area 5 mining will be required for monitoring and management activities. This access would be via existing Fire Road crossing located along the proposed Maldon to Dombarton railway. No further consideration has therefore been given to interaction between the Dendrobium Mine and the rail comidor with regard to the road transport environment. Impacts due to mining on the Maldon to Dombarton railway are considered in the Dendrobium Mine Extension Project - Subsidence Assessment (MSEC, 2022).
transport planning

5 Project Traffic Generation

5.1 Construction Traffic

Project construction a ctivity would occur at the Dendrobium Pit Top, the proposed carpark extension opposite the Dendrobium Pit Top on the southem side of Cordea ux Road and the new Shaft Site No. 5A, with a combined total additional temporary workforce of a pproximately 100 people.

Construction and development activities would occur at the Kemira Valley Coal Loading Facility, Dendrobium CPP, existing Shaft Sites and along the Kemira Valley Rail Line. The works at those sites are expected to be minor, and consistent with short term maintenance and upgrade works which currently occuraspart of the Dendrobium Mine'soperations, so are not considered further in this a ssessment.

5.1.1 Dendrobium Pit Top

The initial Project construction a ctivities would involve a dditional workers, deliveries and visitors to the facilities at the Dendrobium Pit Top.

Construction activity would attract a short-term workforce based at the Dendrobium Pit Top made up of approximately five exec ution team workers and 20 misc ella neous construction workers (Section 3.1). The majority of these workers would work the day shift consistent with the shift times of the existing operational workforce, i.e. 6:00 am to 4:00 pm on weekdays. The execution team workers may work that day shift or typical office hours, however as a robust a ssessment, it has been assumed that they would work the day shift hours, a nd so a mive and depart at the same time as the miscella neous workers.

These workers would typic ally drive to the Dendrobium Mine, with some level of carpooling likely. For the purpose of this a ssessment of traffic impacts of the Project, it is a ssumed that these workers would travel in passengercars with an average of 1.1 people per vehicle. On this basis, the 25 workers perday based at the Dendrobium Pit Top would travel in 23 vehicles. Should construction contracting companies implement shuttle buses for their workforce to travel to and from the Dendrobium Pit Top, the trip generation would be signific a ntly lower than assessed herein.

On weekdays, the vehicle trips generated by the additional workforce would be expected to occur prior to 6:00 a m (23 vehic les inbound) and after 4:00 pm (23 vehic les outbound). As a robust assessment, it has been assumed that these trips would coincide with the existing peak hours a ssociated with the traffic generated by the Dendrobium Pit Top, i.e. 4:45 am to 5:45 am, and 3:45 pm to $4: 45 \mathrm{pm}$.

It would be expected that throughout the day, some of the 25 workers based at the Regional Operations Centre at PKCTwould travel to and from the Dendrobium Pit Top as required. For the purpose of this a ssessment, it is a ssumed that on a typical day, up to 10 visits to the Dendrobium Pit Top would be made by workers based at the Regional Operations Centre. This would generate up to 20 vehicle tripsperday, which would not tend to coinc ide with the peak hours described above.

It is estimated that construction activity at the Dendrobium Pit Top would generate up to an additional ten heavy vehic le deliveries perday and an additional five visitors perday.

Table 5.1 summarises the estimated average day vehicle trips generated by the Project construction activity accessing the Dendrobium Pit Top during the peak periods associated with Dendrobium Mine traffic.

Table 5.1: Dendrobium Pit Top Construction Vehicle Tips by Type

Light							Mini Bus	Heavy ${ }^{\text {A }}$	Total
Workforce	66	0	0	66					
Visitor	10	0	0	10					
Deliveries	0	0	20	20					
Total	76	0	20	96					

AM Peak Hour 4:45 am to 5:45 am (vehic les per hour)

Workforce	23	0	0	23
Visitor	0	0	0	0
Deliveries	0	0	0	0
Total	23	0	0	23

PM Peak Hour 3:45 pm to 4:45 pm (vehic les per hour)

Workforce	23	0	0	23
Visitor	1	0	0	1
Deliveries	0	0	2	2
Total	23	0	2	26

A Heavy vehic les only permitted 7:00 am to 8:00 am, 9:30 am to 2:30 pm and 4:00 pm to 5:00 pm.

5.1.2 Shaft Site No. 5A

Access to the new Shaft Site No. 5A site would be via the Cordeaux Dam access road off Picton Road, and then via fire trails and unsealed access roads. A temporary carpark for construction personnel would be provided adjacent to Cordeaux Dam access road (or if preferred by WaterNSW, the existing Cordeaux Dam Pic nic Area parking area oradjacent area may be used, located approximately 700 m further down the access road). Due to the remote location of the new Shaft Site No. 5A, it is antic ipated that the construction workers would travel by private vehic lesto a meeting point on Cordeaux Dam access road, from which they would be transported in dedicated work vehic les capable of camying multiple personnel. The Cordeaux Dam access road has previously been used with the agreement of WaterNSW for this purpose.

Construction activity at Shaft Site No. 5A would attract a short-term workforce of approximately 40 people for shaft construction, made up of 30 people on the day shift (typic ally $6: 00 \mathrm{am}$ to $4: 00 \mathrm{pm}$) and 10 people on the night shift (typically 6:00 pm to 6:00 am) while shaft construction is being undertaken. Other activities at the shaft site like fan and compressor installation and borehole drilling would primarily occur on day shift.

Approximately 10 execution team workers would also be based at Shaft Site No. 5A (Section 3.1), working the day shift or office hours.

On this basis, and assuming the workforce travel to the meeting point on the Cordeaux Dam access road by private cars, with an average of 1.1 people per vehicle, the 30 construction workers and 10 execution team workers for the day period would travel in 36 vehic les to the Cordeaux Dam from Picton Road. The 10 construction workers for the night period would travel in nine vehicles to the Cordeaux Dam from Picton Road. From there, workers would be transported in a combination of utilities and personnel cariers to the construction site via fire trails, which are not public roads. Should construction contracting companies implement shuttle buses for their workforce to travel to and from the Cordeaux Dam access road, the trip generation would be signific antly lowerthan assessed herein. These travel a rrangements would be the same regardless of whether a temporary construction carpark is constructed or the existing Cordeaux Dam Picnic Area parking area located furtherdown the access road is utilised.

The number of vehicle trips generated by the workforce at the Shaft Site No. 5A are therefore estimated at:

- 36 inbound and 9 outbound vehicle trips in the moming; and
- 9 inbound and 36 outbound trips in the evening.

While the construction and execution team workers would be nomina lly working the same day shift, different activities would start and finish at sta ggered times, such that the departure of workers from the Cordeaux Dam would be spread over a longer period than would be suggested by reference only to the shift times. However as a robust assessment, it has been assumed that all armivals and departures in the moming and evening would occur in the same hour, with the peak hours occuring at the same times as those identified at the Dendrobium Pit Top which operates the same shift times as proposed at Shaft Site No. 5A, i.e. the peak hourly trip generation is therefore estimated as:

- 36 inbound and 9 outbound vehicle tripsbetween 4:45 am and 5:45 am; and
- 9 inbound and 36 outbound trips between 3:45 pm and 4:45 pm.

It would be expected that throughout the day, some of the 25 workers based at the Regional Operations Centre at PKCTwould travel to and from Shaft Site No. 5A as required. For the purpose of this a ssessment, it is a ssumed that on a typical day, up to five visits to the Dendrobium Pit Top would be made by workers based at the Regional Operations Centre. This would generate up to 10 vehicle trips perday, which would be spread throughout the day and would not tend to coincide with the peak hours described above.

Construction activity would generate approximately 20 heavy vehic lesper day fordeliveries of materials and equipment. No visitors would attend Shaft Site No. 5A during construction activity. It is estimated that up to 10% of the daily delivery trips may oc cur at the same time as the peak movement of the workforce to and from the construction site. As access to Shaft Site No. 5A would be via Picton Road, there would be no restrictions on the times during which heavy vehic les may access the site as occurs for access to the Dendrobium Mine facilities via Cordeaux Road through Mount Kembla.

Table 5.2 summarises the estimated average day vehicle trips generated by the Project construction activity accessing Shaft Site No. 5A via Picton Road and the Cordeaux Dam access road.

Table 5.2: Shaft Site No. 5A Construction Vehicle Trips by Type

	Light	Mini Bus	Heavy	Total
Daily (vehic les per day)				
Workforce	82	0	0	82
Visitor	0	0	0	0
Deliveries	0	0	40	40
Total	82	0	40	122
AM Peak Hour 4:45 am to 5:45 am (vehic les per hour)				
Workforce	45	0	0	45
Visitor	0	0	0	0
Deliveries	0	0	4	4
Total	45	0	4	49
PM Peak Hour 3:45 pm to 4:45 pm (vehic les per hour)				
Workforce	45	0	0	45
Visitor	0	0	0	0
Deliveries	0	0	4	4
Total	45	0	4	49

Trips generated on public roadsto and from the Cordeaux Dam access road via Picton Road.

5.1.3 Regional Operations Centre

During construction, approximately 25 execution team workers would be based at the Regional Operations Centre (IMC head office) at the PKCT. These workers would be working a combination of the day shift (typically 6:00 am to $4: 00 \mathrm{pm}$) and office hours, and would make occasional visits throughout the day to the construction sites at the Dendrobium Pit Top and Shaft Site No. 5A. The additional trips generated in and a round the PKCTwould be negligible in the context of the background traffic in the region, and hastherefore not been considered further in this assessment. Allowance has been made for the visiting trips to the Dendrobium Mine construction sites, described in Sections 5.1.1 and 5.1.2.

5.2 Operational Traffic

The Project does not propose any changes to the operational activities at the Kemira Valley Coal Loading Facility, Dendrobium CPP, Dendrobium Shaft Numbers 1, 2 and 3, or along the Kemira Valley Rail Line. Ongoing conditions would be consistent with existing operations (Section 2.4) with no additional traffic antic ipated, so these sites are not considered further in this a ssessment.
transport planning

5.2.1 Dendrobium Pit Top

The Project operational activities would involve up to an additional 50 development crew workers at the Dendrobium Pit Top. These workers would work similar shifts to the existing operational workforce, with between eight and 12 additional workers during each shift (refer to Table 2.1). Noting that the existing operational workforce is approximately half direct employees and half contractors, the additional workforce may comprise a similar combination of contractors and employees.

There is the potential for contractors to be transported to a nd from the site by mini-buses, similar to the existing transport a rangements. As a robust a ssessment of the potential impacts of the Project traffic on the road network, this study has assumed that the additional 50 workers would all travel by car, with an a verage of 1.1 people percar. This will overestimate the future traffic demands if shuttle buses are implemented for the contractor component of the additional workforce. The traffic generated by the additional workers would be spread across the day consistent with the existing spread of workforce traffic.

The Project activities at the Dend robium Pit Top may result in some additional visitor and delivery trips on a typical day. This assessment assumes that the 10% increase in workforce at the Dendrobium Pit Top would result in a similar increase in both visitor and delivery trips on a typical day.

Table 5.3 summarises the resulting additional trips assumed to be generated by the Dendrobium Pit Top with the Project operating at its peak operational workforce.

Table 5.3: Dendrobium Pit Top Additional Operational Vehicle Trips by Type

Light							Mini Bus	Heavy ${ }^{\text {A }}$	Total
Workforce	90	0	0	90					
Visitor	1	0	0	1					
Deliveries	0	0	4	4					
Total	91	0	4	95					

AM Peak Hour 4:45 am to 5:45 am (vehic les per hour)

Workforce	16	0	0	16
Visitor	0	0	0	0
Deliveries	0	0	0	0
Total	16	0	0	16

PM Peak Hour 3:45 pm to 4:45 pm (vehic les per hour)

Workforce	15	0	0	15
Visitor	1	0	0	1
Deliveries	0	0	1	1
Total	16	0	1	17

A Heavy vehic les only permitted 7:00 am to 8:00 am, 9:30 am to 2:30 pm and 4:00 pm to 5:00 pm.

5.2.2 Shaft Site No. 5A

Once constructed, Shaft Site No. 5A would be primarily unattended, with access generally limited to intermittent maintenance inspections (up to several times weekly) or for specific maintenance or upgrade works, consistent with the existing Dendrobium Shaft Sites (Section 2.4). The day-to-day traffic generation would be very low, and is not considered further in this a ssessment.

6 Impacts of the Project

6.1 Future Traffic Volumes

6.1.1 Dendrobium Pit Top

Future traffic volumes on Cordeaux Road at the time of the construction and operational peaks being assessed have been estimated assuming that growth in background (non-mine) traffic may occurat a rate of 1.0% per annum. The background traffic has been estimated by a ssuming that during the traffic surveys in 2017 (Section 4.4), 95\% of the average daily light vehicle traffic and 100% of the average daily heavy vehic le traffic surveyed on the Dendrobium Pit Top Access Road accessed the Dendrobium Pit Top via Cordeaux Road east. These forecasts will tend to overestimate the volume of traffic on Cordeaux Road not associated with the Dendrobium Mine, as it excludes the traffic generated by the visitorcar parking area at the Dendrobium Pit Top and by the Kemira Valley Coal Loading Facility during the 2017 surveys. The forecast background traffic on Cordeaux Road in Mount Keira (east of Stones Road) is summa rised in Table 6.1.

