Soil investigation report – Residential house

771 Cudgen Road, Cudgen, NSW

January 2019, Ref. 18084 R01 V2

Cavvanba Consulting Pty Ltd

1/66 Centennial Circuit PO Box 2191 Byron Bay NSW 2481 ABN: 37 929 679 095

t: (02) 6685 7811 f: (02) 6685 5083 inbox@cavvanba.com

Report Details

Report:

Soil investigation report - Residential house

771 Cudgen Road, Cudgen, NSW

Ref: 18084 R01

for

Woollam Constructions Pty Ltd

Distribution:

Deliverables	Status	Date	Recipient
1	18084 R01	20/12/2018	Tony Jackman Woollam Constructions
	V2	24/01/2019	
1	18084 R01	20/12/2018	Cavvanba Project File
	V2	24/01/2019	
	18084 R01	20/12/2018	Cavvanba Library
1	V2	24/01/2019	

This document was prepared in accordance with the scope of services described in Cavvanba's proposal and our Standard Trading Conditions, and the Limitations in Section 1.5 herein, for the sole use of Woollam Constructions, their agents, the site owner and the relevant regulatory authorities. This document should not be used or copied by other parties without written authorisation from Cavvanba.

1 / 66 Centennial Circuit PO Box 2191 Byron Bay NSW 2481 t (02) 6685 7811 f (02) 6685 5083

Glen Chisnall Environmental Scientist

Date: 24 January 2019

Ben Wackett

Principal Environmental Scientist

Date: 24 January 2019

Cheal

Table of Contents

1.0	Introduction	1
1.1	Professional experience	1
1.2	Background	1
1.3	Objectives	1
1.4	Scope of work	2
1.5	Limitations	2
2.0	Site setting	4
2.1	Site identification	4
2.2	Surrounding land uses	4
2.3	Topography	4
2.4	Geology and soils	4
2.	4.1 Geology	
2.	4.2 Soils	5
3.0	Previous investigations	
3.1	OCTIEF (2018)	6
3.2	Cavvanba (2018)	6
4.0	Site inspection	7
4.1	Site observations	7
5.0	Limited soil sampling investigation	
5.1	Contaminants of concern	
5.2	Relevant environmental media	
5.3	Relevant soil environmental criteria	8
6.0	Soil investigation	
6.1	Soil sampling strategy	
6.2	Soil sampling methodology	
6.3	Data usability1	LO
7.0	Conditions encountered	
7.1	Soil conditions	
7.2	Evidence of reworked soil	2
8.0	Soil analytical results	13
9.0	Discussion and recommendations	
9.1	Lead1	١4
9.2	Recommendations	14

10.0	Glossary and references	15
10.1	Glossary	15
10.2	References	16

Figures

Figure 1 – Site Location Plan

Figure 2 – Site Layout house

Figure 3 – Extent of lead impact

Tables

Table 1: Soil Analytical Summary

Table 2: Soil Analytical Summary – OCPs and Lead

Table 3: Soil Analytical Summary – Quality Control

Soil Analytical Summary Table Notes

Appendices

Appendix A – Photographic log

Appendix B – OCTIEF (2018) Preliminary and detailed site investigation – 771 Cudgen Road, Cudgen, NSW 2487 Figure 3 DSI sampling locations

Appendix C - Data Usability and Introduction to Data Usability

Appendix D – Laboratory Reports

1.0 Introduction

Cavvanba Consulting Pty Ltd (Cavvanba) was commissioned by Woollam Constructions (WC) to undertake an intrusive soil investigation at 771 Cudgen Road, Cudgen NSW 2487.

The scope of work was detailed in Cavvanba's proposal to Woollam Constructions, and associated acceptance of engagement on 16 November 2018. This report should be read in conjunction with Cavvanba's *General Limitations*, included as Section 1.5.

1.1 Professional experience

Cavvanba is a specialist contaminated land consultancy and is suitably qualified to conduct the works. Cavvanba employees hold certified environmental practitioner (CEnvP) qualifications, which are nationally recognised competencies.

Cavvanba is a full member of the Australian Contaminated Land Consultants Association (ACLCA) in NSW and Queensland. ACLCA is an association that "represents the major environmental consulting firms involved in the assessment and management of contaminated sites in Australia".

Ben Wackett is a WorkCover NSW licensed asbestos assessor (LAA 000132), and an associate member of the Australian Institute of Occupational Hygienists (AIOH). Ben is also a NSW EPA accredited Site Auditor, under the *Contaminated Land Management Act* 1997.

Ben is a member of the Environmental Institute of Australia and New Zealand (EIANZ).

1.2 Background

The site consists of a farm shed, residential house and garage with farmland extending out into the western portion. Refer to Appendix A for a photographic log and Figure 1 for the investigation boundary and features. It is understood that the previous owner had occupied the site for approximately 30 years, and used it for agriculture.

As part of the new Tweed Valley Hospital development, the residential house and garage are proposed to be demolished in order for preliminary works to continue at the site. OCTIEF conducted a preliminary and detailed investigation at the site in September 2018 (OCTIEF 2018), *Preliminary and Detailed Site Investigation – 771 Cudgen Road, Cudgen, NSW 2487 (Ref. J8961).* For further information please refer to Section 3.0 of this report.

Lead in soils is a common contaminated land issue associated with old buildings, and the EPA (2003) Managing Lead Contamination in Home Maintenance, Renovation and Demolition Practices. A Guide for Councils states that:

- there are over a million homes in NSW that were built before 1970 and are potentially contaminated with lead paint, dust and soil; and
- New Zealand research found soil lead levels of 16–28 ppm in homes built less than 10years ago but 455– 16,858 ppm in homes built over 90 years ago.

1.3 Objectives

The objectives of the soil investigation report were to address the potential site contamination issues associated with lead paint from the residential house and organochlorine pesticides (OCPs) associated with sub slab pest treatment underneath the garage.

1.4 Scope of work

The scope of work included:

- Review of previous environmental investigations report OCTIEF (2018).
- Completion of a comprehensive site walkover and visual inspection for key features to identify potential areas of environmental concern on- and off-site.
- Advancement of 22 soil test pits using a hand auger in a staged investigation.
- Collection and analysis of samples for potential contaminants of concern, which will assist in the classification of any material required for offsite disposal.
- Inclusion of the results and findings into a report.

Guidance that will be considered in preparing this soil investigation report includes:

- Department of Urban Affairs and Planning (1998) State Environmental Planning Policy number 55: Managing Land Contamination, Planning Guidelines SEPP 55 Remediation of Land.
- NSW EPA (formerly Office of Environment and Heritage (OEH)) (2011) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd edition).
- National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure 1999 (ASC NEPM (2013)) Schedule B2: Guideline on Site Characterisation (2013).

The development application pathway for the Project consists of a staged Significant Development Application under section 4.22 of the *Environmental Planning and Assessment Act 1979* (EP&A) Act. This report is provided to meet the requirements of SEPP 55 and Department of Planning and Urban Affairs (1998) *Planning Guidelines SEPP 55 – Remediation of Land*.

1.5 Limitations

The findings of this report are based on the objectives and scope of work outlined above. Cavvanba performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession. No warranties or guarantees, express or implied, are made. Subject to the scope of work, Cavvanba's assessment is limited strictly to identifying typical environmental conditions associated with the subject property, and does not include evaluation of any other issues. This report does not comment on any regulatory obligations based on the findings, for which a legal opinion should be sought. This report relates only to the objectives and scope of work stated, and does not relate to any other works undertaken for the Client.

The report and conclusions are based on the information obtained at the time of the assessment. Changes to the subsurface conditions may occur subsequent to the investigation described herein, through natural processes or through the intentional or accidental addition of contaminants, and these conditions may change with space and time.

The site history, and associated uses, areas of use, and potential contaminants, were determined based on the activities described in the scope of work. Additional site history information held by the Client, regulatory authorities, or in the public domain, which was not provided to Cavvanba or was not sourced by Cavvanba under the scope of work, may

identify additional uses, areas of use and/or potential contaminants. The information sources referenced have been used to determine site history and desktop information regarding local subsurface conditions. While Cavvanba has used reasonable care to avoid reliance on data and information that is inaccurate or unsuitable, Cavvanba is not able to verify the accuracy or completeness of all information and data made available.

Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history, and which may not be expected at the site. The absence of any identified hazardous or toxic materials on the subject property, should not be interpreted as a warranty or guarantee that such materials do not exist on the site. If additional certainty is required, additional site history or desktop studies, or environmental sampling and analysis, should be commissioned.

The results of this assessment are based upon site inspection and fieldwork conducted by Cavvanba personnel and information provided by the Client. All conclusions regarding the property area are the professional opinions of the Cavvanba personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, Cavvanba assumes no responsibility or liability for errors in any data obtained from regulatory agencies, information from sources outside of Cavvanba, or developments resulting from situations outside the scope of this project.

2.0 Site setting

2.1 Site identification

The site location and investigation boundary are shown on Figure 1.

Owner: Health Infrastructure NSW

Street address: 771 Cudgen Road, Cudgen NSW 2487

Property description: Lot 11, Deposited Plan (DP) 1246853.

Investigation area (part of Approximately 900 m² (consisting of the area surrounding

Lot 11 DP 1246853): the residential house and garage).

Co-ordinates: Latitude: -28.265228

Longitude: 153.566395

Local government area: Tweed Shire Council.

Elevation: Approximately 27 m above AHD.

Landuse – existing: Rural Residential/Agricultural

Landuse – proposed: Hospital

Zoning – existing: RU1 Primary Production

Zoning – proposed: SP2 Infrastructure (Hospital)

2.2 Surrounding land uses

The site is located in an area of mainly rural and recreational landuse, with the surrounding landuses identified as:

North: Agricultural land use, followed by bushland.

East: Cudgen Road followed by TAFE NSW Kingscliff.

West: Agricultural land use.

South: Cudgen Road followed by agricultural land use.

2.3 Topography

The site is relatively flat with a slight slope falling toward the south-west.

2.4 Geology and soils

2.4.1 Geology

Based on NSW Environment & Heritage Soil and Land Information (eSPADE, accessed 13 December 2018), the site lies on Lamington Volcanics—Tertiary basalt, consisting of rhyolite, trachyte, tuff, agglomerate and conglomerate.

The landscape consists of very low to low undulating hills and rises on the Cudgen Plateau and nearby basalt caps. The elevation is 30–40 m on the Cudgen Plateau.

The vegetation in the area is cleared closed-forest (rainforest). Most of this landscape is cultivated, but the original vegetation would have been be similar to that of the Limpinwood (li) or Green Pigeon (gp) soil landscapes.

2.4.2 Soils

Based on NSW Environment & Heritage Soil and Land Information (eSPADE, accessed 13 December 2018), the soil profile in the area consists of deep (>100 cm), well-drained red silty clay (Krasnozems). This soil profile description is consistent with the observations made during the investigation of the house and garage.

3.0 Previous investigations

3.1 OCTIEF (2018)

OCTIEF conducted a preliminary and detailed investigation at the site in September 2018:

 OCTIEF (2018), Preliminary and Detailed Site Investigation – 771 Cudgen Road, Cudgen, NSW 2487 (Ref. J8961).

The objectives of the investigation were to:

- identify potential sources of contamination and determine potential contaminants of concern;
- identify areas of potential contamination;
- provide Health Infrastructure NSW with high level confidence that site contamination characteristics are sufficiently understood to allow (if required) remedial planning and implementation;
- provide sufficient confidence and reliance that there will be no foreseeable contamination issues which may affect redevelopment or suitability for the State Significant Development Application (concept design and stage 1 works); and
- assess suitability of the site for rezoning (to SP2 Infrastructure) and the proposed land use (Hospital).

The scope comprised of an extensive soil and groundwater investigation which extended broadly over 771 Cudgen Road (Lot 11, DP 1246853). A total of 44 boreholes were advanced across the site, however it is noted that no soil sampling was conducted by OCTIEF within the current investigation area. A Figure from this report is included in Appendix B.

3.2 Cavvanba (2018)

Cavvanba conducted a hazardous materials assessment on the residential house and garage on 19 November 2018 prior to the intrusive investigation:

 Cavvanba (2018), Hazardous materials register, 771 Cudgen Creek Road, Cudgen NSW. (Ref: 18084).

A total of 20 building material samples were collected:

- Fourteen samples of various fibrous cement sheeting were analysed for asbestos.
- Six paint samples were collected from internal and external locations representing the variety of visible paint and analysed for lead (as lead paint).

No asbestos was detected in any of the samples collected from the residential house and garage, which included the fibrous cement materials underneath the residence.

Lead was detected in four samples which were taken from the internal walls and ceiling of the residential house, and this was interpreted to represent the presence of lead paint.

No other demolition waste was identified associated with the residential house.

4.0 Site inspection

A site inspection was undertaken to confirm anecdotal evidence and consolidate the findings of the information review through physical inspection of potential contaminant sources, pathways and receptors.

4.1 Site observations

Multiple site inspections were undertaken by Glen Chisnall and Ben Wackett of Cavvanba during November and December 2018. A photographic log has been provided as Appendix A.

The following observations, relevant to the use and environmental condition of the investigation area were made:

- a residential house and garage were present in the centre of the investigation area;
- a concrete slab ~ 70 m² was evident underneath the garage;
- the grass surface was observed to be in good condition around the edges of the building with no visible staining or contamination present;
- a gravel road entered the site from Cudgen Road before entering into the carpark area;
- a paved brick area $\sim 20 \text{ m}^2$ was present to the west of the residential house; and
- potential lead paint was identified inside the residential house.

5.0 Limited soil sampling investigation

5.1 Contaminants of concern

Potential contaminants of concern are detailed in Table 5.1 below and are associated with the former buildings – namely lead paint and sub slab pest treatment. Asbestos was eliminated as a potential contaminant of concern during the hazardous materials assessment.

Table 5.1: PCOCs and summary of areas of concern

PCOCs	Description and common relationship							
Lead (Pb)	Lead paint associated with older housing.							
Organochloride Pesticides (OCPs)	Organochlorine control/fertilisers. OCPs are persistent in the environment.							

5.2 Relevant environmental media

The environmental media considered relevant for the investigation was limited to shallow soils. This was considered appropriate based on the potential sources of contamination being:

- lead paint from the former residential house; and
- OCPs associated with sub slab pest treatment.

5.3 Relevant soil environmental criteria

For soil, the appropriate criteria are based on the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) (2013) and in particular the health investigation levels (HILs), environmental investigation levels (EILs), environmental screening levels (ESLs) and health screening levels (HSLs) applicable for residential landuses.

ASC NEPM 2013 states that the NEPM HILs are not protective of construction workers, and site specific risk should be taken into consideration: (Schedule B7: Guideline on health-based investigation levels – Section 3.1) The HILs are therefore considered to be protective of exposures to other receptor populations; however, the HILs do not specifically address short-duration exposures that may occur during construction and maintenance of a site (including intrusive works). These exposures should be addressed on a site-specific basis.

Considering the above description and the following points, residential criteria is an appropriately conservative criteria for handing the site over for construction purposes without the need for further site specific risk assessment:

- the use of residential criteria is also consistent with the OCTIEF investigation documents;
- the potential area of lead impacted soil typically presents a small volume which can be feasibly removed from the site;
- the high level of public interest, and desire for conservative criteria to be implemented;
- the development was to be staged separately between demolition and construction, and the contaminated land investigation and potential remediation was expected to be undertaken prior to construction; and
- the proposed construction works and the HILs for commercial/industrial landuse not being protective of the risks to construction workers.

6.0 Soil investigation

The field work was completed on 30 November; 11 and 12 of December 2018 by Glen Chisnall with oversight from Ben Wackett of Cavvanba Consulting.

The sampling and analytical strategy and methodology are described below. The results of the assessment are provided in Section 8. Soil sample locations are shown on Figure 2.

6.1 Soil sampling strategy

Objective

To investigate the presence of lead and OCP contamination on-site, and to classify any material required for offsite disposal.

Strategy - initial investigation

A total of 22 test pits were advanced across the site in order to provide spatial coverage over the residential house and beneath the garage slab which may represent potential sources of contamination as detailed in Table 5.1. Cavvanba's expectation of contamination based on similar sites, is that lead contamination from paint is generally limited to within 2-3 m of the drip zone, and within 0.5 m of surface. At this site, the original house appeared to have been extended, therefore it was possible that lead would be present beneath the building. The extent of OCP contamination is also expected to be limited to surface soils directly beneath the house and garage slab.

The sampling strategy included collection of samples at the following locations:

- within 1 m of existing perimeter on each side of the residential house and garage, two samples per side;
- step out locations of another approximately 2 m from the house and garage perimeter;
- four samples beneath the house;
- three samples beneath the garage slab;
- depth samples at 0.1, 0.3, 0.6 m at each location.

Of those samples collected, the first stage of sample analysis selection was based on a minimum:

- all samples beneath the building and garage slab;
- all samples within 1 m of building perimeter i.e. on each side of the house and garage;
 and
- from those locations, all samples at shallow depth (0.1 m).

Additional analysis was undertaken at step-out locations and greater depths to delineate any criteria exceedances on an as needs basis. The sampling strategy completed was considered to meet the definition of a systematic approach, and meets the minimum sampling requirements in accordance with *Sampling Design Guidelines* (NSW EPA, 1995). Additionally, consideration was given to the Tweed Shire Council for Pre-Demolition Testing of organochlorine pesticides beneath structures and dwellings.

Table 6.1 below describes the rationale for the chosen sampling design and additional delineation sampling/analysis.

Table 6.1: Overall rationale for sampling design

Location/sample ID	Rationale									
First stage of anal	First stage of analysis									
TP01_0.1 to Targeting any potential sources of lead paint located underneath the residential house at the surface.										
TP05_0.1 to TP10_0.1 & TP17_0.1 to TP19_0.1	Targeting the potential drip zone from the walls of the residential house and garage at the surface.									
TP28_0.1, TP29_0.1, TP30_0.1	Targeting sub slab of garage.									
TP11_0.1 to TP16_0.1	Samples taken to delineate any potential lead impact from the residential house.									
Delineation sample	ling/analysis									
TP01_0.3, TP01_0.6, TP02_0.3, TP02_0.6, TP03_0.3, TP03_0.6, TP04_0.3	Further sampling/analysis conducted at 0.3 and 0.6 m below the ground surface; aiming to delineate the vertical extent of lead impact.									

6.2 Soil sampling methodology

Soil samples were collected using stainless steel hand tools, ensuring that soil sampled had not been in direct contact with the hand tool.

All soil samples were collected into laboratory supplied glass jars and placed directly into chilled eskies and transported to the laboratory under chain of custody documentation, in accordance with Cavvanba fieldwork procedures.

Overburden was placed alongside the sample location sequentially during excavation and backfilled in the same sequence it was excavated.

