

STOCKLAND PTY LTD

Detailed Site Investigation

1 Murray Rose Avenue, Sydney Olympic Park NSW

Report E23602.E02.Rev0 30 November 2017

REPORT DISTRIBUTION

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park

El Report No.: E23602.E02.Rev0 Date: 30 November 2017

Copies		Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Stockland Pty Ltd Level 27, Castlereagh Street, Sydney NSW 2000	
	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	

Author Alejandra Beltran Civil/Environmental Engineer		Technical Reviewer	Technical Reviewer	
		Nathan Foster Snr Environmental Scientist		
Revision	Details	Date	Amended By	
0	Original	30 November 2017	-	

© 2017 El Australia (EI)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

EXECUTIVE SUMMARY

Background

Stockland Pty Ltd engaged El Australia (El) to conduct a Detailed Site Investigation Report for the property located at 1 Murray Rose Avenue, Sydney Olympic Park ('the site'). This DSI was completed for the purpose of enabling the developer meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

The site has been designated for the construction of eight (8) level apartment building plus rooftop, plant room; over two levels of basement car parking.

This investigation follows on from previous investigations completed at the site by JK Geotechnics and Environmental Investigation Services Pty Ltd (EIS), entitled:

- JK (2017). Report to Austino Properties on Geotechnical Investigation for Proposed Residential Development at 1 Murray Rose Avenue, Sydney Olympic Park, NSW. Project No. 30808YFrpt, dated 9 October 2017; and
- EIS (2017). Waste Classification Assessment Proposed Residential Development 1 Murray Rose Avenue, Sydney Olympic Park, NSW. Project No. E30808Klet-WC, dated 13 October 2017.

Objectives

The main objectives of the assessment were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

Findings

The work was conducted with reference to the regulatory framework outlined in **Section 1.3** of this report and assessment findings indicated the following:

- The site is located approximately 12.5 km north-west of the Sydney Central Business District (Figure 1). The site, which covers a total area of approximately 3,930 m², comprises of Lot 1 DP 1185060 and is situated within the Local Government Area of the Parramatta City Council (Figure 2);
- According to the site history, the site appeared to have been used for agricultural/industrial and later commercial purposes either by ownership or through leasing, since the start of the study period (1930's). Commercial use has continued until current date. This information correlated with the preliminary investigation completed by EIS (2017); where it was noted that aerial photography review indicated site appeared to be vacant in 1943; with the immediate surrounds also appearing to be developed for agricultural and grazing purposes from 1943 with an open brick pit located approximately 250 m north of the site;
- The subject site was free from notices issued by NSW EPA;

- SafeWork NSW records relating to 1 Murray Rose Avenue, Sydney Olympic Park NSW did not identify records pertaining to the site. This information aligned with the site observations made during the site inspection;
- Soil sampling and analysis were conducted at eleven test bore locations. The sampling regime was considered to be appropriate for the required investigation and comprised judgemental and systematic (triangular grid) sampling patterns;
- The sub-surface layers comprised anthropogenic filling overlying silty clay/clayey silt and shale bedrock;
- Results of soil samples collected from soil test boreholes indicated the following:
 - The reported concentrations of priority metals were below the adopted heath-based criteria (NEPM 2013 HIL-B and HIL-C).
 - The reported concentrations of priority metals in natural soil were low and did not exceed adopted investigation levels.
 - The reported concentration of carcinogenic PAHs exceeded the adopted health based investigation levels (3 mg/kg) in multiple fill soil samples analysed during this investigation and in the EIS (2017) investigation.
 - Benzo(α)pyrene exceeded ESL (0.7 mg/kg) in multiple fill samples tested in this investigation and in EIS (2017) investigation.
 - All other PAHs were below adopted human health and environmental criteria.
 - Exceedance of TRH-F3 ecological criteria (300 mg/kg) was reported in fill at two borehole locations out of eleven locations tested during this investigation; and at one borehole location out of eight tested during the EIS (2017) investigation. The exceedance was minimal and in practice was unlikely to pose issues for site management and use.
 - OCPs, OPPs or PCBs were not reported in any of the tested fill soil samples.
 - Asbestos was not detected in any of the tested fill soil samples.
- The chemical characteristics of the soil are consistent with general solid waste (non-putrescible). These findings align with the characteristics given by EIS during their 2017 investigation;
- Groundwater was not encountered during this intrusive investigation. Groundwater flow direction was not calculated during this investigation, however it is inferred to flow towards Powells creek located south/south-east of the site; and
- On review of the Preliminary Conceptual Site Model (CSM) developed as part of this DSI, it was concluded that the model remains valid for the proposed development. However, a number of data gaps remain that require to be addressed. These include:
 - Characterisation of the soil in the eastern side of the site which was not sampled during this investigation; and
 - The quality of background groundwater quality migrating on to site.

Based on the findings from this DSI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 13**), EI conclude that soil contamination was observed and will require remediation and remaining data gaps will require closure. In view of the proposed development scope, and currently available information, EI consider that the contamination identified can be remediated to render the site suitable for the proposed land use, provided recommendations detailed below are implemented.

- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Address the data gaps identified within this report through means of additional soil and groundwater investigations.
 - Outline the requirements for management of carcinogenic PAHs contamination and benzo(α)pyrene in fill at locations identified in Table T1 and Figure 2.
 - Provide a sampling and quality plan (SAQP) for the validation of remediation activities performed on-site.
 - Provide the requirements and procedures for waste classification assessment including further sampling, in order to enable formal classification of site soils to be excavated and disposed off-site during the proposed basement excavation, in accordance with the EPA (2014) Waste Classification Guidelines.
 - Outline the implementation of an unexpected finds protocol during the basement excavation works to ensure any potential groundwater contamination is identified and managed in accordance with the NSW EPA legislation and guidelines.
- Any material being imported to the site (i.e. for landscaping purposes) should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
- Preparation of a validation report.

CONTENTS

EXE	ситіv	E SUMMARY	I
1.	INTR	RODUCTION	1
	1.1 1.2 1.3 1.4 1.5	BACKGROUND AND PURPOSE PROPOSED DEVELOPMENT REGULATORY FRAMEWORK PROJECT OBJECTIVES SCOPE OF WORKS	1 1 2 2
2.	2.1 2.2 2.3 2.4 2.5	DESCRIPTION PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING SURROUNDING LAND USE REGIONAL SETTING GROUNDWATER BORE RECORDS AND GROUNDWATER USE SITE WALKOVER INSPECTION	4 4 5 6 7
3.	PRE 3.1 3.2	VIOUS INVESTIGATIONS Available documents Summary of contamination	8 8 9
4.	SITE	HISTORY	10
	4.1 4.2 4.3 4.4 4.5	LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW SURROUNDING LAND USE COUNCIL INFORMATION SAFEWORK NSW DATABASE SEARCH NSW EPA DATABASES	10 11 12 12 12
5.	CON	CEPTUAL SITE MODEL	14
••	5.1 5.2 5.3 5.4 5.5	SUBSURFACE CONDITIONS POTENTIAL CONTAMINATION SOURCES CONTAMINANTS OF POTENTIAL CONCERN POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS DATA GAPS	14 14 14 14 14
6.	SAM 6.1 6.2	PLING, ANALYTICAL AND QUALITY PLAN (SAQP) DATA QUALITY OBJECTIVES (DQO) DATA QUALITY INDICATORS	17 17 22
7.	ASS	ESSMENT METHODOLOGY	23
	7.1 7.2 7.3 7.4 7.5	SAMPLING RATIONALE INVESTIGATION CONSTRAINTS ASSESSMENT CRITERIA SOIL INVESTIGATION GROUNDWATER INVESTIGATION	23 23 23 25 26
8.	DAT	A QUALITY ASSESSMENT	28
9.	RES	ULTS	29
	9.1 9.2 9.3	Soil Investigation Results Groundwater Investigation Results Laboratory Analytical Results	29 29 30
10.	SITE	CHARACTERISATION	33
	10.1 10.2	SOIL IMPACTS	33
	10.2	PRIORITY METALS GROUNDWATER IMPACTS	33 34
	10.4	REVIEW OF CONCEPTUAL SITE MODEL	34
11.	CON	CLUSIONS	35
12.	REC	OMMENDATIONS	37
13.	STA	TEMENT OF LIMITATIONS	38

REFERENCES

ABBREVIATIONS

TABLES (In Text)

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	4
TABLE 2-2	SURROUNDING LAND USES	5
TABLE 2-3	REGIONAL SETTING INFORMATION	5
TABLE 2-4	SUMMARY OF REGISTERED WATER BORES WITHIN 500 M OF THE SITE	6
TABLE 3-1	SUMMARY OF PREVIOUS INVESTIGATION WORKS AND FINDINGS	8
TABLE 4-1	SUMMARY OF OWNERS AND HISTORICAL AERIAL PHOTOGRAPHY	10
TABLE 4-2	SUMMARY OF AERIAL PHOTOGRAPHY REVIEW	11
TABLE 5-1	CONCEPTUAL SITE MODEL	15
TABLE 6-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	18
TABLE 6-2	DATA QUALITY INDICATORS	22
TABLE 7-1	ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER	24
TABLE 7-2	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	25
TABLE 7-3	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	26
TABLE 9-1	GENERALISED SUBSURFACE PROFILE	29
TABLE 9-2	MONITORING WELL CONSTRUCTION DETAILS	30
TABLE 9-3	SUMMARY OF SOIL ANALYTICAL RESULTS	30

TABLES

TABLE T1 SOIL ANALYTICAL RESULT

FIGURES

FIGURE 1 LOCALITY PLAN

FIGURE 2 SAMPLING LOCATIONS

APPENDICES

APPENDIX A PROPOSED SKETCH PLANS

APPENDIX B NRATLAS GROUNDWATER BORE SEARCH

APPENDIX C SITE PHOTOGRAPHS

APPENDIX D HISTORICAL PROPERTY TITLES SEARCH & SAFEWORK NSW DATABASE SEARCH

APPENDIX E BOREHOLE LOGS

APPENDIX F FIELD DATA SHEETS

APPENDIX G CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS

APPENDIX H LABORATORY ANALYTICAL REPORTS

APPENDIX I QA/QC ASSESSMENT

APPENDIX J LABORATORY QA/AC POLICIES AND DQOS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Stockland Pty Ltd engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) for site characterisation purposes within the development application stage, located at 1 Murray Rose Avenue, Sydney Olympic Park NSW ('the site').

The currently vacant site is located approximately 12.5 km north-west of the Sydney Central Business District (**Figure 1**). The site, which covers a total area of approximately $3,930 \text{ m}^2$, is cadastrally identified as Lot 1 DP 1185060 and is situated within the Local Government Area of the Parramatta City Council (**Figure 2**).

This assessment was conducted as part of a Development Application (DA) to Parramatta City Council (Council) for the purpose of enabling the developer to meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

1.2 PROPOSED DEVELOPMENT

Based on the preliminary sketch plans provided by the client (Ref. Project. *Homebush 1-2 Murray Rose Road Drive Scheme C,* drawing No. B100 Rev F, and B103 to B106 Rev F; dated 29 September 2017), the site has been designated for the construction of eight (8) level apartment building plus rooftop plant room over two levels of basement car parking. A finished floor level (FFL) of RL 3.6 mAHD for the basement has been specified.

Copies of selected sketch plans are provided in **Appendix A**.

1.3 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality,
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act 1997;
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land, and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 PROJECT OBJECTIVES

The primary objectives of this investigation were therefore to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 SCOPE OF WORKS

In accordance with EI proposal P15115.1 (dated 25 October 2017), in order to achieve the project objectives, the scope of works was as follows:

1.5.1 Desktop Study

- A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
- Search of historical aerial photographs archived at NSW Land and Property Information to review previous site use and the historical sequence of land development in the neighbouring area;
- A land titles search, also conducted through NSW Land and Property Information for information relating to historical ownership of the site;
- A search of Parramatta City Council records for information relating to operational site history and/or relevant environmental incidents;
- A search of NSW EPA Land Information records under the *Contaminated Land Management Act* 1997 and *Protection of the Environment Operations Act* 1997;
- A search of the Stored Chemical Information Database (SCID) and microfiche records held by WorkCover NSW (SafeWork NSW) relating to possible underground tank approvals and locations;
- Review of all previous reports.

1.5.2 Field Work & Laboratory Analysis

- A detailed site walkover inspection;
- Drilling of boreholes at eleven (11) locations across accessible areas of the site;
- Installation of three (3) groundwater monitoring well to a maximum depth of 9 m (or prior refusal), constructed to standard environmental protocols to investigate potential groundwater contamination.

- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the constructed groundwater monitoring wells; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

A DSI report would also be prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report would also provide a record of observations made during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description		
Street Address	1 Murray Rose Avenue, Sydney Olympic Park NSW		
Location Description	Approx. 13 km north-west of Sydney CBD, bound by: North: Brickpit Park, followed by Wentworth Common East: Bennelong Parkway followed by baud mangroves South: Murray Rose Avenue, followed by commercial site West: Commercial properties.		
Site Coordinates	Coordinates of the northern corner of site (under GDA94-MGA56): Easting: 321976.921 Northing: 6253570.117 (Source: <u>https://maps.six.nsw.gov.au/</u>)		
Site Area	3,930 m ² (Ref. Project name: <i>Homebush 1-2 Murray Road Drive Scheme C</i> , drawing no. B103 Rev F, dated 27/9/2017).		
Lot and Deposited Plan (DP)	Lot 1 DP 1185060		
State Survey Marks	 Four State Survey Marks (SSM) were situated in close proximity (<100 m) to the site: SS40841D on Brickpit Park, approximately 30 m NNE of the site; PM44196F on Badu Mangroves approximately 30 m ESE of the site; SS87238F on Parkview Drive, approximately 100 m SW of the site; and PM66571 on Brickpit Park, approximately 80 m NW of the site. (Source: <u>https://maps.six.nsw.gov.au/</u>) 		
Local Government Authority	Parramatta City Council		
Parish	Concord Parish		
County	Cumberland County		
Current Zoning	B4 – Mixed Use (State Environmental Planning Policy (State Significant Precincts) 2005 Sydney Olympic Park – Sheet_LZN_001		

Table 2-1 Site Identification, Location and Zoning

2.2 SURROUNDING LAND USE

The site is situated within an area of mixed land uses and current uses. Current uses of surrounding land are described in **Table 2-2**.

Direction Relative to Site	Land Use Description	Sensitive Receptors (Distance from Site)
North	Recreational Parkland	Brickpit Park (<100 m)
East	Bennelong Parkway, followed by Bennelong Pond and Badu Mangroves	Badu Mangroves (<150 m)
South	Murray Rose Avenue, vacant land/land under redevelopment, followed by Parkview Drive beyond. Bicentennial Park is located to the south east of the site.	Bicentennial Park (SSE, approx. 400 m) Australian College of Physical Education (SSW, approx. 200 m)
West	Commercial buildings	-

Table 2-2 Surrounding Land Uses

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description
Topography	Level to gently undulating alluvial floodplains with local relief <5m and slope gradients <3%. Broad concave valleys. Most drainage lines have been converted to lined concrete and brick channels.
Site Drainage	Consistent with the general slope of the site, stormwater is assumed to flow east/south-east towards Bennelong Pond/Powells Creek which flow into Parramatta River, via drainage systems discharging to various stormwater easements and the municipal stormwater system.
Regional Geology	Ashfield Shale (Rwa) which comprises of black to dark grey shale and laminite. Ref. Sydney 1:100,000 scale Geological Series Sheet 9130 (1985).
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the site overlies the <i>Birrong</i> (bg) Erosional Landscape. This is characterised by level to gently undulating alluvial floodplain draining Wianamatta Group shales; with local relief to 5 m, slopes <3%, broad valley flats, and extensively cleared tall open-forest and woodland.
Acid Sulfate Soil Risk	With reference to the 1:25 000 scale Prospect Parramatta Acid Sulfate Soil Risk Map – Edition Two (Ref. Murphy, 1997), the subject land lies within the map class description of <i>No Known Occurrences</i> . In such cases, land management activities are not likely to be affected by acid sulfate soil materials.
	State Environmental Planning Policy (Major Development) 2005 Sydney Olympic Park Acid Sulfate Soils Map (Sheet ASS _001; 1:15,000 scale) indicates that the site is not classified for acid sulfate soils.
	Whilst the proposed development scope includes a two level basement with a FFL of 3.6 mAHD; given the aforementioned information and the site is located on Ashfield Shale, it can be deducted that the potential of encountering acid sulfate soils is low and investigation and management are not warranted.

Table 2-3 Regional Setting Information

Attribute	Description
Likelihood & Depth of Filling	Based on observations during previous investigations carried out by JK and EI's investigation; the average fill depth across the site is approximately 1.7 metres below ground level (mBGL), with a maximum fill depth of approximately 3.1mBGL. The fill comprises gravelly silt/ gravelly silty clay; and silty clay/clayey silt.
	The maximum fill depth was found to be at BH102 (3.1 mBGL).
Typical Soil Profile	Fill – Gravelly silt/gravelly silty clay; black to dark brown/brown, with sub angular to angular gravels, with organics, medium plasticity, no odour (varying thickness 0.5 – 1.8 m);
	Fill – Silty clay/clayey silt; medium to high plasticity, brown/dark brown, with medium gravels, no odour (varying thickness 0.4 – 1.6 m) overlying;
	Natural – Silty clay; low to high plasticity, grey/brown mottled orange/red/light yellow, with rootlets, no odour (varying thickness 0.6 – 2.0 m) overlying;
	Bedrock – Shale; light grey to grey, weathered, no odour.
Depth to Groundwater	Groundwater was not encountered during the intrusive investigation.
	Onsite groundwater conditions, including groundwater flow direction, are discussed in Section 9.2 .
Nearest Surface Water Feature	Bennelong Pond approximately 70 m east, followed by Powells Creek approximately 410 m east. Powells Creek flows into Parramatta River which is located approximately 680 m to the north east of the site. Parramatta River is considered tidally influenced and therefore classed as a marine water ecosystem for impact assessment purposes.
Groundwater Flow Direction	Groundwater flow direction in the vicinity of the site is inferred to be towards Powells Creek which is located approximately 425 m east of the site.

2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI on 09 November 2017 through the NSW Office of Water (Ref. <u>http://allwaterdata.water.nsw.gov.au/water.stm</u>). There are three registered bore within a 500m radius of the site, as summarised in **Table 2-4**. A groundwater bore location plan and detailed information regarding the available listed bore is attached in **Appendix B**.

Bore No.	Date Drilled	Approx. Distance & Direction	Drilled Depth (m)	SWL*/Salinity/Yiel d	Bore Purpose
GW102550	01/01/1996	415 m SSE	4.0	1.80/ - / -	Monitoring
GW102553	01/01/1996	380 SE	4.0	1.83/ - / -	Monitoring
GW102554	01/01/1996	482 SE	4.0	1.83/ - / -	Monitoring
GW102555	01/01/1996	433 SE	4.0	1.83/ - / -	Monitoring

Table 2-4 Summary of Registered Water Bores within 500 m of the site

Notes:

- Data not recorded;

* SWL - Standing water level measured in m BGL,

Salinity - units unspecified,

Yield – measured in L/s.

This active registered bores have been registered for monitoring purposes and thus are not considered to represent a cause for environmental concern.

2.5 SITE WALKOVER INSPECTION

Site observations were recorded during a site walkover inspection of the site on 06 November 2017. A summary of site observations is detailed below and site photographs taken during the inspection are present in **Appendix C**.

2.5.1 General Site Observations

Site observations indicated that:

- The site is vacant, photographs C1 to C8 of **Appendix C** illustrate how the site comprises of natural vegetation and a bitumen pathway which is in poor condition.
- Bitumen pathway was observed to be cracked in a reticulated pattern. Most of the roadway appeared to be down to just gravel. Vegetation has grown over the pathway.
- The site is predominantly grassy and scrubby. Large trees occupy the northern and south-east areas of the site. Some large trees were also observed in the middle of the site.
- Two monitoring wells were observed at the site. These appeared in poor condition, as upon close inspection the well casing was lose (i.e. no bentonite grout has been used to construct the well).
- A large fence to the west of the site was observed. Fence blocks access to the edge of the eastern boundary of the site.
- Evidence of gross contamination was not observed.
- Suspicious odours were not observed on the site.
- Rubbish was not observed at the site.
- Evidence indicative of underground petroleum storage systems (UPSS) or aboveground storage tanks (AST) was not observed on the site.
- Site topography includes moderately steep slopes extending from the southerly and easterly boundaries to approximately 50m to 100m into the site boundary; and downgradient slopes extending from the northwest to the south and the east. The centre of the site is relatively flat.

The location of site buildings discussed above is presented in Figure 2.

3. PREVIOUS INVESTIGATIONS

3.1 AVAILABLE DOCUMENTS

This investigation follows on from previous investigations completed at the site, including

- J&K (2017). Report to Austino Properties on Geotechnical Investigation for Proposed Residential Development at 1 Murray Rose Avenue, Sydney Olympic Park, NSW. Project No. 30808YFrpt, dated 9 October 2017; and
- EIS (2017). Waste Classification Assessment Proposed Residential Development 1 Murray Rose Avenue, Sydney Olympic Park, NSW. Project No. E30808Klet-WC, dated 13 October 2017.

The findings of the reports above are summarised in **Table 3-1** below.

Table 3-1	Summary of Previous Investigation Works and Findings
	eaninally er i retreae interestigation trente ana i manige

Assessment Details	Project Tasks and Findings	
Geotechnical Invest	tigation (JK, 2017)	
Work Objectives	To obtain geotechnical information on subsurface conditions as a basis for comments and recommendations on excavation conditions, retention systems, footings, basement slabs, hydrogeological considerations and earthquake design parameters.	
Conclusions & Recommendations	Results from the field work which included four cored boreholes, two of which were converted into monitoring wells; and laboratory work which included the completion of Standard Penetration Test (SPT) on the SPT tube samples revealed the following:	
	 Subsurface soil profile comprises of fill, natural clays and predominantly shale/laminate bedrock of medium, high and very high strength. 	
	 Site soils and bedrock are of relatively low permeability, thus seepage rates throughout the excavation works are expected to be manageable using conventional sump and pump methods. 	
	 The retention systems may comprise of a full depth soldier pile wall with shotcrete infill panels socketed not less than 0.5m below the Bulk Excavation Level. However, alternative retention systems may need to be considered to address hydrogeological issues. 	
Waste Classification	n Assessment (EIS, 2017)	
Work Objectives	To provide a waste classification for the off-site disposal of the material in accordance with the NSW EPA Waste Classification Guidelines - Part 1: Classifying Waste (2014).	

Assessment Details	Project Tasks and Findings
Conclusions & Recommendations	Based on the results of the assessment which comprised of soil sampling and laboratory testing for selected analytes, it was concluded that:
	 Aerial photography review indicated site appeared to be vacant in 1943; with the immediate surrounds also appearing to be developed for agricultural and grazing purposes from 1943 with an open brick pit located approximately 250m north of the site.
	 NSW EPA contaminated land register did not hold any records for the site.
	 Benzo(α)pyrene concentrations exceeded the CT1 criterion in two fill samples collected from BH6 (0.6-0.8) and BH7 (1.6-1.8); however TCLP tests run on these samples revealed results were below PQL for TCLP benzo(α)pyrene.
	- Fill material classified as General Solid Waste (non- putrescible).
	 Natural soil and shale bedrock at the site may meet the definition of VENM for off-site or re-use purposes.
	Furthermore, the following recommendation were also made:
	 Surplus fill should be disposed of to a suitably licensed facility.
	 Additional testing should be conducted on the natural soil and bedrock following the removal of the fill material.
	 A member of the Australian Contaminated Land Consultants Association should be contacted in the event that an unexpected find is encountered.

3.2 SUMMARY OF CONTAMINATION

El considers that the potential for contamination to exist onsite largely relates to the following:

• Anthropogenic fill which may include pesticides, PAHs and other contamination.

4. SITE HISTORY

4.1 LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW

A historical land titles search was conducted through Scott Ashwood Pty Ltd. Copies of relevant documents resulting from this search are presented in **Appendix D**. A summary of all the previous and current registered proprietors along with information obtained from the available historical aerial photographs, in relation to past potential land uses are presented in **Table 4-1**.

The historical aerial photographs reviewed as part of this DSI included:

- 1943: 1943, Six Maps Imagery, source: https://maps.six.nsw.gov.au/.
- 1951: May 1951, B/W, Sydney, Run 11 Lands Photo.
- 1961: 1961, B/W, NSW, 1068 5025 Lands Photo.
- 1986: 1986, NSW, 3528 82 Lands Photo.
- 1994: 04 October 1994, Sydney, 153 164, Run 11 Lands Photo.
- 2007: 11 March 2007, Google Earth Imagery.
- 2015: 16 October 2015, Google Earth Imagery.

Table 4-1	Summary of Owners and Historical Aerial Photography
-----------	---

Period	Ownership Summary	Site description based on historical aerial photographs	Potential Land Uses			
Lot 1 D.P. 1185	Lot 1 D.P. 1185060					
23.11.1910 (1910 to 1929)	The Minister for Public Works of the State of New South Wales	-	Unknown			
11.03.1929 (1929 to 1980)	Metropolitan Meat Industry Board <i>Then</i> The Metropolitan Meat Industry Commissioner <i>Now</i> The Metropolitan Meat Industry Board	 1943: Site footprint appears vacant. Site is grassy, with a dirt path observed extending from the south-east to the north-west of the site. On the far eastern side rail infrastructure was observed. 1951: Site remains relatively unchanged form 1943 aerial photograph. An additional dirt path is noted branching from the dirt path outlined in previous aerial photograph and extending to the north-east of the site. 1961: Site remains predominantly unchanged from previous aerial photograph. 	Agricultural / Industrial			
26.09.1980 (1980 to 1992)	Homebush Abattoir Corporation	1986 : Site remains predominantly unchanged from previous aerial photograph.	Agricultural / Industrial			

Period	Ownership Summary	Site description based on historical aerial photographs	Potential Land Uses
03.08.1992 (1992 to 1993)	Homebush Bay Ministerial Corporation	-	Agricultural / Industrial
22.09.1993 (1993 to 1995)	Homebush Bay Development Corporation	1994: Site remains vacant. No pathways are noted.	Undeveloped
08.12.1995 (1995 to 2002)	Olympic Co-Ordination Authority	-	Commercial
25.01.2002 (2002 to date)	# Sydney Olympic Park Authority	2007 : Site appears to be partly occupied by a bitumen car park.	Commercial
(2015 : Site appears vacant, with bitumen roadway extending from the north-west and going towards the south-east. Bare soil patches are also observed in the western half and northeast quadrant of the site.	

<u># Denotes Current Registered Proprietor</u>

Easements: -

• Numerous Easements were found on the early titles, these early titles comprise lands in excess of 900 acres – we have not investigated these early easements

Leases: -

- During the investigation of the early title of this land, which forms part of a much larger parcel, numerous leases were found which we could not determine if they affect or not These leases have since expired or have been surrendered. We have not investigated these leases
- Numerous Leases and Sub Leases were found from 20.03.1998 to 02.12.2013 – These leases have since expired or have been surrendered. We have not investigated these leases
- 22.09.2014 (AI777013) GPT Re Limited expires 29.10.2096
- Lessee then Haisheng Olympus Holding Pty Limited now Austino Sydney Olympic Park Pty Ltd

Overall, the site appeared to have been used for agricultural/industrial and commercial purposes either by ownership or through leasing, since at least the beginning of the study period – 1930. Throughout the study period it is unclear whether the site became fully established as a commercial site in 1992 or 1995, nevertheless the evidence obtained through the historical aerial photography and land title review indicate that the commercial nature of the site has continued to date.

4.2 SURROUNDING LAND USE

As part of the Site Land Titles Information / Historic Aerial Photography Review, an assessment of surrounding land uses using aerial photographs sourced from NSW Land and Property Information was carried out. A summary of the pertinent information identified as surrounding land parcels from the reviewed photographs is presented in **Table 4-2**

Table 4-2 Summary of Aerial Photography Review

Aerial Photograph	Surrounding land uses based on historical aerial photographs
1943, Six Maps Imagery, source: <u>https://maps.six.nsw.gov.au/</u> .	Land uses appear to be agricultural and industrial in nature. To the north of the site a large crater is noted. Further investigation indicates this crater was a brick pit. The land surrounding the site is predominantly vacant. The only structures noted are industrial buildings to the east of the site.

Aerial Photograph	Surrounding land uses based on historical aerial photographs	
May 1951, B/W, Sydney, Run 11 – Lands Photo	Land use remains predominantly unchanged from previous aerial photograph.	
1961, B/W, NSW, 1068 5025 – Lands Photo	Land use remains primarily unchanged from the previous aerial photograph.	
1986, NSW, 3528 82 – Lands Photo	Land to the west, beyond previously outlined industrial buildings; is observed to have being developed. Various large building with multiple car parks are observed. Land to the south-west, south, south-east and north- west (beyond brick pit area) of the site appears to be under redevelopment.	
1994, 0223 – Lands Photo	Surrounding land use appears to be under redevelopment in all directions. Number of recreational areas and building have increased. Works for 2000 Olympics are noted and brick pit remains. Roadway to the south west of the site is observed.	
11 March 2007, Google Earth Imagery	Large commercial buildings are observed to the west of the site. All previously outlined developments have been completed. Land parcel to the south east of site appears to have been developed into what is now known as Bicentennial Park.	
16 October 2015, Google Earth Imagery	Surrounding land use appears to remain primarily unchanged from the previous aerial photograph. Carpark to the south of the site has been demolished and a roadway has been established. Buildings to the west have been demolished and two large commercial structures have been erected. Land parcel to the south of the site is noted to be vacant.	

4.3 COUNCIL INFORMATION

A search of site history records held by Parramatta Council in relation to the site, was initiated on the 7 November 2017; however, a response was still pending as at the time of report writing. Should pertinent information be identified upon receipt of the Council records, an addendum to the DSI will be prepared and issued.

4.4 SAFEWORK NSW DATABASE SEARCH

A search of SafeWork NSW records relating to 1 Murray Rose Avenue, Sydney Olympic Park NSW did not identify records pertaining to the site (Ref. **Appendix D**).

4.5 NSW EPA DATABASES

4.5.1 Contaminated Land - Record of Notices under Section 58 of CLM Act 1997

An on-line search of the contaminated land public record of EPA Notices was conducted on 10 November 2017.

The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the Environment Protection Authority (EPA) has not been revoked;

- Site audit statements provided to the NSW EPA under section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and
- Actions taken by NSW EPA under section 35 or 36 of the *Environmentally Hazardous Chemicals Act 1985* (EHC Act).

The search confirmed that the site known as 1 Murray Rose Avenue, Sydney Olympic Park was not subject to any regulatory notices issued by the NSW EPA. However, land in close proximity (within 500 m) is subject to regulatory notices issued by the EPA:

• *Bicentennial Park* – Bicentennial Drive; (approx. 370 m south to site) – has one current notice (notice No. 28040) and two former notices (notice No. 555 & No. 226).

4.5.2 List of NSW contaminated sites notified to EPA

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was conducted on 7 November 2017. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted significantly enough to warrant regulation by the NSW EPA. The search confirmed that the site known as 1 Murray Rose Avenue, Sydney Olympic Park was <u>not</u> identified on the List of NSW Contaminated Sites notified to the EPA. However, the following land in close proximity (within 500 m), has been notified to the EPA and ongoing maintenance is required to manage residual contamination as per the CLM Act;

• Bicentennial Park – Bicentennial Drive; (approx. 370 m south to site).

4.5.3 POEO Public Register

A search of the Protection of the Environment Operations (POEO) Act public register was conducted on 10 November 2017. The public register contains records related to environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes. The search identified that there are no records under the POEO public register for the site known as 1 Murray Rose Avenue, Sydney Olympic Park, and lands in close proximity (within 500 m).

5. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

5.1 SUBSURFACE CONDITIONS

The intrusive investigations carried out on the 6 November 2017, revealed that the subsurface soils comprised of gravelly silt/gravelly silty clay/silty clay fill overlying clay soil and shale bedrock. The natural soil layer, correlates with the regional geology identified in **Section 2.3**.

5.2 POTENTIAL CONTAMINATION SOURCES

On the basis of site history and search findings (described in **Section 3**) and site inspection EI consider potential chemical hazards and onsite contamination sources to be as follows:

- Potential use of imported fill materials of unknown origin and quality;
- Potential contamination associated from historical commercial/industrial use of the site (i.e. possible abattoir yard, rail corridor);
- Potential use of pesticides across the site;
- Leakage of petroleum hydrocarbons from vehicles in the car parking area; and
- Potential contamination of soils and groundwater from properties within close proximity of subject site (i.e. long standing brick pit to the north of the site).

5.3 CONTAMINANTS OF POTENTIAL CONCERN

Based on the findings of the site contamination appraisal the contaminants of potential concern (COPC) at the site are considered to be:

- Soil heavy metals (HM), total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbon compounds *benzene, toluene, ethyl-benzene* and *xylenes* (BTEX), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), organochlorine and organophosphorus pesticides (OCP/ OPP), polychlorinated biphenyls (PCB), and asbestos.
- Groundwater HM, TRH, BTEX, PAH, phenols and volatile organic compounds (VOC), including chlorinated VOC

5.4 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 5-1**.

Table 5-1 Conceptual Site Model

Impacted Media	Contaminants of Potential Concern	Transport mechanism	Exposure pathway	Potential receptor
Soil	HM, TRH, PAH, BTEXN, OCP, OPP, PCB, VOC, asbestos	Disturbance of surficial and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment Atmospheric dispersion from soil throughout	 Ingestion; Dermal contact; Inhalation of dust particulates Inhalation dust particulates 	 Construction and maintenance workers End users of the site post redevelopment
	F1 and F2 TRH, BTEXN and VOCs	the site Volatilisation of contamination from soil and diffusion to indoor air spaces	 Inhalation of vapours from impacted soil. 	_
	HM, TRH, PAH, BTEXN	Plant uptake of contamination present in root zone	 Plant uptake 	 Future ecological receptors (e.g. site vegetation in landscaped areas post redevelopment)
Groundwater HMs, TRH, BTE> VOCs	HMs, TRH, BTEXN, and VOCs	Interception of water table during excavation Potential seepage into basement intercepting water table (both on site and off site)	 Dermal contact; Ingestion; Inhalation of vapours 	 Construction and maintenance workers Basement users post redevelopment Offsite users of constructed basements that are not water tight
		Migration of dissolved phase impacts in groundwater	 Contaminants arriving at receiving surface water bodies could lead to ingestion and dermal contact 	 Aquatic ecosystems Recreational water users

Notes:

Metals - Arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc (typical metals tested in urban/industrial Sydney)

TRH – Total recoverable hydrocarbons (generally petroleum hydrocarbons)

BTEXN – The monocyclic aromatic hydrocarbons benzene, toluene, ethyl-benzene, and xylenes, including the PAH naphthalene.

PAH – Polycyclic aromatic hydrocarbons (includes the carcinogenic compound *benzo*(α)*pyrene*)

OC/OP Pesticides – Organochlorine and organophosphate pesticides

VOCs – Volatile organic compounds

ACM – Asbestos-containing materials

PCBs – Polychlorinated biphenyls

5.5 DATA GAPS

Based on information from the site walkover inspection and site history review, El considered a programme of intrusive investigation is warranted to existing data gaps that relate to potential sources of contamination (as listed in **Section 5.2**).

6. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP for this additional investigation plays a crucial role in ensuring that the data collected as part of this environmental assessment are representative and provide a robust basis for site assessment decisions. The SAQP for the site includes:

- Data quality objectives, including a summary of the objectives of the this additional environmental investigation;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis methods;
- Sample handling, preservation and storage; and
- Analytical quality assurance and quality control (QA/QC).

6.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with US EPA (2006) *Data Quality Assessment: A Reviewer's Guide* and the DEC (2006) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 6-1**.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps (NSW DEC, 2006)	Details	Comments (changes made during investigation)
1. State the Problem Summarise the contamination problem that will require new	• The site is to be redeveloped as outlined in Section 1.2 . The works include construction of eight level apartment building plus rooftop plant room over a two level basement car parking (see Appendix A for concept drawings). The proposed land uses are:	-
environmental data, and identify the	 Multi-storey residential apartment building; and 	
resources available to resolve the problem; develop a conceptual site	 Two level of basement car parking. 	
model	 Historical information and site inspection observations identified the potential for soil contamination due to various, possible sources, are listed in Section 5.2. A preliminary conceptual site model has been developed (Table 5-1); and 	
	• The investigation must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed redevelopment.	
2. Identify the Goal of the Study	Based on the objectives outlined in Section 1.4, the following decisions are identified:	-
(Identify the decisions) Identify the decisions that need to be made on the contamination	 Has the site been adequately characterised with sufficient and appropriate sampling coverage (vertical and lateral) to assess for the presence of potential contamination sources? 	
problem and the new environmental data required to make them	 Has the nature, source and extent of any onsite impacts (soil and/or vapour) been defined? 	
	• What influence do site-specific, geologic conditions have on the fate and transport of any impacts that may be identified?	
	• Does the degree of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite?	
	• Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, assuming remedial action is necessary? If not, what are the remaining data gaps requiring closure?	

DQO Steps (NSW DEC, 2006)	Steps (NSW DEC, 2006) Details	
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 Inputs to the decision making process include: Proposed development and land use; Aerial photographs, historical land title records, council records; Areas of concern identified during the site inspection, prior to intrusive investigations; National (NEPC 2013) and State-based (NSW EPA, various) environmental guidelines; Soil and groundwater samples and observations obtained from an intrusive investigation in locations, and to depths deemed appropriate for detailed investigation purposes (or prior auger refusal); Investigation sampling to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; and Laboratory analysis of selected soil and groundwater samples will comprise COPC presented in Section 5.2. At the end of the assessment, a decision must be made regarding whether the environmental conditions are suitable for the proposed redevelopment, or if additional investigation or remedial works are required to make the site suitable. 	-
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	 Lateral – The investigation will be conducted within the cadastral site boundaries, which define the extent of the investigation, as indicated on Figure 2. Vertical – Investigations will be advanced to the depth of natural soils or rock, and underlying water bearing zones. Temporal – The findings of this assessment will hold true for as long as the site use remains passive in nature; that is, for as long as the site is used for the proposed use and there are no activities taking place onsite or on immediately adjacent (upgrading) properties that may compromise onsite environmental conditions. 	Boreholes BH103M, BH107M and BH109M hit refusal on shale bedrock at depths ranging between 5.9 mBGL 8.9 mBGL. Groundwater was not encountered during the intrusive investigation.
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions	 The decision rules for the investigation were: If the concentrations of contaminants in the soil data exceed the adopted criteria; then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 6-2. 	-

DQO Steps (NSW DEC, 2006)	Details	Comments (changes made during investigation)	
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits:		Groundwater was not encountered during the intrusive investigation.	
Specify the decision-maker's acceptable limits on decision errors, which are used to establish	 The null hypothesis for the investigation is that: The 95% Upper Confidence Limits (UCL) of the mean for COPC exceed relevant land use criteria across the site 		
performance goals for limiting uncertainties in the data	 Sampling will be completed on a 19 m grid for the detection of a contamination hotspot of 22.5 m diameter with 95 % confidence; 		
	The acceptance of the site will be based on the probability that		
	 The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; and 		
	 The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and 		
	 No single results exceeds the remediation acceptance criteria by 250% or more; and 		
	 Soil concentrations for COPC that are below investigation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s). 		

DQO Steps (NSW DEC, 2006)	Details	Comments (changes made during investigation)
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	 Eleven soil sampling locations, placed in a systematic fashion across the site, and installation of three groundwater wells. An upper soil profile sample will be collected at each borehole location and tested for chemicals of concern, to assess the environmental condition of a fill layer (if present), and for potential impacts from historical, above-ground activities. Further sampling will also be performed in deeper soil layers. These samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples), and will also be used to characterise subsurface stratigraphy. Field screening for potential VOC contamination will be carried out with a portable Photolonisation Detector (PID) to aid in the identification of potential VOC contamination and assist in the selection of laboratory analytical samples; Representative soil samples will be collected from the site and analysed to allow characterisation of soils; and Review of the results will be undertaken to determine if further excavation and additional sampling is warranted. Additional investigations would be considered to be warranted where soil concentrations are found to exceed remediation criteria endorsed by the NSW EPA, relevant to the proposed land use(s). 	No groundwater samples were obtained during this site investigation due to wells being dry or not having sufficient water to sample.

6.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 8**.

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:
data	 Results are less than 10 times the limits of reporting (LOR);
	 Results are less than 20 times the LOR and the RPD is less than 50%; or
	Heterogeneous materials or volatile compounds are encountered.
Accuracy – A	Data accuracy would be assessed through the analysis of:
quantitative measure of the closeness of	• Method blanks, which are analysed for the analytes targeted in the primary samples;
reported data to the	 Matrix spike and matrix spike duplicate sample sets; and
"true" value	Laboratory control samples.
Representativeness – The confidence	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
(expressed qualitatively) that data are	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
representative of each medium present onsite	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and
	• The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness – A measure of the	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
amount of useable	• Standard operating procedures (SOPs) for sampling protocols were adhered to; and
data from a data collection activity	 Copies of all Chain-of-Custody (COC) documentation are presented, reviewed and found to be properly completed.
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.
Comparability – The confidence (expressed qualitatively) that	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.
data may be considered to be equivalent for each sampling and analytical event	In addition the data will be collected by experienced samplers and NATA-accredited laboratory methodologies will be employed in all laboratory testing programs.

Table 6-2 Data Quality Indicators

7. ASSESSMENT METHODOLOGY

7.1 SAMPLING RATIONALE

With reference to the preliminary CSM described in **Section 5**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Site characterisation in relation to soil would be based on intrusive soil investigations involving sampling and analysis of fill and natural soils from eleven borehole (BH101 to BH111);
- Installation of three groundwater monitoring wells and sampling groundwater during a single groundwater monitoring event (GME) at the monitoring wells, to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified contaminants of concern.

7.2 INVESTIGATION CONSTRAINTS

The number of test bores drilled and monitoring wells installed during the investigation phase achieved the planned investigation scope described in **Section 7.1**, however due to a number of physical obstructions investigations were limited by the following constraints, including:

- Tight access areas; and
- No testing was possible to the areas near the edge of the east and south-eastern boundary due to the site topography and limited drilling rig access. Refer to **Appendix C** for site photos.

7.3 ASSESSMENT CRITERIA

The assessment criteria proposed for this project, outlined in **Table 7-1**; was selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenarios that are expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

It should be note that the site specific criteria tabulated in **Table 7-1**, was drafted by taking into account the sketch plans provided by the Client (**Appendix A**) and the following assumptions:

- Ground floor will be used for residential purposes.
- No private gardens on the ground floor.
- All deep soil areas are for recreational purposes and/or designated footpaths/pathways.

Should the proposed development deviate from the sketch plans available at the time of this report, the assessment criteria must be reassessed and if need be, modified to reflect the changes made to the proposed development layout.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013 Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	Soil Health-based Investigation Levels (HILs) <u>Building footprint:</u> NEPM (2013) HIL-B for residential settings with limited soils access. <u>Open space/footpath areas:</u> NEPM (2013) HIL-C for public open spaces. Soil Health-based Screening Levels (HSLs) <u>Building footprint:</u> NEPM (2013) HSL-D for commercial/industrial premises. <u>Open space/footpath areas:</u> NEPM (2013) HIL-C for public open
		 spaces. <u>Asbestos HSLs:</u> Presence / absence of asbestos (not-detected) were adopted for preliminary screening purposes. <u>Ecological Investigation Levels (EILs)</u> <u>Open space areas:</u> NEPM (2013) Urban residential and public open space. EILs only apply to the top 2 m (root zone) <u>Ecological Screening Levels (ESLs)</u> <u>Open space areas:</u> NEPM (2013) Urban residential and public open space. ESLs only apply to the top 2 m (root zone). <u>Management Limits for Petroleum Hydrocarbons</u> Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples will also assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure
Groundwater	NEPM, 2013 GILs for Marine Waters	Groundwater Investigation Levels (GILs) for Marine Water NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio- accumulative metals <i>cadmium</i> and <i>mercury</i> . The marine criteria were considered relevant as the closest, potential surface water receptor was Powells Creek which flows into Parramatta River, a tidally influence water body, located <1km north east of the site.
	NEPM, 2013 Groundwater HSLs for Vapour Intrusion	Health-based Screening Levels (HSLs) The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The HSL A and HSL B thresholds for low and medium-density residential sites were applied for groundwater.
	NEPM, 2013 GILs for Recreational & Drinking purposes	Recreational & Drinking Water GILs Recreational Water quality criteria in NEPM (2013), based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011), were applied to reflect potential contact with groundwater in non-watertight basements.

Table 7-1 Adopted Investigation Levels for Soil and Groundwater

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 9**.

The soil investigation works conducted at the site are described in **Table 7-2**. Test bore locations are illustrated in **Figure 2**.

