

Area Schedule (GFA - Randwick)

Name	Area
Internal	
Ground	1858 m ²
Level 1	1012 m ²
Level 2	1874 m ²
Level 3	1908 m ²
Level 4	1908 m ²
Level 5	1908 m ²
Level 6	1908 m ²
Level 7	1908 m ²
Internal: 8	14284 m ²
External	
Terrace	726 m ²
External: 1	726 m ²
Total (Internal & External): 9	15010 m ²

Tzannes

15

m

Project UNSW D14 Academic Building

North

 \bigcirc

Address UNSW Kensington Campus

Date

Drawing

GFA Randwick Schedule

08.11.18

Suite 5, L5, 2-12 Foveaux St Surry Hills NSW 2010 Sydney, Australia W. tzannes.com.au T. 61 2 9319 3744 E. tzannes@tzannes.com.au

Nominated Architects

Alec Tzannes 4174 Jonathan Evans 6613 Mladen Prnjatovic 7468 Ben Green 7066 Chi Melhem 7754

Rev Date For 01 24.10.18 Draft SSDA

Legend

02 02.11.18 Draft SSDA

- 03 07.11.18 Draft SSDA
- 04 08.11.18 SSDA Submission

7.5

Project UNSW D14 Academic Building

North

Address UNSW Kensington Campus

Status PLANNING APPLICATION 18026 ADDA41000 04

Drawing Elevation South

Date 08.11.18

Project No. Drawing No. Revision

1:1000

Plan 21 JUN 10am

Tzannes Project UNSW D14 Academic Building

North

Address UNSW Kensington Campus

Drawing Shadow Diagram Winter

Date 08.11.18

Suite 5, L5, 2-12 Foveaux St Surry Hills NSW 2010 Sydney, Australia W. tzannes.com.au T. 61 2 9319 3744 E. tzannes@tzannes.com.au

Nominated Architects

Alec Tzannes 4174 Jonathan Evans 6613 Mladen Prnjatovic 7468 Ben Green 7066 Chi Melhem 7754

Rev Date For 01 24.10.18 Draft SSDA 02 02.11.18 Draft SSDA

Legend

03 07.11.18 Draft SSDA 04 08.11.18 SSDA Submission

Tzannes

7.5

5

| Project UNSW D14 Academic Building

North

Address UNSW Kensington Campus

Status PLANNING APPLICATION 18026 ADDA42000 04

Drawing Elevation West

Date 08.11.18

Project No. Drawing No. Revision

Suite 5, L5, 2-12 Foveaux St Surry Hills NSW 2010 Sydney, Australia W. tzannes.com.au T. 61 2 9319 3744 E. tzannes@tzannes.com.au

Nominated Architects

Alec Tzannes 4174 Jonathan Evans 6613 Mladen Prnjatovic 7468 Ben Green 7066 Chi Melhem 7754

Tzannes

Project UNSW D14 Academic Building

North

Address UNSW Kensington Campus

Status PLANNING APPLICATION 18026 ADDA44000 04

Drawing Elevation East

Date 08.11.18

Project No. Drawing No. Revision

1 | Section 1 1:250

Section 2 1 1:250

MATERIALS & FINISHES SCHEDULE

Colonnade Double Height	Column pedestals, off form class 2 concrete (1) Columns recycled hardwood timber, clear finish (2) L2 soffit, exposed engineered timber beams and slabs (11)
Ground Floor Walls	Face Brick (3)
Shopfront Glazing	Fixed and operable aluminum framed glazed panels, powder coat finish or similar (6)
Ground & Level 1	Glazed double height facade, aluminium framing with clear glass vision panel (5) Panelised system to provide constant surface and colour texture (7) Vertical aluminium sunshading devices (10)
Level 2-7	Glazed curtain wall, aluminium framing powder coat finish or similar with clear low iron, performance glass (5) (6) Horizontal external sunshading devices, metal (4) Vertical external sunshading devices, metal (4) Roof parapet, clear glass (8) Core cladding opaque colour back glass (9)
Plant	Vertical louvres, powder coat finish (4)
Internal Structure Level G-1	Columns & L1 soffit off form class 2 concrete (1) Engineered timber from sustainable source (11)
Internal Structure Level Level 2-7	Engineered timber from sustainable source (11)

Note: Indicative Samples Only

Suite 5, L5, 2-12 Foveaux St Surry Hills NSW 2010 Sydney, Australia W. tzannes.com.au T. 61 2 9319 3744 E. tzannes@tzannes.com.au

Nominated Architects Alec Tzannes 4174 Jonathan Evans 6613 Mladen Prnjatovic 7468 Ben Green 7066 Chi Melhem 7754