6.3 Data usability

A background to data usability is provided in Appendix C. All site work was completed in accordance with standard Cavvanba sampling protocols, including a QA/QC programme and fieldwork procedures.

A data usability assessment has been performed for the sampling undertaken during this investigation, as summarised in Appendix C and includes:

- summary of field quality assurance/quality control;
- field quality control soil samples summary; and
- summary of laboratory quality assurance/quality control.

The material subject to this soil investigation report was sampled as part of a larger investigation program which was conducted at another portion of 771 Cudgen Road,

Cudgen NSW. Therefore, there are samples which are referred to in the laboratory report and data usability assessment which are not related directly to this report.

Only samples listed in Table 6.1 above are relevant to this soil investigation report. Overall, the data usability assessment shows that the data is of suitable quality to support the conclusions made in this report.

7.0 Conditions encountered

The subsurface conditions encountered are summarised below. For descriptions of the subsurface conditions at specific locations, refer to Table 1, attached. A photographic log is provided as Appendix A.

7.1 Soil conditions

The soil profile identified across the site consisted of a red to brown silty clay.

7.2 Evidence of reworked soil

Reworked natural material was observed underneath the former house, in the test pit located approximately 5 m to the south of the building and in the southern portion of the investigation area. Anthropogenic inclusions of glass and tiles were identified in the following test pit locations:

```
TP01 (0.1 and 0.3 m);
TP01 (0.1 and 0.3 m);
TP03 (0.1 and 0.3 m);
TP04 (0.1 and 0.3 m);
TP14 at 0.1 m; and
TP15 at 0.3 m.
```

A location map has been provided as Figure 2 showing the sample locations.

Page 13 of 17 Ref. 18084 R01 V2

8.0 Soil analytical results

The results are summarised below by contaminant. The laboratory analytical reports are included in Appendix D. The analytical results have been compared to the screening criteria adopted for the site. The NEPM health investigation and screening levels for residential land use (HIL A) have been used along with the ecological investigation levels (EILs) for urban residential and public open space to ascertain the magnitude of impacts.

Table 8.1: Soil analytical summary

	Health criteria	Ecological criteria		Site	data	
Analyte	HIL / HSL (mg/kg)	EIL/ESL (mg/kg)	No. samples analysed	Number of detects	Max' (mg/kg)	Meets screening criteria?
Metals						
Lead	300	<u>1,100</u>	27	27	<u>1,600</u>	No
Organochlorine pesti	icides					
DDT+DDE+DDD	240	180¹		10	9.07	Yes
Aldrin and dieldrin	6	_2		7	1.18	Yes
Chlordane	50	1		4	4.10	Yes
Endosulfan	270	-	24	0	<0.05	Yes
Endrin	10	-	24	0	<0.05	Yes
Heptachlor	6	-		0	<0.05	Yes
НСВ	10	-		0	<0.05	Yes
Methoxychlor	300	-		0	<0.2	Yes

Table notes:

- 1 Criteria for DDT only.
- 2 = No criteria available.
- 3 **BOLD** indicates exceedance of HILs criteria.
- 4 <u>Underscore</u> indicates exceedances of EILs criteria.

The results are also summarised as eight samples exceeded HILs (Residential A) for lead collected from four locations (TP01, TP02, TP03 and TP06).

The maximum reported lead concentration of 1,600 mg/kg was reported at TP03_0.3 (located underneath the south-western corner of the residential house). This sample also exceeded the EILs (urban residential and open public space) criteria for lead.

All samples (excluding TP06_0.1) which exceeded the HILs were located underneath the residential house. OCPs were detected at 10 sample locations, concentrations were almost all an order of magnitude below the adopted criteria.

9.0 Discussion and recommendations

9.1 Lead

Lead concentrations exceeding site criteria were present:

- underneath the former residential house in all four samples locations to 0.3 m depth;
- approximately 1 m from the eastern wall of the residential house, in the southern portion associated with TP06 to 0.1 m depth; and
- extending to 0.6 m depth at TP02 which had reported concentrations of 324 mg/kg which marginally exceeds site criteria.

Based on the trends of decreasing lead concentrations with depth at TP02, it is anticipated that exceedances of residential criteria will not extend below 0.7 m below ground surface:

- TP02_0.1 = 1,070 mg/kg;
- TP02_0.3 = 838 mg/kg; and
- TP02_0.6 = 324 mg/kg.

Figure 3 attached shows the estimated extent of exceedances of site criteria.

Validation samples will be collected to confirm that lead contamination is not present beyond these depths following remediation.

9.2 Recommendations

Based on the concentrations of lead detected underneath the former residential house and ~ 1 m from the eastern wall, remediation and/or management is required.

A remedial action plan should be prepared for the former residential house which should consider:

- off-site disposal; and/or
- on-site management/capping including long term management.

10.0 Glossary and references

10.1 Glossary

AST Aboveground storage tank

BTEXN Benzene, toluene, ethyl benzene, xylenes and naphthalene

CSM Conceptual site model

EIL Environmental Investigation Level

ESL Environmental Screening Level

EMP Environmental Management Plan

ESA Environmental site assessment

GME Groundwater monitoring event

HHRA Human health risk assessment

HIL Health Investigation Level

HSL Health Screening Level

LOR Limit of reporting

Metals Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb),

mercury (Hg), nickel (Ni), and zinc (Zn)

NATA National Association of Testing Authorities

NEPM/C National Environmental Protection Measure/Council

OCPs Organochlorine pesticides

OH&S Occupational health and safety

OPPs Organophosphorus pesticides

PAHs Polycyclic aromatic hydrocarbons, including the USEPA 16 priority

pollutants: naphthalene; acenaphthylene; acenaphthene; fluorine; phenanthrene; anthracene; fluoranthene; pyrene; benzo(a) anthracene; chrysene; benzo(b)fluoranthene; benzo(k) fluoranthene; benzo(a)pyrene; indeno(1.2.3.cd)pyrene; dibenz (a.h)anthracene; and

benzo(g.h.i)perylene

PCBs Polychlorinated biphenyls

PID Photo-ionisation detector

PSH Phase separated hydrocarbons

QA/QC Quality assurance/quality control

RAP Remediation action plan

RPD Relative Percentage Difference

SWL Standing water level

TRHs Total recoverable hydrocarbons, including volatile C6 - C10 fraction and semi- and non-volatile >C10 - C36 fractions

UCL Upper confidence limit

UST Underground storage tank

VRP Voluntary remediation proposal

10.2 References

Volatile organic compounds

Previous Reports

VOCs

(OCTIEF 2018), Preliminary and Detailed Site Investigation – 771 Cudgen Road, Cudgen, NSW 2487 (Ref. J8961).

Cavvanba (2018), Hazardous materials register, 771 Cudgen Creek Road, Cudgen NSW. (Ref:.18084).

References

State of NSW and Office of Environment & Heritage (2018) eSPADE (accessed December 2018).

Guidelines made by EPA

DEC (2007) Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination. NSW EPA, Sydney.

Department of Environment, Climate Change and Water (DECCW) (2009) Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008. NSW DECCW, Sydney;

EPA (2016) Contaminated Land Management: Draft Guidelines for the NSW Site Auditor Scheme (3^{rd} edition). EPA, Sydney.

EPA (1995a) Contaminated Sites: Guidelines for the Vertical Mixing of Soil on Former Broad-acre Agricultural Land. NSW EPA, Sydney.

EPA (1995b) Contaminated Sites: Sampling Design Guidelines. NSW EPA, Sydney.

EPA (1997) Contaminated Sites: Guidelines for Assessing Banana Plantation Sites. NSW EPA, Sydney.

EPA (2005) Contaminated Sites: Guidelines for Assessing Former Orchards and Market Gardens. NSW EPA, Sydney.

EPA (1999) Contaminated Sites: Guidelines on Significant Risk of Harm from Contaminated Land and the Duty to Report. NSW EPA, Sydney.

EPA (2000) Environmental Guidelines: Use and Disposal of biosolids products. NSW EPA, Sydney.

EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases.NSW EPA, Sydney.

EPA (2015) Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997. NSW DECC, Sydney.

EPA (November 2014) Waste Classification Guidelines – Part 1: Classifying Waste. NSW EPA, Sydney, NSW.

Office of Environment & Heritage (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW OE&H, Sydney.

Guidelines approved by the EPA

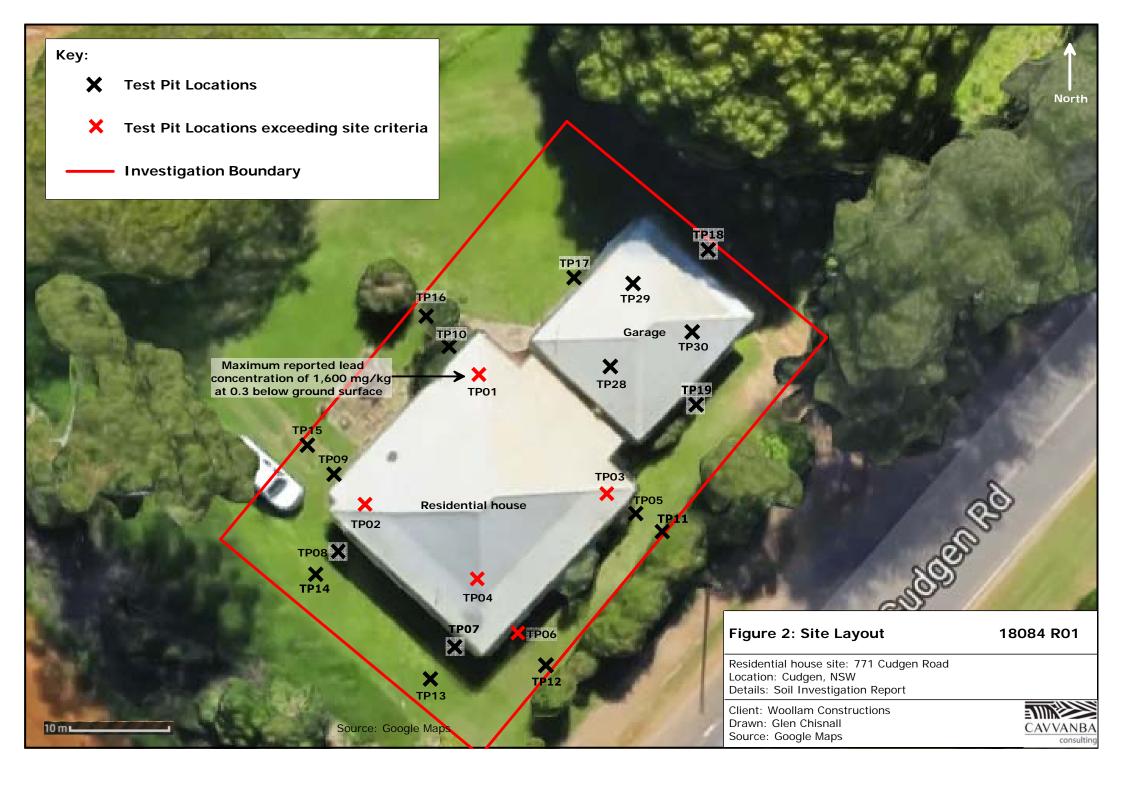
Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018).

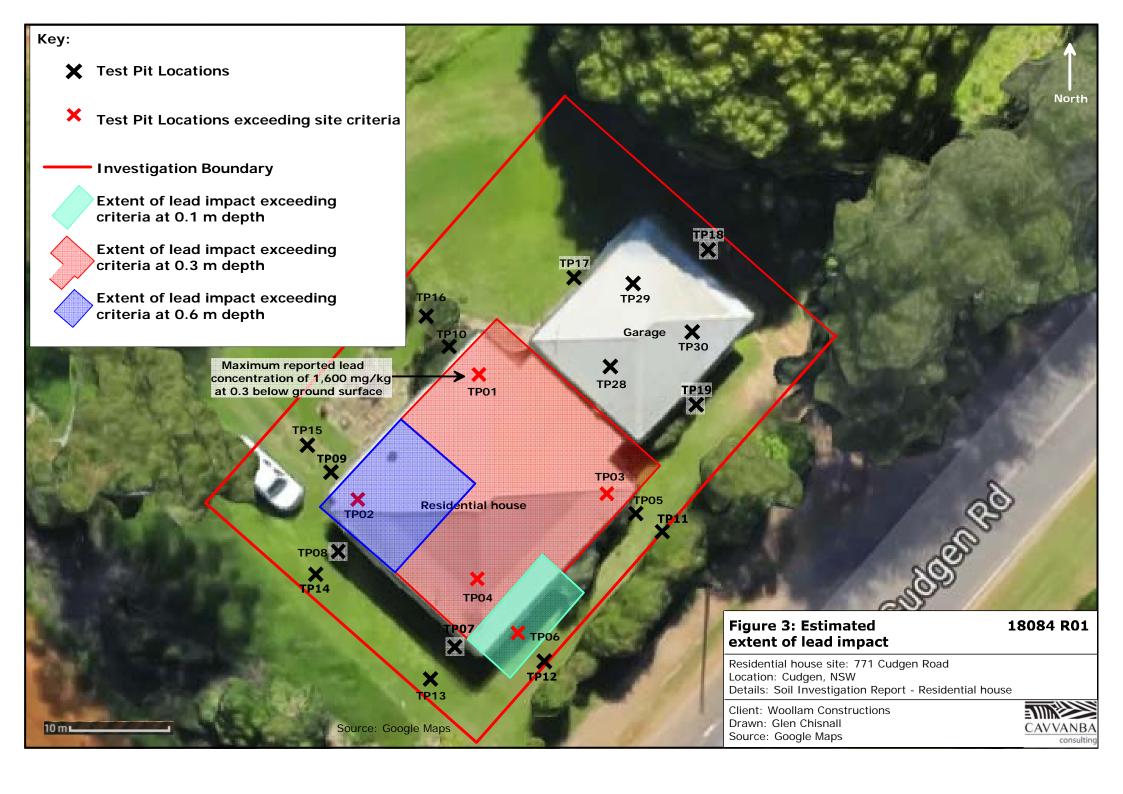
ANZECC/NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites. Australian and New Zealand Environment and Conservation Council and the National Health and Medical Research Council, Canberra.

Australian Government Department of Health (2017) *Health Based Guidance Values for PFAS for use in site investigations in Australia*.

Department of Health and Ageing and EnHealth Council (2002) *Environmental Health Risk Assessment: Guidelines for Assessing Human Health Risks from Environmental Hazards*. Commonwealth of Australia, Canberra.

Lock, W. H., (1996) "Composite Sampling", *National Environmental Health Forum Monographs, Soil Series No. 3*. SA Health Commission, Adelaide.


NEPC (1999) National Environment Protection (Assessment of Site Contamination) Measure, Schedule A and Schedules B(1)-B(10), amended April 2013. National Environment Protection Council, Adelaide.


NHMRC/ NRMMC (2011) Australian Drinking Water Guidelines. National Health and Medical Research Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, and Natural Resource Management Ministerial Council (NRMMC), Australian Government, Canberra.

NSW Agricultural/CMPS&F (1996) *Guidelines for the Assessment and Clean Up of Cattle Tick Dip Sites for Residential Purposes*. NSW Agricultural and CMPS&F Environmental, Canberra.

Figures

Tables

Table 1: Sample Description and Analytical Summary

Sample	Depth (m)	Date sampled	Description	Lead	OCPs
Soil - Test Pits					
Residential house					
TP01	0.1	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	•
TP01	0.3	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	•
TP01	0.6	12/12/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	
TP02	0.1	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.		•
TP02	0.3	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	
TP02	0.6	12/12/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	
TP03	0.1	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	•
TP03	0.3	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	•
TP03	0.6	12/12/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	
TP04	0.1	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	•
TP04	0.3	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	
TP05	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP06	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•

Table 1: Sample Description and Analytical Summary

Sample	Depth (m)	Date sampled	Description	Lead	OCPs
TP06	0.3	12/12/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	
TP07	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP08	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP09	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP10	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP11	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP12	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP13	0.1	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	•
TP14	0.1	30/11/18	Reworked natural: Dark brown to red silty clay. Slightly moist with low plasticity. Anthropogenic inclusions of glass and tiles.	•	•
TP15	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP16	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP17	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP18	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
TP19	0.1	30/11/18	Dark brown to red silty clay. Slightly moist with low plasticity.	•	•
Underneath garage	e slab				
TP28	0.1	11/12/18	Dark brown to red silty clay. Slightly moist with low plasticity.		•
TP29	0.1	11/12/18	Dark brown to red silty clay. Slightly moist with low plasticity.		•
TP30	0.1	11/12/18	Dark brown to red silty clay. Slightly moist with low plasticity.		•

Table 2: Soil Analytical Summary, OCPs and Lead

Sample	Depth (m)	Heptachlor	Total Chlordane (sum)	Endrin	Endosulfan (sum)	Methoxychlor	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Hexachlorobenzene (HCB)	Sum of OCPs	Lead
	LORs	0.05	0.05	0.05	0.05	0.2	0.05	0.05	0.05	-	0.1
Analytical -	Test pits										
Residential I	House										
TP01	0.1	nd	4.1	nd	nd	nd	0.77	3.58	nd	8.45	1,090
TP01	0.3	nd	2.06	nd	nd	nd	1.18	9.07	nd	12.31	1,600
TP01	0.6	-	-	-	-	-	-	-	-	-	144
TP02	0.1	nd	0.16	nd	nd	nd	0.14	0.06	nd	0.36	1,070
TP02	0.3	-	-	-	-	-	-	-	-	-	838
TP02	0.6	-	-	-	-	-	-	-	-	-	324
TP03	0.1	nd	nd	nd	nd	nd	0.88	1.09	nd	1.97	502
TP03	0.3	nd	nd	nd	nd	nd	0.34	0.25	nd	0.59	416
TP03	0.6	-	-	-	-	-	-	-	-	-	15
TP04	0.1	nd	0.14	nd	nd	nd	0.29	0.08	nd	0.51	324
TP04	0.3	-	-	-	-	-	-	-	-	-	252
TP05	0.1	nd	nd	nd	nd	nd	nd	0.83	nd	0.83	155
TP06	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	317
TP06	0.3	-	-	-	-	-	-	-	-	-	162
TP07	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	64.6
TP08	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	60.9
TP09	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	161
TP10	0.1	nd	nd	nd	nd	nd	0.23	0.07	nd	0.3	119
TP11	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	32.2
TP12	0.1	nd	nd	nd	nd	nd	nd	0.1	nd	0.1	195
TP13	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	34
TP14	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	54.8
TP15	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	72.4
TP16	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	134
TP17	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	76.5
TP18	0.1	nd	nd	nd	nd	nd	nd	0.07	nd	0.07	27
TP19	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	31.6