Table 6.1: Average Weekday Traffic on Cordeaux Road East of Stones Road - No Project

Year	Inbound to Dendrobium Pit Top			Outbound from Dendrobium Pit Top		
	Light	Heavy	Total	Light	Heavy	Total
2017 Surveyed						
Daily ${ }^{\text {A }}$	1,646	115	1,761	1,708	99	1,807
5:00 am to 6:00 amb	91	6	97	30	2	32
4:00 pm to 5:00 pmb	153	8	161	175	7	182
2017 Bac kground Traffic ${ }^{\text {c }}$						
Daily ${ }^{\text {A }}$	1,422	94	1,516	1,481	67	1,548
5:00 am to 6:00 $\mathrm{am}^{\text {B }}$	35	1	36	26	1	27
4:00 pm to 5:00 pm ${ }^{\text {B }}$	149	8	157	129	3	132
2023 Background Traffic						
Daily ${ }^{\text {a }}$	1,510	100	1,610	1,572	71	1,643
5:00 am to 6:00 a mb	37	1	38	28	1	29
4:00 pm to 5:00 pm ${ }^{\text {P }}$	158	8	166	137	3	140
2037 Background Traffic						
Daily ${ }^{\text {a }}$	1,736	114	1,850	1,808	82	1,890
5:00 am to 6:00 amb	43	1	44	32	1	33
4:00 pm to 5:00 pm	182	10	192	157	3	160

A vehic les perday
${ }^{B}$ vehic les per hour
c traffic not generated by Dendrobium Pit Top main carpark.

Without the Project, the Dendrobium Pit Top would continue to generate traffic consistent with that surveyed in 2021 until cessation of a pproved mine a ctivity at the end of 2030. With the Project, the Dendrobium Pit Top would generate traffic consistent with that surveyed in 2021 until cessation of a pproved mine a c tivity at the end of 2040, with additional construction traffic during 2023 (Section 5.1.1), and additional operational traffic until a pproximately 2037 (Section 5.2.1), after which the operational traffic would decline.

Table 6.2 summarises the forecast daily and peak hourly volumes on Cordeaux Road in Mount Kembla with and without the Project during the years under consideration. This assumes that 95% of the light vehic le traffic and 100% of the heavy vehicle traffic generated by the Dendrobium Pit Top Accessesthe Dendrobium Pit Top via Cordeaux Road east. These forecasts assume that the peak mine-generated traffic (surveyed to occur from 4:45 am to 5:45 am and from 3:45 pm to $4: 45 \mathrm{pm}$) coincide with the hourly volumes on Cordea ux Road between 5:00 m and 6:00 m and between 4:00 pm and 5:00 pm.

Table 6.2: Forecast Average Weekday Traffic on Cordeaux Road East of Stones Road

Year	Inbound to Dendrobium Pit Top				Outbound from Dendrobium Pit Top			
	Light	Mini Bus	Heavy	Total	Light	Mini Bus	Heavy	Total
2023 No Project								
Daily ${ }^{\text {A }}$	1,893	11	120	2,019	1,954	5	91	2,050
5:00 a m to 6:00 a mb	171	0	1	172	28	0	1	29
4:00 pm to 5:00 $\mathrm{pm}^{\text {B }}$	158	0	8	166	259	1	5	265
2023 With Project Construction								
Daily ${ }^{\text {A }}$	1,929	11	140	2,075	1,990	5	111	2,106
5:00 am to 6:00 amb	193	0	1	194	28	0	1	29
4:00 pm to 5:00 pmb	158	0	8	166	282	1	5	288
2037 No Project								
Daily ${ }^{\text {a }}$	1,736	0	114	1,850	1,808	0	82	1,890
5:00 am to 6:00 a mb	43	0	1	44	32	0	1	33
4:00 pm to 5:00 pm ${ }^{\text {B }}$	182	0	10	192	157	0	3	160
2037 With Project Peak Operational Workforce								
Daily ${ }^{\text {A }}$	2,162	6	138	2,306	2,233	5	106	2,344
5:00 am to 6:00 a mb	192	0	1	193	32	0	1	33
4:00 pm to 5:00 pm ${ }^{\text {B }}$	182	0	10	192	293	1	5	299

A vehiclesperday
${ }^{\text {B }}$ vehic les perhour

6.1.2 Shaft Site No. 5A

Future traffic volumes on Picton Road at the time of peak construction activity at Shaft Site No. 5A have been estimated from the TFNSW data (Section 4.3) on Picton Road near Wilton. That data showed growth of 10% over four years, thus an a nnual growth rate of 2.5% for traffic on Picton Road hasbeen assumed. The forecast traffic on Picton Road during the peak hours a ssociated with the Project construction activity is summa rised in Table 6.3.

Table 6.3: Forecast Average Weekday Traffic on Picton Road near Wilton

Year	Eastbound			Westbound		
	Light	Heavy	Total	Light	Heavy	Total
2021 No Project						
Daily ${ }^{\text {A }}$	7,944	3,197	11,141	7,789	3,239	11,028
5:00 am to 6:00 a mb	177	181	358	454	197	651
4:00 pm to 5:00 pm ${ }^{\text {B }}$	801	183	984	615	188	803
2023 No Project						
Daily ${ }^{\text {A }}$	8,352	3,361	11,713	8,189	3,405	11,594
5:00 am to 6:00 a mb	186	190	376	477	207	684
4:00 pm to 5:00 pm ${ }^{\text {B }}$	842	192	1,034	647	198	845
2023 With Projectc						
Daily ${ }^{\text {A }}$	8,393	3,381	11,774	8,230	3,425	11,655
5:00 am to 6:00 a mb	186	190	376	522	211	733
4:00 pm to 5:00 pm ${ }^{\text {B }}$	887	196	1,083	647	198	845

A vehic les perday
${ }^{B}$ vehicles per hour
cassumes all Project-generated traffic approaches and departs Cordeaux Dam access road in one direction.

6.2 Operation of Intersections

The operating characteristic sof the key intersections have been a ssessed using SIDRA INTERSECTION 9, an a na lysis program that determines characteristic s of intersec tion operating conditions including the degree of saturation, a verage delays and intersection level of service. The degree of saturation, or x-value, is the ratio of the amival rate of vehicles to the capacity. The average delay, expressed in secondsper vehicle, is mea sured over all movements at signa lised intersections, and over the movement with the highest average delay at roundabout and priority intersections. Average vehic le delay is the commonly used measure of intersection performance defined by IfNSW. Table 6.4 shows the criteria adopted by TfNSW for a ssessing the level of service of intersections.

Table 6.4: Intersection Level of Service Criteria

Level of Service	Average Delay per Vehicle (sec onds per vehicle)	Traffic Signals, Roundabout	Give Way \& Stop Sign
A	Less than 14	Good operation	Good operation
B	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
C	29 to 42	Satisfa c tory	Satisfactory, but a c cident study required
D	43 to 56	Nearcapacity	Nearcapacity, accident study required
E	57 to 70	At capacity, at signals incidents will cause excessive delays	At capacity, requires other control mode
F	Greaterthan 70	Extra capacity required	Extreme delay, majortreatment required

6.2.1 Dendrobium Pit Top

Table 6.5 presents a summary of the peak hour operating characteristics of the intersection of the Dendrobium Pit Top Access Road with Cordeaux Road. Detailed results, including 95th percentile vehicle queues per movement are presented in Appendix C.

Table 6.5: Dendrobium Pit Top and Cordeaux Road Intersection Operating Conditions

Scenario	AM Peak Hour 4:45 am to 5:45 am			PM Peak Hour 3:45 pm to 4:45 pm		
	X-Value	Average Delay				
2021 - Surveyed	0.08	5.6	Level of Service	X-Value Average Delay	Level of Service	
2023 - With Project Construction	0.10	5.6	A	0.08	5.6	A
2037 - With Project Operational	0.09	5.6	A	0.12	5.6	A

A Secondspervehicle for movement with the highest average delay pervehicle.

The results demonstrate that with the Project-generated traffic, the intersection of Cordeaux Road with the Dendrobium Pit Top Access Road would operate at a good level of service during the peak hours, with short delaysto tuming traffic and spare capacity.

6.2.2 Shaft Site No. 5A

Under nomal circ umstances, the grounds of the Cordeaux Dam are open to the public between 10:00 am and 5:00 pm, thus the background traffic during the Project moming peak hour between 4:45 am and 5:45 am would be zero or negligible. During the Project aftemoon peak hour between 3:45 pm and 4:45 pm, there is the potential for the public to generate trips on the Cordeaux Dam access road. As the area is currently closed to the public, TTPP has been unable to quantify existing vehicle movements, hence forclarity, the impacts of the short-term construction traffic have been estimated assuming that without the Project, one light vehicle would operate on each movement into and out of the Cordeaux Dam access road during the aftemoon peak hour under consideration.

As a robust assessment, it is assumed that all Project-generated traffic would approach or depart to and from the east (i.e. tum left in and right out of the Cordeaux Dam access road), representing the worst case for vehiclesdeparting the site and entering Picton Road. The existing layout of the intersection of Picton Road with the Cordeaux Dam access road allows a vehic le tuming right out of the Cordea ux Dam access road to conduct a staged tum. A right-tuming vehicle can select a gap and crossthe westbound traffic lane, then shelter in the wide median area before selecting a gap to enter the eastbound travel lane. The overall average delay for the right tum movement is therefore the sum of the average delays experienced forboth those movements.

The resulting intersection operating conditionsare summarised in Table 6.6. Detailed results, including 95th percentile vehicle queues per movement are presented in Appendix C.

Table 6.6: Cordeaux Dam Road and Picton Road Intersection Operating Conditions 2023

Scenario	AM Peak Hour 4:45 am to 5:45 am		PM Peak Hour 3:45 pm to 4:45 pm			
	X-Value	Average Delay	Level of Service	X-Value	Average Delay	Level of Service
2023 - No Project construction	0.44	11.1	A	0.63	19.7	B
2023 - With Project construction	0.44	14.7	B	0.63	23.9	B

Background through traffic on Picton Road 5 am to 6 am, and 4 pm to 5 pm
A Seconds per vehicle for movement with the highest average delay pervehicle.
The results demonstrate that the intersection of Picton Road with the Cordeaux Dam access road hasadequate capacity to accommodate the Project construction traffic with acceptable delays to tuming vehic les and spare capacity.
transport planning

6.3 Car Parking

6.3.1 Dendrobium Pit Top

Additional carparking is proposed to be provided on the southem side of Cordea ux Road, accessed via a new access driveway from Cordeaux Road east of the Dendrobium Pit Top. The capacity of the new carpark will be dependent on its detailed design, however it is a ntic ipated that is will accommodate in the order of 100 to 120 carparking spaces. This exceeds the expected increase in the workforce at the Dendrobium Pit Top during both the peak construction phase (a pproximately 25 workers based on-site and visiting workers based off-site) a nd operational phase (approximately 50 workers) of the Project. The additional capacity would therefore meet the additional demandsgenerated by the Project, and also provide additional parking to meet the demands of the existing workforce.

It is recommended that the proposed accessdriveway and carpark be designed in accordance with the employee parking requirements of the Australian Sta ndard for Parking Facilities - Off-street carparking, and that a formal pedestrian route between the carpark and the main Dendrobium Pit Top would be provided, including a dedicated footpath which directs pedestria ns a cross Cordea ux Road at a suitable location.

6.3.2 Shaft Site No. 5A

A temporary carpark would be provided on the Cordeaux Dam access road for the construction workforce at Shaft Site No. 5A, or if preferred by WaterNSW, the existing Cordeaux Dam Picnic Area parking oradjacent area would be utilised (located approximately 700 m further down the access road). The capacity of the temporary carpark (orexisting picnic area carpark) would meet the expected demandsat the meeting point, taking into account the peak demand at shift changeover times, when both inbound and outbound workers would be present at the same time.

6.4 Kemira Valley Rail Level Crossings

The Project would continue to make use of the Kemira Valley Rail Line to transport coal from the Kemira Valley Coal Loading Facility to the Dendrobium CPP, with Project trains using the existing level crossings on Central Road south of Cordeaux Road and off Marley Place at Unanderra.

The Project would not increase the number of trains using the rail line and level crossings, rather would extend the number of years over which the trains would use the rail line at the current frequency. The number of vehicles using the level crossing at Central Road would be expected to increase overthe life of the Project due to non-specific traffic growth and to a small extent by growth in employees drawn from the local east Unanderra area who might use that level crossing to access Cordeaux Road when tra velling to and from the Dendrobium Mine. The number of vehic les using the level crossing at Marley Place is limited by the development on the adjacent land which is accessed via the level crossing and so is not expected to change signific antly over the life of the Project.

The probability of a cardriver being delayed by a train at a level crossing is a function of the number of vehic les and tra ins using the crossing, thus would be expected to increase only slightly over the life of the Project at the Central Road level crossing, and to remain at the current level at the Marley Place level crossing. Both crossings have space available for vehiclesto queue without blocking through traffic on the nearby roads. The impact of the Project on the operation of the level crossings is low and would not warrant upgrading of the level crossings.

6.5 Road Safety

The review of the road crash history of roads relevant to the Project (Section 4.6) found no partic ular concems with the access intersections for the surface facilities or specific locations along the routes investigated. The existing traffic mana gement measures along Cordeaux Road (such as reduced speed limits and speed humps) and the Dendrobium Mine TMP would continue to manage the behaviour of drivers along the route.

6.6 Oversize and Overmass Vehicles

A number of oversize or overmass (OSOM) vehic le movements may be generated on an occasional basis during the life of the Project, consistent with the current Dendrobium Mine operations. OSOM vehic le movements would be associated with the transport of mining equipment and infrastructure to and from the Project. The proposed movement of any OSOM vehicles associated with the Project will conform with the relevant permits obtained in accordance with Add itional Access Conditions Oversize and overmass heavy vehic les and loads (TfNSW, 2020d), and any other licences and escorts as required by the regulatory authorities.

The movement of OSOM vehic les would be avoided on Cordeaux Road during the times outlined in the TMP.
transport planning

6.7 Dangerous Goods Vehic les

Dangerous goods required for the Project would be transported in accordance with the relevant legislation, including Dangerous Goods (Road and Rail Transport) Act 2008, Dangerous Goods (Road and Rail Transport) Regulation 2014 and Dangerous Goods (Road and Rail Transport) Amendment (Model Law) Regulation 2020, reflecting the new edition of the Australian Code for the Transport of Dangerous Goods by Road \& Rail (National Transport Commission, 2020) for implementation in NSW.

