

Level 2 / 11 Khartoum Road North Ryde NSW 2113 Australia T: (02) 9889 1800

DETAILED SITE

January 2019 J160656

GROUP GSA

Proposed Alex Avenue Public School, Schofields NSW

C122140 : NB

greencap.com.au

ABN 76 006 318 010

Statements of Limitation

All and any Services proposed by Greencap to the Client are subject to the Terms and Conditions listed on the Greencap website at: <u>www.greencap.com.au/about-greencap/terms-and-conditions</u>. Unless otherwise expressly agreed to in writing and signed by Greencap, Greencap does not agree to any alternative terms or variation of these terms if subsequently proposed by the Client. The Services are to be carried out in accordance with the current and relevant industry standards of testing, interpretation and analysis. The Services are to be carried out in accordance with Commonwealth, State or Territory legislation, regulations and/or guidelines. The Client will be deemed to have accepted these Terms when the Client signs the Proposal (where indicated) or when the Company commences the Services at the request (written or otherwise) of the Client.

The services were carried out for the Specific Purpose, outlined in the body of the Proposal. To the fullest extent permitted by law, Greencap, its related bodies corporate, its officers, consultants, employees and agents assume no liability, and will not be liable to any person, or in relation to, any losses, damages, costs or expenses, and whether arising in contract, tort including negligence, under statute, in equity or otherwise, arising out of, or in connection with, any matter outside the Specific Purpose.

The Client acknowledges and agrees that proposed investigations rely on information provided to Greencap by the Client or other third parties. Greencap makes no representation or warranty regarding the completeness or accuracy of any descriptions or conclusions based on information supplied to it by the Client, its employees or other third parties during provision of the Services. The Client releases and indemnifies Greencap from and against all Claims arising from errors, omissions or inaccuracies in documents or other information provided to Greencap by the Client, its employees or other third parties. Under no circumstances shall Greencap have any liability for, or in relation to, any work, reports, information, plans, designs, or specifications supplied or prepared by any third party, including any third party recommended by Greencap.

The Client will ensure that Greencap has access to all sites and buildings as required by or necessary for Greencap to undertake the Services. Notwithstanding any other provision in these Terms, Greencap will have no liability to the Client or any third party to the extent that the performance of the Services is not able to be undertaken (in whole or in part) due to access to any relevant sites or buildings being prevented or delayed due to the Client or their respective employees or contractors expressing safety or health concerns associated with such access.

Greencap, its related bodies corporate, its officers, employees and agents assume no liability and will not be liable for lost profit, revenue, production, contract, opportunity, loss arising from business interruption or delay, indirect or consequential loss or loss to the extent caused or contributed to by the Client or third parties, suffered or incurred arising out of or in connection with our Proposals, Reports, the Project or the Agreement. In the event Greencap is found by a Court or Tribunal to be liable to the Client for any loss or damage arising in connection with the Services, the Client's entitlement to recover damages from Greencap shall be reduced by such amount as reflects the extent to which any act, default, omission or negligence of the Client, or any third party, caused or contributed to such loss or damage. Unless otherwise agreed in writing and signed by both parties, Greencap's total aggregate liability will not exceed the total consulting fees paid by the client in relation to this Proposal. For further detail, see Greencap's Terms and Conditions available at www.greencap.com.au/about-greencap/terms-and-conditions

The Report is provided for the exclusive use of the Client for this Project only, in accordance with the Scope and Specific Purpose as outlined in the Agreement, and only those third parties who have been authorised in writing by Greencap. It should not be used for other purposes, other projects or by a third party unless otherwise agreed and authorised in writing by Greencap. Any person relying upon this Report beyond its exclusive use and Specific Purpose, and without the express written consent of Greencap, does so entirely at their own risk and without recourse to Greencap for any loss, liability or damage. To the extent permitted by law, Greencap assumes no responsibility for any loss, liability, damage, costs or expenses arising from interpretations or conclusions made by others, or use of the Report by a third party. Except as specifically agreed by Greencap in writing, it does not authorise the use of this Report by any third party. It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the site.