Activity/Item	Details		
Fieldwork	The site investigation was conducted over two days. The works were completed as follow;		
	 6 November 2017 – Test bores BH103M to BH110 were completed to natural soil. 		
	 7 November 2017 – Test bores BH101, BH102 and BH111 were completed to natural soil. 		
Drilling Method & Investigation Depth	All boreholes BH101 to BH111 were completed using a Hanjin D&B track mounted rig, employing solid flight augers for soil drilling. Final bore depths ranged between 2.4 – 8.9 mBGL (BH101 to BH111). Borehole logs are presented in Appendix E .		
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics a evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on the Unified Soil Classification Syst (USCS) and Australian Standard (AS) 4482.1-2005.		
	Borehole logs are presented in Appendix E .		
Field Observations	A summary of field observations is provided, as follows:		
(including visual and olfactory signs of potential contamination)	 No olfactory evidence of hydrocarbons was found; 		
	 No olfactory evidence of acid sulfate soils (H₂S odour) was observed in boreholes; and, 		
	Fibre cement sheet fragments were not observed in any drilling cuttings.		
Soil Sampling	 Soil samples were collected by dry grab method (using unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars; 		
	 Blind field QC duplicates were separated from the primary samples and placed into glass jars; 		
	 A small amount of duplicate sample was separated from primary samples and placed in a zip-lock bag for soil vapour screening (see below); and 		
	 A small amount of duplicate sample (up to 150 g) was separated from all fill samples and placed into a zip-lock bag for Asbestos analysis. 		
Soil Vapour Screening	Screening for potential VOCs from collected samples was conducted using a Photo- ionisation Detector (PID) which was calibrated immediately prior to sampling. PID readings of individual samples are presented in the bore logs attached in Appendix E . The PID calibration certificate is also included in Appendix F .		
Decontamination Procedures	Drilling Equipment – The augers used were decontaminated between sampling locations until augers were free of all residual material.		
	Sampling Equipment – Nitrile gloves were dedicated to each sample (i.e. used gloves were discarded before collecting each new sample).		
Sample Preservation	Samples were stored in a chilled chest (with frozen ice packs), whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.		
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.		

 Table 7-2
 Summary of Soil Investigation Methodology

Activity/Item	Details
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra- laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict COC conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 8 .
	All COC and SOR forms can be found under Appendix G ; and all laboratory analytical results are presented in Appendix H .

7.5 GROUNDWATER INVESTIGATION

The groundwater investigation works conducted at the site are described in **Table 7-3**. The three groundwater wells were installed within the site boundaries. Two of the groundwater monitoring wells (BH107M and BH109M) were installed in a downgradient location, while well BH103Mwas installed in an up gradient location (see **Figure 2**).

Activity/Item	Details				
Fieldwork	Groundwater monitoring wells were installed on the 6 November 2017. At the time of installation monitoring wells were dry and were not developed.				
	Water level gauging, well purging, field testing and groundwater sampling for all three wells (BH103M, BH107M and BH109M) was conducted on 17 November 2017.				
Well Construction	Test bores were converted to groundwater monitoring wells as follows:				
	• One, 8.2 m deep, onsite, well identified as BH103M;				
	 One, 6.7 m deep, onsite, well identified as BH107M; and 				
	One, 5.2 m deep, onsite, well identified as BH109M.				
	Well construction details are tabulated in Section 9.2 and documented in the borehole log presented in Appendix E .				
	Well construction carried out by EI was in general accordance with the standards describe in NUDLC, 2012 and involved the following:				
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present. 				
	• The base of each well was sealed with a uPVC cap.				
	• Annular, graded sand filter was used to at least 300 mm above top of screen interval.				
	 Granular bentonite was applied above the annular filter pack to seal the screened interval. 				
	 Cement-bentonite slurry was used to backfill the bore annulus to just below ground level. 				
	Surface completion comprised of approx. 1 metre casing stick up, finished with a J-cap, se in neat cement.				
Well Development	Well development was not necessary for the wells as the wells were dry following installation.				

Activity/Item	Details	
Well Gauging & Groundwater Flow Direction	Monitoring wells BH103M, BH107M and BH109M were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 17 November 2017. All measured SWLs are shown in Table 9-3 .	
	A transparent HDPE bailer was used to visually assess for the presence PSH prior to the commencement of well purging. PSH was not detected in the well that contained water (BH103M).	
Well Purging & Field Testing		
Decontamination Procedure	The water level probe and HDPE bailer were washed in a solution of potable water and Decon 90 and then rinsed with potable water between measurements/wells.	

8. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if the data meet the objectives of the project (Ref. US EPA, 2006). Data quality assessment involves an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- Suitable records of fieldwork observations including borehole logs;
- Relevant and appropriate sampling plan (density, type, and location);
- Use of approved and appropriate sampling methods;
- Preservation and storage of samples upon collection and during transport to the laboratory;
- Complete field and analytical laboratory sample COC procedures and documentation;
- Sample holding times within acceptable limits;
- Use of appropriate analytical procedures and NATA-accredited laboratories; and
- Required LOR (to allow for comparison with adopted IL);
- Frequency of conducting quality control measurements;
- Laboratory blanks;
- Field duplicates;
- Laboratory duplicates;
- Matrix spike/matrix spike duplicates (MS/MSDs);
- Surrogates (or System Monitoring Compounds);
- Analytical results for replicated samples, including field and laboratory duplicates and interlaboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigations at the site are discussed in detail in **Appendix I**. Laboratory QA/QC policies and DQOs are presented in **Appendix J**.

9. RESULTS

9.1 SOIL INVESTIGATION RESULTS

9.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling investigations was a layer of topsoil overlying residual clays followed by shale bedrock. The geological information obtained during the investigation is summarised in **Table 9-1** and borehole logs from these works are presented in **Appendix E**.

Layer	Description	Average Approximate Depth to Top & Bottom of Layer (mBGL)	
		Тор	Bottom
Fill	Gravelly silt/gravelly silty clay; black to dark brown/brown, with sub angular to angular gravels, with organics, medium plasticity, no odour. (BH101 to BH111).	0.0	1.3
	Silty clay/clayey silt; medium to high plasticity, brown/dark brown, with medium gravels, no odour. (BH102 to BH105 & BH108 to BH111).	1.0	1.85
Natural Soil	Silty clay; low to high plasticity, grey/brown mottled orange/red/light yellow, with rootlets, no odour.	1.8	2.8
Bedrock	Shale; light grey to grey, weathered, no odour	2.6	5.2

Table 9-1 Generalised Subsurface Profile

9.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.1 and 6.55 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination and the following observations were noted:

- No staining, charcoal, ash or slag were detected within soils;
- No bonded or fibrous material (suspected to be ACM) was observed within soils recovered from the sub-surface during drilling; and
- No elevated PID results (>10 ppm) were detected.

9.2 **GROUNDWATER INVESTIGATION RESULTS**

9.2.1 Monitoring Well Construction

A total of three groundwater monitoring wells were installed across the site. Well construction details for the installed groundwater monitoring wells are summarised in **Table 9-2**.

Well ID	Bore Depth (mBGL)	Volume Developed (L)	Screen Interval (mBGL)	Lithology Screened
BH103M	8.9	Dry well	5.2 - 8.2	Shale
BH107M	7.2	Dry well	4.7 – 6.7	Shale
BH109M	5.9	Dry well	3.2 – 5.2	Shale

Table 9-2 Monitoring Well Construction Details

Notes:

mBGL - metres below ground level.

L - Litres.

9.2.2 Field Observations and Water Test Results

A single GME was conducted on all wells in 17 November 2017. On this date, standing water levels (SWLs) were measured within each well and the results of which were recorded with well purge volumes and field-based water test results. Copies of the completed Field Data Sheets are included in **Appendix F**.

We noted that the wells were dry wells and thus groundwater was not sampled. Whilst a standing water level for BH103M was obtained, the depth of the well was 8.2 mBTOC which gave a water column of <0.5 m, and sampling could not be completed.

9.3 LABORATORY ANALYTICAL RESULTS

9.3.1 Soil Analytical Results

A summary of laboratory results from this investigation showing test sample quantities, minimum/maximum analyte concentrations for primary samples and samples found to exceed the adopted guidelines, is presented in **Table 9-3**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria is presented in **Table T1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix G** and all laboratory analytical reports for tested soil samples are presented in **Appendix H**.

No. of Primary Samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample Locations Exceeding Investigation Levels
Priority Met	als			
23	Arsenic	<3	90	None
23	Cadmium	<0.3	1.4	None
23	Chromium (Total)	7.9	30	None
23	Copper	20	53	None
23	Lead	12	52	None
23	Nickel	1.6	52	None*
1	TCLP – Nickel (mg/L)	0.072	0.072	-
23	Zinc	10	200	None

Table 9-3 Summary of Soil Analytical Results

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

No. of Primary Samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample Locations Exceeding Investigation Levels
23	Mercury	<0.05	<0.05	None
PAHs				
23	Benzo(α)pyrene	<0.1	8.9	9/16 fill samples exceed the EIL criteria of 0.7 mg/kg
2	TCLP – Benzo(α)pyrene (mg/L)	<0.0001	<0.0001	-
23	Carcinogenic PAHs	<0.3	13	6/16 fill samples exceed the HIL-B criteria of 4 mg/kg
23	Naphthalene	<0.1	0.3	None
23	Total PAHs	<0.8	88	None
TRHs (inclu	iding BTEX)			
23	TRH C6-C10 minus BTEX (F1)	<25	<25	None
23	TRH >C ₁₀ -C ₁₆ (F2) minus Naphthalene	<25	39	None
23	TRH >C ₁₆ -C ₃₄ (F3)	<90	480	Samples exceeding EIL:
				BH102_1.0-1.1 (330 mg/kg)
				BH103M_0.2-0.3 (380 mg/kg)
				BH103M_0.8-0.9 (480 mg/kg)
23	TRH >C34-C40 (F4)	<120	<120	None
23	Benzene	<0.1	<0.1	None
23	Toluene	<0.1	<0.1	None
23	Ethylbenzene	<0.1	<0.1	None
23	Total Xylenes	<0.3	<0.3	None
OCPs				
16	OCPs	<1	<1	None
OPPs				
16	OPPs	<1.7	<1.7	None
PCBs				
16	PCBs	<1	<1	None
Asbestos (p	presence/absence)			
16	Asbestos	No	No	None

Notes:

 * - Refer to $Section \ 10.1.1$ for further details.

With reference to Table T1 and Table 9-3, the following observations were made;

Priority Metals

All priority metals concentrations were below the corresponding SILs (Section 7.3).

PAHs

PAHs were reported below the adopted human and ecological health criteria (**Section 7.3**), with the exception of the carcinogenic PAHs and benzo(α)pyrene in fill soil of BH102 to BH104 and BH107M; and fill soil of BH102 to BH107M respectively.

TRHs and BTEXN

All TRH concentrations were reported below the adopted human and ecological health based criteria (**Section 7.3**), with the exception of TRH F3 in BH102_1.0-1.1 (330 mg/kg), BH103M_0.2-0.3 (380 mg/kg) and BH103M_0.8-0.9 (480 mg/kg) which exceeded the ecological based criteria of 300 mg/kg.

Asbestos

No detectable asbestos concentrations or traces of respirable fibres were identified in any of the tested soil samples.

OCPs, OPPs and PCBs

No detectable concentration of any of the screened OCP, OPP and PCB compounds were identified in any of the tested samples. All laboratory PQLs were also within the corresponding SILs.

10. SITE CHARACTERISATION

10.1 SOIL IMPACTS

Soil quality was assessed for COPC at eleven borehole locations during this investigation; and at eight borehole locations during EIS (2017) investigation. The borehole locations for both assessments are shown in **Figure 2**, and reported concentrations including exceedances are tabulated in **Table T1**.

10.2 PRIORITY METALS

The reported concentration for priority metals for all fill and natural soil samples in the EI assessment locations (BH100 series) were within the adopted health based SIL.

Nickel exceeded the ecological based SIL of 35 mg/kg (EIL/ESL) in fill at two locations in this investigation. Statistical analysis of all fill data, which included the EIS (2017) investigation data and the current investigation data, (19 locations, 29 samples overall); found that the 95%UCL of the mean nickel concentration was 18.30 mg/kg. This data analysis has been provided in **Appendix I** at the end of this report. Therefore nickel in fill is not considered to be a contaminant of environmental concern for the site.

The concentration of metals including nickel in underlying natural soil were low.

10.2.1 PAHs

PAHs were reported below the adopted human and ecological health criteria (**Section 7.3**), with the exception of carcinogenic PAHs and benzo(α)pyrene.

- Carcinogenic PAHs exceeded the health based SIL of 4 mg/kg (HIL-B) and 3 mg/kg (HIL-C) in fill at four EI locations (BH102, BH103M, BH104 and BH108) of eleven assessed; and at two EIS (2017) locations (BH6 and BH7) of eight assessed. Statistical analysis of all fill data available to date for the site (19 locations, 29 samples overall); found that the 95%UCL of the mean carcinogenic PAH concentration was 7.389 mg/kg. This value remained above the health based criteria by 185% and 246% respectively.
- Benzo(α)pyrene exceeded the ecological based SIL of 0.7 mg/kg in fill at six EI locations (BH102 to BH107M) of eleven assessed; and at two EIS (2017) locations (BH6 and BH7) of eight assessed. Statistical analysis of all fill data available to date for the site (19 locations, 29 samples overall); found that the 95%UCL of the mean benzo(α)pyrene concentration was 4.306 mg/kg. This value remained above the ecological based criteria by 615%.

10.2.2 TRH

TRH F3 in BH102_1.0-1.1 (330 mg/kg), BH103M_0.2-0.3 (380 mg/kg) and BH103M_0.8-0.9 (480 mg/kg) and in one EIS (2017) fill soil sample (BH7_1.6-1.8, 620 mg/kg) exceeded the ecological based criteria of 300 mg/kg. The exceedances are noted to extend into the deeper soil profile.

Overall, the contamination identified at the site could be best remediated by removing all fill from site. This approach would align with the proposed development, which includes the excavation of 83% of the site footprint for two levels of basement; and it will ensure any potential effects to plants in proposed landscape and to future site users are minimised. Alternatively any localised contamination found in the proposed landscaped areas (BH104 and BH106) where fill is to be maintained; could be further characterised to ascertain it's suitable to remain on site.

10.2.3 Preliminary In-Situ Soil Classification

The fill soils examined during this investigation were further assessed for site suitability and preliminary offsite waste classification against NSW EPA (2014) Waste Classification Guidelines. This assessment revealed the following:

- Nickel exceeded CT1 in fill at two El locations. Leachate testing on the samples with the highest nickel concentration did not exceed TCLP1. This result coupled with the 95%UCL of the mean concentration of nickel in fill for all El and ElS data was less than SCC1.
- Benzo(α)pyrene exceeded CT1 in fill at several El locations and at two ElS (2017) locations. Leachate testing on two samples of highest BαP concentration did not exceed TCLP1. Furthermore, ElS run leachate testing on the two samples that exceeded the criteria, and it was found that they did not exceed TCLP1.

Statistical data analysis was completed for the data collected by EI and EIS. The 95%UCL of the mean concentration of B α P in fill for all EI and EIS data, was less than SCC1.

Given the aforementioned results, chemical characteristics of the soil are consistent with general solid waste (non-putrescible). These findings align with the characteristics given by EIS during their 2017 investigation.

10.3 GROUNDWATER IMPACTS

While groundwater wells were installed within underlying Ashfield Shale to a maximum depth of ~ 8.0 mBGL during this investigation, sufficient quantities of groundwater were not encountered to allow characterisation of groundwater quality. We also note that groundwater monitoring wells previously installed at the site by J&K (2017), were not serviceable for groundwater assessment due to poor installation. As such, site groundwater quality remains unknown.

Based on the available site history information, it is considered unlikely that mobile contamination sources have existed on the site in the past, and therefore, potential contamination of groundwater from site derived sources is considered to be low. However, as scant information is available for historic land use hydraulically up gradient of the site, at least one groundwater monitoring should be installed to intercept groundwater and characterise background groundwater quality moving onto the site. This information will assist with understanding if there is any potential risk to site receptors from up gradient groundwater contamination

10.4 REVIEW OF CONCEPTUAL SITE MODEL

On the basis of investigation findings, the CSM discussed in **Section 5** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. We note that previously known data gaps, as outlined in **Section 5.5** have largely been addressed, however, the following data gaps remain:

- Characterisation of the soil in the eastern side of the site which was not sampled during this investigation; and
- The quality of background groundwater quality migrating on to site.

11. CONCLUSIONS

The property located at 1 Murray Rose Avenue, Sydney Olympic Park was the subject of a detailed site investigation that was conducted in order to assess the nature and degree of on-site contamination associated with current and former uses of the property. Based on the findings of this assessment it was concluded that:

- The site is located approximately 12.5 km north-west of the Sydney Central Business District (Figure 1). The site, which covers a total area of approximately 3,930 m², comprises of Lot 1 DP 1185060 and is situated within the Local Government Area of the Parramatta City Council (Figure 2);
- According to the site history, the site appeared to have been used for agricultural/industrial and later commercial purposes either by ownership or through leasing, since the start of the study period (1930's). Commercial use has continued until current date. This information correlated with the preliminary investigation completed by EIS (2017); where it was noted that aerial photography review indicated site appeared to be vacant in 1943; with the immediate surrounds also appearing to be developed for agricultural and grazing purposes from 1943 with an open brick pit located approximately 250 m north of the site;
- The subject site was free from notices issued by NSW EPA;
- SafeWork NSW records relating to 1 Murray Rose Avenue, Sydney Olympic Park NSW did not identify records pertaining to the site. This information aligned with the site observations made during the site inspection;
- Soil sampling and analysis were conducted at eleven test bore locations. The sampling regime was considered to be appropriate for the required investigation and comprised judgemental and systematic (triangular grid) sampling patterns;
- The sub-surface layers comprised anthropogenic filling overlying silty clay/clayey silt and shale bedrock;
- Results of soil samples collected from soil test boreholes indicated the following:
 - The reported concentrations of priority metals were below the adopted heath-based criteria (NEPM 2013 HIL-B and HIL-C).
 - The reported concentrations of priority metals in natural soil were low and did not exceed adopted investigation levels.
 - The reported concentration of carcinogenic PAHs exceeded the adopted health based investigation levels (3 mg/kg) in multiple fill soil samples analysed during this investigation and in the EIS (2017) investigation.
 - Benzo(α)pyrene exceeded ESL (0.7 mg/kg) in multiple fill samples tested in this investigation and in EIS (2017) investigation.
 - All other PAHs were below adopted human health and environmental criteria.
 - Exceedance of TRH-F3 ecological criteria (300 mg/kg) was reported in fill at two borehole locations out of eleven locations tested during this investigation; and at one borehole location

out of eight tested during the EIS (2017) investigation. The exceedance was minimal and in practice was unlikely to pose issues for site management and use.

- OCPs, OPPs or PCBs were not reported in any of the tested fill soil samples.
- Asbestos was not detected in any of the tested fill soil samples.
- The chemical characteristics of the soil are consistent with general solid waste (non-putrescible). These findings align with the characteristics given by EIS during their 2017 investigation;
- Groundwater was not encountered during this intrusive investigation. Groundwater flow direction was not calculated during this investigation, however it is inferred to flow towards Powells creek located south/south-east of the site; and
- On review of the Preliminary Conceptual Site Model (CSM) developed as part of this DSI, it was concluded that the model remains valid for the proposed development. However, a number of data gaps remain that require to be addressed. These include:
 - Characterisation of the soil in the eastern side of the site which was not sampled during this investigation; and
 - The quality of background groundwater quality migrating on to site.

Based on the findings from this DSI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 13**), EI conclude that soil contamination was observed and will require remediation and remaining data gaps will require closure. In view of the proposed development scope, and currently available information, EI consider that the contamination identified can be remediated to render the site suitable for the proposed land use, provided recommendations detailed in **Section 12** are implemented.

El note that the site contamination issues can be managed through the development application process in accordance with the *State Environmental Planning Policy 55 (SEPP 55) – Remediation of Land*, with the requirements for remediation and validation incorporated into conditions of development consent.

12. RECOMMENDATIONS

Based on the findings of this DSI, the following recommendations will be required to be implemented before the site can be confirmed as suitable for the proposed development:

- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Address the data gaps identified within this report through means of additional soil and groundwater investigations.
 - Outline the requirements for management of carcinogenic PAHs contamination and benzo(α)pyrene in fill at locations identified in Table T1 and Figure 2.
 - Provide a sampling and quality plan (SAQP) for the validation of remediation activities performed on-site.
 - Provide the requirements and procedures for waste classification assessment including further sampling, in order to enable formal classification of site soils to be excavated and disposed off-site during the proposed basement excavation, in accordance with the EPA (2014) Waste Classification Guidelines.
 - Outline the implementation of an unexpected finds protocol during the basement excavation works to ensure any potential groundwater contamination is identified and managed in accordance with the NSW EPA legislation and guidelines.
- Any material being imported to the site (i.e. for landscaping purposes) should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
- Preparation of a validation report.

13. STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of Stockland Pty Ltd ("Client") who are the only intended beneficiary of EI's work. The scope of the investigations carried out for the purpose of this report is limited to those agreed with the Client on 1 November 2017.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited assessment of historical site use and current use of the site. Due to the preliminary nature of this assessment, findings are not based on actual samples collected or testing conducted. El has relied upon information provided by the Client and other third parties to prepare this document, some of which could not be verified by El due to the anecdotal or historical nature of the information.

El's professional opinions are reasonable and based on its professional judgment, experience and training.

El's professional opinions contained in this document are subject to modification if additional information is obtained through the data searches that have been initiated with government authorities, but for which the requested information is still pending.

Technical opinions may also be amended in the light of further investigation, observations, or validation testing and analysis during remedial activities. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

REFERENCES

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water *Quality*, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

- Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Bouwer, H. (1978) Groundwater Hydrology, McGraw-Hill Ryerson, Limited, 480 p.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2006) Soil Investigation Levels for Urban Development Sites in NSW, in Guidelines for the NSW Site Auditor Scheme, 2nd Edn., NSW Dept. of Environment and Conservation, DEC 2006/121, April 2006.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DECCW (2009) *Waste Classification Guidelines, Department of Environment*, Climate Change and Water, New South Wales, DECCW 2009/806, December 2009.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- EIS (2017). Waste Classification Assessment Proposed Residential Development 1 Murray Rose Avenue, Sydney Olympic Park, NSW. Project No. E30808Klet-WC, dated 13 October 2017.
- EPA (2014) Technical Note: Investigation of Service Station Site Environment Protection Authority of New South Wales, EPA 2014/0315, April 2014.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- J&K (2017). Report to Austino Properties on Geotechnical Investigation for Proposed Residential Development at 1 Murray Rose Avenue, Sydney Olympic Park, NSW. Project No. 30808YFrpt, dated 9 October 2017; and
- McWhorter, D.B. and Sunada, D.K., (1977) *Ground-water Hydrology and Hydraulics, Water Resources Publications*, LLC. 304p.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Prospect Parramatta Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) *Guidelines for the Use of Acid Sulfate Soil Risk Maps*, Department of Land and Water Conservation, Sydney, Second Edition.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk

assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.

- OEH (2017) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

A. C. M.	
ACM	Asbestos-containing materials Acid sulfate soils
ASS	
ANZECC ARMCANZ	Australian and New Zealand Environment Conservation Council Agriculture and Resource Management Council of Australia and New Zealand
	с с
B(α)P BH	Benzo(α)Pyrene (a PAH compound), - B(α)P TEQ Toxicity Equivalent Quotient Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
200	Chain of Custody
cVOCs	Chlorinated Volatile Organic Compounds (a sub-set of the VOC analysis suite)
DEC DECC	Department of Environment and Conservation, NSW (see OEH)
	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DO	Dissolved Oxygen
DP	Deposited Plan
EC	Electrical Conductivity
Eh	Redox potential
EPA	Environment Protection Authority
EMP	Environmental Management Plan
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
	Light, non-aqueous phase liquid (also referred to as PSH)
	Dense, non-aqueous phase liquid
EIL	Ecological Investigation Level
ESL	Ecological Screening Level
m m ALID	Metres
m AHD	Metres Australian Height Datum
m BGL	Metres Below Ground Level
mg/m ³	Milligrams per cubic metre
mg/L	Milligrams per litre
µg/L	Micrograms per litre
mV	Millivolts
MW	Monitoring well
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PAHs	Polycyclic Aromatic Hydrocarbons
рН рец	Measure of the acidity or basicity of an aqueous solution
PSH	Phase-separated hydrocarbons (also referred to as LNAPL)
PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control

RAP	Remediation Action Plan
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TDS	Total dissolved solids (a measure of water salinity)
TCLP	Toxicity Characteristics Leaching Procedure
TPH	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UCL	Upper Confidence Limit of the mean
USEPA	United States Environmental Protection Agency
UPSS	Underground Petroleum Storage System
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

FIGURES

Ph (02) 9516 0722 Fax (02) 9518 5088

Not To Scale: Scale

Site Locality Plan

Project: E23602.E02

Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

Sampling Location Plan

30-11-17

Date:

Project: E23602.E02

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

TABLES

910.6949 Pm 01.06, Pm 01.06, Pm 0.06, Pm 0.07, Pm 0.	- Summary of Soil Analytical resul																											E23602 -	oyuney o
Image: state Image: state <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Heavy Meta</th><th>lls</th><th></th><th></th><th></th><th></th><th></th><th>PAHs</th><th></th><th></th><th></th><th>ВТ</th><th>EX</th><th></th><th></th><th>TI</th><th>RH</th><th></th><th></th><th></th><th>PCBs</th></th<>									Heavy Meta	lls						PAHs				ВТ	EX			TI	RH				PCBs
No No <th< th=""><th>Sample ID</th><th>Material</th><th>Date</th><th>PID Reading</th><th>As</th><th>Cd</th><th>Cr</th><th>Cu</th><th>РЬ</th><th>Hg</th><th>Ni</th><th></th><th>Zn</th><th></th><th>Benzo(α)pyrene</th><th>TCLP_Benzo(α)pyrene (mg/L)</th><th>(NEPM/WHO</th><th>Naphthalene</th><th>Benzene</th><th>Toluene</th><th>Ethylbenzene</th><th>Total Xylenes</th><th>F1</th><th>F2</th><th>F3</th><th>F4</th><th>Total OCPs</th><th>Total OPPs</th><th>Total</th></th<>	Sample ID	Material	Date	PID Reading	As	Cd	Cr	Cu	РЬ	Hg	Ni		Zn		Benzo(α)pyrene	TCLP_Benzo(α)pyrene (mg/L)	(NEPM/WHO	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	Total OCPs	Total OPPs	Total
BE 1 M BE 3 M </td <td>EIS (2017)</td> <td></td> <td>-</td> <td></td>	EIS (2017)																-												
B B	-	Fill		-	4	LPQL	4	4	3	LPQL	3	NA	10	LPQL	LPQL	NA	LPQL	<0.1	LPQL	LPQL	LPQL	LPQL	<25	<50	<100	<100	LPQL	LPQL	LPQL
rb rb<					-																								
matrix											-																		
1 1 1 1 0																													
etc f lot lot <thlot< th=""> <thlot< th=""> <thlot< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlot<></thlot<></thlot<>																													
State State <th< td=""><td></td><td>Fill</td><td>04-09-17</td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		Fill	04-09-17		5								-																
Dist Dis Dist Dist <	BH6_0.6-0.8	Fill	04-09-17	-	26	LPQL	17	20	33	LPQL	5	NA	40	3.2	2.2	< 0.001	22	<0.1	LPQL	LPQL	LPQL	LPQL	<25	<50	<100	<100	LPQL	LPQL	LPQL
BAS BA BA <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td>LPQL</td><td>15</td><td>35</td><td>23</td><td>LPQL</td><td>2</td><td>NA</td><td>22</td><td>LPQL</td><td>LPQL</td><td>NA</td><td>LPQL</td><td><0.1</td><td>LPQL</td><td>LPQL</td><td>LPQL</td><td>LPQL</td><td><25</td><td><50</td><td><100</td><td><100</td><td>NA</td><td>NA</td><td>NA</td></t<>				-		LPQL	15	35	23	LPQL	2	NA	22	LPQL	LPQL	NA	LPQL	<0.1	LPQL	LPQL	LPQL	LPQL	<25	<50	<100	<100	NA	NA	NA
ALE A				-	-																								
math																													
State																													
mm mod m		FIII	04-09-17	-	4	LPQL	1/	36	21	LPQL	4	NA	1/	LPQL	LPQL	NA	LPQL	SU.1	LPQL	LPQL	LPQL	LPQL	~25	~50	<100	<100	An	INA	AVI
Set 0.000 (s) N <		Fill	07-11-17	2.3	8	< 0.3	23	26	42	< 0.05	11	NA	75	0.8	0.5	NA	4.5	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1
mp dial <					-					0.00																			
Pick Pick Pick Pick Pick Pick Pick Pick															8.9			0.1	<0.1	<0.1	<0.1				330	<120	<1		<1
mini 0333 rig obj obj< obj< </td <td>BH103M_0.2-0.3</td> <td>Fill</td> <td>06-11-17</td> <td>5.3</td> <td>20</td> <td>< 0.3</td> <td>14</td> <td>22</td> <td>27</td> <td>< 0.05</td> <td>7.6</td> <td>NA</td> <td>100</td> <td>10</td> <td>7.0</td> <td>NA</td> <td>56</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td>< 0.3</td> <td><25</td> <td><25</td> <td>380</td> <td><120</td> <td><1</td> <td><1.7</td> <td><1</td>	BH103M_0.2-0.3	Fill	06-11-17	5.3	20	< 0.3	14	22	27	< 0.05	7.6	NA	100	10	7.0	NA	56	0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	380	<120	<1	<1.7	<1
app fp fp<								-																					
amp bit																													
arr m <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td>								-	-																				
Implicitation is																													
mm <td></td>																													
image: bit is bit bit is bit bit is bit bit is bit is bit bit is bit is bit is bit																													
Berlow Fit Model of a bit of a			06-11-17	3.8			-		-											<0.1									
methodfield </td <td></td> <td>Fill</td> <td>06-11-17</td> <td></td> <td>7</td> <td></td> <td>11</td> <td></td> <td>21</td> <td>< 0.05</td> <td>20</td> <td>NA</td> <td></td> <td>< 0.3</td> <td><0.1</td> <td>NA</td> <td><0.8</td> <td>< 0.1</td> <td><0.1</td> <td><0.1</td> <td>< 0.1</td> <td>< 0.3</td> <td></td> <td></td> <td><90</td> <td><120</td> <td><1</td> <td><1.7</td> <td><1</td>		Fill	06-11-17		7		11		21	< 0.05	20	NA		< 0.3	<0.1	NA	<0.8	< 0.1	<0.1	<0.1	< 0.1	< 0.3			<90	<120	<1	<1.7	<1
Bit R3 The Pit Pi	BH110_0.2-0.3	Fill	06-11-17	7.7	<3	< 0.3	7.9	38	12	< 0.05	52	0.072	84	<0.3	<0.1	NA	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1
Here Here <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.05</td><td></td><td></td><td></td><td></td><td></td><td>NA</td><td></td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td>< 0.3</td><td><25</td><td><25</td><td><90</td><td><120</td><td><1</td><td><1.7</td><td><1</td></th<>										< 0.05						NA		<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1
Harman Condition Harman Conditin Conditin Condition Harman Condition		Fill	07-11-17	1.9	23	0.3	16	26	27	<0.05	4.4	NA	57	0.8	0.6	NA	4.4	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1
New bit is into into into into into into into into	Statistical Analysis	Maximum Concentration			90	14	30	53	52	<0.05	52.0	NA	200	13.0	89	NΑ	88.0	0.3	<0.1	<0.1	<0.1	<0.3	<25	39	480	<120	<1	<17	<1
BALLAL B																													
Bit del del for constrained and singly into a constrained and singly interm sinterestimate a constrained and singly interm s		95% UCL			NA	NA	NA	NA	NA	NA	18.30	NA	NA	7.389	4.997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Berlow Name OP-147 T <td>ils El Australia (Current Investigation</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>T</td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>r</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ils El Australia (Current Investigation		1	1		1	T		-		1		1	r	1	1	1			1	1			1					
Bit																													
BHORD										0.00												0.0							
BHI0 Marai Obtain S2 4 0.2 12 0.2 12 0.2																													
Bit 10:1-14 Nature Off-17 7.0 6 0.3 8.0 0.1					-																								
Bit11 2-23 Name 071-17 0. 0. 0. 0. 0.0 <t< td=""><td></td><td>Natural</td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td>< 0.05</td><td></td><td></td><td></td><td></td><td><0.1</td><td>NA</td><td><0.8</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td></td><td></td><td></td><td><90</td><td></td><td></td><td>NA</td><td>NA</td></t<>		Natural			5					< 0.05					<0.1	NA	<0.8	<0.1	<0.1	<0.1	<0.1				<90			NA	NA
Hill 6 Assidentify for for<					8											NA		<0.1	<0.1	<0.1	<0.1				<90				
All best best best best best best best best												SILs	a				-												
HL C - Renotant D <thd< th=""> D D</thd<>		HIL B - Residential			500	150		30,000	1,200	120	1,200		60,000	4	NR		400					NR					NF	۲	1
Image: Note CPUS in Control (CDU in COUND I					200			47.000	(00		4 000						000					110							
H8L C- Auge Copen Spaces Image: Field Copen Spaces Source depths (1 m is < 4 m. GAL)		HIL C - Recreational			300	90	Cr(VI)	17,000	000	80	1,200		30,000	3	NK		300					NR					INF	¢.	I
Solitability classification -Same depine of the Value -Same depine depine of the Value -Sa																													
Source depths (nm) N										1		- /																	
HSL D- Commercial / Industrial Solit exture classification -Sand Image: Commercial / Industrial Solit exture classification -Sand Source depths (m to <1 m. B(L). Source depths (m to <1 m. B(L). NL 3 NL NL NL 30 NL		Soli texture classification - Sa	inu																										
Since desplication -Same displication -Same di																													
Surre depths (4 m+) NL NL <th< td=""><td></td><td>HSL D - Commercial / Indust</td><td>trial</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Source dep</td><td>oths (1 m to</td><td><2 m. BGL)</td><td></td><td></td><td></td><td></td><td></td><td>NL</td><td>3</td><td>NL</td><td>NL</td><td></td><td></td><td>NL</td><td></td><td></td><td></td><td></td><td></td></th<>		HSL D - Commercial / Indust	trial							Source dep	oths (1 m to	<2 m. BGL)						NL	3	NL	NL			NL					
Els / Els - urban residential and public open space ² 100 NR 200 NR 0.7 NR NR 170 50 85 70 100 120* 300 2.00 180* 200 100*<		Soil texture classification -Sa	and						-				-																
LB / ESLS - itema residential angloid open space* 100 NR Org 100 NR NR NR NR 100 100 100 2800 100 2800 100 2800 100 2800 100 100 100 2800 100 2800 100 2800 100 2800 100 2800 100 2800 100 2800 100 2800 100 2800 100 2800 100 2800 100 2800 100 100 2800 100 1000 2800 1000 1000 2800 1000 1000 2800 1000 1000 2800 1000 1000 2800 10000 1000 1000							005			Sour	ce depths (4 m+)	a					NL		NL			NL	NL					
Carse grained soil texture Vite					100	NR		90	1,260	NR	35		205	NR	0.7	NR	NR	170	50	85	70	105	180 *	120 *	300	2,800	180		
Colaries granted sol texture	Management																						700	1,000	3,500	10,000			
Bonded ACM (www) Bonded ACM (www) <t< td=""><td>Ash</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Ash																												
Bandled ACM (%u/w) Bit is in the Absence (%u/w) B		Bonded ACM (%w/w)																											
Abselses contamination HSL for Non Bonded / Friable Abselses (%wi/w) CT1 (mg/kg) 100 20 100 4 400 0.8 0.8 0.0 1.00 2.0 1.00 1.00 2.0 1.00 1.00 2.0 1.00 1.00 2.0 1.00 1.00 2.0 1.00 1.00 2.0 1.00 1.00 1.00 1.00 1.00 2.0 1.00 1.00 1.00 1.00 1.00 1.00 <th< td=""><td>Asbestos</td><td></td><td>ercial / Industrial</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Asbestos		ercial / Industrial																										
NSW EPA 2014 ² General Solid Waste CT1 (mg/kg) 100 20 100 4 400 $I = 0$ $I =$. ,																											
NSW EPA 2014 ² General Solid Waste TCLP1 (mg/L) / SCC1 (mg/kg) 50.750 10.100 5/1.500 2/1.050 0.01 NA / 200 0.5.718 14.4.751 30.1.080 50.1.000 NA / <50 NSW EPA 2014 ³ General Solid Waste CT2 (mg/kg) 50.750 1.0.100 5/1.500 0.2.7.050 0.0.1 NA / 200 0.5.718 14.4.7518 30.1.0.80 50.1.0.00 NA / <50	Asbestos conta	mination HSL for Non Bonded / F	-riable Asbestos (%w/w)																										
General Solid Waste TCLP1 (mg/L) / SCC1 (mg/kg) 50./ 50 1.0 / 100 5/1,500 0.2 / 50 2 / 1.050 Image: Constraint of the state of th	NOW EDA 2011	2	CT1	(mg/kg)	100	20	100		100	4		40			0	.8	200		10	288	600	1,000					<5	0	<50
NSW EPA 2014 ³ Restricted Solid Waste CT2 (mg/kg) 50,500 10,100 51,100 52,100 22/1,050 0.04/10 NA / 200 0.5/18 14.4/58 30/1,080 50/1,800 NA / 450 NA / 450																													
NSW EPA 2014 ² Restricted Solid Waste DC (DC (mch)) DC (mch) DC (TCLP1 (mg/L) / SCC1 (mg/kg)	5.0 / 500	1.0 / 100	5 / 1,900	V	5 / 1,500	0.2 / 50	2/	1,050			0.04	/ 10	NA / 200		0.5 / 18	14.4 / 518	30 / 1,080	50 / 1,800					NA/	<50	NA / <50
NSW EPA 2014 *		3	CT2	(mg/kg)	400	80	400		400	16	1	160			3.2	3.2	800		40	1,152	2,400	4,000						NA	
								ł	<u> </u>																				
	10001000 0010 00		TCLP2 (mg/L) / SCC2 (mg/kg)	20 / 2,000	4 / 400	20 / 7,600	¥/////////////////////////////////////	20 / 6,000	0.8 / 200	8/	4,200	VIIIIIIIII		0.16/23	0.16/23	NA / 800		2/72	2.072	120 / 4,320	200 / 7,200						NA / <50	

Notes:

HIL B HSL D NA NC ND NL NR

2 F1 F2

F3 F4

All results are recorded in mg/kg (unless otherwise stated)

Highlighted values indicates concentration exceeds Human Health Based Soil Criteria (HIL B or HIL C) Highlighted values indicates concentration exceeds EILs/ESLs Highlighted values indicates concentration exceeds EILs/ESLs and NSW EPA (2014) Waste Criteria Highlighted indicates NEPM 2013 criteria exceeded OR NSW EPA (2014) waste criteria met Highinghied indicates NEPH 2013 them acceeded UK NSW EPH (2014) wate criteria met NEPC 1999 Amendmen 2013 HSL B Health Based Issue applicable for residential expoure settings with minimal opportunities for garden soil access. NEPC 1999 Amendmen 2013 HSL D' Health Based Screening Levels based on vapour intrusion values applicable for commercial / industrial settings. Not Analysed is the sample was not analysed. Not claculated 'Not detected' Le all concentrations of the compounds within the analyte group were found to be below the laboratory limits of detection. Not Limiting - The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical. Not current published criterion. ESLs are of low reliability except where indicated by ' which indicates that the ESL is of moderate reliability. Strata was a mix of sand and day. Therefore soil values for the more conservative matrix, sand, was applied (coarse grained). As no physiochemical properties were analysed the most conservative values were adopted for ELLs and ESLs. To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction. (>C16-C34) (>C16-C34)

pic Park

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

APPENDIX A PROPOSED SKETCH PLANS

200mn

100mm

Scale @ A3

0

1:750

300mm

MIX AND EXTENT OF PARKING AMENDED ISSUED FOR PRELIMINARY REVIEW AND COMMENT SAVED FROM SCHEWE A (1) MURRAY ROSE AVE REDUCED TO 6-8 STOREY) ISSUED FOR REVIEW AND COMMENT FOLLOWING MEETING WITH AUSTINO, NOTE ADDED TO GBA ISSUED FOR REVIEW в 21/06/2017 Printed Rev F 27/09/2017 5:35:28 PM

27/09/2017 27/09/2017 25/05/2017 23/06/2017 22/06/2017

c

Drawing No

2

1 : 500

Scale @ A3

100mm

2 MURRAY ROSE AVENUE MASS SECTION

	E D C B	25/05/2017 23/06/2017 22/06/2017 21/06/2017	ISSUED FOR PRELIMINARY REVIEW AND COM SAVED FROM SCHEME A (1 MURRAY ROSE A) ISSUED FOR REVIEW AND COMMENT FOLLOW AUSTINO_NOTE ADDED TO GBA ISSUED FOR REVIEW	/E REDUCED TO 6-8 STOREY
Drawing No	Pri	inted		Rev
B104		27/09/2	2017 5:35:42 PM	F

L 48.000	01_PLANT RL48.100
	01_LEVEL 12_RL44.800
	01_LEVEL 11_RL41.700
	_01_LEVEL 10_RL38.600
	_01_LEVEL 09_RL35.500
	_01_LEVEL 08_RL32.400
	01_LEVEL 07_RL29.150
	_01_LEVEL 06 RL25.900
ROSE IAL	01_LEVEL 05 RL22.800
	01_LEVEL 04_RL19.700
	01_LEVEL 03 RL16.600
	_01_LEVEL 02_RL13.500
01_L	VEL 01 GROUND RL9.800
	01_LEVEL B2_RL3.600
	AHD RL0.000

Design/07 Business Development/02 Projects/Homebush_1 Murray Rose mebush_1-5 Murray Rose Avenue_Scheme C_rev F_not yet issued.rvt | _{200mm}

APPENDIX B NRAtlas Groundwater Bore Search

NSW Office of Water Work Summary

GW102550

Licence: 10BL157703

Licence Status: ACTIVE

Authorised MONITORING BORE Purpose(s): Intended MONITORING BORE Purpose(s):

Work Type: Bore Work Status: Construct.Method: Owner Type:

Commenced Date: Completion Date: 01/01/1996 Final Depth: 4.00 m Drilled Depth:

Contractor Name: Macquarie Drilling Driller: Assistant Driller:

Property: N/A

GWMA: -GW Zone: - Standing Water 1.800 Level: Salinity: Yield:

Site Details

Site Chosen By:

 County
 Parish
 Cadastre

 Form A:
 .
 .

 Licensed: CUMBERLAND
 CONCORD
 Whole Lot //

 Region: 10 - Sydney
 CMA
 Kanal

 South Coast
 Map:
 Kanal

River Basin: - Unknown	Grid Zone:	Scale:
Area/District:		
Elevation: 0.00 m (A.H.D.)	Northing: 6253109.0	Latitude: 33�50'50.3"S
Elevation Unknown	Easting: 322033.0	Longitude: 151 � 04'35.2"E
Source:		
GS Map: -	MGA 0	Coordinate Unknown
	Zone:	Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From		Outside		Interval	Details
				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	4.00	0			Unknown
1	1	Casing	P.V.C.	0.00	0.00	50			

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
							(m)		

Geologists Log

Drillers Log

From To Thickness Drillers Description	Geological	Comments	
(m) (m) (m)	Material		

Remarks

01/01/1996: Form A Remarks: DATA FROM AG APPLICATION ONLY

*** End of GW102550 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW102553

Licence: 10BL157703

Licence Status: ACTIVE

Authorised MONITORING BORE Purpose(s): Intended MONITORING BORE Purpose(s):

Work Type: Bore Work Status: Construct.Method: Owner Type:

Commenced Date: Completion Date: 01/01/1996

Contractor Name: Driller: Assistant Driller:

Property: N/A

GWMA: -GW Zone: -

Drilled Depth:

Final Depth: 4.00 m

Standing Water 1.830 Level: Salinity: Yield:

Site Details

Site Chosen By:

	County	Parish	Cadastre
	Form A:		
	Licensed: CUMBERLAND	CONCORD	Whole Lot //
Region: 10 - Sydney	СМА		
South Coast	Map:		

River Basin: - Unknown	Grid Zone:	Scale:
Area/District:		
Elevation: 0.00 m (A.H.D.)	Northing: 6253267.0	Latitude: 33�50'45.3"S
Elevation Unknown	Easting: 322210.0	Longitude: 151 � 04'42.2"E
Source:		
GS Map: -	MGA 0	Coordinate Unknown
	Zone:	Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From		Outside		Interval	Details
				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	4.00	0			Unknown
1	1	Casing	P.V.C.	0.00	0.00	50			

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
							(m)		

Geologists Log

Drillers Log

From To Thickness Drillers Description	Geological	Comments	
(m) (m) (m)	Material		

Remarks

01/01/1996: Form A Remarks: DATA FROM AG APPLICATION ONLY

*** End of GW102553 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW102554

Licence: 10BL157703

Licence Status: ACTIVE

Authorised MONITORING BORE Purpose(s): Intended MONITORING BORE Purpose(s):

Work Type: Bore Work Status: Construct.Method: Owner Type:

Commenced Date: Completion Date: 01/01/1996 Final Depth: 4.00 m Drilled Depth:

Contractor Name: Macquarie Drilling Driller: Assistant Driller:

Property: N/A

GWMA: -GW Zone: - Standing Water 1.830 Level: Salinity: Yield:

Site Details

Site Chosen By:

		County	Parish	Cadastre
	Form A:	CUMBERLAND	CONCORD	Whole Lat //
	Licensed:	CUMBERLAND	CONCORD	whole Lot //
Region: 10 - Sydney	CMA			
South Coast	Map:			

River Basin: - Unknown	Grid Zone:	Scale:
Area/District:		
Elevation: 0.00 m (A.H.D.)	Northing: 6253239.0	Latitude: 33�50'46.3"S
Elevation Unknown	Easting: 322365.0	Longitude: 151 � 04'48.2"E
Source:		
GS Map: -	MGA 0	Coordinate Unknown
	Zone:	Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From		Outside		Interval	Details
				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	4.00	0			Unknown
1	1	Casing	P.V.C.	0.00	0.00	50			

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
							(m)		

Geologists Log

Drillers Log

From To	Thickness Drillers Description	Geological	Comments
(m) (m)	(m)	Material	

Remarks

01/01/1996: Form A Remarks: DATA FROM AG APPLICATION ONLY

*** End of GW102554 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW102555

Licence: 10BL157703

Licence Status: ACTIVE

Authorised MONITORING BORE Purpose(s): Intended MONITORING BORE Purpose(s):

Work Type: Bore Work Status: Construct.Method: Owner Type:

Commenced Date: Completion Date: 01/01/1996 Final Depth: 4.00 m Drilled Depth:

Contractor Name: Macquarie Drilling Driller: Assistant Driller:

Property: N/A

GWMA: -GW Zone: - Standing Water 1.830 Level: Salinity: Yield:

Site Details

Site Chosen By:

	County	Parish	Cadastre
	Form A:		
	Licensed: CUMBERLAND	CONCORD	Whole Lot //
Region: 10 - Sydney	CMA		
South Coast	Map:		
River Basin: - Unknown	Grid Zone:	Scale:	
----------------------------	---------------------	-----------------------------------	
Area/District:			
Elevation: 0.00 m (A.H.D.)	Northing: 6253143.0	Latitude: 33�50'49.3"S	
Elevation Unknown	Easting: 322187.0	Longitude: 151 � 04'41.2"E	
Source:			
GS Map: -	MGA 0	Coordinate Unknown	
	Zone:	Source:	

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From		Outside		Interval	Details
				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	4.00	0			Unknown
1	1	Casing	P.V.C.	0.00	0.00	50			

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
							(m)		

Geologists Log

Drillers Log

From To Thickness Drillers Description	Geological	Comments	
(m) (m) (m)	Material		

Remarks

01/01/1996: Form A Remarks: DATA FROM AG APPLICATION ONLY

*** End of GW102555 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

APPENDIX C Site Photographs

Photograph C1. Entrance to site located on the south boundary.