The transportation, handling and storage of all dangerous goods at the site will be conducted in accordance with the requirements of the relevant Australian Standards, driver and vehicle licencing requirements, and the current version of the Australian Dangerous GoodsCode.

6.8 C onstruction Water Transportation (Option)

Aspart of the Project, water to be used for construction a ctivities at Shaft Site No. 5A may be required to be transported by road from sources in the local region, in the absence of altemative water supply options. The implic ations of this transportation, if required, on the road transport environment have been reviewed, based on the following:

- water would be transported using a fleet of six small rigid tankertrucks, with a capacity of 10,000 litres per truck;
- each truck would make three trips perday to Shaft Site No. 5A; a nd
- transportation of water would be limited to between 8:00 am and 5:00 pm, Monday to Saturday.

If required, watertransportation during the construction stage for Shaft Site No. 5A would therefore generate up to 36 vehic le trips perday on the Cordeaux Dam access road and Pic ton Road, with an average of approximately four truck movements per hour (two inbound a nd two outbound). It is likely that the water would be sourced from Picton or Wilton, so trucks would travel on Picton Road from the west of the Cordeaux Dam access road.

The primary impact of this water transportation by road, if required, would be at the intersection of Cordeaux Dam access road and Picton Road. To assess the operation of that intersection, a robust scenario has been considered in which all sixtrucks a mive a nd depart the site in one hour, generating 12 vehicle trips in one hour.

If required, the transportation of water to Shaft Site No. 5A by road would be restricted to after 8:00am, so it would not coincide with the moming peak for traffic generated by the Project. This a ssessment has therefore considered the impacts during the busiest moming hour on Picton Road that coincides with the water haulage hours, being 8:00am to 9:00am (sourced from TfNSW, 2020c). The assessment assumes that during the moming on-street peak hour, the water trucking may coinc ide with up to four delivery truck movements (two inbound and two outbound, all to and from the east) associated with the Project construction activity.

The transportation of water would continue until 5:00pm, and so may occur at the same time as the evening peak of Project-generated traffic. The watertrucking scenario has therefore been assessed assuming that the water haulage peak may coincide with the construction activity peak hour traffic generation in the evening.

The operation of the intersection has been a nalysed using SIDRA INTERSEC TION 9 (refer to Section 6.2), and the results summarised in Table 6.7. Detailed results are presented in Appendix C.

Table 6.7: Cordeaux Dam and Picton Road Intersection 2023 with Water Transportation

Cordeaux Dam Access Road and Picton Road	X-Value	Average Delay ${ }^{A}$	Level of Service

With Project and Water Transportation from West

8:00am to 9:00am	0.506	31.6	C
$4: 00 \mathrm{pm}$ to 5:00pm	0.626	24.0	B

With Project and WaterTransportation from East

8:00am to 9:00am	0.506	41.9	C
$4: 00 \mathrm{pm}$ to 5:00pm	0.626	31.0	C

A Secondsper vehicle for movement with the highest average delay pervehicle.
The results in Table 6.7 indicate that the intersection of Picton Road with the Cordeaux Dam access road would have adequate capacity to accommodate the additional water haulage trucks if needed, with a verage vehicle delays being within the acceptable range. No specific management or other mitigation measures would be required to manage the movement of water haulage trucks to and from Shaft Site No. 5A should this option be required.
transport planning

6.9 Mitigation Measures

Based on the findings of this assessment, the impacts of the Project's traffic on the road system can be satisfactorily ac commodated while maintaining satisfactory operational conditions, with the following measures recommended:

- review the existing Dendrobium Mine TMP prior to commencement of the Project and periodic ally throughout the life of the Project to determine any need for revisions, with a focus on road safety; and
- the proposed carpark off Cordeaux Road and its access be designed in accordance with the employee carparking requirements of Australian Standard 2890.1, with a clearpedestrian route provided between the carpark and the Dendrobium Pit Top area.

The measuresabove are intended to provide safe traffic movement for all road users by minimising the risks posed by the interacting components of the road transport system, consistent with the Safe System principles.
transport planning

7 Summary and Conclusions

7.1 Summary

Dendrobium Mine

- The Dend robium Mine is an underground coal mine situated in the Southem Coalfield of NSW approximately 8 km west of Wollongong. Existing surface facilities include the Dendrobium Pit Top, Kemira Valley Coal Loading Facility, Kemira Valley Rail Line, Dendrobium CPP, and Dendrobium Shaft Numbers 1, 2 and 3.
- ROM coal is transported from the underground areasvia a tunnel to the Kemira Valley Coal Loading Facility then to the Dendrobium CPP via the Kemira Valley Rail Line, then to the Port Kembla Steelworks or PKCTfor export.
- Access to the Dendrobium Pit Top is off Cordeaux Road, access to the Kemira Valley Coal Loading Facility is off Stones Road, a nd access to the Dendrobium CPP is via Flinders Street (in the Port Kembla Steelworks precinct).
- Dendrobium Mine traffic is managed by the Dendrobium Mine Traffic Management Plan a nd the Dendrobium Drivers' Code of Conduct. To minimise the impacts of minegenerated traffic on local residents, heavy vehicle access to the Dendrobium Pit Top is only permitted on weekdays from 7:00 a m to 8:00 a m, 9:30 a m to 2:30 pm, and 4:00 pm to 5:00 pm, and from 8:00 am to 1:00 pm on Saturdays.

Dendrobium Mine Extension Project

- The Project would extend underground mining operations in a new underground mining area (Area 5) until approximately 2035, and use of the Dendrobium Pit Top, Kemira Valley Coal Loading Facility, Dendrobium CPP and Dendrobium Shafts to 2041.
- Coal handling, processing and transportation activities would continue consistent with current conditions.
- Project construction a ctivity would require a short term workforce of a pproximately 100 FIE workers, a nd Project operational activity would require the ongoing employment of the existing operational workforce plus an additional 50 workers based at the Dendrobium Pit Top.
- Construction activity would occur at the Dendrobium Pit Top and Shaft Site No. 5A, which would be accessed via the Cordeaux Dam access road.
- A temporary carpark would be provided adjacent to the Cordeaux Dam access road (orat the existing Cordeaux Dam Pic nic Area parking area or adjacent area if preferred by WaterNSW). The construction workforce would be transported from the temporary carpark to the construction site via dedicated work vehicles, using fire trails a nd unsealed access roads.

Existing Road Environment

- Access for the Dendrobium Pit Top is via Cordeaux Road, a localroad that provides a ccess from Kembla Heights at Figtree via Cordeaux Heights and Mount Kembla.
- The Cordea ux Dam access road is accessed via Picton Road, a State Road which performsa significant role in freight transport for the region. TfNSW is currently planning the duplication of Picton Road.
- A review of the 5-year road crash history of key roads relevant to the Project found that once crash occurred at the intersection of Cordeaux Road with the Dendrobium Pit Top access, and no crashes occurred at or near the intersection of Picton Road with the Cordeaux Dam access road.
- The Dend robium Pit Top currently generates 864 vehic le trips per weekday, 143 vehicle tripsduring the moming peak hour (4:45am to $5: 45 \mathrm{am}$) and 133 vehicle trips per hour during the evening peak hour (3:45 pm to 4:45 pm).
- The Kemira Valley Coal Loading Facility generates 38 vehicle trips per weekday, six vehicle tripsduring the moming peak hour (7:00 am to 8:00 am) a nd three vehicle trips per hour during the evening peak hour (3:00 pm to 4:00 pm).
- The Dendrobium CPP generates a pproximately 42 vehic le trips perday during typical operations.

ProjectTraffic Generation

- During the construction phase, the Project isforecast to generate approximately 96 vehicle trips perday at the Dendrobium Pit Top, with 23 vehicle trips during the moming peak hour (4:45 am to 5:45 am) and 26 vehic le trips per hour during the evening peak (3:45 pm to 4:45 pm).
- During the construction phase, the Project isforecast to generate approximately 122 vehicle trips perday on public roads to and from a temporary parking area on the Cordea ux Dam access road, with 49 vehicle trips during the moming peak hour (4:45 am to 5:45 am) and evening peak (3:45 pm to 4:45 pm).
- During the construction phase, a pproximately 25 exec ution tea m workers would be based at the Regional Operations Centre at the PKCT. Allowance has been made in this a ssessment for trips made by these workers to the Dendrobium Mine construction sites. The additional trips generated in a nd a round the PKCTwould be negligible in the context of the background traffic in the region, a nd has therefore not been considered further.
- During the operational phase with the peak operational workforce present, the Project is forecast to generate approximately 95 vehicle trips perday at the Dendrobium Pit Top, with 16 vehicle trips during the moming peak hour (4:45 a m to 5:45 am) and 17 vehicle trips per hour during the evening peak ($3: 45 \mathrm{pm}$ to $4: 45 \mathrm{pm}$).
- Once constructed, the Dendrobium Shaft Site No. 5A would be primarily unattended, and its day-to-day traffic generation would be very low, and has not been considered further in this a ssessment.

Impacts of the Project

- Future traffic volumes on Cordeaux Road have been forecast with and without the Project, including growth in background (non-mine) traffic, tabulated below.

Table 7.1: Cordeaux Road East of Stones Road Future Traffic Volumes

Cordeaux Road east of Stones Road	Daily (vehicles per day)	AM Peak Hour (vehicles per hour)	PM Peak Hour (vehicles per hour)
2017 Surveyed	3,568	129	343
2023 No Project	4,069	201	431
2023 with Project Construction	4,181	223	454
2037 No Project (mining operationsceased) 2027 with Project peak operational workforce	3,740	226	352

- With the combined effects of background traffic growth and Project-generated traffic, the intersection of Cordeaux Road with the Dendrobium Pit Top Access would operate at a good level of service during the peak hours during both the construction and operational phases.
- During the construction phase, and allowing for background growth in traffic on Pic ton Road, the intersection of Picton Road with Cordeaux Dam access road would operate at satisfactory levels of service during the peak hours.
- Additional carparking for the Dendrobium Pit Top is proposed on the southem side of Cordeaux Road, accommodating in the order of 100 to 120 carparking spaces, which exceeds the additional demand expected as a result of the Project.
- The capacity of the temporary carpark on the Cordeaux Dam access road would be developed to accommodate the expected demands at shift changeovertimes.
- The Project would not increase the number of trains on the Kemira Valley Rail Line using the level crossings.
- The existing traffic mana gement measures on Cordeaux Road (such as reduced speed limits and speed humps) and the Dendrobium TMP would continue to manage the beha viour of drivers.
- Any OSOM ordangerous good vehicle movements generated as a result of the Project would conform with the relevant regulatory requirements, and would be avoided on Cordeaux Road during the times outlined in the Dendrobium TMP.
- Trucking of water to Shaft Site No. 5A by a fleet of six truckseach making three deliveries per day between 8:00am and 5:00pm Monday to Saturday would be undertaken during Project construction activities, if required. The operation of the
transport planning
intersection of Picton Road with the Cordeaux Dam access road would remain acceptable with the addition of water trucks under these circumstances.
- The following mitigation measuresare recommended for the Project:
, review the existing Dendrobium Mine TMP prior to commencement of the Project and periodically throughout the life of the Project to detemine any need for revision with a focuson road safety; and
- the proposed carpark off Cordeaux Road and its access be designed in accordance with the employee carparking requirements of Australian Sta ndard 2890.1, with a clearpedestrian route provided between the carpark and the Dendrobium Pit Top area.

7.2 Conclusions

Ba sed on a nalysis and disc ussions presented within this report, it is concluded that subject to the mitigation measures described above and in Section 6.9, the Project can be satisfactorily accommodated by the road network, with acceptable impacts on the capacity, efficiency and safety of the road network.
transport planning

References

Australian Road Research Board (2011), Road Safety Risk Reporter 15: Safety on rural roads: run-off-road, head-on and intersection crashes.

Illa wa ra Coal (2021), Dendrobium Mine Traffic Management Plan.

Infra structure Australia (2017), Project Business Case Evaluation Maldon-Dombarton Rail Link.
National Transport Commission (2020), Australian Code for the Transport of Dangerous Goods by Road \& Rail.

Transport for New South Wa les (2018), NSW Freight and Ports Plan for 2018-2023.

Transport for New South Wales (2020a), Draft Illa wa rra-Shoa Ihaven Regional Transport Plan.

Transport for New South Wales (2020b), https://roadswaterways.tra nsp ort.nsw.gov.au/about/news-events/news/ministerial/2020/201109-roa ds-funding-in-nsw-budget.html

Transport for New South Wales (2020c), https://roadswa terways.tra nsp ort.nsw.gov.au/a bout/c orporate-public a tions/ sta tistic s/tra ffic volumes/a adt-map/index.html\#/? $\mathrm{z=6}$ (a c cessed 30 J uly 2021).

Transport for New South Wales(2020d), Additional Access C onditions Oversize and overmass hea vy vehic les and loads.