The conclusions, or data referred to in this Report, should not be used as part of a specification for a project without review and written agreement by Greencap. This Report has been written as advice and opinion, rather than with the purpose of specifying instructions for design or redevelopment. Greencap does not purport to recommend or induce a decision to make (or not make) any purchase, disposal, investment, divestment, financial commitment or otherwise in relation to the site it investigated. This Report should be read in whole and should not be copied in part or altered. The Report as a whole sets out the findings of the investigations. No responsibility is accepted by Greencap for use of parts of the Report in the absence (or out of context) of the balance of the Report.

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

Document Control

Document Quality Management Details				
Report Name:	Detailed Site Investigation			
Site Details:	Corner of Farmland Drive and future realignment of Pelican Road, Schofields NSW 2762			
Project Number:	J157372			
Client Name:	Group GSA, c/o Richard Crookes Construction			
Client Number:	C122140			
Prepared By: Authorised By:		Authorised By:		
Signatures:	N. Bouha	Un Po		
	Nicole Boukarim Matthew Barberson			
Consultant - Environment Team Manager - Environ				

Issue Status

Version No.	Date	Creator	Reviewer	
Draft	14/12/2018	Nicole Boukarim Matthew Barberson		
1	21/12/2018	12/2018 Nicole Boukarim Matthew Barberson		
2	15/01/2019	Nicole Boukarim	Matthew Barberson	
3	21/01/2019	Nicole Boukarim	Matthew Barberson	

Document Circulation

No of Copies	Туре	Customer Name	Position & Company
1	Electronic	Frederic Terreaux	Group GSA – Associate Director

Executive Summary

Greencap Pty Ltd (Greencap) was engaged by Richard Crookes Construction ('RCC') to undertake a Detailed Site Investigation (DSI) at the site of proposed school: Alex Avenue Public School ('the site').

This Detailed Site Investigation report has been prepared by Greencap Pty Ltd ('Greencap') on behalf of Schools Infrastructure NSW (SINSW) (the Applicant). It accompanies an Environmental Impact Statement (EIS) in support of State Significant Development Application (SSD 18_9368) for the new Alex Avenue Public School at the corner of Farmland Drive and future realignment of Pelican Road in Schofields (the site). The site is legally described as proposed Lots 1 and 2, being part of existing Lot 4 in DP1208329 and Lot 121 in DP1203646.

Refer to Figure 1, Appendix A for site location and boundary. Alex Avenue Public School is the proposed to be constructed on the approximately 2.5 ha site.

Richard Crookes has been appointed by SINSW as the head contractor for the project, as of January 2019.

Objective and Scope

The purpose of this DSI is to identify potential sources of contamination and contaminants of concern on the site, evaluate the presence of contamination in the identified areas of concern, close out any data gaps specified in the Preliminary Site Investigation (PSI) report for the site and assess site suitability for its intended use as a Primary School. This report will subsequently also provide recommendations for remediation actions and/or further investigations if required.

To achieve the above-mentioned project objectives, the following scope was undertaken: a desktop study and review of previously developed PSI Report, a site walkover, soil sampling, laboratory analysis, and preparation of this report.

Chemical results obtained from these investigations were compared with applicable human health and ecological criteria and regulation threshold levels for further investigation and corrective action. Consequently, the site Conceptual Site Model (CSM) was updated to inform the decision-making process for further investigations and remedial actions. Specifically, this DSI provides conclusions regarding the suitability of the land for future land use consistent with *Residential A* defined in the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1) ('NEPM', NEPC, 2013), which includes Children's day care centres, preschools and Primary Schools.

Response to SEARs

This DSI is required by the Secretary's Environmental Assessment Requirements (SEARs) for SSD 18_9368. The table below identifies the SEARs and relevant reference within this report.