Photograph C2. View from the south west of the site to the fence located on the east.

Photograph C3. Pavement found at the site.

Photograph C4. Shrubs and trees found at the site.

Photograph C5. Sites surrounding the site on the south/south west.

Photograph C6. View from the site to the surrounding area on the south east.

Photograph C7. View from the site to the surrounding area on the west.

Photograph C8. View from the site to the surrounding area on the north.

APPENDIX D

Historical Property Titles Search

&

SafeWork NSW Database Search

Report Generated 1:25:30 PM, 3 November, 2017 Copyright © Land and Property Information ABN: 23 519 493 925

This information is provided as a searching aid only. While every endeavour is made to ensure the current cadastral pattern is accurately reflected, the Registrar General cannot guarantee the information provided. For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps.

Page 1 of 19

/seg:1 08:59 -2017 /Prt:01-Nov /Pgs:ALL ¥o /Sts:sc. /Rev:14-Jul-2014 P4 1185060 DP /Sz

벙 N :bes/ 59 :80 /Prt:01-Nov-2017 /Pgs:ALL /Sts:SC.0K /Rev:14-Jul-2014 84 1185060 DP 11 /Src

08:59 /Prt:01-Nov-2017 /Fgs:ALL /Rev:14-Jul-2014 /Sts:SC.OK

Å /seg:4 08:59 /Prt:01-Nov-2017 /Pgs:ALL /Sts:SC.OK /Rev:14-Jul-2014 1185060 P R621933 /Doc:DP olympic park /Sr

					DIAGE	RAMS AND SHORT L	INES TABLE FOR	SHEET 4			
					0		SEE	SHEET 4 FOR I	ASEMENTS D	ESCRIPTION	
	SHC	ORT LINE:	S TABLE FO	R SHT 4					[RAM 1-NTS M SHT.4)
									-		
Number	Bearing	Distance	23		365						ſ
<u></u>	63°54'50"	1 2 4 5	24		005		DIAGRAM B 1 : 250				0
2	63°57′35″	1245	25		.625		(FROM SHT.4)		0		(v)
3	153°51'35"	3 59	26		0.6		1 11		100	(E7)	()
4	243°57'35"	1.255	27	63°23'10" 0	595				Cu	(E7)	a
5	333*57'20"	3 355	28		585		(16)(E61-				<u></u>
6	333°57'20"	6	29		0.6				(3	(E7)	PT 5 K
7	333*59'10"	6 86	30	333"49'55"	09	L17(E5)	[14 4]				
8	333°59'10"	B 62	31		585	L16 (E6)			16) (E7)	(
9	63°40'35"	3.485	32	334°17'40" 1	485	(L18)(E4)	(E5)(j)				
10	154°06'50"	5.45	33	64°37'30=	0.59	(ES)		PT 5		(E7)	Þ
11	243*58'05"	1.27	34	333*57*20** 1	265	L16 (E6)	#	(E4) (L18)	- 1.		
12	154°09'	2 9 3	35	333°57'20"	1.14	161	(E4) (E5) (17)	(ES) (17)			
13	244°05'15	8 355	36	154°00'25"	1.14					DIAGR	AM 2-NTS
14	153*59'10"	1.205	37	154°00'25" 1	505	A 1920		(ES)(17)		(FRO	M SHT.4)
15	153°59'10"	1.5	38	154°00'25"	126	(17)(E5)	(E5)[1]		r r		
16	153°59'10"	1.195	39	244°05'40"	1.58	(16)(E6)	[14,4]	1	Î		i i
17	63*59'10 "	8.37	40	243°57'20" 5	365		55767A.		1	(E7)	(23)
18	333*20'10"	1 195	41	333°57'20" (0.24		PT7	- (E6)[16]		(35).	(E7) (26)
19	333°44'25"	1.5	42	63°57'20" 5	365					©⊢ –	(E7)(36)
20	334°08'45"	1,19	43	333°54'50''	15		1		1	(3) (2) (2)) (E7) (37)
21	243°59'10"	8 35	44	63°\$4'50″	15				6		
22	243°59'10"	8.36	45	63°54"50"	0 5					()) (?)	30 30
			46	153°54'50''	15					D D P1	
			47	243°54'50"	0 5				0	m L Co P	5
			48	333°57′20"	0.6					ET CO (ET	0
			49	243°54'50"	1 26						
			50	243°54'50″ 4	895				1 P	-(23)	701
			51	333°54'50"	0.6				(5)		1 4
			nt.								100
										(6 775)	(138) (15)
										(+B)	6
				Surveyor: Jau Date of Surv Surveyor's F 2012M7100(1895 2013M7100(552)	'ey: 12-04-2013 Ref: 115224-18 (G)	PLAN OF SUBDIVI 88 IN DP870992, 7 812 IN DP1012563	0 IN DP1134933,	Subdivision N	NEY OLYMPIC PARK	Registered:	DP118506

/sed:6 08:59 /Prt:01-Nov-2017 /Pgs:ALL **N** /Sta:SC. /Rev:14-Jul-2014 84

ទ

Ref

Req:R621933 /Doc:DP 1185060 P /Rev:14-Jul-2014 /Sts:SC.OK /Pgs:ALL /Prt:01-Nov-2017 08:59 /Seq:8 of 10 Ref:olympic park /Src:M UP1100000

PLAN FORM 6 (2013) WARNING: Creasing or	folding will lead to rejection ePlan				
DEPOSITED PLAN ADMINISTRATION SHEET Sheet 1 of 3 sheet(
Office Use Only Registered: 10.7.2014 Title System: TORRENS Purpose: SUBDIVISION	Office Use Only DP1185060				
PLAN OF SUBDIVISION OF LOTS 88 IN DP 870992, 70 IN DP 1134933, 812 IN DP 1012563 AND 1 IN DP 1122970	LGA: AUBURN Locality: SYDNEY OLYMPIC PARK Parish: CONCORD County: CUMBERLAND				
Crown Lands NSW/Western Lands Office Approval I,	Survey Certificate I, Jacek Idzikowski of Cardno Hard & Forester PO Box 175 Rockdale NSW 2216 a surveyor registered under the Surveying and Spatial Information Act 2002, certify that: *(a) The land shown in the plan was surveyed in accordance with the Surveying and Spatial Information Regulation 2012, is accurate and the survey was completed on *(b) The part of the land shown in the plan (*being/*excluding ^ LOT 10) was surveyed in accordance with the Surveying and Spatial Information Regulation 2012, is accurate and the survey was completed on, 12 - 04 - 2013, the part not surveyed was compiled in accordance with that Regulation. *(e) The land shown in this plan was compiled in accordance with the Surveying and Spatial Information Regulation 2012. Signature: Datum Line: X - Y Datum Line: X - Y Type: *Urban/*Rural The terrain is *Level-Undulating / *Steep Mountainous. *Strike through if inapplicable. *Specify the land actually surveyed or specify any land shown in the plan that is not the subject of the survey.				
Statements of intention to dedicate public roads create public reserves and drainage reserves, acquire/resume land.	Plans used in the preparation of survey/compilation. DP 870992 DP 855929 DP1134933 DP 818981 DP1012563 DP 1125680 DP 1122970 DP 1130359 DP 1174468 DP 1165076 DP 831539 If space is insufficient continue on PLAN FORM 6A				
Signatures, Seals and Section 88B Statements should appear on PLAN FORM 6A	Surveyor's Reference: 115224-18 (D-) (Gr)				

 Req:R621933 /Doc:DP 1185060 P /Rev:14-Jul-2014 /Sts:SC.0K /Pgs:ALL /Prt:01-Nov-2017 08:59 /Seq:9 of 10

 Ref:olympic park /Src:M

PLAN FORM 6A (2012) WARNING: Creasing or	folding will lead to rejection ePlan
DEPOSITED PLAN A	DMINISTRATION SHEET Sheet 2 of 3 sheet(s)
Office Use Only Registered: 10.7.2014	
PLAN OF SUBDIVISION OF LOTS	DP1185060
88 IN DP 870992, 70 IN DP 1134933,	
812 IN DP 1012563 AND 1 IN DP 1122970	 This sheet is for the provision of the following information as required: A schedule of lots and addresses - See 60(c) SSI Regulation 201. Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919
Subdivision Certificate number: 01/14	Signatures and seals- see 195D Conveyancing Act 1919
Date of Endorsement: 27.5.2014	Any information which cannot fit in the appropriate panel of sheet 1 of the administration sheets.
Pursuant to s.88B of the Conveyancing Act 1919 it is int	
1. Easement for support and road maintenance variable widt	
2. Easement for power supply variable width limited in stratur	m (E2)
3. Right of access variable width limited in stratum (E3)	
4. Easement for electricity and other purposes 3.59 wide limit	
5. Right of carriageway variable width limited in stratum (E5	,
6. Easement for encroaching structures 0.6 wide limited in str	
7. Easement for public pedestrian access variable width limite	ed in stratum (E7)
8. Easement for drainage of water 1.5 wide (E8)	
SCHEDULE OF LOTS AND ADDRESSESS:	
Lot 1 – 1 Murray Rose Avenue	
Lot 2 – 2 Murray Rose Avenue	
Lot 3 – 3 Murray Rose Avenue	
ot 4 – 4 Murray Rose Avenue	×.
ot 5 – 5 Murray Rose Avenue	17
ots 6-10 (inclusive) – street address not assigned by the Aut	thority
See sheet 3 for seals and signatures	
	2
If space is insufficient use a	additional annexure sheet
urveyor's Reference: 115224-18 (D) (G)	

 \mathbf{k}

141

NUMBER OF STREET

Req:R621933 /Doc:DP 1185060 P /Rev:14-Jul-2014 /Sts:SC.OK /Pgs:ALL /Prt:01-Nov-2017 08:59 /Seq:10 of 10 Ref:olympic park /Src:M UPT100000

PLAN FORM 6A (2012) WARNING: Creasing or	folding will lead to rejection ePlan
DEPOSITED PLAN A	DMINISTRATION SHEET Sheet 3 of 3 sheet(s)
Office Use Only Registered: 10.7.2014	/ Office Use Only
PLAN OF SUBDIVISION OF LOTS	DP1185060
88 IN DP 870992, 70 IN DP 1134933,	
812 IN DP 1012563 AND 1 IN DP 1122970 Subdivision Certificate number: 01/14 Date of Endorsement: 27.5.2014	 This sheet is for the provision of the following information as required: A schedule of lots and addresses - See 60(c) SSI Regulation 2012 Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919 Signatures and seals- see 195D Conveyancing Act 1919 Any information which cannot fit in the appropriate panel of sheet 1 of the administration sheets.
SIGNED BY ME NICHOLAS HUBBLE AS DELEGATE OF THE SYDNEY OLYMPIC AUTHORITY AND I HEREBY DECLARE THAT I HAVE NO NOTICE OF THE REVOCATION OF SUCH DELEGATION IN THE PRESENCE OF: SUCHATURE OF WITNESS SOPA BY ITS DELEGATE BENJAMIN WOODS (print name of Witness)	
Executed and delivered as a Deed in Sydney Each attorney executing this Deed states that he or she has of attorney. Signed Sealed and Delivered for GPT RE Limited by its attorneys under power of attorney dated 16 February 2011 registered book 4607 no. 898	no notice of revocation or suspension of his or her power
in the presence of: Witness Signature Genevieve Flynn Print Name LEVEL 51 MLC CENTRE 19 MARTIN PLACE SYDNEY NSW 2000 Attorney Signature Lisa Bau Lisa Bau	SIGNED SEALED AND DELIVERED for and on behalf of Ausgrid by TREVOR MARK ARMSTRONG Its duly constituted Attorney pursuant to Power of Attorney registerod Book 4641 No. 639 Book 4641 No. 639 KATHLEEN WILL IAM S STO GEORGE STREET SHENCH NSW 2000
ال space is insufficient use <u>a</u> Surveyor's Reference: 115224-18 (D) (G)	Idditional annexure sheet

BERNING STATISTICS OF BOOM

07/02/2008 LOCALITY AMENDED

DEPOSITED PLAN ADMINISTRATION SHEET Sheet 1 of **1** sheet(s) SIGNATURES, SEALS and STATEMENTS of intention to dedicate OFFICE USE ONLY public roads, to create public reserves, drainage reserves, easements, restrictions on the use of land or positive covenants. DP1122970 SIGNED BY ME ROSS COGGAN AS DELEGATE OF THE NG 6/2/2008 SYDNEY OLYMPIC PARK AUTHORITY AND I HEREBY Registered: DECLARE THAT I HAVE NO NOTICE OF THE REVOCATION OF SUCH DELEGATION IN THE PRESENCE OF: Title System: TORRENS Purpose: PROPOSED ROAD CLOSURE PLAN OF ROAD CLOSURE PURSUANT TO THE PUBLIC ROADS ACT SIGNATURE OF WITNESS SOPA BY ITS DEEGATE PETER G LGA: AUBURN Locality: HOMEBUSH Parish: CONCORD County: CUMBERLAND Surveying Regulation, 2006 Use PLAN FORM 6A I, .PIERRE HARTZENBERG..... for additional certificates, signatures, seals and statements of .HARD & FORESTER CONSULTING SURVEYORS a surveyor registered under the Surveying Act, 2002, certify that the Crown Lands NSW/Western Lands Office Approval survey represented in this plan is accurate, has been made in accordance with the Surveying Regulation, 2006 and was completed on: IV 01108in approving this plan certify (Authonised Officer) that all necessary approvals in regard to the allocation of the land The survey relates to LOT 1 & 2..... shown herein have been given Signature:.... (specify the land actually surveyed or specify any land shown in the Date: plan that is not the subject of the survey) File Number..... Office:.... Subdivision Certificate I certify that the provisions of s.109J of the Environmental Planning and Datum Line: X'-Y CUMALEY Assessment Act 1979 have been satisfied in relation to: Type: Urban/Rural the proposed..... set out herein (insert 'subdivision' or 'new road') Plans used in the preparation of survey/compilation. DP855929 DP818981 DP870992 * Authorised Person/General Manager/Accredited Certifier Consent Authority: ... Date of Endorsemant: Accreditation no: Subdivision Certificate no: File no: (il insufficient space use Plan Form 6A annexure sheet) Delete whichever is inapplicable. SURVEYOR'S REFERENCE: 112681001 REV0 1997M8-COMP

/Prt:01-Nov-2017 05:48 /Seg:2 ALL /Pgs **M** ĕ /Sts -1997 /Rev:01-Sep р Ref:01ympic park /Src:M 70

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION

/Seg:2 34 05: 2017 5 /Prt: ALL ğ 8 N š 1993 ġ /Rev 84 Req:R621309 /Doc:DP 0818981 Ref:olympic park /Src:M

2 坮

/Pgs:ALL /Prt:01-Nov-2017 05:44 /Seq:2 NO. /Sts:SC. /Rev:14-Oct-2014 е /Doc:DP 0774130 park /Src:M Ref:clympic I

4

붱

N

* * *** ···

ä /Sts:OK.OK /Pgs:ALL /Prt:01-Nov-2017 05:41 /Seq:2 Req:R621312 /boc:DP 0263475 P /Rev:20-Jun-1992 Ref:olyumpic park /Src:M

N

loc:DP 0849975 P /Rev:16-Jun-1995 /Sts:OR.OK /Pgs:ALL /Prt:01-Nov-201

m

¥

/Seg:2

05:34

/Pgs : ALL

/Sts:OK.OK

/Rev:16-Jun-1995

0849975 P

InfoTrack An Approved LPI NSW Information Broker

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------1/11/2017 9:10AM

FOLIO: 6/740790

		OLD SYSTEM VOL 6129 FOL 216	
Recorded	Number	Type of Instrument	C.T. Issue
13/3/1987	DP740790	DEPOSITED PLAN	FOLIO CREATED EDITION 1
22/4/1988	X509870	DEPARTMENTAL DEALING	
27/5/1988	X483077	REQUEST	EDITION 2
22/6/1988	DP774130	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

olympic park

PRINTED ON 1/11/2017

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

InfoTrack An Approved LPI NSW Information Broker

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----1/11/2017 9:10AM

FOLIO: 5/774130

First Title(s): OLD SYSTEM Prior Title(s): 6/740790

	Recorded	Number	Type of Instrument	C.T. Issue
	23/6/1988	DP774130	DEPOSITED PLAN	FOLIO CREATED EDITION 1
	10/4/1989 10/4/1989	Y27673 Y29 7 91	REQUEST TRANSFER GRANTING EASEMENT	EDITION 2
	3/7/1990 3/7/1990 3/7/1990	Z98397 Z80438 Z80439	DEPARTMENTAL DEALING REQUEST TRANSFER OF LEASE	
	3/7/1990	Z80439 Z80440	TRANSFER OF LEASE	EDITION 3
	3/3/1992	E295488	CAVEAT	
	8/4/1992	E377182	CAVEAT	
	3/8/1992	E617299	APPLICATION	
	3/8/1992	DP818981	DEPOSITED PLAN	FOLIO CANCELLED RESIDUE REMAINS
1	7/10/2002	DP1045522	DEPOSITED PLAN	
2	2/11/2002	9148874	DEPARTMENTAL DEALING	FOLIO RESTORED
2	2/11/2002	8971451	REQUEST	FOLIO CANCELLED RESIDUE REMAINS
	6/2/2008	DP1122970	DEPOSITED PLAN	
	26/8/2008	AE170873	DEPARTMENTAL DEALING	
2	28/10/2008 28/10/2008 28/10/2008	AE136428 AE292555 AE292760	REQUEST DEPARTMENTAL DEALING DEPARTMENTAL DEALING	FOLIO CANCELLED FOLIO CANCELLED RESIDUE REMAINS
	12/3/2014	AI435678	DEPARTMENTAL DEALING	
	20/5/2014	AI590976	DEPARTMENTAL DEALING	FOLIO RESTORED
	20/5/2014	AI374369	REQUEST	

END OF PAGE 1 - CONTINUED OVER

olympic park

PRINTED ON 1/11/2017

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----1/11/2017 9:10AM

FOLIO: 5/774130

PAGE 2

17

Recorded	Number	Type of Instrument	C.T. Issue
20/5/2014	AI591058	DEPARTMENTAL DEALING	FOLIO CANCELLED
			RESIDUE REMAINS

*** END OF SEARCH ***

olympic park

PRINTED ON 1/11/2017

InfoTrack an approved NSW Information Broker hereby certifles that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

olympic park	167	8			E 1 7299 B
A A A A A A A A A A A A A A A A A A A	1460 /	APPLICATION		fo	
		AL PROPERTY ACT, 1900 ions for Completion on back o	of form)	\$	12
5 8 5	Torrens Title reference	If Part Only, Dalete Whole and	d Give Detaits	Locatio	
DESCRIPTION DF LAND Note (a)	CERTIFICATE OF TITLE FOLIO IDENTIFIER 5/774130	WHOLE		Homebush	\sim
	Type of Dealing Registered	ri Number	Torrar	s Title Reference	
REGISTERED DEALING Joie (b)				150	- 2
RESENT IEGISTERED ROPRIETOR Iole (C)	HOMEBUSH ABATTOIR CORPORATION			Sul 1	l.
ote (d)		and above described. Devemantioned registered dealing, Ap	plication is hereby made	to record	
					1.8
EW EGISTERED ROPRIETOR(S) ole (0)	HOMEBUSH BAY MINISTERIAL CORPORAT	ION of Homebush Bay		ê	
EGISTERED ROPRIETOR(S)	HOMEBUSH BAY MINISTERIAL CORPORAT as REGISTERED PROPRIETOR of the land above described. Subsemptions register Corporation (Dissolution and Transof assent to the Act on 27 November 1992.	pursuant to Se sfer) Act 1991, Parts	1 and 2 of wh	e Homebush Abat ich commenced o commenced on 1	5 tóir n the date
EGISTERED ROPRIETOR(S) ole (0) ole (1) ole (1)	as REGISTERED PROPRIETOR of the land above described. Excommiliant register Corporation (Dissolution and Trans of assent to the Act on 27 Novembri	pursuant to Se sfer) Act 1991, Parts er, 1991 and the remain 992	1 and 2 of wh	ich commenced o	5 tóir n the date
EGISTERED ROPRIETOR(S) ole (d) ole (l) ole (l) cecution ole (g)	as REGISTERED PROPRIETOR of the land above described. Corporation (Dissolution and Trans of assent to the Act on 27 November 1992. DATE [8 Th Judg , 19 I hareby certify this dealing to be correct for the purposes of 19 Stoned in my presence by the correct for the purposes of 19 Stoned in my presence by the correct for the purposes of 19 Stoned in my presence by the correct for the purposes of 19 Stoned in my presence by the correct for the purposes of 19 Stoned in my presence by the correct for the purposes of 19 Stoned in my presence of 19 Stone of Million and Trans Stone of Million and Tra	pursuant to Se sfer) Act 1991, Parts er, 1991 and the remain 992 the Real Property Act, 1900.	1 and 2 of wh inder of which	ich commenced o commenced on 1	S tóir n the date January,
EGISTERED ROPRIETOR(S) ole (e) ole (d) ole (1) ole (1) cecution ole (g)	as REGISTERED PROPRIETOR of the land above described. Support of the land above described. Support of the Act on 27 November 1992. DATE [87] Jung 1, 15 I hareby certify this dealing to be correct for the purposes of 1 Support in any process by the content for the purposes of 1 Support in any process by the content for the purposes of 1 Support in any process of HOMEBUSH BAY MINISTERIAL CORPORATION was here un affixed in the presence of: Jung 1, 10 MINISTERIAL CORPORATION was here un affixed in the presence of: Jung 1, 10 MINISTERIAL CORPORATION was here un affixed in the presence of: Jung 1, 10	pursuant to Se sfer) Act 1991, Parts er, 1991 and the remain 992 the Real Property Act, 1800. www.to-me. nto	1 and 2 of wh inder of which	ich commenced on 1 commenced on 1 Co	S tóir n the date January,
EGISTERED ROPRIETOR(S) ole (#) ole (1) ole (1)	AREGISTERED PROPRIETOR of the land above described. Supervisions of the land above described. Corporation (Dissolution and Trans of assent to the Act on 27 November 1992. DATE [8 Th Jung , 19 I hareby certify this dealing to be correct for the purposes of 19 Supervisional dealing to be correct for the purpose of 19 Supervisional dealing to be correct for the purpose of 19 Supervisional dealing to be correct for the purpose of 19 Supervisional dealing to be correct for the purpose of 19 Supervisional dealing to be correct for the purpose of 19 Supervisional dealing to be correct for the	pursuant to Se sfer) Act 1991, Parts er, 1991 and the remain 992 the Real Property Act, 1800. www.to-me. nto	1 and 2 of wh inder of which	ich commenced on 1 commenced on 1 Co	S tóir n the date January,
EGISTERED ROPRIETOR(S) ole (e) ole (d) ole (l) ole (l) cecution ole (g) To be completed by Lodging Party Noies (h)	as REGISTERED PROPRIETOR of the land above described. Support of the land above described. Support of the Act on 27 November 1992. DATE [8 Th Jung 12 I hareby certify this dealing to be correct for the purposes of 18 Stand in any presence by the conflicted who is presently the THE COMMON SEAL of HOMEBUSH BAY MINISTERIAL COMPORATION was hereur afflixed by the presence of: Support of the presence of: Support of the presence of: Support of the presence of: Support Of the presence of: Support Support of the support of the Support of the presence of: Support Of the presence of th	pursuant to Se sfer) Act 1991, Parts er, 1991 and the remain 992 the Real Property Act, 1900. The remainder of the remainder	1 and 2 of wh inder of which	ich commenced o commenced on 1 Commenced on 1 Comme	S tóir n the date January,

Req:R637846 /Doc:DL E617299 /Rev:28-May-2010 /Sts:OK.SC /Pgs:ALL /Prt:03-Nov-2017 09:10 /Seq:2 of 5 Ref:olympic park /Src:M

SHAW McDONALD FILM WITH solicitors Shell House 140 Phillip Street Sydney 2000 DX 916 Sydney FAX (02) 232 6482 Telephone (02) 233 1366 Our Reference Your Reference TE:JBC:916705 1 July 1992 The Director of Land Titles, Land Titles Office,

Dear Sir,

Queens Square,

SYDNEY N.S.W. 2000

Re: Homebush Bay Ministerial Corporation

We act for the above Corporation and enclose an Application to record its change of name on Certificate of Title Folio Identifier 5/774130, together with our cheque for \$50.00, being the prescribed fee on lodgment of the Application.

We advise that the Certificate of Title will be produced by Messrs. Freehill, Hollingdale & Page on the lodgment of a Plan of Subdivision of Lot 5 in Deposited Plan 774130 and a Section 88B Instrument.

We enclose a copy of Sections 5 and 6 of the Homebush Abattoir Corporation (Dissolution and Transfer) Act, 1991 and draw your attention to Section 5(3)(a) and 6, in so far as those Sections relate to the absence of a Transfer and an exemption from stamp duty.

Yours faithfully, SHAW McDONALD

Per:

T:T1706/3.jbc

Partners: Timothy Evans LL.B. B.Com. A C.A. Warwick Hart B.A., LL.B. Gary Patterson B.A. LL B. Lance Brennan B.A. LL B. Ralph Fitzgerald B Ec., LL B. Andrew Brown LL M. Public Notary Consultant: Maurice Colreavy LL.B. Associates: David Courtenay B.A. LL.B. Karen Healey B.A. Dlp. Law (S.A.B) Req:R637846 /Doc:DL E617299 /Rev:28-May-2010 /Sts:OK.SC /Pgs:ALL /Prt:03-Nov-2017 09:10 /Seq:3 of 5 Ref:olympic park /Src:M

"transfer" means the transfer of the business undertaking pursuant to section 5 (2).

PART 2-ESTABLISHMENT OF HOMEBUSH BAY MINISTERIAL CORPORATION

Establishment of Homebush Bay Ministerial Corporation

4. (1) There is constituted by this Act a body corporate with the corporate name of the Homebush Bay Ministerial Corporation.

(2) The affairs of the Ministerial Corporation are to be managed by the Minister.

(3) Any act, matter or thing done in the name of, or on behalf of, the Ministerial Corporation by the Minister, or with the authority of the Minister, is taken to have been done by the Ministerial Corporation.

(4) The Ministerial Corporation has the functions conferred or imposed on it by or under this or any other Act.

- (5) The functions of the Ministerial Corporation are:
- (a) to hold on behalf of the Crown, retain, transfer and dispose of assets, rights and liabilities transferred to it under this Act; and
- (b) to acquire, exchange, lease, dispose of and otherwise deal with property; and
- (c) to develop and manage land transferred to it under this Act or otherwise acquired by it; and
- (d) to carry on any activities or business that relate to any of the above or are incidental or ancillary to any of the above, including demanding, collecting and receiving charges, rates and fees.

(6) Without limiting the generality of subsection (5), the Ministerial Corporation may transfer any such assets, rights and liabilities to the Crown or to any person on behalf of the Crown.

PART 3-DISSOLUTION OF HOMEBUSH ABATTOIR CORPORATION AND TRANSFER OF ASSETS ETC.

Dissolution of Homebush Abattoir Corporation and transfer of assets etc.

5. (1) The Homebush Abauoir Corporation is dissolved on 1 January 1992.

Req:R637846 /Doc:DL E617299 /Rev:28-May-2010 /Sts:OK.SC /Pgs:ALL /Prt:03-Nov-2017 09:10 /Seq:4 of 5 Ref:olympic park /Src:M

E.

Homebush Abattoir Corporation (Dissolution and Transfer) 299,

(2) The assets, rights and liabilities (if any) of the Homebush Abattoir Corporation immediately before its dissolution are transferred to the Ministerial Corporation.

- (3) On the transfer the following provisions have effect:
- (a) the assets of the Homebush Abattoir Corporation comprised in the business undertaking vest in the Ministerial Corporation by virtue of this section and without the need for any conveyance, transfer, assignment or assurance:
- (b) the rights and liabilities of the Homebush Abattoir Corporation comprised in the business undertaking become by virtue of this section the rights and liabilities of the Ministerial Corporation;
- (c) all proceedings relating to the business undertaking commenced before the transfer by or against the Homebush Abattoir Corporation and pending immediately before the transfer are taken to be proceedings pending by or against the Ministeria Corporation;
- (d) any act, matter or thing done or omitted to be done in relation to the business undertaking before the transfer by, to or in respect of the Homebush Abattoir Corporation is (to the extent that that act, matter or thing has any force or effect) taken to have been done or omitted by, to or in respect of the Ministerial Corporation;
- (e) a reference in an instrument of any kind to the Homebush Abattour Corporation is to be read as a reference to the Ministerial Corporation.
- (4) The operation of this section is not to be regarded:
- (a) as a breach of contract or confidence or otherwise as a civil wrong; or
- (b) as a breach of any contractual provision prohibiting, restricting or regulating the assignment or transfer of assets, rights or liabilities: or
- (c) as giving rise to any remedy by a party to an instrument, or as causing or permitting the termination of any instrument, because of a change in the beneficial or legal ownership of any asset, right or liability.

(5) The operation of this section is not to be regarded as an event of default under any contract or other instrument.

(6) No attornment to the Ministerial Corporation by a lessee from the Homebush Abattoir Corporation is required.

Req:R637846 /Doc:DL E617299 /Rev:28-May-2010 /Sts:OK.SC /Pgs:ALL /Prt:03-Nov-2017 09:10 /Seq:5 of 5 Ref:olympic park /Src:M

Homebush Abattoir Corporation (Dissolution and Transfer) 1991

Stamp duty

6. Any instrument executed only for:

(a) a purpose ancillary to or consequential on the operation of section 5; or

(b) the purpose of giving effect to that section,

is not chargeable with stamp duty.

PART 4-STAFF OF HOMEBUSH ABATTOIR CORPORATION

Transfer of staff

7. (1) A person who was employed by the Homebush Abattoir Corporation immediately before the transfer becomes, on the transfer, an employee of the Ministerial Corporation.

(2) Until varied, the employment is subject to the same terms and conditions as those on which the person was employed immediately before the transfer.

Superannuation

8. (1) An eligible employee:

- (a) may continue to contribute to any superannuation scheme to which he or she was a contributor immediately before becoming an eligible employee; and
- (b) is entitled to receive any payment, pension or gratuity accrued or accruing under the scheme,

as if he or she had continued to be such a contributor during service with the Ministerial Corporation.

(2) Service by the eligible employee with the Ministerial Corporation is taken to be service as an officer in his or her previous employment for the purposes of any law under which the employee continues to contribute to the scheme or by which an entitlement under the scheme is conferred.

(3) The eligible employee is to be regarded as an officer or employee, and the Ministerial Corporation is to be regarded as the employer, for the purposes of the scheme.

(4) This section ceases to apply to the eligible employee if he or she becomes a contributor to another superannuation scheme, but the eligible employee is not prevented from receiving a resignation benefit from the first superannuation scheme.

InfoTrack An Approved LPI NSW Information Broker

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----1/11/2017 9:10AM

FOLIO: 72/818981

First Title(s): OLD SYSTEM Prior Title(s): 5/774130

Recorded	Number	Type of Instrument	C.T. Issue
3/8/1992	DP818981	DEPOSITED PLAN	FOLIO CREATED EDITION 1
1/10/1992	E799640	WITHDRAWAL OF CAVEAT	
1/10/1992	E799641	WITHDRAWAL OF CAVEAT	
22/9/1993	I378527	REQUEST	
22/9/1993	I356058	REQUEST	
22/9/1993	I378525	APPLICATION	EDITION 2
8/12/1995	0738097	REQUEST	EDITION 3
25/8/1997	3350461	DEPARTMENTAL DEALING	
29/8/1997	DP870992	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

olympic park

PRINTED ON 1/11/2017

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Ref:olympic pa		20-Apr-2010 /sts:sc.0 152001 46/4 E:M Vitu	K /Pgs:ALL /Prt:	:03-Nov-2017 09:13 /s	Beq:1 of 3. I 378525 X
JKLEN	19		PLICATION		1 1 1 2
GENERAL MAN FROPERTY MAN PROPERTY SER	AGER, JAGEMENT DIVISION VICES-GROUP		PERTY ACT, 1900 Completion on back of form)	AP \$ 50	5/5
	Torrens Title Refe	renco if Part Only	y, Delete Whole and Give De	tails Locati	on
DESCRIPTION OF LAND Note (8)	FOLIO IDENTIFIERS 2 71/818981, 72/81898 AND 74/818981		WHOLE	AT HOMEBUSH BA	×
REGISTERED	Type of Dealing	Registered Number		Terrens Title Reference	
DEALING Note (b)				<u>j</u>	
PRESENT REGISTERED PROPRIETOR Note (c)	HOMEBUSH BAY MINIST	ERIAL CORPORATION	ti de la companya de La companya de la comp	ar ar an	OFFICE USE ONLY.
Note (d)	L spresently recorded as REGISTER	ED PROPRIETOR of the land above de abovemention	sscribod. Nod registered dealing. Appl	ication is hereby made to record	
NEW REGISTERED PROPRIETOR(S) Note (9)	HOMBEBUSH BAY DEVEL	OPMENT CORPORATION			OVER
Note (f) Note (f)	Delegation, a copy of the Minister for Plan Ministerial Corporation	the land above described. The abovementioned registered dealing. which is lodged herewi ning and Minister for H on in pursuance of the (Dissolution and Transf	th and marked with ousing for and on provisions of Sec	h the letter "A" made h behalf of the Homebush	ру
×	DATE 27 MOLY	1993		* * * * * * *	
EXECUTION Note (g)	Si gned in my presence by the appl SIGNED by me ANDREW behalf of the Homebu Syntaws of War	legate but not so as to	oration	<u>></u>	$\langle \rangle$
TO BE COMPLETED	JOHN DICER		. <	Signatured	Spplicanz
Notes (h) and (l)	A LODGED BY	LESONS STEPHEN JAQUES		HER Herewith.	
SUD	JAC Delivery Box Number 4/1			Produced by	
OFFICE USE ONLY	Checked Passed Signed Extra Fee	REGISTERED – –19			
а 	<u> </u>	Registrar General			
		- Abreation of		9	

Req:R637876	/Doc:DL	1378525	/Rev: 20-Apr-2010	/Sts:SC.OK	/Pgs:ALL	/Prt:03-Nov-2017	09:13	/Seq:2	of 3	3
Ref:olympic	park /Sr	C:M						P**		

INSTRUCTIONS FOR COMPLETION

This form is to be used only if no other approved form is appropriate for the purpose, e.g., Application under section 46 (c) Real Property Act, 1900; Application under section 12 (4) Trustee Act, 1925-1942.

When so required under the Stamp Duties Act, 1920, this dealing should be marked by the Commissioner of Stamp Duties before lodgment at the Registrar General's Office. Typewriting and handwriting should be clear, legible and in permanent black non-copying ink.

Alterations are not to be made by erasure; the words rejected are to be ruled through and initialized by the applicant.

If the space provided is insufficient, additional sheets of the same size and quality of paper and having the same margins as this form should be used. Each additional sheet must be identified as an annexure and signed by the applicant and the attesting witness.

Rule up all blanks.

The following instructions relate to the side notes on the form:

(a) Description of land: (If the application is only in respect of a registered dealing, rule through this panel.)

- (1) TORRENS TITLE REFERENCE.-Insert the current follo Identifier or Volume and Folio of the Certificate of Vitle/Crown Grant for the land the subject of the application, e.g., 135/SP12345 or Vol. 8514 Fol. 126. Title references should be listed in numerical sequence. (ii) PART/WHOLE .-- If part only of the land in the follo of the Register is the subject of the application deleta the word "WHOLE" and insert the lot and plan number, portion, etc.
- (iii) LOCATION.-Intert the locality shown on the Certificate of Tisle/Crown Grant, it.g., at Chullors. If the I cality is not shown, insert the Parish and County, e.g., Ph. Limore Co. Rous.

(b) Registured dealing. (if the application is only in respect of a certificate of title, rule through this panel.) Show the rugistored number of the lease, mortgage or charge, and the title reference affected thereby, e.g., Lease-Q123456-Vol. 3456 Fol. 124.

- (c) Show the full name of the registered proprietor as recorded on the Register.
- (d) Strike out "land above described" or "abovementioned registered dealing", whichever does not apply.
- (e) Show the full name, address and occupation or description of the person(s) to be registered as proprietor(s).
- (f) Set out the terms of the request, e.g., consequent upon the appointment of, etc.
- (g) Execution.

10

- GENERALLY (i) Should there be insufficient space for execution of this application, use an annexus sheet.
 - (II) The certificate of correctness under the Real Property Act, 1900, must be signed by the applicant who should execute the dealing in the presence of an adult witness to whom he is personally known. The solicitor for the applicant may sign the certificate on behalf of the applicant, the solicitor's name (not that of his firm) to be typewritten or printed adjacent to his signature. Any person failedy or negligently certifying is liable to the penalities provided by section 117 of the Real Property Act, 1900.
- ATTORNEY
- (iii) If the application is executed by an attorney for the applicant pursuant to a registered power of attorney, the form of extention must set out the full name of the attorney, and the form of execution must indicate the source of his authority, u.g., "AB by his attorney (or receiver or delegate, as the case may be) XY pursuant to power of attorney registered Book No. , and I declare that have no notice of the revocation of the said power". (iv) If the application is executed pursuant to an authority (other than specified in (iii)) the form of execution must indicate the statutory, judicial or other authority pursuant to which the application has been executed. AUTHORITY
- CORPORATION (v) If the application is executed by a corporation under seal, the form of execution should include a statement that the seal has been properly affixed, e.g., in accordance with the Articles of Association of the corporation. Each person attesting the affixing of the seal must state his position (e.g., director, secretary) in the corporation.
- (h) Insert the name, postal address, Document Exchange reference, telephone number and delivery box number of the lodging party.
- (1) The loiging party is to complete the LOCATION OF DOCUMENTS panel. Place a tick in the appropriate box to indicate the whereabouts of the Certificate of Title. List, in an abbreviated form, other documents lodged, e.g., stat. dec. for statutory declaration.

OFFICE UPP ONLY

in start	<u> </u>	. ea	10		OFF	CE USE ONLY	
DIRECTION No. OF N	ON: PROP NAMES:	e (FIRST SCH	EDULE DIRIECTIO	NS
(A).	FOLIO ID INTIFIER	(B) No. (C) SHARE	(D)]			NAME AND DESCRIPTION
27. 71-	74/818981		S		Номевисн	BAY	DEVELOPMENT CORPORATION
						3 ¹	ii I
			54				
	t to the second					8 8 ₁₀	- 14
inc Re Re	್ ನಂತಿ ಕುರ್ಯ್ಯ ಕ ಕುರ್ಯ ಕುರ್	15				е 5	
-	2 N			1 1	SECOND SCHEDUL	AND OTHER DI	RECTIONS
	FOLIO IDENTIFILIR B. DEALING & FOLIO (DENTIFIER)	(G) DIREC		(H) NOTFN TYPE	U) DEALING NUMBER	(K)	DETAILS
	я 19 20 20 20 20 20 20 20 20 20 20 20 20 20	-	2 9	1.5			626
بر	7793575	2	υ	1	I 445875	1. 1. 1.	
71-	793575 74/818981	4	17				
sara Sara	and a start of the				<i>u</i>		a de est

D. WEST, GOVENNMENT PAINTER

No salobal TE BERGER Req:R637876 /Doc:DL I378525 /Rev:20-Apr-2010 /Sts:SC.OK /Pgs:ALL /Prt:03-Nov-2017 09:13 /Seq:3 of 3 Ref:olympic park /Src:M

EXHIBIT A WITH APPLICATION BY HOMEBUSH BAY DEVELOPMENT CORPORATION

INSTRUMENT OF TRANSFER AND DELEGATION

I, <u>ROBERT WEBSTER</u>, Minister for Planning and Minister for Housing, being the Minister administering the Homebush Abattoir Corporation (Dissolution and Transfer) Act 1991, in pursuance of the provisions of that Act and for and on behalf of the Homebush Bay Ministerial Corporation, make the following orders:

- (1) **I HEREBY TRANSFER** all of the assets, rights and liabilities of the Homebush Bay Ministerial Corporation to the Homebush Bay Development Corporation, such transfer to take effect on and from 1 November 1992.
- (2) <u>I HEREBY DELEGATE</u> to the persons holding for the time being the offices within the Property Services Group specified in the schedule hereto severally power to carry out the functions and to exercise all rights and duties of the Homebush Bay Ministerial Corporation and to affix the seal of the Homebush Bay Ministerial Corporation and execute any document on its behalf for the foregoing purposes. This delegation shall expire on 1 November 1992.

SCHEDULE

.

Managing Director Director, Urban Redevelopment Division Director, Finance Director, Asset Management Division Director, Property Management Division

Minister for Planning and Minister for Housing

Son. 21/9/012

Req:R294202 /Doc:DL O738097 /Rev:02-Feb-2007 /Sts:NO.OK /Pgs:ALL /Prt:04-Mar-2016 11:36 /Seq:1 of 3 Ref: OLYPK /Src:T

97-11R		REQUEST Real Property Act 1900	SEE COPIES	0 738097 N *f?* +- 'B'
(A) STAMP DUTY If applicable.		WIPLCE OF STATE PEVELUE OF State (N.S.W. TAEXSURFO) 1994/05 NO STANP OTTY IS PAYABILE NO STANP OTTY IS PAYABILE ON THE INSTITUTE OF	Revenue use only	
(B) TILE Show no more than 20.	SEE ANNEXU	RE "A"		
ae: ja		tion of the second s		
(C) REGISTERED DEALING If applicable.			مریک میں کر ایک کر ایک کر ایک کر ایک کر کر ایک	
(D) LODGED BY	L.T.O. Box 786E	Name, Address or SHAW MCDONALD, 8th F Street, Sydney DX 916 Sydney. Tel REFERENCE (max 15 characters)	: 264 9111 Olympic	Dealing Code R

(E) APPLICANT

OLYMPIC CO-ORDINATION AUTHORITY

(F) **REQUEST**

HOMEBUSH BAY DEVELOPMENT CORPORATION is presently recorded as registered proprietor of the land above described. The Applicant requests the Registrar General to record OLYMPIC CO-ORDINATION AUTHORITY as registered propriator of the land above described pursuant to Section 39 and, in particular, clauses 7 and 9 of Part 2 Division 2 and clauses 11, 12 and 13 of Part 2 Division 3 of Schedule 2, of the Olympic Co-Ordination Authority Act 1995 which was assented to on 9 June, 1995 and which was proclaimed to commence on 30 June, 1995.

CHECKED BY (office use only)

Cavent's Y543831 + Y624370 do not prevent registration

÷.,

"A"

THIS IS THE ANNEXURE MARKED WITH THE LETTER "A" REFERRED TO IN THE ATTACHED REQUEST DATED , 20 fr November , 1995 made by the olympic co-ordination authority

TORRENS TITLE REFERENCES

FOLIO IDENTIFIERS 101/849975; 102/849975; 2/831539; 4/831539; 5/831539; 6/831539: 7/831539· 1/840154: 11/831538; 50/747909; 52/747909: 56/773763-57/773763: 58/786296· 59/786296· 60/786296; 70/818981: 71/818981: 72/818981; 73/818981· 74/818981· 22/787402: 24/787402; 3/740790; 54/749222· 25/793595; 26/793595; 302/541070; 4/774130; 6/774130; 7/774130 AND 8/774130.