Table 2: Soil Analytical Summary, OCPs and Lead

Sample	Depth (m)	Heptachlor	Total Chlordane (sum)	Endrin	Endosulfan (sum)	Methoxychlor	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Hexachlorobenzene (HCB)	Sum of OCPs	Lead
	LORs	0.05	0.05	0.05	0.05	0.2	0.05	0.05	0.05	-	0.1
Underneath	garage slab										
TP28	0.1	nd	nd	nd	nd	nd	5.18	nd	nd	5.18	-
TP29	0.1	nd	nd	nd	nd	nd	5.19	0.1	nd	5.29	-
TP30	0.1	nd	nd	nd	nd	nd	10.6	nd	nd	10.6	-
Statistics				•	•	•				•	
Samples an	alysed	21	21	21	21	21	21	21	21	21	27
Detects		0	4	0	0	0	7	10	0	10	27
% detect		0%	19%	0%	0%	0%	33%	48%	0%	48%	100%
Maximum		<0.05	4.10	<0.05	<0.05	<0.05	1.18	9.07	<0.05	12	<u>1,600</u>
Mean		<0.05	0.31	<0.05	<0.05	<0.05	0.18	0.72	<0.05	1.21	306
Median		<0.05	1.11	<0.05	<0.05	<0.05	0.34	0.18	<0.05	0.55	155
Minimum		<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	15
Criteria											
HILs- Reside	ential A	6	50	10	270	300	6	240	10	-	300
EILs - Urbai public open	n residential and space	-	-	-	-	-	-	180 (DDT only)	-	-	1,100

Table 3: Soil Analytical Summary, Quality Control (mg/kg)

Analyte	LOR mg/kg	TP09_0.1	QS01	RPD	TP09_0.1	QS02	RPD
Туре	-	Primary	Duplicate	%	Primary	Inter- laboratory Duplicate	%
Date	ı	30/11/18	30/11/18	1	30/11/18	30/11/18	-
Media	Soil	Soil	Soil	ı	Soil	Soil	-
Heavy metals							
Lead	5	161	167	4	161	140	14
Organochlorine Pesticides (OCPs	5)						
Heptachlor	0.05	nd	nd	-	nd	nd	-
Total Chlordane (sum)	0.05	nd	nd	1	nd	nd	-
Endrin	0.05	nd	nd	-	nd	nd	-
Endosulfan (sum)	0.05	nd	nd	-	nd	nd	-
Methoxychlor	0.2	nd	nd	-	nd	nd	-
Sum of Aldrin + Dieldrin	0.05	nd	0.88	-	nd	nd	-
Sum of DDD + DDE + DDT	0.05	nd	0.11	ı	nd	nd	-
Hexachlorobenzene (HCB)	0.05	nd	nd	-	nd	nd	-
Sum of OCPs	-	nd	0.99	-	nd	nd	-
Data Quality Indicator		-	-	<50%	-	-	<50%

See tables notes at end of section

Table 3: Soil Analytical Summary, Quality Control (mg/kg)

Analyte	LOR mg/kg	TP07_0.1	QS03	RPD	TP07_0.1	QS04	RPD
Туре	ı	Primary	Duplicate	%	Primary	Inter- laboratory Duplicate	%
Date	ı	30/11/18	30/11/18	-	30/11/18	30/11/18	-
Media	Soil	Soil	Soil	ı	Soil	Soil	-
Heavy metals							
Lead	5	64.6	61.9	4	64.6	57	13
Organochlorine Pesticides (OCPs)							
Heptachlor	0.05	nd	nd	-	nd	nd	-
Total Chlordane (sum)	0.05	nd	nd	1	nd	nd	-
Endrin	0.05	nd	nd	-	nd	nd	-
Endosulfan (sum)	0.05	nd	nd	-	nd	nd	-
Methoxychlor	0.2	nd	nd	-	nd	nd	-
Sum of Aldrin + Dieldrin	0.05	nd	nd	-	nd	nd	-
Sum of DDD + DDE + DDT	0.05	nd	nd	-	nd	nd	-
Hexachlorobenzene (HCB)	0.05	nd	nd	-	nd	nd	-
Sum of OCPs	-	nd	nd	-	nd	nd	
Data Quality Indicator		-	-	<50%	-	-	<50%

See tables notes at end of section

Table 3: Soil Analytical Summary, Quality Control (mg/kg)

Analyte	LOR mg/kg	TP03_0.6	QS03	RPD	TP03_0.6	QS06	RPD
Туре	ı	Primary	Duplicate	%	Primary	Inter- laboratory Duplicate	%
Date	-	12/12/18	12/12/18	-	12/12/18	12/12/18	-
Media	Soil	Soil	Soil	-	Soil	Soil	-
Heavy metals							
Lead	5	15	26	54	15	6	86
Organochlorine Pesticides (OCPs)							
Heptachlor	0.05	1	-	-	-	-	-
Total Chlordane (sum)	0.05	1	1	1	-	-	-
Endrin	0.05	-	-	-	-	-	-
Endosulfan (sum)	0.05	-	-	-	-	-	-
Methoxychlor	0.2	-	-	-	-	-	-
Sum of Aldrin + Dieldrin	0.05	-	-	-	-	-	-
Sum of DDD + DDE + DDT	0.05	ı	1	ı	-	-	•
Hexachlorobenzene (HCB)	0.05	ı	-	ı	-	-	1
Sum of OCPs	-	-	-	-	-	-	
Data Quality Indicator		-	-	<50%	-	-	<50%

See tables notes at end of section

Soil Analytical Summary Table Notes

LOR denotes limit of reporting (standard LOR unless otherwise shown)

PBILs denotes phytotoxicity based investigation levels

nd denotes not detected above the LOR

NL denotes non-limiting

- denotes not analysed/not available

Bold - Exceeds landuse criteria

^ denotes raised LOR

TRH C6-C10 F1 = TRH C6-C10 minus BTEX compounds

*analyte list shown on laboratory report

- 1. Methyl mercury / inorganic mercury
- 2. Netherlands protection of terrestrial organisms/ Netherlands human health based and human health and ecologically based protection level.
- 3. Criteria for phenol

Appendix A Photographic log

Photograph 1. View east of investigation area, garage to the left and the residential house on the right. All photographs taken on 30 November; 11 and 12 December 2018.

Photograph 2.

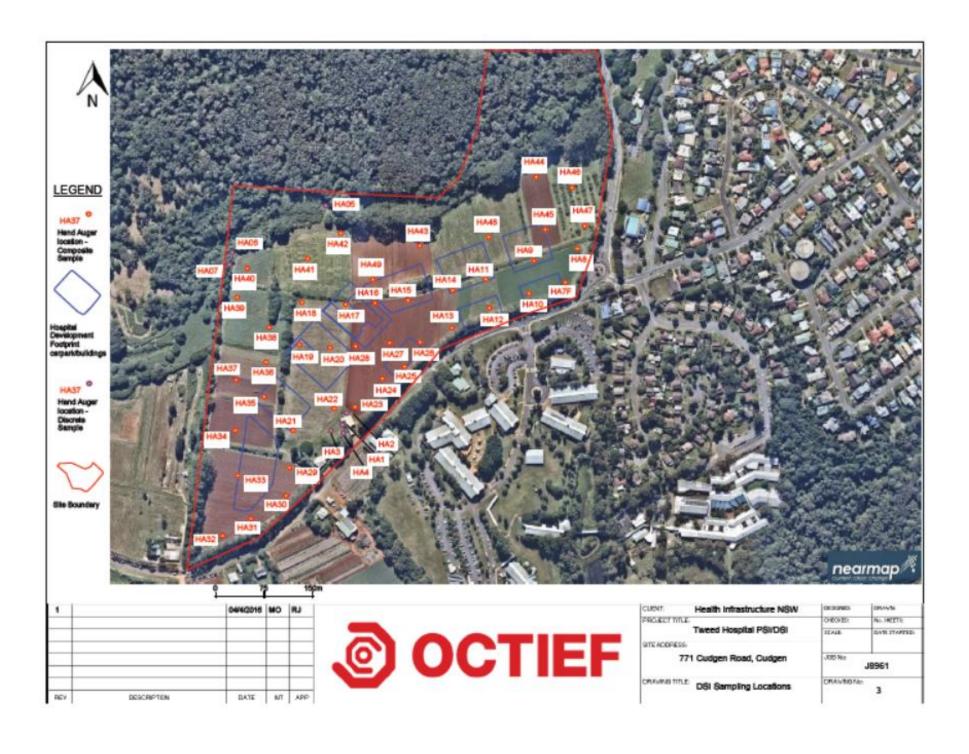
View of TP02; located underneath the south-western section of the former residential house.

Anthropogenic materials consisting of plastic and glass scattered around the test pit location.

Photograph 3. View of test pit location TP04; located underneath southeast portion of the house, in the southeast portion.

 ${\bf Photograph~4.} \\ {\it Test~pit~location~TP06,~located~\sim 1~m~from~the~eastern~wall~of~the~former~residential~house.}$

Photograph 5. View of test pit location TP14, sampled ~ 5 m to the south of the residential house. Anthropogenic inclusions of glass and tiles were identified within this location.



Photograph 6. View over garage slab. Test pit locations TP28 and TP30 visible in foreground followed by demolition waste from the former residential house.

Appendix B

OCTIEF (2018) Preliminary and detailed site investigation – 771 Cudgen Road, Cudgen, NSW 2487

Figure 3 DSI sampling locations

Attachment C Data usability and Introduction to Data Usability

Data Usability Summary Assessment

A background to data usability is provided in this attachment. All site work was completed in accordance with standard Cavvanba sampling protocols, including a quality assurance/quality control (QA/QC) programme and standard operating procedures.

A data usability assessment was performed for the soil data collected by Cavvanba, as summarised in the following tables:

- Table 1.1, field QC samples summary,
- Table 1.2, summary of field QA/QC, and
- Table 1.3, summary of laboratory QA/QC.

It should be noted that the data usability has been conducted on the whole data set, consisting of the following laboratory batches:

- ES1836474;
- ES1837028;
- ES1837749; and
- ES1837355.

Table 1.1: Field QC samples summary

	Total samples	Field duplicates ¹	Inter-lab duplicates ¹	Trip spike	Trip blank	Rinsate
Soil						
Lead (pb)	30	3 (10%)	3 (10%)	-	-	-
OCPs	24	3 (12.5%)	3 (12.5%)	-	-	-

Notes:

- 1. Shows number of duplicate samples collected and the percentage of total samples analysed.
- 2. Arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury.
 - = not applicable, as trip spike/blank analysed for volatile compounds only.

Table 1.2: Summary of field QA/QC

Parameter	Complies	Comments ¹
Precision		
Standard operating procedures (SOPs) appropriate and complied with	Yes	Sampling was conducted in accordance with Cavvanba's standard field operating procedures. The sampling methods generally complied with industry standards and guidelines.
Field duplicates	Partial	RPD ² criteria < 30% - 50%, frequency ≥ 5%. RPD exceedances were reported lead. The frequency of field duplicates was within the acceptable range.

Parameter	Complies	Comments ¹
Inter-laboratory duplicates	Yes	RPD ² criteria < 30% – 50%, frequency \geq 5%.
		No RPD exceedances were reported for inter- laboratory duplicates.
		The frequency of inter-laboratory duplicates was within the acceptable range.
Accuracy		
Matrix spikes samples	Partial	≥ 1/media type.
appropriate		Some matrix spikes were conducted on anonymous samples.
Representativeness		•
Sample collection - preservation	Yes	All samples were collected directly into laboratory supplied jars/bottles with no headspace.
Sample collection - sample splitting	Yes	-
Field equipment calibrated	Yes	PID calibration records have been included within attachment C within the validation report.
Decontamination procedures	Yes	Decontamination procedures to prevent cross contamination between samples included use of dedicated sampling equipment, otherwise decontamination of the sampling equipment between each sampling location (using DECON 90) and the use of dedicated sampling containers provided by the laboratory. Field samplers also wore new disposable nitrile gloves during sampling.
Rinsate samples	No	Required ≥ 1/field batch, < LORs.
		No rinsate samples were collected.
Trip blanks	No	≥ 1/field batch (volatiles), < LORs.
		No trip blanks were collected/analysed as part of the investigation.
Trip spikes	No	≥ 1/field batch (volatiles), 70 - 130%, (recovery) or ≤ 30 - 50% (RPDs).
		No trip spikes were collected/analysed as part of the investigation.
Comparability	1	
Consistent sampling staff	Yes	All field work was conducted by Glen Chisnall of Cavvanba Consulting.
Consistent weather/field conditions	Yes	-

Parameter	Complies	Comments ¹
Completeness		
Sample logs and field data	Yes	Standard field sampling sheets were used during the investigation.
Chain of Custody	Yes	-

Notes:

- For QC samples, specified frequency and acceptance criteria shown.
 RPD = relative percentage difference.

Table 1.3: Summary of laboratory QA/QC

Parameter	Complies	Notes ¹				
Precision						
Laboratory duplicates	Partial	laboratory specified RPD range, frequency \geq 10%.				
		Laboratory duplicate RPD exceedances have been reported for OCPs.				
		The frequency of laboratory duplicates was within the acceptable range.				
Accuracy						
Surrogate spikes	Yes	Organics by GC, RPD criteria of 70% - 130%.				
		No surrogate recovery outliers exist.				
		The frequency of surrogate spikes was within the acceptable range.				
Matrix spikes analysis appropriate	Yes	RPD criteria of ≥ 70% - 130%.				
арргорпасе		No matrix spike outliers occurred.				
		The frequency of matrix spike analysis was within the acceptable range.				
Laboratory control samples (LCSs)	Yes	RPD criteria of 70% - 130%, frequency of ≥ 1/lab batch				
		Laboratory control sample recoveries were within the laboratory specified global acceptance criteria.				
		The frequency of laboratory control samples was within the acceptable range.				
Certified reference material (CRM)	n/a	-				
Representativeness	•					
Sample condition	Yes	-				
Holding times	Yes	No sample holding times have been reported.				

Parameter	Complies	Notes ¹
Laboratory blanks	Yes	≥ 1/lab batch, < LORs.
Comparability		
NATA accredited laboratory	Yes	ALS is a NATA accredited laboratory (825). The secondary laboratory is Envirolab, which is also NATA accredited (2901).
NEPM methods or similar	Yes	ALS and Envirolab follow methods in accordance with the requirements of NEPC (amended 2013).
Limits of reporting (LORs) consistent and appropriate	Yes	-
Completeness		
Sample receipt	Yes	-
Laboratory Reports	Yes	-

Notes:

Summary and discussion

The following issues were identified with the data:

Precision

Outliers were reported for duplicate RPD recoveries with respect to lead in soil. This is likely due to the inherent variability associated with metal concentrations in the soil matrix and is not considered to significantly detract from the data sets precision.

Laboratory duplicate outliers were reported for OCPs as recoveries were outside the RPD range of 20%. This is considered acceptable and does not detract from the data sets precision as all samples collected and analysed were below the adopted site criteria.

Accuracy

No outliers have been reported for QC samples collected to assist in the qualification of accuracy. Surrogate spikes, matrix spikes and laboratory control sample recoveries were within acceptable ranges.

Representativeness

No rinsate samples were collected during the investigation. This is considered acceptable because single use sampling equipment was used.

Trip spike and trip blanks were not collected for this investigation. This is considered acceptable and does not detract from the data sets representativeness as all samples were placed immediately into chilled eskies following collection and delivered directly to the laboratory therefore limiting the chance for loss volatile compounds.

^{1.} For QC samples, acceptance criteria shown. Acceptance criteria can vary based on analyte, statistical data and laboratory specific methods. Laboratory specified relates to detected concentrations based on LORs, e.g. result $< 10 \times LOR = no limit$, $10 - 20 \times LOR = 0 - 50\%$, $> 20 \times LOR = 0 - 20\%$. See laboratory reports for specific details.

Comparability

The data is considered to be acceptable, with experienced sampling staff used, NATA accredited laboratories used and all LORs below the relevant criteria.

Completeness

Laboratory and field documentation is considered to be complete.

Background to Data Usability

1.0 Introduction

Information generated from environmental investigations requires some statement in regard to the usability of the data¹, and therefore quality assurance (QA) and quality control (QC) are an integral part of the analysis and interpretation of environmental data. QA/QC used in contaminated sites investigations is briefly reviewed in this section.

Quality assurance involves all of the actions, procedures, checks and decisions undertaken to ensure the representativeness and integrity of samples, and accuracy and reliability of analytical results (NEPC as amended 2013). Quality control is the component of QA which monitors and measures the effectiveness of other procedures by the comparison of these measures to previously decided objectives.

There are various components of QA/QC which address the operation of the laboratories and the routine procedures conducted to achieve a minimum level of quality. Examples of QA components include sample control, data transfer, instrument calibration, staff training, etc. Examples of QC components include the measurement of samples to access the quality of reagents and standards, cleanliness of apparatus, accuracy and precision of methods and instruments, etc. Generally, the management of laboratory QA issues is addressed through accreditation by the National Association of Testing Authorities (NATA), or similar, and monitoring of these issues is not addressed on a project by project basis.

On a project specific basis, those involved in collecting, assessing or reviewing the relevant data should ensure the minimum level of QA is conducted. Appropriate numbers and types of QC samples should be collected and analysed, both field QC samples and laboratory QC samples. While minimum levels of QA/QC are specified in some guidelines, e.g. NSW EPA 1994, AS 4482.1-1997, NEPC as amended 2013, the minimum level required may vary between projects, based on site and project specific aspects. This means that the minimum specified requirements may not be sufficient for a particular project. As described in the NEPM (NEPC 1999):

As a general rule, the level of required QC is that which adequately measures the effects of all possible influences upon sample integrity, accuracy and precision, and is capable of predicting their variation with a high degree of confidence.

2.0 PARCC parameters

Following receipt of laboratory analytical results, data validation is conducted to determine if the specified acceptance criteria have been met. This is conducted to ensure that all data, and subsequent decisions based on that data, are technically sound. Data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. These are referred to as the PARCC parameters². Field QA/QC and laboratory QC is described below within the PARCC framework.

.

 $^{^{1}}$ To avoid confusion with the data quality objectives (DQOs) process, the term data usability is used rather than data quality.

² The PARCC parameters are sometimes referred to as data quality indicators (DQIs).

2.1 Precision

2.1.1 Duplicates

Precision is a measure of the reproducibility of results under a given set of conditions and is assessed on the basis of agreement between a set of duplicate results obtained from duplicate analyses. The precision of a duplicate determination is measured by comparing the difference between the two samples to the average of the two samples, expressed as a relative percentage difference (RPD).

The determination is:

 $RPD = (P-D)/(P+D/2) \times 100$ P = primary sample D = duplicate sample

Three types of duplicates are commonly used:

- field duplicates are used to measure the precision of the sampling and analytical process:
- inter-laboratory duplicates are used to check on the analytical performance of the primary laboratory; and
- laboratory duplicates are used to measure the precision of the analytical process.