Table 1: SEARs and Relevant Reference			
SEARs Item	Relevant report Reference		
 12. Contamination Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55 	Soil contamination: This DSI including attached Salinity Report (Appendix B)		

While no significant potential sources of groundwater contamination were identified as a result of this DSI, groundwater testing was outside the scope of this investigation. For information specific to groundwater and groundwater contamination, other reports prepared for the site may be referred to, none of which Greencap was involved in preparing.

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

greencap.com.au 4

Findings and Conclusion

This DSI report satisfies the conditions of Clause 7 (subclause 3) of SEPP 55 (Remediation of Land).

The results of this investigation indicated the surface soil quality on site satisfied the land use standards for its intended use as a Primary School. This Detailed Site Investigation did not identify any unacceptable human health or ecological risk associated with the surface soil quality.

This investigation did not reveal any analysis results that require further investigation. All analysis results for the contaminants of potential concern were below applicable criteria for the site. Furthermore, the findings of the soil salinity report identified no evidence of any current existing significant salinity hazard/risk on the site. Therefore, the site is considered suitable for the intended land use as the Proposed Alex Avenue Public School, consistent with '*Residential A*' land use as defined in the NEPM.

Recommendations

As a result of the findings of this investigation, Greencap recommends the following action:

• Any material to be taken off-site must be classified in accordance with the NSW EPA Waste Classification Guidelines (2014).

January 2019

Detailed Site Investigation

Group GSA c/o Richard Crookes Construction

Cnr of Farmland Drive & future realignment of Pelican Road, Schofields NSW

Table of Contents

Execu	itive S	ummaryiv
1	Intro	duction and Background8
2	Proje	ct Objectives
3	Resp	onse to SEARs9
4	Proje	ct Scope9
	4.1	Desktop Review9
	4.2	Site Walkover and Soil Contamination Investigation9
	4.3	Reporting10
5	Site D	Description Summary11
	5.1	Site Surrounds and Sensitive Receptors
		5.1.1 On-Site Receptors
		5.1.2 Off-Site Receptors
	5.2	Site Setting12
6	Sumr	nary of Key Findings of the PSI (EIS, 2017)12
	6.1	PSI Site boundary13
7	Samp	ling Density and Rationale13
8	Field	Investigations
	8.1	Site Walkover13
	8.2	Observed Soil Stratigraphy14
		8.2.1 Fill Material Encountered on Site14
		8.2.2 Natural Soils14
9	Asses	ssment Criteria15
	9.1	Investigation Levels15
		9.1.1 Health Investigation Levels for Soil15
		9.1.2 Ecological Investigation Levels for Soil16
	9.2	Screening Levels17
		9.2.1 Health screening levels (HSLs) for soil17
		9.2.2 Ecological screening levels (ESLs) for soil17
		9.2.3 Management limits for hydrocarbon fractions F1-F4 in soil17
10	Resu	lts19
	10.1	Analytical Schedule
	10.2	Soil Results
	10.3	Salinity19
	10.4	Asbestos in soils

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

January 2019

	10.5	QA/QC Procedures
11	Conce	eptual Site Model20
	11.1	Sources
		11.1.1Chemicals of Potential Concern20
	11.2	Pathways20
	11.3	Receptors20
	11.4	Source, Pathway, and Receptor Analysis20
12	Concl	usions
13	Recor	nmendations21
14	Refer	ences21
Appe	ndix A	A: Figures I
Appe	ndix E	B: Salinity Report
Appe	ndix C	: Field Photographs
Appe	ndix E): Borehole Logs
Appe	ndix E	: Sample Analysis Results Summary Table
Appe	ndix F	: Laboratory Analysis Reports & CoCsII
Appe	ndix C	G: QA-QC ProceduresIII

1 Introduction and Background

Greencap Pty Ltd (Greencap) was engaged by Richard Crookes Construction ('RCC') to undertake a Detailed Site Investigation (DSI) at the site of proposed school: Alex Avenue Public School ('the site').