Legend

Tzannes

North

Project UNSW D14 Academic Building

Address UNSW Kensington Campus

Status PLANNING APPLICATION 18026 ADDA90000 04

Drawing Materials & Finishes Schedule

Date 08.11.18

Project No. Drawing No. Revision

Tzannes Project UNSW D14 Academic Building

North

Address UNSW Kensington Campus

Drawing Shadow Diagram Winter

Date 08.11.18

Plan 21 JUN 2pm 1:1000

Tzannes Project UNSW D14 Academic Building

North

Address UNSW Kensington Campus

Drawing Shadow Diagram Winter

Date 08.11.18

Plan 21 JUN 3pm 1 : 1000 1

١Ζ

Suite 5, L5, 2-12 Foveaux St Surry Hills NSW 2010 Sydney, Australia

W. tzannes.com.au T. 61 2 9319 3744 E. tzannes@tzannes.com.au

Project UNSW D14 Academic Building

Address UNSW Kensington Campus

Drawing Shadow Diagram Winter

Date 08.11.18

Appendix B

Previous Results

	A B C	D E	F	G	Н		J	K	L
1		UCL Statis	tics for Data	Sets with Nor	n-Detects				
2									
3	User Selected Options								
4	Date/Time of Computation	ProUCL 5.118/09/2018 1	:12:57 PM						
5	From File	WorkSheet.xls							
6	Full Precision	OFF							
7	Confidence Coefficient	95%							
8	Number of Bootstrap Operations	2000							
9									
10	BaP								
11			Conorol	Statistics					
12	Total	Number of Observations	10	Statistics		Numb	er of Distinct	Observations	6
13		Number of Detects	5			Numb		f Non-Detects	5
14	Ni	umber of Distinct Detects	5			Numh		t Non-Detects	1
15		Minimum Detect	0.2			Num		m Non-Detect	0.05
16		Maximum Detect	2.5				-	m Non-Detect	0.05
17		Variance Detects	0.837					t Non-Detects	50%
18		Mean Detects	1.12					SD Detects	0.915
19		Median Detects	1.1					CV Detects	0.817
20		Skewness Detects	0.815				Ku	rtosis Detects	0.24
21 22		Mean of Logged Detects	-0.236				SD of Lo	gged Detects	1.014
22									
23		Norm	al GOF Tes	t on Detects C	Dnly				
25	S	hapiro Wilk Test Statistic	0.936			Shapiro W	/ilk GOF Tes	t	
26	5% SI	hapiro Wilk Critical Value	0.762	Det	tected Data	appear No	rmal at 5% S	ignificance Lev	vel
27		Lilliefors Test Statistic	0.184			Lilliefors	GOF Test		
28	5	% Lilliefors Critical Value	0.343	Det	tected Data	appear No	rmal at 5% S	ignificance Lev	vel
29		Detected Data a	appear Norm	nal at 5% Sign	ificance Lev	vel			
30									
31	Kaplan-I	Meier (KM) Statistics usin	g Normal Ci	ritical Values a	and other N	-			
32		KM Mean	0.585			K		Error of Mean	0.279
33		KM SD	0.788					M (BCA) UCL	1.04
34		95% KM (t) UCL	1.096			95% KM (ootstrap) UCL	1.035
35		95% KM (z) UCL	1.043					otstrap t UCL	1.104
36		0% KM Chebyshev UCL	1.421					ebyshev UCL	1.799
37	97.	5% KM Chebyshev UCL	2.325				99% KM Ch	ebyshev UCL	3.357
38		000000	Tosta an Da	tootod Ober-	(ationa Ort				
39		Gamma GOF A-D Test Statistic	0.229				arling GOF T	oct	
40		5% A-D Critical Value	0.229	Detected			-	est : 5% Significan	
41		K-S Test Statistic	0.197	Delected			-Smirnov GC	-	
42		5% K-S Critical Value	0.361	Detected				5% Significan	ce Level
43		Detected data appear							
44					- 3				
45		Gamma	Statistics on	Detected Dat	ta Only				
46 47		k hat (MLE)	1.579		•	k	star (bias co	prrected MLE)	0.765
47		Theta hat (MLE)	0.709				•	orrected MLE)	1.464
48 49		nu hat (MLE)	15.79				•	ias corrected)	7.65
49 50		Mean (detects)	1.12					-	
51			l	1					
51									

	А	В	С	D	E		F Statistics us	G ing Imputed	H Non-Detects	I	J		К	L
52			GROS may	not be us					any tied obs		t multinle F			
53		GROS may	y not be used						•				<15-20)	
54									ct values of l					
55								•	e size is smal		5110			
56		For gar	nma distribut	ed detecte		•					ution on KI	√ estima	ates	
57					Minir		0.01	, 20 00put	ou uonig gui				Mean	0.565
58					Maxir		2.5						Median	0.105
59						SD	0.845						CV	1.496
60					k hat (N		0.362			k	star (bias	correcte	d MLE)	0.32
61				TI	heta hat (N		1.562				star (bias			1.767
62					nu hat (N	-	7.233				nu star (6.397
63 64			Adjusted	Level of S	Significanc		0.0267							
		Ap	proximate Cl		-	,	1.846			Adjusted (Chi Square	Value (6.40, β)	1.453
65 66		95% Gamma	-				1.958		95% Ga	mma Adjus		•		2.487
67														
68				[Estimates	of Gar	mma Paran	neters using	KM Estimate	S				
69					Mean ((KM)	0.585					S	SD (KM)	0.788
70					Variance ((KM)	0.621				SI	E of Mea	an (KM)	0.279
70					k hat ((KM)	0.551					k sta	ar (KM)	0.452
72					nu hat ((KM)	11.02					nu sta	ar (KM)	9.048
73					theta hat ((KM)	1.062					theta sta	ar (KM)	1.293
74			80%	gamma p	percentile ((KM)	0.955			90	% gamma	percenti	ile (KM)	1.615
75			95%	gamma p	percentile ((KM)	2.328			99	% gamma	percenti	ile (KM)	4.1
76													I	
77					G	lamma	Kaplan-Me	eier (KM) Sta	tistics					
78		-	proximate Cl	•	•		3.356			Adjusted (Chi Square	Value (9.05, β)	2.782
79	95%	5 Gamma App	proximate KN	1-UCL (use	e when n>	·=50)	1.577		95% Gamma	a Adjusted	KM-UCL (ι	ise whe	n n<50)	1.903
80														
81					Lognorma	al GOF	Test on De	stected Obse	ervations Only	у				
82				•	k Test Sta		0.954			•	/ilk GOF Te			
83			5% SI	•	k Critical V		0.762	Dete	ected Data ap			•	icance L	evel
84					s Test Sta		0.228				s GOF Test			
85			5		s Critical V		0.343		ected Data ap		normal at 59	% Signifi	icance L	evel
86				De	stected Da	ita appe	ear Lognor	mal at 5% Si	gnificance Le	evel				
87														
88					-			sing Imputed	d Non-Detect	ls				
89					Original S		0.585					an in Lo	-	-1.786
90					Original S		0.831					SD in Log	-	1.883
91		95% t L	JCL (assume		-		1.067			95%	Percentile		-	1
92					Bootstrap		1.142				95% E	Bootstrap	p t UCL	1.512
93				95% H-U	JCL (Log R	(05)	24.49	L						
94				tion	KM	-	Lacres 4 D							
95			Statis					ສເສ and Assu	uming Lognoi	mnai Distrib	ουτιοΠ	KMO	o Mo	0.100
96					Mean (log		-1.616			050/	Orition	KM Ge		0.199
97			KM Stand-		Moon (log		1.522 0.538			95%	Critical H	•	.	4.258 5.487
98			KM Standar				1.522	<u> </u>		050/			•••	4.258
99			KM Standar		Mean (log		0.538	<u> </u>		90%	Critical H	value (K	(IVI-LOG)	4.200
100					ivicali (iUg	,geu)	0.000	<u>ـــــــ</u>						
101														

