Appendix D

Photographs

Photo 1 - UNSW Hall

CLIENT: UNSW

S	PROJECT:	86457.04
	PLATE No:	1
nvestigation	REV:	А
	DATE:	7-Aug-18

Photo 4 - UNSW Village

CLIENT: UNSW

Site Photographs PROJECT: 86457.04 PLATE No: 2 **Contamination Investigation** REV: А DATE: 7-Aug-18

Appendix E

Descriptive Notes and

Borehole Log Results

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726-1993, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 2007. The terms used to describe rock strength are as follows:

s Partners

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approximate Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and longer sections
Unbroken	Core lengths mostly > 1000 mm

D

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: 30.7 AHD **EASTING:** 336344 **NORTHING:** 6245725 **DIP/AZIMUTH:** 90°/-- BORE No: 1 PROJECT No: 86457.00 DATE: 25/7/2018 SHEET 1 OF 1

				0			: 90*/		SHEET TOF T
	D (1	Description .ºe			Sam		In Situ Testing	ž	Well
צ	Depth (m)	Description	Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	0.2	FILLING: brown, fine to medium sand filling with a trace of fine sandstone gravel and some rootlets, moist		E*	0.0 0.1 0.2 0.4	ŭ			
	0.5 0.7	\trace of fine to medium gravel		A E B	0.5 0.7				-
	1	FILLING: dark grey, sandy gravel filling, gravel is medium sandstone, sand is fine to medium, moist, terracotta and tile fragments (10-30mm)		<u>E</u>	0.9 1.0				-1
		SAND: medium dense, yellow mottled light grey fine to medium sand, moist 1.5m: becoming yellow-brown		A E	1.5 1.6 1.7				
Ē	2				1.7				-2
07					2.9				
-	3 3.0	Bore discontinued at 3.0m Target depth reached		₩E_	_2.9 3.0				
77 1 1									-
-	- 4								
07									- - - -
-	5								-5
S -									-
-	6								-6
54									- - - -
-	7								-7
3-									
	8								8
	9								-9
-									-

 TYPE OF BORING:
 Solid flight auger to 3.0m

 WATER OBSERVATIONS:
 No free ground water observed whilst augering

 REMARKS:
 *BD1/20182507taken from 0.0-0.1m

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G
 Gas sample
 PILO
 Photo ionisation detector (ppm)

 B Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D bisturbed sample
 E
 Environmental sample
 V
 Shandard penetration test

 E
 Environmental sample
 V
 Shear vane (kPa)
 Shear vane (kPa)

High Street, Kensington

PROJECT: LOCATION:

CLIENT:

SURFACE LEVEL: 31.9 AHD **EASTING:** 336388 **NORTHING:** 6245721 **DIP/AZIMUTH:** 90°/--

BORE No: 2 PROJECT No: 86457.00 DATE: 25/7/2018 SHEET 1 OF 1

		Description			Sam		& In Situ Testing	-	Dynamic Penetrometer Test		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm) 5 10 15 20		
-	- - 0.3 - 0.305	FILLING: dark brown fine to medium sand filling with a trace of asphaltic gravel, moist		_E* _A	0.0 0.1 0.2 0.4						
31	- 0.8 - 1 - 1	FILLING: dark brown, fine to medium sand filling with some fine to medium gravel, gravel is sandstone and asphaltic concrete, moist 0.6m: piece of steel wire SAND: dense, yellow-brown fine to medium sand, moist		A E B	0.5 0.9 1.0 1.2						
		^L 1.2m: becoming yellow		A E	1.7 1.8				2		
29	-3 3.0	Bore discontinued at 3.0m		A	2.9 				3		
-	-	Target depth reached									
- - - - - - - - - - - - - - - - - - -	- - 4 -								4		
-	-										
27	- 5								-5		
-	-										
26	- 6								-6		
-	-										
25	- 7								7		
-	-										
24	- 8								-8		
-	-										
23	- - - 9 -								-9		
-	- - -										
57	- -										
		cavator DRILLER: Brian		LOG	GED	SLB	CASIN	G: U	Incased		
T		BORING: Solid flight auger to 3.0m									

WATER OBSERVATIONS: No free ground water observed whilst augering REMARKS: *BD3/20182507 taken from 0.0-0.1m

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample LING & IN SITUTESTING G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample ▷ Water seep ¥ Water level

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT:

Proposed Upgrade UNSW HALL SITE High Street, Kensington LOCATION:

University of New South Wales

SURFACE LEVEL: 33.2 AHD **EASTING:** 336433 NORTHING: 6245705 **DIP/AZIMUTH:** 90°/--

BORE No: 3 PROJECT No: 86457.00 DATE: 26/7/2018 SHEET 1 OF 1

					/ – – – – – – – – – – – – – – – – – – –		H: 90°/		SHEET 1 OF 1	
		Description	с		Sam	pling &	& In Situ Testing		Well	
R	Depth	of	Graphic Log	0				Water	Construction	,
ľ	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	Š	Details	'
	0.05				-0.05	ő			Details	
-8	0.00		\mathbb{X}	A/E*	0.05 _0.1_				-	
F	-	FILLING: dark brown, sandy gravel filling, gravel is fine to medium igneous and sandstone, sand is fine to coarse								
E		Bore discontinued at 0.2m								
Ł		Auger refusal on sandstone boulder							-	
Ł	- 1								-1	
32-									-	
ţ.	-								-	
F	-								-	
F										
Ē	-2								-2	
3										
ł									-	
ł									-	
ŧ	- 3								-3	
-8	-								-	
F									-	
E										
Ł									-	
Ł	- 4								-4	
29-									-	
ŧ									-	
F	-								-	
F	- - - 5								-5	
58	- 5									
^									-	
ł	-								-	
ţ									-	
ŧ	- 6								-6	
51									-	
F	-									
E										
ł										
ŧ	-7								-7	
26	-								-	
ŀ									-	
F									[
E	- - 8								-8	
25	-									
Ē									-	
ł									-	
ŧ	-								-	
F	-9								-9	
24									[
E									-	
ł	-									
ŧ									-	
L									1	

RIG: Hand Auger

WATER OBSERVATIONS: No free ground water observed whilst augering REMARKS: *BD5/20182607 taken from 0.0-0.1m

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W (₽

University of New South Wales Proposed Upgrade UNSW HALL SITE High Street, Kensington

TYPE OF BORING:

DRILLER: SLB Hand auger to 0.2m

LOGGED: SLB

CASING: Uncased

SURFACE LEVEL: 33.7 AHD **EASTING:** 336431 NORTHING: 6245705 DIP/AZIMUTH: 90°/--

BORE No: 3A PROJECT No: 86457.00 DATE: 26/7/2018 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Dynamic Penetrometer Test Water Depth Sample 뭅 of Depth (blows per 150mm) Type Results & Comments (m) Strata 10 15 20 0.1 0.2 FILLING: dark brown, fine to medium sand filling with a A/E trace of fine to medium sandstone gravel, damp, trace of rootlets and bark (topsoil) 0.4 0.45 0.5 AVE 0.5 FILLING: dark brown sandy gravel filling, gravel is fine to 8 medium igneous and sandstone, sand if fine to medium, damp, trace of carbonaceous material 1 Bore discontinued at 0.5m Auger refusal on sandstone boulder g. 2 2 .Б - 3 3 .<u>@</u> Δ - 4 3 5 -5 <u>8</u>. 6 6 -12 7 • 7 <u>8</u>-8 8 -22 9 - 9 RIG: Hand Auger DRILLER: SLB

TYPE OF BORING:

CDE

Hand auger to 0.5m

LOGGED: SLB

CASING: Uncased

WATER OBSERVATIONS: No free ground water observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGENU PID Photo ionisation detector (ppm) PL(A) Point bad axial test Is(50) (MPa) PL(D) Point bad diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U W Core drilling Disturbed sample Environmental sample ₽

Douglas Partners

Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

LOCATION:

University of New South Wales Proposed Upgrade UNSW HALL SITE High Street, Kensington

SURFACE LEVEL: 30.2 AHD **EASTING:** 336341 **NORTHING:** 6245700 **DIP/AZIMUTH:** 90°/-- BORE No: 4 PROJECT No: 86457.00 DATE: 26/7/2018 SHEET 1 OF 2

			Description	De	gree	of	Graphic Log	Rock Strongth	Fracture	Discontinuities	Sa	amplin	g & I	n Situ Testing
RL	Dep	th	of	Wea	atheri	ng	inda Do	Strength	Spacing	B - Bedding J - Joint				Test Results
-	(m)	Strata	33	WW No G	0 m	ы С	ExLow Very Low Medium High Kery High Kery High Kater	0.05 0.10 1.00 (u)	S - Shear F - Fault	Type	Core Rec. %	2%	& Comments
		0.5	FILLING: dark brown, fine to medium sand filling with trace fine to medium gravel, moist \0.3m: piece of slag		<u>5 0 1</u>						A/E*			Comments
29	· 1		SAND: loose to medium dense, light grey fine to medium sand, damp								A			
		1.8									E			
28	2		SAND: loose to medium dense, yellow mottled brown fine to medium sand, trace of fine sandstone gravel, damp											
-	-3										A			
27			3.5m: becoming medium dense to dense, yellow											
26	4					-					A			
	-5													
25	5										A			
24	6					·								
23	7										s			7,7,8 N = 15
	8							05-08-18 A						
3	2		8.0m: thin band of silty fine sandy clay											8,17,25/110
21	9		8.65m: becoming very dense								S			refusal
-			9.8m: with some sandstone and ironstone gravel and some mottled grey silty sand											

RIG: Scout 4

CLIENT:

PROJECT:

LOCATION:

University of New South Wales

High Street, Kensington

Proposed Upgrade UNSW HALL SITE

DRILLER: RK

LOGGED: SLB

CASING: HW to 6.0m, HQ to 10.8m

TYPE OF BORING: Solid flight auger to 6.0m, rotary wash boring to 10.8m, NMLC-coring to 16.8m

WATER OBSERVATIONS: No free goundwater observed whilst augering

REMARKS: *BD4/20182507 taken from 0.0-0.1m, Well Installed (screen 16.8-7.8m, blank 7.8-GL, gravel 16.8-6.5m, bentonite 6.5-5.5m, backfill to GL, gatic cover)

	SAM	PLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	AN DOUGLAS PARTIELS
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglao i ai theio
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 30.2 AHD **EASTING:** 336341 **NORTHING:** 6245700 **DIP/AZIMUTH:** 90°/-- BORE No: 4 PROJECT No: 86457.00 DATE: 26/7/2018 SHEET 2 OF 2

	Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities				n Situ Testing
교 Depth (m)	of	Weathering	raphi Log	Very Low Very Low Medium Very High Ex High Mater 0.01	Spacing (m)	B - Bedding J - Joint	oe	Core Rec. %	Q.,	Test Results
()	Strata	HW NW SW FR SW	<u>9</u>	Ex Lov Mediu Very F Ex High 0.01	0.10	S - Shear F - Fault	Type	ပိမ္မ	8%	& Comments
	SAND: loose to medium dense,					Unless otherwise stated	s			30,30/140
·R - - - 10.7 -	yellow mottled brown fine to medium sand, trace of fine sandstone gravel, damp <i>(continued)</i> SAND: very dense, yellow sand, with					rock is fractured along rough planar bedding dipping 0°-5°	3	-		refusal
10.8 -11 -11 -12	some sandstone and ironstone gravel and some mottled grey silty sand SANDSTONE: very low strength, highly weathered, yellow-brown medium to coarse sandstone SANDSTONE: medium strength, slightly weathered, slightly fractured to unbroken, yellow-brown medium to coarse grained sandstone					11.46m: B 0°, pl, ro, cly co 11.53m: B 5°, pl, ro, cly 3mm 11.65m: B 10°, he, cbs 12.28m: J 30°, pl, ro, cly 5mm	С	100	99	PL(A) = 0.4 PL(A) = 1
- 13 - 13 14						13.27m: B 10°, pl, ro, cly 1mm				PL(A) = 0.7
^{μ4} - 14.28 - - - - - - - - - - - - - - - - - - -	SANDSTONE: high strength, fresh, slightly fractured then unbroken, light grey medium to coarse grained sandstone with carbonaceous laminations and some low strength bands					14.75m: B 3°, pl, ro, cly 10mm				PL(A) = 0.5
<u>-</u> - - - - - - - - - - - - - - - - - -	Danus					15.25-15.27m: B 0°, pl, ro, cly 20mm J 45°, pl, ro, cly co J 45°, pl, ro, cly co	с	100	99	PL(A) = 1.4
14										PL(A) = 1.2
- 16.8 - 17 £	Bore discontinued at 16.8m Target depth reached		<u></u>							
-18										
- 19 										

RIG: Scout 4

CLIENT:

PROJECT:

LOCATION:

University of New South Wales

High Street, Kensington

Proposed Upgrade UNSW HALL SITE

DRILLER: RK

LOGGED: SLB

CASING: HW to 6.0m, HQ to 10.8m

TYPE OF BORING: Solid flight auger to 6.0m, rotary wash boring to 10.8m, NMLC-coring to 16.8m

WATER OBSERVATIONS: No free goundwater observed whilst augering

REMARKS: *BD4/20182507 taken from 0.0-0.1m, Well Installed (screen 16.8-7.8m, blank 7.8-GL, gravel 16.8-6.5m, bentonite 6.5-5.5m, backfill to GL, gatic cover)

	SAM	/PLING	3 & IN SITU TESTING	LEGEND		
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (M	Pa)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)		Deaglae i ai there
D	Disturbed sample	⊳	Water seep	S Standard penetration test		Contractorian 1 Frankramment 1 Consumption
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)		Geotechnics Environment Groundwater
E	Environmental sample	¥	Water level	V Shear vane (kPa)		Geotechnics Environment Groundwater