This Detailed Site Investigation report has been prepared by Greencap Pty Ltd ('Greencap') on behalf of Schools Infrastructure NSW (SINSW) (the Applicant). Richard Crookes has since been appointed by SINSW as the head contractor for the project, as of January 2019. This report accompanies an Environmental Impact Statement (EIS) in support of State Significant Development Application (SSD 18_9368) for the new Alex Avenue Public School at the corner of Farmland Drive and future realignment of Pelican Road in Schofields (the site). The site is legally described as proposed Lots 1 and 2, being part of existing Lot 4 in DP1208329 and Lot 121 in DP1203646.

The new school will cater for approximately 1,000 primary school students and 70 full-time staff upon completion. The proposal seeks consent for:

- Construction of a 2-storey library, administration and staff building (Block A) comprising:
 - School administrative spaces including reception;
 - Library with reading nooks, makers space and research pods;
 - Staff rooms and offices;
 - Special programs rooms;
 - Amenities;
 - Canteen;
 - Interview rooms; and
 - Presentation spaces.
- Construction of four 2-storey classroom buildings (Block B) containing 40 home-bases comprising:
 - Collaborative learning spaces;
 - Learning studios;
 - Covered outdoor learning spaces;
 - Practical activity areas; and
 - > Amenities.
- Construction of a single storey assembly hall (Block C) with a performance stage and integrated covered outdoor learning area (COLA). The assembly hall will have OOSH facilities, store room areas and amenities;
- Associated site landscaping and open space including associated fences throughout and games courts;
- Pedestrian access points along both Farmland Drive and the future Pelican Road;
- Substation on the north-east corner of the site; and
- School signage to the front entrance.

All proposed school buildings will be connected by a covered walkway providing integrated covered outdoor learning areas (COLAs). School staff will use the Council car park for the adjacent sports fields pursuant to a Joint Use agreement. The proposed School pick up and drop off zone will also be contained within the future shared car park and will be accessed via Farmland Drive.

2 **Project Objectives**

This DSI provides further assessment of the site following a Preliminary Site Investigation (PSI) previously prepared for the site by Environmental Investigation Services (EIS, August 2017).

The purpose of this DSI report is to identify potential sources of contamination and contaminants of concern on the site, evaluate the presence of contamination in the identified areas of concern, close out any data gaps specified in the Preliminary Site Investigation (PSI) report for the site, and assess site suitability for its intended use as a Primary School. This report will subsequently also provide recommendations for remediation actions and/or further investigations if required.

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

In particular, this DSI provides conclusions regarding the suitability of the land for future land use consistent with *Residential A* defined in the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1) ('NEPM', NEPC, 2013), which includes Children's day care centres, preschools and Primary Schools.

3 Response to SEARs

This DSI is required by the Secretary's Environmental Assessment Requirements (SEARs) for SSD 18_9368. The table below identifies the SEARs and relevant reference within this report.

Table 1: SEARs and Relevant Reference	
SEARs Item	Relevant report Reference
12. Contamination Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55	Soil contamination: This DSI including attached Salinity Report (Appendix B) <u>Groundwater contamination:</u> Addressed in water-related reports prepared, external to Greencap contribution

While no significant potential sources of groundwater contamination were identified as a result of this DSI, groundwater testing was outside the scope of this investigation. For information specific to groundwater and groundwater contamination, other reports prepared for the site may be referred to, none of which Greencap was involved in preparing.

4 **Project Scope**

To achieve the above project objectives, the following scope of work was undertaken. Where relevant, the scope was undertaken with reference to the *National Environmental Protection (Assessment of Site Contamination) Measure 1999* (2013 amendment, referred to here as the 'NEPM') as well as other relevant guidance;

4.1 Desktop Review

A desktop review was undertaken, which encompassed the following:

- Review of the Preliminary Site Investigation (PSI) previously prepared for the site by Environmental Investigation Services (EIS, August 2017).
- Review of Council records and aerial photographs to help identify landfilling, including potential asbestos landfill;
- Review of available references relating to the local topography, geology, hydrogeology, acid sulfate soils risks, and salinity risks; and
- Preparation of relevant safety information (JSEA and SWMS) and requesting underground service plans from Dial Before You Dig data base.