2.1.2 Field Duplicates

Field duplicates (or blind replicates) are collected from the same location and submitted to the laboratory for analyses, as a primary sample. The sample nomenclature is such that the laboratory is not aware which sample is a duplicate. The RPD is calculated to determine the degree of repeatability (precision) of results obtained from the duplicate analysis. Where results are below the practical quantification limit (PQLs) or limits of reporting (LORs), i.e. non-detects, RPDs cannot be calculated. Where one result is detected, the results are considered to conform when the detected result is less than five times the PQL/LOR.

The PQL/LOR is the lowest concentration of an analyte that can be determined with acceptable precision (repeatability) and accuracy under the test conditions. The PQL/LOR is usually calculated as five times the lower limit of detection (or method detection limit). However, adjustments in PQLs/LORs may be required due to interference from high contaminant concentrations.

As environmental samples can exhibit a high degree of heterogeneity, field duplicates often exceed the acceptance criterion, particularly if the samples are co-collected, for example, because of the potential for losing volatiles during sample splitting. It is generally accepted that before results which fail the acceptance criterion are described as due to low concentrations or sample heterogeneity, the sample should be re-analysed. This may not be necessary when the analytical results are significantly less than the landuse criteria.

2.1.3 Inter-laboratory duplicates

Inter-laboratory duplicates (or split samples) are field duplicates which are sent to a second laboratory and analysed for the same analytes and, as far as possible, by the same methods. These provide a check on the analytical performance of the primary laboratory.

2.1.4 Laboratory Duplicates

Laboratory duplicates (or check samples) are field samples which are split by the laboratory and thereafter treated as separate samples. The RPD is calculated to determine the degree of repeatability (precision) of results obtained from the duplicate analysis.

USEPA (1994) specifies that for inorganics, if the results for laboratory duplicates fall outside of the recommended control limits for a particular analyte, all results for that analyte, in all associated samples of the same matrix, should be qualified as an estimated quantity. For organics, USEPA (1999) does not specify recommended actions for laboratory duplicates.

2.2 Accuracy

Accuracy is a measure of the agreement between an experimental determination and the true value of the parameter being measured. Inasmuch as the true sample concentrations are not known, the determination of accuracy is achieved through the analysis of known reference materials or assessed by the analysis of matrix spikes. Spiking of reference material into the actual sample matrix is the preferred technique because it provides a measure of the matrix effects on the analytical recovery.

Accuracy is measured in terms of percentage recovery as defined by:

%R = ((SSR - SR) / SA) x 100

%R = percentage recovery spike SSR = spiked sample result SR = sample result SA = spike added

2.2.1 Matrix spikes/matrix spike duplicates

These are samples prepared in the laboratory by dividing a sample into two aliquots and then spiking each with identical concentrations of specific analytes. The matrix spike (MS) and matrix spike duplicate (MSD) are then analysed separately and the results compared to determine the accuracy and precision of the analytes.

2.2.2 Surrogate spikes

Surrogate spikes provide an indication of analytical accuracy. They are used only for analyses which use gas chromatography and are compounds which are similar to the organic analytes of interest in chemical composition, extraction and chromatography, but which are not normally found in field samples. Surrogates are generally spiked into all sample aliquots prior to preparation and analysis. If the surrogate spike recovery does not meet the prescribed acceptance criteria, the samples should be re-analysed.

2.2.3 Laboratory control samples

Laboratory control samples (quality control check samples) are laboratory prepared samples of an appropriate clean matrix (i.e. sand or distilled water) which are spiked with known concentrations of specific analytes. The laboratory control sample (LCS) is then analysed and the results are used to assess sample preparation and analytical accuracy, free of matrix effects. Certified reference material (CRM) is another form of LCS, and involves the analysis of a known standard as part of the laboratory batch, e.g. British Columbia sediment samples for analysis of metals.

2.3 Representativeness

Representativeness refers to the degree to which the samples reflect the site specific conditions. It is primarily dependent on the design and implementation of the sampling program, with representativeness of the data being partially ensured by the avoidance of cross-contamination, adherence to sample handling and analytical methods, use of field duplicates, ensuring that samples do not exceed holding times prior to analysis, use of chain-of-custody forms and other appropriate documentation.

There are a number of QC samples which can be collected to assist in the qualification of representativeness, including:

2.3.1 Rinsate blanks

Used to determine if sampling equipment has been adequately decontaminated to ensure that cross-contamination between samples has not occurred. The frequency for rinsate blanks is one per piece of equipment per day (AS 4482.1-1997), however it should be noted that cross-contamination will bias samples upwards, and the frequency should therefore be at the investigators discretion.

2.3.2 Trip blanks

Used only when volatile organics are sampled to determine if transport in motor vehicles or similar has resulted in contamination of the samples. For trip blanks, a sufficient number should be analysed to allow the representativeness of the sampling to be determined. However, it should be noted that cross-contamination will bias samples upwards, and the frequency should therefore be at the investigators discretion.

2.3.3 Trip spikes

Used only when volatile organics are sampled to attempt to quantify loss of volatiles during the analytical process. For trip spikes, a sufficient number of samples should be analysed to allow qualification of the likely loss of volatiles during the field sampling.

2.3.4 Laboratory blanks

Laboratory blanks (or method blanks, or analysis blanks) are used to verify that contaminants are not introduced into the samples during sample preparation and analysis. The NEPM (NEPC 1999) specifies that laboratory blanks should be conducted at a frequency of "at least one per process batch". The acceptance criterion for laboratory blanks is non-detect at the PQL/LOR.

2.4 Comparability

Comparability is a qualitative parameter designed to express the confidence with which one data set may be compared with another, including established criteria. Comparability is maintained by using consistent methods and ensuring that PQLs/LORs are below the relevant criteria.

2.5 Completeness

Quality control sample completeness is defined as the number of QC samples which should have been analysed, compared to the actual number analysed. If the appropriate number of QC samples are not analysed with each matrix or sample batch, then the data reviewer should use professional judgement to determine if the associated sample data should be qualified.

Completeness also refers to the complete and correct inclusion of field/sample documentation and laboratory documentation.

2.5.1 QC sample frequency and criteria

Based on EPA made or approved guidelines, the following QC samples are required for all contaminated site investigations, unless otherwise specified as part of the data quality objectives (DQOs) process review. All data to be used for validation should conform as a minimum to the requirements specified, regardless of minimum sample size.

Quality control sample	Frequency	Results ¹
Precision		
Field duplicates.	≥ 5%	≤ 30 - 50% ²
Inter-laboratory duplicates.	≥ 5%	≤ 30 - 50% ²
Laboratory duplicates.	≥ 10%	Lab specified ³
Accuracy		
Surrogate spikes.	Organics by GC	70 - 130% 4
Matrix spikes (MSs).	≥ 1/media type	70 - 130% ⁵
Laboratory control samples (LCSs).	≥ 1/lab batch	70 - 130% ⁶
Certified reference material (CRM).	LCS for metals	Lab specified ⁷
Representativeness		
Rinsate samples.	≥ 1/field batch	< LOR
Trip blanks.	≥ 1/field batch (volatiles)	< LOR
Trip spikes.	≥ 1/field batch (volatiles)	70 - 130%, ≤ 30 - 50% ⁸
Laboratory blanks.	≥ 1/lab batch	< LOR

Notes:

- 1. Where results are laboratory specified, the laboratory analytical reports should be consulted for specific information.
- 2. Relative percentage differences (RPDs) for field duplicates from AS 4482.1 (1997).
- 3. RPDs for laboratory duplicates specified by the laboratory. Based on the magnitude of the results compared to the level of reporting (LOR), e.g. ALS: result $< 10 \times LOR = no$ limit, $10 20 \times LOR = 0-50\%$, $> 20 \times LOR = 0-20\%$. LabMark: $< 5 \times LOR = 0-100\%$, $5 10 \times LOR = 0-75\%$, $> 10 \times LOR = 0-50\%$ or 0-30% for metals.
- 4. Surrogate recoveries specified by laboratory based on global acceptance criteria or dynamic recovery limits based on statistical evaluation of actual laboratory data.
- 5. MS recoveries specified by laboratory based on global acceptance criteria.
- 6. LCS recoveries specified by laboratory based on global acceptance criteria or dynamic recovery limits based on statistical evaluation of actual laboratory data.
- 7. CRM recoveries specified by laboratory based on global acceptance criteria.
- 8. Trip spike results are specified as either recoveries or RPDs.

3.0 References

Australian New Zealand Environment and Conservation Council (1996) *Guidelines for the laboratory analysis of contaminated soils*. ANZECC, Canberra, ACT.

Australian Standard AS 4482.1 (2005) Guide to the sampling and investigation of potentially contaminated soil, Part 1: Non-volatile and Semi-volatile compounds. Standards Australia, Homebush, NSW.

National Environment Protection Council (NEPC) (1999) *National Environmental Protection (Assessment of Site Contamination) Measure 1999* (as amended April 2013). National Environment Protection Council, Canberra.

NSW Environment Protection Authority (1994) *Contaminated Sites: Guidelines for Assessing Service Station Sites.* NSW EPA, Chatswood, NSW.

NSW Environment Protection Authority (1997) *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.* NSW EPA, Chatswood, NSW.

United States Environmental Protection Agency, Contract Laboratory Program (1994) *National Functional Guidelines for Inorganic Data Review.* USEPA, Washington, DC.

United States Environment Protection Agency, Contract Laboratory Program (1999) *National Functional Guidelines for Organic Data Review.* USEPA, Washington, DC.

Attachment D Laboratory Reports

CERTIFICATE OF ANALYSIS

Work Order : ES1836474

Client : CAVVANBA CONSULTING

Contact : MR BEN WACKETT

Address : PO BOX 2191

BYRON BAY NSW 2481

Telephone : +61 02 6685 7811

Project : 18084 Order number : 18084

C-O-C number : ----

Sampler : GLEN CHISNALL

Site : ---

Quote number : SYBQ/409/18

No. of samples received : 49
No. of samples analysed : 21

Page : 1 of 8

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 05-Dec-2018 14:14

Date Analysis Commenced : 05-Dec-2018

Issue Date : 07-Dec-2018 20:04

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryEdwandy FadjarOrganic CoordinatorSydney Inorganics, Smithfield, NSWEdwandy FadjarOrganic CoordinatorSydney Organics, Smithfield, NSWIvan TaylorAnalystSydney Inorganics, Smithfield, NSW

Page : 2 of 8 Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

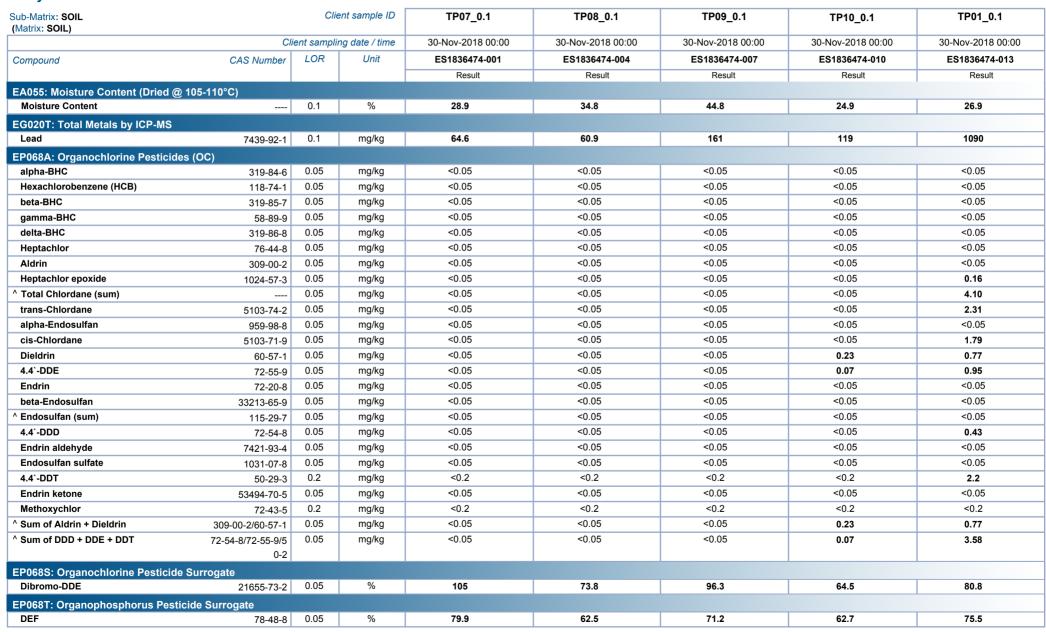
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

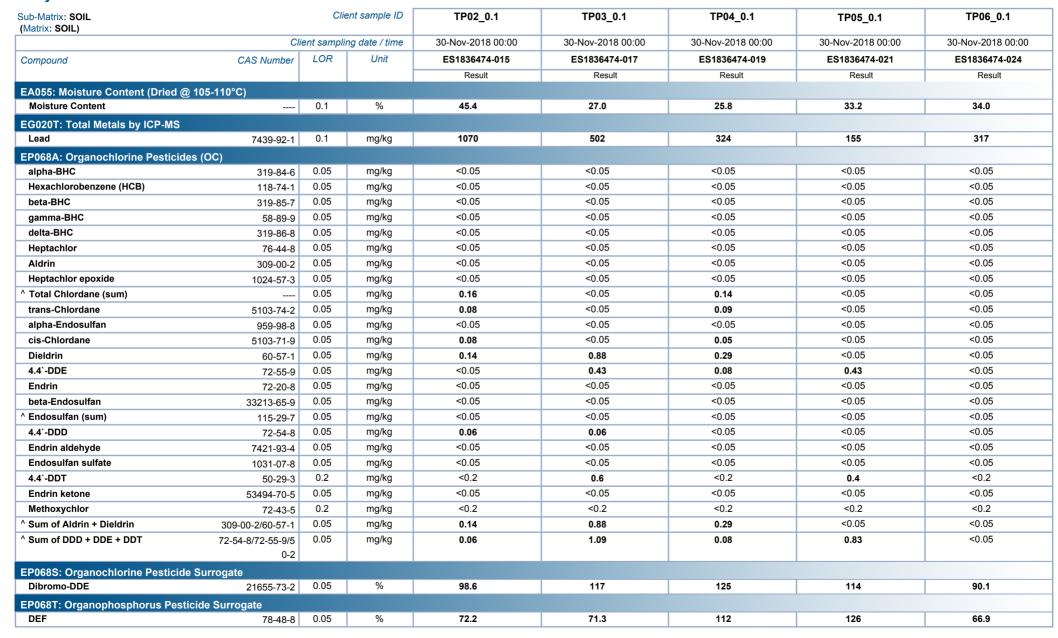

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 8
Work Order : ES1836474

Client : CAVVANBA CONSULTING

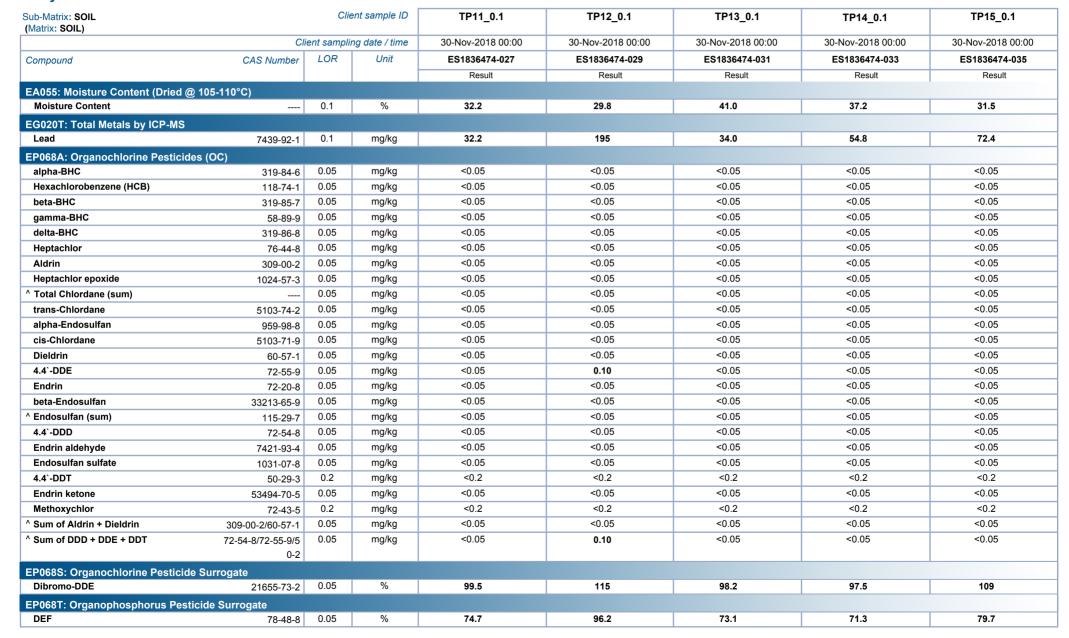
Project : 18084



Page : 4 of 8 Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084



Page : 5 of 8 Work Order : ES1836474

Client : CAVVANBA CONSULTING

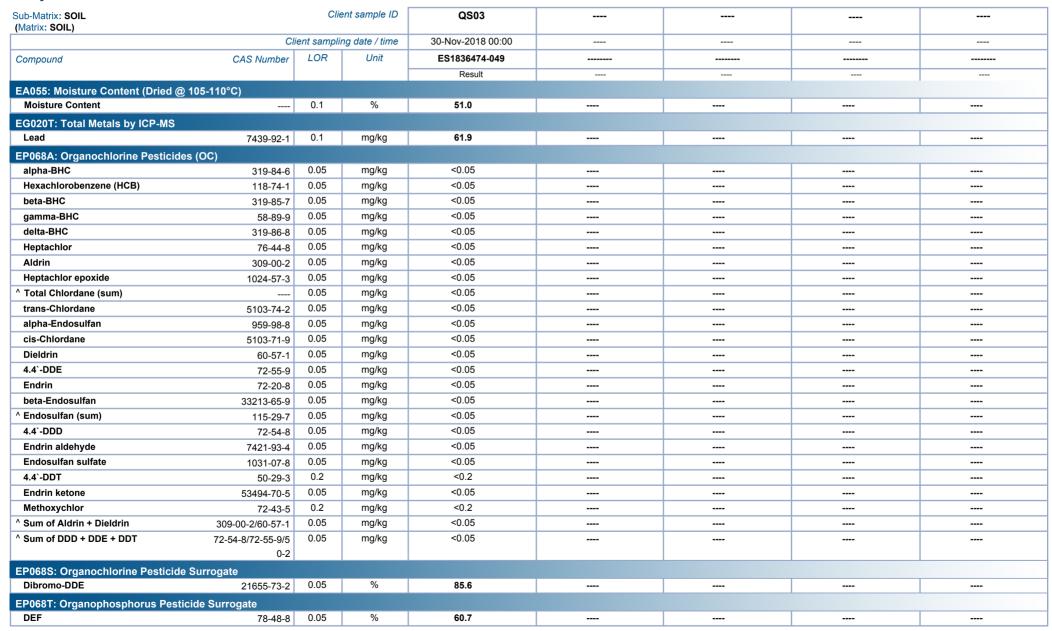
Project : 18084



Page : 6 of 8 Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084



Page : 7 of 8 Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Page : 8 of 8
Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	35	143