University of New South Wales

LOCATION: High Street, Kensington

Proposed Upgrade UNSW HALL SITE

CLIENT: PROJECT:
 SURFACE LEVEL:
 31 AHD

 EASTING:
 336405

 NORTHING:
 6245662

 DIP/AZIMUTH:
 90°/-

BORE No: 5 PROJECT No: 86457.00 DATE: 27/7/2018 SHEET 1 OF 2

$\left[\right]$		Description	Degree of Weathering	<u>io</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
Ч	Depth (m)	of		Graphic Log		Spacing (m)	B - Bedding J - Joint	е	e %	<u>o</u> _	Test Results
	(11)	Strata	H M M M M M M M M M M M M M M M M M M M	ნ_	Very Low Very Low Medium Very High Ex High	• •	S - Shear F - Fault	Type	Core Rec. %	₿ 8	& Comments
<u></u>	0.05			\bigvee	0						Commonto
	0.25	FILLING: grey fine to medium gravel filling with some fine sand, humid (roadbase)						A/E*			
30	- 1	FILLING: light brown, fine to medium sand filling with some fine sandstone gravel and trace of medium igneous gravel, humid						_ <u>A</u> _			
	· · · ·	SAND: dense to very dense, yellow-brown fine to medium sand, humid 1.7m: becoming moist						A/E			
29	-2	2.0m: becoming medium dense to dense									
28	- 3							A/E			
27	-4										
26		4.7m: becoming yellow					Unless otherwise stated rock is fractured along rough planar bedding dipping at 0°-5°				
	5.4 5.5	SANDSTONE: low strength, highly to moderately weathered, red-brown medium to coarse grained sandstone SANDSTONE: medium then high strength, moderately then slightly weathered, slightly fractured, red-brown and grey medium to					5.85m: B 0°, pl, ro, cln 5.91m: B 0°, pl, ro, cly 5mm 5.95m: B 0°, pl, ro, cly 5mm	A			PL(A) = 0.7
24	-7	coarse grained sandstone					6.61m: J 30°, pl, ro, cln, ti	с	100	100	PL(A) = 1.1
	7.21	SANDSTONE: high strength, fresh, slightly fractured and unbroken, pale grey medium to coarse grained sandstone with some low strength bands, trace of carbonaceous flecks					7.47m: B 0°, pl, ro, cly, fg 10mm				PL(A) = 1.4
23	-8					ſ	8.02 & 8.10m: B (x2) 0°, pl, ro, cly co 8.2m: B 5°, pl, ro, cly 5mm 8 29m: B 5° pl, ro, fe				PL(A) = 1.4
22	-9						8.29m: B 5°, pl, ro, fe 8.35m: J 20°, pl, ro, cln 9.08m: J 20°, pl, ro, cln 9.54m: B 0°, pl, ro, cly 8mm 9.61m: B 5°, pl, ro, cly	с	100	100	PL(A) = 1.3

RIG: Scout 4

DRILLER: RK

LOGGED: SLB

CASING: HW to 5.5m

TYPE OF BORING:Solid flight auger to 5.5m, NMLC-coring to 11.68mWATER OBSERVATIONS:No free ground water observed whilst augeringREMARKS:*BD2/20182507 taken from 0.1-0.2m

SAM	PLINC	3 & IN SITU TESTING	i LEGE	IND	
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	
					-

University of New South Wales

High Street, Kensington

Proposed Upgrade UNSW HALL SITE

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 31 AHD **EASTING:** 336405 **NORTHING:** 6245662 **DIP/AZIMUTH:** 90°/-- BORE No: 5 PROJECT No: 86457.00 DATE: 27/7/2018 SHEET 2 OF 2

Γ		Description	Degree of Weathering	U	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	n Situ Testing
R	Depth (m)	of	Weathening	Graphic Log	Strength High High Kery High Kery High Kery High Strengton Kery High Strengton Kery High High Kery High Kery Kery Kery Kery Kery Kery Kery Kery Kery Kery Kery	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
3		Strata	H H N N N H K N N N N N N N N N N N N N	0	Ex Lr Very Very Ex H Ex H	0.05	S - Shear F - Fault	ŕ	сğ	<u>م</u> .	Comments
-	- 11	SANDSTONE: high strength, fresh, slightly fractured and unbroken, pale grey medium to coarse grained sandstone with some low strength bands, trace of carbonaceous flecks (continued)					C0 10.07m: B 0°, pl, ro, cly co 10.6m: B 0°, pl, ro, cly co 10.74m: J 30°, pl, ro, cly 5mm	С	100		PL(A) = 0.9 PL(A) = 1.4
ŀ	11.68	Bore discontinued at 11.68m									
-	- 12	Target depth reached									
F	-										
12	- - 14 - -										
16	- - - 15 - -										
15	- - - 16 -										
14	- - - - - - - - -										
13	- - - 18 -										
12	- - - - - - - - - - - - - - - - - - -										

RIG: Scout 4

DRILLER: RK

LOGGED: SLB

CASING: HW to 5.5m

TYPE OF BORING:Solid flight auger to 5.5m, NMLC-coring to 11.68mWATER OBSERVATIONS:No free ground water observed whilst augeringREMARKS:*BD2/20182507 taken from 0.1-0.2m

SURFACE LEVEL: 34.7 AHD **EASTING:** 336464 **NORTHING:** 6245682 **DIP/AZIMUTH:** 90°/-- BORE No: 6 PROJECT No: 86457.00 DATE: 25/7/2018 SHEET 1 OF 2

	D	Description	Degree of Weathering	jc	Rock Strength ক্র	Fracture	Discontinuities		-	-	n Situ Testing
R	Depth (m)	of		Graphic Log	Vate A	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	az %	Test Results &
	()	Strata	H M M M H M M M M M M M M M M M M M M M	G			S - Shear F - Fault	Γ	N N	Я «	Comments
	0.1			\bigvee				A			
34	0.3	medium sand filling, gravel is fine sandstone, humid (possible roadbase gravel) FILLING: dark grey, slightly gravelly		\mathbf{X}				AA			
	· 1	filling with some silt, humid SAND: loose to medium dense, light yellow-white fine to medium sand,						s			4,4,4 N = 8
33	1.9	humid						A			
	2	SAND: loose to medium dense, yellow fine to coarse sand, damp									
32								s			3,4,5 N = 9
31	.3										
	4	4.0m: medium dense						s	-		3,5,8
											N = 13
29 30 30	- 5 5.83						Unless otherwise stated rock is fractured along rough planar bedding	S	-		3,8,20/130 refusal Bouncing
	6	SANDSTONE: very low becoming low strength, highly weathered, fractured, orange and yellow-brown medium to coarse grained sandstone with some low strength					dipping 0°-5° 6.27m: B 10°, un, fe, pl, ro				PL(A) = 0.1
28	6.65 6.71 7	bands SANDSTONE: high strength, slightly weathered then fresh, slightly fractured and unbroken red-brown and pale grey medium to		M			6.57m: CORE LOSS: 80mm 6.65-6.71m: Cs 7.1m: B 10°, pl, sm, cly co				
27	8	coarse grained sandstone						С	97	90	PL(A) = 0.8
26							8.81m: B 5°pl, sm, cly				PL(A) = 1.4
25	.9						inf 10mm	с	100	98	PL(A) = 1.1

RIG: Scout 4

CLIENT:

PROJECT:

LOCATION:

University of New South Wales

High Street, Kensington

Proposed Upgrade UNSW HALL SITE

DRILLER: RK

LOGGED: SB/SLB

CASING: HQ to 6.0m, HW to 5.5m

TYPE OF BORING: Solid flight auger to 5.5m, rotary wash boring to 6.0m, NMLC-coring to 12.05m

WATER OBSERVATIONS: Free ground water observed at 5.8m

REMARKS: Well Installed (screen 12.05-4.0m, blank 4.0-GL, gravel 12.05-3.5m, bentonite 3.5m-2.5m, backfill to GL, gatic cover)

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	Develop Doutrooko
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C Core drilling W Water sample pp Pocket penetrometer (kPa)	Douglas Partners
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 34.7 AHD **EASTING:** 336464 **NORTHING:** 6245682 **DIP/AZIMUTH:** 90°/-- BORE No: 6 PROJECT No: 86457.00 DATE: 25/7/2018 SHEET 2 OF 2

		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	<u>.0</u>	Rock Strength ់ត	Fractur	re	Discontinuities	Sa	ampli	ng & l	n Situ Testing
뉟	Depth (m)	of		Log	Ex Low Very Low Low Medium High Ex High Ex High	Spacin (m)	ıg	B - Bedding J - Joint	be	.%	RQD %	Test Results
	(,	Strata	E S S M M M M M M M M M M M M M M M M M	Ū	Ex Lov Very L High Ex High	0.01	1.00	S - Shear F - Fault	Type	ပိ မို	RC %	& Comments
23 23 24	11	SANDSTONE: high strength, slightly weathered then fresh, slightly fractured and unbroken red-brown and pale grey medium to coarse grained sandstone (continued)						10.09m: B 5°, pl, sm, cly co 10.19m: B 10°, pl, sm, st, cly 10.85m: B 10°, cln 11.19m: B 5°, pl, sm, inf, cly 10mm	С	100		PL(A) = 1.2 PL(A) = 1.5
E	12											
E	¹² 12.05	Bore discontinued at 12.05m	<u>│ </u>	<u>r</u>								
-		Target depth reached										
÷												
5												
F	13											
ļ												
-												
5												
E	14											
F	14											
t												
ţ												
2-												
F	15											
F												
ŧ												
2												
E	16											
ţ												
F												
18												
Ē												
F	17											
F												
F												
Ę												
E	18											
ţ	-											
F												
ļ												
- 16												
F	19		liiii									
F												
F												
12												
F												

RIG: Scout 4

CLIENT:

PROJECT:

University of New South Wales

LOCATION: High Street, Kensington

Proposed Upgrade UNSW HALL SITE

DRILLER: RK

LOGGED: SB/SLB

CASING: HQ to 6.0m, HW to 5.5m

TYPE OF BORING: Solid flight auger to 5.5m, rotary wash boring to 6.0m, NMLC-coring to 12.05m

WATER OBSERVATIONS: Free ground water observed at 5.8m

REMARKS: Well Installed (screen 12.05-4.0m, blank 4.0-GL, gravel 12.05-3.5m, bentonite 3.5m-2.5m, backfill to GL, gatic cover)

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point bad axiat lest Is(50) (MPa) BLK Block sample U, Tube sample (x mm dia.) PL(D) Point bad axiat lest Is(50) (MPa) C Core drilling W Water sample p Pocket penetrometer (kPa)	Douteono
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	Pariners
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample > Water seep S Standard penetration test	to a second of a second s
E Environmental sample Vater level V Shear vane (kPa)	ironment Groundwater

Appendix F

Results Tables F1 to F3

Laboratory Certificates and Chain of Custody

							Heavy	Metals					PA	\H				TRH (NI	EPM 2013) ^e			B	TEX							
Sample	,	Soil Type ^b	Date Sampled	As	Cd	Cr°	Cu	Pb	Hg	Ni	Zn	total	BaP TEQ	ВаР	Naphthalene	C6-C10	>C10-C16	F1 - C6 - C10 less BTEX	F2 - >C10-C16 less naphthalene	>C16-C34	>C34-C40	Benzene	Toluene	Ethylbenzene	xylene	VOC	phenol	PCB	OCPd	p ddO	Asbestos ^j
				Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Soil Assessment Crit	eria (SAC) - (N	IEPC, 2013) (I	efer to report	-	Ĺ																								refer to note		
	HIL D			3,000	900	3,600	240,000	1,500	730/180	6,000	400,000	4,000	40														660	7	h	refer to note	i
	IL/ ESL			160		680	320	1,800		320	1,000			1.4	370		170	215		2,500	6,600	95	135	185	95				640 ^f		
	Reference Lev													172 ^g																	
Management Limit		Coarse														700	1,000			3,500	10,000										
HSLs - Vapour Intrus	0-<1m	Sand							1						NL			260	NL			3	NL	NL	230			1			
	direct contact														11,000					27,000	38,000	430	99,000	27,000	81,000						
Intrusive Maintenance	e Workers		•		•	•	•	•		•		•										•				•	•	•	•	•	
HSLs - Vapour Intrusi																	1														
HSL	0-<2m	Sand					1								NL			NL	NL		100.000	77	NL	NL	NL		1		1		
HSL, d	irect contact														29,000			82,000	62,000	85,000	120,000	1,100	120,000	85,000	130,000						
Sample Location	Depth														I																
1	0-0.1	Fill	25-Jul-18	<4	<0.4	7	23	35	<0.1	5	80	1.55	<0.5	0.2	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
BD1/20180725 a	1	Fill	25-Jul-18	<5	<1	4	13	28	<0.1	2	71	<7.5	0.6	<0.5	<0.5	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	-	-	-	-	-	-
1	1.7	Natural	25-Jul-18	<4	<0.4	2	1	2	<0.1	<1	5	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
2	0.5	Fill	25-Jul-18	<4	<0.4	8	47	6	<0.1	37	32	1.125	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
2	1.8	Fill	25-Jul-18	<4	<0.4	<1	<1	<1	<0.1	<1	<1	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
ЗA	0.1-0.2	Fill	25-Jul-18	<4	<0.4	15	81	67	0.4	11	150	14.7	1.9	1.4	<0.1	<25	<50	<25	<50	180	<100	<0.2	<0.5	<1	<1	<1	<5	<0.1	0.1	<0.1	NAD
ЗA	0.4-0.5	Fill	25-Jul-18	<4	<0.4	6	37	100	0.3	10	120	3.4	0.6	0.4	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
4	0-0.1	Fill	25-Jul-18	<4	<0.4	6	16	14	0.1	14	33	0.96	<0.5	0.06	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
BD4/20180725 a	<u> </u>	Fill	25-Jul-18	<4	<0.4	7	20	24	0.2	12	61	9.95	1.5	1.1	<0.1	<25	<50	<25	<50	150	130	<0.2	<0.5	<1	<1	-	-	-	-	-	-
4	1.5	Natural	25-Jul-18	<4	<0.4	<1	<1	<1	<0.1	<1	<1	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
5	0-0.1	Fill	25-Jul-18	<4	<0.4	6	53	20	<0.1	6	31	<1.35	<0.5	< 0.05	<0.1	<25	<50	<25	<50	540	670	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
BD2/20180725 a	1	Fill	25-Jul-18	<4	<0.4	7	70	16	<0.1	5	30	0.725	<0.5	<0.05	<0.1	<25	<50	<25	<50	730	890	<0.2	<0.5	<1	<1	-	-	-	-	-	-
5	0.5	Fill	25-Jul-18	<4	<0.4	6	35	53	<0.1	5	36	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
6	0.1	Fill	25-Jul-18	5	<0.4	12	42	55	0.3	55	68	<1.35	<0.5	<0.05	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
6 Notes	0.5	Fill	25-Jul-18	5	<0.4	5	61	230	0.9	10	110	15.75	3.6	2.5	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD

d

а Replicate sample of sample listed directly above

b Fill or naturally

Analysis result for total Cr, SAC and waste classification guidelines for Cr(VI), background ranges for Cr(III) С