Signed in my presence by the Director-General who is personally known to me Hark Signature of Witness TERRY HARNS. Name of Witness (BLOCK LETTERS) ACA OFFICES Home Bush Address of Witness

Signature of Director-General OLYMPIC CO-ORDINATION AUTHORITY Req:R294202 /Doc:DL 0738097 /Rev:02-Feb-2007 /Sts:NO.OK /Pgs:ALL /Prt:04-Mar-2016 11:36 /Seq:3 of 3 Ref:OLYPK /Src:T

(G)

STANDARD EXECUTION

4

Certified correct for the purposes of the Real Property Act 1900. Director-General Signed in my presence by the Applicant who is personally known to me.

Signature of Witness

TERRY JUKINS Name of Witness (BLOCK LETTERS) CCA OTTICES HOMEBUSH. Address of Witness

DATE In the November, 1995

Signature of Director-General

OLYMPIC CO-ORDINATION AUTHORITY

EXECUTION INCLUDING STATUTORY DECLARATION

Signature of Witness

Name of Witness (BLOCK LETTERS)

Address and Qualification of Witness

Signature of Applicant

InfoTrack An Approved LPI NSW Information Broker

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----1/11/2017 9:10AM

FOLIO: 88/870992

Fir	st Title(s):	OLD SYSTEM		
Prie	or Title(s):	72/818981 102/8	49975	
Recorded	Number	Type of Instrument		C.T. Issue
1/9/1997	DP870992	DEPOSITED PLAN		FOLIO CREATED EDITION 1
20/3/1998	3856206	LEASE		EDITION 2
30/12/1999 30/12/1999	6461218 6451582	DEPARTMENTAL DEALING REQUEST		EDITION 3
25/1/2002	8208818	APPLICATION		EDITION 4
5/6/2002 5/6/2002	8631290 8631291	TRANSFER OF LEASE SUB-LEASE		EDITION 5
2/2/2004	AA22827	REQUEST		
15/12/2005	AB885870	APPLICATION		
21/9/2007	AD419866	REQUEST		
23/4/2008	AD904704	SURRENDER OF LEASE		
11/1/2010	AF167197	SUB-LEASE		
25/7/2011 25/7/2011	AG388028 AG388038	CAVEAT CAVEAT		
21/12/2011	AG699597	CAVEAT		
31/5/2012	DP1174468	DEPOSITED PLAN		
14/11/2012	AH366310	SUB-LEASE		
2/12/2013	AI186894	SUB-LEASE		
7/3/2014	AI425236	CAVEAT		
10/7/2014	DP1185060	DEPOSITED PLAN		FOLIO CANCELLED
	***	END OF SEARCH ***		

olympic park

PRINTED ON 1/11/2017

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Ref:ol , Li	37942 /Doc:DL 82088 ympic park /Src:M cence: 98M111 lition: 0107	AFPLICATION TO RECORD NEW REGISTERED PROPRIETOR New South Wales Section 46C Real Property Act 1900 Section 12(4) Trustee Act 1925 PRIVACY NOTE: this information is legally required and will become part of the section to the section	8K
	STAMP DUTY	Office of State Revenue use only ?+?x???NEW SOUTH WALES	DUTY 000792554-001
(A)	LAND	Torrens Title - see Annexure A, Annexure B, & Annexure C	
(B)	REGISTERED DEALING	Number Torrens Title	
(C)	LODGED BY	Delivery Box Clayton Utz Levels 22-35 No.1 O'Connell Street Sydney NSW 2000 185H DX 370 Tel: 9353 4000 Reference (optional): 102/1674174 Jackson Chow	CODE AP
(D)	APPLICANT	Sydney Olympic Park Authority	
(E)	PRESENT REG'D PROPRIETOR	Olympic Co-Ordination Authority	
(F)	NEW REG'D PROPRIETOR	Sydney Olympic Park Authority	
	In regard to the land/regis	DER SECTION 46C REAL PROPERTY ACT 1900 stered dealing specified above, the applicant requests the Registrar General to record the r the Register, the land / registered dealing having vested in the new registered proprietor p	new registered
		Authority Act 2001 that commenced 1 July 2001	
	In regard to the land / regi	ER SECTION 12(4) TRUSTEE ACT 1925 istered dealing specified above, the applicant requests the Registrar General to record the se folio of the Register consequent on-	new
(I)		TANPIC PAGE	
	DATE	dd mm / 2001 yyyy Common Seal	
	I certify that the applicant whose identity I am other Signature of witness: A	with whom I am personally acquainted or as to wise satisfied, signed this application in my presence. COVERNMENT Signature of applicant:	ooses of the Real plicant.
	Name of Witness Don R Address of Witness 7 Fi	gtree Dr. Homebish Bay all mit	yso
	ANDWRITING MUST BE IN F		s available ISW.

Req:R637942 /Doc:DL 8208818 /Rev:30-Jan-2002 /Sts:NO.OK /Pgs:ALL /Prt:03-Nov-2017 09:19 /Seq:2 of 9 Ref:olympic park /Src:M

Annexure A

Torrens Title

				0		
1.	A	302/541070	182H	AP		
<u>~</u> 2.		8/735225	185H	DP	1	AP
3.	-	3/740790	185H	A F	>	
4.		52/747909	185H	AP		
5.	,	54/749222	185H	AP		
6.		57/773763 .	185H	AP		
7.		4/774130	185H	AP		
8.		6/774130	185H	AP		
9.	-	7/774130	185H	AP		
10.	A	8/774130	185H	AP		
11.	~	58/786296	185H	AP	8 6	
12.	~	59/786296	185 H	AP		
13.	د	60/786296	185H	AP		
14.	<i>.</i> .	22/787402	185H	AP		
15.	<i>p</i> *	24/787402	185H	AP		
16.		25/793595	185 H	AP		
17.	-	26/793595	185H	. AP		
18.	ş	70/818981	185H			
19.	ŀ.	11/831538	1854	ДP		
20.	1	1/840154	1.85H	AP		
				•		

DATE

I certify that the applicant, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this application in my presence.

Signature of witness: Dome

Name of Witness Done White Address of Witness > Figtree Dr. Honebroh Bay.

dd

mm

MAPIC P 2001 THE уууу Certified correct dot the purposes ofil Real Property Agt 1900 by the applicant. OF Signature of applicant; RNM Ah

Req:R637942 /Doc:DL 8208818 /Rev:30-Jan-2002 /Sts:NO.OK /Pgs:ALL /Prt:03-Nov-2017 09:19 /Seq:3 of 9 Ref:olympic park /Src:M

Annexure B

Torrens Title 185H AP **1**. 101/849975 84/855929 2. 1/859608 (3/ 3/860205 4. - 5. 1/868636 AP HERI 88/870992 6. 78/875562 * 7. 79/875562 × 8. 3 9. 1021/875723 (+ 10. 1022/875723 11. 1023/875723 12. 1024/875723 185H AV > 13. 1025/875723 14. 2005/878356 / 15. 2010/878356 / 16. 3019/879226 DP & AP 17. 3020/879226 ₹ 18. 2/883215 - 19. 3/883215 AP 185H 20. 4001/1004512 DATE 2001 dd mm уууу S Certified correc I certify that the applicant, with whom I am personally acquainted or as to whose identity I am otherwise Property A satisfied, signed this application in my presence. SIN

Signature of witness: Im

. .

Name of Witness Dona White Address of Witness 7 Figtree Dr. Horobish Bay

APIC P THE Common Seal for the purposes the by the applican GOVERNIN Signature of applicant ah ,

Req:R637942 /Doc:DL 8208818 /Rev:30-Jan-2002 /Sts:NO.OK /Pgs:ALL /Prt:03-Nov-2017 09:19 /Seq:4 of 9 Ref:olympic park /Src:M

Annexure C

Torrens Title

- 1. 5100/1009020
- 2. 5101/1009020
- 3. 5102/1009020
- 4. 812/1012563

5 (6000/1018860) DP 6 813/1030022

- E

ж.					OLYMPIC PARK RES	
DATE		/	/	2001	THE E	
	dd	mm		уууу (Common Seal	
I certify that the applicat acquainted or as to whose satisfied, signed this app	se identity I am ot	herwise		Certified dorited Property Advis	for the ourposes of the R So by the applicant. GOVERNME	.eal
Signature of witness: $\mathcal A$	nle			Signature of app	plicant:	
Name of Witness low Address of Witness 7	ra White Fightee Dr.	Homebusi	h B	al ag	11.	

Req:R637942 /Doc:DL 8208818 /Rev:30-Jan-2002 /Sts:NO.OK /Pgs:ALL /Prt:03-Nov-2017 09:19 /Seq:5 of 9 Ref:olympic park /Src:M

STATUTORY DECLARATION

I, Jackson Chow, c/o Clayton Utz, 1 O'Connell Street, Sydney, New South Wales, do solemnly and sincerely declare that:

- 1. I am a Solicitor at Clayton Utz, solicitors.
- 2. Clayton Utz act for the Sydney Olympic Park Authority ("SOPA") and the Olympic Coordination Authority ("OCA") in the transfer of land in accordance with the Sydney Olympic Park Authority Act 2001 ("SOPA ACT").
- 3. The SOPA Act commenced on 1 July 2001 and established under that statute, the Sydney Olympic Park Authority.
- 4. SOPA is now responsible for the long term future management of Sydney Olympic Park, Homebush Bay which includes OCA land in Homebush Bay, Millennium Parklands Bicentennial Park, land formally owned by the State Sports Centre Trust as well as most roads within their respective boundaries.
- 5. In accordance with the SOPA Act, the land known as Sydney Olympic Park has vested in SOPA.
- 6. Section 7 of the SOPA Act provides that:

"the lands comprising Sydney Olympic Park are vested in the Authority for an estate in fee simple, subject to this Part".

Clause 3(1)(a) of Schedule 8, of the SOPA Act further provides that:

"the assets of OCA determined by the Director-General of OCA to be assets that relate primarily to the land that is vested in the Authority under section 7 (the transferred assets) vest in the Authority by virtue of this clause and without the need for any further conveyance, transfer, assignment or assurance,".

- 7. Sydney Olympic Park is defined by reference to Schedule 1 of the SOPA Act which in turn refers to a plan labelled and marked Sydney Olympic Park ("Plan").
- 8. Following receipt of advice from SOPA and OCA, I have examined the SOPA Act, Schedule 1 and the Plan and to the best of my knowledge, submit that the land titles specified in Annexure 1, 2 and 3 attached to this Statutory Declaration lies within Sydney Olympic Park.
- 9. I have further examined all original title deeds relating to the titles specified under Annexure 1,2 and 3 attached to this Statutory Declaration and submit that these titles are currently held in the ownership by OCA.

Page 1 of 5

Req:R637942 /Doc:DL 8208818 /Rev:30-Jan-2002 /Sts:NO.OK /Pgs:ALL /Prt:03-Nov-2017 09:19 /Seq:6 of 9
Ref:olympic park /Src:M

AND I MAKE this solemn declaration conscientiously believing the same to be true, and by virtue of the provisions of the Oaths Act 1900.

Made and declared at Sydney on this 13th day of December 2001

Before me:

Page 2 of 5

Req:R637942 /Doc:DL 8208818 /Rev:30-Jan-2002 /Sts:NO.OK /Pgs:ALL /Prt:03-Nov-2017 09:19 /Seq:7 of 9 Ref:olympic park /Src:M

Annexure 1

Torrens Title

- 1. 302/541070
- 2. 8/735225
- 3. 3/740790
- 4. 52/747909
- 5. 54/749222
- 6. 57/773763
- 7. 4/774130
- 8. 6/774130
- 9. 7/774130
- 10. 8/774130
- 11. 58/786296
- 12. 59/786296
- 13. 60/786296
- 14. 22/787402
- 15. 24/787402
- 16. 25/793595
- 17. 26/793595
- **18**. **70/81898**1
- 19. 11/831538
- 20. 1/840154

This is the Annexure marked 1 referred to in the Statutory Declaration of Jackson Chow declared on 13 December 2001.

Before me: & Cerra

Page 3 of 5

÷.

Req:R637942 /Doc:DL 8208818 /Rev:30-Jan-2002 /Sts:NO.OK /Pgs:ALL /Prt:03-Nov-2017 09:19 /Seq:8 of 9 Ref:olympic park /Src:M

Annexure 2

Torrens Title

4

- 1. 101/849975
- 2. 84/855929
- 3. 1/859608
- 4. 3/860205
- 5. 1/868636
- 6. 88/870992
- 7. 78/875562
- 8. 79/875562
- 9. 1021/875723
- 10. 1022/875723
- 11. 1023/875723
- 12. 1024/875723
- 13. 1025/875723
- 14. 2005/878356
- 15. 2010/878356
- 16. 3019/879226
- 17. 3020/879226
- 18. 2/883215
- 19. 3/883215
- 20. 4001/1004512

This is the Annexure marked 2 referred to in the Statutory Declaration of Jackson Chow declared on 13 December 2001.

Before met in Solicitor

Page 4 of 5

Req:R637942 /Doc:DL 8208818 /Rev:30-Jan-2002 /Sts:NO.OK /Pgs:ALL /Prt:03-Nov-2017 09:19 /Seq:9 of 9 Ref:olympic park /Src:M

Annexure 3

Torrens Title

- 1. 5100/1009020
- 2. 5101/1009020
- 3. 5102/1009020
- 4. 812/1012563
- 5. 6000/1018860
- 6. 813/1030022

This is the Annexure marked 3 referred to in the Statutory Declaration of Jackson Chow declared on 13 December 2001.

á.

Before me: Cura Solicitor

Page 5 of 5

InfoTrack An Approved LPI NSW Information Broker

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----1/11/2017 9:10AM

FOLIO: 1/1185060

First Title(s): OLD SYSTEM Prior Title(s): 88/870992

Recorded	Number	Type of Instrument	C.T. Issue
10/7/2014	DP1185060	DEPOSITED PLAN	FOLIO CREATED EDITION 1
22/9/2014	AI777013	LEASE	EDITION 2

29/12/2014	AJ126940	SURRENDER OF LEASE
17/2/2015	AJ265108	CAVEAT
4/7/2015	AJ627073	TRANSFER OF LEASE
9/12/2015	AK51189	WITHDRAWAL OF CAVEAT
9/12/2015	AK51191	TRANSFER OF LEASE
9/12/2015	AK51193	MORTGAGE OF LEASE
10/2/2016	AK207424	WITHDRAWAL OF CAVEAT
11/2 <mark>/</mark> 2016	AK210973	WITHDRAWAL OF CAVEAT
16/6/2016	AK512610	DEPARTMENTAL DEALING
29/6/2016	AK558617	DEPARTMENTAL DEALING
15/10/2016	AK837201	WITHDRAWAL OF CAVEAT

*** END OF SEARCH ***

olympic park

PRINTED ON 1/11/2017

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

InfoTrack An Approved LPI NSW Information Broker

Title Search

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 1/1185060

SEARCH DATE	TIME	EDITION NO	DATE
3/11/2017	8:11 AM	2	22/9/2014

LAND

LOT 1 IN DEPOSITED PLAN 1185060 AT SYDNEY OLYMPIC PARK LOCAL GOVERNMENT AREA CITY OF PARRAMATTA PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP1185060

FIRST SCHEDULE

SYDNEY OLYMPIC PARK AUTHORITY

SECOND SCHEDULE (8 NOTIFICATIONS)

- 1 LAND EXCLUDES MINERALS (S.134 PUBLIC WORKS ACT, 1900)
- 2 L827059 RIGHT OF WAY 20.115 METRE(S) WIDE APPURTENANT TO THE LAND ABOVE DESCRIBED AFFECTING THE LAND SHOWN IN DP235225
- 3 DP831539 EASEMENT FOR SERVICES 17 METRE(S) WIDE AND VARIABLE APPURTENANT TO THE LAND ABOVE DESCRIBED
 - 6451582 EASEMENT RELEASED IN SO FAR AS IT AFFECTS LOTS 5200 & 5201 IN DP1009021
- * 4 AI425236 CAVEAT BY AUSGRID
- AI777013 CAVEATOR CONSENTED

5 DP1174468 EASEMENT FOR MAINTENANCE 3.7 METRE(S) WIDE APPURTENANT TO THE LAND ABOVE DESCRIBED

6 DP1174468 EASEMENT TO PERMIT ENCROACHING STRUCTURE TO REMAIN 1 METRE(S) WIDE (LIMITED IN STRATUM) APPURTENANT TO THE LAND ABOVE DESCRIBED

7 DP1174468 EASEMENT FOR DRAINAGE 1 METRE(S) WIDE APPURTENANT TO THE LAND ABOVE DESCRIBED

8 AI777013 LEASE TO GPT RE LIMITED EXPIRES: 29/10/2096.

AJ627073 TRANSFER OF LEASE AI777013 LESSEE NOW HAISHENG OLYMPUS HOLDING PTY LIMITED AK51191 TRANSFER OF LEASE AI777013 LESSEE NOW AUSTINO SYDNEY OLYMPIC PARK PTY LTD

AK51193 MORTGAGE OF LEASE AI777013 TO NATIONAL AUSTRALIA BANK LIMITED

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

olympic park

PRINTED ON 3/11/2017

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Locked Bag 2906, Lisarow NSW 2252 Customer Experience 13 10 50 ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D17/245125 Your Ref: Alejandra Beltran 20 November 2017

Attention: Alejandra Beltran El Australia Suite 6.01 55 Miller St Pyrmont NSW 2009

Dear Ms Beltran

RE SITE: 1 Murray Rose Ave Sydney Olympic Park NSW

I refer to your site search request received by SafeWork NSW on 13 November 2017 requesting information on Storage of Hazardous Chemicals for the above site.

.

A search of the records held by SafeWork NSW has not located any records pertaining to the above mentioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email <u>licensing@safework.nsw.gov.au</u>

Yours sincerely

0

Customer Service Officer Customer Experience - Operations SafeWork NSW Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

APPENDIX E Borehole Logs

<<DrawingFile>>

IS AU BOREHOLE 3 E23602 LOGS.GPJ

8

FIA LIB 1 03 GLB

BOREHOLE: BH101

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client

Refer to Figure 2 E23602

Stockland Pty Ltd

Contractor Geosence Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

Sheet	1 OF 1
Date Started	7/11/17
Date Completed	7/11/17
Logged AB	Date:
Checked	Date:

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE MOISTURE CONDITION CONSISTENCY DENSITY JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0 FILL FILL: Gravelly SILT; brown-dark brown, with organics and cobbles, no odour. BH101_0.2-0.3 ES QD2 QT2 0.20-0.30 m 0.20 m PID = 2.3 ppm D -M 0.80 **0.90** From 0.8m, with fine to medium grained, light yellow-yellow WEATHERED ROCK sand. 1 GWNE BH101_1.1-1.2 ES 1.10-1.20 m SHALE; black/dark grey, extremely weathered, no odour. AD/ D 2 BH101_2.2-2.3 ES PID = 1.5 ppm 2.50 Hole Terminated at 2.50 m Target Depth Reached. Backfilled with Drilling Spoil. 3 4 10/11/2017 15:45 10.0.000 Datgei Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 5 6 7 8 9 10 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

BOREHOLE: BH102

Project	Detailed Site Investigation
	•

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client

E23602

Refer to Figure 2

Stockland Pty Ltd

Contractor Geosence Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

Sheet	1 OF 1
Date Started	7/11/17
Date Completed	7/11/17
Logged AB	Date:
Checked	Date:

Or Hum			Inclination -90° Checked D												
0 0 F1 FILL: Gravely SILT; brown, with sub-angular to angular to an									<u> </u>	Sampling		lling	Dri		
Image: Proceeding of the second se	AL .	STRUCTURE AND ADDITIONAL OBSERVATIONS	CONSISTENCY DENSITY	CONDITION	MOISTURE	SOIL/ROCK MATERIAL DESCRIPTION	USCS SYMBOL	GRAPHIC LOG	RECOVERED	SAMPLE OR FIELD TEST	<i>DEPTH</i> RL		WATER	PENETRATION RESISTANCE	METHOD
Image: Provide the second s		FILL				Thee. Clavely Cler, brown, with oub ungular to angular	F1		6	BH102_0.2-0.3 ES PID = 3.1 ppm	0.70	0			
L0 2 2.10 3 3.10 4 BH102_3.4.3.5 ES PID = 4.5 ppm 4 4.20 BH102_3.9.4.0 ES PID = 4 ppm Hole Terminated at 4.20 m					D		F2		5	BH102_1.0-1.1 ES PID = 1.8 ppm	0.70	- 1			
3 3.10 4 BH102_3.4-3.5 ES PID = 4.5 ppm BH102_3.9-4.0 ES PID = 4.5 ppm BH102_3.9-4.0 ES PID = 4 ppm Hole Terminated at 4.20 m			-				> > F3					- 2	SWNE	-	AD/T
SHALE; light gray, extremely weathered, no odour.						orange/red/light-brown, no odour.	* * * *						0		
Hole Terminated at 4.20 m		WEATHERED ROCK		D	D	SHALE; light grey, extremely weathered, no odour.	× - 		;	BH102_3.4-3.5 ES PID = 4.5 ppm	3.10				
Hole Terminated at 4.20 m	-								5	BH102_3.9-4.0 ES PID = 4 ppm	4.20	4			
This basehole less should be read in conjunction with El Australiale accompanying standard notes						Target Depth Reached.									
		es.	d note	daro	ng standa	be read in conjunction with EI Australia's accompanying s	uld be	ig shou	ehole lo	This bore		10—	<u> </u>		

	0	(2	ot r		Project	Deta	iled Sit	e Inv	estigation	B	OR	EHC	DLE: I	BH103M
	Conta	minati	ion R	SU	Geotechnic	Position Job No.	Refe E236	r to Fig	ure 2	Contractor Geosence Dri Drill Rig Hanjin D&B	lling P	'ty Lto	1	Logged Al	leted 6/11/17 B Date:
						1				Inclination -90°				Checked	Date:
_		,	Dril	ling		Sampling			F	Field Material Des				PIEZOMETE	R DETAILS
METHOD	PENETRATIO	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	<u>ID Sta</u> BH103M	ЗМ	■ Stickup = 0.8m
				0	0.60	BH103M_0.2-0.3 ES PID = 5.3 ppm			F4	FILL: Clayey SILT; dark brown/brown, with medium gravels, no odour.	м				
				- 1— -	1.20	BH103M_0.8-0.9 ES PID = 3.9 ppm			F1 F2	FILL: Gravelly SILT; brown-dark brown, with cobbles, no odour. FILL: Gravelly Silty CLAY; medium plasticity, brown, with medium gravels, no odour.	_				
				- 2		BH103M_2-2.1 ES PID = 4.2 ppm					D - M				 Grout
				- - 3—	2.70 3.10	BH103M_2.8-2.9 ES PID = 6.7 ppm			CH	Silty CLAY; high plasticity, red/brown mottled orange/light yellow, with rootlets, no odour. SHALE; light grey, extremely weathered, with clay layers, no					— 50 mm uPVC Casing
				-		BH103M_3.3-3.4 ES PID = 1.3 ppm				odour.					
EIA 1.03 2014-07-05 AD/T		-	GWNE	4								-			Bentonite
EA LIB 103 GLB Log IS AU BOREHOLE 3 E2802 LOGS GPJ <<0 mm/mgFie>> 10/11/20/17 15/45 10.0000 Dangel Lab and in Sku Tod - DGD Lin: EIA 103 20/4-07-05 Fr): EIA 103 20/4-07-05 Fr				5— - - 6— -							D				
/11/2017 15:45 10.0.000 Datgel Lab and				- - 7		PU402M 7.0.7.0.50									 ← Sand 50 mm uPVC Screen
2 LOGS.GPJ < <drawingfile>> 10</drawingfile>				8	8.90	BH103M_7.8-7.9 ES PID = 1 ppm									 Cuttings
IS AU BOREHOLE 3 E2360;				9						Hole Terminated at 8.90 m Refusal on Shale Bedrock. Borehole Converted into Monitoring Well.					
EIA LIB 1.03.GLB Log				10—		This boreh	ole lo	g shou	ıld be	read in conjunction with EI Australia's accompanying st	andar	d note	 es.		

BOREHOLE: BH104

Project Detai	iled Site Investigation
---------------	-------------------------

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client

Refer to Figure 2 E23602 Stockland Pty Ltd

Geosence Drilling Pty Ltd Contractor Drill Rig Hanjin D&B Inclination -90°

Sheet	1 OF 1			
Date Started	6/11/17			
Date Completed	6/11/17			
Logged AB	Date:			
Checked	Date:			

		Dri	lling		Sampling		Field Material Description							
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
			0	0.60	BH104_0.2-0.3 ES PID = 4.8 ppm			F1	FILL: Gravelly SILT; brown, with rootlets and organics, no odour.	lets and organics, no FILL				
				1.00 1.50	BH104_1.2-1.3 ES PID = 5.5 ppm			F3	FILL: Silty CLAY; low to medium plasticity, brown, with rootlets, no odour.	D				
AD/T	-	GWNE	- 2	1.90			X		From 1.5m, grey mottled light grey/white.	-	-			
			- - 3—	2.60	BH104_2.8-2.9 ES PID = 7.5 ppm			CL	Silty CLAY; low plasticity, red/brown mottled orange/light yellow, with rootlets, no odour.		-	RESIDUAL SOIL		
			-	3.40	BH104_3.6-3.7 ES PID = 3.2 ppm			-	SHALE; light grey, extremely weathered, with clay layers, no odour.	D	D WEATHERED ROCK	WEATHERED ROCK		
.03 2014-07-05			4	-					Hole Terminated at 4.00 m Target Depth Reached. Backfilled with Drilling Spoil.					
nd In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Pŋ: EIA 1.03 2014-07-05			5	-										
tu Tool - DGD Lib: EIA 1			- 6—	-										
a a				-										
· 10/11/2017 15:45 10.0.000 Datgel Lab			-	-										
GS.GPJ < <drawingfile>></drawingfile>			8	-										
ORE HOLE 3 E23602 LO			9											
UB 1.03.GLB Log IS AU BOREHOLE 3 E23602 LOGS.GPJ < <drawingf< td=""><td></td><td></td><td>- 10</td><td>_</td><td>This borehol</td><td>le lo</td><td>g shou</td><td>ıld be</td><td>e read in conjunction with EI Australia's accompanying sta</td><td>ndaro</td><td>d note</td><td>25.</td></drawingf<>			- 10	_	This borehol	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	25.		
EIAL														

10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Pri: EIA 1.03 2014-07-05

<<DrawingFile>>

BOREHOLE 3 E23602 LOGS.GPJ

SAU S

FIA LIB 1 03 GLB

BOREHOLE: BH105

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client

Refer to Figure 2 E23602

Stockland Pty Ltd

Contractor Geosence Drilling Pty Ltd Hanjin D&B Inclination -90°

Drill Rig

Sheet	1 OF 1						
Date Started	6/11/17						
Date Completed	6/11/17						
Logged AB	Date:						
Checked	Date:						

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE MOISTURE CONDITION CONSISTENCY DENSITY JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0 FILL F2 FILL: Gravelly Silty CLAY; medium plasticity, brown, with medium gravels, no odour. BH105_0.2-0.3 ES PID = 6.3 ppm 0.50 FILL: Silty CLAY; medium to high plasticity, light yellow, with traces of fine to medium grained sand, no odour. F3 BH105_0.7-0.8 ES PID = 2.9 ppm 1 1.10 From 1.1m, dark brown-black. GWNE AD/T М 1.70 RESIDUAL SOIL CH Silty CLAY; high plasticity, red/brown mottled orange/light yellow, with rootlets, no odour. BH105_1.9-2.0 ES PID = 4.1 ppm 2 2.10 × From 2.1m, light grey. BH105_2.4-2.5 ES PID = 4 ppm 2.70 Hole Terminated at 2.70 m Target Depth Reached. Backfilled with Drilling Spoil. 3 4 5 6 7 10/11/2017 15:46 8 9 10 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

BOREHOLE: BH106

Project	Detailed Site Investigation

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client

Refer to Figure 2 E23602 Stockland Pty Ltd

Geosence Drilling Pty Ltd Contractor Drill Rig Hanjin D&B Inclination -90°

Sheet	1 OF 1							
Date Started	6/11/17							
Date Completed	6/11/17							
Logged AB	Date:							
Checked	Date:							

Drilling				ling		Sampling				Field Material Descr				-
METHOD		RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F				0				\boxtimes	F1	FILL: Gravelly SILT; brown-dark brown, with organics and cobbles, no odour.			FILL	Γ
AD/T				- - 1—	0.70	BH106_0.3-0.4 ES PID = 5.5 ppm				From 0.7m, light grey-grey.				
		-	GWNE	-	1.20 1.60				СН	From 1.2m, dark brown-red.	м	-	RESIDUAL SOIL	
				2	2.00	BH106_1.8-1.9 ES PID = 7.4 ppm				Silty CLAY; high plasticity, red/brown mottled orange/light yellow, with rootlets, no odour.				
				-	-	BH106_2.2-2.3 ES PID = 6.1 ppm		×		From 2.0m, light grey mottled red.				.
				-	2.50	· · · · · · · · · · · · · · · · · · ·				Hole Terminated at 2.50 m Target Depth Reached.				-
				3	-					Backfilled with Drilling Spoil.				. -
				-	-									
				-	-									
				4 —	-									-
4-07-05				-										
A 1.03 201				-	-									
17-05 Prj: El				5 —	-									-
1.03 2014-0				-	-									.
D Lib: EIA				-	-									
u Tool - DG				6— -										-
b and In Sit				-	-									
Datgel La				- 7 —	-									.
46 10.0.000				-	-									
11/2017 15:				-										.
JFile>> 10/				8—	-									-
< <drawing< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawing<>				-	-									
LOGS. GPJ				-	-									
3 E23602				9 —	-									-
SOREHOLE				-	-									
-og ISAUE				-	-									
EA UB 103 GLB Log IS AUBOREHOLE 3 E23602 LOGS GPJ < <drawingfile>> 1011/2017 15.46 10.0.000 Dargel Lab and in Stu Tod - DGD [Lbt: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05</drawingfile>				10—		This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note		-
EIA L														

					alia	Location 1 Position F Job No. E	Mu Refe 236	rray Ro r to Fig	ose A ure 2	Contractor Geosence Dril				Sheet Date Start Date Com Logged / Checked	ed pleted	1 OF 1 6/11/17 6/11/17 Date: Date:	
	_			lling		Sampling				Field Material Desc							
METHOD	DENETRATION	RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	ID St BH107M	PIEZOMET atic Water Leve	<u>I</u>	TAILS Stickup = 0.925m	n
				0 1 	0.70	BH107M_0.2-0.3 ES QD1 QT1 PID = 2.9 ppm BH107M_0.8-0.9 ES			F1	FILL: Gravelly SILT; brown-dark brown, with organics and cobbles, no odour.			•		-		
				- 2— -	2.60	BH107M_2.0-2.1 ES PID = 5.4 ppm			СН	Silty CLAY; high plasticity, red/brown mottled orange/light yellow, with rootlets, no odour.				Grout 50 mm uPVC Casing	-		
00 Daigeilab and in Stu Tool - DGD Lib:EIA 1.03 2014-07-05 Prj:EIA 1.03 2014-07-05 A D DF		-	GWNE	- 3 - -	3.80	BH107M_2.8-2.9 ES			CL- CI	From 2.6m, low to moderate plasticity, light grey, with extremely weathered rock layers, no more rootlets.						- - -	
				4 - - 5 -		BH107M 4.0-4.1 ES PID = 1.7 ppm			-	SHALE; black/dark grey, extremely weathered, no odour.	D					3entonite	-
				- - 6 - - 7	7.20	BH107M_6.4-6.5 ES PID = 0.8 ppm										Sand 50 mm uPVC Screen Cuttings	
EA UB 1.03 GLB Log IS AUBOREHOLE 3 E23602 LOGS.GPJ < <drawingfile>> 10/112017 15.46 10.0.000 Datgel Lab and in Situ Tod - DGD Lit: EIA 1.03 2014/07-05 Pi</drawingfile>				8						Hole Terminated at 7.20 m Refusal on Shale Bedrock. Borehole Converted into Monitoring Well.							
EIA LIB 1.03.GLB Log IS A				- 10		This boreho	le lo	g shou	ild be	read in conjunction with EI Australia's accompanying sta	Indar	d not	es.				

٦

BOREHOLE: BH108

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client

Refer to Figure 2 E23602

Stockland Pty Ltd

Geosence Drilling Pty Ltd Contractor Drill Rig Hanjin D&B Inclination -90°

Sheet	1 OF 1
Date Started	6/11/17
Date Completed	6/11/17
Logged AB	Date:
Checked	Date:

Sampling AMPLE OR FIELD TEST 8. 0.2-0.3 ES 4.4 ppm 8. 0.6-0.7 ES 3.9 ppm 8. 2.0-2.1 ES 6.3 ppm 8. 2.9-3.0 ES 5.9 ppm 8. 3.4-3.5 ES 5.2 ppm 8. 3.4-3.5 ES 5.2 ppm		FILL: Gravelly SILT; light grey/grey, with organics and cobbles, no odour. From 1.5m, with clay. FILL: Silty CLAY; medium to high plasticity, grey mottled orange/red/light-brown, no odour.	M Moisture Condition	- CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
8 0.6-0.7 ES 3.9 ppm 8 2.0-2.1 ES 6.3 ppm 8 2.9-3.0 ES 5.9 ppm	F3	FILL: Gravelly SILT; light grey/grey, with organics and cobbles, no odour. From 1.5m, with clay. FILL: Silty CLAY; medium to high plasticity, grey mottled orange/red/light-brown, no odour. Silty CLAY; high plasticity, red/brown mottled orange/light yellow, with rootlets, no odour. Hole Terminated at 3.70 m	D - M	-	FILL
		Hole Terminated at 3.70 m	D		
		Hole Terminated at 3.70 m Target Depth Reached. Backfilled with Drilling Spoil.			
	This borehole log	This borehole log should b	This borehole log should be read in conjunction with El Australia's accompanying sta	This borehole log should be read in conjunction with El Australia's accompanying standard	This borehole log should be read in conjunction with El Australia's accompanying standard note

eiaustralia Contamination Remediation Geotechnical

BOREHOLE: BH109M

Project	Detailed Site Investigation

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client

Refer to Figure 2
E23602
Stockland Pty Ltd

Contractor Drill Rig

Inclination

Geosence Drilling Pty Ltd Hanjin D&B -90°
 Sheet
 1 OF 1

 Date Started
 6/11/17

 Date Complete
 6/11/17

 Logged
 AB

 Checked
 Date:

	Drilling			Sampling								
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS	
			0	0.60 1.00 1.60	BH109M_0.2-0.3 ES PID = 3.8 ppm BH109M_0.8-0.9 ES PID = 3.9 ppm BH109M_1.2-1.3 ES PID = 5.2 ppm		F1 F3 CL- x Cl	FILL: Gravelly SILT; brown-dark brown, with organics and cobbles, no odour. FILL: Silty CLAY; medium to high plasticity, grey mottled orange/red/light-brown, no odour. Silty CLAY; low to medium plasticity, red/brown mottled orange/light yellow, with rootlets, no odour. SHALE; light grey, extremely weathered, no odour.	DM	_	Grout	n uPVC g
	-	GWNE	2		BH109M_1.8-1.8 ES PID = 7 ppm BH109M_4.8-4.9 ES PID = 1.3 ppm				D	-	Bentor Sand So mm Screen	n uPVC n
			6	5.90	This borehol	e log sho		Hole Terminated at 5.90 m Refusal on Shale Bedrock. Borehole Converted into Monitoring Well.	tandarr			
					This borehol	e log sho	uld b	e read in conjunction with EI Australia's accompanying s	tandaro	d note	es.	

<<DrawingFile>>

S

FIA LIB 1 03 GLB

BOREHOLE: BH110

Project D	etailed Site	Investigation
-----------	--------------	---------------

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client

Refer to Figure 2 E23602 Stockland Pty Ltd

Contractor Drill Rig Inclination

Geosence Drilling Pty Ltd Hanjin D&B -90°

Sheet	1 OF 1				
Date Started	6/11/17				
Date Completed	6/11/17				
Logged AB	Date:				
Checked	Date:				

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0 FILL FILL: Gravelly SILT; brown-dark brown, with clay, organics and cobbles, no odour. M -W BH110_0.2-0.3 ES PID = 7.7 ppm 0.60 BH110_0.65-0.75 ES PID = 8.3 ppm F3 FILL: Silty CLAY; medium to high plasticity, grey mottled orange/red/light-brown, with shale fragments, no odour. 1 1.10 GWNE AD/T CH Silty CLAY; high plasticity, red/brown mottled orange/light yellow, with rootlets, no odour. М RESIDUAL SOIL X _ BH110_1.3-1.4 ES PID = 7 ppm Lx 1.70 CL From 1.7m, low plasticity. I⊼ 2 D $\overline{\mathbf{x}}$ BH110_2.1-2.2 ES PID = 2.4 ppm 2.40 Γ, Hole Terminated at 2.40 m Target Depth Reached. Backfilled with Drilling Spoil. 3 4 10/11/2017 15:46 10.0.000 Datget Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 5 6 7 8 S AU BOREHOLE 3 E23602 LOGS.GPJ 9 10 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

BOREHOLE: BH111

Project	Detailed Site Investigation
	•

Location 1 Murray Rose Avenue, Sydney Olympic Park NSW

Position Job No. Client Refer to Figure 2 E23602 Stockland Pty Ltd

Contractor Geosence Drilling Pty Ltd Drill Rig Hanjin D&B

Sheet	1 OF 1
Date Started	7/11/17
Date Completed	7/11/17
Logged AB	Date:
Checked	Date [.]

	Client Stockland Pty Ltd Drill Rig Hanjin D&B Inclination -90°								Logged AB Date: Checked Date:				
Drilling Sampling										Field Material Desc			
	MEIHOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0		BH111_0.3-0.4 ES PID = 3.5 ppm			F1	FILL: Gravelly SILT; brown-dark brown, with organics and cobbles, no odour.	м		FILL -
t L	AU/I	-	GWNE	- - -	1.60	BH111_1.3-1.4 ES PID = 1.9 ppm			F4	FILL: Clayey SILT; dark brown/dark red, with medium gravels, no odour.	D- M	-	
				2	2.00	BH111_2.2-2.3 ES PID = 5.7 ppm			CH	Silty CLAY; high plasticity, red/brown mottled orange/light yellow, with rootlets, no odour. SHALE; light grey, extremely weathered, no odour.			RESIDUAL SOIL
				3	3.50	BH111_3.2-3.3 ES PID = 1.6 ppm				Hole Terminated at 3.50 m	D		-
-07-05				- 4 -						Target Depth Reached. Backfilled with Drilling Spoil.			-
:014-07-05 Prj: EIA 1.03 2014				- 5									
u Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				- - 6									
10/11/2017 15:46 10.0.000 Datgel Lab and In Sit				- - 7									
				- - 8									
E23602 LOGS. GPJ < <drawingfile>></drawingfile>				- - 9									
LB 1.03 GLB Log IS AU BOREHOLE 3 E23602 LOGS. GPJ				- - - 10									
EIA LIB 1.03.GLE	This borehole log should be read in conjunction with El Australia's accompanying standard notes.												

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

APPENDIX F Field Data Sheets

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - El PID02 🗌 OR 592-901345 - El PID03 🖾

Instrument Conditions: ______

Calibration gas species: Isobutylene.

Calibration gas concentration: <u>100</u> ppm

Gas bottle number: <u>676450 cy</u> 171

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

ppm at <u>(00.1 ppm span setting</u> (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: 250 psi (if reading is <250 psi, notify Equipment Manager to arrange new gas bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed:
Date: 6-11-17
Time: 07:30

EI Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - El PID02 🗌 OR 592-901345 - El PID03 🔀

Instrument Conditions: _______

Calibration gas species: Isobutylene.

Calibration gas concentration: <u>100</u> ppm

Gas bottle number: <u>676450 cyl</u> 171

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

<u>100</u> ppm at <u>40</u> ppm span setting (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: 250 psi (if reading is <250 psi, notify Equipment Manager to arrange new

gas bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed:
Date: <u>7-11-17</u>
Time: 07:15

		and the second												
		WATER	SAMPLIN	IG FIELD	SHEET			eiaustralia						
Site Addre	ess: 11	urray	Roce A	1 Sud	Olyma	2 Park.	Job Numb	per: E23602.						
Client:	tral	law		H. It	- yry	·	Date: 17	-11-17.						
Field Staf	F. A	Rold	CX I	ry -ic	<u>.</u>			Location ID RH103M.						
		by	YONN				Round No							
Well Loca		192	•		urface Wa	tor	DStormwa							
MEDIUM		and the second se	Froundwat	er LIS	unace wa	ller	LISIONIWA							
SAMPLIN			14 1	1			Chielune (m	n): +0.775 (+ above ground - below ground						
Well Insta			1 - 1	/										
Initial Wel								terval (mBTOC):						
Previous	Sampling	Date:					Previous \$	SWL (mBTOC):						
PID REAL	DINGS													
PID Head	space (pp	m):					PID Back	ground (ppm):						
PID Breat	hing Spac	e (ppm): -						/						
PRE PUR	GE	. 0	-					~ I						
Total Wel	tal Well Depth (mbgl): 8.2 Well Head Condition: 0.0 VL (mbtoc): 8.65 0.775 7.88 Water Column (m): 0.3 IASE SEPARATED HYDROCARBONS (PSH) Epth to PSH (mbtoc): PSH Visually Confirmed (Bailer): SH Thickness (mm): PSH Visually Confirmed (Bailer):													
SWL (mb	VL (mbtoc): 8.65m-0.775=7.88m Water Column (m): 0.3 IASE SEPARATED HYDROCARBONS (PSH) opth to PSH (mbtoc): PSH Visually Confirmed (Bailer): SH Thickness (mm): PSH Visually Confirmed (Bailer):													
	HASE SEPARATED HYDROCARBONS (PSH) epth to PSH (mbtoc): SH Thickness (mm):													
	HASE SEPARATED HYDROCARBONS (PSH) epth to PSH (mbtoc): SH Thickness (mm): JRGE AND SAMPLE													
	HASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer): PSH Visually Confirmed (Bailer): SH Thickness (mm): JRGE AND SAMPLE ampling Method Deristaltic													
	Ampling Method Image: Constraint of the sector of the se													
	epth to PSH (mbtoc): PSH Visually Confirmed (Bailer): SH Thickness (mm): JRGE AND SAMPLE JRGE AND SAMPLE Impling Method Impling Method IBladder IPeristaltic Submersible IOther: epth of Pump Inlet: Fill Timer: Implication Implication													
	appth to PSH (mbtoc): PSH Visually Confirmed (Bailer): BH Thickness (mm): Implice (Bailer): JRGE AND SAMPLE Impling Method ampling Method Implice (Bailer): appth of Pump Inlet: Fill Timer: amp Pressure Regulator (psi): Discharge Timer:													
	HASE SEPARATED HYDROCARBONS (PSH) epth to PSH (mbtoc): PSH Visually Confirmed (Bailer): SH Thickness (mm): JIGE AND SAMPLE JIGE AND SAMPLE Other: ampling Method Bladder Peristaltic epth of Pump Inlet: Fill Timer: ump Pressure Regulator (psi): Discharge Timer:													
	epth to PSH (mbtoc): PSH Visually Confirmed (Bailer): BH Thickness (mm): JRGE AND SAMPLE JIRGE AND SAMPLE Submersible Other: ampling Method Bladder Peristaltic Submersible Other: epth of Pump Inlet: Fill Timer: Discharge Timer: Discharge Timer: eather Conditions: Cycle: Cycle: Cycle:													
	Bit of Fort (instep) Bit Thickness (mm): IRGE AND SAMPLE mpling Method Bladder Instantiation inpth of Pump Inlet: imp Pressure Regulator (psi): Bischarge Timer: cather Conditions:													
Pump on			/				Pump off	time:						
WATER	QUALITY	PARAMET	ERS											
Probe Ma	ke and Mo	odel:					Bump Tes	st Date and Time:						
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pḨ (units)	Comments (colour, turbidity, odour, sheen etc.)						
								·						
		-												
							1							
								×						
		No. of Concession, Name												
3 con	oilisation ra	adings	±0.2°C	±3%	±20mV	±10%	±0.2							
OTHER	COMMEN	TS/OBSEF	RVATION	S:	ſ									
N	Jot e	MOU	ph	wat	er t	DV	au	rpung						
SIGNAT	URE	0	A-											
		Hora	5	11				g						

1 - Ard

964. .