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1836474** Page : 1 of 5

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

 Contact
 : MR BEN WACKETT
 Telephone
 : +61 2 8784 8555

 Project
 : 18084
 Date Samples Received
 : 05-Dec-2018

 Site
 : --- Issue Date
 : 07-Dec-2018

Sampler : GLEN CHISNALL No. of samples received : 49
Order number : 18084 No. of samples analysed : 21

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

Matrix: SOIL					Lvaluation	Holding time	breach; ▼ = withi	ir noiding tin
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105	5-110°C)							
Soil Glass Jar - Unpreserved (EA055)								
TP07_0.1,	TP08_0.1,	30-Nov-2018				05-Dec-2018	14-Dec-2018	✓
TP09_0.1,	TP10_0.1,							
TP01_0.1,	TP02_0.1,							
TP03_0.1,	TP04_0.1,							
TP05_0.1,	TP06_0.1,							
TP11_0.1,	TP12_0.1,							
TP13_0.1,	TP14_0.1,							
TP15_0.1,	TP16_0.1,							
TP17_0.1,	TP18_0.1,							
TP19_0.1,	QS01,							
QS03								
EG020T: Total Metals by ICP-MS								
Soil Glass Jar - Unpreserved (EG020X-	T)							
TP07_0.1,	TP08_0.1,	30-Nov-2018	06-Dec-2018	29-May-2019	✓	06-Dec-2018	29-May-2019	✓
TP09_0.1,	TP10_0.1,							
TP01_0.1,	TP02_0.1,							
TP03_0.1,	TP04_0.1,							
TP05_0.1,	TP06_0.1,							
TP11_0.1,	TP12_0.1,							
TP13_0.1,	TP14_0.1,							
TP15_0.1,	TP16_0.1,							
TP17_0.1,	TP18_0.1,							
TP19_0.1,	QS01,							
QS03								

Page : 3 of 5 Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach; ✓ = With	n holding tim
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068)								
TP07_0.1,	TP08_0.1,	30-Nov-2018	06-Dec-2018	14-Dec-2018	✓	06-Dec-2018	15-Jan-2019	✓
TP09_0.1,	TP10_0.1,							
TP01_0.1,	TP02_0.1,							
TP03_0.1,	TP04_0.1,							
TP05_0.1,	TP06_0.1,							
TP11_0.1,	TP12_0.1,							
TP13_0.1,	TP14_0.1,							
TP15_0.1,	TP16_0.1,							
TP17_0.1,	TP18_0.1,							
TP19_0.1,	QS01,							
QS03								

Page : 4 of 5 Work Order ES1836474

Client CAVVANBA CONSULTING

: 18084 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL		Evaluation: x = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification.					
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite X	EG020X-T	3	22	13.64	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Pesticides by GCMS	EP068	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite X	EG020X-T	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Pesticides by GCMS	EP068	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite X	EG020X-T	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Pesticides by GCMS	EP068	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite X	EG020X-T	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-MS - Suite X	EG020X-T	SOIL	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

Work Order : ES1836474

Client : CAVVANBA CONSULTING

Contact : MR BEN WACKETT

Address : PO BOX 2191

BYRON BAY NSW 2481

Telephone : +61 02 6685 7811

Project : 18084 Order number : 18084

C-O-C number : ---

Sampler : GLEN CHISNALL

Site · ---

Quote number : SYBQ/409/18

No. of samples received : 49
No. of samples analysed : 21

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 05-Dec-2018

Date Analysis Commenced : 05-Dec-2018

Issue Date : 07-Dec-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page : 2 of 7

Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory D	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ntent (Dried @ 105-110°C) (QC Lot: 2077535)							
ES1836474-001	TP07_0.1	EA055: Moisture Content		0.1	%	28.9	32.2	10.8	0% - 20%
ES1836474-029	TP12_0.1	EA055: Moisture Content		0.1	%	29.8	30.1	1.02	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110°C) (QC Lot: 2077536)							
ES1836474-049	QS03	EA055: Moisture Content		0.1	%	51.0	54.9	7.26	0% - 20%
ES1836478-005	Anonymous	EA055: Moisture Content		0.1	%	3.6	3.0	17.2	0% - 20%
EG020T: Total Metal	s by ICP-MS (QC Lot: 20791	(34)							
ES1836474-024	TP06_0.1	EG020X-T: Lead	7439-92-1	0.1	mg/kg	317	270	16.1	0% - 20%
ES1836404-001	Anonymous	EG020X-T: Lead	7439-92-1	0.1	mg/kg	8.4	7.7	9.48	0% - 20%
EG020T: Total Metal	s by ICP-MS (QC Lot: 20791	l35)							
ES1836474-048	QS01	EG020X-T: Lead	7439-92-1	0.1	mg/kg	167	201	18.2	0% - 20%
EP068A: Organochio	orine Pesticides (OC) (QC L	ot: 2077265)							
ES1836474-001	TP07_0.1	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page : 3 of 7
Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

	Client sample ID	Method: Compound							
	vine Destinides (OC) (OC	Method. Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ES1836474-001	rine Pesticides (OC) (QC	Lot: 2077265) - continued							
ES1836474-001 TP07_0.1	TP07_0.1	EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
ES1836474-027	TP11_0.1	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
	EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit	
	EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit	
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP068A: Organochlo	rine Pesticides (OC) (QC	Lot: 2077270)							
ES1836474-049	QS03	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
	EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit	
	EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit	
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page : 4 of 7
Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochio	orine Pesticides (OC) (QC Lo	ot: 2077270) - continued							
ES1836474-049	QS03	EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit

Page : 5 of 7
Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG020T: Total Metals by ICP-MS (QCLot: 2079134)										
EG020X-T: Lead	7439-92-1	0.1	mg/kg	<0.1	40 mg/kg	91.9	73	128		
EG020T: Total Metals by ICP-MS (QCLot: 2079135)										
EG020X-T: Lead	7439-92-1	0.1	mg/kg	<0.1	40 mg/kg	103	73	128		
EP068A: Organochlorine Pesticides (OC) (QCLot: 2077	265)									
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	94.9	69	113		
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	65	117		
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	67	119		
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	100	68	116		
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	96.8	65	117		
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	95.6	67	115		
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	96.9	69	115		
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	102	62	118		
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	94.0	63	117		
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	100	66	116		
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	95.1	64	116		
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	100	66	116		
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	102	67	115		
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	91.0	67	123		
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	103	69	115		
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	102	69	121		
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	102	56	120		
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	62	124		
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	99.0	66	120		
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	100	64	122		
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	85.9	54	130		
EP068A: Organochlorine Pesticides (OC) (QCLot: 2077	270)									
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	94.9	69	113		
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	94.4	65	117		
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	94.5	67	119		
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	97.5	68	116		
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	91.8	65	117		
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	92.0	67	115		
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	94.2	69	115		
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	96.6	62	118		

Page : 6 of 7
Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCI	Lot: 2077270) - continued								
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	88.7	63	117	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	95.7	66	116	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.9	64	116	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	94.9	66	116	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	96.6	67	115	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	83.8	67	123	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	97.4	69	115	
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	96.9	69	121	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	95.1	56	120	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.2	62	124	
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	92.2	66	120	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	95.6	64	122	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	78.0	54	130	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020T: Total Me	tals by ICP-MS (QCLot: 2079134)						
ES1836404-001	Anonymous	EG020X-T: Lead	7439-92-1	250 mg/kg	91.6	70	130
EG020T: Total Me	tals by ICP-MS (QCLot: 2079135)						
ES1836474-048	QS01	EG020X-T: Lead	7439-92-1	250 mg/kg	99.4	70	130
EP068A: Organoc	hlorine Pesticides (OC) (QCLot: 2077265)						
ES1836474-001	TP07_0.1	EP068: gamma-BHC	58-89-9	0.5 mg/kg	89.7	70	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	85.2	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	120	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	89.4	70	130
		EP068: Endrin	72-20-8	2 mg/kg	110	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	80.2	70	130
EP068A: Organoc	hlorine Pesticides (OC) (QCLot: 2077270)						
ES1836474-049	QS03	EP068: gamma-BHC	58-89-9	0.5 mg/kg	89.2	70	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	86.2	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	118	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	88.2	70	130
		EP068: Endrin	72-20-8	2 mg/kg	108	70	130

Page : 7 of 7
Work Order : ES1836474

Client : CAVVANBA CONSULTING

Project : 18084

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP068A: Organoch	lorine Pesticides (OC) (QCLot: 2077270) - continued						
ES1836474-049	QS03	EP068: 4.4`-DDT	50-29-3	2 mg/kg	90.3	70	130

BYRON BAY NSW 2481

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES1836474

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

Contact : MR BEN WACKETT Contact : Brenda Hong

Address : PO BOX 2191 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Telephone : +61 02 6685 7811 Telephone : +61 2 8784 8555
Facsimile : +61 02 6685 5083 Facsimile : +61-2-8784 8500

Project : 18084 Page : 1 of 4

 Order number
 : 18084
 Quote number
 : EB2017CAVCON0001 (SYBQ/409/18)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : GLEN CHISNALL

Dates

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Not Available

No. of coolers/boxes : 2 Temperature : 10.7'C - Ice present

Receipt Detail : No. of samples received / analysed : 49 / 21

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- SAMPLES QS02 AND QS04 WERE FORWARDED TO ENVIROLAB
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

: 05-Dec-2018 Issue Date

Page

ES1836474-035

30-Nov-2018 00:00

TP15 0.1

2 of 4 ES1836474 Amendment 0 Work Order Client **CAVVANBA CONSULTING**

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. GCMS If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date Organochlorine Pesticides by is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time Metals by ICP-MS EP068A (solids) EG020T (solids) to analysis requested component EA055-103 **10isture Content** On Hold) SOIL Matrix: SOIL OIL - Cotal M Laboratory sample Client sampling Client sample ID 딩 ID date / time ES1836474-001 30-Nov-2018 00:00 TP07_0.1 FS1836474-002 30-Nov-2018 00:00 TP07_0.3 ✓ ES1836474-003 30-Nov-2018 00:00 TP07_0.5 ✓ ✓ ES1836474-004 ✓ 30-Nov-2018 00:00 TP08_0.1 ES1836474-005 30-Nov-2018 00:00 TP08_0.3 ✓ ES1836474-006 30-Nov-2018 00:00 TP08_0.5 ES1836474-007 30-Nov-2018 00:00 TP09_0.1 ✓ ✓ ES1836474-008 30-Nov-2018 00:00 TP09_0.3 ES1836474-009 30-Nov-2018 00:00 TP09 0.5 ✓ ✓ ✓ ES1836474-010 30-Nov-2018 00:00 TP10_0.1 ES1836474-011 30-Nov-2018 00:00 TP10_0.3 ✓ ES1836474-012 30-Nov-2018 00:00 TP10 0.5 ✓ ES1836474-013 30-Nov-2018 00:00 TP01 0.1 ✓ ES1836474-014 30-Nov-2018 00:00 TP01_0.3 ES1836474-015 30-Nov-2018 00:00 TP02_0.1 ✓ ✓ ES1836474-016 30-Nov-2018 00:00 TP02 0.3 ✓ ✓ ES1836474-017 30-Nov-2018 00:00 TP03_0.1 ES1836474-018 30-Nov-2018 00:00 TP03_0.3 ✓ ES1836474-019 30-Nov-2018 00:00 TP04 0.1 ✓ ✓ ES1836474-020 30-Nov-2018 00:00 TP04 0.3 ES1836474-021 30-Nov-2018 00:00 TP05_0.1 ✓ ✓ ES1836474-022 30-Nov-2018 00:00 TP05 0.3 ES1836474-023 30-Nov-2018 00:00 TP05 0.5 ✓ ✓ ✓ ES1836474-024 30-Nov-2018 00:00 TP06_0.1 ✓ ES1836474-025 30-Nov-2018 00:00 ✓ TP06_0.3 ES1836474-026 30-Nov-2018 00:00 TP06_0.5 ✓ ES1836474-027 30-Nov-2018 00:00 TP11_0.1 ✓ ✓ ES1836474-028 30-Nov-2018 00:00 ✓ TP11_0.3 ES1836474-029 ✓ ✓ 30-Nov-2018 00:00 TP12_0.1 ES1836474-030 ✓ 30-Nov-2018 00:00 TP12_0.3 ✓ ✓ ES1836474-031 30-Nov-2018 00:00 TP13_0.1 ES1836474-032 ✓ 30-Nov-2018 00:00 TP13 0.3 ✓ ✓ ES1836474-033 30-Nov-2018 00:00 TP14_0.1 ✓ ES1836474-034 30-Nov-2018 00:00 TP14_0.3

Issue Date : 05-Dec-2018

Page

: 3 of 4 : ES1836474 Amendment 0 Work Order Client : CAVVANBA CONSULTING

			(On Hold) SOIL No analysis requested	SOIL - EA055-103 Moisture Content	SOIL - EG020T (solids) Total Metals by ICP-MS	SOIL - EP068A (solids) Organochlorine Pesticides by GCMS
ES1836474-036	30-Nov-2018 00:00	TP15_0.3	✓			
ES1836474-037	30-Nov-2018 00:00	TP16_0.1		✓	✓	✓
ES1836474-038	30-Nov-2018 00:00	TP16_0.3	✓			
ES1836474-039	30-Nov-2018 00:00	TP17_0.1		✓	1	✓
ES1836474-040	30-Nov-2018 00:00	TP17_0.3	✓			
ES1836474-041	30-Nov-2018 00:00	TP17_0.5	✓			
ES1836474-042	30-Nov-2018 00:00	TP18_0.1		✓	1	✓
ES1836474-043	30-Nov-2018 00:00	TP18_0.3	✓			
ES1836474-044	30-Nov-2018 00:00	TP18_0.5	✓			
ES1836474-045	30-Nov-2018 00:00	TP19_0.1		✓	✓	✓
ES1836474-046	30-Nov-2018 00:00	TP19_0.3	✓			
ES1836474-047	30-Nov-2018 00:00	TP19_0.5	✓			
ES1836474-048	30-Nov-2018 00:00	QS01		✓	✓	✓
ES1836474-049	30-Nov-2018 00:00	QS03		✓	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 05-Dec-2018

Page

: 4 of 4 : ES1836474 Amendment 0 Work Order Client : CAVVANBA CONSULTING

Requested Deliverables

- EDI Format - ENMRG (ENMRG)

- EDI Format - ESDAT (ESDAT)

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	inbox@cavvanba.com
BEN WACKETT		
 *AU Certificate of Analysis - NATA (COA) 	Email	ben@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ben@cavvanba.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ben@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ben@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	ben@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	ben@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	ben@cavvanba.com
GLEN CHISNALL		
 *AU Certificate of Analysis - NATA (COA) 	Email	glen@cavvanba.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	glen@cavvanba.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	glen@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	glen@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	glen@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	glen@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	glen@cavvanba.com
ROB MCLELLAND		
- A4 - AU Tax Invoice (INV)	Email	rob@cavvanba.com
ROSS NICOLSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	ross@cavvanba.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ross@cavvanba.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ross@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ross@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	ross@cavvanba.com

Email

Email

ross@cavvanba.com

ross@cavvanba.com

7/12/18

□MAC (AY 76 Herbour Road Maccay QLD 4740
□BRISBANE 32 Shane Street Stafford □ April AIDE 21 Burna Road Profest Stafford To Herbour Road Profest Stafford To Herbour Road Profest Stafford Staff

Telephone: +61-2-6784 9555

UPERTH 10 Hod Way Malaga WA 5000 Ph. 38 9205 7655 E. samples perhigbateplobal com
Ph. 38 9205 7655 E. samples perhigbateplobal com
Ph. 98 9205 7655 E. samples perhigbateplobal com

CLIENT:	Cavvanba Consulting		TURNAF	ROUND REQUIREMENTS :	■ Standa	ard TAT (Lis	st due date):	FOR LABORATORY USE ONLY (Circle)
OFFICE:	Byron Bay			TAT may be longer for some tests e.g e Organics)	_		ırgent TAT (List du	due date): 6/12/18 Custody Seal Infact? Yes No FAVA
PROJECT	: 18084				3Q/409/18			COC SEQUENCE NUMBER (Circle) Free ica frozen ice bricks present upon Yes No N/A
ORDER N	UMBER: 18084							COC: 1 2 3 4 5 6 7 Random Sample Temperature on Receipt: / () 7 c
	MANAGER: Ben Wackett	CONTACT P	H: 0488 27	25 692				OF: 1 2 3 4 5 6 7 Other comment
SAMPLER	R: Glen Chisnall	SAMPLER N	NOBILE: 04	499401092	RELINQUIS	SHED BY:		RECEIVED BY: RECEIVED BY: RECEIVED BY:
<u> </u>	iled to ALS? (YES / NO)	EDD FORMA		<u> </u>	Glen Chisn	nall		MC
	ports to (will default to PM if no other address			oss@cavvanba.com	DATE/TIME	Ξ:		DATE/TIME: DATE/TIME: DATE/TIME: S/12/12 11:00 av
Email Invo	pice to (will default to PM if no other addresse	s are listed): rob@cavvant	pa.com		12/2018			3/140 11,00 at
COMMENT	TS/SPECIAL HANDLING/STORAGE OR DIS	SPOSAL:			7			
ALS USE	SAMPLE DE MATRIX: SOLID (S			CONTAINER INFO	RMATION			IS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Lats are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL	Lead, OCPs	Subcon (Forward Lab)/Split WO comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc. Organised By / Date: 4 QSOH
1	TP07_0.1	39/11/2018	Soil	JAR		1	x	Connote / Courier: ES1836474 (OA-1
2	TP07_0.3	30/11/2018	Soil	JAR		1	ON HOLD	WO NO: ENVIROLAR TURN EROUS
3	TP07_0.5	30/11/2018	Soil	JAR		1	ON HOLD	Attach By PO / Internal Sheet:
4	TP08_0.1	30/11/2018	Soil	JAR		1	х	on
5	TP08_0.3	30/11/2018	Soil	JAR		1	ON HOLD	SAMPES .
6	TP08_0.5	30/11/2018	Soil	JAR		1	ON HOLD	Pierre
7	TP09_0.1	30/11/2018	Soil	JAR		1	x	
8	TP09_0.3	30/11/2018	Soil	JAR		1	ON HOLD	The state of Phylinian
9	TP09_0.5	30/11/2018	Soil	JAR		1	ON HOLD	Environmental Division Sydney
10	TP10_0.1	30/11/2018	Soil	JAR		1	x	Sydney Work Order Reference ES1836474
11	TP10_0.3	30/11/2018	Soil	JAR		1	ON HOLD	E31030474
12	TP10_0.5	30/11/2018	Soil	JAR		1	ON HOLD	
Water Conta	ing Codes: P. Lingsoyed Discipling N. a. Nice.	Processed Planting OPC - Nitro			TOTAL	14		ES1836474
IV = VOA VIAI	iner Codes: P = Unpreserved Plastic; N = Nitric P HCl Preserved; VB = VOA Vial Sodium Bisulphate ate Preserved Bottle; E = EDTA Preserved Bottles;	Preserved: VS = VOA Vial Sulf	ilfuric Precenza	ed: AV = Airfreight Unpresented Vial SC -	- Culturia Drea	am Hydroxide served Ambe	Preserved Plastic; A Pr Glass; H = HCl pr	c; AG = Amber (preserved Plas