4.2 Site Walkover and Soil Contamination Investigation

A detailed site walkover was undertaken on the 16th November 2016, by suitably qualified Greencap scientists to identify: key site features, any visible Asbestos Containing Materials (ACM) on surface soils and any visible signs of possible salinity effects.

Soil sampling and analysis was undertaken for the site, which involved the following:

Engagement of an excavation sub-contractor for test pitting;

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

• Soil sampling consisting of the following:

January 2019

- Test pitting, soil logging and soil sampling at 15 locations to a depth of maximum 1 metres below ground level (mBGL) or 0.5 mBGL into natural soil profile (whichever is encountered first)—applies to the fill area noted in the PSI Report (EIS, 2017);
- Test pitting, soil logging and soil sampling at 20 locations to a depth of maximum 0.5 mBGL—applies to the rest of the site for sampling density coverage.
- At each sample location, a field log was completed by a suitably qualified Greencap scientist, detailing a description of the soil texture, odours, pH and any other notable inclusions;
- Quality Assurance and Quality Control (QA/QC) samples were collected at a rate of 1 duplicate sample per 10 primary samples. Eurofins Australia was used as the primary laboratory (approx. 1 in 20 intralaboratory duplicates), while ALS was used as the secondary laboratory (1 in 20 inter-laboratory duplicates);
- Soil sample submission to a NATA-Accredited laboratory for chemical analysis of relevant combinations of the following Chemicals of Potential Concern (CoPC):
 - Total Recoverable Hydrocarbons (TRH);
 - Benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN);
 - > Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc)
 - Polycyclic Aromatic Hydrocarbons (PAH);
 - Organochlorine pesticides (OCPs)
 - Organophosphate pesticides (OPPs);
 - Polychlorinated biphenyls (PCBs);
 - Asbestos in soils (presence/ absence); and
 - Salinity Characteristics (total soluble salts, soluble chloride, electrical conductivity, saturated resistivity).

4.3 Reporting

Reporting scope included the following:

- Preparation of this DSI Report evaluating the overall site condition including the contamination concerns identified in the PSI and laboratory results of the analysed soil samples. This report has been prepared in accordance with the NSW EPA (2011) 'Guidelines for Consultants Reporting on Contaminated Sites' and relevant schedules from the NEPM.
- Preparation of a Salinity Report in accordance with the Department of Land and Water Conservation (2002) *Site investigation for urban salinity* (refer to Appendix B).

5 Site Description Summary

The site location and boundary are depicted in Figure 1, Appendix A. The site is currently vacant vegetationcovered land, zoned as "R3: Infrastructure: Educational Establishment". The site covers a surface area of approximately 2.5ha and is currently in initial planning stages of development as a Primary School site consisting of several buildings and both sealed and unsealed outdoor areas.

The site occupies the northern portion of Lot 4 in Deposited Plan (DP) 1208329 (hereafter referred to as 'proposed Lot 2') and a small area of Lot 121 DP1203646 (hereafter referred to as 'proposed Lot 1').

General site information is provided in Table 12. Site locality and layout maps are provided in Figure 1 and Figure 2.

Table 1: Site Information			
Site Address:	Corner of Farmland Drive and	future realignment of Pelican Road, Schofields NSW 2762	
	Proposed Lot 2: Part of Lot 4 DP1	.208329	
Property Identification:	Proposed Lot 1: Part of Lot 121 D	P1203646	
Local Government Area	City of Blacktown		
Approximate Area:	~2.5ha		
Current Zoning:	SP2: Infrastructure: Educational Establishment		
Current Site Use:	Vacant land		
Proposed Site Use:	Primary School – Alex Avenue Pu	blic School	
	North	Under construction during the investigation	
	East	Under construction during the investigation	
Surrounding Site Use:	South	Vacant grass and vegetation-covered land	
West Vacant grass-covered land (to be future road: plann realignment of Pelican Road)			
Surface Water Bodies:	West/South-west An unnamed creek is located approximately 275m south of the site.		