		WATER	SAMPLIN	IG FIELD	SHEET	4		eiaustralia						
Site Addre	ess: M	NOW	Roa	AV FU	d. Ohr	n. lak.	Job Numb	F_{23602}						
Client:	2001	lout	1 al	1. 101	to esp		Date: [7-11-17						
Field Staff	f: A .	Belt	san				Sampling	Location ID BH107M/RH109M						
Well Loca		ba	2.				Round No	:						
MEDIUM	24		Groundwat	er 🗆 S	urface Wa	ter	□Stormwa	ater 🛛 Other:						
	IG POINT	INFO		and the second				BH10707 1 BH10914						
Well Insta	Ilation Dat	e:					Stickup (m							
	ll Depth (m						Screen Int	terval (mBTOC):						
	Sampling I						Previous S	SWL (mBTOC):						
PID REAL	And in case of the local division of the loc													
	space (pp	m):		-			PID Backg	ground (ppm):						
	thing Spac													
PRE PUR	and the second se	(11)												
	btal Well Depth (mbgl): Well Head Condition: WL (mbtoc): Water Column (m): HASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer):													
	WL (mbtoc): HASE SEPARATED HYDROCARBONS (PSH) epth to PSH (mbtoc): SH Thickness (mm): Water Column (m): PSH Visually Confirmed (Bailer):													
	WL (mbtoc): Water Column (m): IASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer): OFH Thickness (mm):													
	HASE SEPARATED HYDROCARBONS (PSH) epth to PSH (mbtoc): SH Thickness (mm): URGE AND SAMPLE													
	epth to PSH (mbtoc): PSH Visually Confirmed (Bailer): SH Thickness (mm): URGE AND SAMPLE ampling Method													
	epth to PSH (mbtoc): PSH Visually Confirmed (Bailer): SH Thickness (mm): URGE AND SAMPLE ampling Method													
	epth to PSH (mbtoc): PSH Visually Confirmed (Bailer): SH Thickness (mm): URGE AND SAMPLE ampling Method													
	epth to PSH (mbtoc): PSH Visually Confirmed (Bailer): SH Thickness (mm): URGE AND SAMPLE ampling Method IDBladder IDPeristaltic IDUmersible epth of Pump Inlet: Fill Timer: ump Pressure Regulator (psi): Discharge Timer:													
	SH Thickness (mm): URGE AND SAMPLE ampling Method Bladder Deristaltic Submersible opth of Pump Inlet: Fill Timer: ump Pressure Regulator (psi): Discharge Timer:													
	SH Thickness (mm):													
Pump on							Pump off	time:						
	QUALITY	PARAMET	ERS	/										
	ke and Mo			/			Bump Tes	st Date and Time:						
Time	Volume (L)	SWL (mbtoc)	Temp (°©)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pḨ (units)	Comments (colour, turbidity, odour, sheen etc.)						
			/											
		/												
	$\left \right $													
			-											
1. C. M. A. & P. P. C. M.	oilisation ra secutive re		±0.2°C	±3%	±20mV	±10%	±0.2							
OTHER	DN		ells.	S:										
SIGNAT	URE:	Au	A		11									
		10	VS					g.						

ine geu

APPENDIX G

Chain of Custody and Sample Receipt Forms

Sheet	of	5			Sam	ple N	/latri>									Ana	lysis							Comments
Site: 1 M	urray Ros	e Avenue,	Pro	oject No:													ty)							нмА
Sydr NSV	ney Olym V	pic Park	E	23602			ıt, etc.)	AHs stos	AHs							change)	onductivi							Arsenic Cadmium Chromium
Laboratory:	ALEXAN	33 Maddox 8 DRIA NSW 2					OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ [≜] /ТКН/ВТЕХ/РАНs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	EX			S	pH / CEC (cation exchange)	EC (electrical conductivity)	S			AHS	AM	BMB	Copper Lead Mercury Nickel
Sample	Laboratory	Container	Sampl	ing	WATER		IERS	A /	NAN	ΛÅΛ	RH/B1	TRH/BTEX	PAHs	VOCs	Asbestos	/ CE	/ EC	sPOCAS			TCI P PAHs	TCI P HM A	TCLP HM ^B	Zinc
1D BH101_	ID	Туре	Date	Time	WA	SOIL	É0	ΞŎ	H	H	Ĕ	H H	PA	V0	As	Hd	/Hd	SР			L		10	HM ^B Arsenic
1.1-1.2		J,ZLB	7-11-17	AM		X																		Cadmium
BH101- 2.2-2.3	,	1	7-11-17	AM		1																	Lead	
BH102- 3.3-3.4			7-11-17	AM																				Mercury Nickel
BH102- 3.9-4.0			7-11-17	ANY			1																	
BH103M. 2-8-2.9	- 1		6-11-17	AMIAN					X															
BH1031- 3.3-3.4			1	1														- 2						LABORATORY TURNAROUND
BH103h- 7.8-7.9	1997 - H																							Standard
BH104-	2								×								S	GS EH	IS Alex	andria	Labo	ratory I	1	24 Hours
BH104- 36-3.7																								48 Hours
BH105- 1.9-2.0	-						1		X															72 Hours
BH105-																	B	5E1	7234 ed: 08-	Nov-	-2017	,		Other
BH 106-	×	J	V	V		V	1											00010	u . u					
	I attest tha	t these same	bles were colle	ected in a	ccord	ance	Sam	pler's Na	ame (El):			Rece	ived by	(SGS)	:								
			ampling proce				Ale	jandra	a Belt	ran														
Sampler's C	omments:	1 a					Pr		A	2			Prin C Sigr	Ľ	NC	n	1	_		ei	a	15		alia
Container Typ J= solvent was S= solvent was P= natural HDF VC= glass vial,	hed, acid rins hed, acid rins PE plastic bot	sed glass bottle tle					PORT			7	ulto to:	Date	Â	1111	170	4	n	Suite		5 Mille Pl	r Stre h: 95			
ZLB = Zip-Lock							Plea	se e-m	iall lab	orator	y resu	lits to:	ab(yeial	ustra	na.co	m.a	u						COC July 2016 FORM v.3 - SG

Sheet _2	of	3				Sam	ple N	latrix									Ana	lysis								Comments
Sydn NSW	ey Ölym		-, -,		ject No: 3602			int, etc.)	'PAHs estos	PAHs							xchange)	EC (electrical conductivity)								HM <u>A</u> Arsenic Cadmium Chromium Copper
	ALEXAN	tralia 33 Maddox DRIA NSV 14 0400 F:	V 2015)499				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	TEX			tos	pH / CEC (cation exchange)	C (electrical	AS				TCLP PAHs	HM A	HM B	Lead Mercury Nickel Zinc
Sample ID	Laboratory ID	Container Type	Da	Samplin	Time	WATER	SOIL	THERS	HM A OCP/C	HM A /	HM A /	TRH/B	TRH/BTEX	PAHs	VOCs	Asbestos	pH / C	pH / E	sPOCAS				TCLP	TCLP HM A	TCLP HM ^B	нм ^в
BH10701_ 2.0-2.1	1	1,74	3 6-11-		# Yan	>	X	0		×																Arsenic Cadmium
BH 10711-1 2.8-2.9	900	1			1)																			Chromium Lead
BH10791- 4.0-4.1																										Mercury Nickel
BH107M- 6.4-6.5 BH 108-																					_					
2-9-3.0 BH108- 3.4-3.5										_										-						LABORATORY TURNAROUND
BH109M-	B	4								X																Standard
BH1091-																										24 Hours
B+109M- 4.8-4.																										48 Hours
BH110-	ě	5								×																72 Hours
BH110- 2.1-2.2			V		V																					Other
BH111- 2.2-2.3	F	6 √	7-1	1-17	AM		V			X																
Investigator:		it these sa ard El field				accord	ance		ler's Na andra					Rece	ived by	(565)	:					6	10			
Sampler's Co	omments:				e			Prii	nt	jus	~	-				Vite De	2 Martin	1	-		e		JE	IS Beened	tra	
Container Typ J= solvent was S= solvent was	hed, acid rin hed, acid rin	sed glass bo		jaR				Date	ORT	ΔΝΤ				Date	81	11/1	Ye	4	m	Suite		55 N	liller S Ph:	Street 9516	i, PYR 6 0722	MONT NSW 2009
P= natural HDF VC= glass vial, ZLB = Zip-Lock	Teflon Sept								se e-m			y resu	ilts to:	lab@	Deiau	ustra	lia.co	m.au	u			ac	u wela	austra	ilia.com	COC July 2016 FORM v.3 - SGS

Sheet 3	of	3			Sam	ple N	latrix									Ana	lysis								Comments
Site: 1 Mu	irray Ros ey Olymj	e Avenue,	-	Project No: E23602			ıt, etc.)	stos	AHs							(change)	onductivity)								HM ^A Arsenic Cadmium Chromium
Laboratory:	ALEXAN	tralia 3 Maddox S DRIA NSW 2 4 0400 F: 02	2015	1			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	тех			tos	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	AS				TCLP PAHs	TCLP HM ^A	TCLP HM ^B	Copper Lead Mercury Nickel Zinc
Sample ID	Laboratory ID	Container Type	Sam		WATER	ار ار	HERS	M A CP/C	MA/	MA/	RH/B	TRH/BTEX	PAHs	VOCs	Asbestos	H/C	H / E(sPOCAS				CLP	CLP	CLP	нм В
and a second sec			Date	Time	M	SOIL	D	IO	T	I	F	H	d.	>	A	d	d	S		-		-	-	-	Arsenic
BH111- 3.2-3.3		J,72B	7-11-1-	7 AM		X																	1		Cadmium Chromium
BH106- 2.2-2.3		J, 26	6-11-17	AM/PM		×																			Lead Mercury
																									Nickel
																								LABORATORY TURNAROUND	
																									Standard
																									24 Hours
				1		0																			48 Hours
										_															
				+	\vdash			_							-										72 Hours
																				\rightarrow	_				Other
							Samr	ler's Na	me (Fl).			Rece	ived by	(SGS)										
Investigator:	I attest tha	t these samp ard El field s	ples were co ampling pro	ollected in a	accord	ance									(000)						1				
Sampler's C	-						Alej	andra	Belt	ran			Prii	nt /	<u>n</u>						6		Y		
Samplers C	omments.								Da	the	_		(0	w	en				F	sia	16	IS'	tra	alia
							Sigr	nature	12	4			Sigr		U	T	8			Con	itamina	tion	Remed	liation 1	Geotechnical
Container Typ J= solvent was	e: hed, acid rins	sed,Teflon seal	ed, glass jaR		5 M.		Date	3	3-1	1-1	7		Date	8/	11/1	70	4	m	Suite	6.01	, 55 N			t, PYR 6 0722	MONT NSW 2009
S= solvent was P= natural HDF	hed, acid rin E plastic bot	sed glass bottle ttle						ORT			1			1			/-				lat			alia.co	
VC= glass vial, ZLB = Zip-Lock	Teflon Septi Bag	um					Pleas	se e-m	ail lab	orato	ry resu	ilts to:	lab@	Deiau	ustra	lia.co	m.a	L							COC July 2016 FORM v.3 - SGS

CLIENT DETAILS	3	LABORATORY DETA	ILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E23602 1 Murray Rose Ave Sydney Oly Park E23602 7	Samples Received Report Due SGS Reference	Wed 8/11/2017 Wed 15/11/2017 SE172348

_ SUBMISSION DETAILS

This is to confirm that 7 samples were received on Wednesday 8/11/2017. Results are expected to be ready by COB Wednesday 15/11/2017. Please quote SGS reference SE172348 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 8/11/2017 Yes 7.2°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 7 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

19 soil samples have been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23602 1 Murray Rose Ave Sydney Oly Park

SUMMAR	Y OF ANALYSIS		1	1		1	1
No.	Sample ID	Mercury in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH103M_2.8-2.9	1	26	7	10	12	8
002	BH104_2.8-2.9	1	26	7	10	12	8
003	BH105_1.9-2.0	1	26	7	10	12	8
004	BH109M_1.2-1.3	1	26	7	10	12	8
005	BH110_1.3-1.4	1	26	7	10	12	8
006	BH111_2.2-2.3	1	26	7	10	12	8
007	BH107M_2.0-2.1	1	26	7	10	12	8

_ CONTINUED OVERLEAF

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E23602 1 Murray Rose Ave Sydney Oly Park

No.	Sample ID	Moisture Content
001	BH103M_2.8-2.9	1
002	BH104_2.8-2.9	1
003	BH105_1.9-2.0	1
004	BH109M_1.2-1.3	1
005	BH110_1.3-1.4	1
006	BH111_2.2-2.3	1
007	BH107M_2.0-2.1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet	_ of _3	>				Sam	ple N	latrix									Ana	lysis								Comments
	ey Ölymj	e Avenue, pic Park	-	Projec E230	ct No: 602			t, etc.)	AHs stos	AHs							change)	onductivity)								HM ^A Arsenic Cadmium Chromium
	ALEXANI	tralia 3 Maddox S DRIA NSW 2 4 0400 F: 02	2015	9				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	тех			tos	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	AS				TCLP PAHs	TCLP HM ^A	HMB	Copper Lead Mercury Nickel Zinc
Sample ID	Laboratory ID	Container Type		npling		WATER	SOIL	THERS	IM A DCP/C	IM A /	IM ∆ /	RH/B	TRH/BTEX	PAHs	VOCs	Asbestos	H/C	H/E	sPOCAS				TCLP	TCLP	TCLP HM	HMB
RH101-			Date	-	Time	3	× N	Ö	X	<u> </u>	<u> </u>	-		u.	-	-					-					Arsenic Cadmium
0.2-0.3 BH 102-	2	J.726	7-11-1-		1		~		X																	Chromium Lead
0.2-0.5 BH102-	3		7-11-1-						×					-												Mercury Nickel
1.0-1.1 BH103M- 0.2-0.3	4		6-11-1	7 19	Mpm				×																	
BH103M	-		1)				X																	
BH 10311- 2.0-2.1																										LABORATORY TURNAROUND
8+104-0.2-0.3	6								×												I				I –	Standard
BH104- 1.2-1.3	7			_					×									S ∭	gs ef	IS Ale	xand	ria La	ibora	tory		24 Hours
BH105 0.2-0.3 BH105-	8				_				X		-														-	48 Hours
0.7-0.8 BH105-				_	_				.1		-							S	SE1	723	49	CO	C		-	72 Hours
0.3-0.4 BH107M_	9					-		-	X					-			-	R	leceiv	ed: 08	8 – No	ov – 20	017		-	Other
0.2-0.3	10		V		V			Sam	pler's Na	ame (E):			Rece	eived by	/ (SGS)):	I				<u> </u>				
Investigator:		ard El field s				accord	ance	Ale	jandr	a Bel	tran					-						1	k			
Sampler's C	omments:							Pr		Put	B			Pri C Sigi	Ú) Des	2~	~			e	sia	JE	IS	tra	alia
Container Typ J= solvent was S= solvent was P= natural HDF VC= glass vial ZLB = Zip-Lock	hed, acid rin shed, acid rin PE plastic bo , Teflon Sept	sed glass bottl ttle	led, glass jaR e	R					e 8 PORT			7 ry rest	ults to:	Dat	8/	ustra		5 4:0 om.a		Suite		, 55 N	Ailler Ph:	Stree 9510		MONT NSW 2009

												_														
Sheet 2	of	3					Sar	nple I	Matrix				-					Ana	lysis			_				Comments
Sydn NSW	rray Ros ey Olym					oject No 23602	:		nt, etc.)	PAHs stos	AHs							(change)	conductivity)							HM <u>A</u> Arsenic Cadmium Chromium
	SGS Aus Unit 16, 3 ALEXAN P: 02 859	3 Mad DRIA N	ISW 2	2015	0499				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ [≜] /ТКН/ВТЕХ/РАНs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	TEX			SO	pH / CEC (cation exchange)	EC (electrical conductivity)	4S			TCLP PAHs	TCLP HM ^A	HM B	Copper Lead Mercury Nickel Zinc
Sample ID	Laboratory ID	Conta Typ			Sampli	ng	WATER	1	HERS	MA , CP/O	MAI	M≜/	RH/B	TRH/BTEX	PAHs	VOCs	Asbestos	H/CI	pH / E(sPOCAS			CLP	CLP	TCLPI	
					ate	Time	_	SOIL	ō	IO	H	I	F	H	d'	>	A	p	pl	N.		_	H	F	-	HM ^B Arsenic
BH107M_ BH108-	•	71B	,3	6-11	-17	AMIPY		×														-				Cadmium Chromium
0.2-0.3	iı						_			X															Lead Mercury	
BH 108_ 0.6-0.7 BH 108_ 2.0-2.1				-			+																		Nickel	
BH109H- 0.2-0.3	12									X		*														
BH-10917_ 0.8-0.9	13									×																LABORATORY TURNAROUND
B+110-	14									X																Standard
BH110_ 0-65-0.75	,			1	/	V																				24 Hours
BHIII-	15			7-11	-17	AM				X																48 Hours
0.3-0.4 BH111 - 1.3-1.4	16	Z	1	7-11	1-17	AM				X																72 Hours
QD,	17	7		6-11	1-17	AM/pr	(\times														Other
QD2	18	7		7-1	1-17	A91		~				\times														
Investigator:	l attest tha with stand						accor	dance	-	jandra					Rece	ived by	(SGS)	:				(
Sampler's Co	omments:								Pri	nt		0	-		Prii Sigr	nt C) se Du				е	612	al	IS	tra	alia
Container Typ J= solvent was S= solvent was	ned, acid rin				s jaR				Dat	8	-11	-1-	7		Date	8	11/1	re	, 4:	00	and a second second second second	55 M	iller	Stree		Geotechnical MONT NSW 2009
P= natural HDP VC= glass vial, ZLB = Zip-Lock	E plastic bo Teflon Sept	ttle	o ooue							ORT			y resu	ults to:	lab@	Deiau	ustra	lia.co	m.au	J		lab	@ei	austra	alia.co	COC July 2016 FORM v.3 - SGS

Sheet of Sample Matrix Analysis											Comments														
	ney Ölym	se Avenue, pic Park	H	Project No: E23602			ıt, etc.)	AHs stos	AHs							change)	onductivity)								HM ^A Arsenic Cadmium Chromium
Laboratory:	Unit 16, 3 ALEXAN	stralia 33 Maddox S DRIA NSW 2 94 0400 F: 02	2015	9			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ [≜] /ТКН/ВТЕХ/РАНs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	al/BTEX			SO	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	St				TCLP PAHs	TCLP HM ^A	TCLP HM ^B	Copper Lead Mercury Nickel Zinc
Sample	Laboratory	Container Type	San	npling	WATER	Ļ	HERS	MA /	MAL	MAI	RH/B	1/B	PAHs	VOCs	Asbestos	H/CI	H / E(sPOCAS				CLP	CLP	CLP	
ID	ID	2x7, 2xVC	Date	Time	M	SOIL	01	ΞŌ	IH		I	URR	d	>	A	pł	þ	S				Ŧ	Ť.	F	HM ^B Arsenic
QR.	19	S 2×P,2×VC,	6-11-1	7 AM/AM	X					×	_										1			-	Cadmium Chromium
QRB,		3	6-11-1	7 stylen	×																				Lead Mercury
QTS,	20	VC	lab pre	epaved		×						X									M.				Nickel
QTB,	21	VC	lab pr	epared		X						×													
																									LABORATORY TURNAROUND
																									X Standard
		19																							24 Hours
				-																					48 Hours
									_																72 Hours
																					-				Other
						-						-													
							Sam	pler's Na	ame (El	l):	_		Rece	ived by	(SGS)	:						-			
		at these samp ard El field sa			accord	lance	L.,	. ,	D 1												6				
Sampler's C	omments:			112			Ale	jandra int	a Belt	ran			Prii	nt /	3.						. "		1		
Please hold QRB1							Signature					Sigr	hature	De	en	9			e	216	JE	IS'	tra	alia	
Container Typ		sed,Teflon seal	ed, glass iaR				Date 8-11-17 Date 8/11/74 4:00							, a	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009										
S= solvent was P= natural HD	shed, acid rir PE plastic bo	nsed glass bottle ottle						PORT					lob	Polo	intro	lia co			Ph: 9516 0722 lab@eiaustralia.com.au						
	VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag							se e-m	ail lab	orator	y resu	ults to:	lab(yeial	JStra	na.co	m.al	L							COC July 2016 FORM v.3 - SGS

CLIENT DETAILS	S	LABORATORY DETA	ILS	
Contact	Alejandra Beltran	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E23602 1 Murray Rose Ave Sydney Oly Park	Samples Received	Wed 8/11/2017	
Order Number	E23602	Report Due	Wed 15/11/2017	
Samples	21	SGS Reference	SE172349	

_ SUBMISSION DETAILS

This is to confirm that 21 samples were received on Wednesday 8/11/2017. Results are expected to be ready by COB Wednesday 15/11/2017. Please quote SGS reference SE172349 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 8/11/2017 Yes 7.2°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 20 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Six soil and one water sample have been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

/ 2015 Australia / 2015 Australia

ustralia t +61 2 8594 0400 ustralia f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E23602 1 Murray Rose Ave Sydney Oly Park

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH101_0.2-0.3	29	14	26	11	7	10	12	8
002	BH102_0.2-0.3	29	14	26	11	7	10	12	8
003	BH102_1.0-1.1	29	14	26	11	7	10	12	8
004	BH103M_0.2-0.3	29	14	26	11	7	10	12	8
005	BH103M_0.8-0.9	29	14	26	11	7	10	12	8
006	BH104_0.2-0.3	29	14	26	11	7	10	12	8
007	BH104_1.2-1.3	29	14	26	11	7	10	12	8
008	BH105_0.2-0.3	29	14	26	11	7	10	12	8
009	BH106_0.3-0.4	29	14	26	11	7	10	12	8
010	BH107_0.2-0.3	29	14	26	11	7	10	12	8
011	BH108_0.2-0.3	29	14	26	11	7	10	12	8
012	BH109M_0.2-0.3	29	14	26	11	7	10	12	8
013	BH109M_0.8-0.9	29	14	26	11	7	10	12	8
014	BH110_0.2-0.3	29	14	26	11	7	10	12	8
015	BH111_0.3-0.4	29	14	26	11	7	10	12	8
016	BH111_1.3-1.4	29	14	26	11	7	10	12	8
017	QD1	-	-	-	-	7	10	12	8
018	QD2	-	-	-	-	7	10	12	8
020	QTS1	-	-	-	-	-	-	12	-
021	QTB1	-	-	-	-	-	-	12	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23602 1 Murray Rose Ave Sydney Oly Park

Na	Control of D	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water	Volatile Petroleum
No. 001	Sample ID	2	1	1	-	-
002	BH101_0.2-0.3	2	1	1		
	BH102_0.2-0.3				-	-
003	BH102_1.0-1.1	2	1	1	-	-
004	BH103M_0.2-0.3	2	1	1	-	-
005	BH103M_0.8-0.9	2	1	1	-	-
006	BH104_0.2-0.3	2	1	1	-	-
007	BH104_1.2-1.3	2	1	1	-	-
008	BH105_0.2-0.3	2	1	1	-	-
009	BH106_0.3-0.4	2	1	1	-	-
010	BH107_0.2-0.3	2	1	1	-	-
011	BH108_0.2-0.3	2	1	1	-	-
012	BH109M_0.2-0.3	2	1	1	-	-
013	BH109M_0.8-0.9	2	1	1	-	-
014	BH110_0.2-0.3	2	1	1	-	-
015	BH111_0.3-0.4	2	1	1	-	-
016	BH111_1.3-1.4	2	1	1	-	-
017	QD1	-	1	1	-	-
018	QD2	-	1	1	-	-
019	QR1	-	-	-	12	8
021	QTB1	_	_	1	_	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water
019	QR1	1	7	10

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E23602 1 Murray Rose Ave Sydney Oly Park

RE: Report Job SE172349, your reference E23602 1 Murray Rose Ave Sydney Oly Park, order number E23602

Alejandra Beltran - ElAustralia <alejandra.beltran@eiaustralia.com.au>

Thu 16/11/2017 9:38 AM

To:AU.Environmental.Sydney (Sydney) <AU.Environmental.Sydney@sgs.com>;

CrAU.SampleReceipt.Sydney (Sydney) <AU.SampleReceipt.Sydney@sgs.com>;

Importance: High

Hi SGS,

Please run TCLP tests as outlined below:

- BH110_0.2-0.3 - TCLP for nickel #14 - BH102_1.0-1.1 - TCLP for Benzo(a)pyrene #3 - BH103M_0.8-0.9 - TCLP for Benzo(a) pyrene #5

Pleas complete these on a 72hr TAT.

Cheers,

Alejandra Beltran | Civil/Environmental Engineer

E: alejandra.beltran@eiaustralia.com.au T: 02 9516 0722 Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009 www.eiaustralia.com.au

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

-----Original Message-----From: AU.Environmental.Sydney@SGS.com [mailto:AU.Environmental.Sydney@SGS.com] Sent: 15 November, 2017 4:36 PM To: Alejandra Beltran - EIAustralia <alejandra.beltran@eiaustralia.com.au>; Laboratory Results - EIAustralia <lab@eiaustralia.com.au> Subject: Report Job SE172349, your reference E23602 1 Murray Rose Ave Sydney Oly Park, order number E23602

Dear Alejandra,

Please find attached the report for SGS job SE172349, your reference E23602 1 Murray Rose Ave Sydney Oly Park, order number E23602.

-IMPORTANT INFORMATION ABOUT YOUR REPORT- To align with NEPM 1999 (2013), SGS Environmental has changed the way Silica Gel Clean-up of TRH extracts is reported. TPH Silica Gel has now become TRH – Silica. NEPM 1999(2013) seeks to clarify TRH and TPH in Schedule B3, 10.2.7.

If you have any questions or concerns, please don't hesitate to contact your SGS Client Services representative.

CLIENT DETAILS	S	LABORATORY DETA	ILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E23602 Murray Rose Ave Sydney Oly Park A E23602 21	Samples Received Report Due SGS Reference	Thu 16/11/2017 Tue 21/11/2017 SE172349A

_ SUBMISSION DETAILS

This is to confirm that 21 samples were received on Thursday 16/11/2017. Results are expected to be ready by COB Tuesday 21/11/2017. Please quote SGS reference SE172349A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 16/11/17@9:38am Yes 7.2°C Three Days Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 3 Soil Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23602 Murray Rose Ave Sydney Oly Park A

 SUMMARY	OF ANALYSIS				
No.	Sample ID	Metals in TCLP Extract by ICPOES	PAH (Polynuclear Aromatic Hydrocarbons) in TCLP	TCLP (Toxicity Characteristic Leaching	TCLP (Toxicity Characteristic Leaching
003	BH102_1.0-1.1	-	4	-	6
005	BH103M_0.8-0.9	-	4	-	6
014	BH110_0.2-0.3	1	-	6	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet	of	۱			Sam	ple N	latrix									Ana	lysis						Comments
Site: 1 Murray Sydney C			-	Project No: E23602	5.48		i, etc.)	AHs tos	AHs							change)	onductivity)						HM ^A Arsenic Cadmium Chromium
Laboratory:	12 Ashle	OOD NSW	2067				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	LEX			sc	pH / CEC (cation exchange)	EC (electrical conductivity)	Ş		TCLP PAHs	HM A	HM B	Copper Lead Mercury Nickel Zinc
Sample	Laboratory	Container	Sar	mpling	WATER	_	HERS	MA/ CP/O	MAN	MAN	SH/B	TRH/BTEX	PAHs	VOCs	Asbestos	H/CE	pH / EC	sPOCAS		CLPI	TCLP HM ^A	TCLP HM ^B	нм₿
ID	ID	Туре	Date	Time	WP	SOIL	01	ĪŌ	Ī		F	F	à	>	A	p	đ	^S		-	F	-	Arsenic
QT,	1	7	6-11-1	1.1		X				X											-		Cadmium Chromium
QTZ	2	J	7-11-1	17 AM	-	×				×													Lead Mercury
	a series		1.11.1					-												1 33			Nickel
													6	MROU	B		12 45	hley St W 2067					
	a sector de													abur		Ph:	(02) 99	6200					
			1	1.0	1.27	6								ob No		794	1						LABORATORY TURNAROUND
					1	18.3						12	[Date Re	ceive	d: 87	1.1-4	-				2	Standard
1.6.								1	1263				1	Receive	d by:	18:		6					24 Hours
														Cooling	: Ice/	cepac	K						48 Hours
			-				1 34						1	Securit	y: Inita	Ct/Bro	ken/No			1.5			72 Hours
														1									
1.											1.000						-						Other
							Sam	pler's Na	me (E	D:	1		Rec	eived by	(Envir	olab);		-		1			
Investigator	I attest that with stand	it these sam ard EI field s	ples were of ampling pr	collected in a rocedures.	accord	lance	-			-			1	FLS	(-			
O amalaria (Marris		unping pi		8 g)	3	Ale	and	aB	elt	man		1000		_						1		
Sampler's C	omments:						8.16	F	no	D	-	1		rint JE					Pi	a	15	tr	alia
1.11							Sig	nature		12				gnature	in	5	1		Contamir	nation	Reme	diation	Geotechnical
	shed, acid rin	sed,Teflon sea		२			Date 8-11-17 Date 8.11.17 18:00									to	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009 Ph: 9516 0722						
S= solvent wa P= natural HD VC= glass via	PE plastic bo		e					PORT				ulte t-	lab						I.			alia.co	om.au
ZLB = Zip-Loc							Plea	se e-m	all lat	oorato	ry res	uits to	ab	weia	usua	and.C	un.a	u	and the second second	-			COC July 2016 FORM v.3 - SGS

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details	
Your reference	E23602, Sydney Olympic Park
Envirolab Reference	179479
Date Sample Received	08/11/2017
Date Instructions Received	08/11/2017
Date Results Expected to be Reported	16/11/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	2 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.1
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	Acid Extractable metalsin soil	
QT1	\checkmark	\checkmark	\checkmark	
QT2	\checkmark	\checkmark	\checkmark	

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

APPENDIX H Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact Client Address	Alejandra Beltran EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23602 1 Murray Rose Ave Sydney Oly Park	SGS Reference	SE172348 R1
Order Number	E23602	Date Received	8/11/2017
Samples	7	Date Reported	15/11/2017

COMMENTS -

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No. SE172348 R0 dated 15/11/2017 issued by SGS Environment, Health and Safety due to amendment of sampling date.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Senior Organic Chemist/Metals Chemist

Bennet Lo

Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia

Kamrul Ahsan

Senior Chemist

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499 www.sgs.com.au

Member of the SGS Group Page 1 of 10

ANALYTICAL RESULTS

SE172348 R1

VOC's in Soil [AN433] Tested: 9/11/2017

			BH103M_2.8-2.9	BH104_2.8-2.9	BH105_1.9-2.0	BH109M_1.2-1.3	BH110_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- 5012	- 5012	- SOIL	-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172348.001	SE172348.002	SE172348.003	SE172348.004	SE172348.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH111_2.2-2.3	BH107M_2.0-2.1
PARAMETER	UOM	LOR	SOIL - 7/11/2017 SE172348.006	SOIL - 6/11/2017 SE172348.007
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1

SE172348 R1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 9/11/2017

	BH103M_2.8-2		BH103M_2.8-2.9	BH104_2.8-2.9	BH105_1.9-2.0	BH109M_1.2-1.3	BH110_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172348.001	SE172348.002	SE172348.003	SE172348.004	SE172348.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH111_2.2-2.3	BH107M_2.0-2.1
			SOIL	SOIL
			7/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172348.006	SE172348.007
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 13/11/2017

			BH103M_2.8-2.9	BH104_2.8-2.9	BH105_1.9-2.0	BH109M_1.2-1.3	BH110_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
	UOM	LOR	6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM		SE172348.001	SE172348.002	SE172348.003	SE172348.004	SE172348.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH111_2.2-2.3	BH107M_2.0-2.1
			SOIL - 7/11/2017	SOIL - 6/11/2017
PARAMETER	UOM	LOR	SE172348.006	SE172348.007
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210

ANALYTICAL RESULTS

SE172348 R1

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 13/11/2017

			BH103M_2.8-2.9	BH104_2.8-2.9	BH105_1.9-2.0	BH109M_1.2-1.3	BH110_1.3-1.4
PARAMETER	UOM	LOR	SOIL - 6/11/2017 SE172348.001	SOIL - 6/11/2017 SE172348.002	SOIL - 6/11/2017 SE172348.003	SOIL - 6/11/2017 SE172348.004	SOIL - 6/11/2017 SE172348.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH111_2.2-2.3	BH107M_2.0-2.1
			SOIL	SOIL
PARAMETER	UOM	LOR	7/11/2017 SE172348.006	6/11/2017 SE172348.007
Naphthalene	mg/kg	0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8

ANALYTICAL RESULTS

SE172348 R1

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 13/11/2017

			BH103M_2.8-2.9	BH104_2.8-2.9	BH105_1.9-2.0	BH109M_1.2-1.3	BH110_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/11/2017	- 6/11/2017	- 6/11/2017	- 6/11/2017	- 6/11/2017
PARAMETER	UOM	LOR	SE172348.001	SE172348.002	SE172348.003	SE172348.004	SE172348.005
Arsenic, As	mg/kg	3	6	13	6	4	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	12	15	20	12	8.2
Copper, Cu	mg/kg	0.5	39	33	26	33	23
Lead, Pb	mg/kg	1	23	25	22	20	15
Nickel, Ni	mg/kg	0.5	2.7	1.9	4.2	2.0	1.6
Zinc, Zn	mg/kg	0.5	30	23	19	13	10

			BH111_2.2-2.3	BH107M_2.0-2.1
PARAMETER	UOM	LOR	SOIL - 7/11/2017 SE172348.006	SOIL - 6/11/2017 SE172348.007
Arsenic, As	mg/kg	3	8	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	19	21
Copper, Cu	mg/kg	0.5	28	20
Lead, Pb	mg/kg	1	22	22
Nickel, Ni	mg/kg	0.5	4.3	6.4
Zinc, Zn	mg/kg	0.5	24	18

SE172348 R1

Mercury in Soil [AN312] Tested: 14/11/2017

			BH103M_2.8-2.9	BH104_2.8-2.9	BH105_1.9-2.0	BH109M_1.2-1.3	BH110_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172348.001	SE172348.002	SE172348.003	SE172348.004	SE172348.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH111_2.2-2.3	BH107M_2.0-2.1
			SOIL	SOIL
			- 7/11/2017	- 6/11/2017
PARAMETER	UOM	LOR	SE172348.006	SE172348.007
Mercury	mg/kg	0.05	<0.05	<0.05

SE172348 R1

Moisture Content [AN002] Tested: 13/11/2017

			BH103M_2.8-2.9	BH104_2.8-2.9	BH105_1.9-2.0	BH109M_1.2-1.3	BH110_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172348.001	SE172348.002	SE172348.003	SE172348.004	SE172348.005
% Moisture	%w/w	0.5	15	18	25	19	20

			BH111_2.2-2.3	BH107M_2.0-2.1
			SOIL	SOIL
			7/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172348.006	SE172348.007
% Moisture	%w/w	0.5	21	22

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	Carcinogenic PAHs may be expressed as Benzo(a)pyrene equivalents by applying the BaP toxicity equivalence factor (NEPM 1999, June 2013, B7). These can be reported as the individual PAHs and as a sum of carcinogenic PAHs. The sum is reported three ways, the first assuming all <lor <lor="" all="" and="" are="" assuming="" half="" lor="" lor.<="" results="" second="" td="" the="" third="" zero,=""></lor>
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

 NATA accreditation does not cover the performance of this service.
 Indicative data, theoretical holding time exceeded. Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) Alejandra.beltran@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E23602 1 Murray Rose Ave Sydney Oly Park E23602 21	SGS Reference Date Received Date Reported	SE172349 R0 8/11/2017 15/11/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifiers Yusuf Kuthpudin and Ravee Sivasubramaniam .

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemist

kmln

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

VOC's in Soil [AN433] Tested: 9/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
				00"	201	0.011	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 7/11/2017	- 7/11/2017	- 7/11/2017	- 6/11/2017	- 6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	6/11/2017 SE172349.011	6/11/2017 SE172349.012	6/11/2017 SE172349.013	6/11/2017 SE172349.014	7/11/2017 SE172349.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH111_1.3-1.4	QD1	QD2	QTS1	QTB1
			SOIL	SOIL	SOIL	SOIL	SOIL
			7/11/2017	6/11/2017	7/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.016	SE172349.017	SE172349.018	SE172349.020	SE172349.021
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	[86%]	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	[89%]	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	[92%]	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	[91%]	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	[91%]	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	-	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	-	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 9/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			7/11/2017	7/11/2017		6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	7/11/2017
PARAMETER	UOM	LOR	SE172349.011	SE172349.012	SE172349.013	SE172349.014	SE172349.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH111_1.3-1.4	QD1	QD2
			SOIL	SOIL	SOIL
			7/11/2017	6/11/2017	
PARAMETER	UOM	LOR	SE172349.016	SE172349.017	SE172349.018
TRH C6-C9	mg/kg	20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 10/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			7/11/2017	7/11/2017		6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	210	250	340
TRH C29-C36	mg/kg	45	<45	<45	130	170	180
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	330	380	480
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	340	410	510
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	330	380	480

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	190	<45	93	<45	130
TRH C29-C36	mg/kg	45	120	<45	<45	<45	50
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	290	<90	110	<90	180
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	320	<110	<110	<110	180
TRH C10-C40 Total (F bands)	mg/kg	210	290	<210	<210	<210	<210

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 7/11/2017
PARAMETER	UOM	LOR	SE172349.011	SE172349.012	SE172349.013	SE172349.014	SE172349.015
TRH C10-C14	mg/kg	20	29	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	99	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	39	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	39	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	100	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	130	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 10/11/2017 (continued)

			BH111_1.3-1.4	QD1	QD2
			SOIL	SOIL	SOIL
			7/11/2017	6/11/2017	7/11/2017
PARAMETER	UOM	LOR	SE172349.016	SE172349.017	SE172349.018
TRH C10-C14	mg/kg	20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			7/11/2017	7/11/2017		6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	0.1	0.1	0.3
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthylene	mg/kg	0.1	<0.1	0.2	1.9	2.0	2.7
Acenaphthene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	0.3
Fluorene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	0.5
Phenanthrene	mg/kg	0.1	0.1	0.1	2.4	1.5	7.3
Anthracene	mg/kg	0.1	<0.1	0.1	1.8	1.6	2.9
Fluoranthene	mg/kg	0.1	0.7	0.9	8.4	6.5	13
Pyrene	mg/kg	0.1	0.7	1.0	9.6	7.2	13
Benzo(a)anthracene	mg/kg	0.1	0.4	0.6	6.0	5.1	8.1
Chrysene	mg/kg	0.1	0.4	0.6	4.9	3.8	6.2
Benzo(b&j)fluoranthene	mg/kg	0.1	0.6	1.2	12	7.9	10
Benzo(k)fluoranthene	mg/kg	0.1	0.3	0.3	2.8	3.0	4.3
Benzo(a)pyrene	mg/kg	0.1	0.5	0.9	8.9	7.0	8.7
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.4	0.8	6.8	5.1	5.9
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.1	1.1	0.9	1.0
Benzo(ghi)perylene	mg/kg	0.1	0.4	0.8	6.1	4.7	5.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0.7</td><td>1.4</td><td>13</td><td>10</td><td>13</td></lor=0<>	TEQ	0.2	0.7	1.4	13	10	13
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.8</td><td>1.4</td><td>13</td><td>10</td><td>13</td></lor=lor<>	TEQ (mg/kg)	0.3	0.8	1.4	13	10	13
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.7</td><td>1.4</td><td>13</td><td>10</td><td>13</td></lor=lor>	TEQ (mg/kg)	0.2	0.7	1.4	13	10	13
Total PAH (18)	mg/kg	0.8	4.5	7.7	72	56	88
Total PAH (NEPM/WHO 16)	mg/kg	0.8	4.5	7.7	72	56	88

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- 5012	- 5012	- SOIL	- SOIL
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	2.0	0.8	0.1	0.3	0.8
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	1.1	1.1	0.7	0.2	0.8
Anthracene	mg/kg	0.1	1.4	0.7	0.2	0.2	0.7
Fluoranthene	mg/kg	0.1	5.0	3.4	1.3	1.0	3.7
Pyrene	mg/kg	0.1	5.2	4.0	1.3	1.1	4.0
Benzo(a)anthracene	mg/kg	0.1	4.3	2.7	0.7	0.8	2.6
Chrysene	mg/kg	0.1	3.2	2.1	0.7	0.7	2.1
Benzo(b&j)fluoranthene	mg/kg	0.1	7.0	4.5	1.0	1.6	4.4
Benzo(k)fluoranthene	mg/kg	0.1	2.4	1.0	0.4	0.4	1.2
Benzo(a)pyrene	mg/kg	0.1	6.1	3.7	0.9	1.3	3.4
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	4.5	2.7	0.7	1.1	2.5
Dibenzo(ah)anthracene	mg/kg	0.1	0.8	0.5	0.1	0.2	0.4
Benzo(ghi)perylene	mg/kg	0.1	4.1	2.4	0.7	1.0	2.4
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>8.8</td><td>5.3</td><td>1.3</td><td>1.8</td><td>5.0</td></lor=0<>	TEQ	0.2	8.8	5.3	1.3	1.8	5.0
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>8.8</td><td>5.3</td><td>1.3</td><td>1.8</td><td>5.0</td></lor=lor<>	TEQ (mg/kg)	0.3	8.8	5.3	1.3	1.8	5.0
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>8.8</td><td>5.3</td><td>1.3</td><td>1.8</td><td>5.0</td></lor=lor>	TEQ (mg/kg)	0.2	8.8	5.3	1.3	1.8	5.0
Total PAH (18)	mg/kg	0.8	47	29	8.7	9.9	29
Total PAH (NEPM/WHO 16)	mg/kg	0.8	47	29	8.7	9.9	29

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/11/2017 (continued)

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	7/11/2017
PARAMETER	UOM	LOR	SE172349.011	SE172349.012	SE172349.013	SE172349.014	SE172349.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	0.3
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	0.8
Pyrene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	0.9
Benzo(a)anthracene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	0.6
Chrysene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.4
Benzo(b&j)fluoranthene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	0.9
Benzo(k)fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	0.3
Benzo(a)pyrene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.7
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.6
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.5
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0.4</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.9</td></lor=0<>	TEQ	0.2	0.4	<0.2	<0.2	<0.2	0.9
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.5</td><td><0.3</td><td><0.3</td><td><0.3</td><td>1.0</td></lor=lor<>	TEQ (mg/kg)	0.3	0.5	<0.3	<0.3	<0.3	1.0
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.5</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.0</td></lor=lor>	TEQ (mg/kg)	0.2	0.5	<0.2	<0.2	<0.2	1.0
Total PAH (18)	mg/kg	0.8	3.3	<0.8	<0.8	<0.8	6.2
Total PAH (NEPM/WHO 16)	mg/kg	0.8	3.0	<0.8	<0.8	<0.8	6.2

			BH111_1.3-1.4
PARAMETER	UOM	LOR	SOIL - 7/11/2017
Naphthalene	mg/kg	0.1	SE172349.016 <0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	-
		-	0.2
Acenaphthene	mg/kg	0.1	
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	0.1
Fluoranthene	mg/kg	0.1	0.5
Pyrene	mg/kg	0.1	0.6
Benzo(a)anthracene	mg/kg	0.1	0.4
Chrysene	mg/kg	0.1	0.3
Benzo(b&j)fluoranthene	mg/kg	0.1	0.7
Benzo(k)fluoranthene	mg/kg	0.1	0.3
Benzo(a)pyrene	mg/kg	0.1	0.6
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.5
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0.7</td></lor=0<>	TEQ	0.2	0.7
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.8</td></lor=lor<>	TEQ (mg/kg)	0.3	0.8
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.8</td></lor=lor>	TEQ (mg/kg)	0.2	0.8
Total PAH (18)	mg/kg	0.8	4.4
Total PAH (NEPM/WHO 16)	mg/kg	0.8	4.4

ANALYTICAL RESULTS

SE172349 R0

OC Pesticides in Soil [AN420] Tested: 10/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			7/11/2017	7/11/2017		6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 10/11/2017 (continued)

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 10/11/2017 (continued)

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/11/2017	- 6/11/2017	- 6/11/2017	- 6/11/2017	- 7/11/2017
PARAMETER	UOM	LOR	SE172349.011	SE172349.012	SE172349.013	SE172349.014	SE172349.015
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 10/11/2017 (continued)

			BH111_1.3-1.4
			SOIL
			- 7/11/2017
PARAMETER	UOM	LOR	SE172349.016
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 10/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
		100	SOIL - 7/11/2017	SOIL - 7/11/2017	SOIL - 7/11/2017	SOIL - 6/11/2017	SOIL - 6/11/2017
PARAMETER Dichlorvos	UOM	LOR 0.5	SE172349.001 <0.5	SE172349.002 <0.5	SE172349.003 <0.5	SE172349.004 <0.5	SE172349.005 <0.5
Direthoate	mg/kg mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/11/2017	- 6/11/2017	- 6/11/2017	- 6/11/2017	- 6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
PARAMETER	UOM	LOR	SOIL - 6/11/2017 SE172349.011	SOIL - 6/11/2017 SE172349.012	SOIL - 6/11/2017 SE172349.013	SOIL - 6/11/2017 SE172349.014	SOIL - 7/11/2017 SE172349.015
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

OP Pesticides in Soil [AN420] Tested: 10/11/2017 (continued)

			BH111_1.3-1.4
			SOIL
			7/11/2017
PARAMETER	UOM	LOR	SE172349.016
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

PCBs in Soil [AN420] Tested: 10/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL - 7/44/0047	SOIL -	SOIL
PARAMETER	UOM	LOR	7/11/2017 SE172349.001	7/11/2017 SE172349.002	7/11/2017 SE172349.003	6/11/2017 SE172349.004	6/11/2017 SE172349.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 6/11/2017 SE172349.006	SOIL - 6/11/2017 SE172349.007	SOIL - 6/11/2017 SE172349.008	SOIL - 6/11/2017 SE172349.009	SOIL - 6/11/2017 SE172349.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
PARAMETER	UOM	LOR	SOIL - 6/11/2017 SE172349.011	SOIL - 6/11/2017 SE172349.012	SOIL - 6/11/2017 SE172349.013	SOIL - 6/11/2017 SE172349.014	SOIL - 7/11/2017 SE172349.015
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

PCBs in Soil [AN420] Tested: 10/11/2017 (continued)

			BH111_1.3-1.4
			SOIL
			- 7/11/2017
PARAMETER	UOM	LOR	SE172349.016
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

ANALYTICAL RESULTS

SE172349 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 13/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 7/11/2017	- 7/11/2017	- 7/11/2017	- 6/11/2017	- 6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
Arsenic, As	mg/kg	3	8	49	37	20	90
Cadmium, Cd	mg/kg	0.3	<0.3	0.8	0.6	<0.3	1.4
Chromium, Cr	mg/kg	0.3	23	19	17	14	30
Copper, Cu	mg/kg	0.5	26	26	29	22	24
Lead, Pb	mg/kg	1	42	36	39	27	52
Nickel, Ni	mg/kg	0.5	11	9.4	6.2	7.6	18
Zinc, Zn	mg/kg	0.5	75	100	110	100	200

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	6/11/2017 SE172349.006	6/11/2017 SE172349.007	6/11/2017 SE172349.008	6/11/2017 SE172349.009	6/11/2017 SE172349.010
Arsenic, As	mg/kg	3	21	19	5	12	14
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	16	19	18	16	16
Copper, Cu	mg/kg	0.5	28	21	39	27	37
Lead, Pb	mg/kg	1	29	23	21	27	30
Nickel, Ni	mg/kg	0.5	6.9	5.7	28	10	11
Zinc, Zn	mg/kg	0.5	71	36	78	51	69

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	7/11/2017
PARAMETER	UOM	LOR	SE172349.011	SE172349.012	SE172349.013	SE172349.014	SE172349.015
Arsenic, As	mg/kg	3	4	4	7	<3	13
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	8.1	9.4	11	7.9	12
Copper, Cu	mg/kg	0.5	53	45	33	38	33
Lead, Pb	mg/kg	1	26	20	21	12	28
Nickel, Ni	mg/kg	0.5	25	48	20	52	15
Zinc, Zn	mg/kg	0.5	96	110	52	84	87

			BH111_1.3-1.4	QD1	QD2
			SOIL	SOIL	SOIL
			- 7/11/2017	- 6/11/2017	- 7/11/2017
PARAMETER	UOM	LOR	SE172349.016	SE172349.017	SE172349.018
Arsenic, As	mg/kg	3	23	15	10
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	16	14	22
Copper, Cu	mg/kg	0.5	26	31	31
Lead, Pb	mg/kg	1	27	27	57
Nickel, Ni	mg/kg	0.5	4.4	11	11
Zinc, Zn	mg/kg	0.5	57	68	100

Mercury in Soil [AN312] Tested: 13/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			7/11/2017	7/11/2017		6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	7/11/2017
PARAMETER	UOM	LOR	SE172349.011	SE172349.012	SE172349.013	SE172349.014	SE172349.015
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH111_1.3-1.4	QD1	QD2
			SOIL	SOIL	SOIL
					-
			7/11/2017	6/11/2017	7/11/2017
PARAMETER	UOM	LOR	SE172349.016	SE172349.017	SE172349.018
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05

Moisture Content [AN002] Tested: 13/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			7/11/2017	7/11/2017		6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
% Moisture	%w/w	0.5	13	14	14	17	9.4

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/11/2017	- 6/11/2017	- 6/11/2017	- 6/11/2017	- 6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
% Moisture	%w/w	0.5	15	14	11	12	11

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	7/11/2017
PARAMETER	UOM	LOR	SE172349.011	SE172349.012	SE172349.013	SE172349.014	SE172349.015
% Moisture	%w/w	0.5	6.0	11	15	11	10

			BH111_1.3-1.4	QD1	QD2	QTB1
			SOIL	SOIL	SOIL	SOIL
			- 7/11/2017	- 6/11/2017	- 7/11/2017	- 6/11/2017
PARAMETER	UOM	LOR	SE172349.016	SE172349.017	SE172349.018	SE172349.021
% Moisture	%w/w	0.5	16	11	13	<0.5

Fibre Identification in soil [AN602] Tested: 14/11/2017

			BH101_0.2-0.3	BH102_0.2-0.3	BH102_1.0-1.1	BH103M_0.2-0.3	BH103M_0.8-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			7/11/2017	7/11/2017		6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.001	SE172349.002	SE172349.003	SE172349.004	SE172349.005
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH104_0.2-0.3	BH104_1.2-1.3	BH105_0.2-0.3	BH106_0.3-0.4	BH107_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	6/11/2017
PARAMETER	UOM	LOR	SE172349.006	SE172349.007	SE172349.008	SE172349.009	SE172349.010
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH108_0.2-0.3	BH109M_0.2-0.3	BH109M_0.8-0.9	BH110_0.2-0.3	BH111_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/11/2017	6/11/2017	6/11/2017	6/11/2017	7/11/2017
PARAMETER	UOM	LOR	SE172349.011	SE172349.012	SE172349.013	SE172349.014	SE172349.015
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH111_1.3-1.4
			SOIL
			7/11/2017
PARAMETER	UOM	LOR	SE172349.016
Asbestos Detected	No unit	-	No
Estimated Fibres*	%w/w	0.01	<0.01

VOCs in Water [AN433] Tested: 10/11/2017

			QR1
PARAMETER	UOM	LOR	WATER - 6/11/2017 SE172349.019
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 10/11/2017

			QR1
			WATER
			6/11/2017
PARAMETER	UOM	LOR	SE172349.019
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

ANALYTICAL RESULTS

SE172349 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 9/11/2017

			QR1
PARAMETER	UOM	LOR	WATER - 6/11/2017 SE172349.019
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16 (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 (F2) - Naphthalene	µg/L	60	<60

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 9/11/2017

			QR1
			WATER - 6/11/2017
PARAMETER	UOM	LOR	SE172349.019
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	μg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 15/11/2017

			QR1
			WATER
			- 6/11/2017
PARAMETER	UOM	LOR	SE172349.019
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602 The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and ifno trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (a) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in (b) asbestos-containing materials are found to be less than 0.1g/kg: and these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under (c) stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC %20Plan pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	Alejandra Beltran	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone Facsimile Email	61 2 95160722 (Not specified) Alejandra.beltran@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com	
Project Order Number Samples	E23602 1 Murray Rose Ave Sydney Oly Park E23602 16	SGS Reference Date Received Date Reported	SE172349 R0 08 Nov 2017 15 Nov 2017	

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifiers Yusuf Kuthpudin and Ravee Sivasubramaniam .