	А	A B C D E F G H I J K L													
102						DL/2 St	atistics								
103			DL/2	Normal					DL/2 Log-T	ransformed					
104				Mean in O	riginal Scale	0.573	Mean in Log Scale -1.96								
105				SD in O	riginal Scale	0.84				SD	in Log Scale	1.942			
106			95% t l	JCL (Assume	es normality)	1.059				95%	H-Stat UCL	27.75			
107			DL/2 i	s not a recor	nmended me	thod, provid	ed for compa	risons and h	nistorical reas	sons					
108															
109					Nonparame	etric Distribut	ion Free UCI	_ Statistics							
110				Detected	Data appea	r Normal Dis	tributed at 59	% Significand	ce Level						
111															
112						Suggested	UCL to Use								
113				95%	KM (t) UCL	1.096									
114															
115	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to he	p the user to	o select the n	nost appropri	iate 95% UC	L.			
116			F	Recommenda	tions are ba	sed upon dat	a size, data	distribution,	and skewnes	SS.					
117		These recor	nmendation	s are based u	ipon the resu	Ilts of the sim	nulation studi	es summariz	zed in Singh,	Maichle, an	d Lee (2006)	•			
118	Ho	wever, simu	lations resul	ts will not cov	er all Real V	Vorld data se	ts; for additio	onal insight t	he user may	want to cons	sult a statistic	ian.			
119															

							Heavy	Metals					PA	\H				TRH (NI	EPM 2013) ^e			B	TEX							
Sample	,	Soil Type ^b	Date Sampled	As	Cd	Cr°	Cu	Pb	Hg	Ni	Zn	total	BaP TEQ	ВаР	Naphthalene	C6-C10	>C10-C16	F1 - C6 - C10 less BTEX	F2 - >C10-C16 less naphthalene	>C16-C34	>C34-C40	Benzene	Toluene	Ethylbenzene	xylene	VOC	phenol	PCB	OCPd	p ddO	Asbestos ^j
				Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Soil Assessment Crit	eria (SAC) - (N	IEPC, 2013) (I	efer to report	-	Ĺ																								refer to note		
	HIL D			3,000	900	3,600	240,000	1,500	730/180	6,000	400,000	4,000	40														660	7	h	refer to note	i
	IL/ ESL			160		680	320	1,800		320	1,000			1.4	370		170	215		2,500	6,600	95	135	185	95				640 ^f		
	Reference Lev													172 ^g																	
Management Limit		Coarse														700	1,000			3,500	10,000										
HSLs - Vapour Intrus	0-<1m	Sand							1						NL			260	NL			3	NL	NL	230			1			
	direct contact														11,000					27,000	38,000	430	99,000	27,000	81,000						
Intrusive Maintenance	e Workers		•		•	•	•	•		•		•										•				•	•	•	•	•	
HSLs - Vapour Intrusi																	1														
HSL	0-<2m	Sand					1								NL			NL	NL		100.000	77	NL	NL	NL		1		1		
HSL, d	irect contact														29,000			82,000	62,000	85,000	120,000	1,100	120,000	85,000	130,000						
Sample Location	Depth														I																
1	0-0.1	Fill	25-Jul-18	<4	<0.4	7	23	35	<0.1	5	80	1.55	<0.5	0.2	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
BD1/20180725 a	1	Fill	25-Jul-18	<5	<1	4	13	28	<0.1	2	71	<7.5	0.6	<0.5	<0.5	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	-	-	-	-	-	-
1	1.7	Natural	25-Jul-18	<4	<0.4	2	1	2	<0.1	<1	5	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
2	0.5	Fill	25-Jul-18	<4	<0.4	8	47	6	<0.1	37	32	1.125	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
2	1.8	Fill	25-Jul-18	<4	<0.4	<1	<1	<1	<0.1	<1	<1	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
ЗA	0.1-0.2	Fill	25-Jul-18	<4	<0.4	15	81	67	0.4	11	150	14.7	1.9	1.4	<0.1	<25	<50	<25	<50	180	<100	<0.2	<0.5	<1	<1	<1	<5	<0.1	0.1	<0.1	NAD
ЗA	0.4-0.5	Fill	25-Jul-18	<4	<0.4	6	37	100	0.3	10	120	3.4	0.6	0.4	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
4	0-0.1	Fill	25-Jul-18	<4	<0.4	6	16	14	0.1	14	33	0.96	<0.5	0.06	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
BD4/20180725 a	<u> </u>	Fill	25-Jul-18	<4	<0.4	7	20	24	0.2	12	61	9.95	1.5	1.1	<0.1	<25	<50	<25	<50	150	130	<0.2	<0.5	<1	<1	-	-	-	-	-	-
4	1.5	Natural	25-Jul-18	<4	<0.4	<1	<1	<1	<0.1	<1	<1	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
5	0-0.1	Fill	25-Jul-18	<4	<0.4	6	53	20	<0.1	6	31	<1.35	<0.5	< 0.05	<0.1	<25	<50	<25	<50	540	670	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
BD2/20180725 a	1	Fill	25-Jul-18	<4	<0.4	7	70	16	<0.1	5	30	0.725	<0.5	<0.05	<0.1	<25	<50	<25	<50	730	890	<0.2	<0.5	<1	<1	-	-	-	-	-	-
5	0.5	Fill	25-Jul-18	<4	<0.4	6	35	53	<0.1	5	36	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
6	0.1	Fill	25-Jul-18	5	<0.4	12	42	55	0.3	55	68	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
6 Notes	0.5	Fill	25-Jul-18	5	<0.4	5	61	230	0.9	10	110	15.75	3.6	2.5	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD

d

а Replicate sample of sample listed directly above

b Fill or naturally

Analysis result for total Cr, SAC and waste classification guidelines for Cr(VI), background ranges for Cr(III) С

Where results of one or more component compound are above PQL sum of all results above PQL given, when all results are below PQL results quoted as <PQL of majority of individual analytes

е Analysis result for TRH, guidelines for TPH

f EIL for DDT

Sourced from CRC CARE Technical Report No. 39, Risk-based management and remediation guidance for benzo(a)pyrene (2017) g

DDT+DDE+DDD - 3600 mg/kg, Aldrin + Dieldrin - 45 mg/kg, chlordane - 530 mg/kg, endosulfan - 2000 mg/kg, endrin - 100 mg/kg, heptachlor - 50 mg/kg, h HCB - 80 mg/kg and methoxychlor - 2500 mg/kg

chloropyifos - 2000 mg/kg

Refer to Table F2, Appendix F for further information

Exceedance of EIL/ESL Italic

Acronyms

As arsenic

BaP benzo(a)pyrene BaP TEQ benzo(a)pyrene toxic equivalent

BTEX benzene, toluene, ethyl benzene, xylenes

Cd cadmium

Cr chromium (total)

Cu copper

EIL ecological investigation level

ESL ecological screening level

Hg mercury

- HIL health investigation level
- HSL health screening level

- Ni nickel NL "Not limiting" to human health for the proposed land use for vapour intrusion from petroleum hydrocarbons
- OCP organochlorine pesticides
- OPP organophosphorus pesticides
- PAH polycyclic aromatic hydrocarbons
- Pb lead
- PCB polychlorinated biphenyls PQL practical quantitation limit
- TPH total petroleum hydrocarbons
- TRH total recoverable hydrocarbons, including total petroleum hydrocarbons (TPH)
- VOC volatile organic compounds
- Zn zinc
- NAD no asbestos detected at the limit of reporting

				Asbestos 40 g Sample	•		Asbestos (500 ml Sa	amples)		
Sample	1	Soil Type	Date Sampled	Asbestos ID in soil	Trace Analysis	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos#1	Asbestos ID in soil <0.1g/kg*	FA and AF Estimation*#2
						Total				<i></i>
Soil Assessment Crite	oria (SAC) - NE	PM (as amondo	d 2013) (refer	to report body for details)		-	-	g/kg	-	%(w/w)
Commercial	eria (SAC) - NE	r wi (as amenue	u 2013) (Telei							
Commercial	HIL D									0.001
Laboratory Results										
Sample Location	Depth									
1	0-0.1	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
1	1.7	Natural	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-
2	0.5	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
2	1.8	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
3A	0.1-0.2	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
3A	0.4-0.5	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-
4	0-0.1	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
4	1.5	Natural	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-
5	0-0.1	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
5	0.5	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-
6	0.1	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
6	0.5	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-