CHAIN OF

ALS Laboratory:

TP05_0.5

TP06_0.1

TP06_0.3

TP06_0.5

30/11/2018

30/11/2018

30/11/2018

30/11/2018

Soil

Soil

Soil

Soil

URPISBANG 32 Shand Street Stefford GLUGGESS SEED 17 E. naura Road Pooling Seege 177 E. nadax/glasgiscon com Fin 07 3043 7222 E. samples bristaneg/alsglood 695 E. adetadagaat/file Eligibus No. 24 Verbild Float Sampyate VIC 3171 Flort 7 3043 7222 E. samples bristaneg/alsglood 695 E. adetadagaat/file Eligibus No. 24 Verbild Float Sampyate VIC 3171 GLSAOST ORDE 45 Catemonal Drive Chron GLD 4830 GM 1875 See 18 OREWCASTLE 5/586 Maritand Rd Mayfeld West NSWANGENEY 277-289 Woodpark Rrad Smitheld NSW 2184 Pb. 02 45/14 2500 E. samples newcastle@asglobal codfin 02 5784 9555 E. samples.sydney@alsylobal codfin 02 5784 9555 E. samples.sydney@alsylobal codfin NSW 25/14 170 West LLE 14-15 Destra Court Bohre QLD 4318 Phr 024423 2038 E. nowraginsglobal codfin Phr 024423 2038 E. nowraginsglobal codfin Phr 024423 2038 E. nowraginsglobal codfin NSW 25/14/15/05/05/05 E. tronsrells environments @asglobal.com

UPERTH 10 Hod Way Malaga WA 5090 UPOLLONGONG 99 Kenny S

TWO LLONGONG 99 Kenny Street Wollongong NSW 2800

	please tick →	•									Phι	is 9209 765	5 E. samples.pert	n@aleglobailoom Pl∷ 02 42	25 3126 E. portkembia@aisglobal.com =	
CLIENT:	Cavvanba Consulting		TURNAF	ROUND REQUIREMENTS :	Stand	lard TAT (Lis	st due date):			,			- Vietnikus	LABORATORY USE		
OFFICE:	Byron Bay		(Standard)				ırgent TAT (List du	lue date	. h	112	10	F		ody Seal Intact?	Yes N	o (NVA
PROJECT	Т: 18084	-			Q/409/18				$\overline{}$	QUENCE	NUMBE	R (Circl	e) Free	ice / frozen ice bricks pre		
ORDER N	IUMBER: 18084					-		co	: 1	2 3	4	5 (Tall of the last	om Sample Temperature		The second secon
PROJEC1	MANAGER: Ben Wackett	CONTACT P	H: 0488 22	25 692	-		***	OF	: 1	2 3	4	5 (7 Othe	comment:		
SAMPLER	R: Glen Chisnall	SAMPLER M	OBILE: 04	99401092	RELINQUI	SHED BY:		RÉ	CEIVED B	Y:			RELINQU	SHED BY:	RECEIVED BY:	
COC ema	iled to ALS? (YES / NO)	EDD FORMA	T (or defa	ult):	Glen Chis	nali		-					ļ.		MC	
	oorts to (will default to PM if no other addresse			oss@cavvanba.com	DATE/TIME	E:		DA	TE/TIME:				DATE/TIM	E:	DAŢEĮTIME:	. 3 . 5
Email Invo	oice to (will default to PM if no other addresses	s are listed): rob@cavvanb	a.com	· ·	12/2018										5/12/18	(1,00a
COMMEN	TS/SPECIAL HANDLING/STORAGE OR DIS	POSAL:														-
ALS USE	SAMPLE DE MATRIX: SOLID (S)			CONTAINER INFOR	RMATION		ANALYSIS Where Metals	S REQUII	RED includi uired, speci	ng SUITE fy Total (S (NB. S unfiltered require	bottle req	s must be listed uired) or Disso	to attract suite price) ved (field filtered bottle	Additional Inform	ation
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL	Lead, OCPs								Comments on likely contaminar dilutions, or samples requiring sanalysis etc.	
13	TP01_0.1	30/11/2018	Soil	JAR		1	x								1024	
14	TP01_0.3	30/11/2018	Soil	JAR		1	ON HOLD				1				Tiermen	14N
15	TP02_0.1	30/11/2018	Soil	JAR		1	x								TIME	,
Il	TP02_0.3	30/11/2018	Soil	JAR	, , , , , , , , , , , , , , , , , , , ,	1	ON HOLD								TIPE OF SHIPE	FI
17	TP03_0.1	30/11/2018	Soil	JAR		1	x			1					PLEASE	· _
18	TP03_0.3	30/11/2018	Soil	JAR		1	ON HOLD						<u> </u>		100130	
19	TP04_0.1	30/11/2018	Soil	JAR		1	×	-								
20	TP04_0.3	30/11/2018	Soil	JAR		1	ON HOLD			-	-	-				
21	TP05_0.1	30/11/2018	Soil	JAR		1	x	·				-	1	-	 	
22	TP05 0.3	30/11/2018	Soil	JAR		1	ON HOLD				_		1			

ON HOLD

ON HOLD

ON HOLD

1

1

14

TOTAL

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved CRC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved; AP - Airfreight Unpreserved; AP - Airfreight Unpreserved Plastic; V = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; SP = Sulfuric Preserved Plastic; B = Unpreserved Bag.

JAR

JAR

JAR

JAR

CHAIN OF CUSTODY

ALS Laboratory:

DRIGBANG 32 Shand Street shafted of Drigbang Cap Burna Road Pooles (28 \$464 5177 E. mackang basglocal born Production Cap Burna Road Pooles (28 \$464 5177 E. mackang basglocal born Production Cap Burna Road Pooles (28 \$464 5177 E. mackang basglocal born Production Cap Burna Road Production Cap Burna Road

UNEWCASTLE 5/865 Maltard Rd Mayfield wast NSVESMENEY 217-259 Woodpark Pood 9mildfield NSW 2164 Pp. 02 4914 25/06 E. samples navosstieglasgichal politi 0.2 8724 5555 E. samples sydnay@alsgichal.com UNEW 14/13 Gesny Place North Nowa NSW 25/14 CVVISVLLE 14/15 Desma Court Bohle GLD 4313 Ph. 024423 2063 E. novea@alsgictat.com Ph. 07 4736 0620 E. konsvette enrichmentat@alsgictbal.com

QPERTH 10 Hod Way Malaga, WA 6090

QWOLLONGONG S9 Kanny Street Wollongong NSW 2506

CLIENT: Cavvanba Consulting	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):		aumpies perth@aisglobar.com (*11, V2,4225,3125)	
OFFICE: Byron Bay	(Standard TAT may be longer for some tests of Ultra Trace Organics)	e.g Non Standard or urgent TAT (List	4 1 1	FOR LABORATORY USE ONLY	
PROJECT: 18084	ALS QUOTE NO.:	SYBQ/409/18	COC SEQUENCE NUMBER (Circle)	Custopy Seal Intact? Free Ke / Irozen ice bricks present up	Yes No N/K
ORDER NUMBER: 18084			COC: 1 2 3 4 5 6	receipt?	Yes No NA
PROJECT MANAGER: Ben Wackett	CONTACT PH: 0488 225 692		OF: 1 2 3 4 5 6	7 Random Sample Temperature on Rec	***・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
SAMPLER: Glen Chisnall	SAMPLER MOBILE: 0499401092	RELINQUISHED BY:		7 Other comment: RELINQUISHED BY:	
COC emailed to ALS? (YES / NO)	EDD FORMAT (or default):	Glen Chisnall		ELINGUISHED BY:	RECEIVED BY:
Email Reports to (will default to PM if no other address	ses are listed): glen@cavvanba.com, ross@cavvanba.com	DATE/TIME:	DATE/TIME:	DATE/TIME:	MC
Email Invoice to (will default to PM if no other address			D. D.	A) E/TIME:	SIZILBUL CONN
COMMENTS/SPECIAL HANDLING/STORAGE OR DIS	SPOSAL:				31.01-0111000

ALS USE	SAMPLE D MATRIX: SOLID (S	ETAILS D) WATER (W)		CONTAINER INFORMATION		ANALYSIS R Where Metals a	are required, specify Total (unfilte	Suite Codes must be listed to attract suite price) red bottle required) or Dissolved (field filtered bottle quired).	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL CONTAINERS	Lead, OCPs			Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
27	TP11_0.1	30/11/2018	Soil	JAR	1	x			1 00-
28	TP11_0.3	30/11/2018	Soil	JAR	1	ON HOLD			1 DAY
29	TP12_0.1	30/11/2018	Soil	JAR	1	x			TIME -
30	TP12_0.3	30/11/2018	Soil	JAR	1	ON HOLD			Challe
31	TP13_0.1	30/11/2018	Soil	JAR ·	1	x			TULNAROUM TIME ON SAMPLES PLEPATE
32	TP13_0.3	30/11/2018	Soil	JAR	1	ON HOLD			r CEPIC
33	TP14_0.1	30/11/2018	Soil	JAR	1	x			
34	TP14_0.3	30/11/2018	Soil	JAR	1	ON HOLD			
35	TP15_0.1	30/11/2018	Soil	· JAR	- 1	х			
16	TP15_0.3	30/11/2018	Soil	JAR	1	ON HOLD			
7	TP16_0.1	30/11/2018	Soil	JAR	1	x			
8	TP16_0.3	30/11/2018	Soil	JAR	1	ON HOLD			
34	TP17_0.1	30/11/2018	Soil	JAR	1	x			
16	TP17_0.3	30/11/2018	Soil	JAR	1	ON HOLD			
				TOTAL	14				

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved VI = Sodium Hydroxide/Cd Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic
Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CLIENT: Cavvanha Consulting

CHAIN OF CUSTODY

ALS Laboratory: please tick -> DMACKAY 78 Harbor Road Mackay QLO 4740

DBRISBANE 32 Shand Street Stafford GLADEL AIGE 21 Burna Road Profits \$4,954,0177.6 Inacking State Lorn
Phy of 3044 7222 E samples bristance allogication

DBLADSTORM 45 Caterondan Drive Christon OLD 4650 - MODELE 27 Swiney Road Mudgee NSW 2550

Ph. 07 7471 5600 E gladstone@alsglobal.com OMACKAY 18 Harbour Road Mackay QLO 4740

TURNAROUND REQUIREMENTS :

Standard TAT (List due date):

UNEWCASTLE 5/585 Malfatin Rd Mayrield west NSWENTENEY 277-289 woodpark Road Strumfield NSW 2164 Ph. 02 4014 2500 E. samples newest e@alsglobat soff n 03 8784 8655 E. samples o-dhey@alsglobat com DROWRA 41/3 Geory Plane North Nowra NSW 24711 CWT ISVLLE 14 15 Desire Court Bonie GEO 4818 Ph. 03 4423 2033 E. nowa@alsglobat.com Ph. 07 4479 0900 E. twinsillis, ervironmental@alsglobat.com

FOR LABORATORY USE ONLY (Circle)

□PERTH 10 Hod Way Maraga, WA 6090 □PWCL_DNGONG 95 Kenny Street Wollongong NS/V 2500 Ph 05 9200 7655 5; samples pertigoalstroid com Ph 02 4225 3125 E: pcdNeinbla@elistobal.com

	Cavvaina Consulting			ROUND REQUIREMENTS :	Stand	ard TAT (Lis	st due date):	1	1 (2	FOI	RLABORATORY	USE ONLY (C	ircle)
<u> </u>	Byron Bay		Ultra Trace	TAT may be longer for some tests e.g eOrganics)	Non S	standard or u	ırgent TAT (List du	e date):	112/	X	Cus	tody Seal Intact?		Yes No Kita
PROJECT	V		ALS QU	OTE NO.: SY	BQ/409/18			cod	SEQUENCE	UMBER (Circl	e) Frae	ice / frozen ice brick iot?	s present upon	
ORDER N	UMBER: 18084	<u></u> .						coc: 1	2 3	4 5 6	7 Ran	dom Sample Temper	ature on Receipt.	00 No NA 1047 C
<u> </u>	MANAGER: Ben Wackett	CONTACT	PH: 0488 22	25 692				OF: 1	2 3	4 5 6	7 Othe	or comment:		
SAMPLER	t: Glen Chisnall	SAMPLER	MOBILE: 04	199401092	RELINQUI	SHED BY:		RECEIVE	DBY:		RELINQU	ISHED BY:	F	RECEIVED BY:
	led to ALS? (YES / NO)		MAT (or defa	•	Glen Chis	nali					1		ľ	MC
_	orts to (will default to PM if no other addresse			oss@cavvanba.com	ДАТЕ/ТІМІ	E:		DATE/TIM	E:		DATE/TIM	1E:	[DATE/TIME:
Email Invo	rice to (will default to PM if no other addresse	s are listed): rob@cavvar	nba.com	***************************************	712/2018			_						DATE/TIME: SIIZIUS II:00av
COMMENT	TS/SPECIAL HANDLING/STORAGE OR DIS	POSAL:												
ALS USE	SAMPLE DE MATRIX: SOLID (S)			CONTAINER INFO	ORMATION							I to attract suite price lived (field filtered bo		Additional Information
						#1				required).		1		
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL	Lead, OCPs							nts on likely contaminant levels, , or samples requiring specific QC etc.
41	TP17_0.5	30/11/2018	Soil	JAR	-	1	ON HOLD						1/	DAT TURN
42	TP18_0.1	30/11/2018	Soil	JAR		1	x						Au-	MED TIME
43	TP18_0.3	30/11/2018	Soil	JAR	:	1	ON HOLD	}					01	2
44	TP18_0.5	30/11/2018	Soil	JAR		1	ON HOLD						C+	NO (I)
45	TP19_0.1	30/11/2018	Soil	JAR		1	x						IE	200
46	TP19_0.3	30/11/2018	Soil	JAR	,	1	ON HOLD						10	
47	TP19_0.5	30/11/2018	Soil	JAR		1	ON HOLD							
48	QS01	30/11/2018	Soil	JAR		1	x							
-	QS02	30/11/2018	Soil	JAR	·,	1	Р	lease forward	d analysis to	envirolab for	Lead (pb) a	nd OCPs		
49	QS03	30/11/2018	Soil	JAR		1	x							
-	QS04	30/11/2018	Soil	JAR		1	P	lease forward	d analysis to	envirolab for	Lead (pb) a	nd OCPs		
													1	
Water Control	A STATE OF THE STA	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19 19 19 19 19 19 19 19 19 19 19 19 19 1	TOTAL	14								
V = VOA Vial Z = Zinc Aceta	ner Codes: P = Unpreserved Plastic; N = Nitric Pr HCl Preserved; VB = VOA Vial Sodium Bisulphate F ate Preserved Bottle; E = EDTA Preserved Bottles; S	eserved Plastic; ORC = Nitr Preserved; VS = VOA Vial Su ST = Sterile Bottle; ASS = P	nc Preserved (lifuric Preserve lastic Bag for	URC; SH = Sodium Hydroxide/Cd Prese ed; AV = Airfreight Unpreserved Vial SG Acid Sulphate Soils; B = Unpreserved B	erved; S = Sodiu 3 = Sulfuric Pres 3ag	ım Hydroxide erved Ambe	Preserved Plastic; A r Glass; H = HCl pr	G = Amber Glas eserved Plastic;	ss Unpreserved HS = HCl pres	; AP - Airfreight L erved Speciation	Inpreserved Pla bottle; SP = Su	astic ulfuric Preserved Plas	stic; F = Formald	ehyde Preserved Glass;

CERTIFICATE OF ANALYSIS

Work Order : ES1837028

Client CAVVANBA CONSULTING

Contact : MR BEN WACKETT

Address : PO BOX 2191

BYRON BAY NSW 2481

Telephone : +61 02 6685 7811

Project : 18084 Order number C-O-C number

Sampler Site

Quote number : SYBQ/409/18

No. of samples received : 5 No. of samples analysed : 5 Page : 1 of 4

> Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555 **Date Samples Received** : 10-Dec-2018 12:00 **Date Analysis Commenced** : 10-Dec-2018

Issue Date : 11-Dec-2018 17:35

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Accreditation Category Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Sydney Inorganics, Smithfield, NSW Analyst

Position

Page : 2 of 4
Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP068: Positive results have been confirmed by re-extraction and re-analysis.
- EP068: Poor duplicate precision due to sample heterogeneity. Confirmed by re-extraction and re-analysis.