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

 $\mathcal{O}_{\mathcal{N}}$

Bennet Lo Senior Organic Chemist/Metals Chemis

kmln

Ly Kim Ha Organic Section Head

Dogto

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Australia

Australia

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identifica	ation in soil				Method AN	602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w
SE172349.001	BH101_0.2-0.3	Soil	74g Clay, Soil, Rocks	07 Nov 2017	No Asbestos Found	<0.01
SE172349.002	BH102_0.2-0.3	Soil	95g Clay, Sand, Soil, Rocks	07 Nov 2017	No Asbestos Found	<0.01
SE172349.003	BH102_1.0-1.1	Soil	108g Clay, Sand, Soil, Rocks	07 Nov 2017	No Asbestos Found	<0.01
SE172349.004	BH103M_0.2-0.3	Soil	182g Clay, Sand, Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.005	BH103M_0.8-0.9	Soil	140g Clay, Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.006	BH104_0.2-0.3	Soil	115g Clay, Sand, Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.007	BH104_1.2-1.3	Soil	72g Clay, Sand, Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.008	BH105_0.2-0.3	Soil	149g Clay, Sand, Soil, Rocks	06 Nov 2017	No Asbestos Found Organic Fibres Detected	<0.01
SE172349.009	BH106_0.3-0.4	Soil	129g Clay, Sand, Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.010	BH107_0.2-0.3	Soil	101g Clay, Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.011	BH108_0.2-0.3	Soil	156g Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.012	BH109M_0.2-0.3	Soil	166g Clay, Sand, Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.013	BH109M_0.8-0.9	Soil	143g Clay, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.014	BH110_0.2-0.3	Soil	151g Clay, Sand, Soil, Rocks	06 Nov 2017	No Asbestos Found	<0.01
SE172349.015	BH111_0.3-0.4	Soil	82g Clay, Sand, Soil, Rocks	07 Nov 2017	No Asbestos Found	<0.01
SE172349.016	BH111_1.3-1.4	Soil	74g Clay, Rocks	07 Nov 2017	No Asbestos Found	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

FOOTNOTES -

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	BORATORY DETAILS		
Contact	Alejandra Beltran	Manager	Huong Crawford		
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental		
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015		
Telephone Facsimile Email	61 2 95160722 (Not specified) Alejandra.beltran@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com		
Project Order Number Samples	E23602 Murray Rose Ave Sydney Oly Park A E23602 21	SGS Reference Date Received Date Reported	SE172349A R0 16/11/2017 21/11/2017		

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES -

lung

Huong Crawford Production Manager

Kamrul Ahsan Senior Chemist

kmln

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 f +61 2 8594 0499 Australia Australia

www.sgs.com.au

TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC [AN006] Tested: 16/11/2017

			BH102_1.0-1.1	BH103M_0.8-0.9
PARAMETER	UOM	LOR	SOIL - 7/11/2017 SE172349A.003	SOIL - 6/11/2017 SE172349A.005
pH 1:20	pH Units	-	6.2	7.3
pH 1:20 plus HCL	pH Units	-	1.7	1.7
Extraction Solution Used	No unit	-	1	1
Mass of Sample Used*	g	-	25	25
Volume of ExtractionSolution Used*	mL	-	500	500
pH TCLP after 18 hours	pH Units	-	4.9	5.0

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract [AN420] Tested: 17/11/2017

			BH102_1.0-1.1	BH103M_0.8-0.9
			SOIL	SOIL
			- 7/11/2017	- 6/11/2017
PARAMETER	UOM	LOR	SE172349A.003	SE172349A.005
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1

TCLP (Toxicity Characteristic Leaching Procedure) for Metals [AN006] Tested: 16/11/2017

			BH110_0.2-0.3
			SOIL - 6/11/2017
PARAMETER	UOM	LOR	SE172349A.014
pH 1:20	pH Units	-	8.9
pH 1:20 plus HCL	pH Units	-	1.8
Extraction Solution Used	No unit	-	1
Mass of Sample Used*	g	-	13
Volume of ExtractionSolution Used*	mL	-	250
pH TCLP after 18 hours	pH Units	-	5.1

Metals in TCLP Extract by ICPOES [AN320] Tested: 17/11/2017

			BH110_0.2-0.3
			SOIL
			- 6/11/2017
PARAMETER	UOM	LOR	SE172349A.014
Nickel, Ni	mg/L	0.005	0.072

METHOD	METHODOLOGY SUMMARY
AN006	Contaminants of interest in a waste material are leached out of the waste with a selected leaching solution under controlled conditions. The ratio of sample to extraction fluid is 100g to 2L (1 to 20 by mass). The concentration of each contaminant of interest is determined in the leachate by appropriate methods after separation from the sample by filtering. Base on USEPA 1311.
AN006	Extraction Fluid #1: This fluid is made by combining 128.6mL of dilute sodium hydroxide solution and 11.5mL glacial acetic acid with water and diluting to a volume of 2 litres. The pH of this fluid should be 4.93 ± 0.05.
AN006	Extraction Fluid #2: This fluid is made by diluting 5.7mL glacial acetic acid with water to a volume of 1 litre. The pH of this fluid should be 2.88 ± 0.05.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

FOOTNOTES

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 179479

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23602, Sydney Olympic Park
Number of Samples	2 soil
Date samples received	08/11/2017
Date completed instructions received	08/11/2017

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	16/11/2017				
Date of Issue	13/11/2017				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Long Pham, Team Leader, Metals Steven Luong, Senior Chemist

Authorised By

کھ

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		179479-1	179479-2
Your Reference	UNITS	QT1	QT2
Date Sampled		6/11/2017	7/11/2017
Type of sample		soil	soil
Date extracted	-	10/11/2017	10/11/2017
Date analysed	-	13/11/2017	13/11/2017
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	107	96

svTRH (C10-C40) in Soil			
Our Reference		179479-1	179479-2
Your Reference	UNITS	QT1	QT2
Date Sampled		6/11/2017	7/11/2017
Type of sample		soil	soil
Date extracted	-	10/11/2017	10/11/2017
Date analysed	-	10/11/2017	10/11/2017
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C10 -C16	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	103	97

Acid Extractable metals in soil			
Our Reference		179479-1	179479-2
Your Reference	UNITS	QT1	QT2
Date Sampled		6/11/2017	7/11/2017
Type of sample		soil	soil
Date prepared	-	10/11/2017	10/11/2017
Date analysed	-	10/11/2017	10/11/2017
Arsenic	mg/kg	13	7
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	17	19
Copper	mg/kg	25	22
Lead	mg/kg	25	46
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	11	10
Zinc	mg/kg	54	70

Moisture			
Our Reference		179479-1	179479-2
Your Reference	UNITS	QT1	QT2
Date Sampled		6/11/2017	7/11/2017
Type of sample		soil	soil
Date prepared	-	10/11/2017	10/11/2017
Date analysed	-	13/11/2017	13/11/2017
Moisture	%	11	14

Method ID	_ Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate Spike Reco			covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			10/11/2017	[NT]		[NT]	[NT]	10/11/2017	
Date analysed	-			13/11/2017	[NT]		[NT]	[NT]	13/11/2017	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	103	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	103	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	95	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	103	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	105	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	107	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	103	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	113	[NT]		[NT]	[NT]	112	

QUALITY CO	NTROL: svT	RH (C10-		Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			10/11/2017	[NT]		[NT]	[NT]	10/11/2017	
Date analysed	-			10/11/2017	[NT]		[NT]	[NT]	10/11/2017	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	101	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	101	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	101	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	101	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106	
Surrogate o-Terphenyl	%		Org-003	97	[NT]	[NT]	[NT]	[NT]	100	[NT]

QUALITY CONT	ROL: Acid E	Extractabl		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			10/11/2017	[NT]	[NT]	[NT]	[NT]	10/11/2017	
Date analysed	-			10/11/2017	[NT]	[NT]	[NT]	[NT]	10/11/2017	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	[NT]	[NT]	100	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	[NT]	[NT]	99	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	101	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	100	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	101	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	[NT]	[NT]	108	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	96	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	98	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

APPENDIX I QA/QC Assessment

I1 QUALITY CONTROL PROGRAM

I1.1 PROJECT QA/QC PROTOCOLS

The overall quality assurance comprises an assessment of the reliability of the field procedures and the laboratory results against standard industry practices, documented sampling and analysis plans or remediation action plans. A summary of the project QA/QC protocols to be followed during the investigation works is presented in **Table I-1**.

Task	Description	Project						
Field QA/QC								
General	Work was undertaken following standard field procedures which are based on industry accepted standard practice.	Soil samples were placed in 250 gram glass jars, which were filled to minimise headspace, and sealed using Teflon-coated lids.						
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes						
Soil screening with PID	The PID was serviced and calibrated as per the manufacturer requirements. PID calibrated at the beginning and end of each day of fieldwork.	Yes						
Equipment decontamination / Rinsate Samples	Sampling equipment to be decontaminated after the collection of each sample by washing with phosphate- free detergent (such as Decon 90) and potable water, followed by a final distilled	Yes All analytes came back as below LORs. Results are presented in Table I1.1.1 .						
	water rinse. One rinsate blank would be collected per sampling event and analysed for the primary contaminants.							
	All results should be non-detect.							
Transport	Samples were stored in ice-brick cooled cooler box and transported to the primary and secondary laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation, and transport duration.	Yes						
Field Duplicates Field duplicates are samples that are split in the field and subsequently analysed. The results from these samples are compared to results from		Field Duplicates QD1, QD2/QT1, QT2 of primary sample BH107M_0.2-0.3 & BH101_0.2-0.3. The assessment of the blind field duplicates (BFD) and interlab duplicates (ILD) are presented in Table I1.1.1 .						

Table I-1 QA/QC Protocols

Task	Description	Project					
Trip Blanks	Trip blank samples were prepared and analysed by the primary laboratory for BTEX and naphthalene. Analytical results for trip blank samples below the laboratory PQLs, indicate that ideal sample transport and handling conditions are achieved.	Yes					
Trip Spikes	Trip spike samples were prepared and analysed by the primary laboratory for BTEX. Acceptance criteria of BTEX spike recoveries are between 70% - 130%.	Yes					
QA samples	Field and laboratory QA samples will be analysed as follows:	Yes					
	intra-laboratory and inter-laboratory duplicate samples will be collected at a rate of 1 pair per 20 primary samples						
Laboratory QA/	QC						
Laboratory analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC	Yes SGS - primary laboratory Envirolab - secondary laboratory					
	programs	The laboratory QA/QC reports are included in Appendix J.					
	Appropriate detection limits were used for the analyses to be undertaken.	Practical Quantitation Limits for all tested parameters during the assessment are presented in laboratory result tables.					
	Methods followed are generally in accordance with the requirements of NEPM (2013).	Yes					
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be completed within standard guidelines.	All samples were analysed within holding times.					
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These sub- samples are selected by the laboratory to assess the accuracy and precision of the analytical method.	The Laboratory duplicate samples for the soil showed calculated RPDs were within acceptable ranges and conformed to the DAC.					
	The selected laboratories should undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intra-laboratory duplicates should be performed at a frequency of 1 per 10 samples.						

Task	Description	Project
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical run.	The recoveries of Laboratory Control Samples for the analysis batches were within acceptable ranges.
Matrix Spikes / Matrix Spike Duplicates (MS/MSD)	MS/MSDs are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	Soil: Matrix spike and matrix spike duplicate for the analysis batches were within acceptable range.
Surrogate Spikes	Surrogate spikes provide a means of checking, for every analysis that no gross errors have occurred at any stage of the procedure leading to significant analyte loss. Recoveries should be within the stated laboratory control limits of 70 to 130%.	Surrogate spikes for the analysis batches were within acceptable ranges.
QA/QC Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	El considers that the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

11.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_o - C_R|}{[(C_o + C_R)/2]} \times 100$$

Where:

 C_0 = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:

- Results are less than 10 times the limits of reporting (LOR);
- Results are less than 20 times the LOR and the RPD is less than 50%; or
- Heterogeneous materials or volatile compounds are encountered.

In cases where RPD value was considered unacceptable, the analytical results of primary and duplicate samples were both reviewed against the adopted assessment criteria. If the review indicates the variations in data between the primary and duplicate samples would result in a different conclusion (e.g. the higher concentration is failing the assessment criteria), the need for re-sampling / validation would be considered.

I2 FIELD QA/QC DATA PROGRAM

I2.1 FIELD QA SAMPLING PROGRAM

The field quality assurance/quality control (QA/QC) samples collected during the investigation works are summarised on **Table I-2.** Inter-lab duplicates were analysed by the secondary laboratory, Envirolab. Analytical results of the Field QA samples are tabulated in **Table I-1.1.1**, alongside calculated RPDs between the primary and field duplicate samples.

Activity	Matrix	trix No. Primary Primary Samples Sample ID		Intra-Lab/Inter- Lab Duplicate ID	No. of Duplicates	Duplicate Ratio					
Field QA Samples - Duplicates											
Soil Investigation	Soil	16	BH107M_0.2 -0.3 & BH101_0.2- 0.3	QD1 & QD2; QT1 & QT2	4	4:16					
Ground Water Investigation	Water	-	-	-	-	-					
Other Field QA	Samples										
Soil Investigation	Soil		-	QTB1 – Trip blank QTS1 – Trip spike QR1 – Rinsate		-					
Ground Water Investigation	Water		-	-		-					

Table I-2 Field QA Sampling Program

I2.2 Field Data Quality Indicators

A discussion of the field data quality indicators is presented below.

Table I-3 Field Data Quality Indicators

QA/QC Measures	Field Data Quality Indicators	Conformance / Comments
Precision – A quantitative measure of the variability (or reproducibility) of data	Standard operation procedures appropriate and complied with	Yes All results met the assessment criteria.
Completeness – A measure of the	Each critical location sampled	Yes
amount of useable data from a data	Samples collected at targeted locations and depth	Yes

Detailed Site Investigation 1 Murray Rose Avenue, Sydney Olympic Park NSW Report No. E23602.E02.Rev0

QA/QC Measures	Field Data Quality Indicators	Conformance / Comments						
collection activity	SAQP appropriate and complied with	Yes						
	Experienced sampler	Yes						
	Field documentation correct	Yes						
Comparability – The confidence	Same sampling method used on each occasion/location	Yes						
(expressed qualitatively) that data may be	Experienced sampler	Yes						
considered to be equivalent for each sampling and analytical event	Climatic conditions (temperature, rainfall, wind)	Climate conditions were recorded to be raining a storming. These climatic conditions unlikely had significant influence on the results of the investigation.						
	Same type of samples collected (filtered, size, fractions)	Yes						
Representativeness – The confidence	Appropriate media sampled according to SAQP	Yes						
(expressed qualitatively) that data are	Each media identified in SAQP sampled	Yes						
representative of each medium present onsite	Appropriate sample collection methodologies, handling, storage and preservation techniques used	Yes						
	Consistency between field observations and laboratory results.	Yes						
Accuracy – A quantitative measure	Standard operation procedures appropriate and complied with	Yes						
of the closeness of reported data to the "true" value	Calibration of instruments against known standards	Yes						

I2.3 CONCLUSION FOR THE FIELD QA/QC

Based on the above review of the field QA/QC data EI considered the field QA/QC programme carried out during the investigations to be appropriate and the results to be acceptable.

I3 LABORATORY QA/QC

I3.1 LABORATORY ACCREDITATION

Primary and intra-laboratory duplicate samples were analysed by SGS Alexandria Environmental, NSW; inter-laboratory triplicate samples were analysed by Envirolab, Chatswood NSW; all laboratories are accredited by NATA for the analyses undertaken.

A discussion of the laboratory DQIs is presented in Table I-4 below.

Table I-4 Lab Data Quality Indicators

QA/QC Measures	Laboratory Data Quality Indicators	Conformance/Comments				
Completeness – A measure of the amount of useable data from a data collection activity.	All critical samples analysed according to SAQP and proposal	Yes				
a data collection activity	All analytes analysed according to SAQP in proposal	Yes				
	Appropriate methods and PQLs	Yes				
	Sample documentation complete	Yes				
	Sample holding times complied with	Yes				
Comparability – The confidence (expressed	Same sample analytical methods used (including clean-up)	Yes				
qualitatively) that data may be considered to be equivalent for	Same Sample PQLs	Yes				
each sampling and analytical event	Same laboratories (NATA-accredited)	Yes				
	Same units	Yes				
Representativeness – The confidence (expressed	All key samples analysed according to SAQP in the proposal.	Yes				
qualitatively) that data are representative of each medium present onsite	Analysis of laboratory-prepared volatile trip spikes and trip blanks	Yes				
Precision – A quantitative measure of the variability (or	Analysis of laboratory and inter-laboratory duplicates	Yes				
reproducibility) of data	Analysis of field duplicates	Yes				
Accuracy – A quantitative	Analysis of rinsate blanks	Yes				
measure of the closeness of reported data to the "true" value	Analysis of reagent blanks	Not applicable				
	Analysis of method blanks	Yes				
	Analysis of matrix spikes (MS)	Yes				
	Analysis of matrix spike duplicates (MSD)	Yes				
	Analysis of surrogate spikes	Yes				
	Analysis of reference materials	Not applicable				
	Analysis of laboratory control samples	Yes				
	Analysis of laboratory-prepared spikes	Yes				

Overall, it is considered that the laboratory data quality objectives for this project have been attained.

I3.2 CONCLUSIONS ON LAB QA/QC

Based on the laboratory QA/QC results EI considers that although a small number of discrepancies were identified, such as the lead concentrations in the soil sample which displayed the RPD to exceed the 30-50% range referenced from AS4482.1 (2005); these were attributed to the non-homogenous

nature of the submitted samples. The data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

I4 Summary of Project QA/QC

The sampling methods (including sample preservation, transport and decontamination procedures) and laboratory methods followed during this investigation works were mostly consistent with EI protocols and meeting the DQOs for this project. It is therefore considered that the data is sufficiently precise and accurate and that the results can be relied upon for interpretation.

Table I-1.1.1 Summary of QA/QC Results for Soil Validation Samples

Site: 1 Murray Rose Avenue, Sydney Olympic Park

Job No: E23602.E02

				TF	RH			BT	ΈX					Heavy	Metals			
Date	Sample Identification	Description	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborate	ory Duplicate			-			-		-	-	-					-		
	BH107M_0.2-0.3	· · · · · ·	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	14	<0.3	16	37	30	< 0.05	11	69
06-11-17	QD1	Intra-laboratory duplicate of BH107M_0.2-0.3	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	15	<0.3	14	31	27	< 0.05	11	68
RPD		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.90	0.00	13.33	17.65	10.53	0.00	0.00	1.46	
Intra-laboratory Duplicate								-	-			-						
07-11-17	BH101_0.2-0.3	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	8	<0.3	23	26	42	< 0.05	11	75
07-11-17	QD2	Intra-laboratory duplicate of BH101_0.2-0.3	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	10	<0.3	22	31	57	< 0.05	11	100
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	22.22	0.00	4.44	17.54	30.30	0.00	0.00	28.57
Inter-laborate	ory Duplicate																	
06-11-17	BH107M_0.2-0.3	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	14	<0.3	16	37	30	< 0.05	11	69
06-11-17	QT1	Inter-laboratory duplicate of BH107M_0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	13	<0.4	17	25	25	<0.1	11	54
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.06	38.71	18.18	0.00	0.00	24.39
						Inter-labo	oratory Du	olicate										
07-11-17	BH101_0.2-0.3	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	8	<0.3	23	26	42	< 0.05	11	75
07-11-17	QT2	Inter-laboratory duplicate of BH101_0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	7	<0.4	19	22	46	<0.1	10	70
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.05	16.67	9.09	0.00	<i>9.52</i>	6.90
Trip Blanks																		
06-11-17	Trip Blank	Soil	-	-	-	-	[86%]	[89%]	[92%]	NA	-	-	-	-	-	-	-	-
Trip Spikes																		
06-11-17	Trip Spike	Soil	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
Rinsate Blan	-		50	(0)	500	500	0.5	0.5	0.5	4.5		0.4				0.4	-	
06-11-17	QR1	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<]	<(), 1	<]	<]	<]	<().1	<]	<5

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

82.35 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE: All soil results are reported in mg/kg. All water results are reported in µg/L.

F1 = TRH C6-C10 less the sum of BTEX

F2 = TRH >C10-C16 less naphthalene

F3 = TRH >C16-C34

F4 = TRH >C34-C40

APPENDIX J Laboratory QA/AC Policies and DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23602 1 Murray Rose Ave Sydney Oly Park	SGS Reference	SE172348 R1
Order Number	E23602	Date Received	08 Nov 2017
Samples	7	Date Reported	15 Nov 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

Volatile Petroleum Hydrocarbons in Soil

1 item

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	7 Soil	
Date documentation received	8/11/2017	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	7.2°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			
·				

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil							Method:	ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH103M_2.8-2.9	SE172348.001	LB136392	06 Nov 2017	08 Nov 2017	04 Dec 2017	14 Nov 2017	04 Dec 2017	15 Nov 2017
BH104_2.8-2.9	SE172348.002	LB136392	06 Nov 2017	08 Nov 2017	04 Dec 2017	14 Nov 2017	04 Dec 2017	15 Nov 2017
BH105_1.9-2.0	SE172348.003	LB136392	06 Nov 2017	08 Nov 2017	04 Dec 2017	14 Nov 2017	04 Dec 2017	15 Nov 2017
BH109M_1.2-1.3	SE172348.004	LB136392	06 Nov 2017	08 Nov 2017	04 Dec 2017	14 Nov 2017	04 Dec 2017	15 Nov 2017
BH110_1.3-1.4	SE172348.005	LB136392	06 Nov 2017	08 Nov 2017	04 Dec 2017	14 Nov 2017	04 Dec 2017	15 Nov 2017
BH111_2.2-2.3	SE172348.006	LB136392	07 Nov 2017	08 Nov 2017	05 Dec 2017	14 Nov 2017	05 Dec 2017	15 Nov 2017
BH107M_2.0-2.1	SE172348.007	LB136392	06 Nov 2017	08 Nov 2017	04 Dec 2017	14 Nov 2017	04 Dec 2017	15 Nov 2017
Moisture Content							Method:	ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH103M 2.8-2.9	SE172348.001	LB136330		08 Nov 2017				,
BH103M_2.8-2.9 BH104_2.8-2.9	SE172348.001	LB136330	06 Nov 2017 06 Nov 2017	08 Nov 2017	20 Nov 2017 20 Nov 2017	13 Nov 2017 13 Nov 2017	18 Nov 2017 18 Nov 2017	14 Nov 2017 14 Nov 2017
BH104_2.8-2.9 BH105 1.9-2.0	SE172348.002	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017 20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH109M_1.2-1.3	SE172348.004	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH110_1.3-1.4	SE172348.005	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH111_2.2-2.3	SE172348.006	LB136330	07 Nov 2017	08 Nov 2017	21 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH107M 2.0-2.1	SE172348.007	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
		EB130330	001100 2017	00100/2017	20100 2017	131107 2017		
PAH (Polynuclear Aromat	tic Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH103M_2.8-2.9	SE172348.001	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH104_2.8-2.9	SE172348.002	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH105_1.9-2.0	SE172348.003	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH109M_1.2-1.3	SE172348.004	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH110_1.3-1.4	SE172348.005	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH111_2.2-2.3	SE172348.006	LB136303	07 Nov 2017	08 Nov 2017	21 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH107M_2.0-2.1	SE172348.007	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
Total Recoverable Eleme	nts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH103M_2.8-2.9	SE172348.001	LB136304	06 Nov 2017	08 Nov 2017	05 May 2018	13 Nov 2017	05 May 2018	15 Nov 2017
BH104 2.8-2.9	SE172348.002	LB136304	06 Nov 2017	08 Nov 2017	05 May 2018	13 Nov 2017	05 May 2018	15 Nov 2017
BH105_1.9-2.0	SE172348.003	LB136304	06 Nov 2017	08 Nov 2017	05 May 2018	13 Nov 2017	05 May 2018	15 Nov 2017
BH109M_1.2-1.3	SE172348.004	LB136304	06 Nov 2017	08 Nov 2017	05 May 2018	13 Nov 2017	05 May 2018	15 Nov 2017
BH110_1.3-1.4	SE172348.005	LB136304	06 Nov 2017	08 Nov 2017	05 May 2018	13 Nov 2017	05 May 2018	15 Nov 2017
BH111_2.2-2.3	SE172348.006	LB136304	07 Nov 2017	08 Nov 2017	06 May 2018	13 Nov 2017	06 May 2018	15 Nov 2017
BH107M_2.0-2.1	SE172348.007	LB136304	06 Nov 2017	08 Nov 2017	05 May 2018	13 Nov 2017	05 May 2018	15 Nov 2017
TRH (Total Recoverable I	Hydrocarbons) in Soll						Method: I	ME-(AU)-[ENV]AN40
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH103M_2.8-2.9	SE172348.001	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH104 2.8-2.9	SE172348.002	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH105_1.9-2.0	SE172348.003	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH109M_1.2-1.3	SE172348.004	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH110_1.3-1.4	SE172348.005	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH111_2.2-2.3	SE172348.006	LB136303	07 Nov 2017	08 Nov 2017	21 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
BH107M_2.0-2.1	SE172348.007	LB136303	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	23 Dec 2017	15 Nov 2017
VOC's in Soil								ME-(AU)-[ENV]AN43
	Sample No.	OC Bof	Sompled	Paggived	Extraction Due	Extracted		
Sample Name BH103M 2.8-2.9		QC Ref LB136151	Sampled	Received			Analysis Due	Analysed
BH103M_2.8-2.9 BH104 2.8-2.9	SE172348.001	LB136151 LB136151	06 Nov 2017 06 Nov 2017	08 Nov 2017 08 Nov 2017	20 Nov 2017	09 Nov 2017 09 Nov 2017	19 Dec 2017	13 Nov 2017 13 Nov 2017
BH104_2.8-2.9 BH105 1.9-2.0	SE172348.002 SE172348.003	LB136151	06 Nov 2017 06 Nov 2017	08 Nov 2017 08 Nov 2017	20 Nov 2017 20 Nov 2017	09 Nov 2017 09 Nov 2017	19 Dec 2017 19 Dec 2017	13 Nov 2017 13 Nov 2017
BH105_1.9-2.0 BH109M_1.2-1.3	SE172348.003 SE172348.004	LB136151 LB136151	06 Nov 2017 06 Nov 2017	08 Nov 2017 08 Nov 2017	20 Nov 2017 20 Nov 2017		19 Dec 2017 19 Dec 2017	
BH109M_1.2-1.3 BH110_1.3-1.4	SE172348.004 SE172348.005	LB136151	06 Nov 2017 06 Nov 2017	08 Nov 2017 08 Nov 2017	20 Nov 2017 20 Nov 2017	09 Nov 2017 09 Nov 2017	19 Dec 2017 19 Dec 2017	13 Nov 2017 13 Nov 2017
BH110_1.3-1.4 BH111 2.2-2.3	SE172348.005	LB136151	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017
BH107M 2.0-2.1	SE172348.006 SE172348.007	LB136151	07 Nov 2017 06 Nov 2017	08 Nov 2017	21 Nov 2017 20 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017
Volatile Petroleum Hydroc		LD 130131	00 NUV 2017	UO INUV 2017	20 1107 2017	US NUV 2017		13 NOV 2017 ME-(AU)-[ENV]AN43
			Sompled	Poopiusd -	Extraction Due	Extracted		Analysed
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	,
BH103M_2.8-2.9	SE172348.001	LB136151	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017
BH104_2.8-2.9	SE172348.002	LB136151	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017
BH105_1.9-2.0	SE172348.003	LB136151	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil (continued)							Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH109M_1.2-1.3	SE172348.004	LB136151	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017
BH110_1.3-1.4	SE172348.005	LB136151	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017
BH111_2.2-2.3	SE172348.006	LB136151	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017
BH107M_2.0-2.1	SE172348.007	LB136151	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	13 Nov 2017

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	70 - 130%	94
	BH104_2.8-2.9	SE172348.002	%	70 - 130%	96
	BH105_1.9-2.0	SE172348.003	%	70 - 130%	94
	BH109M_1.2-1.3	SE172348.004	%	70 - 130%	94
	BH110_1.3-1.4	SE172348.005	%	70 - 130%	112
	BH111_2.2-2.3	SE172348.006	%	70 - 130%	96
	BH107M_2.0-2.1	SE172348.007	%	70 - 130%	98
114-p-terphenyl (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	70 - 130%	92
	BH104 2.8-2.9	SE172348.002	%	70 - 130%	94
	BH105_1.9-2.0	SE172348.003	%	70 - 130%	106
	BH109M_1.2-1.3	SE172348.004	%	70 - 130%	92
	 BH110_1.3-1.4	SE172348.005	%	70 - 130%	112
	BH111 2.2-2.3	SE172348.006	%	70 - 130%	100
	BH107M_2.0-2.1	SE172348.007	%	70 - 130%	104
5-nitrobenzene (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	70 - 130%	90
	BH104_2.8-2.9	SE172348.002	%	70 - 130%	92
	BH105_1.9-2.0	SE172348.003	%	70 - 130%	90
		SE172348.004	%	70 - 130%	86
	BH109M_1.2-1.3		%		
	BH110_1.3-1.4	SE172348.005		70 - 130%	114
	BH111_2.2-2.3	SE172348.006	%	70 - 130%	92
	BH107M_2.0-2.1	SE172348.007	%	70 - 130%	90
C's in Soll				Method: ME	-(AU)-[ENV]
rameter	Sample Name	Sample Number	Units	Criteria	Recover
omofluorobenzene (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	60 - 130%	83
		SE172348.002	%	60 - 130%	80
	BH105_1.9-2.0	SE172348.003	%	60 - 130%	78
	BH109M_1.2-1.3	SE172348.004	%	60 - 130%	78
	BH110_1.3-1.4	SE172348.005	%	60 - 130%	83
	BH111_2.2-2.3	SE172348.006	%	60 - 130%	80
	BH107M_2.0-2.1	SE172348.007	%	60 - 130%	88
4-1,2-dichloroethane (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	60 - 130%	76
-1,2-dichloroethane (Surrogate)	BH104_2.8-2.9	SE172348.002	%	60 - 130%	85
		SE172348.002	%	60 - 130%	77
	BH105_1.9-2.0				
	BH109M_1.2-1.3	SE172348.004	%	60 - 130%	84
	BH110_1.3-1.4	SE172348.005	%	60 - 130%	77
	BH111_2.2-2.3	SE172348.006	%	60 - 130%	84
	BH107M_2.0-2.1	SE172348.007	%	60 - 130%	92
B-toluene (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	60 - 130%	71
	BH104_2.8-2.9	SE172348.002	%	60 - 130%	73
	BH105_1.9-2.0	SE172348.003	%	60 - 130%	74
	BH109M_1.2-1.3	SE172348.004	%	60 - 130%	77
	BH110_1.3-1.4	SE172348.005	%	60 - 130%	74
	BH111_2.2-2.3	SE172348.006	%	60 - 130%	74
	BH107M_2.0-2.1	SE172348.007	%	60 - 130%	84
bromofluoromethane (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	60 - 130%	74
	BH104_2.8-2.9	SE172348.002	%	60 - 130%	74
	BH105_1.9-2.0	SE172348.003	%	60 - 130%	74
	BH109M_1.2-1.3	SE172348.004	%	60 - 130%	82
	BH110_1.3-1.4	SE172348.005	%	60 - 130%	77
	BH111_2.2-2.3	SE172348.006	%	60 - 130%	76
	BH107M_2.0-2.1	SE172348.007	%	60 - 130%	84
tile Detroloum Hudrocerbone in Shi	——————				
atile Petroleum Hydrocarbons in Soil				Method: ME	
rameter	Sample Name	Sample Number	Units	Criteria	Recover
romofluorobenzene (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	60 - 130%	83
	BH104_2.8-2.9	SE172348.002	%	60 - 130%	80
	BH105_1.9-2.0	SE172348.003	%	60 - 130%	78
	BH109M_1.2-1.3	SE172348.004	%	60 - 130%	78
	D1103W_1.2-1.3				

BH110_1.3-1.4

BH111 2.2-2.3

BH107M_2.0-2.1

SE172348.005

SE172348.006

SE172348.007

83

80

88

60 - 130%

60 - 130%

60 - 130%

%

%

%

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)				Method: M	ME-(AU)-[ENV]AN433	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %	
d4-1,2-dichloroethane (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	60 - 130%	76	
	BH104_2.8-2.9	SE172348.002	%	60 - 130%	85	
	BH105_1.9-2.0	SE172348.003	%	60 - 130%	77	
	BH109M_1.2-1.3	SE172348.004	%	60 - 130%	84	
	BH110_1.3-1.4	SE172348.005	%	60 - 130%	77	
	BH111_2.2-2.3	SE172348.006	%	60 - 130%	84	
	BH107M_2.0-2.1	SE172348.007	%	60 - 130%	92	
d8-toluene (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	60 - 130%	71	
	BH104_2.8-2.9	SE172348.002	%	60 - 130%	73	
	BH105_1.9-2.0	SE172348.003	%	60 - 130%	74	
	BH109M_1.2-1.3	SE172348.004	%	60 - 130%	77	
	BH110_1.3-1.4	SE172348.005	%	60 - 130%	74	
	BH111_2.2-2.3	SE172348.006	%	60 - 130%	74	
	BH107M_2.0-2.1	SE172348.007	%	60 - 130%	84	
Dibromofluoromethane (Surrogate)	BH103M_2.8-2.9	SE172348.001	%	60 - 130%	74	
	BH104_2.8-2.9	SE172348.002	%	60 - 130%	74	
	BH105_1.9-2.0	SE172348.003	%	60 - 130%	74	
	BH109M_1.2-1.3	SE172348.004	%	60 - 130%	82	
	BH110_1.3-1.4	SE172348.005	%	60 - 130%	77	
	BH111_2.2-2.3	SE172348.006	%	60 - 130%	76	
	BH107M_2.0-2.1	SE172348.007	%	60 - 130%	84	

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB136392.001	Mercury	mg/kg	0.05	<0.05

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

AH (Polynuclear Aromatic Hydrocarbo				od: ME-(AU)-[ENV]A
Sample Number	Parameter	Units	LOR	Result
B136303.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	d5-nitrobenzene (Surrogate)	%	-	84
	2-fluorobiphenyl (Surrogate)	%	-	102
	d14-p-terphenyl (Surrogate)	%	-	118
otal Recoverable Elements in Soil/Was	te Solids/Materials by ICPOES		Method: ME-	(AU)-[ENV]AN040/A
ample Number	Parameter	Units	LOR	Result
B136304.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
RH (Total Recoverable Hydrocarbons)	in Soil		Meth	od: ME-(AU)-[ENV]A
ample Number	Parameter	Units	LOR	Result
B136303.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110
		ig/kg	110	
OC's in Soil			Meth	od: ME-(AU)-[ENV]A

VOC 5 III 30II				WOUT	00. ME-(A0)-[EINV]AN+33
Sample Number		Parameter	Units	LOR	Result
LB136151.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	84
		d4-1,2-dichloroethane (Surrogate)	%	-	89
		d8-toluene (Surrogate)	%	-	91
		Bromofluorobenzene (Surrogate)	%	-	98
	Totals	Total BTEX	mg/kg	0.6	<0.6
Volatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	

METHOD BLANKS

SE172348 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB136151.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	84
		d4-1,2-dichloroethane (Surrogate)	%	-	89
		d8-toluene (Surrogate)	%	-	91

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172347.002	LB136392.018	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE172348.006	LB136392.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172349.001	LB136330.011	% Moisture	%w/w	0.5	13	13	38	4
SE172349.011	LB136330.022	% Moisture	%w/w	0.5	6.0	5.7	47	5
SE172349.021	LB136330.031	% Moisture	%w/w	0.5	<0.5	<0.5	200	0

AH (Polynuclear	Aromatic Hydrocarbons) in So	l de la constante de				Meth	od: ME-(AU)-	(ENVJAN42
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172385.003	LB136303.022	Naphthalene	mg/kg	0.1	0.3	0.25	66	18
		2-methylnaphthalene	mg/kg	0.1	0.11	0.1	66 125 107 38 70 71 31 34 31 32	10
		1-methylnaphthalene	mg/kg	0.1	0.13	0.13	107	0
		Acenaphthylene	mg/kg	0.1	1.38	1.13	38	20
		Acenaphthene	mg/kg	0.1	0.26	0.24	70	8
		Fluorene	mg/kg	0.1	0.2	0.23	77	14
		Phenanthrene	mg/kg	0.1	10	8.74	66 125 107 38 70 77 31 34 31 32 31 32 31 32 31 32 31 32 31 31 31 31 31 31 31 31 31 31 31 31 31 31	13
		Anthracene	mg/kg	0.1	2.86	2.27		23
		Fluoranthene	mg/kg	0.1	18.59	19.16	31	3
		Pyrene	mg/kg	0.1	18.36	18.3	31	0
		Benzo(a)anthracene	mg/kg	0.1	11.75	11.14	31	5
		Chrysene	mg/kg	0.1	8.85	7.89	31	11
		Benzo(b&j)fluoranthene	mg/kg	0.1	15.1	14.12	31	7
		Benzo(k)fluoranthene	mg/kg	0.1	5.99	6.77	32	12
		Benzo(a)pyrene	mg/kg	0.1	12.43	12.01	31	3
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	9.79	9.2	31	6
		Dibenzo(ah)anthracene	mg/kg	0.1	1.14	1.17	66 125 107 38 70 77 31 34 31 32 33	3
		Benzo(ghi)perylene	mg/kg	0.1	7.41	7.04		5
		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>17.9646</td><td>17.4643</td><td>11</td><td>3</td></lor=0<>	TEQ	0.2	17.9646	17.4643	11	3
			TEQ (mg/kg)	0.2	17.9646	17.4643	11	3
		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>17.9646</td><td>17.4643</td><td>12</td><td>3</td></lor=lor<>	TEQ (mg/kg)	0.3	17.9646	17.4643	12	3
		Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg 0.1 0.11 0.1 1 thylnaphthalene mg/kg 0.1 0.13 0.13 1 aphthylene mg/kg 0.1 1.38 1.13 3 aphthene mg/kg 0.1 0.26 0.24 3 aphthene mg/kg 0.1 0.2 0.23 3 anthrene mg/kg 0.1 10 8.74 3 acene mg/kg 0.1 10 8.74 3 acene mg/kg 0.1 10 8.74 3 acene mg/kg 0.1 18.59 19.16 3 acene mg/kg 0.1 18.59 19.16 3 sere mg/kg 0.1 18.36 18.3 3 o(a)(hluoranthene mg/kg 0.1 15.1 14.12 3 o(1, 2.3-cd)pyrene mg/kg 0.1 5.99 6.77 3 o(a)(1, 2.3-cd)pyrene mg/kg 0</td><td>11</td><td>3</td></lor=lor>	mg/kg 0.1 0.11 0.1 1 thylnaphthalene mg/kg 0.1 0.13 0.13 1 aphthylene mg/kg 0.1 1.38 1.13 3 aphthene mg/kg 0.1 0.26 0.24 3 aphthene mg/kg 0.1 0.2 0.23 3 anthrene mg/kg 0.1 10 8.74 3 acene mg/kg 0.1 10 8.74 3 acene mg/kg 0.1 10 8.74 3 acene mg/kg 0.1 18.59 19.16 3 acene mg/kg 0.1 18.59 19.16 3 sere mg/kg 0.1 18.36 18.3 3 o(a)(hluoranthene mg/kg 0.1 15.1 14.12 3 o(1, 2.3-cd)pyrene mg/kg 0.1 5.99 6.77 3 o(a)(1, 2.3-cd)pyrene mg/kg 0	11	3			
		Total PAH (18)	mg/kg	0.8	124.34	120.01	31	4
	Surrog	ates d5-nitrobenzene (Surrogate)	mg/kg	-	0.51	0.54	Criteria % 66 125 107 38 70 77 31 34 31 31 31 31 31 31 31 31 31 31	6
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.55	0.53		4
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.59	0.53		11
otal Recoverable	Elements in Soil/Waste Solids	Materials by ICPOES				Method: ME		N040/AN