Appendix A

Traffic Surveys

Hour Starting	Day of Week							W'Day Ave 528	7 Day Ave 433
	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
	3-Apr	4-Apr	5-Apr	30-Mar	31-Mar	1-Apr	2-Apr		
AM Peak	72	82	77	67	53	37	43		
PM Peak	60	88	57	57	40	28	42		
0:00	0	28	24	37	14	1	1	21	15
1:00	0	2	0	0	2	0	0	1	1
2:00	1	0	0	0	1	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0
4:00	6	8	6	8	9	7	6	7	7
5:00	72	82	77	67	47	37	43	69	61
6:00	14	34	12	16	7	9	4	17	14
7:00	25	66	49	52	53	13	7	49	38
8:00	41	35	45	38	23	21	20	36	32
9:00	19	14	9	16	25	0	4	17	12
10:00	24	30	19	23	23	3	6	24	18
11:00	26	13	20	18	20	1	2	19	14
12:00	42	27	37	33	18	1	0	31	23
13:00	53	38	41	36	18	1	0	37	27
14:00	20	24	13	21	17	2	1	19	14
15:00	39	28	42	32	12	3	2	31	23
16:00	60	88	57	57	18	4	1	56	41
17:00	15	15	17	16	22	18	19	17	17
18:00	3	0	7	2	40	26	42	10	17
19:00	1	0	1	0	28	15	26	6	10
20:00	5	5	7	3	3	28	3	5	8
21:00	40	45	44	43	1	3	4	35	26
22:00	4	4	5	4	0	2	1	3	3
23:00	16	15	37	23	0	0	0	18	13
Total	526	601	569	545	401	195	192	528	433
7-19	367	378	356	344	289	93	104	347	276
6-22	427	462	420	406	328	148	141	409	333
6-24	447	481	462	433	328	150	142	430	349
0-24	526	601	569	545	401	195	192	528	433

Job No	N3060	
Client		
Site	Kemira Valley Access Rd --34.42351 150.82701	
Location	Mt Kembla	
Site No	2	
Start Date	$30-M a r-17$	
Description	Volume Summary	
Direction	Combined	

Hour Starting	Day of Week							W'Day Ave 35	7 Day Ave 30
	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
	3-Apr	4-Apr	5-Apr	30-Mar	31-Mar	1-Apr	2-Apr		
AM Peak	9	11	5	5	6	2	2		
PM Peak	6	4	5	5	4	4	4		
0:00	2	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0
4:00	0	0	0	1	0	0	0	0	0
5:00	0	0	0	0	0	0	0	0	0
6:00	0	1	4	3	1	2	2	2	2
7:00	5	11	5	4	1	0	0	5	4
8:00	2	4	2	3	0	0	0	2	2
9:00	1	3	1	5	1	0	2	2	2
10:00	0	4	3	2	3	0	0	2	2
11:00	9	0	2	4	6	0	0	4	3
12:00	0	1	4	0	1	0	1	1	1
13:00	2	0	1	5	0	4	1	2	2
14:00	6	3	2	2	4	2	2	3	3
15:00	4	2	4	3	0	2	4	3	3
16:00	0	0	5	2	2	4	1	2	2
17:00	0	0	5	0	4	2	3	2	2
18:00	0	4	2	0	0	0	0	1	1
19:00	0	2	0	0	0	0	2	0	1
20:00	0	0	2	0	2	0	2	1	1
21:00	0	0	2	0	0	2	0	0	1
22:00	2	2	0	2	0	0	0	1	1
23:00	0	0	0	0	0	0	0	0	0
Total	33	37	44	36	25	18	20	35	30

$7-19$	29	32	36	30	22	14	14	30	25
$6-22$	29	35	44	33	25	18	20	33	29
$6-24$	31	37	44	35	25	18	20	34	30
$0-24$	33	37	44	36	25	18	20	35	30

Hour Starting	Day of Week							W'Day Ave 3569	
	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
	3-Apr	4-Apr	5-Apr	30-Mar	31-Mar	1-Apr	2-Apr		
AM Peak	317	342	331	347	310	213	228		
PM Peak	320	380	384	324	321	275	244		
0:00	2	44	43	67	34	64	51	38	44
1:00	3	5	7	14	11	22	31	8	13
2:00	5	3	7	4	6	14	8	5	7
3:00	6	4	8	7	7	4	6	6	6
4:00	28	30	21	20	23	17	13	24	22
5:00	130	151	150	125	91	58	60	129	109
6:00	129	131	126	128	102	56	50	123	103
7:00	229	259	255	232	214	80	62	238	190
8:00	317	342	331	347	310	162	159	329	281
9:00	198	151	211	175	180	193	176	183	183
10:00	193	178	148	149	198	197	204	173	181
11:00	148	163	160	158	202	213	228	166	182
12:00	166	157	195	176	192	275	219	177	197
13:00	191	184	208	197	167	257	237	189	206
14:00	208	198	190	224	205	238	236	205	214
15:00	258	282	327	278	321	208	244	293	274
16:00	320	380	384	324	302	251	215	342	311
17:00	242	322	308	275	312	267	227	292	279
18:00	159	198	232	203	303	258	165	219	217
19:00	94	148	124	113	218	155	123	139	139
20:00	74	80	123	89	103	115	73	94	94
21:00	85	105	101	130	107	94	62	106	98
22:00	26	32	32	35	109	97	34	47	52
23:00	19	27	67	39	57	117	11	42	48
Total	3230	3574	3758	3509	3774	3412	2894	3569	3450

$7-19$	2629	2814	2949	2738	2906	2599	2372	2807	2715
$6-22$	3011	3278	3423	3198	3436	3019	2680	3269	3149
$6-24$	3056	3337	3522	3272	3602	3233	2725	3358	3250
$0-24$	3230	3574	3758	3509	3774	3412	2894	3569	3450

Job No	N3060	
Client		
Site	Cordeaux Pit Access Rd - Parralell with Picton Rd	
Location	Mt Kembla	
Site No	4	
Start Date	$30-M a r-17$	
Description	Volume Summary	
Direction	Combined	

Hour Starting	Day of Week							W'Day Ave 103	7 Day Ave 75
	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
	3-Apr	4-Apr	5-Apr	30-Mar	31-Mar	1-Apr	2-Apr		
AM Peak	12	19	12	15	17	2	2		
PM Peak	15	16	21	11	13	1	1		
0:00	0	0	0	0	0	0	0	0	0
1:00	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	0
3:00	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	0	0	0	0	0
5:00	2	1	1	2	1	2	0	1	1
6:00	12	19	12	7	5	0	2	11	8
7:00	12	14	12	15	17	2	0	14	10
8:00	11	13	12	6	5	0	0	9	7
9:00	4	11	5	10	8	0	0	8	5
10:00	10	6	8	14	4	0	0	8	6
11:00	5	5	3	8	4	0	0	5	4
12:00	6	1	12	8	4	0	0	6	4
13:00	13	4	13	0	1	0	0	6	4
14:00	4	11	5	4	8	0	0	6	5
15:00	9	14	21	11	13	0	0	14	10
16:00	15	16	18	10	2	0	1	12	9
17:00	3	1	1	1	1	1	1	1	1
18:00	1	0	0	1	0	1	0	0	0
19:00	0	0	0	0	0	0	0	0	0
20:00	0	0	0	0	0	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0	0
Total	107	116	123	97	73	6	4	103	75

$7-19$	93	96	110	88	67	4	2	91	66
$6-22$	105	115	122	95	72	4	4	102	74
$6-24$	105	115	122	95	72	4	4	102	74
$0-24$	107	116	123	97	73	6	4	103	75

MATRIE

MATRIE


```
lob No. : AUNSW686 
Suburb :Mt Kembla
Location : 1. Cordeaux Rd / Dendrobium Coal Mine
Day/Date : Wed, 21st Jly 2021
```

Weather : Fine
Description : Classified Intersection Count
: Ilassified Intersection Diagram


```
lob No. : AUNSW686 
Suburb :Mt Kembla
Location : 1. Cordeaux Rd / Dendrobium Coal Mine
Day/Date :Wed, 21st July 2021
```

Weather : Fine
Description : Classified Intersection Count
: Ilassified Intersection Diagram

Hour Starting	$\begin{array}{l}\text { Vehicle Type } \\ 2 \text { 24ncTowis }\end{array} \quad \begin{array}{l}\text { Heanies }\end{array}$


```
lob No. : AUNNW686 
Suburb :Mt Kembla
Location : 1. Cordeaux Rd / Dendrobium Coal Mine
Day/Date :Wed, 21st July 2021
```

Weather : Fine
Description : Classified Intersection Count
: Classified Intersection Cour

| Hour Starting |
| :--- | :--- | :--- |
| ${ }_{20}$ AnvTotous |\quad| Vehicle Type |
| :--- |

Appendix B

Road Crash Data

H(V)S	Transport NSW
Roads \& Maritime	
Services	
Copyright © Roads and Maritime Services. All inhts reserved	
Map Produced on 27/O7/2021 5:51:25 PM.	

t © Roads and Maritime Services. All rights res
Map Produced on 27/07/2021 5:51:25 PM.

Copyright:
 OLPI [2014]: Imagery © AAM [2011]: Ausimage © Sinclair Knight Merz [[2007]; Spot
Image © CNSSISPOT [2006]; StreetPro © Pitney Bowes Software Pry Ltd [2014]

Disclaimer
While every care is taken to ensure the accuracy of the data within this product, the providers of the data do not make any reperesentations or warranties about its ac

Detailed Crash Report

Detailed Crash Report

Detailed Crash Report

Report Filters

Dataset Filters

Cordeaux Road

Crash self reporting, including self reported injuries began in Oct 2014. Trends from 2014 are expected to vary from previous years. More unknowns are expected in self reported data.

Detailed Crash Report

Detailed Crash Report

Report Filters

Dataset Filters
Harry Graham Road

Crash self reporting, including self reported injuries began in Oct 2014. Trends from 2014 are expected to vary from previous years. More unknowns are expected in self reported data.

Detailed Crash Report

Report Filters

Dataset Filters

Mount Keira Road

Crash self reporting, including self reported injuries began in Oct 2014. Trends from 2014 are expected to vary from previous years. More unknowns are expected in self reported data.

Detailed Crash Report

Detailed Crash Report

Dataset Filters

Mount Kembla

Crash self reporting, including self reported injuries began in Oct 2014. Trends from 2014 are expected to vary from previous years. More unknowns are expected in self reported data.

Detailed Crash Report

Detailed Crash Report

Detailed Crash Report

Detailed Crash Report

Detailed Crash Report

Detailed Crash Report

Detailed Crash Report

Report Filters

Dataset Filters

Picton Road

Crash self reporting, including self reported injuries began in Oct 2014. Trends from 2014 are expected to vary from previous years. More unknowns are expected in self reported data.
transport planning

Cordeaux Road Crash History (1 October 2015 to 30 September 2020)

Crash Location

2-way undivided road	-	-	1	1	-	-	1	6	3	-	12
T-intersection	-	1	-	-	-	-	-	-	1	-	2
Roundabout		-	1	1	-	-	-	1	-	-	3
Y-intersection		-	-	-	-	-	1	0	-	-	1

Road Surface Condition

Dry	-	1	2	2	-	-	2	6	4	-	17
Wet	-	-	-	-	-	-	-	-	1	-	1
Weather											
Fine	-	1	2	2	-	-	2	5	4	-	16
Overcast	-	-	-	-	-	-	-	2	-	-	2

Natural Lighting											
Dawn	-	1	-	-	-	-	1	1			
Daylight	-	-	2	2	-	-	-	5	3	-	12
Dusk	-	-	-	-	-	-	1	-	-	-	1
Darkness	-	-	-	-	-	-	-	2	1	-	3

Severity of Crash

Fatal	-	-	-	-	-	-	-	1	-	-	1
Injury	-	1	1	1	-	-	2	5	3	-	13
Non-casualty (towaway)	-	-	1	1	-	-	-	1	1	-	4

Speed Limit

$50 \mathrm{~km} / \mathrm{h}$	-	1	1	1	-	-	1	1	1	-	6
$60 \mathrm{~km} / \mathrm{h}$	-	-	1	1	-	-	1	6	3	-	12

Vehicle Types Involved	-	-	-	-	-	-	1	-	-	-	1
Pedal cycle	-	-	-	-	-	-	1	-	1	-	2
Motorcycle	-	2	4	4	-	-	-	7	3	-	20
Car, 4WD, station wagon, utility	-										

Contributing Factors

Speeding	-	-	-	-	-	-	-	2	-	-	2
Fatigue	-	1	1	-	-	-	1	1	3	-	7
None	-	-	1	2	-	-	1	4	1	-	9

transport planning

Hamy Graham Drive/ Mount Keira Road Crash History (1 October 2015 to 30 September 2020)

Crash Location

2-way undivided road	-	-	2	1	-	-	2	-	8	1	14

Road Surface Condition

Dry	-	-	2	-	-	-	1	-	5	1	9
Wet	-	-	-	1	-	-	1	-	3	-	5
Weather											
Fine	-	-	2	-	-	-	2	-	6	1	7
Overcast	-	-	-	1	-	-	-	-	2	-	6

Natural Lighting

Daylight	-	-	-	-	-	-	2	-	4	1	7
Dusk	-	-	-	-	-	-	-	-	1	-	1
Darkness	-	-	2	1	-	-	-	-	3	-	6

Severity of Crash

Injury	-	-	-	-	-	-	1	-	4	1	6
Non-casualty (towaway)	-	-	2	1	-	-	1	-	4	-	8

Speed Limit											
$50 \mathrm{~km} / \mathrm{h}$	-	-	-	-	-	-	-	-	2	1	3
$60 \mathrm{~km} / \mathrm{h}$	-	-	1	1	-	-	1	-	5	-	8
$80 \mathrm{~km} / \mathrm{h}$	-	-	1	-	-	-	1	-	-	-	2
$100 \mathrm{~km} / \mathrm{h}$	-	-	-	-	-	-	-	-	1	-	1

Vehicle Types Involved

Motorcycle	-	-	-	-	-	-	1	-	3	1	5
Car, 4WD, station wagon, utility	-	-	4	2	-	-	1	-	5	-	12

Contributing Factors

Speeding (only)	-	-	-	-	-	-	1	-	7	-	8
Speeding and Fatigue	-	-	-	-	-	-	-	-	1	-	1
None	-	-	2	1	-	-	1	-	0	1	5

transport planning

Picton Road Crash History (1 October 2015 to 30 September 2020)