5.1 Site Surrounds and Sensitive Receptors

During the time of this investigation, the site was bound to the south and west by vacant land, occupied by grass and sparse vegetation. Information provided by Hayball Pty Ltd indicates that the area directly east of the site is a council park under construction at the time of this investigation. Multi-unit residential development is to be built west of the site, in addition to the planned realignment of Pelican Road. The areas to the north was observed to be under construction, presumably for medium-density (single-dwelling) residential development. Further west of the site, Schofields Zone Substation was located to the north-west whole. An unnamed creek was located to the far south-west, south of Lot 4 DP1208329.

5.1.1 On-Site Receptors

While no existing human receptors were identified on-site during the investigation, during development of the site, on-site human receptors will include civil workers and other personnel involved in the site construction works.

Following the completion and occupation of the Primary School, human sensitive receptors on site will include: school staff (including teaching and administrative staff and cleaners), students and other temporary visitors to the site such as parents, maintenance workers, as well as workers involved in any future development work on the site.

No ecological receptors were identified on the site.

5.1.2 Off-Site Receptors

Off-site human receptors include residents and visitors of the neighbouring residential areas to the north and east of the site. No human offsite receptors were identified to the site's immediate south and west due to the absence of any information regarding proposed uses of these areas, and at the time of this investigation both areas consist of vacant, grass-covered land.

The unnamed creek located down-gradient, approximately 460m south-west of the site is considered to be the nearest potential ecological receptor.

5.2 Site Setting

The site is underlain by Middle Triassic Bringelly Shale of the Wianamatta Group. This is characterised by shale, carbonaceous claystone, claystone, laminate, fine-to medium-grained lithic sandstone and rare coal and tuff. The site soil landscape is the Blacktown Residual soil landscape. Fill material was noted in the site PSI, consisting of two small stockpiles identified in the central area of the site (less than 1 tonne each) (EIS, 2017).

The elevation of the site ranges generally between 37-43 mAHD. The site slopes down-gradient towards the south, with the highest elevation at the north-eastern corner of the site. Topographic contours are presented in the PSI Appendix (EIS, 2017).

Based on site topography, surface water runoff is expected flow in a southern direction, towards the unnamed creek south of the site. Infiltration into on-site aquifers is also expected across the site due to the absence of any sealed surfaces or built structures. The PSI identified porous, extensive aquifers of low to moderate productivity on the site. Regional groundwater is expected to flow in a southern/south-western direction consistent with the regional topography. However, the possibility remains that groundwater flow may not follow this expected direction, particularly as groundwater data and water table depth were not available for the site and its surrounds, therefore further investigation would be required for confirmation.

6 Summary of Key Findings of the PSI (EIS, 2017)

A stage 1 Preliminary Site Investigation (PSI) was undertaken by EIS in August 2017.

The PSI identified three potential contamination sources on the site:

- Fill material identified on site during the site walkover;
- Former agricultural land use in the northern portion of the site; and
- The general use of pesticides on the site.

It was noted that based on the scope of works undertaken as part of the assessment, that the historical land uses and these potential sources of contamination would not preclude the proposed development of the school.

Based on review of historical information collected as part of the assessment, the site has remained largely vacant from 1956 to present. Surrounding areas appeared to be used for rural and agricultural purposes such as grazing. During the site walkover conducted by EIS no visible or olfactory indicators of contamination were identified, with the exception of two small stockpiles identified in the central area of the site (less than 1 tonne each).