Where results of one or more component compound are above PQL sum of all results above PQL given, when all results are below PQL results quoted as <PQL of majority of individual analytes

е Analysis result for TRH, guidelines for TPH

f EIL for DDT

Sourced from CRC CARE Technical Report No. 39, Risk-based management and remediation guidance for benzo(a)pyrene (2017) g

DDT+DDE+DDD - 3600 mg/kg, Aldrin + Dieldrin - 45 mg/kg, chlordane - 530 mg/kg, endosulfan - 2000 mg/kg, endrin - 100 mg/kg, heptachlor - 50 mg/kg, h HCB - 80 mg/kg and methoxychlor - 2500 mg/kg

chloropyifos - 2000 mg/kg

Refer to Table F2, Appendix F for further information

Exceedance of EIL/ESL Italic

Acronyms

As arsenic

BaP benzo(a)pyrene BaP TEQ benzo(a)pyrene toxic equivalent

BTEX benzene, toluene, ethyl benzene, xylenes

Cd cadmium

Cr chromium (total) Cu copper

EIL ecological investigation level

ESL ecological screening level

Hg mercury

HIL health investigation level

HSL health screening level

- NAD no asbestos detected at the limit of reporting
- Ni nickel NL "Not limiting" to human health for the proposed land use for vapour intrusion from petroleum hydrocarbons
- OCP organochlorine pesticides
- OPP organophosphorus pesticides
- PAH polycyclic aromatic hydrocarbons
- Pb lead
- PCB polychlorinated biphenyls PQL practical quantitation limit
- TPH total petroleum hydrocarbons
- TRH total recoverable hydrocarbons, including total petroleum hydrocarbons (TPH)
- VOC volatile organic compounds
- Zn zinc

				Asbestos 40 g Sample	1		Asbestos (500 ml Sa	amples)		
Sample		Soil Type	Date Sampled	Asbestos ID in soil	Trace Analysis	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos#1	Asbestos ID in soil <0.1g/kg*	FA and AF Estimation*#2
						Total				
						-	-	g/kg	-	%(w/w)
Soil Assessment Crite Commercial	ria (SAC) - NE	r™ (as amende	a 2013) (refer	to report body for details)						
	HIL D									0.001
Laboratory Results										0.001
Sample Location	Depth									
1	0-0.1	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
1	1.7	Natural	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-
2	0.5	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
2	1.8	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
3A	0.1-0.2	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
3A	0.4-0.5	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	_	-	-	-
4	0-0.1	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
4	1.5	Natural	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-
5	0-0.1	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
5	0.5	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-
6	0.1	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	<0.001
6	0.5	Fill	25-Jul-18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	-	-	-	-	-

									Heavy Me	tals						PAH		TRH	/TPH		BTE	X							
Sample	ple		Soil Type	Date Sampled	As	Cd	Cr°	Cu	Pb	,	Hg	Ni		Zn	total ^b	BaP		C ₆ - C ₉	C ₁₀ - C ₃₆ ^d	Benzene	Toluene	Ethylbenzene	xylene	۷OC	phenol	PCB	OCP ^b	opp ^b	Asbestos
					Total	Total	Total	Total	Total	TCLP	Total	Total	TCLP	Total	Total	Total	TCLP	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Waste Classific	catio	on Thresh	olds (EPA,	, 2014)																									
General		lid	C	T1	100	20	100		100		4	40			200	0.8		650	10,000	10	288	600	1,000	- ^e	288	<50	<50 ^f	250 ^g	
General	1 301	liu	SCC1/	TCLP1					1,500	5		1,050	2				0.04												
Published Back	kgro	ound Rang	ges																										
NEPC (1999	9)			1-50	1	5-1000	2-100	2-200		0.03	5-500		10-300															
ANZECC	(19	92)			0.2-30	0.04-2	0.5-110	1-190	<2-200		0.001-0.1	2-400		2-180	0.95-5					0.05 - 1	0.1 - 1				0.03 -	0.02 –	<0.001 -		
																									0.5	0.1	<0.97		
ANZECC	(20	00)			1-53	0.016- 0.78	2.5-673	0.4-412	2-81			1-517		1-263															
Laboratory Res	sults	6																											
Sample Location	n	Depth																											
1		0-0.1	Fill	25-Jul-18	<4	<0.4	7	23	35	-	<0.1	5	-	80	1.55	0.2	-	<25	<250	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
BD1/20180725	а		Fill	25-Jul-18	<5	<1	4	13	28	-	<0.1	2	-	71	<7.5	<0.5	-	<10	<50	<0.2	<0.5	<0.5	<0.5	-	-	-	-	-	-
1		1.7	Natural	25-Jul-18	<4	<0.4	2	1	2	-	<0.1	<1	-	5	<1.35	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
2		0.5	Fill	25-Jul-18	<4	<0.4	8	47	6	-	<0.1	37	-	32	1.125	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
2		1.8	Fill	25-Jul-18	<4	<0.4	<1	<1	<1	-	<0.1	<1	-	<1	<1.35	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
3A		0.1-0.2	Fill	25-Jul-18	<4	<0.4	15	81	67	-	0.4	11	-	150	14.7	1.4	<0.0001	<25	175	<0.2	<0.5	<1	<1	<1	<5	<0.1	0.1	<0.1	NAD
3A		0.4-0.5	Fill	25-Jul-18	<4	<0.4	6	37	100	-	0.3	10	-	120	3.4	0.4	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
4	-	0-0.1	Fill	25-Jul-18	<4	<0.4	6	16	14	-	0.1	14	-	33	0.96	0.06	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
BD4/20180725	a		Fill	25-Jul-18	<4	<0.4	7	20	24	-	0.2	12	-	61	9.95	1.1	<0.001	<25	215	<0.2	<0.5	<1	<1	-	-	-	-	-	-
4		1.5	Natural	25-Jul-18	<4	<0.4	<1	<1	<1	-	<0.1	<1	-	<1	<1.35	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
5	2	0-0.1	Fill	25-Jul-18	<4	<0.4	6	53	20	-	<0.1	6	-	31	<1.35	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
BD2/20180725	ŭ		Fill	25-Jul-18	<4	<0.4	7	70	16	-	<0.1	5	-	30	0.725	<0.05	-	<25	985	<0.2	<0.5	<1	<1	-	-	-	-	-	-
5		0.5	Fill	25-Jul-18	<4	<0.4	6	35	53	-	<0.1	5	-	36	<1.35	<0.05	-	<25	735	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD
6		0.1	Fill	25-Jul-18	5	<0.4	12	42	55	-	0.3	55	<0.02	68	<1.35	<0.05	-	<25	<250	<0.2	<0.5	<1	<1	<1	<5	<0.1	<0.1	<0.1	NAD
6		0.5	Fill	25-Jul-18	5	<0.4	5	61	230	0.08	0.9	10	-	110	15.75	2.5	<0.001	<25	<250	<0.2	<0.5	<1	<1	-	<5	<0.1	<0.1	<0.1	NAD

Notes

b Where results of one or more component compound are above PQL sum of all results above PQL given, when all results are below PQL results quoted as <PQL of majority of individual analytes

- Analysis result for total Cr, SAC and waste classification guidelines for Cr(VI), background ranges for Cr(III) С
- d Where results of one or more component compound are above PQL sum of all results above PQL given, when all results are below PQL results quoted as less than the sum of PQLs of the individual analytes
- Various, not listed here as all results less than PQL

f Guideline for scheduled chemicals

g Guideline for moderately harmful pesticides

h Various available, not listed as not detected above PQL

Analysis result for TRH, guidelines for TPH

Refer to Table F2, Appendix F for further information

Guidelines

EPA, 2014 NSW EPA (2014) Waste Classification Guidelines

NEPC (1999) National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).

NEPC (1999) National Environment Protection Measure (Assessment of Site Contamination) Schedule B1, Table 5-A, Background Ranges

ANZECC (1992) ANZECC/NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites , Environmental Soil Quality Guidelines Background A [ANZECC A];

ANZECC (2000) ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 3, Table 9.2.16 Datasets used to derive suggested upper background values for uncontaminated Australian soils

Acronyms

- As arsenic
- BaP benzo(a)pyrene
- BTEX benzene, toluene, ethyl benzene, xylenes
- Cd cadmium
- Cr chromium (total)
- Cu copper
- Hg mercury
- NAD no asbestos detected at the limit of reporting
- Ni nickel
- OCP organochlorine pesticides
- OPP organophosphorus pesticides
- PAH polycyclic aromatic hydrocarbons
- Pb lead PCB polychlorinated biphenyls

PQL practical quantitation limit

TCLP toxicity characteristic leaching procedure

TPH total petroleum hydrocarbons TRH total recoverable hydrocarbons, including TPH VOC volatile organic compounds

Zn zinc

	A B C	D E	F	G	H		J	К	L	
1		UCL Stat	istics for Data	Sets with Nor	n-Detects					
2	User Selected Options									
3	Date/Time of Computation		DUCL 5.118/09/2018 1:12:57 PM							
4	From File	WorkSheet.xls	orkSheet.xls							
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Number of Bootstrap Operations	2000								
9										
10	BaP									
11				0 , ., .,						
12	Tota	I Number of Observation		Statistics		Numbe	er of Distinct Ol	servations	6	
13	1014	Number of Detect				NUITDE	Number of N			
14	Ν	lumber of Distinct Detect				Numh	er of Distinct N			
15		Minimum Detec	-					Non-Detect		
16		Maximum Detec	-					Non-Detect		
17 18	Variance Detects 0.837 Percent Non-Detect							on-Detects	50%	
19		Mean Detect	s 1.12					SD Detects	0.915	
20		Median Detects						CV Detects	0.817	
21		Skewness Detect	s 0.815				Kurto	sis Detects	0.24	
22		Mean of Logged Detect	s -0.236				SD of Logg	ed Detects	1.014	
23				-						
24				t on Detects C	-					
25		Shapiro Wilk Test Statisti				-	ilk GOF Test			
26	5% S	Shapiro Wilk Critical Valu		De	etected Data a		mal at 5% Sign	ificance Lev	/el	
27		Lilliefors Test Statisti		Da			GOF Test	: 6		
28	:	5% Lilliefors Critical Valu Detected Data					mal at 5% Sign	Ificance Lev	/el	
29			арреаг могл	iai at 5% Signi						
30	Kaplan	-Meier (KM) Statistics us	ing Normal Cr	ritical Values a	nd other Noni	parametric	UCLs			
31 32		KM Mea	-				M Standard Eri	ror of Mean	0.279	
33		KM SI					95% KM	(BCA) UCL	1.04	
34		95% KM (t) UC	L 1.096			95% KM (I	Percentile Boot	strap) UCL	1.035	
35		95% KM (z) UC	L 1.043		95% KM Bootstrap t UC			strap t UCL	1.104	
36		90% KM Chebyshev UC	L 1.421				95% KM Cheb	yshev UCL	1.799	
37	97	7.5% KM Chebyshev UC	L 2.325				99% KM Cheb	yshev UCL	3.357	
38										
39				etected Observ						
40		A-D Test Statisti		Detector			rling GOF Test			
41		5% A-D Critical Valu K-S Test Statisti		Detected			istributed at 5% -Smirnov GOF	o Significan	Le Level	
42		5% K-S Critical Valu		Detected		-	istributed at 5%	Significan	ce l evel	
43		Detected data appea						- ciginicali		
44										
45 46		Gamm	a Statistics or	Detected Dat	ta Only					
40		k hat (MLE	E) 1.579			k	star (bias corre	ected MLE)	0.765	
48		Theta hat (MLE	.709			Theta	star (bias corre	ected MLE)	1.464	
49		nu hat (MLE) 15.79				nu star (bias	corrected)	7.65	
50		Mean (detects	s) 1.12							
51										
52				sing Imputed N						
53		y not be used when data			-		-			
54		d when kstar of detects is		-				., <15-20)		
55	F	or such situations, GROS	5 method may	yield incorrec	t values of UC	CLs and BT	Vs			