Crash Location

2-way undivided road	-	-	3	5	-	1	-	3	2	-	14
T-intersection	-	-	-	2	-	-	6	13	5	-	26
Roundabout	-	3	-	-	-	-	-	-	1	-	4
Y-intersection	-	-	3	5	-	1	-	3	2	-	14

Road Surface Condition

Dry	-	3	2	5	-	1	-	10	2	-	23
Wet	-	-	1	2	-	-	6	6	6	-	21

Weather

Fine	-	2	1	5	-	1	-	10	2	-	21
Overcast	-	1	1	-	-	-	1	-	1	-	4
Raining	-	-	1	2	-	-	5	6	5	-	19

Natural Lighting

Dawn	-	-	1	1	-	-	-	-	-	-	2
Daylight	-	3	1	3	-	1	1	9	6	-	24
Dusk	-	-	-	1	-	-	-	-	-	-	1
Darkness	-	-	1	2	-	-	5	7	2	-	17

Severity of Crash

Fatal	-	-	1	-	-	1	-	1	-	-	3
Injury	-	3	1	2	-	-	4	10	6	-	26
Non-casualty (towaway)	-	-	1	5	-	-	2	5	2	-	15

Speed Limit

70 to $80 \mathrm{~km} / \mathrm{h}$	-	1	-	-	-	-	1	1	-	-	3
$90 \mathrm{~km} / \mathrm{h}$	-	-	-	-	-	-	-	1	-	-	1
$100 \mathrm{~km} / \mathrm{h}$	-	2	3	7	-	1	5	14	8	-	40

Vehicle Types Involved

Motorcycle	-	1	-	-	-	-	-	1	-	-	2
Car, 4WD, station wagon, utility	-	5	5	11	-	2	6	14	8	-	51
Rigid Truck	-	-	-	2	-	-	1	-	-	-	3
Artic ulated Vehicle	-	-	1	-	-	-	-	1	-	-	2
Other	-	-	-	1	-	-	-	1	-	-	2

transport planning

	$\begin{aligned} & \text { ᄃ } \\ & \text { 若 } \\ & \frac{d}{8} \\ & \text { di } \end{aligned}$				을	$\begin{aligned} & \text { 음 } \\ & \frac{5}{y} \\ & \frac{9}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 5 } \\ & \text { ¢ } \\ & \text { © } \\ & \hline 0 \end{aligned}$		0 0 0 0 0 0 $\frac{5}{0}$ 0 0 0	$\begin{aligned} & \underline{n} \\ & 0 \\ & 0 \\ & \underline{0} \\ & 0 \\ & \hline \underline{0} \\ & \text { U } \\ & \text { in } \end{aligned}$	\%
Contributing Factors											
Speeding	-	1	-	-	-	-	-	-	8	-	9
Fatigue	-	-	-	-	-	-	-	9	-	-	9
None	-	2	3	7	-	1	6	7	-	-	26
Year of Crash											
2015 (Oct to Dec)	-	-	-	-	-	-	-	1	1	-	2
2016	-	2	2	1	-	1	-	4	1	-	11
2017	-	-	-	5	-	-	4	1	1	-	11
2018	-	-	1	1	-	-	1	6	1	-	10
2019	-	1	-	-	-	-	-	1	1	-	3
2020 (J an to Sep)	-	-	-	-	-	-	1	3	3	-	7

Appendix C

SIDRA Outputs

SIDRA data files will be supplied upon request.

SITE LAYOUT

Site: 101 [Dendrobium AM 2021 (Site Folder: Dendrobium Pit
Top 2021)]
Dendrobium Pit Top Access
2021 AM Peak
4.45am-4.45am

Site Category: (None)
Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Cordeaux Road East

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 20 October 2021
5:34:22 PM
Project: C:IUserslpenny.daltonlOneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

Site: 101 [Dendrobium AM 2021 (Site Folder: Dendrobium Pit Top 2021)]
Dendrobium Pit Top Access
2021 AM Peak
4.45am-4.45am

Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$				ND VS HV] \%	Deg. Satn v/c	Aver Delay sec	Level of Service	95\% [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East: Cordeaux Road East													
5 T1	4	0	4	0.0	0.084	0.0	LOS A	0.4	2.8	0.05	0.57	0.05	55.0
6 R2	138	0	145	0.0	0.084	5.5	LOSA	0.4	2.8	0.05	0.57	0.05	29.2
Approach	142	0	149	0.0	0.084	5.3	NA	0.4	2.8	0.05	0.57	0.05	29.6
North: Dendrobium Pit Top													
7 L2	3	0	3	0.0	0.003	4.1	LOSA	0.0	0.1	0.02	0.98	0.02	28.4
9 R2	1	0	1	0.0	0.003	4.7	LOSA	0.0	0.1	0.02	0.98	0.02	28.3
Approach	4	0	4	0.0	0.003	4.2	LOS A	0.0	0.1	0.02	0.98	0.02	28.4
West: Cordeaux Road West													
10 L2	2	0	2	0.0	0.004	5.6	LOS A	0.0	0.0	0.00	0.17	0.00	56.7
11 T1	5	1	5	20.0	0.004	0.0	LOSA	0.0	0.0	0.00	0.17	0.00	58.2
Approach	7	1	7	14.3	0.004	1.6	NA	0.0	0.0	0.00	0.17	0.00	57.8
All Vehicles	153	1	161	0.7	0.084	5.1	NA	0.4	2.8	0.04	0.56	0.04	30.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021
5:33:58 PM
Project: C:\Userslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling FilesIModel\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

Site: 101 [Dendrobium PM 2021 (Site Folder: Dendrobium Pit Top 2021)]
Dendrobium Pit Top Access
2021 PM Peak
3.45pm-4.45am

Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID				$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		OF JE Dist $]$ m	Prop. Que	Effective Stop Rate	Aver No. Cycles	Aver. Speed km/h
East: Cordeaux Road East													
T1	26	2	27	7.7	0.016	0.0	LOSA	0.0	0.0	0.01	0.02	0.01	59.7
6 R2	1	0	1	0.0	0.016	5.6	LOS A	0.0	0.0	0.01	0.02	0.01	30.5
Approach	27	2	28	7.4	0.016	0.2	NA	0.0	0.0	0.01	0.02	0.01	57.7
North: Dendrobium Pit Top													
L2	124	1	131	0.8	0.097	4.2	LOSA	0.4	2.9	0.13	0.92	0.13	28.4
9 R2	2	0	2	0.0	0.097	4.4	LOSA	0.4	2.9	0.13	0.92	0.13	28.3
Approach	126	1	133	0.8	0.097	4.2	LOSA	0.4	2.9	0.13	0.92	0.13	28.4
West: Cordeaux Road West													
10 L2	1	0	1	0.0	0.023	5.6	LOSA	0.0	0.0	0.00	0.01	0.00	58.2
11 T1	40	1	42	2.5	0.023	0.0	LOSA	0.0	0.0	0.00	0.01	0.00	59.9
Approach	41	1	43	2.4	0.023	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Vehicles	194 4		2042.1		0.097	2.8	NA	$0.4 \quad 2.9$		0.08	0.60	0.08	34.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:34:03 PM
Project: C:\Userslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling FilesIModel\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

Site: 101 [Dendrobium AM 2023 (Site Folder: Dendrobium Pit Top 2023)]
Dendrobium Pit Top Access
2023 AM Peak with Project
4.45am-4.45am

Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$				ND VS HV] \%	Deg. Satn v/c	Aver Delay sec	Level of Service	95\% [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	$\begin{aligned} & \text { Aver. } \\ & \text { No. } \\ & \text { Cycles } \end{aligned}$	Aver. Speed km/h
East: Cordeaux Road East													
5 T1	5	0	5	0.0	0.097	0.0	LOSA	0.5	3.3	0.06	0.56	0.06	55.0
6 R2	160	0	168	0.0	0.097	5.5	LOSA	0.5	3.3	0.06	0.56	0.06	29.2
Approach	165	0	174	0.0	0.097	5.3	NA	0.5	3.3	0.06	0.56	0.06	29.7
North: Dendrobium Pit Top													
7 L2	3	0	3	0.0	0.003	4.1	LOS A	0.0	0.1	0.03	0.98	0.03	28.4
9 R2	1	0	1	0.0	0.003	4.9	LOSA	0.0	0.1	0.03	0.98	0.03	28.3
Approach	4	0	4	0.0	0.003	4.3	LOS A	0.0	0.1	0.03	0.98	0.03	28.4
West: Cordeaux Road West													
10 L2	3	0	3	0.0	0.006	5.6	LOSA	0.0	0.0	0.00	0.18	0.00	56.5
11 T1	7	2	7	28.6	0.006	0.0	LOS A	0.0	0.0	0.00	0.18	0.00	58.0
Approach	10	2	11	20.0	0.006	1.7	NA	0.0	0.0	0.00	0.18	0.00	57.5
All Vehicles	179	2	188	1.1	0.097	5.1	NA	0.5	3.3	0.06	0.55	0.06	30.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:29:37 PM
Project: C:\Userslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling FilesIModel\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

Site: 101 [Dendrobium PM 2023 (Site Folder: Dendrobium Pit Top 2023)]
Dendrobium Pit Top Access
2023 PM Peak with Project
3.45pm-4.45am

Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		T HV] veh/h		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		CK OF UE Dist] m	$\begin{aligned} & \text { Prop. } \\ & \hline \end{aligned}$	Effective Stop Rate	$\begin{aligned} & \text { Aver. } \\ & \text { No. } \\ & \text { Cycles } \end{aligned}$	Aver. Speed km/h
East: Cordeaux Road East													
5 T1	28	3	29	10.7	0.017	0.0	LOSA	0.0	0.0	0.01	0.02	0.01	59.8
6 R2	1	0	1	0.0	0.017	5.6	LOSA	0.0	0.0	0.01	0.02	0.01	30.5
Approach	29	3	31	10.3	0.017	0.2	NA	0.0	0.0	0.01	0.02	0.01	57.8
North: Dendrobium Pit Top													
7 L2	149	3	157	2.0	0.118	4.3	LOSA	0.5	3.6	0.14	0.92	0.14	28.4
9 R2	3	0	3	0.0	0.118	4.5	LOSA	0.5	3.6	0.14	0.92	0.14	28.3
Approach	152	3	160	2.0	0.118	4.3	LOS A	0.5	3.6	0.14	0.92	0.14	28.4
West: Cordeaux Road West													
10 L2	1	0	1	0.0	0.024	5.6	LOS A	0.0	0.0	0.00	0.01	0.00	58.2
11 T1	42	2	44	4.8	0.024	0.0	LOSA	0.0	0.0	0.00	0.01	0.00	59.9
Approach	43	2	45	4.7	0.024	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Vehicles	224	8	236	3.6	0.118	3.0	NA	0.5	3.6	0.09	0.63	0.09	34.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021
5:30:59 PM
Project: C:\Userslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

Site: 101 [Dendrobium AM 2037 (Site Folder: Dendrobium Pit Top 2037)]
Dendrobium Pit Top Access
2037 AM Peak with Project
4.45am-4.45am

Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$				ND VS HV] \%	Deg. Satn v/c	Aver Delay sec	Level of Service	95\% [Veh. veh	CK OF UE Dist] m	Prop. Que	Effective Stop Rate	$\begin{aligned} & \text { Aver. } \\ & \text { No. } \\ & \text { Cycles } \end{aligned}$	Aver. Speed km/h
East: Cordeaux Road East													
5 T1	5	0	5	0.0	0.093	0.0	LOS A	0.5	3.2	0.06	0.56	0.06	55.0
6 R2	153	0	161	0.0	0.093	5.5	LOSA	0.5	3.2	0.06	0.56	0.06	29.2
Approach	158	0	166	0.0	0.093	5.3	NA	0.5	3.2	0.06	0.56	0.06	29.7
North: Dendrobium Pit Top													
7 L2	3	0	3	0.0	0.003	4.1	LOSA	0.0	0.1	0.03	0.97	0.03	28.4
9 R2	1	0	1	0.0	0.003	4.8	LOSA	0.0	0.1	0.03	0.97	0.03	28.3
Approach	4	0	4	0.0	0.003	4.3	LOS A	0.0	0.1	0.03	0.97	0.03	28.4
West: Cordeaux Road West													
10 L2	3	0	3	0.0	0.006	5.6	LOS A	0.0	0.0	0.00	0.18	0.00	56.5
11 T1	7	2	7	28.6	0.006	0.0	LOSA	0.0	0.0	0.00	0.18	0.00	58.0
Approach	10	2	11	20.0	0.006	1.7	NA	0.0	0.0	0.00	0.18	0.00	57.5
All Vehicles	172	2	181	1.2	0.093	5.1	NA	0.5	3.2	0.05	0.55	0.05	30.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:32:24 PM
Project: C:\Userslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling FilesIModel\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

Site: 101 [Dendrobium PM 2037 (Site Folder: Dendrobium Pit Top 2037)]
Dendrobium Pit Top Access
2037 PM Peak with Project
3.45pm-4.45am

Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		T HV] veh/h		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop.	Effective Stop Rate		Aver Speed km/h
East: Cordeaux Road East													
T1	32	3	34	9.4	0.019	0.0	LOSA	0.0	0.0	0.01	0.02	0.01	59.8
6 R2	1	0	1	0.0	0.019	5.6	LOS A	0.0	0.0	0.01	0.02	0.01	30.5
Approach	33	3	35	9.1	0.019	0.2	NA	0.0	0.0	0.01	0.02	0.01	58.1
North: Dendrobium Pit Top													
$7 \quad$ L2	139	2	146	1.4	0.110	4.3	LOSA	0.5	3.3	0.15	0.91	0.15	28.4
9 R2	3	0	3	0.0	0.110	4.5	LOSA	0.5	3.3	0.15	0.91	0.15	28.3
Approach	142	2	149	1.4	0.110	4.3	LOSA	0.5	3.3	0.15	0.91	0.15	28.4
West: Cordeaux Road West													
10 L2	1	0	1	0.0	0.028	5.6	LOSA	0.0	0.0	0.00	0.01	0.00	58.2
11 T1	48	2	51	4.2	0.028	0.0	LOSA	0.0	0.0	0.00	0.01	0.00	59.9
Approach	49	2	52	4.1	0.028	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Vehicles	224	7	236	3.1	0.110	2.8	NA	0.5	3.3	0.09	0.58	0.09	35.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021
5:33:18 PM
Project: C:\Userslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling FilesIModel\21149-210809-Dendrobium.sip9