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

							· · · · / · · · / · · · / ·	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172347.002	LB136304.019	Arsenic, As	mg/kg	3	4	7	48	41
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.3	20	20	33	3
		Copper, Cu	mg/kg	0.5	15	15	33	5
		Lead, Pb	mg/kg	1	12	12	38	5
		Nickel, Ni	mg/kg	0.5	24	25	32	4
		Zinc, Zn	mg/kg	0.5	49	50	34	1
SE172348.005	LB136304.014	Arsenic, As	mg/kg	3	5	5	51	6
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.3	8.2	8.6	36	5
		Copper, Cu	mg/kg	0.5	23	23	32	2
		Lead, Pb	mg/kg	1	15	16	36	8
		Nickel, Ni	mg/kg	0.5	1.6	2.0	58	18
		Zinc, Zn	mg/kg	0.5	10	11	49	9
TRH (Total Recov	rerable Hydrocarbons) in Soil					Meth	nod: ME-(AU)-	(ENVJAN403
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172385.003	LB136303.014	TRH C10-C14	mg/kg	20	55	34	75	47
		TRH C15-C28	mg/kg	45	222	146	54	41
		TRH C29-C36	mg/kg	45	152	115	64	28

mg/kg

100

0

0

200

TRH C37-C40

0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172385.003	LB136303.014		TRH C10-C36 Total	mg/kg	110	429	295	60	37
			TRH C10-C40 Total (F bands)	mg/kg	210	398	272	93	38
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	64	40	78	46
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	64	40	78	46
			TRH >C16-C34 (F3)	mg/kg	90	334	232	62	36
			TRH >C34-C40 (F4)	mg/kg	120	44	34	200	0
'OC's in Soil							Mett	nod: ME-(AU)-	[ENV]AI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE172348.004	LB136151.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.6	50	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	5.1	50	19
			d8-toluene (Surrogate)	mg/kg	-	3.8	4.6	50	17
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	4.1	50	5
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
olatile Petroleum	Hydrocarbons in Soi	1					Mett	nod: ME-(AU)-	(ENVJAI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE172348.004	LB136151.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.6	30	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	5.1	30	19
			d8-toluene (Surrogate)	mg/kg	-	3.8	4.6	30	17
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	4.1	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE172379.005	LB136151.025		TRH C6-C10	mg/kg	25	0.21	0	200	0
			TRH C6-C9	mg/kg	20	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	0.07	0.01	30	150 (
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	0.4	0.39	30	3
			d8-toluene (Surrogate)	mg/kg	-	0.38	0.35	30	8
			Bromofluorobenzene (Surrogate)	mg/kg	-	0.46	0.4	30	14
		VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	0.21	#VALUE!	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soll Method: ME							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB136392.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

	-							
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB136303.002		Naphthalene	mg/kg	0.1	4.0	4	60 - 140	99
		Acenaphthylene	mg/kg	0.1	4.1	4	60 - 140	102
		Acenaphthene	mg/kg	0.1	4.0	4	60 - 140	99
		Phenanthrene	mg/kg	0.1	3.8	4	60 - 140	96
		Anthracene	mg/kg	0.1	4.3	4	60 - 140	107
		Fluoranthene	mg/kg	0.1	4.1	4	60 - 140	103
		Pyrene	mg/kg	0.1	4.5	4	60 - 140	112
		Benzo(a)pyrene	mg/kg	0.1	4.0	4	60 - 140	99
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
	Ū	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	106
Fotal Recoverable	Elements in Soil/V	/aste Solids/Materials by ICPOES					ME-(AU)-[ENV	
Sample Number		Parameter	Units	LOR	Result	Expected		Recovery 9
LB136304.002		Arsenic, As	mg/kg	3	52	50	80 - 120	104
		Cadmium, Cd	mg/kg	0.3	53	50	80 - 120	105
		Chromium, Cr	mg/kg	0.3	51	50	80 - 120	102
		Copper, Cu	mg/kg	0.5	52	50	80 - 120	105
		Lead, Pb	mg/kg	1	52	50	80 - 120	105
		Nickel, Ni	mg/kg	0.5	53	50	80 - 120	105
		Zinc, Zn	mg/kg	0.5	53	50	80 - 120	100
RH (Total Recove			iiig/kg	0.5	55		Nethod: ME-(Al	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB136303.002		TRH C10-C14		20	39	40		98
LB130303.002		TRH C15-C28	mg/kg mg/kg	45	<45	40	60 - 140 60 - 140	90
		TRH C13-C28		45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	39	40	60 - 140	98
	TRH F Ballus	TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
		TKH 2034-040 (F4)	mg/kg	120	\$120			
/OC's in Soil Sample Number		Parameter	Units	LOR	Result	Expected	Nethod: ME-(Al Criteria %	
	Maranalia							
LB136151.002	Monocyclic	Benzene	mg/kg	0.1	2.0	2.9	60 - 140	69
	Aromatic	Toluene	mg/kg	0.1	2.2	2.9	60 - 140	75
		Ethylbenzene		0.1	2.2	2.9	60 - 140	77
			mg/kg					
		m/p-xylene	mg/kg	0.2	4.2	5.8	60 - 140	72
		o-xylene	mg/kg mg/kg	0.2 0.1	2.0	2.9	60 - 140	68
	Surrogates	o-xylene Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg	0.2	2.0 3.6	2.9 5	60 - 140 60 - 140	68 72
	Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.2 0.1 -	2.0 3.6 3.8	2.9 5 5	60 - 140 60 - 140 60 - 140	68 72 76
	Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.1 -	2.0 3.6 3.8 4.1	2.9 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140	68 72 76 82
	Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.2 0.1 -	2.0 3.6 3.8	2.9 5 5	60 - 140 60 - 140 60 - 140	68 72 76
/olatile Petroleum I		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.1	2.0 3.6 3.8 4.1	2.9 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140	68 72 76 82 78
<mark>/olatile Petroleum</mark> I Sample Number		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.1 - - - LOR	2.0 3.6 3.8 4.1 3.9 Result	2.9 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Aethod: ME-(Al Criteria %	68 72 76 82 78 J)-[ENV]AN4 Recovery
Sample Number		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.1 - - - - LOR 25	2.0 3.6 3.8 4.1 3.9 Result <25	2.9 5 5 5 5 Expected 24.65	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	68 72 76 82 78 J)-[ENV]AN4 Recovery 88
Sample Number		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units	0.2 0.1 - - - LOR	2.0 3.6 3.8 4.1 3.9 Result	2.9 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Aethod: ME-(Al Criteria %	68 72 76 82 78 J)-[ENV]AN4 Recovery
		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	0.2 0.1 - - - - LOR 25	2.0 3.6 3.8 4.1 3.9 Result <25	2.9 5 5 5 5 Expected 24.65	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Aethod: ME-(AL Criteria % 60 - 140	68 72 76 82 78 J)-[ENV]AN4 Recovery 88
Sample Number	Hydrocarbons in S	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	0.2 0.1 - - - - - 25 20	2.0 3.6 3.8 4.1 3.9 Result <25 <20	2.9 5 5 5 5 5 5 Expected 24.65 23.2	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Aethod: ME-(Al Criteria % 60 - 140 60 - 140	68 72 76 82 78 J)-[ENV]AN4 Recovery 88 72
Sample Number	Hydrocarbons in S	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	0.2 0.1 - - - - - - - 25 20 -	2.0 3.6 3.8 4.1 3.9 Result <25 <20 3.6	2.9 5 5 5 5 Expected 24.65 23.2 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Aethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140	68 72 76 82 78 J)-[ENV]AN4 Recovery 88 72 72
Sample Number	Hydrocarbons in S	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parametor TRH C8-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.1 - - - - - - 25 20 - -	2.0 3.6 3.8 4.1 3.9 Result <25 <20 3.6 3.8	2.9 5 5 5 5 Expected 24.65 23.2 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Aethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	68 72 76 82 78)-[ENV]AN4 Recovery 88 72 72 72 76

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	nod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE172310.001	LB136392.004	Mercury	mg/kg	0.05	0.21	<0.05	0.2	84

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

AH (Polynuciea	r Aromatic Hydrocarbo						INI	ethod: ME-(AU)-	{⊏NV}
C Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
E172348.001	LB136303.021		Naphthalene	mg/kg	0.1	<0.1	4	101	
			2-methylnaphthalene	mg/kg	0.1	<0.1	-	-	
			1-methylnaphthalene	mg/kg	0.1	<0.1	-	-	
			Acenaphthylene	mg/kg	0.1	<0.1	4	95	
			Acenaphthene	mg/kg	0.1	<0.1	4	98	
			Fluorene	mg/kg	0.1	<0.1	-	-	
			Phenanthrene	mg/kg	0.1	<0.1	4	108	
			Anthracene	mg/kg	0.1	<0.1	4	116	
			Fluoranthene	mg/kg	0.1	<0.1	4	116	
			Pyrene	mg/kg	0.1	<0.1	4	109	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-	
			Chrysene	mg/kg	0.1	<0.1	-	-	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	4	109	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td></td></lor=0<>	TEQ	0.2	<0.2	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-	
			Total PAH (18)	mg/kg	0.8	<0.8	-	-	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	-	86	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	-	90	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	82	
H (Total Reco	verable Hydrocarbons) in Soil					M	ethod: ME-(AU)-	-[ENV
C Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
E172348.001	LB136303.021		TRH C10-C14	mg/kg	20	<20	40	115	
			TRH C15-C28	mg/kg	45	<45	40	98	
			TRH C29-C36	mg/kg	45	<45	40	75	
			TRH C37-C40	mg/kg	100	<100	-	-	
			TRH C10-C36 Total	mg/kg	110	<110	-	-	
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	-	-	
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	110	
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	-	
			TRH >C16-C34 (F3)	mg/kg	90	<90	40	85	
			TRH >C34-C40 (F4)	mg/kg	120	<120	-	-	
OC's in Soil								ethod: ME-(AU)-	-IEN\
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Reco
SE172360.001	L B136151 004	Monocyclic	Benzene	ma/ka	0.1	1.9	<0.1	2.9	Nect

QC Sample	Sample Numbe	e r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE172360.001	LB136151.004	Monocyclic	Benzene	mg/kg	0.1	1.9	<0.1	2.9	65
		Aromatic	Toluene	mg/kg	0.1	2.2	<0.1	2.9	74
			Ethylbenzene	mg/kg	0.1	2.2	<0.1	2.9	75
			m/p-xylene	mg/kg	0.2	4.4	<0.2	5.8	75
			o-xylene	mg/kg	0.1	2.2	<0.1	2.9	74
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.7	-	75
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	3.8	-	72
			d8-toluene (Surrogate)	mg/kg	-	3.8	3.8	-	76
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	4.0	-	77
		Totals	Total Xylenes	mg/kg	0.3	6.5	<0.3	-	-
			Total BTEX	mg/kg	0.6	13	<0.6	-	-
Volatile Petroleu	m Hydrocarbons in	Soll					Meth	od: ME-(AU)-[ENV]AN433

Units LOR

QC Sample Sample Number Parameter

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Volatile Petroleu	m Hydrocarbons in So	il (continued)					Meth	od: ME-(AU	J)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE172360.001	LB136151.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	78
			TRH C6-C9	mg/kg	20	<20	<20	23.2	71
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.7	-	75
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	3.8	-	72
			d8-toluene (Surrogate)	mg/kg	-	3.8	3.8	-	76
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	4.0	-	77
		VPH F	Benzene (F0)	mg/kg	0.1	1.9	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	91

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23602 1 Murray Rose Ave Sydney Oly Park	SGS Reference	SE172349 R0
Order Number	E23602	Date Received	08 Nov 2017
Samples	21	Date Reported	15 Nov 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

6 items

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil

Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN602
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2-0.3	SE172349.001	LB136425	07 Nov 2017	08 Nov 2017	07 Nov 2018	14 Nov 2017	07 Nov 2018	15 Nov 2017
BH102_0.2-0.3	SE172349.002	LB136425	07 Nov 2017	08 Nov 2017	07 Nov 2018	14 Nov 2017	07 Nov 2018	15 Nov 2017
BH102_1.0-1.1	SE172349.003	LB136425	07 Nov 2017	08 Nov 2017	07 Nov 2018	14 Nov 2017	07 Nov 2018	15 Nov 2017
BH103M_0.2-0.3	SE172349.004	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH103M_0.8-0.9	SE172349.005	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH104_0.2-0.3	SE172349.006	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH104_1.2-1.3	SE172349.007	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH105_0.2-0.3	SE172349.008	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH106_0.3-0.4	SE172349.009	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH107_0.2-0.3	SE172349.010	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH108_0.2-0.3	SE172349.011	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH109M_0.2-0.3	SE172349.012	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH109M_0.8-0.9	SE172349.013	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH110_0.2-0.3	SE172349.014	LB136425	06 Nov 2017	08 Nov 2017	06 Nov 2018	14 Nov 2017	06 Nov 2018	15 Nov 2017
BH111_0.3-0.4	SE172349.015	LB136425	07 Nov 2017	08 Nov 2017	07 Nov 2018	14 Nov 2017	07 Nov 2018	15 Nov 2017
BH111_1.3-1.4	SE172349.016	LB136425	07 Nov 2017	08 Nov 2017	07 Nov 2018	14 Nov 2017	07 Nov 2018	15 Nov 2017
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]	AN311(Perth)/AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE172349.019	LB136445	06 Nov 2017	08 Nov 2017	04 Dec 2017	15 Nov 2017	04 Dec 2017	15 Nov 2017

fercury in Soil							Method: N	/IE-(AU)-[ENV]AN3 ⁴
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2-0.3	SE172349.001	LB136331	07 Nov 2017	08 Nov 2017	05 Dec 2017	13 Nov 2017	05 Dec 2017	15 Nov 2017
BH102_0.2-0.3	SE172349.002	LB136331	07 Nov 2017	08 Nov 2017	05 Dec 2017	13 Nov 2017	05 Dec 2017	15 Nov 2017
BH102_1.0-1.1	SE172349.003	LB136331	07 Nov 2017	08 Nov 2017	05 Dec 2017	13 Nov 2017	05 Dec 2017	15 Nov 2017
BH103M_0.2-0.3	SE172349.004	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH103M_0.8-0.9	SE172349.005	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH104_0.2-0.3	SE172349.006	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH104_1.2-1.3	SE172349.007	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH105_0.2-0.3	SE172349.008	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH106_0.3-0.4	SE172349.009	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH107_0.2-0.3	SE172349.010	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH108_0.2-0.3	SE172349.011	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH109M_0.2-0.3	SE172349.012	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH109M_0.8-0.9	SE172349.013	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH110_0.2-0.3	SE172349.014	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
BH111_0.3-0.4	SE172349.015	LB136331	07 Nov 2017	08 Nov 2017	05 Dec 2017	13 Nov 2017	05 Dec 2017	15 Nov 2017
BH111_1.3-1.4	SE172349.016	LB136331	07 Nov 2017	08 Nov 2017	05 Dec 2017	13 Nov 2017	05 Dec 2017	15 Nov 2017
QD1	SE172349.017	LB136331	06 Nov 2017	08 Nov 2017	04 Dec 2017	13 Nov 2017	04 Dec 2017	15 Nov 2017
QD2	SE172349.018	LB136331	07 Nov 2017	08 Nov 2017	05 Dec 2017	13 Nov 2017	05 Dec 2017	15 Nov 2017
loisture Content							Method: M	ME-(AU)-[ENV]ANO
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2-0.3	SE172349.001	LB136330	07 Nov 2017	08 Nov 2017	21 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH102_0.2-0.3	SE172349.002	LB136330	07 Nov 2017	08 Nov 2017	21 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH102_1.0-1.1	SE172349.003	LB136330	07 Nov 2017	08 Nov 2017	21 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH103M_0.2-0.3	SE172349.004	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH103M_0.8-0.9	SE172349.005	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH104_0.2-0.3	SE172349.006	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH104_1.2-1.3	SE172349.007	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH105_0.2-0.3	SE172349.008	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH106_0.3-0.4	SE172349.009	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH107_0.2-0.3	SE172349.010	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH108_0.2-0.3	SE172349.011	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
BH109M 0.2-0.3	SE172349.012	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017

08 Nov 2017

08 Nov 2017

08 Nov 2017

08 Nov 2017

20 Nov 2017

20 Nov 2017

21 Nov 2017

21 Nov 2017

13 Nov 2017

13 Nov 2017

13 Nov 2017

13 Nov 2017

18 Nov 2017

18 Nov 2017

18 Nov 2017

18 Nov 2017

BH109M 0.8-0.9

BH110_0.2-0.3

BH111_0.3-0.4

BH111_1.3-1.4

SE172349.013

SE172349.014

SE172349.015

SE172349.016

LB136330

LB136330

LB136330

LB136330

06 Nov 2017

06 Nov 2017

07 Nov 2017

07 Nov 2017

14 Nov 2017

14 Nov 2017

14 Nov 2017

14 Nov 2017

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continue	d)						Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QD1	SE172349.017	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
QD2	SE172349.018	LB136330	07 Nov 2017	08 Nov 2017	21 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
QTB1	SE172349.021	LB136330	06 Nov 2017	08 Nov 2017	20 Nov 2017	13 Nov 2017	18 Nov 2017	14 Nov 2017
OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2-0.3	SE172349.001	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH102_0.2-0.3	SE172349.002	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH102_1.0-1.1	SE172349.003	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH103M_0.2-0.3	SE172349.004	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH103M_0.8-0.9	SE172349.005	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH104_0.2-0.3	SE172349.006	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH104_1.2-1.3	SE172349.007	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH105_0.2-0.3	SE172349.008	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH106_0.3-0.4	SE172349.009	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH107_0.2-0.3	SE172349.010	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH108_0.2-0.3	SE172349.011	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH109M_0.2-0.3	SE172349.012	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH109M_0.8-0.9	SE172349.013	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH110_0.2-0.3	SE172349.014	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH111_0.3-0.4	SE172349.015	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH111_1.3-1.4	SE172349.016	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
QD1	SE172349.017	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
QD2	SE172349.018	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
OP Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2-0.3	SE172349.001	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH102_0.2-0.3	SE172349.002	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH102_1.0-1.1	SE172349.003	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH103M_0.2-0.3	SE172349.004	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH103M_0.8-0.9	SE172349.005	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH104_0.2-0.3	SE172349.006	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH104_1.2-1.3	SE172349.007	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH105_0.2-0.3	SE172349.008	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH106_0.3-0.4	SE172349.009	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH107_0.2-0.3	SE172349.010	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH108_0.2-0.3	SE172349.011	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH109M_0.2-0.3	SE172349.012	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH109M_0.8-0.9	SE172349.013	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH110_0.2-0.3	SE172349.014	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH111_0.3-0.4	SE172349.015	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH111_1.3-1.4	SE172349.016	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
QD1	SE172349.017	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
QD2	SE172349.018	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
PAH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2-0.3	SE172349.001	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH102_0.2-0.3	SE172349.002	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH102_1.0-1.1	SE172349.003	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH103M_0.2-0.3	SE172349.004	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH103M_0.8-0.9	SE172349.005	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH104_0.2-0.3	SE172349.006	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH104_1.2-1.3	SE172349.007	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH105_0.2-0.3	SE172349.008	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH106_0.3-0.4	SE172349.009	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH107_0.2-0.3	SE172349.010	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH108_0.2-0.3	SE172349.011	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH109M_0.2-0.3	SE172349.012	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH109M_0.8-0.9	SE172349.013	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
	JL 172348.013	LD 130100	00 1107 2017	00 100 2017	20 1107 2017	10 1107 2017	20 066 2017	14 NOV 2017

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Analysed QC Ref Sample Name Sample No. Sampled Received Extraction Due Extracted Analysis Due BH110 0.2-0.3 SE172349 014 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH111_0.3-0.4 SE172349.015 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 14 Nov 2017 20 Dec 2017 BH111_1.3-1.4 SE172349.016 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 QD1 SE172349.017 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 QD2 SE172349.018 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 Method: ME-(AU)-IENVIAN420 PCBs in Soil Received Extracted Analysed Sample Name QC Ref Extraction Due Analysis Due Sample No. Sampled BH101 0.2-0.3 SE172349.001 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH102 0.2-0.3 SE172349 002 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH102 1.0-1.1 SE172349.003 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH103M_0.2-0.3 SE172349.004 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH103M_0.8-0.9 SE172349.005 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH104 0.2-0.3 SE172349.006 LB136186 08 Nov 2017 20 Dec 2017 06 Nov 2017 20 Nov 2017 10 Nov 2017 14 Nov 2017 BH104 1.2-1.3 SE172349.007 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH105_0.2-0.3 SE172349.008 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH106 0.3-0.4 SE172349.009 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH107 0 2-0 3 SE172349 010 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH108_0.2-0.3 SE172349.011 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH109M 0.2-0.3 SE172349.012 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH109M_0.8-0.9 SE172349.013 08 Nov 2017 LB136186 06 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH110_0.2-0.3 SE172349.014 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH111 0.3-0.4 SE172349.015 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 BH111_1.3-1.4 SE172349.016 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 OD1 SE172349.017 LB136186 06 Nov 2017 08 Nov 2017 20 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 OD2 SE172349.018 LB136186 07 Nov 2017 08 Nov 2017 21 Nov 2017 10 Nov 2017 20 Dec 2017 14 Nov 2017 Total Recoverable Elements in Soil/Waste Solids/Mate rials by ICPOES Method: ME-(AU)-IENVIAN040/AN320 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH101 0 2-0 3 SE172349 001 LB136302 07 Nov 2017 08 Nov 2017 06 May 2018 13 Nov 2017 06 May 2018 15 Nov 2017 BH102_0.2-0.3 SE172349.002 LB136302 07 Nov 2017 08 Nov 2017 06 May 2018 13 Nov 2017 06 May 2018 15 Nov 2017 BH102_1.0-1.1 SE172349.003 LB136302 07 Nov 2017 08 Nov 2017 06 May 2018 13 Nov 2017 06 May 2018 15 Nov 2017 BH103M_0.2-0.3 SE172349.004 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH103M 0.8-0.9 SE172349.005 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH104 0.2-0.3 SE172349.006 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH104_1.2-1.3 SE172349.007 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 SE172349.008 08 Nov 2017 05 May 2018 BH105 0.2-0.3 LB136302 06 Nov 2017 05 May 2018 13 Nov 2017 15 Nov 2017 BH106 0.3-0.4 SE172349.009 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH107_0.2-0.3 SE172349.010 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH108_0.2-0.3 SE172349.011 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH109M 0.2-0.3 SE172349.012 LB136302 08 Nov 2017 06 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH109M_0.8-0.9 SE172349.013 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH110 0.2-0.3 SE172349.014 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 15 Nov 2017 BH111 0.3-0.4 SE172349.015 LB136302 07 Nov 2017 08 Nov 2017 06 May 2018 13 Nov 2017 06 May 2018 15 Nov 2017 BH111 1.3-1.4 SE172349.016 LB136302 07 Nov 2017 08 Nov 2017 06 May 2018 13 Nov 2017 06 May 2018 15 Nov 2017 15 Nov 2017 QD1 SE172349.017 LB136302 06 Nov 2017 08 Nov 2017 05 May 2018 13 Nov 2017 05 May 2018 QD2 SE172349.018 LB136302 07 Nov 2017 08 Nov 2017 06 May 2018 13 Nov 2017 06 May 2018 15 Nov 2017 Method: ME-(AU)-[ENV]AN318 Trace Metals (Dissolved) in Water by ICPMS

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE172349.019	LB136148	06 Nov 2017	08 Nov 2017	05 May 2018	09 Nov 2017	05 May 2018	10 Nov 2017

TRH (Total Recoverable Hydrocarbons) in Soil

•	· · · · · · · · · · · · · · · · · · ·							· · · · · ·
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2-0.3	SE172349.001	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH102_0.2-0.3	SE172349.002	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH102_1.0-1.1	SE172349.003	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH103M_0.2-0.3	SE172349.004	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH103M_0.8-0.9	SE172349.005	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH104_0.2-0.3	SE172349.006	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017
BH104_1.2-1.3	SE172349.007	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017

Method: ME-(AU)-[ENV]AN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

TRH (Total Recoverable H	Hydrocarbons) in Soil (conti	nued)					Method: I	ME-(AU)-[ENV]AN403			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH105_0.2-0.3	SE172349.008	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
BH106_0.3-0.4	SE172349.009	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
BH107_0.2-0.3	SE172349.010	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
BH108_0.2-0.3	SE172349.011	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
BH109M_0.2-0.3	SE172349.012	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
BH109M_0.8-0.9	SE172349.013	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
BH110_0.2-0.3	SE172349.014	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
BH111_0.3-0.4	SE172349.015	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
BH111_1.3-1.4	SE172349.016	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
QD1	SE172349.017	LB136186	06 Nov 2017	08 Nov 2017	20 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
QD2	SE172349.018	LB136186	07 Nov 2017	08 Nov 2017	21 Nov 2017	10 Nov 2017	20 Dec 2017	14 Nov 2017			
TRH (Total Recoverable H	TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN40										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
QR1	SE172349.019	LB136143	06 Nov 2017	08 Nov 2017	13 Nov 2017	09 Nov 2017	19 Dec 2017	10 Nov 2017			

VOC's in Soil							Method: N	/IE-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2-0.3	SE172349.001	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH102_0.2-0.3	SE172349.002	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH102_1.0-1.1	SE172349.003	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH103M_0.2-0.3	SE172349.004	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH103M_0.8-0.9	SE172349.005	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH104_0.2-0.3	SE172349.006	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH104_1.2-1.3	SE172349.007	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH105_0.2-0.3	SE172349.008	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH106_0.3-0.4	SE172349.009	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH107_0.2-0.3	SE172349.010	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH108_0.2-0.3	SE172349.011	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH109M_0.2-0.3	SE172349.012	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH109M_0.8-0.9	SE172349.013	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH110_0.2-0.3	SE172349.014	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH111_0.3-0.4	SE172349.015	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
BH111_1.3-1.4	SE172349.016	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
QD1	SE172349.017	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
QD2	SE172349.018	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
QTS1	SE172349.020	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
QTB1	SE172349.021	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
VOCs in Water							Method: N	/IE-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE172349.019	LB136361	06 Nov 2017	08 Nov 2017	13 Nov 2017	10 Nov 2017	20 Dec 2017	15 Nov 2017

le Petroleum Hydrocarbons in Soil

Volatile Petroleum Hydrod	Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433												
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed					
BH101_0.2-0.3	SE172349.001	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH102_0.2-0.3	SE172349.002	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH102_1.0-1.1	SE172349.003	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH103M_0.2-0.3	SE172349.004	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH103M_0.8-0.9	SE172349.005	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH104_0.2-0.3	SE172349.006	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH104_1.2-1.3	SE172349.007	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH105_0.2-0.3	SE172349.008	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH106_0.3-0.4	SE172349.009	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH107_0.2-0.3	SE172349.010	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH108_0.2-0.3	SE172349.011	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH109M_0.2-0.3	SE172349.012	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH109M_0.8-0.9	SE172349.013	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH110_0.2-0.3	SE172349.014	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					
BH111_0.3-0.4	SE172349.015	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017					

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Sample Name	Sample NO.	QC Rei	Sallipieu	Receiveu	Extraction Due	Exilacieu	Allalysis Due	Analyseu
BH111_1.3-1.4	SE172349.016	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
QD1	SE172349.017	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
QD2	SE172349.018	LB136136	07 Nov 2017	08 Nov 2017	21 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
QTS1	SE172349.020	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
QTB1	SE172349.021	LB136136	06 Nov 2017	08 Nov 2017	20 Nov 2017	09 Nov 2017	19 Dec 2017	14 Nov 2017
Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[EN							ME-(AU)-[ENV]AN	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE172349.019	LB136361	06 Nov 2017	08 Nov 2017	13 Nov 2017	10 Nov 2017	20 Dec 2017	15 Nov 2017

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OC Pesticides in Soil				Method: MI	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery ^o
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	89
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	93
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	92
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	83
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	93
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	89
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	93
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	91
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	94
	BH107_0.2-0.3	SE172349.010	%	60 - 130%	92
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	91
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	99
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	96
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	95
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	87
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	100
P Pesticides in Soil					E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
					-
2-fluorobiphenyl (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	96
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	94
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	98
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	102
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	96
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	102
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	98
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	92
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	98
	BH107_0.2-0.3	SE172349.010	%	60 - 130%	100
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	100
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	98
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	94
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	96
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	104
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	102
d14-p-terphenyl (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	98
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	96
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	96
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	98
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	94
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	98
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	96
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	90
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	98
	BH107_0.2-0.3	SE172349.010	%	60 - 130%	96
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	98
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	100
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	100
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	100
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	110
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	106
VH (Polynuclear Aromatic Hydrocarbone) in Sail					E-(AU)-[ENV]A
AH (Polynuclear Aromatic Hydrocarbons) in Soil					
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH101_0.2-0.3	SE172349.001	%	70 - 130%	96
	BH102_0.2-0.3	SE172349.002	%	70 - 130%	94
	BH102_1.0-1.1	SE172349.003	%	70 - 130%	98
	BH103M_0.2-0.3	SE172349.004	%	70 - 130%	102
	BH103M_0.8-0.9	SE172349.005	%	70 - 130%	96
	BH104_0.2-0.3	SE172349.006	%	70 - 130%	102
	BH104_1.2-1.3	SE172349.007	%	70 - 130%	98
	BH105_0.2-0.3	SE172349.008	%	70 - 130%	92

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

H (Polynuclear Aromatic Hydrocarbons) in Soil (continued)	Comulation	Comula Number	11	Method: ME	
arameter	Sample Name	Sample Number	Units	Criteria	Recover
fluorobiphenyl (Surrogate)	BH106_0.3-0.4	SE172349.009	%	70 - 130%	98
	BH107_0.2-0.3	SE172349.010	%	70 - 130%	100
	BH108_0.2-0.3	SE172349.011	%	70 - 130%	100
	BH109M_0.2-0.3	SE172349.012	%	70 - 130%	98
	BH109M_0.8-0.9	SE172349.013	%	70 - 130%	94
	BH110_0.2-0.3	SE172349.014	%	70 - 130%	96
	BH111_0.3-0.4	SE172349.015	%	70 - 130%	104
	BH111_1.3-1.4	SE172349.016	%	70 - 130%	102
14-p-terphenyl (Surrogate)	BH101_0.2-0.3	SE172349.001	%	70 - 130%	98
	BH102_0.2-0.3	SE172349.002	%	70 - 130%	96
	BH102_1.0-1.1	SE172349.003	%	70 - 130%	96
	BH103M_0.2-0.3	SE172349.004	%	70 - 130%	98
	BH103M_0.8-0.9	SE172349.005	%	70 - 130%	94
	BH104_0.2-0.3	SE172349.006	%	70 - 130%	98
	BH104_1.2-1.3	SE172349.007	%	70 - 130%	96
	BH105_0.2-0.3	SE172349.008	%	70 - 130%	90
	BH106_0.3-0.4	SE172349.009	%	70 - 130%	98
	BH107_0.2-0.3	SE172349.010	%	70 - 130%	96
	BH108_0.2-0.3	SE172349.011	%	70 - 130%	98
	BH109M_0.2-0.3	SE172349.012	%	70 - 130%	100
	BH109M_0.8-0.9	SE172349.013	%	70 - 130%	100
	BH110_0.2-0.3	SE172349.014	%	70 - 130%	100
	BH111_0.3-0.4	SE172349.015	%	70 - 130%	110
	 BH111_1.3-1.4	SE172349.016	%	70 - 130%	106
5-nitrobenzene (Surrogate)	BH101_0.2-0.3	SE172349.001	%	70 - 130%	96
	BH102_0.2-0.3	SE172349.002	%	70 - 130%	96
			%		
	BH102_1.0-1.1	SE172349.003		70 - 130%	102
	BH103M_0.2-0.3	SE172349.004	%	70 - 130%	106
	BH103M_0.8-0.9	SE172349.005	%	70 - 130%	100
	BH104_0.2-0.3	SE172349.006	%	70 - 130%	108
	BH104_1.2-1.3	SE172349.007	%	70 - 130%	102
	BH105_0.2-0.3	SE172349.008	%	70 - 130%	94
	BH106_0.3-0.4	SE172349.009	%	70 - 130%	100
	BH107_0.2-0.3	SE172349.010	%	70 - 130%	102
	BH108_0.2-0.3	SE172349.011	%	70 - 130%	108
	BH109M_0.2-0.3	SE172349.012	%	70 - 130%	100
	BH109M_0.8-0.9	SE172349.013	%	70 - 130%	94
	BH110_0.2-0.3	SE172349.014	%	70 - 130%	96
	BH111_0.3-0.4	SE172349.015	%	70 - 130%	104
			%	70 - 130%	104
	BH111_1.3-1.4	SE172349.016	70		
Bs in Soil				Method: ME	(AU)-[ENV
irameter	Sample Name	Sample Number	Units	Criteria	Recove
etrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	89
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	93
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	92
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	83
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	93
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	89
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	93
		SE172349.008	%	60 - 130%	91
	BH105 0 2-0 3	32112040.000			94
	BH105_0.2-0.3	SE172340.000			94
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	
	BH106_0.3-0.4 BH107_0.2-0.3	SE172349.010	%	60 - 130%	
	BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3	SE172349.010 SE172349.011	%	60 - 130% 60 - 130%	91
	BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3 BH109M_0.2-0.3	SE172349.010 SE172349.011 SE172349.012	% % %	60 - 130% 60 - 130% 60 - 130%	99
	BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3	SE172349.010 SE172349.011	%	60 - 130% 60 - 130%	91
	BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3 BH109M_0.2-0.3	SE172349.010 SE172349.011 SE172349.012	% % %	60 - 130% 60 - 130% 60 - 130%	91 99
	BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3 BH109M_0.2-0.3 BH109M_0.8-0.9	SE172349.010 SE172349.011 SE172349.012 SE172349.012 SE172349.013	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	91 99 96
	BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3 BH109M_0.2-0.3 BH109M_0.8-0.9 BH110_0.2-0.3	SE172349.010 SE172349.011 SE172349.012 SE172349.013 SE172349.013 SE172349.014	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	91 99 96 95 87
C's in Soll	BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3 BH109M_0.2-0.3 BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4	SE172349.010 SE172349.011 SE172349.012 SE172349.013 SE172349.014 SE172349.015	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	91 99 96 95 87 100

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

/OC's in Soil (continued)				Method: ME	-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	81
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	84
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	83
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	84
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	81
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	88
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	83
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	78
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	83
	BH107_0.2-0.3	SE172349.010	%	60 - 130%	85
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	97
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	81
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	81
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	82
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	85
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	83
	QD1	SE172349.017	%	60 - 130%	84
	QD2	SE172349.018	%	60 - 130%	90
	QTS1	SE172349.020	%	60 - 130%	92
	QTB1	SE172349.021	%	60 - 130%	91
d4-1,2-dichloroethane (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	87
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	72
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	78
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	74
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	79
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	76
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	71
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	72
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	84
	BH107_0.2-0.3	SE172349.010	%	60 - 130%	84
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	71
	 BH109M_0.2-0.3	SE172349.012	%	60 - 130%	78
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	70
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	72
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	71
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	72
	QD1	SE172349.017	%	60 - 130%	70
	QD2	SE172349.018	%	60 - 130%	83
	QTS1	SE172349.020	%	60 - 130%	74
	QTB1	SE172349.021	%	60 - 130%	70
d8-toluene (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	71
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	77
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	74
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	77
	BH103M 0.8-0.9	SE172349.005	%	60 - 130%	71
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	82
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	77
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	75
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	70
	BH107_0.2-0.3	SE172349.009	%	60 - 130%	71
	BH108_0.2-0.3	SE172349.010	%	60 - 130%	76
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	77
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	73
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	74
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	73
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	71
	QD1	SE172349.017	%	60 - 130%	75
	QD2	SE172349.018	%	60 - 130%	74
	QTS1	SE172349.020	%	60 - 130%	79
	QTB1	SE172349.021	%	60 - 130%	76
Dibromofluoromethane (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	77

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

/OC's in Soil (continued)				Method: ME	-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	BH102_0.2-0.3	SE172349.002	%	60 - 130%	74
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	71
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	73
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	73
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	77
	BH104_0.2 0.0 BH104_1.2-1.3	SE172349.007	%	60 - 130%	73
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	73
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	73
		SE172349.010	%	60 - 130%	74
	BH107_0.2-0.3				
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	72
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	72
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	72
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	70
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	74
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	74
	QD1	SE172349.017	%	60 - 130%	71
	QD2	SE172349.018	%	60 - 130%	75
	QTS1	SE172349.020	%	60 - 130%	74
	QTB1	SE172349.021	%	60 - 130%	71
/OCs in Water				Method: ME	-(AU)-[ENV]AN
	Comula Nama	Some la Number	Unite		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Bromofluorobenzene (Surrogate)	QR1	SE172349.019	%	40 - 130%	106
d4-1,2-dichloroethane (Surrogate)	QR1	SE172349.019	%	40 - 130%	96
d8-toluene (Surrogate)	QR1	SE172349.019	%	40 - 130%	96
Dibromofluoromethane (Surrogate)	QR1	SE172349.019	%	40 - 130%	101
olatile Petroleum Hydrocarbons in Soil				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	81
biomonaorobenzene (ourrogate)	BH102_0.2-0.3	SE172349.002	%	60 - 130%	84
		SE172349.002	%	60 - 130%	83
	BH102_1.0-1.1				
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	84
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	81
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	88
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	83
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	78
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	83
	BH107_0.2-0.3	SE172349.010	%	60 - 130%	85
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	97
	BUILDONA 0.2.0.2				
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	81
	BH109M_0.2-0.3 BH109M_0.8-0.9	SE172349.012 SE172349.013	%	60 - 130% 60 - 130%	81 81
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	81
	BH109M_0.8-0.9 BH110_0.2-0.3	SE172349.013 SE172349.014	%	60 - 130% 60 - 130%	81 82
	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4	SE172349.013 SE172349.014 SE172349.015	% %	60 - 130% 60 - 130% 60 - 130%	81 82 85
	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4	SE172349.013 SE172349.014 SE172349.015 SE172349.015 SE172349.016	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	81 82 85 83
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.017 SE172349.018	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	81 82 85 83 84 90
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.018 SE172349.001	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	81 82 85 83 84 90 87
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.001 SE172349.001 SE172349.002	% % % % % %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_1.0-1.1	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.001 SE172349.001 SE172349.001 SE172349.002 SE172349.003	% % % % % %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_1.0-1.1 BH103M_0.2-0.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.001 SE172349.001 SE172349.001 SE172349.001 SE172349.002 SE172349.003 SE172349.004	% % % % % % %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 78 74
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_1.0-1.1 BH103M_0.2-0.3 BH103M_0.8-0.9	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.001 SE172349.001 SE172349.001 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005	% % % % % % %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 74 79
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH102_0.2-0.3 BH102_1.0-1.1 BH103M_0.2-0.3 BH103M_0.8-0.9 BH104_0.2-0.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.001 SE172349.001 SE172349.001 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006	% % % % % % % %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 74 79 76
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_1.0-1.1 BH103M_0.2-0.3 BH103M_0.8-0.9 BH104_0.2-0.3 BH104_1.2-1.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.019 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006 SE172349.007	% %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 74 79 76 71
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_1.0-1.1 BH103M_0.2-0.3 BH103M_0.2-0.3 BH104_0.2-0.3 BH104_1.2-1.3 BH104_1.2-1.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.010 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006 SE172349.007 SE172349.008	% %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 78 74 79 76 71 72
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_1.0-1.1 BH103M_0.2-0.3 BH104_0.2-0.3 BH104_0.2-0.3 BH104_1.2-1.3 BH105_0.2-0.3 BH105_0.2-0.3 BH106_0.3-0.4	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006 SE172349.007 SE172349.008 SE172349.009	% %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 77 72 78 74 79 76 71 72 84
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_0.2-0.3 BH103_0.2-0.3 BH104_0.2-0.3 BH104_0.2-0.3 BH105_0.2-0.3 BH106_0.3-0.4 BH106_0.3-0.4	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006 SE172349.007 SE172349.008 SE172349.009 SE172349.010	% %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 74 79 76 71 72 84 84 84
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_0.2-0.3 BH103_0.2-0.3 BH104_0.2-0.3 BH104_0.2-0.3 BH105_0.2-0.3 BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.011 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006 SE172349.007 SE172349.008 SE172349.009 SE172349.010 SE172349.010	% %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 74 79 76 71 72 84 84 84 84 71
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_0.2-0.3 BH103_0.2-0.3 BH104_0.2-0.3 BH104_0.2-0.3 BH105_0.2-0.3 BH106_0.3-0.4 BH106_0.3-0.4	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006 SE172349.007 SE172349.008 SE172349.009 SE172349.010	% %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 74 74 79 76 71 72 84 84
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH102_0.2-0.3 BH103_0.2-0.3 BH104_0.2-0.3 BH104_0.2-0.3 BH105_0.2-0.3 BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.011 SE172349.001 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006 SE172349.007 SE172349.008 SE172349.009 SE172349.010 SE172349.010	% %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 74 79 76 71 72 84 84 84 84
d4-1,2-dichloroethane (Surrogate)	BH109M_0.8-0.9 BH110_0.2-0.3 BH111_0.3-0.4 BH111_1.3-1.4 QD1 QD2 BH101_0.2-0.3 BH102_0.2-0.3 BH103_0.2-0.3 BH104_0.2-0.3 BH104_0.2-0.3 BH105_0.2-0.3 BH105_0.2-0.3 BH106_0.3-0.4 BH107_0.2-0.3 BH108_0.2-0.3	SE172349.013 SE172349.014 SE172349.015 SE172349.016 SE172349.017 SE172349.018 SE172349.018 SE172349.001 SE172349.002 SE172349.002 SE172349.003 SE172349.004 SE172349.005 SE172349.006 SE172349.007 SE172349.008 SE172349.009 SE172349.010 SE172349.011 SE172349.011	% %	60 - 130% 60 - 130%	81 82 85 83 84 90 87 72 78 74 79 76 71 72 84 84 84 71 78

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
14-1,2-dichloroethane (Surrogate)	BH111_1.3-1.4	SE172349.016	%	60 - 130%	72
	QD1	SE172349.017	%	60 - 130%	70
	QD2	SE172349.018	%	60 - 130%	83
8-toluene (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	71
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	77
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	74
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	77
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	71
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	82
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	77
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	75
	BH106_0.3-0.4	SE172349.009	%	60 - 130%	70
	BH107_0.2-0.3	SE172349.010	%	60 - 130%	71
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	76
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	77
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	73
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	74
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	73
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	71
	QD1	SE172349.017	%	60 - 130%	75
	QD2	SE172349.018	%	60 - 130%	74
bromofluoromethane (Surrogate)	BH101_0.2-0.3	SE172349.001	%	60 - 130%	77
	BH102_0.2-0.3	SE172349.002	%	60 - 130%	74
	BH102_1.0-1.1	SE172349.003	%	60 - 130%	71
	BH103M_0.2-0.3	SE172349.004	%	60 - 130%	73
	BH103M_0.8-0.9	SE172349.005	%	60 - 130%	73
	BH104_0.2-0.3	SE172349.006	%	60 - 130%	77
	BH104_1.2-1.3	SE172349.007	%	60 - 130%	73
	BH105_0.2-0.3	SE172349.008	%	60 - 130%	73
	BH106 0.3-0.4	SE172349.009	%	60 - 130%	72
	BH107_0.2-0.3	SE172349.010	%	60 - 130%	74
	BH108_0.2-0.3	SE172349.011	%	60 - 130%	72
	BH109M_0.2-0.3	SE172349.012	%	60 - 130%	72
	BH109M_0.8-0.9	SE172349.013	%	60 - 130%	72
	BH110_0.2-0.3	SE172349.014	%	60 - 130%	70
	BH111_0.3-0.4	SE172349.015	%	60 - 130%	74
	BH111_1.3-1.4	SE172349.016	%	60 - 130%	74
	QD1	SE172349.017	%	60 - 130%	71
	QD2	SE172349.018	%	60 - 130%	75
atile Petroleum Hydrocarbons in Water	492 	32.7.2040.010	70		E-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery 9

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE172349.019	%	40 - 130%	106
d4-1,2-dichloroethane (Surrogate)	QR1	SE172349.019	%	60 - 130%	96
d8-toluene (Surrogate)	QR1	SE172349.019	%	40 - 130%	96
Dibromofluoromethane (Surrogate)	QR1	SE172349.019	%	40 - 130%	101

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	ENVJAN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB136445.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			Mett	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB136331.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Pesticides in Soil				od: ME-(AU)-[ENV]
nple Number	Parameter	Units	LOR	Result
36186.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	85
Pesticides in Soil			Meth	od: ME-(AU)-[ENV]

			moun	out the (10) fritth atta
Sample Number	Parameter	Units	LOR	Result
LB136186.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surroga	tes 2-fluorobiphenyl (Surrogate)	%	-	96
	d14-p-terphenyl (Surrogate)	%	-	104
PAH (Polynuclear Aromatic Hydroca	irbons) in Soil		Meth	od: ME-(AU)-[ENV]AN4
Sample Number	Parameter	Units	LOR	Result
LB136186.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1