	A B C D E	F ally true whe	G en the sample s	H ize is small	Ι	J	К	L
56	For gamma distributed detected data, BTVs a		•			on on KM estim	ates	
57	Minimum	0.01	.) 20 00patoa	uomg gum			Mean	0.565
58	Maximum	2.5		Media			Median	0.105
59	SD	0.845					CV	1.496
60	k hat (MLE)	0.362			ks	star (bias correc	ted MLE)	0.32
61 62	Theta hat (MLE)	1.562			Theta s	star (bias correc	ted MLE)	1.767
63	nu hat (MLE)	7.233				nu star (bias d	corrected)	6.397
64	Adjusted Level of Significance (β)	0.0267						
65	Approximate Chi Square Value (6.40, α)	1.846			Adjusted Cl	hi Square Value	e (6.40, β)	1.453
66	95% Gamma Approximate UCL (use when n>=50)	1.958		95% Ga	mma Adjuste	ed UCL (use wh	nen n<50)	2.487
67								
68	Estimates of Ga	amma Paran	neters using KN	A Estimates	i			
69	Mean (KM)	0.585					SD (KM)	0.788
70	Variance (KM)	0.621				SE of M	lean (KM)	0.279
71	k hat (KM)	0.551				k	star (KM)	0.452
72	nu hat (KM)	11.02				nu	star (KM)	9.048
73	theta hat (KM)	1.062				theta	star (KM)	1.293
74	80% gamma percentile (KM)	0.955				6 gamma perce		1.615
75	95% gamma percentile (KM)	2.328			99%	6 gamma perce	ntile (KM)	4.1
76								
77		-	eier (KM) Statis	tics				
78	Approximate Chi Square Value (9.05, α)	3.356			•	hi Square Value	,	2.782
79	95% Gamma Approximate KM-UCL (use when n>=50)	1.577	9	95% Gamma	a Adjusted K	M-UCL (use wh	nen n<50)	1.903
80								
81			etected Observa	•	<u></u>			
82	Shapiro Wilk Test Statistic	0.954	D .		Shapiro Will			
83	5% Shapiro Wilk Critical Value	0.762	Detec	ted Data ap	bear Lognor	rmal at 5% Sign	lificance Le	evel
84	Lilliefors Test Statistic 5% Lilliefors Critical Value	0.228	Dotoo	tod Doto on		rmal at 5% Sign	ificance la	a vol
85	Detected Data app					illiai at 5 % Siyii		evei
86			inal at 5 % Olgh					
87	Lognormal ROS	Statistics U	Jsina Imputed N	on-Detects				
88	Mean in Original Scale	0.585				Mean in I	_og Scale	-1.786
89	SD in Original Scale	0.831					Log Scale	1.883
90 91	95% t UCL (assumes normality of ROS data)	1.067			95% F	Percentile Boots	-	1
91	95% BCA Bootstrap UCL	1.142				95% Bootst	-	1.512
93	95% H-UCL (Log ROS)	24.49						
94								
95	Statistics using KM estimates o	n Logged Da	ata and Assumi	ing Lognorn	nal Distributi	on		
96	KM Mean (logged)	-1.616				KM C	Geo Mean	0.199
97	KM SD (logged)	1.522			95% (Critical H Value	(KM-Log)	4.258
98	KM Standard Error of Mean (logged)	0.538				95% H-UCL ((KM -Log)	5.487
99	KM SD (logged)	1.522			95% (Critical H Value	(KM-Log)	4.258
100	KM Standard Error of Mean (logged)	0.538						
101								
102		DL/2 S	tatistics					
103	DL/2 Normal				DL/2 Log-Ti			
104	Mean in Original Scale	0.573					_og Scale	-1.962
105	SD in Original Scale	0.84					Log Scale	1.942
106	95% t UCL (Assumes normality)	1.059			. . .		-Stat UCL	27.75
107	DL/2 is not a recommended met	thod, provide	ed for comparis	ons and his	torical reaso	ons		
108			· • ····					
109	-		tion Free UCL S		1			
110	Detected Data appear	Normal Dist	tributed at 5% S	significance	Level			

	А	В	С	D	E	F	G	Н		J	K	L	
111													
112		Suggested UCL to Use											
113		95% KM (t) UCL 1.096											
114													
115	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.												
116			F	Recommenda	tions are ba	sed upon dat	a size, data c	listribution, a	nd skewness	5.			
117		These reco	mmendations	s are based ι	pon the resu	lts of the sim	ulation studie	es summarize	ed in Singh, N	Maichle, and	Lee (2006).		
118	Н	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
119													

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 197098

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86457.01, Kensington
Number of Samples	23 Soil
Date samples received	26/07/2018
Date completed instructions received	30/07/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details Date results requested by 06/08/2018 06/08/2018 Date of Issue

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Giovanni Agosti, Group Technical Manager Jeremy Faircloth, Organics Supervisor Ken Nguyen, Senior Chemist Lucy Zhu, Asbsestos Analyst Nick Sarlamis, Inorganics Supervisor Priya Samarawickrama, Senior Chemist

Steven Luong, Senior Chemist

Authorised By

Jacinta Hurst, Laboratory Manager

VOCs in soil					
Our Reference		197098-1	197098-6	197098-10	197098-14
Your Reference	UNITS	1/0-0.1	2/0.5	5/0-0.1	6/0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	02/08/2018	01/08/2018	01/08/2018	01/08/2018
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1
bromoform	mg/kg	<1	<1	<1	<1

Client Reference: 86457.01, Kensington

VOCs in soil					
Our Reference		197098-1	197098-6	197098-10	197098-14
Your Reference	UNITS	1/0-0.1	2/0.5	5/0-0.1	6/0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
m+p-xylene	mg/kg	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	115	114	115	118
Surrogate aaa-Trifluorotoluene	%	101	85	88	88
Surrogate Toluene-d ₈	%	102	105	104	105
Surrogate 4-Bromofluorobenzene	%	84	90	89	88

Client Reference: 86457.01, Kensington

Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	105	85	80	88

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		197098-11	197098-14	197098-15	197098-20	197098-22
Your Reference	UNITS	5/0.5	6/0.1	6/0.5	BD2/20180725	Spike
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	99%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	84%
Ethylbenzene	mg/kg	<1	<1	<1	<1	97%
m+p-xylene	mg/kg	<2	<2	<2	<2	95%
o-Xylene	mg/kg	<1	<1	<1	<1	95%
naphthalene	mg/kg	<1	<1	<1	<1	
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	
Surrogate aaa-Trifluorotoluene	%	100	88	81	107	89%

Client Reference: 86457.01, Kensington

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		197098-23				
Your Reference	UNITS	Blank				
Date Sampled		25/07/2018				
Type of sample		Soil				
Date extracted	-	31/07/2018				
Date analysed	-	01/08/2018				
TRH C ₆ - C ₉	mg/kg	<25				
TRH C6 - C10	mg/kg	<25				
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25				
Benzene	mg/kg	<0.2				
Toluene	mg/kg	<0.5				
Ethylbenzene	mg/kg	<1				
m+p-xylene	mg/kg	<2				
o-Xylene	mg/kg	<1				
naphthalene	mg/kg	<1				
Total +ve Xylenes	mg/kg	<1				
Surrogate aaa-Trifluorotoluene	%	90				
svTRH (C10-C40) in Soil						
---------------------------------------	-------	------------	------------	------------	------------	------------
Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	150
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	560
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	540
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	670
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	1,200
Surrogate o-Terphenyl	%	84	84	82	85	89

svTRH (C10-C40) in Soil					
Our Reference		197098-11	197098-14	197098-15	197098-20
Your Reference	UNITS	5/0.5	6/0.1	6/0.5	BD2/20180725
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018
TRH C10 - C14	mg/kg	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	200
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	760
TRH >C10-C16	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	730
TRH >C34 -C40	mg/kg	<100	<100	<100	890
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	1,600
Surrogate o-Terphenyl	%	85	84	82	90

PAHs in Soil						
Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.3	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.3	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.3	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.5	<0.05	0.60	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	87	93	89	96	94

PAHs in Soil					
Our Reference		197098-11	197098-14	197098-15	197098-20
Your Reference	UNITS	5/0.5	6/0.1	6/0.5	BD2/20180725
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	0.2	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.8	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.2	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	2.6	<0.1
Pyrene	mg/kg	<0.1	<0.1	2.8	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	1.9	0.1
Chrysene	mg/kg	<0.1	<0.1	1.8	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	3.8	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	2.5	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	1.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.3	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	1.4	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	19	0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	3.6	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	3.6	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	3.6	<0.5
Surrogate p-Terphenyl-d14	%	97	93	91	98

Organochlorine Pesticides in soil						
Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	109	107	110	107

Organochlorine Pesticides in soil				
Our Reference		197098-11	197098-14	197098-15
Your Reference	UNITS	5/0.5	6/0.1	6/0.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018
НСВ	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	107	106

Organophosphorus Pesticides						
Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	106	109	107	110	107

Organophosphorus Pesticides				
Our Reference		197098-11	197098-14	197098-15
Your Reference	UNITS	5/0.5	6/0.1	6/0.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	107	106

PCBs in Soil				_	_	
Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	106	109	107	110	107

PCBs in Soil				
Our Reference		197098-11	197098-14	197098-15
Your Reference	UNITS	5/0.5	6/0.1	6/0.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil
Date extracted	-	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	107	107	106

Acid Extractable metals in soil						
Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	2	8	<1	6
Copper	mg/kg	23	1	47	<1	53
Lead	mg/kg	35	2	6	<1	20
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	<1	37	<1	6
Zinc	mg/kg	80	5	32	<1	31

Acid Extractable metals in soil					
Our Reference		197098-11	197098-14	197098-15	197098-20
Your Reference	UNITS	5/0.5	6/0.1	6/0.5	BD2/20180725
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Arsenic	mg/kg	<4	5	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	6	12	5	7
Copper	mg/kg	35	42	61	70
Lead	mg/kg	53	55	230	16
Mercury	mg/kg	<0.1	0.3	0.9	<0.1
Nickel	mg/kg	5	55	10	5
Zinc	mg/kg	36	68	110	30

Misc Soil - Inorg						
Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg				
Our Reference		197098-11	197098-14	197098-15
Your Reference	UNITS	5/0.5	6/0.1	6/0.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil
Date prepared	-	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5

Moisture						
Our Reference		197098-1	197098-4	197098-6	197098-8	197098-10
Your Reference	UNITS	1/0-0.1	1/1.7	2/0.5	2/1.8	5/0-0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Moisture	%	7.7	5.6	15	2.7	4.2
Moisture						
Our Reference		197098-11	197098-14	197098-15	197098-20	
Your Reference	UNITS	5/0.5	6/0.1	6/0.5	BD2/20180725	
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	
Moisture	%	6.1	5.6	14	3.7	

Asbestos ID - soils				
Our Reference		197098-4	197098-11	197098-15
Your Reference	UNITS	1/1.7	5/0.5	6/0.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil
Date analysed	-	02/08/2018	02/08/2018	02/08/2018
Sample mass tested	g	Approx. 40g	Approx. 40g	Approx. 35g
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils NEPM - ASB-001						
Our Reference		197098-1	197098-6	197098-8	197098-10	197098-14
Your Reference	UNITS	1/0-0.1	2/0.5	2/1.8	5/0-0.1	6/0.1
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	02/08/2018	02/08/2018	02/08/2018	02/08/2018	02/08/2018
Sample mass tested	g	619.62	550.92	894.06	898.24	275.17
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Beige sandy soil	Brown fine- grained soil & rocks	Beige coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	-	detected No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Misc Inorg - Soil				
Our Reference		197098-4	197098-6	197098-15
Your Reference	UNITS	1/1.7	2/0.5	6/0.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil
Date prepared	-	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018
pH 1:5 soil:water	pH Units	8.9	7.2	9.4

CEC				
Our Reference		197098-4	197098-6	197098-15
Your Reference	UNITS	1/1.7	2/0.5	6/0.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil
Date prepared	-	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018
Exchangeable Ca	meq/100g	4.5	14	22
Exchangeable K	meq/100g	<0.1	0.2	0.3
Exchangeable Mg	meq/100g	0.24	2.7	2.0
Exchangeable Na	meq/100g	<0.1	0.18	0.55
Cation Exchange Capacity	meq/100g	4.8	17	25

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual
	ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALI	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6
Date extracted	-			01/08/2018	1	31/07/2018	31/07/2018		01/08/2018	31/07/2018
Date analysed	-			02/08/2018	1	02/08/2018	02/08/2018		02/08/2018	01/08/2018
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	101	134
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-014	<1	1	<1	<1	0	131	94
2,2-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	100	101
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	100	106
1,1-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-014	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	93	75
bromodichloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	99	101
trans-1,3-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-014	<0.5	1	<0.5	<0.5	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	106	93
1,2-dibromoethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	92	80
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-014	<2	1	<2	<2	0	[NT]	[NT]
styrene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]

QUALI	QUALITY CONTROL: VOCs in soil								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6	
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
isopropylbenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
bromobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
n-propyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
2-chlorotoluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
4-chlorotoluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
tert-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
sec-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
4-isopropyl toluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
n-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
hexachlorobutadiene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
Surrogate Dibromofluorometha	%		Org-014	115	1	115	120	4	111	114	
Surrogate aaa-Trifluorotoluene	%		Org-014	100	1	101	96	5	93	81	
Surrogate Toluene-d ₈	%		Org-014	102	1	102	102	0	98	103	
Surrogate 4-Bromofluorobenzene	%		Org-014	85	1	84	84	0	102	95	

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil		Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6	
Date extracted	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018	
Date analysed	-			01/08/2018	1	01/08/2018	01/08/2018		01/08/2018	01/08/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	104	80	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	104	80	
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	106	81	
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	101	79	
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	99	75	
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	107	82	
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	87	76	
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	133	1	101	96	5	117	81	