NETWORK LAYOUT

마 Network: SCTI-B [Staged Crossing B-1 - AM No Project
(Network Folder: Cordeaux Dam Road 2023)]
Staged Crossing at T Intersection Type B
Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

(10) Site: S1-1 [S1-1 NSW - AM No Project (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged
Crossing B-1 - AM No Project (Network Folder: Cordeaux Dam

Road 2023)]

Staged Crossing at T Intersection Type B
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		ND NS HV] \%	ARR FLO [Tota veh/h	$\begin{aligned} & \text { 2IVAL } \\ & \text { jWS } \\ & \text { al HV] } \\ & \hline \% \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVER } \\ \text { OF } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Cordeaux Dam Road													
1 L2	1	0.0	1	0.0	0.002	9.7	LOS A	0.0	0.0	0.62	0.64	0.62	58.2
$2 \quad \mathrm{~T} 1$	1	0.0	1	0.0	0.003	9.6	LOS A	0.0	0.0	0.74	0.57	0.74	18.1
Approach	2	0.0	2	0.0	0.003	9.6	LOS A	0.0	0.0	0.68	0.61	0.68	33.5
East: Picton Road East													
3 L2	1	0.0	1	0.0	0.001	7.8	LOS A	0.0	0.0	0.00	0.66	0.00	75.3
4 T1	720	30.3	720	30.3	0.442	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	99.6
Approach	721	30.2	721	30.2	0.442	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.6
North: Median Storage													
$5 \quad$ T1	1	0.0	1	0.0	0.002	4.1	LOS A	0.0	0.0	0.61	0.43	0.61	47.4
Approach	1	0.0	1	0.0	0.002	4.1	LOS A	0.0	0.0	0.61	0.43	0.61	47.4
All Vehicles	724	30.1	724	30.1	0.442	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:07:10 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

∇ Site: S1-2 [S1-2 NSW - AM No Project (Site Folder: Cordeaux Dam Road 2023)]

Network: SCTI-B [Staged
Crossing B-1 - AM No Project (Network Folder: Cordeaux Dam

Road 2023)]

Staged Crossing at T Intersection Type B
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		ND NS HV] \%	ARR FLO [Tota veh/h	IVAL WS IHV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Median Storage													
1 R2	1	0.0	1	0.0	0.001	1.5	LOS A	0.0	0.0	0.28	0.31	0.28	68.6
Approach	1	0.0	1	0.0	0.001	1.5	LOS A	0.0	0.0	0.28	0.31	0.28	68.6
West: Picton Road West													
2 T1	396	50.5	396	50.5	0.270	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
3 R2	1	0.0	1	0.0	0.001	7.6	LOS A	0.0	0.0	0.00	0.70	0.00	70.8
Approach	397	50.4	397	50.4	0.270	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.8
All Vehicles	398	50.3	398	50.3	0.270	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:07:10 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

ROUTE TRAVEL PERFORMANCE

| \Rightarrow Route: R1 [Staged Right Turn to East]
마 Network: SCTI-B [Staged Crossing B-1 - AM No Project (Network Folder: Cordeaux Dam

Staged Crossing at T Intersection Type B
Network Category: (None)

Route Travel Performance			
Performance Measure	Vehicles	Per Unit Distance	Persons
Travel Speed (Average)	$28.8 \mathrm{~km} / \mathrm{h}$		$28.8 \mathrm{~km} / \mathrm{h}$
Travel Distance (Average)	1027.0 m		1027.0 m
Travel Time (Average)	128.5 sec	$125.1 \mathrm{sec} / \mathrm{km}$	128.5 sec
Desired Speed (Input)	$60.0 \mathrm{~km} / \mathrm{h}$		
Route Delay (Average)	11.1 sec	$10.8 \mathrm{sec} / \mathrm{km}$	11.1 sec
Route Stop Rate	0.88	0.86 per km	0.88
Route Level of Service (LOS)	LOS E		
Speed Efficiency	0.48		
Travel Time Index	4.22		
Congestion Coefficient	2.08		

Route Travel Movement Performance											
Mov ID	Turn	Trav Dist m	Trav Time sec	Aver. Speed km/h	Aver. Delay sec	Prop. Queued	Eff. Stop Rate	Aver. No. Cycles	Dem. Flow Rate veh/h	Arv. Flow Rate veh/h	Deg. of Satn
Site ID: S1-1 Site Name: S1-1 NSW - AM No Project											
South Approach											
2	T1	510.0	101.4	18.1	9.6	0.74	0.57	0.74	1	1	0.003
Site ID: S1-2 Site Name: S1-2 NSW - AM No Project											
South Approach											
1	R2	517.0	27.1	68.6	1.5	0.28	0.31	0.28	1	1	0.001

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021
5:07:10 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

(10) Site: S1-1 [S1-1 NSW - AM With Project (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged Crossing B-1 - AM With Project (Network Folder: Cordeaux Dam

Road 2023)]
Staged Crossing at T Intersection Type B
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { SWS } \\ & 1 \mathrm{HV}] \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVER } \\ \text { OF } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Cordeaux Dam Road													
1 L2	1	0.0	1	0.0	0.002	9.7	LOS A	0.0	0.0	0.62	0.64	0.62	58.2
2 T1	12	18.2	12	18.2	0.044	13.0	LOSA	0.1	0.5	0.78	0.78	0.78	17.5
Approach	13	16.7	13	16.7	0.044	12.8	LOS A	0.1	0.5	0.77	0.77	0.77	19.6
East: Picton Road East													
3 L2	40	5.3	40	5.3	0.022	8.0	LOS A	0.0	0.0	0.00	0.66	0.00	72.6
4 T1	720	30.3	720	30.3	0.442	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.6
Approach	760	28.9	760	28.9	0.442	0.5	NA	0.0	0.0	0.00	0.03	0.00	97.7
North: Median Storage													
$5 \quad$ T1	1	0.0	1	0.0	0.002	4.3	LOS A	0.0	0.0	0.62	0.44	0.62	47.2
Approach	1	0.0	1	0.0	0.002	4.3	LOS A	0.0	0.0	0.62	0.44	0.62	47.2
All Vehicles	774	28.7	774	28.7	0.442	0.7	NA	0.1	0.5	0.01	0.05	0.01	94.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:07:21 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

∇ Site: S1-2 [S1-2 NSW - AM With Project (Site Folder:
Cordeaux Dam Road 2023)]

> Network: SCTI-B [Staged
> Crossing B-1 - AM With Project (Network Folder: Cordeaux Dam
> Road 2023)]

Staged Crossing at T Intersection Type B
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		AND NS HV] \%	ARR FLO [Tota veh/h	IVAL WS IHV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVER } \\ \text { OF } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	BACK EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Median Storage													
1 R2	12	18.2	12	18.2	0.011	1.7	LOS A	0.0	0.1	0.30	0.36	0.30	56.9
Approach	12	18.2	12	18.2	0.011	1.7	LOS A	0.0	0.1	0.30	0.36	0.30	56.9
West: Picton Road West													
$2 \quad \mathrm{~T} 1$	396	50.5	396	50.5	0.270	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	99.8
3 R2	1	0.0	1	0.0	0.001	7.6	LOS A	0.0	0.0	0.00	0.70	0.00	70.8
Approach	397	50.4	397	50.4	0.270	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.8
All Vehicles	408	49.5	408	49.5	0.270	0.1	NA	0.0	0.1	0.01	0.01	0.01	98.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:07:21 PM
Project: C:IUserslpenny.daltonlOneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

ROUTE TRAVEL PERFORMANCE

$\mid \Rightarrow$ Route: R1 [Staged Right Turn to East]

무 Network: SCTI-B [Staged Crossing B-1 - AM With Project (Network Folder: Cordeaux Dam

Road 2023)]

Staged Crossing at T Intersection Type B
Network Category: (None)

Route Travel Performance			
Performance Measure	Vehicles	Per Unit Distance	Persons
Travel Speed (Average)	$26.9 \mathrm{~km} / \mathrm{h}$		$26.9 \mathrm{~km} / \mathrm{h}$
Travel Distance (Average)	1027.0 m		1027.0 m
Travel Time (Average)	137.5 sec	$133.9 \mathrm{sec} / \mathrm{km}$	137.5 sec
Desired Speed (Input)	$60.0 \mathrm{~km} / \mathrm{h}$		
Route Delay (Average)	14.7 sec	$14.4 \mathrm{sec} / \mathrm{km}$	14.7 sec
Route Stop Rate	1.14	1.11 per km	1.14
Route Level of Service (LOS)	LOS E		
Speed Efficiency	0.45		
Travel Time Index	3.87		
Congestion Coefficient	2.23		

Route Travel Movement Performance											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	$\begin{gathered} \text { Trav } \\ \text { Dist } \\ \mathrm{m} \\ \hline \end{gathered}$	Trav Time sec	Aver. Speed km/h	Aver. Delay sec	Prop. Queued	$\begin{aligned} & \text { Eff. Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. Cycles	Dem. Flow Rate veh/h	Arv. Flow Rate veh/h	$\begin{aligned} & \text { Deg. of } \\ & \text { Satn } \end{aligned}$
Site ID: S1-1 Site Name: S1-1 NSW - AM With Project											
South Approach											
2	T1	510.0	104.8	17.5	13.0	0.78	0.78	0.78	12	12	0.044
Site ID: S1-2 Site Name: S1-2 NSW - AM With Project											
South Approach											
1	R2	517.0	32.7	56.9	1.7	0.30	0.36	0.30	12	12	0.011

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021
5:07:21 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Modell21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

(100) Site: S1-1 [S1-1 NSW - PM No Project (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged Crossing B-1 - PM No Project (Network Folder: Cordeaux Dam

Road 2023)]

Staged Crossing at T Intersection Type B
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		ND VS HV \%	ARR FLO [Tota veh/h	$\begin{aligned} & \text { रIVAL } \\ & \text { כWS } \\ & \text { al HV] } \\ & \text { h } \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Cordeaux Dam Road													
1 L2	1	0.0	1	0.0	0.002	11.9	LOS A	0.0	0.0	0.72	0.71	0.72	56.2
2 T1	1	0.0	1	0.0	0.005	15.5	LOS B	0.0	0.0	0.83	0.71	0.83	17.1
Approach	2	0.0	2	0.0	0.005	13.7	LOS A	0.0	0.0	0.78	0.71	0.78	31.9
East: Picton Road East													
3 L2	1	0.0	1	0.0	0.001	7.8	LOS A	0.0	0.0	0.00	0.66	0.00	75.3
$4 \quad \mathrm{~T} 1$	889	23.4	889	23.4	0.526	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.5
Approach	891	23.4	891	23.4	0.526	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.5
North: Median Storage													
$5 \quad \mathrm{~T} 1$	1	0.0	1	0.0	0.002	6.3	LOS A	0.0	0.0	0.71	0.56	0.71	45.0
Approach	1	0.0	1	0.0	0.002	6.3	LOS A	0.0	0.0	0.71	0.56	0.71	45.0
All Vehicles	894	23.3	894	23.3	0.526	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:07:16 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

∇ Site: S1-2 [S1-2 NSW - PM No Project (Site Folder: Cordeaux Dam Road 2023)]

Network: SCTI-B [Staged Crossing B-1 - PM No Project (Network Folder: Cordeaux Dam

Road 2023)]

Staged Crossing at T Intersection Type B
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARRI FLO [Total veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { ows } \\ & \text { al HV] } \\ & \hline \% \text { \% } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVER } \\ \text { OF } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { EBACK } \\ \text { EUE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Median Storage													
1 R2	1	0.0	1	0.0	0.002	4.3	LOS A	0.0	0.0	0.63	0.60	0.63	62.3
Approach	1	0.0	1	0.0	0.002	4.3	LOS A	0.0	0.0	0.63	0.60	0.63	62.3
West: Picton Road West													
$2 \quad \mathrm{~T} 1$	1088	18.6	1088	18.6	0.626	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.3
3 R2	1	0.0	1	0.0	0.001	7.6	LOS A	0.0	0.0	0.00	0.70	0.00	70.8
Approach	1089	18.6	1089	18.6	0.626	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.3
All Vehicles	1091	18.5	1091	18.5	0.626	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:07:16 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

ROUTE TRAVEL PERFORMANCE

| \Rightarrow Route: R1 [Staged Right Turn to East]
마 Network: SCTI-B [Staged Crossing B-1 - PM No Project (Network Folder: Cordeaux Dam

Road 2023)]
Staged Crossing at T Intersection Type B Network Category: (None)

Route Travel Performance			
Performance Measure	Vehicles	Per Unit Distance	Persons
Travel Speed (Average)	$27.0 \mathrm{~km} / \mathrm{h}$		$27.0 \mathrm{~km} / \mathrm{h}$
Travel Distance (Average)	1027.0 m		1027.0 m
Travel Time (Average)	137.1 sec	$133.5 \mathrm{sec} / \mathrm{km}$	137.1 sec
Desired Speed (Input)	$60.0 \mathrm{~km} / \mathrm{h}$		
Route Delay (Average)	19.7 sec	$19.2 \mathrm{sec} / \mathrm{km}$	19.7 sec
Route Stop Rate	1.31	1.28 per km	1.31
Route Lal			