									Heavy Me	tals						PAH		TRH	/TPH		BTE	X							
Samp	ple		Soil Type	Date Sampled	As	Cd	Cr °	Cu	Pb		Hg	Ni		Zn	total ^b	BaP		C ₆ - C ₉	C ₁₀ - C ₃₆ ^d	Benzene	Toluene	Ethylbenzene	xylene	voc	phenol	PCB	OCP ^b	۹ ЧЧО	Asbestos ¹
					Total	Total	Total	Total	Total	TCLP	Total	Total	TCLP	Total	Total	Total	TCLP	Total		Total	Total	Total	Total	Total		Total	Total	Total	
				00440	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	<u> </u>
Waste Classifica	atior	n Inresho		/						1			r r				1							0			f		
General	Soli	d	-	T1	100	20	100		100		4	40			200	0.8		650	10,000	10	288	600	1,000	- ^e	288	<50	<50 ^f	250 ^g	
				TCLP1					1,500	5		1,050	2				0.04												
Published Back			es		4.50		5 4000	0.400	0.000		0.00	= = = = = = =		10.000	r		1	r			1	1	<u> </u>	-	r	1	1		
NEPC (1		,			1-50	1	5-1000	2-100	2-200		0.03	5-500		10-300	0.05.5					0.05 4	0.4.4				0.00	0.00	.0.001	└─── ′	<u> </u>
ANZECC	(199	92)			0.2-30	0.04-2	0.5-110	1-190	<2-200		0.001-0.1	2-400		2-180	0.95-5					0.05 - 1	0.1 - 1				0.03 – 0.5	0.02 – 0.1	<0.001 - <0.97		
ANZECC	(200)0)			1-53	0.016- 0.78	2.5-673	0.4-412	2-81			1-517		1-263															
Laboratory Res	ults								•																•				
Sample Location	۱	Depth																											
1		0-0.1	Fill	25-Jul-18	<4	<0.4	7	23	35	-	<0.1	5	-	80	1.55	0.2	-	<25	<250	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
BD1/20180725	а		Fill	25-Jul-18	<5	<1	4	13	28	-	<0.1	2	-	71	<7.5	<0.5	-	<10	<50	<0.2	<0.5	<0.5	<0.5	-	-	-	-	- 1	-
1		1.7	Natural	25-Jul-18	<4	<0.4	2	1	2	-	<0.1	<1	-	5	<1.35	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
2		0.5	Fill	25-Jul-18	<4	<0.4	8	47	6	-	<0.1	37	-	32	1.125	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
2		1.8	Fill	25-Jul-18	<4	<0.4	<1	<1	<1	-	<0.1	<1	-	<1	<1.35	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
3A		0.1-0.2	Fill	25-Jul-18	<4	<0.4	15	81	67	-	0.4	11	-	150	14.7	1.4	<0.0001	<25	175	<0.2	<0.5	<1	<1	<1	<5	<0.1	0.1	<0.1	NAD
3A		0.4-0.5	Fill	25-Jul-18	<4	<0.4	6	37	100	-	0.3	10	-	120	3.4	0.4	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
4	-	0-0.1	Fill	25-Jul-18	<4	<0.4	6	16	14	-	0.1	14	-	33	0.96	0.06	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
BD4/20180725	a		Fill	25-Jul-18	<4	<0.4	7	20	24	-	0.2	12	-	61	9.95	1.1	<0.001	<25	215	<0.2	<0.5	<1	<1	-	-	-	-	<u> </u>	-
4		1.5	Natural	25-Jul-18	<4	<0.4	<1	<1	<1	-	<0.1	<1	-	<1	<1.35	< 0.05	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
5	а	0-0.1	Fill	25-Jul-18	<4	<0.4	6	53	20	-	<0.1	6	-	31	<1.35	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
BD2/20180725	ŭ		Fill	25-Jul-18	<4	<0.4	7	70	16	-	<0.1	5	-	30	0.725	<0.05	-	<25	985	<0.2	<0.5	<1	<1	-	-	-	-	- '	-
5		0.5	Fill	25-Jul-18	<4	<0.4	6	35	53	-	<0.1	5		36	<1.35	<0.05	-	<25	735	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
6	\vdash	0.1	Fill	25-Jul-18	5	<0.4 <0.4	12	42 61	55	-	0.3	55 10	<0.02	68 110	<1.35 15.75	<0.05	- <0.001	<25	<250 <250	< 0.2	<0.5 <0.5	<1 <1	<1 <1	<1	<5 <5	<0.1 <0.1	<0.1 <0.1	<0.1	NAD NAD
6		0.5	Fill	25-Jul-18	5	<0.4	5	61	230	0.08	0.9	10		110	15.75	2.5	<0.001	<25	<250	<0.2	<0.5	<1	<.1	-	<5	<0.1	<0.1	<0.1	NAD

Notes

Replicate sample of sample listed directly above а

b Where results of one or more component compound are above PQL sum of all results above PQL given, when all results are below PQL results quoted as < PQL of majority of individual analytes

Analysis result for total Cr, SAC and waste classification guidelines for Cr(VI), background ranges for Cr(III) С

d Where results of one or more component compound are above PQL sum of all results above PQL given, when all results are below PQL results quoted as less than the sum of PQLs of the individual analytes

е Various, not listed here as all results less than PQL

f Guideline for scheduled chemicals

g Guideline for moderately harmful pesticides

Various available, not listed as not detected above PQL h

i Analysis result for TRH, guidelines for TPH

i Refer to Table F2, Appendix F for further information

Guidelines

EPA, 2014	NSW EPA (2014) Waste Classification Guidelines
NEPC (1999)	National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).
	NEPC (1999) National Environment Protection Measure (Assessment of Site Contamination) Schedule B1, Table 5-A, Background Ranges
ANZECC (1992)	ANZECC/NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites , Environmental Soil Quality Guidelines Background A [ANZECC A];
ANZECC (2000)	ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 3, Table 9.2.16 Datasets used to derive suggested upper background values for uncontaminated Australian soils

Acronyms

As arsenic

BaP benzo(a)pyrene

BTEX benzene, toluene, ethyl benzene, xylenes

Cd cadmium

Cr chromium (total)

Cu copper

Hg mercury

NAD no asbestos detected at the limit of reporting

Ni nickel

OCP organochlorine pesticides

OPP organophosphorus pesticides

PAH polycyclic aromatic hydrocarbons

Pb lead

PCB polychlorinated biphenyls

Remediation Action Plan for SSD, Proposed UNSW D14 Building High Street, Kensington

PQL practical quantitation limit

TCLP toxicity characteristic leaching procedure

TPH total petroleum hydrocarbons

TRH total recoverable hydrocarbons, including TPH

VOC volatile organic compounds

Zn zinc

Appendix C

Asbestos Work Health and Safety Plan

Asbestos Work Health and Safety Plan

In the event that asbestos contaminated soils are encountered the asbestos work health and safety plan must also be enacted.