The PSI recommended the following:

- Assessment of soil contamination conditions on the site, including soil sampling and analysis; and
- A Stage 2 Detailed Site Investigation (DSI) if the site following review of the findings.

The PSI identified areas of high risk dryland salinity directly west-adjacent to the site, with minor overlap onto the site's far south-western corner.

The PSI also included review of Australian Dryland Salinity Assessment 2000. Based on the derived maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050", the land directly west-adjacent to the site were identified as areas of high salinity hazard/risk, with minor overlap along the site's lower western boundary and far south-western corner.

6.1 PSI Site boundary

It should be noted that the site boundary for which the PSI pertains, has since been changed and finalised, and as a result, the PSI does not encompass the entirety of the site.

The site boundary for which the PSI pertains to, consisted of Proposed Lot 2 of the site, but did not include proposed lot 1. Furthermore, the PSI site boundary extended further south, past the finalised/actual site southern boundary.

The finalised site boundary (to which this DSI pertains) has since been expanded to include both proposed lots, and also does not extend as far south as was originally marked as part of the PSI investigation.

7 Sampling Density and Rationale

Total area of the open surfaces at the School was estimated as ~ 2.5 ha. In order to comply with the sampling density requirements for systematic assessment provided in NSW EPA (1995) 'Sampling Design Guidelines', a minimum of 35 investigation locations were required for the soil assessment. This sampling density corresponds to 14 points per hectare and is designed to capture a hotspot with a diameter greater than or equal to 31.5 m with 95% confidence. The vertical extent of the investigation targeted the depth of fill material (where encountered). Test pits were terminated with the observation/ sampling of natural material (maximum 1.0 m into natural soil).

In the scope of this assessment 35 surface samples were collected and analysed. As depicted in Figure 2, sample locations were selected in a grid pattern to ensure adequate site coverage.

8 Field Investigations

8.1 Site Walkover

A site walkover was conducted on the 16th November 2018 and 10th December 2018 by qualified Greencap consultants to visually inspect the site, corroborate site features with those identified in the PSI report, and assess the proposed site sampling design prior to beginning soil sampling. Photographs from the site inspection are provided in Appendix C.

Site observations made during the walkover were consistent with those detailed in the PSI. The site was confirmed to be vacant land, dominated by grass-covered land with sparse tree cover clustered in the south-western corner of the site, with no sealed surfaces or built structures observed on the site. (Refer to Photos 1-8). Local site topography was observed to slop generally to the south (refer to photos 3, 4 & 5), with small mounds/undulating areas along the southern boundary, presumed to be areas of fill material (refer to photo 3). Based on the observed topography and observed site surfaces, surface water drainage on the site is expected to be dominated by infiltration, with excess water runoff directed south of the site, towards a natural drainage channel identified far south of the site.

A visual inspection of surface soil conditions and the presence of any potential asbestos-containing material (ACM) on the site ground-surface was undertaken. There was no visual evidence of potential asbestos containing materials (ACM) observed on the surface of the Site and no ACM fragments were encountered at

any of the 35 test pit locations during excavation. It is noted that due to dense vegetation coverage in the far south-east of the site obscuring soil visibility, some areas of surface soil could be visually assessed.

The following observations were made during the site walkover:

- There was no olfactory evidence of odours detected on the site;
- There was no visual evidence of chemical spillage or surface staining observed on the site;
- There were no sealed surfaces or built structures (permanent or temporary) present on the site;
- There was no visual evidence of underground storage tanks (e.g. fill points, dip points, breather lines) or above ground storage tanks observed;
- The two stockpiles of fill material identified in the PSI report were located as described. Refer to Figure 3 for stockpile locations;
- There was no visual evidence of phytotoxic impact (i.e. plant stress or dieback) observed on the site with the exception of the bare patch of, otherwise-grass-covered, soil within proposed Lot 1, described below (refer to Photo 11);
- No visible indicators of salinity were identified on proposed Lot 2 of the site such as bare and scaled soil patches, visible salt crystals or white crusts, black soil staining or salt-impacted vegetation growth; and
- A visible indicator of salinity was identified on proposed Lot 1 of the site in the form of a bare/scaled patch of soil at test pit location TP29A (refer to Figure 2 for test pit locations), suggesting dryland salinity impact to vegetation growth. However, no visible salt crystals, white crusts, or black soil staining was observed in this location, nor on the remainder of the site. Vegetation growth immediately surrounding the observed clear patch appeared consistent with the remainder of the site vegetation type, and did not suggest salt-impacted vegetation species occurrence (refer to Photo 11).