Route Level of Service (LOS)	LOS E
Speed Efficiency	0.45
Travel Time Index	3.88

Congestion Coefficient 2.23

Route Travel Movement Performance											
Mov ID	Turn	Trav Dist m	Trav Time sec	Aver. Speed km/h	Aver. Delay sec	Prop. Queued	Eff. Stop Rate	Aver. No. Cycles	Dem. Flow Rate veh/h	Arv. Flow Rate veh/h	Deg. of Satn
Site ID: S1-1 Site Name: S1-1 NSW - PM No Project											
South Approach											
2	T1	510.0	107.3	17.1	15.5	0.83	0.71	0.83	1	1	0.005
Site ID: S1-2 Site Name: S1-2 NSW - PM No Project											
South Approach											
1	R2	517.0	29.9	62.3	4.3	0.63	0.60	0.63	1	1	0.002

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021
5:07:16 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

(10) Site: S1-1 [S1-1 NSW - PM With Project (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged
Crossing B-1 - PM With Project
(Network Folder: Cordeaux Dam
Road 2023)]
Staged Crossing at T Intersection Type B
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		ND NS HV] \%	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 \mathrm{HV} \text {] } \\ & \hline \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Cordeaux Dam Road													
1 L2	1	0.0	1	0.0	0.002	11.9	LOS A	0.0	0.0	0.72	0.71	0.72	56.2
$2 \quad \mathrm{~T} 1$	40	5.3	40	5.3	0.197	19.0	LOS B	0.3	2.0	0.86	0.89	0.90	16.6
Approach	41	5.1	41	5.1	0.197	18.8	LOS B	0.3	2.0	0.86	0.88	0.89	17.2
East: Picton Road East													
3 L 2	12	18.2	12	18.2	0.007	8.3	LOS A	0.0	0.0	0.00	0.66	0.00	68.2
4 T1	889	23.4	889	23.4	0.526	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.5
Approach	901	23.4	901	23.4	0.526	0.2	NA	0.0	0.0	0.00	0.01	0.00	98.9
North: Median Storage													
$5 \quad$ T1	1	0.0	1	0.0	0.002	6.2	LOS A	0.0	0.0	0.71	0.55	0.71	45.0
Approach	1	0.0	1	0.0	0.002	6.2	LOSA	0.0	0.0	0.71	0.55	0.71	45.0
All Vehicles	943	22.5	943	22.5	0.526	1.0	NA	0.3	2.0	0.04	0.05	0.04	89.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:07:26 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

∇ Site: S1-2 [S1-2 NSW - PM With Project (Site Folder: Cordeaux Dam Road 2023)]

> Network: SCTI-B [Staged
> Crossing B-1 - PM With Project (Network Folder: Cordeaux Dam
> Road 2023)]

Staged Crossing at T Intersection Type B
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV] } \\ & \% \end{aligned}$	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { ows } \\ & 1 \mathrm{HV}] \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVER } \\ \text { OF } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Median Storage													
1 R2	40	5.3	40	5.3	0.073	4.9	LOS A	0.1	0.5	0.66	0.73	0.66	57.5
Approach	40	5.3	40	5.3	0.073	4.9	LOS A	0.1	0.5	0.66	0.73	0.66	57.5
West: Picton Road West													
2 T1	1088	18.6	1088	18.6	0.626	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	99.3
3 R2	1	0.0	1	0.0	0.001	7.6	LOS A	0.0	0.0	0.00	0.70	0.00	70.8
Approach	1089	18.6	1089	18.6	0.626	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.3
All Vehicles	1129	18.1	1129	18.1	0.626	0.3	NA	0.1	0.5	0.02	0.03	0.02	98.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021 5:07:26 PM
Project: C:IUsers\penny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling FilesIModel\21149-210809-Dendrobium.sip9

ROUTE TRAVEL PERFORMANCE

$\mid \Rightarrow$ Route: R1 [Staged Right Turn to East]

마 Network: SCTI-B [Staged Crossing B-1 - PM With Project (Network Folder: Cordeaux Dam

Road 2023)]

Staged Crossing at T Intersection Type B Network Category: (None)

Route Travel Performance			
Performance Measure	Vehicles	Per Unit Distance	Persons
Travel Speed (Average)	$25.8 \mathrm{~km} / \mathrm{h}$		$25.8 \mathrm{~km} / \mathrm{h}$
Travel Distance (Average)	1027.0 m		1027.0 m
Travel Time (Average)	143.1 sec	$139.4 \mathrm{sec} / \mathrm{km}$	143.1 sec
Desired Speed (Input)	$60.0 \mathrm{~km} / \mathrm{h}$		
Route Delay (Average)	23.9 sec	$23.3 \mathrm{sec} / \mathrm{km}$	23.9 sec
Route Stop Rate	1.62	1.58 per km	1.62
Route Level of Service (LOS)	LOS E		
Speed Efficiency	0.43		
Travel Time Index	3.67		
Congestion Coefficient	2.32		

Route Travel Movement Performance											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	Turn	$\begin{array}{r} \text { Trav } \\ \text { Dist } \\ \mathrm{m} \\ \hline \end{array}$	Trav Time sec	Aver. Speed km/h	Aver. Delay sec	Prop Queued	$\begin{aligned} & \text { Eff. Stop } \\ & \text { Rate } \end{aligned}$	Aver. No. Cycles	Dem. Flow Rate veh/h	Arv. Flow Rate veh/h	Deg. of Satn
Site ID: S1-1 Site Name: S1-1 NSW - PM With Project											
South Approach											
2	T1	510.0	110.8	16.6	19.0	0.86	0.89	0.90	40	40	0.197
Site ID: S1-2 Site Name: S1-2 NSW - PM With Project											
South Approach											
1	R2	517.0	32.4	57.5	4.9	0.66	0.73	0.66	40	40	0.073

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, 20 October 2021
5:07:26 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-210809-Dendrobium.sip9

MOVEMENT SUMMARY

∇ Site: S1-2 [S1-2 NSW - AM PEAK 8-9 Water West (Site Folder:
Cordeaux Dam Road 2023)]
마 Network: SCTI-B [Staged Crossing B-1 - AM PEAK 8-9 Water West (Network Folder: Cordeaux Dam Road 2023 Water West)]

Staged Crossing at T Intersection Type B

Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{array}{ll} \text { Mov Turn } \\ \text { ID } \end{array}$		AND WS HV] \%	ARR FLO [Tota veh/h	IVAL WS [HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Median Storage													
1 R2	3	66.7	3	66.7	0.007	5.5	LOS A	0.0	0.1	0.62	0.64	0.62	37.3
Approach	3	66.7	3	66.7	0.007	5.5	LOS A	0.0	0.1	0.62	0.64	0.62	37.3
West: Picton Road West													
2 T1	828	29.2	828	29.2	0.506	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.5
3 R2	7	85.7	7	85.7	0.006	10.0	LOS A	0.0	0.0	0.00	0.71	0.00	70.8
Approach	836	29.7	836	29.7	0.506	0.2	NA	0.0	0.0	0.00	0.01	0.00	99.4
All Vehicles	839	29.9	839	29.9	0.506	0.2	NA	0.0	0.1	0.00	0.01	0.00	99.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021 1:02:33 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD 21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

MOVEMENT SUMMARY

(10) Site: S1-1 [S1-1 NSW - AM PEAK 8-9 Water West (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged Crossing B-1 - AM PEAK 8-9 Water West (Network Folder: Cordeaux Dam Road 2023 Water West)]

Staged Crossing at T Intersection Type B Site Category: (None) Stop (Two-Way)													
Vehicle Movement Performance													
Mov Turn ID		ND NS HV] \%	ARR FLO [Tota veh/h	IVAL OWS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Cordeaux Dam Road													
1 L2	7	85.7	7	85.7	0.030	20.0	LOS B	0.0	0.5	0.79	0.91	0.79	38.8
2 T1	3	66.7	3	66.7	0.024	26.1	LOS B	0.0	0.3	0.86	0.86	0.86	15.6
Approach	11	80.0	11	80.0	0.030	21.9	LOS B	0.0	0.5	0.81	0.89	0.81	30.7
East: Picton Road East													
3 L2	3	66.7	3	66.7	0.003	9.6	LOS A	0.0	0.0	0.00	0.66	0.00	55.6
4 T1	755	29.8	755	29.8	0.462	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.6
Approach	758	30.0	758	30.0	0.462	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.3
North: Median Storage													
5 T1	7	85.7	7	85.7	0.031	13.1	LOS A	0.0	0.5	0.78	0.78	0.78	35.1
Approach	7	85.7	7	85.7	0.031	13.1	LOS A	0.0	0.5	0.78	0.78	0.78	35.1
All Vehicles	776	31.2	776	31.2	0.462	0.5	NA	0.0	0.5	0.02	0.02	0.02	95.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021 1:02:33 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

ROUTE TRAVEL PERFORMANCE

$\mid \Rightarrow$ Route: R1 [Staged Right Turn to East]
마 Network: SCTI-B [Staged Crossing B-1 - AM PEAK 8-9 Water West (Network Folder: Cordeaux Dam Road 2023 Water West)]

Staged Crossing at T Intersection Type B Network Category: (None)

Route Travel Performance			
Performance Measure	Vehicles	Per Unit Distance	Persons
Travel Speed (Average)	$22.0 \mathrm{~km} / \mathrm{h}$		$22.0 \mathrm{~km} / \mathrm{h}$
Travel Distance (Average)	1027.0 m	1027.0 m	
Travel Time (Average)	167.8 sec	$163.3 \mathrm{sec} / \mathrm{km}$	167.8 sec
Desired Speed (lnput)	$60.0 \mathrm{~km} / \mathrm{h}$	$30.8 \mathrm{sec} / \mathrm{km}$	31.6 sec
Route Delay (Average)	31.6 sec	1.46 per km	1.50
Route Stop Rate	1.50		
Route Level of Service (LOS)	LOS E		
Speed Efficiency	0.37		
Travel Time Index	2.97		
Congestion Coefficient	2.72		

Route Travel Movement Performance											
Mov ID	Turn	$\begin{gathered} \text { Trav } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Trav Time sec	Aver Speed km/h	Aver. Delay sec	Prop Queued	Eff. Stop Rate	Aver. No. Cycles	Dem. Flow Rate veh/h	Arv. Flow Rate veh/h	$\begin{aligned} & \text { Deg. of } \\ & \text { Satn } \end{aligned}$

Site ID: S1-1
Site Name: S1-1 NSW - AM PEAK 8-9 Water West
South Approach

2	T1	510.0	117.9	15.6	26.1	0.86	0.86	0.86	3	3	0.024
Site ID: S1-2											
Site Name: S1-2 NSW - AM PEAK 8-9 Water West											
South Approach											
1	R2	517.0	49.8	37.3	5.5	0.62	0.64	0.62	3	3	0.007

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021
1:02:33 PM
Project: C:\Userslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling FilesIModel\21149-211203-Dendrobium.sip9

MOVEMENT SUMMARY

∇ Site: S1-2 [S1-2 NSW - PM With Project - Water West (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged Crossing B-1 - PM PEAK 4-5
Water West (Network Folder: Cordeaux Dam Road 2023 Water West)]

Staged Crossing at T Intersection Type B

Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{array}{ll} \text { Mov Turn } \\ \text { ID } \end{array}$	DEM FL [Total veh/h	AND NS HV] \%	ARR FLO [Tota veh/h	IVAL WS [HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh veh	BACK EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Median Storage													
1 R2	40	5.3	40	5.3	0.073	4.9	LOS A	0.1	0.5	0.66	0.73	0.66	57.5
Approach	40	5.3	40	5.3	0.073	4.9	LOS A	0.1	0.5	0.66	0.73	0.66	57.5
West: Picton Road West													
2 T1	1088	18.6	1088	18.6	0.626	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.3
3 R2	7	85.7	7	85.7	0.006	10.0	LOS A	0.0	0.0	0.00	0.71	0.00	70.8
Approach	1096	19.0	1096	19.0	0.626	0.2	NA	0.0	0.0	0.00	0.00	0.00	99.1
All Vehicles	1136	18.5	1136	18.5	0.626	0.4	NA	0.1	0.5	0.02	0.03	0.02	97.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021 12:57:51 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

MOVEMENT SUMMARY

(10) Site: S1-1 [S1-1 NSW - PM With Project - Water West (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged Crossing B-1 - PM PEAK 4-5 Water West (Network Folder: Cordeaux Dam Road 2023 Water West)]
Staged Crossing at T Intersection Type B
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		ND NS HV] \%	ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 / \mathrm{HV} \text {] } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVER, } \\ \text { OF } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { EBACK } \\ \text { EUE } \\ \text { Dist] } \\ \text { m } \end{gathered}$	Prop. Que	EffectiveAv Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Cordeaux Dam Road													
1 L2	7	85.7	7	85.7	0.045	27.1	LOS B	0.1	0.7	0.86	0.94	0.86	36.1
$2 \quad \mathrm{~T} 1$	40	5.3	40	5.3	0.198	19.1	LOS B	0.3	2.0	0.86	0.89	0.90	16.6
Approach	47	17.8	47	17.8	0.198	20.3	LOS B	0.3	2.0	0.86	0.89	0.89	19.4
East: Picton Road East													
3 L2	12	18.2	12	18.2	0.007	8.3	LOS A	0.0	0.0	0.00	0.66	0.00	68.2
$4 \quad$ T1	889	23.4	889	23.4	0.526	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.5
Approach	901	23.4	901	23.4	0.526	0.2	NA	0.0	0.0	0.00	0.01	0.00	98.9
North: Median Storage													
$5 \quad$ T1	7	85.7	7	85.7	0.045	19.6	LOS B	0.1	0.6	0.85	0.85	0.85	31.3
Approach	7	85.7	7	85.7	0.045	19.6	LOS B	0.1	0.6	0.85	0.85	0.85	31.3
All Vehicles	956	23.6	956	23.6	0.526	1.3	NA	0.3	2.0	0.05	0.06	0.05	87.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021
12:57:51 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD 21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