1.1 Overview and Required Plans

All asbestos site work must be undertaken in a controlled and safe manner with due regard to potential hazards, training and safe work practices. To assist in achieving this goal the following plans, as a minimum, shall be developed by the Contractor (or the relevant subcontractors and provided to the Contractor for approval):

- Work Health and Safety Plan (WHSP): detailing the WHS procedures for the site, this may incorporate or include references to the below plans;
- Safe Works Method Statement (SWMS): which will be specific to individual tasks undertaken at the site;
- Asbestos Removal Control Plan (ARCP): as detailed further below; and
- Emergency Response Plan: detailing the procedures to be implemented in an emergency.

The above plans will all comply with regulatory requirements, including the WHS Regulation and SafeWork NSW requirements.

The ARCP must be provided to the person who commissioned the works. The ARCP must include:

- Details of how the asbestos removal will be carried out, including the method to be used and the tools, equipment and personal protective equipment to be used, and
- Details of the asbestos to be removed, including the location, type and condition of the asbestos.

The licensed asbestos contractor must keep the ARCP in accordance with the WHS Regulations.

Furthermore, consultation with site workers when drafting the above plans is to be undertaken to address issues which may be otherwise overlooked. Moreover, if issues are raised by workers during the works, then these plans should be reviewed and updated accordingly to take into consideration site conditions.

1.2 Induction

All site personnel must be inducted. The induction is to include, but not be limited to, general hazards associated with construction works, hazards specific to asbestos, evacuation and emergency response plans, first aid providers, what to do in the case of unexpected finds and any aspects of this plan applicable to their tasks.

1.3 Stakeholder Contacts

Prior to the commencement of works a stakeholder contact list must be produced which is maintained at the site office and updated as appropriate.

Table 1: Stakeholders

Role	Contact Person	Contact Number
Principal		
Principal Contractor		
Asbestos Contractor (if required)		
Sub-contractors		
Local Council		
Occupation Hygienist		
Environmental Consultant		

This list should be updated as required. In addition a contact list of the relevant utility providers should be available on site as required.

1.4 Hazards at the Site

Various hazards can be present at construction sites, and should be identified by the Contractor prior to commencement of works. Hazards present at the site may include the following:

- Heat exposure;
- Excavations;
- Buried services;
- Noise;
- Dust;
- Electrical Equipment;
- Heavy Equipment and Truck Operation;
- Asbestos and asbestos fibres; and
- Chemical hazards (no chemical hazards identified from the contamination assessment).

1.5 Licensed Contractor and Training

All asbestos works greater than 10 m² must be undertaken by an asbestos contractor with a Class B asbestos removal licence issued by SafeWork NSW. The asbestos contractor must ensure that the remedial work is adequately supervised and carried out in a safe manner. Supervisory personnel shall

have a detailed knowledge of the precautions and procedures outlined in *Code of Practice: How to Safely Remove Asbestos* (Safe Work Australia 2011) and shall, in light of this knowledge and experience, assume the responsibilities as detailed in the Code. These include planning, directing and monitoring asbestos removal works to ensure the required controls are implemented, in addition to ensuring that the consultant is reliably and regularly informed of the progress of the removal works.

Prior to engagement in the work, all asbestos remediation workers shall be instructed in the relevant aspects of asbestos health hazards, safe working procedures, and the wearing and maintenance of protective clothing and equipment.

The asbestos remediation contractor should keep a written record of all training provided to each of their asbestos removal workers and ensure these records are readily accessible.

Asbestos remediation contractor should also provide the following information to all of their asbestos removal workers and to all applicants for employment as an asbestos removal worker:

- The health risks associated with exposure to asbestos;
- The need for, and details of, health surveillance, including medical examinations in accordance with the Guidelines for Health Surveillance [NOHSC:7039 (1995)]; and
- Details of legislation and codes of practice relating to the control and safe removal of asbestos.

1.6 Notification

SafeWork NSW must be notified five days in advance of any asbestos works.

The Asbestos Contractor must, before commencing the licensed asbestos removal work, inform the following people that asbestos removal works are to be conducted and the date the work will commence:

- The person with management or control of the workplace and any adjacent occupied buildings; and
- The entity / person who commissioned the asbestos removal work.

The person with management or control of the workplace must inform workers and any other persons in the workplace.

1.7 Fencing and Signage for Asbestos Areas

Prior to the commencement of asbestos works, the area will be delineated from the rest of the site with the use of hazard tape and warning signage and shall be specific to Asbestos Hazards. Further delineation with hazard tape and warning signage will be required for the asbestos contaminated stockpiles.

All warning signs must comply with AS 1319 Safety Signs for the Occupational Environment and the National Code of Practice How to Manage and Control Asbestos in the Workplace (Safe Work Australia 2011).