QUALITY CO		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6
Date extracted	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Date analysed	-			01/08/2018	1	01/08/2018	01/08/2018		01/08/2018	01/08/2018
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	104	87
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	89	70
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	77	71
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	104	87
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	89	70
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	77	71
Surrogate o-Terphenyl	%		Org-003	85	1	84	85	1	92	82

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6
Date extracted	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Date analysed	-			01/08/2018	1	01/08/2018	01/08/2018		01/08/2018	01/08/2018
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	102	87
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	108	86
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	0.1	<0.1	0	98	85
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	0.3	0.2	40	95	83
Pyrene	mg/kg	0.1	Org-012	<0.1	1	0.3	0.2	40	100	86
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	0.1	0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	1	0.1	0.1	0	100	80
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	0.3	0.2	40	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	0.2	0.2	0	115	70
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	0.1	0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	96	1	87	89	2	112	107

QUALITY CONT		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6
Date extracted	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Date analysed	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	109	108
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	92	90
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	85	87
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	94	92
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	95	93
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	101	99
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	107	105
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	100	101
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	101	101
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	79	86
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	109	1	106	114	7	102	100

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6
Date extracted	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Date analysed	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	114	114
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	88	86
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	110	123
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	109	101
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	82	85
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	103	110
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	132	106
Surrogate TCMX	%		Org-008	109	1	106	114	7	107	105

QUALIT			Du		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6
Date extracted	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Date analysed	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	102	102
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCLMX	%		Org-006	109	1	106	114	7	107	105

QUALITY CONT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6
Date prepared	-			03/08/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Date analysed	-			03/08/2018	1	31/07/2018	31/07/2018		31/07/2018	31/07/2018
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	113	86
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	104	86
Chromium	mg/kg	1	Metals-020	<1	1	7	5	33	110	90
Copper	mg/kg	1	Metals-020	<1	1	23	22	4	116	108
Lead	mg/kg	1	Metals-020	<1	1	35	33	6	107	91
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	102	96
Nickel	mg/kg	1	Metals-020	<1	1	5	3	50	111	90
Zinc	mg/kg	1	Metals-020	<1	1	80	74	8	104	79

QUALITY		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	197098-6
Date prepared	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	[NT]
Date analysed	-			31/07/2018	1	31/07/2018	31/07/2018		31/07/2018	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	105	[NT]

QUALITY		Duj	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			01/08/2018	[NT]		[NT]	[NT]	01/08/2018	
Date analysed	-			01/08/2018	[NT]		[NT]	[NT]	01/08/2018	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	101	[NT]

QU	ALITY CONT	ROL: CE		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			01/08/2018	6	01/08/2018	01/08/2018		01/08/2018	[NT]
Date analysed	-			01/08/2018	6	01/08/2018	01/08/2018		01/08/2018	[NT]
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	6	14	15	7	105	[NT]
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	6	0.2	0.2	0	114	[NT]
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	6	2.7	2.8	4	109	[NT]
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	6	0.18	0.19	5	103	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci. & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, sample 197098-14 was below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 197098-4, 11, 15 were sub-sampled from bags provided by the client.

Douglas Partners Geotechnics / Environment / Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

/ Hall plambeck dambeck@dd ard / [Fridg 0 25/07/18 25/07/18 25/07/18 25/07/18		ners.com.au nelved Container Type se cits of d	Sample	e e e o o o			Yes [Analytes Penols T	_	Ailee			store in accordance with FPM HAZID) Notes/preservation
ard (Fridg) 25/07/18 25/07/18 25/07/18 25/07/18	e I Sh Sample Type N - water N	nelved Container Type ss ci ci b o ci ci ci ci ci ci ci ci ci ci ci ci ci	Do samp Metals Metals	e e e o o o			Analytes	Phone: Email: No C	(If YES, the	n handle, tr		
ard (Fridg) 25/07/18 25/07/18 25/07/18 25/07/18	e I Sh Sample Type N - water N	nelved Container Type ss ci ci b o ci ci ci ci ci ci ci ci ci ci ci ci ci	Heavy Metals	OCP/OPP PCB			Analytes	Email: No []	(If YES, the			
25/07/18 25/07/18 25/07/18	Sample Type - soil M - water	Container Type sstic bastic -	Heavy Metals	OCP/OPP PCB			Analytes					
25/07/18 25/07/18 25/07/18	Sample Type - soil M - water	Container Type sstic bastic -	Heavy Metals	OCP/OPP PCB			Analytes					
25/07/18 25/07/18 25/07/18 25/07/18	S - soil W - water	- glass - plastic			TRH and BTEX			<u> </u>	TÊX	bo 8A	bo 3A	Notes/preservatio n
25/07/18 25/07/18 25/07/18 25/07/18	_	G - glass P - plastic			TRH and BTEX	PAH	Total Phenols	bestos 00 ml	LEX	bo 8A	bo 3A	Notes/preservation
25/07/18 25/07/18 25/07/18	5		Χ	<u> </u>		ag(x5 %)		As 55	VOC	Com	Com	PH/CEC
25/07/18 25/07/18				X _	~	х	×	X	Y	<u>×</u> _		• • •
25/07/18		1		<u> </u>								
	/											·
			<u>\</u>		r	7	×			_X_		<u> </u>
25/07/18												
25/07/18			X	<u></u>	X	X	_ X	X	X	<u> </u>		X
25/07/18												
25/07/18			×	ĸ	X	<u>×</u>	X	X		X_		
25/07/18						· · ·			<u> </u>			
25/07/18			X	X	\times	X	×	<u> </u>	Ι <u>Υ</u>	\times		
25/07/18			Y	x	<u>×</u>	x	x	14	ļ	<u>X</u>		
25/07/18					<u> </u>			_	<u>. </u>	<i>.</i>		·
25/07/18												
25/07/18			X	X	\times	<u>×</u>	×	X	×	<u> X </u>		
25/07/18	1		<u>γ</u>	X	<u> </u>	<u>×</u>	X	Ĭħ	ļ '			X
		1	<u> </u>		<u> </u>	<u> </u>		ļ				req'd for all water analytes 🏼
			t to Labor	ratory Met	thod Dete	ction Limi	<u> </u>	Lab R	eport/Ref	eren ce N	10: 197	Z098
es in conta	iner:	Reli	nguished	d by:	1	Transpo	rted to la					
				· ·								Fax:
	<u> </u>			EELS					Date & 7	ime: 2	G/F/1	8 16:30
6	25/07/18 25/07/18 25/07/18 25/07/18 25/07/18 25/07/18 25/07/18 ation limit. unless sp s in conta	25/07/18 25/07/18 25/07/18 25/07/18 25/07/18 25/07/18 25/07/18 25/07/18 ation limit. If none and a specified has a spe	25/07/18	25/07/18 X 25/07/18 X 25/07/18 Y ation limit. If none given, default to Labor unless specified here: Y es in container: Relinquisher buglas Partners Pty Ltd Address	25/07/18 X X 25/07/18 X X 25/07/18 Y X 25/07/18 Y X 25/07/18 Y X 25/07/18 X X 25/07/18 X X 25/07/18 X X 25/07/18 Y X 25/07/18 Y X ation limit. If none given, default to Laboratory Met unless specified here: X es in container: Relinquished by: ouglas Partners Pty Ltd Address	25/07/18 X X X 25/07/18 Y X X ation limit. If none given, default to Laboratory Method Dete unless specified here: es in container: Relinquished by: puglas Partners Pty Ltd Address Received by: TE ELS	25/07/18 X<	25/07/18 X	25/07/18 x	25/07/18 x	25/07/18 X<	25/07/18 X

Rev4/October2016

Douglas Partners Geotechnics / Environment / Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 86457.01				Suburb: Kensington				To: Envirolab Services						
Project Name: UNSW Hall				Order Number				12 Ashley Street						
Project Manager: Kurt Pplambeck				Sampler:				Attn: Aileen						
Emails: kurt.plambeck@douglaspartners.com.au								Phone:						
Date Required: Standard Email:														
Prior Storage:	i Esky	/ 📋 Fridg		elved	Do samp	oles contair	n 'potentia	' HBM?	Yes E	No ((If YES, the	en handle, tr	ansport and	store in accordance with FPM HAZID)
		Date	Sample Type	Container Type					Analytes		<u> </u>		-	
Sample ID	Lab ID	Sampling Date	S - soil W - water	G - glass P - plastic	Heavy Metals	OCP/OPP PCB	TRH and BTEX	HAH	T otal Phenois	Asbestos 500 ml	втех	Combo 8A	Combo 3Å	Notes/preservation
6/0.6	16													
6/1.0	17											ļ		
6/5.7	18													
BD1/20180725	19				X		X	X					×	inter (ALS)
BD2/20180725	20				Y		×_	γ					X	1'ntra
BD3/20180725	21													·
spike	22										X			
blank	23		_						<u> </u>		X			
												_		
													-	
	_													
			<u> </u>						<u> </u>			1		
PQL (S) mg/kg						<u> </u>			<u> </u>					req'd for all water analytes 🛛
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Reference No: 1970 98					028									
Total number of samples in container: Relinquished by: Transported to laboratory by: Send Results to: Douglas Partners Pty Ltd Address Phone: Fax:														
Signed: Received by:								Date &						

-

•

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 197098-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86457.01, Kensington
Number of Samples	23 Soil
Date samples received	26/07/2018
Date completed instructions received	06/08/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	13/08/2018	
Date of Issue	10/08/2018	
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.	
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are	e denoted with *

Results Approved By Giovanni Agosti, Group Technical Manager Jeremy Faircloth, Organics Supervisor

Authorised By

Jacinta Hurst, Laboratory Manager

Metals in TCLP USEPA1311			
Our Reference		197098-A-14	197098-A-15
Your Reference	UNITS	6/0.1	6/0.5
Date Sampled		25/07/2018	25/07/2018
Type of sample		Soil	Soil
Date extracted	-	08/08/2018	08/08/2018
Date analysed	-	08/08/2018	08/08/2018
pH of soil for fluid# determ.	pH units	9.5	9.8
pH of soil TCLP (after HCI)	pH units	1.9	1.6
Extraction fluid used	-	1	1
pH of final Leachate	pH units	6.2	5.1
Nickel in TCLP	mg/L	<0.02	[NA]
Lead in TCLP	mg/L	[NA]	0.08

PAHs in TCLP (USEPA 1311)		
Our Reference		197098-A-15
Your Reference	UNITS	6/0.5
Date Sampled		25/07/2018
Type of sample		Soil
Date extracted	-	09/08/2018
Date analysed	-	10/08/2018
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	101
Method ID	Methodology Summary	
--------------------	---	
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.	
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.	
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.	
Metals-020 ICP-AES	Determination of various metals by ICP-AES.	
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.	
Org-012	Leachates are extracted with Dichloromethane and analysed by GC-MS.	
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.	

QUALITY CONTROL: Metals in TCLP USEPA1311				Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			08/08/2018	[NT]	[NT]		[NT]	08/08/2018	
Date analysed	-			08/08/2018	[NT]	[NT]		[NT]	08/08/2018	
Nickel in TCLP	mg/L	0.02	Metals-020 ICP- AES	<0.02	[NT]	[NT]		[NT]	93	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]		[NT]	99	

QUALITY CON	rol: PAHs	in TCLP	(USEPA 1311)			Dı	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			09/08/2018	[NT]		[NT]	[NT]	09/08/2018	
Date analysed	-			10/08/2018	[NT]		[NT]	[NT]	10/08/2018	
Naphthalene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	86	
Acenaphthylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	92	
Phenanthrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	86	
Anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	85	
Pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	86	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	85	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	89	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	102	[NT]		[NT]	[NT]	88	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci, & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments PAH analysed outside of RHT

Andrew Fitzsimons

From: Sent: To: Cc: Subject: Nancy Zhang Monday, 6 August 2018 6:15 PM Kurt Plambeck Samplereceipt RE: Results for Registration 197098 86457.01, Kensington

Hi Kurt,

No problem, is standard TAT ok?

Regards,

Nancy Zhang | Assistant Lab Manager | Envirolab Services Pty Ltd

Great Science, Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E <u>nzhang@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link

From: Kurt Plambeck [mailto:kurt.plambeck@douglaspartners.com.au]
Sent: Monday, 6 August 2018 6:13 PM
To: Nancy Zhang <NZhang@envirolab.com.au>
Subject: RE: Results for Registration 197098 86457.01, Kensington

Nancy,

14

Can u please run 6/0.5 tclp pah and lead and 6/0.1 tclp ni.