ROUTE TRAVEL PERFORMANCE

$\mid \Rightarrow$ Route: R1 [Staged Right Turn to East]
마 Network: SCTI-B [Staged Crossing B-1 - PM PEAK 4-5 Water West (Network Folder: Cordeaux Dam Road 2023 Water West)]

Staged Crossing at T Intersection Type B Network Category: (None)

Route Travel Performance			
Performance Measure	Vehicles	Per Unit Distance	Persons
Travel Speed (Average)	$25.8 \mathrm{~km} / \mathrm{h}$		$25.8 \mathrm{~km} / \mathrm{h}$
Travel Distance (Average)	1027.0 m		1027.0 m
Travel Time (Average)	143.2 sec	$139.5 \mathrm{sec} / \mathrm{km}$	143.2 sec
Desired Speed (lnput)	$60.0 \mathrm{~km} / \mathrm{h}$		
Route Delay (Average)	24.0 sec	$23.4 \mathrm{sec} / \mathrm{km}$	24.0 sec
Route Stop Rate	1.62	1.58 per km	1.62
Route Level of Service (LOS)	LOS E		
Speed Efficiency	0.43		
Travel Time Index	3.67		
Congestion Coefficient	2.32		

Route Travel Movement Performance											
Mov ID	Turn	$\begin{array}{r} \text { Trav } \\ \text { Dist } \\ m \\ \hline \end{array}$	Trav Time sec	Aver. Speed km/h	Aver. Delay sec	Prop. Queued	Eff. Stop Rate	Aver. No. Cycles	Dem. Flow Rate veh/h	Arv. Flow Rate veh/h	Deg. of Satn
Site ID: S1-1 Site Name: S1-1 NSW - PM With Project - Water West											
South Approach											
2	T1	510.0	110.9	16.6	19.1	0.86	0.89	0.90	40	40	0.198
Site ID: S1-2 Site Name: S1-2 NSW - PM With Project - Water West											
South Approach											
1	R2	517.0	32.4	57.5	4.9	0.66	0.73	0.66	40	40	0.073

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021
12:57:51 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

MOVEMENT SUMMARY

∇ Site: S1-2 [S1-2 NSW - AM PEAK 8-9 East (Site Folder:
Cordeaux Dam Road 2023)]
Network: SCTI-B [Staged
Crossing B-1 - AM PEAK 8-9
Water East (Network Folder:
Cordeaux Dam Road 2023 -
Water East)]
Staged Crossing at T Intersection Type B
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID			ARR FLO [Tota veh/h	$\begin{aligned} & \text { IVAL } \\ & \text { WWS } \\ & 1 \text { HV }] \\ & \% \% \end{aligned}$	Deg Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist]	Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Median Storage													
1 R2	9	88.9	9	88.9	0.025	6.9	LOS A	0.0	0.3	0.66	0.73	0.66	32.4
Approach	9	88.9	9	88.9	0.025	6.9	LOS A	0.0	0.3	0.66	0.73	0.66	32.4
West: Picton Road West													
2 T1	828	29.2	828	29.2	0.506	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.5
3 R2	1	0.0	1	0.0	0.001	7.6	LOS A	0.0	0.0	0.00	0.70	0.00	70.8
Approach	829	29.2	829	29.2	0.506	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.5
All Vehicles	839	29.9	839	29.9	0.506	0.2	NA	0.0	0.3	0.01	0.01	0.01	98.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021 1:08:06 PM
Project: C:IUserslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

MOVEMENT SUMMARY

(10) Site: S1-1 [S1-1 NSW - AM PEAK 8-9 East (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged Crossing B-1 - AM PEAK 8-9 Water East (Network Folder: Cordeaux Dam Road 2023 -

Staged Crossing at T Intersection Type B Site Category: (None) Stop (Two-Way)													
Vehicle Movement Performance													
Mov Turn ID	$\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [Total } \\ \text { veh/h } \\ \hline \end{gathered}$	ND WS HV] \%	ARR FLO [Tota veh/h	VAL WS HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVER OF [Veh. veh	BACK EUE Dist] m	Prop. Que	EffectiveA Stop Rate	er. No. Cycles	Aver. Speed km/h
South: Cordeaux Dam Road													
1 L 2	1	0.0	1	0.0	0.002	10.1	LOS A	0.0	0.0	0.65	0.66	0.65	57.8
2 T1	9	88.9	9	88.9	0.091	35.0	LOS C	0.1	1.4	0.89	0.89	0.89	14.5
Approach	11	80.0	11	80.0	0.091	32.5	LOS C	0.1	1.4	0.86	0.87	0.86	16.8
East: Picton Road East													
3 L2	9	88.9	9	88.9	0.008	10.1	LOS A	0.0	0.0	0.00	0.67	0.00	51.2
4 T1	755	29.8	755	29.8	0.462	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.6
Approach	764	30.6	764	30.6	0.462	0.2	NA	0.0	0.0	0.00	0.01	0.00	98.5
North: Median Storage													
$5 \quad$ T1	1	0.0	1		0.002	4.6	LOS A	0.0	0.0	0.63	0.46	0.63	46.9
Approach	1	0.0	1	0.0	0.002	4.6	LOS A	0.0	0.0	0.63	0.46	0.63	46.9
All Vehicles	776	31.2	776	31.2	0.462	0.6	NA	0.1	1.4	0.01	0.02	0.01	94.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021 1:08:06 PM
Project: C:IUserslpenny.daltonlOneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

ROUTE TRAVEL PERFORMANCE

$\mid \Rightarrow$ Route: R1 [Staged Right Turn to East]
마 Network: SCTI-B [Staged Crossing B-1 - AM PEAK 8-9 Water East (Network Folder: Cordeaux Dam Road 2023 -

Water East)]
Staged Crossing at T Intersection Type B Network Category: (None)

Route Travel Performance			
Performance Measure	Vehicles	Per Unit Distance	Persons
Travel Speed (Average)	$20.1 \mathrm{~km} / \mathrm{h}$		$20.1 \mathrm{~km} / \mathrm{h}$
Travel Distance (Average)	1027.0 m		1027.0 m
Travel Time (Average)	184.2 sec	$179.3 \mathrm{sec} / \mathrm{km}$	184.2 sec
Desired Speed (Input)	$60.0 \mathrm{~km} / \mathrm{h}$		
Route Delay (Average)	41.9 sec	$40.8 \mathrm{sec} / \mathrm{km}$	41.9 sec
Route Stop Rate	1.62	1.57 per km	1.62
Route Level of Service (LOS)	LOS E		
Speed Efficiency	0.33		
Travel Time Index	2.61		
Congestion Coefficient	2.99		

Route Travel Movement Performance											
Mov ID	Turn	$\begin{gathered} \text { Trav } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Trav Time sec	Aver Speed km/h	Aver. Delay sec	Prop Queued	Eff. Stop Rate	Aver. No. Cycles	Dem. Flow Rate veh/h	Arv. Flow Rate veh/h	$\begin{aligned} & \text { Deg. of } \\ & \text { Satn } \end{aligned}$

Site ID: S1-1
Site Name: S1-1 NSW - AM PEAK 8-9 East
South Approach

2	T1	510.0	126.8	14.5	35.0	0.89	0.89	0.89	9	9	0.091
Site ID: S1-2 Site Name: S1-2 NSW - AM PEAK 8-9 East											
South Approach											
1	R2	517.0	57.4	32.4	6.9	0.66	0.73	0.66	9	9	0.025

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021
1:08:06 PM
Project: C:\Userslpenny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

MOVEMENT SUMMARY

∇ Site: S1-2 [S1-2 NSW - PM With Project - Water East (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged Crossing B-1 - PM PEAK 4-5 Water East (Network Folder: Cordeaux Dam Road 2023 -

Staged Crossing at T Intersection Type B

Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn		AND WS HV] \%	ARR FLO [Tota veh/h	$\begin{aligned} & \text { 2IVAL } \\ & \text { כWS } \\ & \text { al HV] } \\ & \text { h \% } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} \text { AVER } \\ \text { OF } \\ \text { [Veh } \\ \text { veh } \end{gathered}$		Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Median Storage													
1 R2	46	18.2	46	18.2	0.098	5.9	LOS A	0.1	0.7	0.69	0.76	0.69	50.5
Approach	46	18.2	46	18.2	0.098	5.9	LOS A	0.1	0.7	0.69	0.76	0.69	50.5
West: Picton Road West													
2 T1	1088	18.6	1088	18.6	0.626	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.3
3 R2	1	0.0	1	0.0	0.001	7.6	LOS A	0.0	0.0	0.00	0.70	0.00	70.8
Approach	1089	18.6	1089	18.6	0.626	0.1	NA	0.0	0.0	0.00	0.00	0.00	99.3
All Vehicles	1136	18.5	1136	18.5	0.626	0.4	NA	0.1	0.7	0.03	0.03	0.03	97.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021
12:59:09 PM
Project: C:IUserslpenny.daltonlOneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

MOVEMENT SUMMARY

(10) Site: S1-1 [S1-1 NSW - PM With Project - Water East (Site Folder: Cordeaux Dam Road 2023)]

마 Network: SCTI-B [Staged Crossing B-1 - PM PEAK 4-5 Water East (Network Folder: Cordeaux Dam Road 2023 -

Staged Crossing at T Intersection Type B
 Site Category: (None)
 Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	DEM FLO [Total veh/h	$\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV] } \\ \% \end{gathered}$	ARR FLO [Tota veh/h	IVAL WS I HV] \%	Deg. Satn v/c	Aver. Delay sec	Level of Service	AVERA OF [Veh. veh	$\begin{gathered} \text { BACK } \\ \text { EUE } \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	Effective Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Cordeaux Dam Road													
1 L2	1	0.0	1	0.0	0.002	11.9	LOS A	0.0	0.0	0.72	0.71	0.72	56.2
2 T1	46	18.2	46	18.2	0.274	25.1	LOS B	0.4	3.2	0.89	0.96	1.00	15.7
Approach	47	17.8	47	17.8	0.274	24.8	LOS B	0.4	3.2	0.88	0.96	1.00	16.2
East: Picton Road East													
3 L2	18	47.1	18	47.1	0.013	9.1	LOS A	0.0	0.0	0.00	0.66	0.00	60.1
4 T1	889	23.4	889	23.4	0.526	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	99.5
Approach	907	23.9	907	23.9	0.526	0.3	NA	0.0	0.0	0.00	0.01	0.00	98.2
North: Median Storage													
$5 \quad$ T1	1	0.0	1	0.0	0.002	6.3	LOS A	0.0	0.0	0.71	0.55	0.71	44.9
Approach	1	0.0	1	0.0	0.002	6.3	LOS A	0.0	0.0	0.71	0.55	0.71	44.9
All Vehicles	956	23.6	956	23.6	0.526	1.5	NA	0.4	3.2	0.04	0.06	0.05	86.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021 12:59:09 PM
Project: C:IUserslpenny.daltonlOneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTD\21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

ROUTE TRAVEL PERFORMANCE

$\mid \Rightarrow$ Route: R1 [Staged Right Turn to East]
마 Network: SCTI-B [Staged Crossing B-1 - PM PEAK 4-5 Water East (Network Folder: Cordeaux Dam Road 2023 -

Staged Crossing at T Intersection Type B Network Category: (None)

Route Travel Performance			
Performance Measure	Vehicles	Per Unit Distance	Persons
Travel Speed (Average)	$24.1 \mathrm{~km} / \mathrm{h}$		$24.1 \mathrm{~km} / \mathrm{h}$
Travel Distance (Average)	1027.0 m	1027.0 m	
Travel Time (Average)	153.7 sec	$149.7 \mathrm{sec} / \mathrm{km}$	153.7 sec
Desired Speed (Input)	$60.0 \mathrm{~km} / \mathrm{h}$		
Route Delay (Average)	31.0 sec	$30.1 \mathrm{sec} / \mathrm{km}$	31.0 sec
Route Stop Rate	1.72	1.68 per km	1.72
Route Level of Service (LOS)	LOS E		
Speed Efficiency	0.40		
Travel Time Index	3.34		
Congestion Coefficient	2.49		

Route Travel Movement Performance											
Mov ID	Turn	$\begin{array}{r} \text { Trav } \\ \text { Dist } \\ m \\ \hline \end{array}$	Trav Time sec	Aver. Speed km/h	Aver. Delay sec	Prop. Queued	Eff. Stop Rate	Aver. No. Cycles	Dem. Flow Rate veh/h	Arv. Flow Rate veh/h	Deg. of Satn
Site ID: S1-1 Site Name: S1-1 NSW - PM With Project - Water East											
South Approach											
2	T1	510.0	116.9	15.7	25.1	0.89	0.96	1.00	46	46	0.274
Site ID: S1-2 Site Name: S1-2 NSW - PM With Project - Water East											
1	R2	517.0	36.9	50.5	5.9	0.69	0.76	0.69	46	46	0.098

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Friday, 3 December 2021
12:59:09 PM
Project: C:\Users\penny.dalton\OneDrive - THE TRANSPORT PLANNING PARTNERSHIP PTY LTDI21149 Dendrobium Conceptual Projectl07 Modelling Files\Model\21149-211203-Dendrobium.sip9

The Transport Planning Pa rtnership
Suite 402 Level 4, 22 Atchison Street
St Leonards NSW 2065
P.O. Box 237

St Leonards NSW 1590
0284377800
info@ttpp.net.au
www.ttpp.net.au

[^0]: ${ }^{1}$ The Project does not include approved underground mining operations in the Wonga willi Seam in Areas 1, 2, 3A, 3B and 3C at the Dendrobium Mine and associated surface activities (such as monitoring and remediation). These activities will continue to operate in accordance with Development Consent DA 60-03-2001 (as modified).