Appropriate fencing must also be placed around any deep excavations or unstable areas in accordance with WHS Regulations.

1.8 Restriction of Access to Asbestos Works Area

Access to the asbestos works site will be restricted to:

- Workers engaged in the asbestos removal work;
- Other persons associated with the asbestos removal work such as Occupational Hygienist or Asbestos Assessor; and
- Anyone allowed under the WHS Regulation or another law to be in the asbestos removal area.

1.9 Personal Protective Equipment

As a minimum, all personnel on site will be required to wear the following personal protective equipment (PPE) at all times during asbestos works:

- Steel-capped lace-less boots;
- Hard hat meeting AS1801-1981 and AS/NZS 1801:1997/Amdt 1:1999 requirements;
- High visibility clothing;
- Half-face P2 rated respirator or similar;
- Disposable full length body coveralls with elasticated hood and cuffs (Tyvek suit or equivalent); and
- Gloves.

Clothing made from wool or other materials that attract fibrous dusts should not be worn in the asbestos work area. Regardless of whether gloves are used, asbestos removal workers must clean their hands and fingernails thoroughly after work. The level of respiratory protection required (e.g. P1, P2 and P3 supplied air respirators) should be determined by a Competent Person in accordance with the asbestos remediation task to be undertaken. Appendix B of the Code provides for more information on the selection of suitable respiratory protection for particular removal tasks. This should be recorded on the Asbestos Removal Control Plan for the specific job and must be adhered to at all times. Workers in excavator cabs with recycled AC facilities may not require use of RPE but should have appropriate RPE and PPE on hand for emergency use.

The following additional PPE shall be used as considered necessary:

- Safety glasses or safety goggles;
- Hearing protection;
- Sunscreen;
- Sun visor/ brim; and
- Long sleeve shirts and pants.

The PR is to ensure that respirator, overalls and gloves are available at the entry/exit point to the exclusion area. The Asbestos Contractor must ensure that personal protective equipment used during the fill excavation and removal works is disposed of as asbestos waste or decontaminated in accordance with the WHS Regulations.

1.10 Asbestos Remediation Equipment

A constant low-pressure water supply is required for wetting down asbestos or asbestos containing soils. This can be achieved with a mains-supplied garden hose fitted with a pistol grip. If no water supply is readily available, a portable pressurised vessel, such as a pump-up garden sprayer or water tanker, may be suitable.

1.11 Airborne Asbestos Monitoring

Monitoring for airborne asbestos fibres is to be carried out by an independent Occupational Hygienist during the earthworks that disturb the asbestos contaminated soils. Monitoring must commence prior to commencement earthworks in asbestos contaminated areas and monitors are to be positioned locations as nominated by the Occupational Hygienist. Where occupational exposure to asbestos materials is likely to occur, exposure is not to exceed half the occupational exposure standards for each hazardous building materials type or category as published by the National Occupational Health and Safety Commission (Safe Work Australia).

Asbestos air monitoring will be undertaken in accordance with Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres 2^{nd} Edition [NOHSC: 3003 (2005)] and sampling density and locations will be determined by the Occupational Hygienist. All filters will be submitted to a NATA accredited laboratory for analysis. Air samples will be collected from the breathing zone of a person, over a minimum of four hours duration.

The current National Exposure Standards TWA for asbestos are:

- Chrysotile (white) asbestos 0.1 fibres/ml;
- Amosite (brown) asbestos 0.1 fibres/ml;
- Crocidolite (blue) asbestos 0.1 fibres/ml; and
- Other forms of asbestos or a mixture of asbestos types 0.1 fibres/ml.

Throughout the duration of the works, air test results should return results below 0.01 fibres/ml. The following table shows the actions to be taken should the fibre levels exceed the action level of 0.01 fibres/ml.

Action Level (fibres/ml)	Control / Action
< 0.01	Continue with control measures

Table 2: Allowable Fibre Levels

Action Level (fibres/ml)	Control / Action
≥ 0.01 ≤ 0.02	Review control measures, investigate cause and implement controls to minimise further release
≥ 0.02	Stop removal work and notify the regulator. Investigate cause including enclosure & equipment where present and clean immediate area. Do not recommence work until air test results return readings of < 0.01 fibres/ml

It is recommended that air monitoring take place during all remediation and/or handling of involving known or suspected ACM.

Following the completion of the landscaping works in the asbestos contaminated areas asbestos fibre monitoring can be discontinued.

1.12 Decontamination

When exiting the taped and sign-posted exclusion area, which is to be via the one entry/exit point, each person is to decontaminate at the entry/exit point. Note that future works may entail delineated exclusion areas and other entry/exit points within the site. Personal decontamination involves the following:

- Rinsing boots in the bucket filled with detergent solution at the entry/exit point. Rinsing is to remove mud from the boots;
- Removing overalls, gloves and then respirator and placing in the plastic bags within the provided disposal bin located at the entry/exit point. For privacy this can be undertaken in the designated decontamination area surrounded by black plastic at the entry/exit point; and
- Thoroughly washing of hands (including under nails) with detergent.

A water supply for decontamination purposes is to be maintained at the entry/exit point at all times. The amount of potential waste water generated is liable to be minimal and can be lightly spread (not sprayed) periodically within the middle of the exclusion zone where asbestos impacted material is exposed, is yet to be capped and hence is subject to this contingency plan. Any contaminated water collected as part of these works that cannot be disposed of in this fashion is to be double bagged, placed in a leak proof drum or skip and disposed of as asbestos waste.