Regards

Sent from my Windows 10 device

15

From: Nancy Zhang Sent: Monday, 6 August 2018 6:01 PM To: Kurt Plambeck Subject: Results for Registration 197098 86457.01, Kensington

Please refer to attached for:

Artz

ELS: 197098-A TAT: 5 days Due: 13/8/18

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 197270

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86457.01, Kensington
Number of Samples	8 Soil
Date samples received	30/07/2018
Date completed instructions received	30/07/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details Date results requested by 06/08/2018

 Date of Issue
 06/08/2018

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Steven Luong, Senior Chemist

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Giovanni Agosti, Group Technical Manager Jeremy Faircloth, Organics Supervisor Lucy Zhu, Asbestos Analyst Nick Sarlamis, Inorganics Supervisor

Authorised By

Jacinta Hurst, Laboratory Manager

VOCs in soil		
Our Reference		197270-2
Your Reference	UNITS	3A/0.1-0.2
Date Sampled		25/07/2018
Type of sample		Soil
Date extracted	-	01/08/2018
Date analysed	-	02/08/2018
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane	mg/kg	<1
trans-1,3-dichloropropene	mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
1,1,2-trichloroethane	mg/kg	<1
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1
Ethylbenzene	mg/kg	<1
bromoform	mg/kg	<1

VOCs in soil		
Our Reference		197270-2
Your Reference	UNITS	3A/0.1-0.2
Date Sampled		25/07/2018
Type of sample		Soil
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	mg/kg	<1
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	111
Surrogate aaa-Trifluorotoluene	%	87
<i>Surrogate</i> Toluene-d ₈	%	102
Surrogate 4-Bromofluorobenzene	%	87

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		197270-2	197270-3	197270-4	197270-6	197270-7
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5	BD4/20180725
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	02/08/2018	02/08/2018	02/08/2018	02/08/2018	02/08/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	87	103	101	103	98

svTRH (C10-C40) in Soil						
Our Reference		197270-2	197270-3	197270-4	197270-6	197270-7
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5	BD4/20180725
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	100	<100	<100	<100	140
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	180	<100	<100	<100	150
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	130
Total +ve TRH (>C10-C40)	mg/kg	180	<50	<50	<50	280
Surrogate o-Terphenyl	%	87	87	84	86	86

PAHs in Soil						
Our Reference		197270-2	197270-3	197270-4	197270-6	197270-7
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5	BD4/20180725
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	02/08/2018	02/08/2018	02/08/2018	02/08/2018	02/08/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.2	<0.1	<0.1	<0.1	0.2
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	2.2	0.3	0.1	<0.1	0.6
Anthracene	mg/kg	0.5	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	3.1	0.6	0.2	<0.1	2.2
Pyrene	mg/kg	2.9	0.6	0.1	<0.1	2.3
Benzo(a)anthracene	mg/kg	1.5	0.4	<0.1	<0.1	1.2
Chrysene	mg/kg	1.3	0.4	<0.1	<0.1	1.0
Benzo(b,j+k)fluoranthene	mg/kg	2.0	0.6	<0.2	<0.2	2
Benzo(a)pyrene	mg/kg	1.4	0.4	0.06	<0.05	1.1
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0.2	<0.1	<0.1	0.4
Dibenzo(a,h)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	0.1
Benzo(g,h,i)perylene	mg/kg	0.6	0.2	<0.1	<0.1	0.5
Total +ve PAH's	mg/kg	17	3.8	0.4	<0.05	11
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.9	0.5	<0.5	<0.5	1.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.9	0.6	<0.5	<0.5	1.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.9	0.6	<0.5	<0.5	1.5
Surrogate p-Terphenyl-d14	%	91	99	93	99	99

Organophosphorus Pesticides					
Our Reference		197270-2	197270-3	197270-4	197270-6
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	02/08/2018	02/08/2018	02/08/2018	02/08/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	101	97	102

Organochlorine Pesticides in soil					
Our Reference		197270-2	197270-3	197270-4	197270-6
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	02/08/2018	02/08/2018	02/08/2018	02/08/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	101	97	102

PCBs in Soil					
Our Reference		197270-2	197270-3	197270-4	197270-6
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	02/08/2018	02/08/2018	02/08/2018	02/08/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	103	101	97	102

Acid Extractable metals in soil						
Our Reference		197270-2	197270-3	197270-4	197270-6	197270-7
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5	BD4/20180725
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	02/08/2018	02/08/2018	02/08/2018	02/08/2018	02/08/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	6	6	<1	7
Copper	mg/kg	81	37	16	<1	20
Lead	mg/kg	67	100	14	<1	24
Mercury	mg/kg	0.4	0.3	0.1	<0.1	0.2
Nickel	mg/kg	11	10	14	<1	12
Zinc	mg/kg	150	120	33	<1	61

Misc Soil - Inorg					
Our Reference		197270-2	197270-3	197270-4	197270-6
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date analysed	-	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5

Moisture						
Our Reference		197270-2	197270-3	197270-4	197270-6	197270-7
Your Reference	UNITS	3A/0.1-0.2	3A/0.4-0.5	4/0-0.1	4/1.5	BD4/20180725
Date Sampled		25/07/2018	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018
Date analysed	-	02/08/2018	02/08/2018	02/08/2018	02/08/2018	02/08/2018
Moisture	%	11	6.6	9.8	3.2	8.5

Asbestos ID - soils			
Our Reference		197270-3	197270-6
Your Reference	UNITS	3A/0.4-0.5	4/1.5
Date Sampled		25/07/2018	25/07/2018
Type of sample		Soil	Soil
Date analysed	-	02/08/2018	02/08/2018
Sample mass tested	g	Approx. 35g	Approx. 30g
Sample Description	-	Brown sandy soil & rocks	Beige sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Asbestos ID - soils NEPM - ASB-001			
Our Reference		197270-2	197270-4
Your Reference	UNITS	3A/0.1-0.2	4/0-0.1
Date Sampled		25/07/2018	25/07/2018
Type of sample		Soil	Soil
Date analysed	-	02/08/2018	02/08/2018
Sample mass tested	g	467.25	678.97
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	-
FA and AF Estimation*	g	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual
	ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALI	IY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018	
Date analysed	-			02/08/2018	2	02/08/2018	02/08/2018		02/08/2018	
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Chloromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Vinyl Chloride	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Bromomethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Chloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Trichlorofluoromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,1-Dichloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,1-dichloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	98	
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
bromochloromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
chloroform	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
2,2-dichloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,2-dichloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	98	
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	98	
1,1-dichloropropene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Cyclohexane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
carbon tetrachloride	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Benzene	mg/kg	0.2	Org-014	<0.2	2	<0.2	<0.2	0	[NT]	
dibromomethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,2-dichloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
trichloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	92	
bromodichloromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
trans-1,3-dichloropropene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Toluene	mg/kg	0.5	Org-014	<0.5	2	<0.5	<0.5	0	[NT]	
1,3-dichloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
dibromochloromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	106	
1,2-dibromoethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
tetrachloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	92	
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
chlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Ethylbenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
bromoform	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
m+p-xylene	mg/kg	2	Org-014	<2	2	<2	<2	0	[NT]	
styrene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
o-Xylene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	

QUALITY CONTROL: VOCs in soil						Du	iplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
isopropylbenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
bromobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
n-propyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
2-chlorotoluene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
4-chlorotoluene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
tert-butyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
sec-butyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
4-isopropyl toluene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
n-butyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
hexachlorobutadiene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Surrogate Dibromofluorometha	%		Org-014	111	2	111	112	1	106	
Surrogate aaa-Trifluorotoluene	%		Org-014	95	2	87	90	3	96	
Surrogate Toluene-d ₈	%		Org-014	101	2	102	102	0	101	
Surrogate 4-Bromofluorobenzene	%		Org-014	87	2	87	87	0	100	

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018	
Date analysed	-			02/08/2018	2	02/08/2018	02/08/2018		02/08/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	2	<25	<25	0	94	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	2	<25	<25	0	94	
Benzene	mg/kg	0.2	Org-016	<0.2	2	<0.2	<0.2	0	93	
Toluene	mg/kg	0.5	Org-016	<0.5	2	<0.5	<0.5	0	95	
Ethylbenzene	mg/kg	1	Org-016	<1	2	<1	<1	0	90	
m+p-xylene	mg/kg	2	Org-016	<2	2	<2	<2	0	95	
o-Xylene	mg/kg	1	Org-016	<1	2	<1	<1	0	93	
naphthalene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	113	2	87	90	3	111	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil		Duplicate				Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018	
Date analysed	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	2	<50	<50	0	102	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	2	<100	<100	0	81	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	2	100	<100	0	77	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	2	<50	<50	0	102	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	2	180	120	40	81	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	2	<100	<100	0	77	
Surrogate o-Terphenyl	%		Org-003	88	2	87	86	1	92	

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018	
Date analysed	-			06/08/2018	2	02/08/2018	02/08/2018		02/08/2018	
Naphthalene	mg/kg	0.1	Org-012	<0.1	2	<0.1	<0.1	0	107	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	2	0.2	<0.1	67	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	2	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	2	0.2	<0.1	67	113	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	2	2.2	0.5	126	103	
Anthracene	mg/kg	0.1	Org-012	<0.1	2	0.5	<0.1	133	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	2	3.1	0.3	165	103	
Pyrene	mg/kg	0.1	Org-012	<0.1	2	2.9	0.3	162	108	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	2	1.5	0.2	153	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	2	1.3	0.2	147	103	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	2	2.0	0.3	148	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	2	1.4	0.1	173	107	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	2	0.5	<0.1	133	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	2	0.2	<0.1	67	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	2	0.6	<0.1	143	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	96	2	91	93	2	120	

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	7	01/08/2018	01/08/2018			[NT]	
Date analysed	-			[NT]	7	02/08/2018	06/08/2018			[NT]	
Naphthalene	mg/kg	0.1	Org-012	[NT]	7	<0.1	<0.1	0		[NT]	
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	7	0.2	<0.1	67		[NT]	
Acenaphthene	mg/kg	0.1	Org-012	[NT]	7	<0.1	<0.1	0		[NT]	
Fluorene	mg/kg	0.1	Org-012	[NT]	7	<0.1	<0.1	0		[NT]	
Phenanthrene	mg/kg	0.1	Org-012	[NT]	7	0.6	<0.1	143		[NT]	
Anthracene	mg/kg	0.1	Org-012	[NT]	7	0.2	<0.1	67		[NT]	
Fluoranthene	mg/kg	0.1	Org-012	[NT]	7	2.2	0.3	152		[NT]	
Pyrene	mg/kg	0.1	Org-012	[NT]	7	2.3	0.4	141		[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	7	1.2	0.2	143		[NT]	
Chrysene	mg/kg	0.1	Org-012	[NT]	7	1.0	0.2	133		[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	7	2	0.3	148		[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	7	1.1	0.2	138		[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	7	0.4	<0.1	120		[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	7	0.1	<0.1	0		[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	7	0.5	0.1	133		[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	7	99	94	5		[NT]	

QUALITY CON	ROL: Organ	ophospho	orus Pesticides			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]	
Date extracted	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018		
Date analysed	-			02/08/2018	2	02/08/2018	02/08/2018		02/08/2018		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]		
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]		
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	95		
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]		
Diazinon	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]		
Dichlorvos	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	94		
Dimethoate	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]		
Ethion	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	100		
Fenitrothion	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	102		
Malathion	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	80		
Parathion	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	109		
Ronnel	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	106		
Surrogate TCMX	%		Org-008	105	2	103	100	3	102		

QUALITY CO	NTROL: Organo	chlorine l	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]	
Date extracted	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018		
Date analysed	-			02/08/2018	2	02/08/2018	02/08/2018		02/08/2018		
НСВ	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
alpha-BHC	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	106		
gamma-BHC	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
beta-BHC	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	92		
Heptachlor	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	90		
delta-BHC	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
Aldrin	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	90		
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	92		
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
Endosulfan I	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
pp-DDE	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	98		
Dieldrin	mg/kg	0.1	Org-005	<0.1	2	0.1	<0.1	0	104		
Endrin	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	99		
pp-DDD	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	90		
Endosulfan II	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
pp-DDT	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	92		
Methoxychlor	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]		
Surrogate TCMX	%		Org-005	105	2	103	100	3	99		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018	
Date analysed	-			02/08/2018	2	02/08/2018	02/08/2018		02/08/2018	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	102	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate TCLMX	%		Org-006	105	2	103	100	3	102	

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			01/08/2018	2	01/08/2018	01/08/2018		01/08/2018	
Date analysed	-			02/08/2018	2	02/08/2018	02/08/2018		02/08/2018	
Arsenic	mg/kg	4	Metals-020	<4	2	<4	<4	0	107	
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	106	
Chromium	mg/kg	1	Metals-020	<1	2	15	16	6	106	
Copper	mg/kg	1	Metals-020	<1	2	81	85	5	108	
Lead	mg/kg	1	Metals-020	<1	2	67	65	3	106	
Mercury	mg/kg	0.1	Metals-021	<0.1	2	0.4	0.4	0	126	
Nickel	mg/kg	1	Metals-020	<1	2	11	12	9	101	
Zinc	mg/kg	1	Metals-020	<1	2	150	140	7	102	[NT]

QUALITY	CONTROL	Misc Soi	il - Inorg		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			31/07/2018	[NT]		[NT]	[NT]	31/07/2018	[NT]
Date analysed	-			31/07/2018	[NT]		[NT]	[NT]	31/07/2018	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	105	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci. & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, sample 197270-2 was below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

PAHs in Soil - The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86457	86457.01				Suburb: Kensington				To: Envirolab Services				
Project Name:	UNSV	V Hall			Order N	lumber		_		12 Ashley Street				
Project Manage	r:Kurt P	plambeck			Sampler:				Attn: Aileen					
Emails:	kurt.r	olambeck@d	ouglaspartr	ners.com.au					Phone:					
Date Required:	Stand								_	Email:				
Prior Storage:	Li Esky D Fridge L Shelved				Do samp	les contai	n 'potentia	I' HBM?	Yes []	No 🗅	(If YES, the	n handle, t	ransport and	d store in accordance with FPM HAZID)
		oled	Sample Type	Container Type					Analytes					
Sample ID	Lab !D	Date Sampled	S - soil W - water	G - glass P - plastic	Heavy Metals	OCP/OPP PCB	TRH and BTEX	HVU 40 450.	Total Phenols	Asbestos 500 ml	C BUEN	Combo 8A	Combo 3Å-	Notes/preservation
3/0-0.1	1	25/07/18	-											
3A/0.1-0.2	Ż	25/07/18			Y	X	X	X	X	X	Х	X		
3A/0.4-0.5	Ŝ	25/07/18			X	X	X	$\boldsymbol{\chi}$	X	- AL				
4/0-0.1	4	25/07/18			X	X	X	x	へ	X		X		
4/0.5	5_	25/07/18												
4/1.5	6	25/07/18										X		
BD4/20180725	<u>۲</u>	25/07/18			×		<u> </u>	×				<u>-</u>	X	intra
BD5/20180725	S	25/07/18	- I					1		L f	nvirolab Ser			
									E ทุ ้ ขึ้น	DUAB Char	12 Ashi wood NSW	ey St		
					1						Ph: (02) 9910			· ·
									<u>Job</u>	No: 19	7270			
					Ŧ				Date	Received:	30.07	18		
·	· · · · · · · · · · · · · · · · · · ·							-		Received: ved By: ~	5.17			
									Temp	Cool/Amb	ient			
,										ng: lce/lcer	ack Broken/None			
PQL (S) mg/kg														req'd for all water analytes 🏾
PQL = practical	quantit	ation limit.	If none of	jiven, defaul	t to Labor	atory Met	hod Dete	ction Limit			·			
Metals to Analy	se: 8HN	1 unless sp	ecified he	ere:							eport/Ref	erence P		
Total number of					nquished	by:	1	Transpo	rted to la	aboratory	/ by:			
Send Results to		ouglas Part	ners Pty L				- 1 -			I	Data 9 T	Phone		Fax:
Signed: ·	$\overline{2}$	1-18-1		Received b	<u>y: </u>	Enge	Lo	hert-	<u> </u>		Date & T	ime: {	30.0	7.18 15:17