Anthracene

<0.1

0.1

mg/kg

SE172349 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Paramet Units Result LB136186.001 Fluoranthene mg/kg 0.1 < 0.1 Pyrene mg/kg 0.1 <0.1 <0.1 Benzo(a)anthracene mg/kg 0.1 Chrysene mg/kg 0.1 < 0.1 Benzo(a)pyrene 0.1 <0.1 mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg <0.1 Dibenzo(ah)anthrace mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 <0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) % 98 2-fluorobiphenyl (Surrogate) % 96 d14-p-terphenyl (Surrogate) % 104 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Result Units Parameter LOR LB136186.001 Arochlor 1016 mg/kg 0.2 <0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 < 0.2 Total PCBs (Arochlors) <1 mg/kg 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 85 % Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB136302.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.3 <0.3 <0.5 Copper, Cu 0.5 mg/kg Lead, Pb mg/kg 1 <1 Nickel, Ni mg/kg 0.5 <0.5 Zinc, Zn 0.5 <0.5 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number LOR Result Parameter Units LB136148.001 Arsenic, As <1 µg/L 1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu µg/L 1 <1 Lead, Pb <1 µg/L 1 Nickel. Ni <1 µg/L 1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number LOR Parameter Units Result LB136186.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 mg/kg 45 <45 TRH C29-C36 45 <45 mg/kg <100 TRH C37-C40 mg/kg 100 TRH C10-C36 Total mg/kg 110 <110 TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 LOR Sample Number Units Result Parameter LB136143.001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 200 <200 µg/L TRH C29-C36 200 <200 µg/L TRH C37-C40 µg/L 200 <200 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Numb Units LOR Parameter

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continu	ied)			Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB136136.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	76
		d4-1,2-dichloroethane (Surrogate)	%	-	74
		d8-toluene (Surrogate)	%	-	80
		Bromofluorobenzene (Surrogate)	%	-	89
	Totals	Total BTEX	mg/kg	0.6	<0.6
/OCs in Water				Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
B136361.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	96
		d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	115
		Bromofluorobenzene (Surrogate)	%	-	103
/olatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
_B136136.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	76
		d4-1,2-dichloroethane (Surrogate)	%	-	74
		d8-toluene (Surrogate)	%	-	80
/olatile Petroleum Hy	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB136361.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	97
		d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	102
		Bromofluorobenzene (Surrogate)	%		99

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water				Metho	d: ME-(AU)-[ENVJAN311(P	Perth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172363.003	LB136445.011	Mercury	μg/L	0.0001	<0.0001	<0.0001	156	0

Mercury in Soil

Mercury in Soil Method: ME-(AU)-[ENV]A								ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172349.009	LB136331.014	Mercury	mg/kg	0.05	<0.05	<0.05	175	0
SE172349.018	LB136331.024	Mercury	mg/kg	0.05	<0.05	<0.05	142	0

Moisture Content

Moisture Content								ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172349.001	LB136330.011	% Moisture	%w/w	0.5	13	13	38	4
SE172349.011	LB136330.022	% Moisture	%w/w	0.5	6.0	5.7	47	5
SE172349.021	LB136330.031	% Moisture	%w/w	0.5	<0.5	<0.5	200	0

riginal	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E172349.010	LB136186.014	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Lindane	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
		Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
		Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
		Endrin	mg/kg	0.2	<0.2	<0.2	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
		Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
		Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
		Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
	Surroga	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	30	5

						Would	ou. mc-(//o)-	Trice barren Co
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172349.010	LB136186.014	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OP Pesticides in S	oil (continued)						Meth	od: ME-(AU)-	[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE172349.010	LB136186.014	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
52172040.010	20100100.014	ounogates	d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5	30	2
	A			ng/kg		0.0			
	Aromatic Hydrocarbo	ons) in Soli						od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE172349.010	LB136186.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	0.8	0.6	44	27
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	197	0
			Phenanthrene	mg/kg	0.1	0.8	0.5	46	40
			Anthracene	mg/kg	0.1	0.7	0.4	48	55 (
			Fluoranthene	mg/kg	0.1	3.7	2.6	33	33 (
			Pyrene	mg/kg	0.1	4.0	3.0	33	29
			Benzo(a)anthracene	mg/kg	0.1	2.6	2.0	34	28
			Chrysene	mg/kg	0.1	2.1	1.4	36	39 (
			Benzo(b&j)fluoranthene	mg/kg	0.1	4.4	3.7	32	17
			Benzo(k)fluoranthene	mg/kg	0.1	1.2	0.8	40	32
			Benzo(a)pyrene	mg/kg	0.1	3.4	2.8	33	20
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	2.5	2.2	34	14
			Dibenzo(ah)anthracene	mg/kg	0.1	0.4	0.4	55	17
			Benzo(ghi)perylene	mg/kg	0.1	2.4	2.0	35	15
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>5.0</td><td>4.0</td><td>14</td><td>20 (</td></lor=0<>	TEQ (mg/kg)	0.2	5.0	4.0	14	20 (
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>5.0</td><td>4.0</td><td>17</td><td>20 (</td></lor=lor<>	TEQ (mg/kg)	0.3	5.0	4.0	17	20 (
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>5.0</td><td>4.0</td><td>14</td><td>20 (</td></lor=lor>	TEQ (mg/kg)	0.2	5.0	4.0	14	20 (
			Total PAH (18)	mg/kg	0.8	29	22	33	25
				mana	0.0	25			20
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	
		Surrogates							
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	2
CBs in Soil		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg	-	0.5 0.5	0.5 0.5 0.5	30 30 30	2 2 2
	Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg	-	0.5 0.5 0.5	0.5 0.5 0.5 Meth	30 30 30 nod: ME-(AU)-	2 2 2 [ENV]A
Original	Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter	mg/kg mg/kg mg/kg Units	LOR	0.5 0.5 0.5 Original	0.5 0.5 0.5 Meth Duplicate	30 30 30 nod: ME-(AU)- Criteria %	2 2 2 [ENV]A RPD
Original	Duplicate LB136186.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016	mg/kg mg/kg mg/kg Units mg/kg	- - - LOR 0.2	0.5 0.5 0.5 Original <0.2	0.5 0.5 0.5 Meth Duplicate <0.2	30 30 30 hod: ME-(AU)- Criteria % 200	2 2 2 [ENV]A RPD 0
Original		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221	mg/kg mg/kg mg/kg Units mg/kg mg/kg	- - - 0.2 0.2	0.5 0.5 0.5 Original <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2	30 30 30 criteria % 200 200	2 2 2 [ENV]A RPD 0 0
Original		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232	mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	- - - 0.2 0.2 0.2	0.5 0.5 0.5 Original <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2	30 30 30 criteria % 200 200 200	2 2 [ENV]A RPD 0 0 0
Driginal		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242	mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg	- - 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 Original <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2 <0.2	30 30 00d: ME-(AU)- Criteria % 200 200 200 200	2 2 2 [ENV]A RPD 0 0 0 0
Driginal		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248	mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 Original <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 00d: ME-(AU)- Criteria % 200 200 200 200 200 200	2 2 2 [ENV]A RPD 0 0 0 0 0 0 0
Driginal		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 Original <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200	2 2 2 [ENV]A RPD 0 0 0 0 0 0 0 0 0 0
Driginal		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 Original <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200	2 2 2 [ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 20	2 2 2 (ENV)A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 20	2 2 2 (ENV)A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CBs in Soil Original SE172349.010			d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.7 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 20	2 2 (ENV)A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE172349.010	LB136186.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 20	2 2 2 (ENV)A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal SE172349.010		Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.7 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 20	2 2 2 (ENV)A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal SE172349.010 Dtal Recoverable	LB136186.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.7 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Weth 2<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 20	2 2 2 (ENV)A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal SE172349.010 Driginal	LB136186.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0riginal <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Weth 2<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	30 30 30 Criteria % 200 200 200 200 200 200 200 200 30 -(AU)-[ENV]A	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal E172349.010 Driginal	LB136186.014 Elements in Soil/Wa Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0riginal <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Neth 2<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	30 30 30 Criteria % 200 200 200 200 200 200 200 200 30 -(AU)-[ENV]A Criteria %	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal SE172349.010 Driginal	LB136186.014 Elements in Soil/Wa Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As	mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0riginal <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 30 -(AU)-[ENV]A Criteria % 39	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal E172349.010 Mal Recoverable Driginal	LB136186.014 Elements in Soil/Wa Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd	mg/kg	- - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.7 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Neth 2<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal E172349.010 Mal Recoverable Driginal	LB136186.014 Elements in Soil/Wa Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0riginal <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth 2002 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal E172349.010 Driginal	LB136186.014 Elements in Soil/Wa Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0riginal <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal SE172349.010 Driginal	LB136186.014 Elements in Soil/Wa Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth 2002 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 iod: ME-(AU)- Criteria % 200 200 200 200 200 200 200 200 200 30 -(AU)-[ENV]A Criteria % 39 199 33 32 34	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal SE172349.010 Seal Recoverable Driginal SE172349.009	LB136186.014 Elements in Soil/Wa Duplicate	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 iod: ME-(AU)- 200 200 200 200 200 200 200 200 200 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal SE172349.010 Dtal Recoverable Driginal SE172349.009	LB136186.014 Elements in Soil/Wa Duplicate LB136302.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 30 -(AU)-[ENV]AI Criteria % 39 199 33 32 32 34 35 34	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal SE172349.010 Dtal Recoverable Driginal SE172349.009	LB136186.014 Elements in Soil/Wa Duplicate LB136302.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1262 Arochlor 1268 State Comparison Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Nii Zinc, Zn Arsenic, As	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Driginal SE172349.010 Dtal Recoverable Driginal SE172349.009	LB136186.014 Elements in Soil/Wa Duplicate LB136302.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Nii Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Original SE172349.010	LB136186.014 Elements in Soil/Wa Duplicate LB136302.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 30 Criteria % 39 199 33 32 34 35 34 35 34	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Original SE172349.010 otal Recoverable Original SE172349.009	LB136186.014 Elements in Soil/Wa Duplicate LB136302.014	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg	- - - - - - - - - - - - - - - - - - -	0.5 0.5 0.5 0.5 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.5 0.5 0.5 Meth Duplicate <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	30 30 30 Criteria % 200 200 200 200 200 200 200 200 200 30 Criteria % 39 199 33 32 34 35 34 35 34 40 151 32	2 2 2 (ENV)A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

	solved) in Water by IC						Meu	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE172371.001	LB136148.006		Arsenic, As	μg/L	1	14	14	22	0
			Cadmium, Cd	μg/L	0.1	<0.1	<0.1	152	0
			Chromium, Cr	μg/L	1	2	2	68	2
			Copper, Cu	μg/L	1	9	8	27	-
			Lead, Pb	μg/L	1	6	5	33	1
			Nickel, Ni	μg/L	1	<1	<1	128	
			Zinc, Zn	μg/L	5	8	7	84	1
				Fo' -	-				
RH (Total Recove	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	-[ENV]
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPI
SE172349.010	LB136186.014		TRH C10-C14	mg/kg	20	<20	<20	200	
			TRH C15-C28	mg/kg	45	130	110	68	2
			TRH C29-C36	mg/kg	45	50	56	115	
			TRH C37-C40	mg/kg	100	<100	<100	200	
			TRH C10-C36 Total	mg/kg	110	180	160	94	
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	157	
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	
		indiri Bando	TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	
			TRH >C16-C34 (F3)		90	180	150	84	
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	
5470040.040	1.0400400.000			mg/kg					
SE172349.018	LB136186.023		TRH C10-C14	mg/kg	20	<20	<20	200	
			TRH C15-C28	mg/kg	45	<45	<45	200	
			TRH C29-C36	mg/kg	45	<45	<45	200	
			TRH C37-C40	mg/kg	100	<100	<100	200	
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	
			TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg	90 120	<90 <120	<90 <120	200 200	
RH (Total Recove	erable Hydrocarbons) in Water					<120	200	-IENV
	erable Hydrocarbons) in Water	TRH >C34-C40 (F4)	mg/kg	120	<120	<120 Meth	200 od: ME-(AU)-	-[ENV]
Driginal	Duplicate) in Water	TRH >C34-C40 (F4) Parameter	mg/kg Units	120 LOR	<120 Original	<120 Meth Duplicate	200 od: ME-(AU)- Criteria %	- <mark>(ENV</mark> RP
RH (Total Recov e Original SE172320.001) in Water	TRH >C34-C40 (F4) Parameter TRH C10-C14	mg/kg Units μg/L	120 LOR 50	<120 Original <50	<120 Meth Duplicate 0	200 od: ME-(AU)- Criteria % 200	- <mark>(ENV</mark> RP
Original	Duplicate) in Water	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28	mg/kg Units µg/L µg/L	120 LOR 50 200	<120 Original <50 <200	<120 Meth Duplicate 0 0	200 od: ME-(AU)- Criteria % 200 200	- <mark>[ENV</mark> RP
Original	Duplicate) in Water	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg Units µg/L µg/L µg/L	120 LOR 50 200 200	<120 Original <50 <200 <200	<120 Meth Duplicate 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200	- <mark>(ENV</mark> RP
Original	Duplicate) in Water	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	тg/kg Units µg/L µg/L µg/L µg/L	120 LOR 50 200 200 200	<120 Original <50 <200 <200 <200	<120 Meth Duplicate 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200	- <mark>(ENV</mark>
Original	Duplicate) in Water	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg Units μg/L μg/L μg/L μg/L μg/L	120 LOR 50 200 200 200 450	<120 Original <50 <200 <200 <200 <450	<120 Meth Duplicate 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200	- <mark>[ENV</mark>
Original	Duplicate) in Water	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	тg/kg Units µg/L µg/L µg/L µg/L	120 LOR 50 200 200 200	<120 Original <50 <200 <200 <200	<120 Meth Duplicate 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200	- <mark>[ENV</mark>
Original	Duplicate) in Water	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36	mg/kg Units μg/L μg/L μg/L μg/L μg/L	120 LOR 50 200 200 200 450	<120 Original <50 <200 <200 <200 <450	<120 Meth Duplicate 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200	- <mark>[ENV</mark> RF
Original	Duplicate		TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40	mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L	120 LOR 50 200 200 200 450 650	<120 Original <50 <200 <200 <200 <450 <650	<120 Meth Duplicate 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200	-[ENV RF
Original	Duplicate		TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2)	mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	120 LOR 50 200 200 200 450 650 60	<120 Original <50 <200 <200 <200 <450 <650 <60	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 200	- <mark>[ENV</mark> RP
Original SE172320.001	Duplicate		TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3)	mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	120 50 200 200 200 450 650 60 500	<120 Original <50 <200 <200 <200 <450 <650 <60 <500	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV
Original SE172320.001	Duplicate LB136143.014		TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	120 LOR 50 200 200 200 450 650 60 500 500	<120 Original <50 <200 <200 <450 <650 <60 <500 <500	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV
Original SE172320.001 OC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg Units μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	120 LOR 50 200 200 450 650 60 500 500 LOR	<120 Original <50 <200 <200 <450 <650 <60 <500 <500	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV, RP
Original SE172320.001 OC's in Soil Driginal	Duplicate LB136143.014	TRH F Bands Monocyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg Units μg/L	120 LOR 50 200 200 450 650 60 500 500 LOR 0.1	<120 Original <50 <200 <200 <450 <650 <60 <500 <500 Original <0.1	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RP -[ENV RP
Original SE172320.001 OC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg Units μg/L μg/L μg/L μg/L <	120 LOR 50 200 200 450 650 60 500 500 LOR 0.1 0.1	<120 Original <50 <200 <200 <450 <650 <500 <500 <500 Original <0.1 <0.1	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RF
Original SE172320.001 OC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene	mg/kg Units μg/L	120 LOR 50 200 200 450 650 60 500 500 500 LOR 0.1 0.1	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RF
Driginal SE172320.001 DC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg Units μg/L μg/L μg/L μg/L <	120 LOR 50 200 200 450 650 60 500 500 LOR 0.1 0.1 0.1 0.2	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.2	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	RF
Driginal SE172320.001 DC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C16 (F2) TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene	mg/kg Units μg/L	120 LOR 50 200 200 450 650 60 500 500 500 LOR 0.1 0.1	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RF
Driginal E172320.001 DC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene	mg/kg Units μg/L	120 LOR 50 200 200 450 650 60 500 500 LOR 0.1 0.1 0.1 0.2	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.2	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RF
Driginal E172320.001 DC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic Aromatic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg Units μg/L	120 LOR 50 200 200 450 650 60 500 500 LOR 0.1 0.1 0.1 0.2 0.1	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 00: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RP -[ENV RP
Driginal SE172320.001 DC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic Aromatic Polycyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene	mg/kg Units μg/L	120 LOR 50 200 200 450 650 60 500 500 LOR 0.1 0.1 0.1 0.1 0.1	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 0d: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RP -[ENV RP
Original SE172320.001 OC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic Aromatic Polycyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 TRH C10-C40 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	mg/kg Units μg/L	120 LOR 50 200 200 450 650 60 500 500 LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<120 Original <50 <200 <200 <450 <660 <500 Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RF
Original SE172320.001 OC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic Aromatic Polycyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg μg/L	120 LOR 50 200 200 450 650 60 500 500 500 LOR 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - -	<120 Original <50 <200 <200 <450 <660 <500 <500 Original <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 0 0 0 0 0 0 0 0 0 0 0 0	-[ENV RF
Driginal SE172320.001 DC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic Aromatic Polycyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg Units µg/L µg/k mg/kg	120 LOR 50 200 200 450 650 60 500 500 500 0.1 0.1 0.1 0.1 0.1 0.1 - -	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 0 Criteria % 200 200 200 200 200 200 200 20	-[ENV RF
Original SE172320.001 OC's in Soil Driginal	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic Aromatic Polycyclic Surrogates	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C36 TRH >C10-C16 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg Units μg/L μg/kg mg/kg <	120 LOR 50 200 200 450 650 60 500 500 500 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.3	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.3 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV RF
Driginal SE172320.001	Duplicate LB136143.014 Duplicate LB136136.014	TRH F Bands Monocyclic Aromatic Polycyclic Surrogates Totals	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C40 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Total Xylenes Total BTEX	mg/kg Units μg/L g/kg mg/kg	120 LOR 50 200 200 450 650 500 500 500 LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.3 <0.3 <0.3 <0.6 <0.3 <0.6 <0.3 <0.6 <0.3 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- Criteria % 200 200 200 200 200 200 200 20	-[ENV
Driginal SE172320.001	Duplicate LB136143.014 Duplicate	TRH F Bands Monocyclic Aromatic Polycyclic Surrogates Totals Monocyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C40 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene	mg/kg Units μg/L μg/kg mg/kg	120 LOR 50 200 200 450 650 60 500 500 500 10.1 0.1 0.1 0.1 0.1 0.1 0.1	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.3 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- 200 200 200 200 200 200 200 20	-[ENV
Original SE172320.001	Duplicate LB136143.014 Duplicate LB136136.014	TRH F Bands Monocyclic Aromatic Polycyclic Surrogates Totals	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C40 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylerne Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene	mg/kg Units μg/L mg/kg mg/kg	120 LOR 50 200 200 450 60 500 500 500 101 0.1 0.1 0.1 0.1 0.1 0.1 0	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- 200 200 200 200 200 200 200 20	-[ENV RP
Original SE172320.001	Duplicate LB136143.014 Duplicate LB136136.014	TRH F Bands Monocyclic Aromatic Polycyclic Surrogates Totals Monocyclic	TRH >C34-C40 (F4) Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 TRH C10-C40 TRH >C10-C40 (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene	mg/kg Units μg/L μg/kg mg/kg	120 LOR 50 200 200 450 650 60 500 500 500 10.1 0.1 0.1 0.1 0.1 0.1 0.1	<120 Original <50 <200 <200 <450 <650 <500 <500 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.3 <0.3 <0.3 <0.6 <0.1 <0.1 <0.3 <0.3 <0.6 <0.1 <0.1 <0.1 <0.3 <0.5 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<120 Meth Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 od: ME-(AU)- 200 200 200 200 200 200 200 20	-[ENV.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Original Dupl Parameter Units LOR Original Duplicate Criteria % RPD % SE172349.018 LB136136.026 Polycyclic Naphthalene mg/kg 0.1 < 0.1 0 200 0 Dibromofluoromethane (Surrogate) Surrogates mg/kg 3.8 3.52 50 6 50 d4-1,2-dichloroethane (Surrogate) 4.2 3.56 15 mg/kg d8-toluene (Surrogate) mg/kg 3.7 3.61 50 2 Bromofluorobenzene (Surrogate) 4.5 4.65 50 4 mg/kg Totals Total Xylenes 0.3 <0.3 0.01 200 0 mg/kg Total BTEX <0.6 0.01 200 mg/kg 0.6 0 VOCs in Water Method: ME-(AU)-[ENVIAN433 Duplicate Criteria % RPD % Units Original Original Duplicate Parameter LOR SE172328.001 LB136361.019 0.5 <0.5 200 Monocyclic Benzene µg/L <0.5 0 Aromatic Toluene 0.5 <0.5 < 0.5 200 0 µg/L Ethylbenzene µg/L 0.5 <0.5 <0.5 200 0 200 0 m/p-xylene <1 <1 µg/L 1 o-xvlene µg/L 0.5 < 0.5 < 0.5 200 0 Polycyclic Naphthalene µg/L 0.5 <0.5 <0.5 200 0 4.5 30 12 Surrogates Dibromofluoromethane (Surrogate) 5.1 μg/L d4-1,2-dichloroethane (Surrogate) µg/L 4.4 5.8 30 27 4.6 4.7 30 d8-toluene (Surrogate) µg/L 1 Bromofluorobenzene (Surrogate) 4.5 4.4 30 2 µg/L SE172331.002 LB136361.020 Monocyclic Benzene µg/L 0.5 < 0.5 0.03 200 0 Aromatic Toluene µg/L 0.5 <0.5 0.08 200 0 0.01 Ethylbenzene 0.5 <0.5 200 0 µg/L m/p-xylene µg/L 1 <1 0.02 200 0 0.5 <0.5 0.01 200 0 µg/L o-xylene Polycyclic Naphthalene 0.5 <0.5 200 0 µg/L 0 Surrogates Dibromofluoromethane (Surrogate) 4.2 4.9 30 16 µg/L d4-1,2-dichloroethane (Surrogate) µg/L 3.9 4.67 30 18 5.31 d8-toluene (Surrogate) 4.8 30 11 µg/L Bromofluorobenzene (Surrogate) µg/L 4.0 4.98 30 23 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Original Duplicate Original Duplicate Criteria % RPD % Parameter SE172349.010 LB136136.014 TRH C6-C10 ma/ka 25 <25 <25 200 0 TRH C6-C9 20 <20 <20 200 0 mg/kg Surrogates Dibromofluoromethane (Surrogate) 3.7 3.5 30 5 mg/kg d4-1,2-dichloroethane (Surrogate) 4.2 30 18 3.5 mg/kg d8-toluene (Surrogate) mg/kg 3.5 3.5 30 1 4.3 4.3 30 Bromofluorobenzene (Surrogate) 0 mg/kg VPH F Bands <0.1 <0.1 Benzene (F0) 0.1 200 0 mg/kg TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 <25 200 0 SE172349.018 LB136136.026 TRH C6-C10 25 <25 0.09 200 0 mg/kg TRH C6-C9 20 <20 200 0.4 0 mg/kg Surrogates Dibromofluoromethane (Surrogate) 3.8 3.52 30 6 mg/kg d4-1,2-dichloroethane (Surrogate) mg/kg 4.2 3.56 30 15 3.7 3.61 30 d8-toluene (Surrogate) mg/kg 2 Bromofluorobenzene (Surrogate) 45 4 65 30 4 mg/kg VPH F Bands 0.1 <0.1 Benzene (F0) 0 200 0 mg/kg TRH C6-C10 minus BTEX (F1) <25 0.08 200 25 0 mg/kg Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-/ENVIAN433 LOR Original Duplicate Criteria % RPD % Original Duplicate Parameter SE172328.001 LB136361.019 TRH C6-C10 50 <50 <50 200 0 µg/L TRH C6-C9 µg/L 40 <40 <40 200 0 Surrogates Dibromofluoromethane (Surrogate) µg/L 4.5 5.1 30 12 d4-1,2-dichloroethane (Surrogate) 4.4 5.8 30 27 µg/L d8-toluene (Surrogate) µg/L 4.6 4.7 30 1

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

Benzene (F0)

TRH C6-C10

TRH C6-C9

VPH F Bands

LB136361.020

SE172331.002

2

0

0

0

0

4.5

<0.5

<50

<50

<40

0.5

50

50

40

µg/L

µg/L

µg/L

µg/L

µg/L

4.4

<0.5

<50

0

0

30

200

200

200

200

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Volatile Petroleum	Hydrocarbons in Wa	ter (continued)					Meth	od: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE172331.002	LB136361.020	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.3	5.07	30	16
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.1	4.96	30	19
			d8-toluene (Surrogate)	μg/L	-	4.4	4.4	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	4.2	4.91	30	17
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.03	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.15	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soll Method: ME-(AU)-[ENV]AN3							U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB136331.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	103

OC Pesticides in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB136186.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	118
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	120
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	124
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	109
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	119
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	124
S	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	85
P Pesticides in Soil						N	lethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B136186.002		Dichlorvos	mg/kg	0.5	2.6	2	60 - 140	131
		Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	84
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	83
_		Ethion	mg/kg	0.2	1.5	2	60 - 140	75
S	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
AH (Polynuclear Aron	matic Hydrocarb	ons) in Soil				N	lethod: ME-(A	U)-[ENV]AN4
AH (Polynuclear Aron Sample Number	matic Hydrocarb	<mark>ons) in Soll</mark> Parameter	Units	LOR	Result	N Expected	<mark>/lethod: ME-(A</mark> Criteria %	U)-[ENV]AN Recovery
Sample Number	matic Hydrocarb		Units mg/kg	LOR 0.1	Result 3.6		· · · ·	
Sample Number	matic Hydrocarb	Parameter				Expected	Criteria %	Recovery
Sample Number	matic Hydrocarb	Parameter Naphthalene	mg/kg	0.1	3.6	Expected 4	Criteria % 60 - 140	Recovery 90
ample Number	matic Hydrocarb	Parameter Naphthalene Acenaphthylene	mg/kg mg/kg	0.1 0.1	3.6 3.6	Expected 4 4	Criteria % 60 - 140 60 - 140	Recovery 90 90
Sample Number	matic Hydrocarb	Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	3.6 3.6 3.6	Expected 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140	Recovery 90 90 89
ample Number	matic Hydrocarb	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	3.6 3.6 3.6 3.5	Expected 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 90 90 89 88
Sample Number	matic Hydrocarb	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	3.6 3.6 3.6 3.5 3.7	Expected 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 90 90 89 88 91
ample Number	matic Hydrocarb	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	3.6 3.6 3.5 3.7 3.6	Expected 4 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 90 90 89 88 91 90
Sample Number B136186.002	matic Hydrocarb	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	3.6 3.6 3.5 3.7 3.6 3.4	Expected 4 4 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 90 90 89 88 91 90 88
ample Number B136186.002		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	3.6 3.6 3.5 3.7 3.6 3.4 4.0	Expected 4 4 4 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140	Recovery 90 90 89 88 91 91 90 86 86 100
ample Number B136186.002		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	3.6 3.6 3.5 3.7 3.6 3.4 4.0 0.5	Expected 4 4 4 4 4 4 4 4 4 0.5	Criteria % 60 - 140 60 - 140 40 - 130	Recovery 90 90 90 89 88 91 90 86 100 94
Sample Number B136186.002 S		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	3.6 3.6 3.5 3.7 3.6 3.4 4.0 0.5 0.5	Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	Criteria % 60 - 140 60 - 140 40 - 130 40 - 130	Recovery 90 90 90 89 88 91 90 86 100 94 90 88
Sample Number B136186.002		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	3.6 3.6 3.5 3.7 3.6 3.4 4.0 0.5 0.5	Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	Recovery 90 90 90 89 88 91 90 86 100 94 90 88

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements in	I Soll/Waste Solids/Materials by ICPOES				weulou.	ME-(AU)-[ENV	/janu40/an320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB136302.002	Arsenic, As	mg/kg	3	54	50	80 - 120	108
	Cadmium, Cd	mg/kg	0.3	55	50	80 - 120	111
	Chromium, Cr	mg/kg	0.3	55	50	80 - 120	109
	Copper, Cu	mg/kg	0.5	56	50	80 - 120	111
	Lead, Pb	mg/kg	1	57	50	80 - 120	113
	Nickel, Ni	mg/kg	0.5	56	50	80 - 120	113
	Zinc, Zn	mg/kg	0.5	57	50	80 - 120	113
Trace Metals (Dissolved) in Wa	ater by ICPMS				N	lethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB136148.002	Arsenic, As	μg/L	1	19	20	80 - 120	93
	Cadmium, Cd	µg/L	0.1	20	20	80 - 120	98
	Chromium, Cr	μg/L	1	19	20	80 - 120	96
	Copper, Cu	μg/L	1	20	20	80 - 120	101
	Lead, Pb	μg/L	1	21	20	80 - 120	103
	Nickel, Ni	μg/L	1	19	20	80 - 120	94
	Zinc, Zn	µg/L	5	19	20	80 - 120	95

Method: ME_(ALI)_TENVIAN040/AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	erable Hydrocarbo						Nethod: ME-(Al	
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB136186.002		TRH C10-C14	mg/kg	20	38	40	60 - 140	95
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	80
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	65
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	38	40	60 - 140	95
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	70
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	60
RH (Total Recov	erable Hydrocarbo	ns) in Water					Method: ME-(Al	J)-[ENV]A
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB136143.002		TRH C10-C14	μg/L	50	960	1200	60 - 140	80
		TRH C15-C28	μg/L	200	1200	1200	60 - 140	97
		TRH C29-C36	μg/L	200	1100	1200	60 - 140	93
	TRH F Bands	TRH >C10-C16 (F2)	μg/L	60	1100	1200	60 - 140	88
	Harr Bando	TRH >C16-C34 (F3)	μg/L	500	1200	1200	60 - 140	97
		TRH >C34-C40 (F4)	μg/L	500	570	600	60 - 140	96
			P9/L	000	010			
/OC's in Soil					_		Method: ME-(Al	
Sample Number		Parameter	Units	LOR	Result	Expected		Recover
LB136136.002	Monocyclic	Benzene	mg/kg	0.1	2.1	2.9	60 - 140	72
	Aromatic	Toluene	mg/kg	0.1	2.6	2.9	60 - 140	89
		Ethylbenzene	mg/kg	0.1	2.4	2.9	60 - 140	83
		m/p-xylene	mg/kg	0.2	5.3	5.8	60 - 140	91
		o-xylene	mg/kg	0.1	2.5	2.9	60 - 140	86
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	5	60 - 140	80
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.8	5	60 - 140	77
		d8-toluene (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	5	60 - 140	97
OCs in Water							Method: ME-(Al	J)-[ENV]A
Sample Number	1	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB136361.002	Monocyclic	Benzene	µg/L	0.5	50	45.45	60 - 140	109
	Aromatic	Toluene	µg/L	0.5	50	45.45	60 - 140	109
		Ethylbenzene	µg/L	0.5	50	45.45	60 - 140	109
		m/p-xylene	μg/L	1	99	90.9	60 - 140	108
		o-xylene	μg/L	0.5	49	45.45	60 - 140	108
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.4	5	60 - 140	109
	Sunogates	d4-1,2-dichloroethane (Surrogate)	μg/L		5.6	5	60 - 140	113
				-	5.6	5	60 - 140	113
		d8-toluene (Surrogate)	μg/L	-	5.3	5	60 - 140	107
		Bromofluorobenzene (Surrogate)	µg/L	-	5.3			
olatile Petroleum	Hydrocarbons in S	ioli					Method: ME-(Al	J)-[ENV]A
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB136136.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	92
		TRH C6-C9	mg/kg	20	22	23.2	60 - 140	94
					4.0	5	60 - 140	80
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-				77
	Surrogates	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg	-	3.8	5	60 - 140	
	Surrogates			-	3.8 4.1	5 5	60 - 140 60 - 140	82
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-				82 97
	Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg	- - - 25	4.1	5	60 - 140	
	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg		4.1 4.8	5 5 7.25	60 - 140 60 - 140 60 - 140	97 109
^r olatile Petroleum	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater	mg/kg mg/kg mg/kg mg/kg	25	4.1 4.8 <25	5 5 7.25	60 - 140 60 - 140 60 - 140 Method: ME-(A I	97 109 J)-[ENV]A
'olatile Petroleum Sample Number	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter	mg/kg mg/kg mg/kg mg/kg Units	25 LOR	4.1 4.8 <25 Result	5 5 7.25 Expected	60 - 140 60 - 140 60 - 140 Method: ME-(Al Criteria %	97 109 J)-[ENV]A Recove
	VPH F Bands	d4-1.2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10	mg/kg mg/kg mg/kg mg/kg Units μg/L	25 LOR 50	4.1 4.8 <25 Result 940	5 5 7.25 Expected 946.63	60 - 140 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140	97 109 J)-[ENV]A Recove 99
'olatile Petroleum Sample Number	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C9	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	25 LOR 50 40	4.1 4.8 <25 Result 940 760	5 5 7.25 Expected 946.63 818.71	60 - 140 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 140	97 109 J)-[ENV]A Recove 99 93
'olatile Petroleum Sample Number	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units μg/L	25 LOR 50	4.1 4.8 <25 Result 940 760 5.0	5 5 7.25 Expected 946.63 818.71 5	60 - 140 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140	97 109 J)-[ENV]A Recove 99 93 100
'olatile Petroleum Sample Number	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	25 LOR 50 40	4.1 4.8 <25 Result 940 760 5.0 5.1	5 5 7.25 Expected 946.63 818.71 5 5	60 - 140 60 - 140 60 - 140 Vethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	97 109 J)-[ENV]A Recove 99 93 100 102
'olatile Petroleum Sample Number	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	25 LOR 50 40	4.1 4.8 <25 Result 940 760 5.0	5 5 7.25 Expected 946.63 818.71 5 5 5	60 - 140 60 - 140 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140	97 109 J)-[ENV]A Recove 99 93 100
'olatile Petroleum Sample Number	VPH F Bands	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L	25 LOR 50 40 -	4.1 4.8 <25 Result 940 760 5.0 5.1	5 5 7.25 Expected 946.63 818.71 5 5	60 - 140 60 - 140 60 - 140 Vethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	97 109 J)-[ENV]A Recove 99 93 100 102

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Metho	od: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE172326.001	LB136331.004	Mercury	mg/kg	0.05	0.18	0.00491148571	0.2	89

OC Pesticides in Soil

								()
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
E172349.001	LB136186.024		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	<0.1	0.2	121
			Aldrin	mg/kg	0.1	<0.1	0.2	116
			Beta BHC	mg/kg	0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	<0.1	0.2	125
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	0.2	117
			Endrin	mg/kg	0.2	<0.2	0.2	121
			o,p'-DDD	mg/kg	0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	123
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	<1	-	-
	S	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	-	91
Pesticides in	Soil						м	ethod: ME-(AU)-[

OP Pesticides in Soil

QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE172349.001	LB136186.024	Dichlorvos	mg/kg	0.5	<0.5	2	127
		Dimethoate	mg/kg	0.5	<0.5	-	-
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	91
		Fenitrothion	mg/kg	0.2	<0.2	-	-
		Malathion	mg/kg	0.2	<0.2	-	-
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	91
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
		Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
		Methidathion	mg/kg	0.5	<0.5	-	-
		Ethion	mg/kg	0.2	<0.2	2	86
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
		Total OP Pesticides*	mg/kg	1.7	<1.7	-	-
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	-	94
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	96
PAH (Polynuclea	r Aromatic Hydrocarbons) in Soil					Me	ethod: ME-(AU)-[E
QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE172349.001	LB136186.024	Naphthalene	mg/kg	0.1	<0.1	4	94

ENVJAN420

QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE172349.001	LB136186.024	Naphthalene	mg/kg	0.1	<0.1	4	94
		2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	<0.1	4	95
		Acenaphthene	mg/kg	0.1	<0.1	4	91
		Fluorene	mg/kg	0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	0.1	4	94

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 e____Recovery% QC Sample Sample Number Parameter Units LOR Original Spil SE172349.001 LB136186.024 Anthracene mg/kg 0.1 < 0.1 4 91 Fluoranthene mg/kg 0.1 0.7 4 91 0.7 84 Pyrene 0.1 4 mg/kg Benzo(a)anthracene mg/kg 0.1 0.4 Chrysene 0.1 0.4 mg/kg Benzo(b&j)fluoranthene 0.1 0.6 mg/kg 0.3 Benzo(k)fluoranthene mg/kg 0.1 Benzo(a)pyrene 0.1 0.5 4 89 mg/kg 0.4 Indeno(1,2,3-cd)pyrene 0.1 mg/kg < 0.1 Dibenzo(ah)anthracene mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 0.4 Carcinogenic PAHs, BaP TEQ <LOR=0 TEQ 0.2 0.7 Carcinogenic PAHs, BaP TEQ <LOR=LOR 0.8 TEQ (mg/kg) 0.3 Carcinogenic PAHs, BaP TEQ <LOR=LOR/2 TEQ (mg/kg) 0.2 0.7 -Total PAH (18) 0.8 4.5 mg/kg Surrogates d5-nitrobenzene (Surrogate) mg/kg 0.5 96 2-fluorobiphenyl (Surrogate) 0.5 94 mg/kg d14-p-terphenyl (Surrogate) 0.5 96 mg/kg PCBs in Soil Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE172349.001	LB136186.024		Arochlor 1016	mg/kg	0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	<0.2	0.4	100
			Arochlor 1262	mg/kg	0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	-	-
	_		Total PCBs (Arochlors)	mg/kg	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	-	93

Method: ME-(AU)-[ENV]AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE172349.019	LB136148.004	Arsenic, As	μg/L	1	19	<1	20	97
		Cadmium, Cd	µg/L	0.1	20	<0.1	20	100
		Chromium, Cr	µg/L	1	20	<1	20	99
		Copper, Cu	µg/L	1	21	<1	20	103
		Lead, Pb	µg/L	1	21	<1	20	105
		Nickel, Ni	µg/L	1	20	<1	20	99
		Zinc, Zn	µg/L	5	22	<5	20	102

Method: ME-(AU)-[ENV]AN403 TRH (Total Recoverable Hydrocarbons) in Soil Recovery% QC Sample Sample Number Units LOR Original Parameter Spike SE172349.001 LB136186.024 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 45 <45 mg/kg TRH C29-C36 45 <45 mg/kg TRH C37-C40 mg/kg 100 <100 110 TRH C10-C36 Total <110 mg/kg TRH C10-C40 Total (F bands) <210 mg/kg 210 TRH F Bands TRH >C10-C16 (F2) 25 <25 mg/kg <25 TRH >C10-C16 (F2) - Naphthalene 25 mg/kg TRH >C16-C34 (F3) 90 <90 mg/kg --TRH >C34-C40 (F4) mg/kg 120 <120 -TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 QC Sample Sample Number Units LOR Result Original Spike Recovery% Parameter

SE172320.002 LB136143.013 TRH C10-C14 µg/L 50 980 <50 1200 82 TRH C15-C28 µg/L 200 1300 <200 1200 109 TRH C29-C36 200 1300 <200 1200 µg/L 107 TRH C37-C40 µg/L 200 <200 <200 TRH C10-C36 450 3600 <450 µg/L

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

	verable Hydrocarbo	<u> </u>	· · ·		1.00			nod: ME-(AU	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE172320.002	LB136143.013		TRH C10-C40	µg/L	650	3600	<650	-	-
		TRH F Bands	TRH >C10-C16 (F2)	µg/L	60	1100	<60	1200	93
			TRH >C16-C34 (F3)	µg/L	500	1400	<500	1200	114
			TRH >C34-C40 (F4)	μg/L	500	660	<500	600	110
OC's in Soil							Met	nod: ME-(AU	J)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
6E172349.001	LB136136.004	Monocyclic	Benzene	mg/kg	0.1	1.9	<0.1	2.9	66
		Aromatic	Toluene	mg/kg	0.1	2.3	<0.1	2.9	80
			Ethylbenzene	mg/kg	0.1	2.2	<0.1	2.9	77
			m/p-xylene	mg/kg	0.2	4.9	<0.2	5.8	84
			o-xylene	mg/kg	0.1	2.4	<0.1	2.9	82
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	3.8	-	72
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	4.4	-	72
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.6	-	74
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	4.1	-	87
		Totals	Total Xylenes	mg/kg	0.3	7.3	<0.3	-	-
			Total BTEX	mg/kg	0.6	14	<0.6	-	-
OCs in Water							Mett	nod: ME-(AL	
	On much a Number	_	Demonster	11		Desult			
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
E172328.003	LB136361.021	Monocyclic	Benzene	μg/L	0.5	50	<0.5	45.45	110
		Aromatic	Toluene	μg/L	0.5	59	<0.5	45.45	130
			Ethylbenzene	µg/L	0.5	55	<0.5	45.45	121
			m/p-xylene	µg/L	1	110	<1	90.9	119
			o-xylene	µg/L	0.5	53	<0.5	45.45	117
		Polycyclic	Naphthalene	µg/L	0.5	56	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.2	4.7	-	103
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.5	4.5	-	91
			d8-toluene (Surrogate)	μg/L	-	4.7	4.7	-	94
			Bromofluorobenzene (Surrogate)	μg/L	-	4.6	4.5	-	93
olatile Petroleu	m Hydrocarbons in S	Soll					Met	nod: ME-(AL	J)-[ENV]AI
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
E172349.001	LB136136.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	85
			TRH C6-C9	mg/kg	20	21	<20	23.2	88
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	3.8	-	72
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	4.4	-	72
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.6	-	74
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	4.1	-	87
		VPH F	Benzene (F0)	mg/kg	0.1	1.9	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	99
olatile Petroleu	m Hydrocarbons in V	Vater					Mett	nod: ME-(AU	J)-IENVIA
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
SE172328.003	LB136361.021		TRH C6-C10	μg/L	50	970	<50	946.63	102
			TRH C6-C9	μg/L	40	810	<40	818.71	99
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L		5.2	4.7	-	103
		Gunoyates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.5	4.7	-	91
			d8-toluene (Surrogate)	μg/L		4.7	4.7		94
						4.7		-	
		VPH F	Bromofluorobenzene (Surrogate) Benzene (F0)	μg/L μg/L	0.5	4.6 50	4.5 <0.5	-	93

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23602 Murray Rose Ave Sydney Oly Park A	SGS Reference	SE172349A R0
Order Number	E23602	Date Received	16 Nov 2017
Samples	21	Date Reported	21 Nov 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Metals in TCLP Extract by	y ICPOES						Method:	ME-(AU)-[ENV]AN3		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH110_0.2-0.3	SE172349A.014	LB136676	06 Nov 2017	16 Nov 2017	05 May 2018	17 Nov 2017	16 May 2018	17 Nov 2017		
PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract Method: ME-(AU)-[ENV]AN4										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH102_1.0-1.1	SE172349A.003	LB136682	07 Nov 2017	16 Nov 2017	28 Nov 2017	17 Nov 2017	27 Dec 2017	21 Nov 2017		
BH103M_0.8-0.9	SE172349A.005	LB136682	06 Nov 2017	16 Nov 2017	27 Nov 2017	17 Nov 2017	27 Dec 2017	21 Nov 2017		
FCLP (Toxicity Characteria	stic Leaching Procedure) fo	r Metals					Method:	ME-(AU)-[ENV]ANO		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH110_0.2-0.3	SE172349A.014	LB136590	06 Nov 2017	16 Nov 2017	05 May 2018	16 Nov 2017	05 May 2018	17 Nov 2017		

TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC Method: ME-(AU)-[ENV]									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH102_1.0-1.1	SE172349A.003	LB136591	07 Nov 2017	16 Nov 2017	21 Nov 2017	16 Nov 2017	30 Nov 2017	17 Nov 2017	
BH103M_0.8-0.9	SE172349A.005	LB136591	06 Nov 2017	16 Nov 2017	20 Nov 2017	16 Nov 2017	30 Nov 2017	17 Nov 2017	

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract	H (Polynuclear Aromatic Hydrocarbons) in TCLP Extract							
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %			
2-fluorobiphenyl (Surrogate)	BH102_1.0-1.1	SE172349A.003	%	40 - 130%	72			
	BH103M_0.8-0.9	SE172349A.005	%	40 - 130%	54			
d14-p-terphenyl (Surrogate)	BH102_1.0-1.1	SE172349A.003	%	40 - 130%	86			
	BH103M_0.8-0.9	SE172349A.005	%	40 - 130%	62			
d5-nitrobenzene (Surrogate)	BH102_1.0-1.1	SE172349A.003	%	40 - 130%	64			
	BH103M_0.8-0.9	SE172349A.005	%	40 - 130%	48			

SE172349A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in TCLP Extract by ICPOES		Method: ME-(AU)-[ENV]AN320			
Sample Number	Parameter	Units	LOR	Result	
LB136676.001	Nickel, Ni	mg/L	0.005	<0.005	

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract Method: ME-(AU)-[ENV]AN4					
Sample Number Parameter		Parameter	Units	LOR	Result
LB136682.001		Benzo(a)pyrene	μg/L	0.1	<0.1
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	58
		2-fluorobiphenyl (Surrogate)	%	-	66
		d14-p-terphenyl (Surrogate)	%	-	64

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No duplicates were required for this job.

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Metals in TCLP Extract by ICPOES Method: ME-(AU)-[ENV]AN320							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB136676.002	Nickel, Ni	mg/L	0.005	2.0	2	80 - 120	100

PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB136682.002		Benzo(a)pyrene	μg/L	0.1	27	40	60 - 140	68
	Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.3	0.5	40 - 130	60
		2-fluorobiphenyl (Surrogate)	μg/L	-	0.3	0.5	40 - 130	66
		d14-p-terphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	62

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.