With respect to any plant or equipment used in the asbestos removal exclusion zone area, these are to be appropriately decontaminated at the edge of the area prior to leaving the exclusion zone. Vehicles, excavators, etc. are to be washed down and all mud removed, with particular attention given to tyres, tracks, underside of the vehicle's body and other areas which would have come in contact with the ACM impacted materials (e.g. excavator buckets). This is to be undertaken at the entry/exit gate to the exclusion zone and monitored by the removalist supervisor. The amount of water generated from these decontamination activities is not expected to be significant and hence will infiltrate into the surface within the exclusion zone, However, if sufficient water is used which would cause surface migration then the exclusion zone is to be bunded to prevent water migrating outside the exclusion zone.

Any other equipment leaving the exclusion zone is to be decontaminated. Where possible this should be done with a detergent solution (e.g. shovels) within the exclusion zone. If not possible (e.g. electrical equipment), the equipment is to be wiped down with a damp cloth and the cloth disposed of in the asbestos waste bin at the entry/exit point to the exclusion zone.

1.13 Asbestos Waste

All asbestos waste (if any), including used disposable coveralls, masks, dust sheets and items deemed contaminated with asbestos is to be kept wet until sealed and wrapped in plastic sheeting or bags (at least 0.2 mm thick). This does not include the asbestos impacted soils which will be capped at the site. The bagged waste shall be appropriately labelled as containing asbestos and removed from site as soon as practicable.

Asbestos waste (if any) shall not be allowed to accumulate excessively within the work area, but shall be bagged or placed in appropriate receptacles as the work proceeds. Controlled wetting of waste shall be used to eliminate asbestos dust emission during bag sealing or in case of subsequent rupture of a bag. Solid asbestos waste (if any) shall be placed in approved heavy-duty 200 µm minimum thickness clear polythene bags of a maximum size 1200 mm in length by 900 mm in width. The bags shall be labelled with an appropriate warning statement that the bag contains asbestos and that dust creation and inhalation shall be avoided. Bags, which have contained asbestos material, shall not be reused. Bags marked for asbestos waste shall not be used for any other purpose.

Asbestos waste bags shall not be filled more than half full, in order to minimise the risk of bag tearing/splitting and to assist in manual handling of bags. The neck end of each bag shall be twisted tightly, folded over and the neck secured in the folded position with wire ties, adhesive tape or any other effective method. Each bag shall be washed free of any visible asbestos residue. Each bag shall then be placed in a second waste bag, which shall be sealed. The external surface of each bag shall be cleaned to remove any adhering dust before the bags are removed from the work area. Hard and sharp asbestos waste shall require preliminary sealing or protective covering prior to placement in asbestos waste bags.

All drums or bins used for the storage and disposal of asbestos waste (if required) should be in a good condition, with lids and rims in good working order, and free of hazardous residues. The drums or bins should be lined with plastic (minimum 200 µm thickness), and labels warning of the asbestos waste should be placed on the top and side of each drum or bin, with the words, 'Danger: Asbestos. Do not break seal'. This may be substituted with a similar warning. If the drum or bin is to be re-used, the asbestos waste must be packed and sealed so that when the drum or bin is emptied there is no residual asbestos contamination. Controlled wetting of the waste should be used to reduce asbestos dust emissions. Where possible, the drums or bins should be placed in the asbestos work area before work on ACM begins. The drums or bins should have their rims sealed and their outer surfaces wet wiped and inspected before they are removed from the asbestos work area. If it is not possible to locate the drums or bins inside the asbestos work area, they should be located as close to the work area as possible. Routes for moving the waste from the asbestos work area to the waste drums or bins should be designated prior to the commencement of each task. Drums or bins used to store asbestos waste should be stored in a secure location within the asbestos removal site when they are

not in use. Drums or bins should not be moved manually once they have been filled. Trolleys or drum lifters should be used.

1.14 Asbestos for Disposal to be Separated, Wrapped and Labelled

Contaminated asbestos waste (if any) must be:

- Separated from other material for disposal where that is reasonably practicable;
- Wrapped or contained in a manner that prevents asbestos fibres entering the atmosphere during transportation by road; and
- Labelled or marked with the words "CAUTION ASBESTOS" in letters no less than 50 millimeters high.

Current requirements for asbestos waste disposal must be adhered to as shown in the following subsections. Copies of asbestos waste disposal certificates/receipts must be provided.

1.15 Emergency Plan

A site-specific emergency plan, reflecting the risks involved, should be developed before any asbestos removal work commences. Workers should be trained for emergency situations. Decontamination procedures can be temporarily waived in the event of an emergency. Emergency planning should include provisions for emergency and fire evacuation, including exit arrangements and emergency communications such as audible alarms. These alarms should be used for emergencies only.

Emergency exit arrangements need to be adequate for the risks involved. Barriers and signs or other warning devices can be used to communicate emergency arrangements.

A first aid kit and first aid officer should be readily available at all times with sufficient suitable fire extinguishers and hoses available at strategic locations. The locations of fire extinguishers and hoses should be displayed in written and/or graphic format.

The emergency plan should also incorporate measures and actions to be taken in the case of unforeseen circumstances directly related and affecting the removal works such as loss of power / lighting and accidental leakage of fibres from the works area. These measures must be included within the Asbestos Removal control Plan with all operatives aware and able to implement in the event of an incident.

1.16 Reportable Incidents

All reportable WHS incidents will be reported to the PR in a timely manner and to the appropriate authority and in accordance with regulatory requirements.