Page : 3 of 4 Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

Analytical Results

Page : 4 of 4
Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP068S: Organochlorine Pesticide Surrogate				
Dibromo-DDE	21655-73-2	49	147	
EP068T: Organophosphorus Pesticide Surrogate				
DEF	78-48-8	35	143	

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1837028** Page : 1 of 4

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

 Contact
 : MR BEN WACKETT
 Telephone
 : +61 2 8784 8555

 Project
 : 18084
 Date Samples Received
 : 10-Dec-2018

 Site
 : --- Issue Date
 : 11-Dec-2018

Sampler : --- No. of samples received : 5
Order number : --- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project · 18084

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EP068A: Organochlorine Pesticides (OC)	ES1837028001	TP01_0.3	trans-Chlordane	5103-74-2	33.0 %	0% - 20%	RPD exceeds LOR based limits
EP068A: Organochlorine Pesticides (OC)	ES1837028001	TP01_0.3	Dieldrin	60-57-1	56.1 %	0% - 20%	RPD exceeds LOR based limits

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

analysis e for analysis Evaluation 4-Dec-2018 ✓
1 Dec 2010
-Dec-2018 ✓
-Dec-2018 ✓
I-Dec-2018 ✓
9-May-2019 ✓
9-Jan-2019 🗸

Page : 3 of 4
Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specific										
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification			
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation				
Laboratory Duplicates (DUP)										
Moisture Content	EA055	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Pesticides by GCMS	EP068	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Total Metals by ICP-AES	EG005T	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Control Samples (LCS)										
Pesticides by GCMS	EP068	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Total Metals by ICP-AES	EG005T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)										
Pesticides by GCMS	EP068	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Total Metals by ICP-AES	EG005T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Matrix Spikes (MS)										
Pesticides by GCMS	EP068	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Total Metals by ICP-AES	EG005T	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard			

Page : 4 of 4 Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

: 1 of 5

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : ES1837028 Page

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

Contact : MR BEN WACKETT Contact : Brenda Hong

Address : PO BOX 2191 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

BYRON BAY NSW 2481
: +61 02 6685 7811

Telephone : +61 2 8784 8555

Project : 18084 Date Samples Received : 10-Dec-2018
Order number Date Analysis Commenced : 10-Dec-2018

Order number: ---Date Analysis Commenced: 10-Dec-2018C-O-C number: ---Issue Date: 11-Dec-2018Sampler----

Site · ----

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: SYBQ/409/18

: 5

: 5

Signatories

Telephone

Quote number

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category				
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW				
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW				
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW				

Page : 2 of 5 Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 2086434)							
ES1837028-003	TP03_0.3	EA055: Moisture Content		0.1	%	45.8	46.4	1.16	0% - 20%
EG005T: Total Meta	Is by ICP-AES (QC Lot:	2085212)							
ES1836596-010	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	7	7	0.00	No Limit
ES1836960-003	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	12	8	37.3	No Limit
EP068A: Organochl	orine Pesticides (OC) (QC Lot: 2085972)							
ES1837028-001	S1837028-001 TP01_0.3	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	0.07	<0.05	32.8	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	1.16	# 0.83	33.0	0% - 20%
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	0.90	0.64	33.6	0% - 50%
		EP068: Dieldrin	60-57-1	0.05	mg/kg	1.18	# 0.66	56.1	0% - 20%
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	1.63	1.67	2.48	0% - 20%
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	1.64	1.46	11.9	0% - 20%
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page : 3 of 5
Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP068A: Organochlorine Pesticides (OC) (QC Lot: 2085972) - continued											
ES1837028-001	TP01_0.3	EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	5.8	5.4	7.68	0% - 20%		
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		

Page : 4 of 5 Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report							
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High				
EG005T: Total Metals by ICP-AES (QCLot: 2085212	2)											
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	92.6	80	114				
EP068A: Organochlorine Pesticides (OC) (QCLot: 2085972)												
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	88.4	69	113				
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	89.6	65	117				
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	98.4	67	119				
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	101	68	116				
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.6	65	117				
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.6	67	115				
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	87.8	69	115				
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	87.0	62	118				
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	84.7	63	117				
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.8	66	116				
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	84.9	64	116				
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	90.9	66	116				
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	92.0	67	115				
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.9	67	123				
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.9	69	115				
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.3	69	121				
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	84.9	56	120				
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.6	62	124				
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	82.9	66	120				
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	90.2	64	122				
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	86.0	54	130				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Recovery L	imits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EG005T: Total Meta	ils by ICP-AES (QCLot: 2085212)								
ES1836596-010	Anonymous	EG005T: Lead	7439-92-1	250 mg/kg	95.8	70	130		
EP068A: Organoch	EP068A: Organochlorine Pesticides (OC) (QCLot: 2085972)								

Page : 5 of 5 Work Order : ES1837028

Client : CAVVANBA CONSULTING

Project : 18084

Sub-Matrix: SOIL			Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP068A: Organoch	Iorine Pesticides (OC) (QCLot: 2085972) - continued							
ES1837028-001	ES1837028-001 TP01_0.3	EP068: gamma-BHC	58-89-9	0.5 mg/kg	75.8	70	130	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	95.0	70	130	
		EP068: Aldrin	309-00-2	0.5 mg/kg	103	70	130	
		EP068: Dieldrin	60-57-1	0.5 mg/kg	108	70	130	
		EP068: Endrin	72-20-8	2 mg/kg	81.7	70	130	
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	73.9	70	130	

BYRON BAY NSW 2481

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES1837028

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

Contact : MR BEN WACKETT Contact : Brenda Hong

Address : PO BOX 2191 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Telephone : +61 02 6685 7811 Telephone : +61 2 8784 8555
Facsimile : +61 02 6685 5083 Facsimile : +61-2-8784 8500

Project : 18084 Page : 1 of 2

 Order number
 : ===
 Quote number
 : EB2017CAVCON0001 (SYBQ/409/18)

 C-O-C number
 : ===
 QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler :

Dates

Date

Delivery Details

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : --- Temperature
 : 4.1' C

 Receipt Detail
 : No. of samples received / analysed
 : 5 / 5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- This is a rebatch of ES1836474.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Issue Date · 10-Dec-2018

Page

2 of 2 ES1837028 Amendment 0 Work Order : CAVVANBA CONSULTING Client

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. Organochlorine Pesticides by GCMS If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the Metals by ICP-AES laboratory and displayed in brackets without a time OIL - EG005T (solids) otal Metals by ICP-AES EP068A (solids) component OIL - EA055-103 **loisture Content** Matrix: SOIL Client sample ID Laboratory sample Client sampling 9 ID date / time ES1837028-001 30-Nov-2018 00:00 TP01_0.3 30-Nov-2018 00:00 ✓ ES1837028-002 TP02_0.3 ES1837028-003 30-Nov-2018 00:00 TP03_0.3 30-Nov-2018 00:00 ES1837028-004 TP04_0.3 ES1837028-005 30-Nov-2018 00:00 TP06_0.3

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	inbox@cavvanba.com
BEN WACKETT		
- *AU Certificate of Analysis - NATA (COA)	Email	ben@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ben@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ben@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ben@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	ben@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	ben@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	ben@cavvanba.com
GLEN CHISNALL		
- *AU Certificate of Analysis - NATA (COA)	Email	glen@cavvanba.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	glen@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	glen@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	glen@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	glen@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	glen@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	glen@cavvanba.com
ROB MCLELLAND		
- A4 - AU Tax Invoice (INV)	Email	rob@cavvanba.com
ROSS NICOLSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	ross@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ross@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ross@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ross@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	ross@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	ross@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	ross@cavvanba.com

CERTIFICATE OF ANALYSIS

Work Order : ES1837749

Client : CAVVANBA CONSULTING

Contact : MR BEN WACKETT

Address : PO BOX 2191

BYRON BAY NSW 2481

Telephone : +61 02 6685 7811

 Project
 : 18084

 Order number
 : 18084

C-O-C number : ----

Sampler : GLEN CHISNALL

Site : ---

Quote number : SYBQ/409/18

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 2

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 14-Dec-2018 12:30

Date Analysis Commenced : 14-Dec-2018

Issue Date : 17-Dec-2018 15:39

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 2 Work Order : ES1837749

Client : CAVVANBA CONSULTING

Project : 18084

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP01_0.6	TP02_0.6	TP03_0.6	QS05	
Client sampling date / time				12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:00	
Compound	CAS Number	LOR	Unit	ES1837749-001	ES1837749-002	ES1837749-003	ES1837749-004	
				Result	Result	Result	Result	
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%	35.0	33.4	28.2	44.4	
EG005T: Total Metals by ICP-AES								
Lead	7439-92-1	5	mg/kg	144	324	15	26	

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1837749** Page : 1 of 4

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

 Contact
 : MR BEN WACKETT
 Telephone
 : +61 2 8784 8555

 Project
 : 18084
 Date Samples Received
 : 14-Dec-2018

 Site
 : --- Issue Date
 : 17-Dec-2018

Sampler : GLEN CHISNALL No. of samples received : 4
Order number : 18084 No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES1837749

Client : CAVVANBA CONSULTING

Project : 18084

Outliers: Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type	Co	ount	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Moisture Content	1	11	9.09	10.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Wattix. GOIL							breach, with	ii iioidii ig tiiii
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C	c)							
Soil Glass Jar - Unpreserved (EA055)								
TP01_0.6,	TP02_0.6,	12-Dec-2018				15-Dec-2018	26-Dec-2018	✓
TP03_0.6,	QS05							
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
TP01_0.6,	TP02_0.6,	12-Dec-2018	14-Dec-2018	10-Jun-2019	✓	14-Dec-2018	10-Jun-2019	✓
TP03_0.6,	QS05							

Page : 3 of 4 Work Order ES1837749

Client CAVVANBA CONSULTING

: 18084 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	Evaluation: x = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.										
Quality Control Sample Type		Co	unt	Rate (%)			Quality Control Specification				
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation					
Laboratory Duplicates (DUP)											
Moisture Content	EA055	1	11	9.09	10.00	3c	NEPM 2013 B3 & ALS QC Standard				
Total Metals by ICP-AES	EG005T	3	22	13.64	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Laboratory Control Samples (LCS)											
Total Metals by ICP-AES	EG005T	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Method Blanks (MB)											
Total Metals by ICP-AES	EG005T	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Matrix Spikes (MS)											
Total Metals by ICP-AES	EG005T	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard				

Page : 4 of 4 Work Order : ES1837749

Client : CAVVANBA CONSULTING

Project : 18084

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)

QUALITY CONTROL REPORT

Work Order : **ES1837749**

Client : CAVVANBA CONSULTING

Contact : MR BEN WACKETT

Address : PO BOX 2191

BYRON BAY NSW 2481

Telephone : +61 02 6685 7811

 Project
 : 18084

 Order number
 : 18084

C-O-C number : ----

Sampler : GLEN CHISNALL

Site · ___

Quote number : SYBQ/409/18

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 3

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 14-Dec-2018

Date Analysis Commenced : 14-Dec-2018

Issue Date : 17-Dec-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES1837749

Client : CAVVANBA CONSULTING

Project : 18084

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL		Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA055: Moisture Co	ontent (Dried @ 105-110°C) (0	QC Lot: 2097465)								
ES1837624-001	Anonymous	EA055: Moisture Content		0.1	%	3.7	4.0	7.79	No Limit	
EG005T: Total Meta	Is by ICP-AES (QC Lot: 2096	590)								
ES1837478-001	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	38	36	3.42	No Limit	
ES1837478-014	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	9	7	27.5	No Limit	
EG005T: Total Meta	EG005T: Total Metals by ICP-AES (QC Lot: 2096592)									
ES1837749-003	TP03_0.6	EG005T: Lead	7439-92-1	5	mg/kg	15	8	58.4	No Limit	

Page : 3 of 3 Work Order : ES1837749

Client : CAVVANBA CONSULTING

Project : 18084

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005T: Total Metals by ICP-AES (QCLot: 2096590)								
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	97.3	80	114
EG005T: Total Metals by ICP-AES (QCLot: 2096592)								
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	98.3	80	114

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005T: Total Meta	als by ICP-AES (QCLot: 2096590)						
ES1837478-001	Anonymous	EG005T: Lead	7439-92-1	250 mg/kg	96.2	70	130
EG005T: Total Meta	als by ICP-AES (QCLot: 2096592)						
ES1837749-003	TP03_0.6	EG005T: Lead	7439-92-1	250 mg/kg	88.9	70	130

BYRON BAY NSW 2481

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES1837749

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

Contact : MR BEN WACKETT Contact : Brenda Hong

Address : PO BOX 2191 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Telephone : +61 02 6685 7811 Telephone : +61 2 8784 8555
Facsimile : +61 02 6685 5083 Facsimile : +61-2-8784 8500

Project : 18084 Page : 1 of 2

 Order number
 : 18084
 Quote number
 : EB2017CAVCON0001 (SYBQ/409/18)

 C-O-C number
 : -- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : GLEN CHISNALL

Dates

Date

Delivery Details

Mode of Delivery : Undefined Security Seal : Not Available

No. of coolers/boxes : ---
Receipt Detail : Temperature : ---
No. of samples received / analysed : 4 / 4

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Sample QS06 forwarded to Envirolab as per COC.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

: 14-Dec-2018 Issue Date

Page

2 of 2 ES1837749 Amendment 0 Work Order Client : CAVVANBA CONSULTING

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the Metals by ICP-AES laboratory and displayed in brackets without a time EG005T (solids) component OIL - EA055-103 **Joisture Content** Matrix: SOIL 3OIL -Fotal № Client sample ID Laboratory sample Client sampling ID date / time ES1837749-001 12-Dec-2018 00:00 TP01_0.6 ES1837749-002 12-Dec-2018 00:00 TP02_0.6 ES1837749-003 12-Dec-2018 00:00 TP03_0.6 12-Dec-2018 00:00 QS05 ES1837749-004

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

- A4 - AU Tax Invoice (INV)	Email	inbox@cavvanba.com
BEN WACKETT		
 *AU Certificate of Analysis - NATA (COA) 	Email	ben@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ben@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ben@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ben@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	ben@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	ben@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	ben@cavvanba.com
GLEN CHISNALL		
 *AU Certificate of Analysis - NATA (COA) 	Email	glen@cavvanba.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	glen@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	glen@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	glen@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	glen@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	glen@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	glen@cavvanba.com
ROB MCLELLAND		
- A4 - AU Tax Invoice (INV)	Email	rob@cavvanba.com
ROSS NICOLSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	ross@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ross@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ross@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ross@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	ross@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	ross@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	ross@cavvanba.com

CHAIN OF CUSTODY

ALS Laboratory

Ph. 07 7471 5600 E. diadsiona@alsolobal.com

Ph: 07 4944 0177 E: mackay@alsglobal.com
Ph. 02 6372 6735 E. mudgee mail@alsglobal.com

DBRISSANE 32 Shand Street Stafford QLD 4053
Ph. 07 3243 7222 E. samples presented additionable and provided West NSW 2004
Ph. 07 3243 7222 E. samples presented additionable and provided West NSW 2004
Ph. 08 3556 890 E. ade add@alsglobal.com
Ph. 03 3549 900 E. ser pies inelbourne@alsglobal.com
Ph. 03 3549 900 E. ser pies inelbourne@alsglobal.com
Ph. 03 3549 900 E. ser pies inelbourne@alsglobal.com
Ph. 03 3549 900 E. ser pies inelbourne@alsglobal.com UNOVRA 4/13 Gean, Place North Novro NSW 2541 Pli. 024423 2063 E: nownakhalanloba: com OPERTH 10 Hod Way Majaga, WA 5090

GSYDNEY 277-269 Woodpark Road Smithfield NSW 2164 Fh: 02 3784 8555 E. samples sydney@alsglobal.com UTOWNSVILLE 14-15 Desma Court Bobie GLD 4818 Ph: 67 4795 3600 E. townsville environmental@alsqlobal.com WOLLONGONG 99 Kenny Street Wollangong NSV/ 2500

Phr 02 4225 3125 Er portkembla@aisglobal.com please tick → Ph: 06 9209 7655 E: samples perth@alsolobal.com CLIENT: Cavvanba Consulting TURNAROUND REQUIREMENTS : ☐ Standard TAT (List due date): FOR LABORATORY USE ONLY (Circle) (Standard TAT may be longer for some tests e.g., OFFICE: Byron Bay Non Standard or urgent TAT (List due date): 24 HR TOT ustody Seal Intaci? Ultra Trace Organics) PROJECT: 18084 ALS QUOTE NO .: SYBO/409/18 COC SEQUENCE NUMBER (Circle) ORDER NUMBER: 18084 COC: 1 2 3 4 5 PROJECT MANAGER: Ben Wackett CONTACT PH: 0488 225 692 OF: 1 2 3 4 5 SAMPLER: Glen Chisnall SAMPLER MOBILE: 0499401092 RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: RECEIVED BY: COC emailed to ALS? (YES / NO) M(EDD FORMAT (or default): Glen Chisnell Email Reports to (will default to PM if no other addresses are listed): glen@cavvanba.com, ross@cavvanba.com, ben@cavvanba.com DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME:

mail Invo	ice to (will default to PM if no other addresse	s are listed); rob@cavvan	ba.com		12/12/2018				DATE/TIME:		1+17 UD (2:3	
OMMENT	S/SPECIAL HANDLING/STORAGE OR DIS	POSAL:								•		
ALS USE	SAMPLE DE MATRIX: SOLID (S)	TAILS WATER (W)		CONTAINER INFOR	ANALYSIS REQUIRED including SUITES (NB. S Where Metals are required, specify Total (unfiltered required)					red bottle required) or Dissolved (field filtered bottle		
AB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to CONTAINERS	Lead (pb)					Comments on likely contaminant levels, dilutions, or samples requiring specific Q analysis etc.	
	TP01_0.6	12/12/2018	Soil	JAR	1	x						
2	TP02_0.6	12/12/2018	Soil	JAR	1	x						
3	TP03_0.6	12/12/2018	Soil	JAR	1	· x	-					
4	QS05	12/12/2018	Soil	JAR	1	x						
`	₩ Q506	12/12/2018	Soil	JAR	JAR 1		Please forward analysis to envirolab for lead (pb)					
				Subcon / Forward Lab / Analysis: Organised By / Da	Lab/Spli	wo			Enviro	nmental Div	rision	
		The state of the s		Reinausped Rv /	Date		0		- Sydno	k order Refere \$1837	749	
				Connote / Couries WO No: \$\frac{182}{2}\$ Attach By PO / In	7740 Iternal Shee	and the state of t	-					
	ner Codes: P = Unpreserved Plastic; N = Nitric Pr				TOTAL	5			Telept	none: +61-2-8784	9555	

ved; VS = VOA Vial Sulfuric Preserved, AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle, or = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Scriis; B = Unpreserved Bag.