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 197270-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86457.01, Kensington
Number of Samples	8 Soil
Date samples received	30/07/2018
Date completed instructions received	06/08/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	13/08/2018	
Date of Issue	10/08/2018	
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.	
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are	e denoted with *

<u>Results Approved By</u> Jeremy Faircloth, Organics Supervisor

Authorised By

Jacinta Hurst, Laboratory Manager

Envirolab Reference: 197270-A Revision No: R00

PAHs in TCLP (USEPA 1311)			
Our Reference		197270-A-2	197270-A-7
Your Reference	UNITS	3A/0.1-0.2	BD4/20180725
Date Sampled		25/07/2018	25/07/2018
Type of sample		Soil	Soil
pH of soil for fluid# determ.	pH units	6.7	7.6
pH of soil TCLP (after HCI)	pH units	1.6	1.5
Extraction fluid used	-	1	1
pH of final Leachate	pH units	5.0	5.0
Date extracted	-	09/08/2018	09/08/2018
Date analysed	-	10/08/2018	10/08/2018
Naphthalene in TCLP	mg/L	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001
Total +ve PAH's	mg/L	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	99	104

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

QUALITY CON	rol: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			09/08/2018	[NT]		[NT]	[NT]	09/08/2018	
Date analysed	-			10/08/2018	[NT]		[NT]	[NT]	10/08/2018	
Naphthalene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	86	
Acenaphthylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	92	
Phenanthrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	86	
Anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	85	
Pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	86	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	85	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	89	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	102	[NT]		[NT]	[NT]	88	

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	nsufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci, & E.Coli levels are less than							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments analysed outside of RHT

Andrew Fitzsimons

From: Sent: To: Cc: Subject: Nancy Zhang Monday, 6 August 2018 6:06 PM Kurt Plambeck Samplereceipt RE: Results for Registration 197270 86457.01, Kensington

Follow Up Flag: Flag Status: Follow up Flagged

Hi Kurt,

Sure, will do

ELS: 197270-A TAT: 5 days Due: 13/8/18

Ftz

Regards,

Nancy Zhang | Assistant Lab Manager | Envirolab Services Pty Ltd

Great Science, Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E nzhang@envirolab.com.au | W www.envirolab.com.au

Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link

From: Kurt Plambeck [mailto:kurt.plambeck@douglaspartners.com.au]
Sent: Monday, 6 August 2018 4:44 PM
To: Nancy Zhang <NZhang@envirolab.com.au>
Subject: RE: Results for Registration 197270 86457.01, Kensington

Nancy,

2

7

Can you please run TCLP (PAH) on sample 3A/0.1-0.2 and BD4/20180725

Cheers

CERTIFICATE OF ANALYSIS

Work Order	ES1822282	Page	: 1 of 6	
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	Environmental Division Sydney	
Contact	: MR KURT PLAMBECK	Contact	: Shirley LeCornu	
Address	: PO BOX 472 96 HERMITAGE ROAD WEST RYDE NSW, AUSTRALIA 1685	Address	277-289 Woodpark Road Smithfield NSW Australia 2164	
Telephone	: +61 02 98090666	Telephone	: +61-3-8549 9630	
Project	: 86457.01 UNSW Hall	Date Samples Received	: 30-Jul-2018 15:50	
Order number	:	Date Analysis Commenced	: 31-Jul-2018	
C-O-C number	:	Issue Date	: 02-Aug-2018 20:19	
Sampler	:		IC-AUG-2018 20:19	A
Site	:			
Quote number	: EN/222/18		Accreditation No.	975
No. of samples received	: 1		Accredited for compliance v	
No. of samples analysed	: 1		ISO/IEC 17025 - Test	ting

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 6 Work Order : ES1822282 Client : DOUGLAS PARTNERS PTY LTD Project : 86457.01 UNSW Hall

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BD1/20180725	 	
	CI	ient sampli	ng date / time	25-Jul-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1822282-001	 	
				Result	 	
EA055: Moisture Content (Dried	@ 105-110°C)					
Moisture Content		1.0	%	5.7	 	
EG005T: Total Metals by ICP-AE	S					
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	4	 	
Copper	7440-50-8	5	mg/kg	13	 	
Lead	7439-92-1	5	mg/kg	28	 	
Nickel	7440-02-0	2	mg/kg	2	 	
Zinc	7440-66-6	5	mg/kg	71	 	
EG035T: Total Recoverable Mei	rcury by FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP075(SIM)B: Polynuclear Arom						
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydro	ocarbons	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hyd	drocarbons					
C6 - C9 Fraction		10	mg/kg	<10	 	

Page : 4 of 6 Work Order : ES1822282 Client : DOUGLAS PARTNERS PTY LTD Project : 86457.01 UNSW Hall

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BD1/20180725	 	
,	Cl	ient sampli	ng date / time	25-Jul-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1822282-001	 	
				Result	 	
EP080/071: Total Petroleum Hydrocar	rbons - Continued					
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)		50		<50		
>C10 - C16 Fraction		50	mg/kg		 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN			ä			1
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP075(SIM)S: Phenolic Compound Su	urrogates					
Phenol-d6	13127-88-3	0.5	%	86.2	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	85.8	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	76.4	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	90.4	 	
Anthracene-d10	1719-06-8	0.5	%	95.5	 	
4-Terphenyl-d14	1718-51-0	0.5	%	85.6	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	109	 	
Toluene-D8	2037-26-5	0.2	%	112	 	

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BD1/20180725	 	
Client sampling date / time			25-Jul-2018 00:00	 	 	
Compound	CAS Number	LOR	Unit	ES1822282-001	 	
				Result	 	
EP080S: TPH(V)/BTEX Surrogates - C	ontinued					
4-Bromofluorobenzene	460-00-4	0.2	%	98.7	 	

Surrogate Control Limits

Sub-Matrix: SOIL		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound S	urrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QUALITY CONTROL REPORT

Work Order	: ES1822282	Page	: 1 of 7	
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division S	Sydney
Contact	: MR KURT PLAMBECK	Contact	: Shirley LeCornu	
Address	: PO BOX 472 96 HERMITAGE ROAD WEST RYDE NSW, AUSTRALIA 1685	Address	277-289 Woodpark Roa	d Smithfield NSW Australia 2164
Telephone	: +61 02 98090666	Telephone	: +61-3-8549 9630	
Project	: 86457.01 UNSW Hall	Date Samples Received	: 30-Jul-2018	
Order number	:	Date Analysis Commenced	: 31-Jul-2018	
C-O-C number	:	Issue Date	: 02-Aug-2018	NATA
Sampler	:			Hac-MRA NATA
Site	:			
Quote number	: EN/222/18			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 1840395)							
ES1822307-001	Anonymous	EA055: Moisture Content		0.1	%	14.9	15.7	5.30	0% - 50%
ES1822307-012	Anonymous	EA055: Moisture Content		0.1	%	9.5	8.8	8.19	No Limit
EG005T: Total Metal	Is by ICP-AES (QC Lot	: 1844888)							
ES1821108-022	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	7	5	31.9	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	13	10	27.3	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	9	6	32.7	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	10	8	21.4	No Limit
ES1822344-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	208	203	2.35	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	107	128	18.1	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	5	45.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	92	76	19.2	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	185	152	19.9	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	127	109	14.8	0% - 20%
EG035T: Total Reco	overable Mercury by Fl	MS (QC Lot: 1844889)							
ES1821108-022	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1822344-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.00	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 1839418)							
ES1822212-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 3 of 7
Work Order	: ES1822282
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 86457.01 UNSW Hall

ub-Matrix: SOIL					-	Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 1839418) - continued							
S1822212-001	Anonymous	EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
S1822292-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
P080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 1839405)							
S1822222-005	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
	troleum Hydrocarbons								

Page	: 4 of 7
Work Order	: ES1822282
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 86457.01 UNSW Hall

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	troleum Hydrocarbons	Gige (QC Lot: 1839419) - continued							
ES1822212-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	78700	74000	6.26	0% - 20%
		EP071: C29 - C36 Fraction		100	mg/kg	6420	7210	11.6	0% - 20%
		EP071: C10 - C14 Fraction		50	mg/kg	740	740	0.00	0% - 50%
ES1822292-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 1839405)							
ES182222-005	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 1839419)							
ES1822212-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	79000	76900	2.69	0% - 20%
		EP071: >C34 - C40 Fraction		100	mg/kg	2430	2370	2.55	0% - 20%
		EP071: >C10 - C16 Fraction		50	mg/kg	3780	3860	1.92	0% - 20%
ES1822292-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC	Lot: 1839405)								
ES1822222-005	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005T: Total Metals by ICP-AES (QCLot: 18448	88)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	102	86	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	102	83	113
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	98.0	76	128
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	106	86	120
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	106	80	114
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	106	87	123
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	112	80	122
EG035T: Total Recoverable Mercury by FIMS(Q	CLot: 1844889)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	81.3	70	105
EP075(SIM)B: Polynuclear Aromatic Hydrocarbor	ns (QCLot: 1839418)							-
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	95.5	77	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	96.6	72	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	92.7	73	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	96.6	72	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	94.9	75	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	91.1	77	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	93.4	73	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	91.3	74	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	88.3	69	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	89.7	75	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	88.7	68	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	97.2	74	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	91.1	70	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	91.7	61	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	92.5	62	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	88.8	63	121
EP080/071: Total Petroleum Hydrocarbons (QCL	ot: 1839405)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	93.3	68	128
EP080/071: Total Petroleum Hydrocarbons (QCL	ot: 1839419)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	108	75	129
		100	mg/kg	<100	450 mg/kg	107	77	131
EP071: C15 - C28 Fraction								

Page	: 6 of 7
Work Order	: ES1822282
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 86457.01 UNSW Hall

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NI	EPM 2013 Fractions (QCL	_ot: 1839405) - co	ntinued					
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	98.4	68	128
EP080/071: Total Recoverable Hydrocarbons - NI	EPM 2013 Fractions (QCL	_ot: 1839419)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	98.6	77	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	93.7	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	85.1	63	131
EP080: BTEXN (QCLot: 1839405)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	91.0	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	92.2	67	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	87.9	65	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	94.6	66	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	93.9	68	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	92.3	63	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005T: Total Met	als by ICP-AES (QCLot: 1844888)						
ES1821108-022	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	94.3	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	103	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	102	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	102	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	101	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	103	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	107	70	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 1844889)						
ES1821108-022	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	90.3	70	130
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 1839418)						
ES1822292-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	86.0	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	99.2	70	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 1839405)						
ES1822222-005	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	92.9	70	130
FP080/071: Total F	etroleum Hydrocarbons (QCLot: 1839419)						

Page	: 7 of 7
Work Order	: ES1822282
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 86457.01 UNSW Hall

Sub-Matrix: SOIL				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 1839419) - continued						
ES1822292-001	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	88.4	73	137
		EP071: C15 - C28 Fraction		2319 mg/kg	103	53	131
		EP071: C29 - C36 Fraction		1714 mg/kg	112	52	132
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCI	ot: 1839405)					
ES1822222-005	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	92.6	70	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QCI	_ot: 1839419)					
ES1822292-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	89.4	73	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	107	53	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	115	52	132
EP080: BTEXN (Q	CLot: 1839405)						
ES1822222-005	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	78.4	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	82.7	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	83.0	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	83.2	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	85.9	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	80.9	70	130

		Assessment to assist wit	in Quality Review
Work Order	: ES1822282	Page	: 1 of 4
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR KURT PLAMBECK	Telephone	: +61-3-8549 9630
Project	: 86457.01 UNSW Hall	Date Samples Received	: 30-Jul-2018
Site	:	Issue Date	: 02-Aug-2018
Sampler	:	No. of samples received	:1
Order number	:	No. of samples analysed	:1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method	Sample Date	E>	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) BD1/20180725	25-Jul-2018				31-Jul-2018	08-Aug-2018	✓
EG005T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) BD1/20180725	25-Jul-2018	01-Aug-2018	21-Jan-2019	1	01-Aug-2018	21-Jan-2019	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) BD1/20180725	25-Jul-2018	01-Aug-2018	22-Aug-2018	1	02-Aug-2018	22-Aug-2018	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) BD1/20180725	25-Jul-2018	31-Jul-2018	08-Aug-2018	~	31-Jul-2018	09-Sep-2018	~
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071) BD1/20180725	25-Jul-2018	31-Jul-2018	08-Aug-2018	~	01-Aug-2018	09-Sep-2018	✓
Soil Glass Jar - Unpreserved (EP080) BD1/20180725	25-Jul-2018	31-Jul-2018	08-Aug-2018	~	31-Jul-2018	08-Aug-2018	~
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071) BD1/20180725	25-Jul-2018	31-Jul-2018	08-Aug-2018	~	01-Aug-2018	09-Sep-2018	✓
Soil Glass Jar - Unpreserved (EP080) BD1/20180725	25-Jul-2018	31-Jul-2018	08-Aug-2018	~	31-Jul-2018	08-Aug-2018	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BD1/20180725	25-Jul-2018	31-Jul-2018	08-Aug-2018	1	31-Jul-2018	08-Aug-2018	-