CERTIFICATE OF ANALYSIS

Work Order : ES1837355

Client : CAVVANBA CONSULTING

Contact : MR BEN WACKETT

Address : PO BOX 2191

BYRON BAY NSW 2481

Telephone : +61 02 6685 7811

 Project
 : 18084

 Order number
 : 18084

C-O-C number : ----

Sampler : GLEN CHISNALL

Site : ---

Quote number : SYBQ/409/18

No. of samples received : 22

No. of samples analysed : 11

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 12-Dec-2018 11:00

Date Analysis Commenced : 12-Dec-2018

Issue Date : 14-Dec-2018 16:50

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 6 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

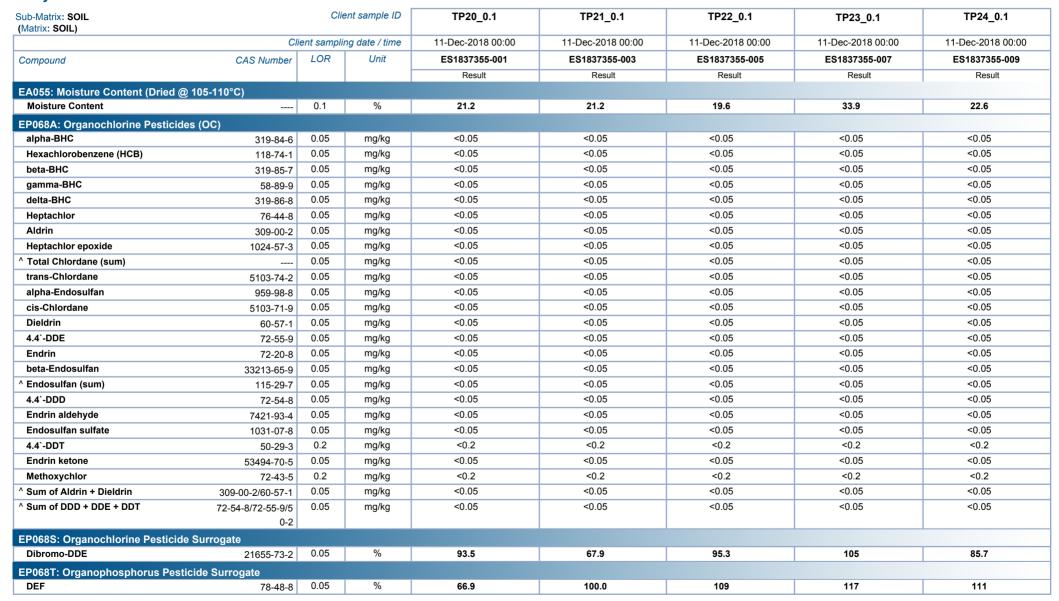
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

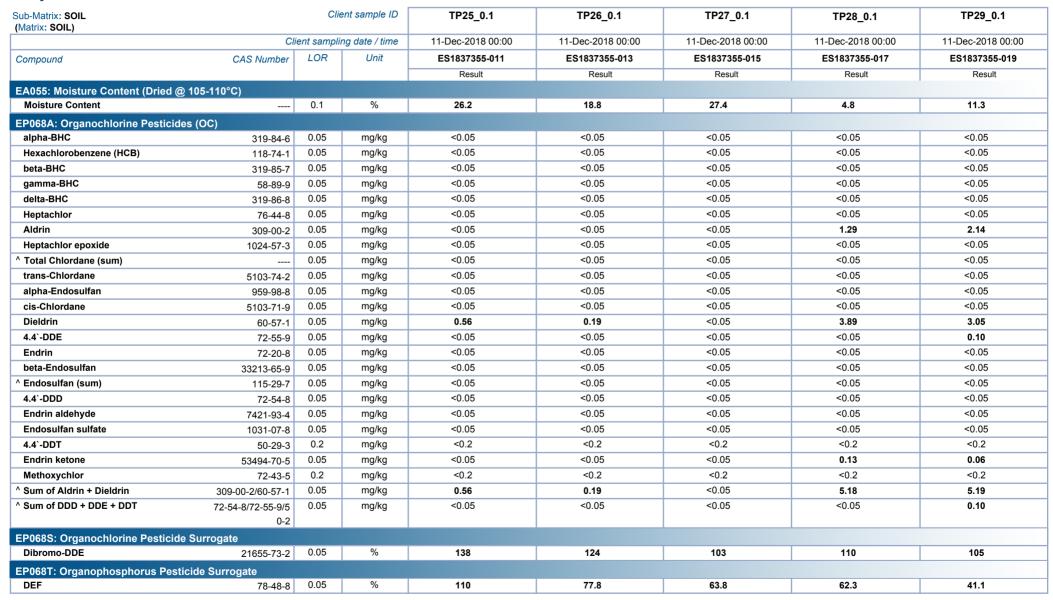

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP068: Positive results have been confirmed by re-extraction and re-analysis.

Page : 3 of 6 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Analytical Results



Page : 4 of 6 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Analytical Results

Page : 5 of 6
Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID		TP30_0.1	 	
·	CI	ient samplii	ng date / time	11-Dec-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1837355-021	 	
				Result	 	
EA055: Moisture Content (Dried @	ฏ 105-110°C)					
Moisture Content		0.1	%	1.7	 	
EP068A: Organochlorine Pesticid	les (OC)					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	4.68	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	5.90	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	0.47	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	10.6	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP068S: Organochlorine Pesticid	e Surrogate					
Dibromo-DDE	21655-73-2	0.05	%	130	 	
EP068T: Organophosphorus Pest	ticide Surrogate					
DEF	78-48-8	0.05	%	90.3	 	

Page : 6 of 6
Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)						
Compound	CAS Number	Low	High				
EP068S: Organochlorine Pesticide Surrogate							
Dibromo-DDE	21655-73-2	49	147				
EP068T: Organophosphorus Pesticide Surrogate							
DEF	78-48-8	35	143				

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1837355** Page : 1 of 4

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

 Contact
 : MR BEN WACKETT
 Telephone
 : +61 2 8784 8555

 Project
 : 18084
 Date Samples Received
 : 12-Dec-2018

 Site
 : -- Issue Date
 : 14-Dec-2018

Sampler : GLEN CHISNALL No. of samples received : 22
Order number : 18084 No. of samples analysed : 11

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: x = Holding time breach: \(\square = \text{Within holding time.} \)

Matrix: SOIL					Evaluation	i: × = Holding time	breach; ✓ = Withi	n holding tim	
Method		Sample Date	Ex	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content (Dried @ 1	05-110°C)								
Soil Glass Jar - Unpreserved (EA055)									
TP20_0.1,	TP21_0.1,	11-Dec-2018				12-Dec-2018	25-Dec-2018	✓	
TP22_0.1,	TP23_0.1,								
TP24_0.1,	TP25_0.1,								
TP26_0.1,	TP27_0.1,								
TP28_0.1,	TP29_0.1,								
TP30_0.1									
EP068A: Organochlorine Pesticides	(OC)								
Soil Glass Jar - Unpreserved (EP068)									
TP20_0.1,	TP21_0.1,	11-Dec-2018	13-Dec-2018	25-Dec-2018	✓	13-Dec-2018	22-Jan-2019	✓	
TP22_0.1,	TP23_0.1,								
TP24_0.1,	TP25_0.1,								
TP26_0.1,	TP27_0.1,								
TP28_0.1,	TP29_0.1,								
TP30 0.1	- '								

Page : 3 of 4 Work Order ES1837355

Client CAVVANBA CONSULTING

· 18084 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	Evaluation: ▼ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification							
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Moisture Content	EA055	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Pesticides by GCMS	EP068	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Pesticides by GCMS	EP068	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Pesticides by GCMS	EP068	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Page : 4 of 4 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
Preparation Methods	Method	Matrix	Method Descriptions
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

Work Order : ES1837355

: CAVVANBA CONSULTING

Contact : MR BEN WACKETT

Address : PO BOX 2191

BYRON BAY NSW 2481

Telephone : +61 02 6685 7811

Project : 18084
Order number : 18084

C-O-C number : ----

Sampler : GLEN CHISNALL

Site · ___

Quote number : SYBQ/409/18

No. of samples received : 22

No. of samples analysed : 11

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 12-Dec-2018

Date Analysis Commenced : 12-Dec-2018

Issue Date : 14-Dec-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryEdwandy FadjarOrganic CoordinatorSydney Inorganics, Smithfield, NSWEdwandy FadjarOrganic CoordinatorSydney Organics, Smithfield, NSW

Page : 2 of 5 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2090923)							
ES1837327-003	Anonymous	EA055: Moisture Content		0.1	%	9.7	10.3	5.32	0% - 20%
ES1837348-008	Anonymous	EA055: Moisture Content		0.1	%	16.4	17.6	6.73	0% - 50%
EA055: Moisture Co	ntent (Dried @ 105-110°	°C) (QC Lot: 2090924)							
ES1837355-009	TP24_0.1	EA055: Moisture Content		0.1	%	22.6	26.6	16.4	0% - 20%
ES1837362-005	Anonymous	EA055: Moisture Content		0.1	%	9.0	9.0	0.00	No Limit
EP068A: Organochl	orine Pesticides (OC)(QC Lot: 2090828)							
ES1837355-001	TP20_0.1	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page : 3 of 5 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Sub-Matrix: SOIL						Laboratory I	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochl	orine Pesticides (OC) ((QC Lot: 2090828) - continued							
ES1837355-001	TP20_0.1	EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
ES1837355-021	TP30_0.1	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	4.68	4.07	14.0	0% - 20%
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	5.90	5.20	12.7	0% - 20%
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	0.47	0.36	24.8	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit

Page : 4 of 5 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCI	Lot: 2090828)								
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	98.2	69	113	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	94.8	65	117	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	100.0	67	119	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	99.6	68	116	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	95.4	65	117	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.1	67	115	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	96.4	69	115	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	92.9	62	118	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	97.3	63	117	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	102	66	116	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	106	64	116	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	103	66	116	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	96.7	67	115	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	105	67	123	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	107	69	115	
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	104	69	121	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	107	56	120	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	108	62	124	
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	98.2	66	120	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	106	64	122	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	97.6	54	130	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP068A: Organoch	Iorine Pesticides (OC) (QCLot: 2090828)							
ES1837355-001	TP20_0.1	EP068: gamma-BHC	58-89-9	0.5 mg/kg	81.8	70	130	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	83.7	70	130	
		EP068: Aldrin	309-00-2	0.5 mg/kg	105	70	130	
		EP068: Dieldrin	60-57-1	0.5 mg/kg	76.8	70	130	

Page : 5 of 5 Work Order : ES1837355

Client : CAVVANBA CONSULTING

Project : 18084

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP068A: Organoch	Iorine Pesticides (OC) (QCLot: 2090828) - continued						
ES1837355-001	TP20_0.1	EP068: Endrin	72-20-8	2 mg/kg	112	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	95.1	70	130

BYRON BAY NSW 2481

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES1837355

Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney

Contact : MR BEN WACKETT Contact : Brenda Hong

Address : PO BOX 2191 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Telephone : +61 02 6685 7811 Telephone : +61 2 8784 8555
Facsimile : +61 02 6685 5083 Facsimile : +61-2-8784 8500

Project : 18084 Page : 1 of 3

 Order number
 : 18084
 Quote number
 : EB2017CAVCON0001 (SYBQ/409/18)

 C-O-C number
 : -- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : GLEN CHISNALL

Dates

Date

Delivery Details

 Mode of Delivery
 : Undefined
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 21.1°C

 Receipt Detail
 : No. of samples received / analysed
 : 22 / 11

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Issue Date : 12-Dec-2018

Page

2 of 3 ES1837355 Amendment 0 Work Order Client : CAVVANBA CONSULTING

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. Organochlorine Pesticides by GCMS If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time EP068A (solids) component EA055-103 Aoisture Content On Hold) SOIL Matrix: SOIL Laboratory sample Client sampling Client sample ID OIL-ID date / time ES1837355-001 11-Dec-2018 00:00 TP20_0.1 ES1837355-002 11-Dec-2018 00:00 TP20_0.3 1 11-Dec-2018 00:00 ✓ ES1837355-003 TP21_0.1 ✓ ES1837355-004 11-Dec-2018 00:00 TP21_0.3 ✓ ✓ ES1837355-005 11-Dec-2018 00:00 TP22_0.1 ES1837355-006 11-Dec-2018 00:00 ✓ TP22_0.3 ES1837355-007 11-Dec-2018 00:00 TP23_0.1 ✓ ✓ ES1837355-008 11-Dec-2018 00:00 TP23_0.3 ES1837355-009 11-Dec-2018 00:00 TP24 0.1 ✓ ES1837355-010 11-Dec-2018 00:00 TP24_0.3 ES1837355-011 11-Dec-2018 00:00 TP25_0.1 ✓ ES1837355-012 11-Dec-2018 00:00 TP25 0.3 ES1837355-013 11-Dec-2018 00:00 TP26_0.1 ✓ ES1837355-014 11-Dec-2018 00:00 TP26_0.3 ES1837355-015 11-Dec-2018 00:00 TP27_0.1 ✓ ES1837355-016 11-Dec-2018 00:00 TP27_0.3 ES1837355-017 11-Dec-2018 00:00 TP28_0.1 ES1837355-018 11-Dec-2018 00:00 TP28_0.3 ✓ ES1837355-019 11-Dec-2018 00:00 TP29 0.1 ✓ ES1837355-020 11-Dec-2018 00:00 TP29_0.3 ES1837355-021 11-Dec-2018 00:00 TP30_0.1 ✓ ✓

Proactive Holding Time Report

11-Dec-2018 00:00

ES1837355-022

Sample(s) have been received within the recommended holding times for the requested analysis.

TP30 0.3

✓

: 12-Dec-2018 Issue Date

Page

: 3 of 3 : ES1837355 Amendment 0 Work Order Client : CAVVANBA CONSULTING

- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)

- Chain of Custody (CoC) (COC)

- EDI Format - ENMRG (ENMRG)

- EDI Format - ESDAT (ESDAT)

- A4 - AU Sample Receipt Notification - Environmental HT (SRN)

ross@cavvanba.com

ross@cavvanba.com

ross@cavvanba.com

ross@cavvanba.com

ross@cavvanba.com

Email

Email

Email

Email

Email

Requested Deliverables

•		
ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	inbox@cavvanba.com
BEN WACKETT		
 *AU Certificate of Analysis - NATA (COA) 	Email	ben@cavvanba.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ben@cavvanba.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ben@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ben@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	ben@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	ben@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	ben@cavvanba.com
GLEN CHISNALL		
 *AU Certificate of Analysis - NATA (COA) 	Email	glen@cavvanba.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	glen@cavvanba.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	glen@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	glen@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	glen@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	glen@cavvanba.com
- EDI Format - ESDAT (ESDAT)	Email	glen@cavvanba.com
ROB MCLELLAND		
- A4 - AU Tax Invoice (INV)	Email	rob@cavvanba.com
ROSS NICOLSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	ross@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ross@cavvanba.com

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 207488

Client Details	
Client	Cavvanba
Attention	Glen Chisnall, Ross Nicolson, Ben Wackett
Address	PO Box 2191, Byron Bay, NSW, 2481

Sample Details	
Your Reference	18084
Number of Samples	2 Soil
Date samples received	06/12/2018
Date completed instructions received	06/12/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	07/12/2018		
Date of Issue	07/12/2018		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By

Jeremy Faircloth, Organics Supervisor Leon Ow, Chemist

Authorised By

Jacinta Hurst, Laboratory Manager

Organochlorine Pesticides in soil			
Our Reference		207488-1	207488-2
Your Reference	UNITS	QS02	QS04
Date Sampled		30/11/2018	30/11/2018
Type of sample		Soil	Soil
Date extracted	-	06/12/2018	06/12/2018
Date analysed	-	06/12/2018	06/12/2018
нсв	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	1.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	96	102

Acid Extractable metals in soil			
Our Reference		207488-1	207488-2
Your Reference	UNITS	QS02	QS04
Date Sampled		30/11/2018	30/11/2018
Type of sample		Soil	Soil
Date prepared	-	06/12/2018	06/12/2018
Date analysed	-	07/12/2018	07/12/2018
Lead	mg/kg	140	57

Moisture			
Our Reference		207488-1	207488-2
Your Reference	UNITS	QS02	QS04
Date Sampled		30/11/2018	30/11/2018
Type of sample		Soil	Soil
Date prepared	-	06/12/2018	06/12/2018
Date analysed	-	07/12/2018	07/12/2018
Moisture	%	23	40

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Envirolab Reference: 207488 Page | 5 of 9

Revision No: R00

QUALITY CONTROL: Organochlorine Pesticides in soil						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	[NT]	
Date extracted	-			06/12/2018	[NT]		[NT]	[NT]	06/12/2018		
Date analysed	-			06/12/2018	[NT]		[NT]	[NT]	06/12/2018		
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	100		
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	100		
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	87		
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	96		
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	100		
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	109		
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	118		
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	90		
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	104		
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	85		
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-005	121	[NT]		[NT]	[NT]	119		

QUALITY CONTROL: Acid Extractable metals in soil					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	[NT]
Date prepared	-			06/12/2018	[NT]		[NT]	[NT]	06/12/2018	
Date analysed	-			07/12/2018	[NT]		[NT]	[NT]	07/12/2018	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 207488 Page | 9 of 9

Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Cavvanba
Attention	Glen Chisnall, Ross Nicolson, Ben Wackett

Sample Login Details	
Your reference	18084
Envirolab Reference	207488
Date Sample Received	06/12/2018
Date Instructions Received	06/12/2018
Date Results Expected to be Reported	07/12/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	2 Soil
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	17.7
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie Jacinta Hurst		
Phone: 02 9910 6200	Phone: 02 9910 6200	
Fax: 02 9910 6201	Fax: 02 9910 6201	
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au	

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Organochlorine Pesticidesin soil	Acid Extractable metalsin soil
QS02	✓	✓
QS04	✓	✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 208283

Client Details	
Client	Cavvanba
Attention	Glen Chisnall, Ross Nicolson, Ben Wackett
Address	PO Box 2191, Byron Bay, NSW, 2481

Sample Details	
Your Reference	<u>18084</u>
Number of Samples	1 Soil
Date samples received	17/12/2018
Date completed instructions received	17/12/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	18/12/2018
Date of Issue	18/12/2018
NATA Accreditation Number 2901. Th	nis document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Long Pham, Team Leader, Metals

Authorised By

Jacinta Hurst, Laboratory Manager

Acid Extractable metals in soil		
Our Reference		208283-1
Your Reference	UNITS	QS06
Date Sampled		12/12/2018
Type of sample		Soil
Date prepared	-	17/12/2018
Date analysed	-	17/12/2018
Lead	mg/kg	6

Moisture		
Our Reference		208283-1
Your Reference	UNITS	QS06
Date Sampled		12/12/2018
Type of sample		Soil
Date prepared	-	17/12/2018
Date analysed	-	18/12/2018
Moisture	%	21

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.

Envirolab Reference: 208283 Page | 4 of 7

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			17/12/2018	[NT]		[NT]	[NT]	17/12/2018	
Date analysed	-			17/12/2018	[NT]		[NT]	[NT]	17/12/2018	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	97	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions		
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.	
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.	
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.	
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.	
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.	

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

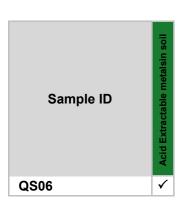
SAMPLE RECEIPT ADVICE

Client Details	
Client	Cavvanba
Attention	Glen Chisnall, Ross Nicolson, Ben Wackett

Sample Login Details			
Your reference	18084		
Envirolab Reference	208283		
Date Sample Received	17/12/2018		
Date Instructions Received	17/12/2018		
Date Results Expected to be Reported	18/12/2018		

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	1 day
Temperature on Receipt (°C)	12.7
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	


Please direct any queries to:

Aileen Hie	Jacinta Hurst	
Phone: 02 9910 6200	Phone: 02 9910 6200	
Fax: 02 9910 6201	Fax: 02 9910 6201	
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au	

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.