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	12	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

3-8-18

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86457.01	01			Suburb:		Kensington	on		To:	Envir	Envirolab Services	rices		
Project Name:	UNSW Hall	Hall	-		Order Number	umber					12 A:	12 Ashley Street	et		
Project Manager: Kurt Pplambeck	r: Kurt Pr	Jambeck			Sampler:	**				Attn:	Aileen	u			
Emails:	kurt.pl	ambeck@d	kurt. plambeck@douglaspartners.com.au	iers.com.au						Phone:			a state i den se		
Date Required:	0	Ird								Email:					
Prior Storage:		L. Fridge	ge 🗆 Shelved	elved	Do sampl	les contain	Do samples contain 'potential' HBM?		Yes 🗄	No E (If YES, ther	ו handle, tra	insport and	store in acco	(If YES, then handle, transport and store in accordance with FPM HAZID)
		ette	Sample	Container				4	Analytes						
Samla	2 0 -	eg f	- Ahe			Ъ	-		ŝ			A	Ŕ	4	
D	ĝ ⊖	jniiqme2	lioe - 2 91ew - W	sselg - Ə itselq - 9	yvs9H etals	BCB OCb/Obl	NRH and XJT8	Н∀д	lstoT elonad9	otsədaA Im 003	ХЭТ8	8 odmoD	E odmoD	0 <u>2</u>	Notes/preservation
6/0.6	16														
6/1.0	13														
6/5.7	1.8								·····						
BD1/20180725	61				X		×	×					×	NEW	(ALS)
BD2/20180725	2				*		×	×		-			\times	N/Q	X
BD3/20180725	21														
spike	22					÷					\times				
blank	23								- -		×		-	_	\$
													Envil	Environmental Division	Division
		an a											ns Sydr Sydr	Sydney Work Order Reference FS1822282	ference 2282
		مرجع فرواني والمراجع											• •		
													1		
							-				1		L		
		and a many divide the second second second										3	 		
PQL (S) mg/kg				-								ANZECC	C	Telephone : + 61-2-61 of con	Salim
PQL = practical quantitation limit.	I quantit	ation limit	. If none (If none given, default to Laboratory Method Detection Limit	t to Labora	atory Meth	nod Detec	tion Limit		Lab Re	port/Ref(Lab Report/Reference No: 1970 $^{0.6}$	0: 197	0 e 0	
Metals to Analyse: 8HM unless specified here:	/se: 8HN	unless s	pecified h										/ 11)	
Total number of samples in container:	sam	es in cont	ainer:	-	Kelinquished by	by:		Iranspol	rted to la	I ransported to laboratory by:	DA:	Dhone.			
Sinned Cesuits to:		ouglas rai	Uouglas Farmers Fly Lio	eceiv	Address.	AND	DEL				Date & Time:		2011	a''	2, CA M
2				Dalin's Fil	Fil MING	NG RAN	1								
EDM - ENVID/Form COC 02	00.00	÷				12:45		0							
3.1.1VI - LUIA VIGNA VIGNA VIGNA					:	1		Fage 2 01 2							Rev4/October2016

Appendix G

Quality Assurance / Quality Control Report

DATA QUALITY ASSESSMENT

Q1. Data Quality Objectives

The contamination assessment was prepared with reference to the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of the *National Environment Protection* (*Assessment of Site Contamination*) *Measure* 1999 as amended 2013 (NEPC, 2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

The DQOs have been addressed within the report as shown in Table Q1.

Data Quality Objective	Report Section where Addressed
State the Problem	S1 Introduction
Identify the Decision	S1 Introduction (objective)
	S13 Analysis and Discussion of Results
	S14 Conclusion and Recommendations
Identify Inputs to the Decision	S1 Introduction
	S2 Scope of Works
	S3 Site Identification
	S10 Site Assessment Criteria
	S12 Results Summary
Define the Boundary of the Assessment	S3 Site Identification
	Drawing 1 - Appendix B
Develop a Decision Rule	S10 Site Assessment Criteria
Specify Acceptable Limits on Decision Errors	S9 Fieldwork
	S10 Site Assessment Criteria
	QA/QC Procedures and Results – Sections Q2, Q3
Optimise the Design for Obtaining Data	S2 Scope of Works
	S9 Fieldwork
	QA/QC Procedures and Results – Sections Q2, Q3

Q2. FIELD AND LABORATORY QUALITY CONTROL

The field and laboratory quality control (QC) procedures and results are summarised in Tables Q2 and Q3. Reference should be made to the fieldwork and analysis procedures in Section 9 and the laboratory results certificates in Appendix F for further details.

Table Q2: Field QC

Frequency	Acceptance Criteria	Achievement
5% primary samples	RPD <30% inorganics), <50% (organics)	yes ¹
5% primary samples	RPD <30% inorganics), <50% (organics)	yes ²
1 per field batch	60-140% recovery	Yes ³
1 per field batch	<pql lor<="" td=""><td>Yes⁴</td></pql>	Yes ⁴
	5% primary samples 5% primary samples 1 per field batch	5% primary samplesRPD <30% inorganics), <50% (organics)5% primary samplesRPD <30% inorganics), <50% (organics)

qualitative assessment of RPD results overall; refer Section Q2.1 1

2 qualitative assessment of RPD results overall; refer Section Q2.2

3. Trip spike results between for BTEX 84% and 99%

4 Trip blank results for BTEX <PQL

Table Q3: Laboratory QC

Item	Frequency	Acceptance Criteria	Achievement
Analytical laboratories used		NATA accreditation	yes
Holding times		In accordance with NEPC (2013) which references various Australian and international standards	yes
Laboratory / Reagant Blanks	1 per lab batch	<pql< td=""><td>yes</td></pql<>	yes
Laboratory duplicates	10% primary samples	Laboratory specific ¹	
Matrix Spikes	1 per lab batch	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	
Surrogate Spikes	organics by GC	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	
Control Samples	1 per lab batch	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	

In summary, the QC data is considered to be of sufficient quality to be acceptable for the assessment.

Q2.1 Laboratory Replicates

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory ELS and as a measure of consistency of sampling techniques. The comparative results of analysis between original and intra-laboratory replicate samples are summarised in Table Q4.

Note that, where both samples are below LOR/PQL the difference and RPD has been given as zero. Where one sample is reported below LOR/PQL, but a concentration is reported for the other, the LOR/PQL value has been used for calculation of the RPD for the less than LOR/PQL sample.

ChemName	5/0-0.1	BD2/20180725	RPD	4/0-0.1	BD4/20180725	RPD
Arsenic	<4.0	<4.0	0	<4.0	<4.0	0
Cadmium	<0.4	<0.4	0	<0.4	<0.4	0
Chromium (III+VI)	6.0	7.0	15	6.0	7.0	15
Copper	53.0	70.0	28	16.0	20.0	22
Lead	20.0	16.0	22	14.0	24.0	53
Mercury	<0.1	<0.1	0	0.1	0.2	67
Nickel	6.0	5.0	18	14.0	12.0	15
Zinc	31.0	30.0	3	33.0	61.0	60
C10-C16	<50.0	<50.0	0	<50.0	<50.0	0
C16-C34	540.0	730.0	30	<100.0	150.0	40
C34-C40	670.0	890.0	28	<100.0	130.0	26
F2-NAPHTHALENE	<50.0	<50.0	0	<50.0	<50.0	0
C6 - C9	<25.0	<25.0	0	<25.0	<25.0	0
C10 - C14	<50.0	<50.0	0	<50.0	<50.0	0
C15 - C28	150.0	200.0	29	<100.0	<100.0	0
C29-C36	560.0	760.0	30	<100.0	140.0	33
C10 - C40 (Sum of total)	1200.0	1600.0	29	<50.0	280.0	139
C6-C10 less BTEX (F1)	<25.0	<25.0	0	<25.0	<25.0	0
C6-C10	<25.0	<25.0	0	<25.0	<25.0	0
Benzene	<0.2	<0.2	0	<0.2	<0.2	0
Ethylbenzene	<1.0	<1.0	0	<1.0	<1.0	0
Toluene	<0.5	<0.5	0	<0.5	<0.5	0
Xylene (m & p)	<2.0	<2.0	0	<2.0	<2.0	0
Xylene (o)	<1.0	<1.0	0	<1.0	<1.0	0
Xylene Total	<1.0	<1.0	0	<1.0	<1.0	0
Acenaphthene	<0.1	<0.1	0	<0.1	<0.1	0
Acenaphthylene	<0.1	<0.1	0	<0.1	0.2	67
Anthracene	<0.1	<0.1	0	<0.1	0.2	67
Benz(a)anthracene	<0.1	0.1	0	<0.1	1.2	169
Benzo(a) pyrene	<0.05	<0.05	0	0.06	1.1	179
Benzo(g,h,i)perylene	<0.1	<0.1	0	<0.1	0.5	133
Chrysene	<0.1	<0.1	0	<0.1	1.0	164
Dibenz(a,h)anthracene	<0.1	<0.1	0	<0.1	0.1	0
Fluoranthene	<0.1	<0.1	0	0.2	2.2	167
Fluorene	<0.1	<0.1	0	<0.1	<0.1	0
Indeno(1,2,3-c,d)pyrene	<0.1	<0.1	0	<0.1	0.4	120
Naphthalene	<1.0	<1.0	0	<1.0	<1.0	0
Naphthalene	<0.1	<0.1	0	<0.1	<0.1	0
Phenanthrene	<0.1	<0.1	0	0.1	0.6	143
Pyrene	<0.1	<0.1	0	0.1	2.3	183

Table Q4: Relative Percentage Difference Results- Intralab

The calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes and \pm 50% for organics with the with the exception of those shaded. However, this is not considered to be significant because: The number of replicate pairs being collected from fill soils which were heterogeneous in nature;

- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence greater variability can be expected;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

Overall, the intra-laboratory replicate comparisons indicate that the sampling techniques were generally consistent and repeatable.

Q2.1.1 Inter-Laboratory Analysis

Inter-laboratory replicates were conducted as a check of the reproducibility of results between the primary laboratory ELS and the secondary laboratory ALS and as a measure of consistency of sampling techniques.

The comparative results of analysis between original and inter-laboratory replicate samples are summarised in Table Q5.

Note that, where both samples are below LOR/PQL the difference and RPD has been given as zero. Where one sample is reported below LOR/PQL, but a concentration is reported for the other, the LOR/PQL value has been used for calculation of the RPD for the less than LOR/PQL sample.

	1/0.1	BD1/20180725	Difference	RPD
As	<4	<5	0	0
Cd	<0.4	<1	0	0
Cr	7	4	3	55
Cu	23	13	10	56
Pb	35	28	7	22
Hg	<0.1	<0.1	0	0
Ni	5	2	3	86
Zn	80	71	9	12
total ^b	1.55	<7.5	0	0
BaP TEQ	<0.5	0.6	0	0
BaP	0.2	<0.5	0	0
Naphthalene	<0.1	<0.5	0	0
C ₆ - C ₉	<25	<10	0	0

 Table Q5:
 Relative Percentage Difference Results

	1/0.1	BD1/20180725	Difference	RPD
C6-C10	<25	<10	0	0
>C10-C16	<50	<50	0	0
F1 - C6 – C10 less BTEX	<25	<10	0	0
F2 - >C10- C16 less naphthalene	<50	<50	0	0
>C16-C34	<100	<100	0	0
>C34-C40	<100	<100	0	0
Benzene	<0.2	<0.2	0	0
Toluene	<0.5	<0.5	0	0
Ethylbenzene	<1	<0.5	0	0
xylene	<1	<0.5	0	0

The calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes and \pm 50% for organics with the exception of those shaded. However, this is not considered to be significant because: The typically low actual differences in the concentrations of the replicate pairs where some

RPD exceedances occurred. High RPD values reflect the small differences between two small numbers;

- The number of replicate pairs being collected from fill soils which were heterogeneous in nature;
- Soil replicates, rather than homogenised duplicates, were used to minimise the risk of volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the LOR/PQL. High RPD values reflect the low concentrations;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

The overall inter-laboratory replicate comparisons indicate that the sampling technique was generally consistent and repeatable and the two laboratory sampling handling and analytical methods are comparable.

Q3. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs):

• Completeness – a measure of the amount of usable data from a data collection activity;

- Representativeness the confidence (qualitative) of data representativeness of media present on-site;
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table Q6.

Data Quality Indicator	Method(s) of Achievement
Completeness	Planned systematic and selected target locations sampled;
	Preparation of field logs, sample location plan and chain of custody (COC) records;
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody;
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM);
	Completion of COC documentation;
	NATA endorsed laboratory certificates provided by the laboratory;
	Satisfactory frequency and results for field and laboratory QC samples as discussed in Section Q2.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project;
	Works undertaken by appropriately experienced and trained DP environmental scientist / engineer;
	Use of NATA registered laboratories, with test methods the same or similar between laboratories;
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled;
	Spatial distribution of sample locations;
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs;
	Samples were extracted and analysed within holding times;
	Samples were analysed in accordance with the analysis request.

Table Q6: Data Quality Indicators

Douglas Partners

Data Quality Indicator	Method(s) of Achievement
Precision	Acceptable RPD between original samples and replicates;
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQIs have been complied with. As such, it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.