8.2 Observed Soil Stratigraphy

The soil profiles encountered across the site were relatively consistent. Surface soils generally consisted of silt material followed by clay.

Below the silt material (natural top soils or fill material) was firm to stiff, red clay with moderate to high plasticity, generally mottled orange/yellow and grey, with grey mottling increasing with depth. Natural clay was generally encountered at depths between 0.2-0.3m Below Ground Level (BGL) across all sample locations.

All test pits were terminated in presumed natural material.

The visible soil profiles encountered are presented in Photos 10-12 Appendix C. Material descriptions of the soil encountered at each sample location are provided in the borehole logs presented in Appendix D.

8.2.1 Fill Material Encountered on Site

Fill material consisted of brown clay-silt or silt and contained some organic plant root material and foreign material such as ceramic, plastic and bituminous asphalt fragments. The surface silt material encountered in the following test pits was deemed to be fill material: TP1, TP2, TP4, TP8, TP9 and TP12. Refer to Figure 2, Appendix A.

8.2.2 Natural Soils

In all remaining test pits, only natural clay-silt or clay soils was encountered, with no evidence to suggest it was fill material.

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

9 Assessment Criteria

An assessment criterion has been selected to provide an appropriate indication of the environmental status and suitability of the site for the intended land use as a primary school. Greencap refers to the National Environment Protection Council (NEPC) (2013) - *National Environment Protection (Assessment of Site Contamination) Amendment Measure, 1999* (ASC NEPM, 2013) for site assessment criteria.

Typically for contaminant concentration to be considered acceptable for the respective land use criteria, the data set must conform to the following requirements:

- 95% upper confidence limit (UCL) of the arithmetic mean of analytical results is below the site criteria.
- Arithmetic (or geometric in cases where the data is log normally distributed) mean is below the site criteria.
- Standard deviation is less than 50% of the site criteria.
- No single sample analytical result is greater than 250% of the site criteria.

9.1 Investigation Levels

The investigation levels presented in this section are derived from toxicity of substances and estimated exposure of humans under the specified land use scenario.

9.1.1 Health Investigation Levels for Soil

The applicable health-based investigation levels (HILs) for this investigation will include the following:

• HIL A – Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools.

These HILs are taken from the NEPM (2013) and are presented for reference in Table 2. These HILs will be applied to the open surfaces of the site.

Table 2: HILs for Soil Contaminant			
Chemical	HIL A ¹ (mg/kg)		
Metals			
Arsenic ²	100		
Cadmium	20		
Chromium (VI)	100		
Copper	6,000		
Lead ³	300		
Mercury (inorganic)	40		
Nickel	400		
Zinc	7,400		
РАН			
Carcinogenic PAHs (as BaP TEQ) ⁴	3		
Total PAHs ⁵	300		

Notes:

1. Generic land uses are described in detail in Schedule B7 Section 3 of the NEPM 2013

2. Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer Schedule B7).

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

January 2019

- 3. Lead: HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate).
- 4. Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

PAH species	TEF	PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	0.01
Benzo(a)pyrene	1	Chrysene	0.01
Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

5. Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet the relevant HSL.

9.1.2 Ecological Investigation Levels for Soil

The ecological investigation levels (ELs) assigned by the ASC NEPC (2013) *Schedule B5c - ELs for As, Cr, Cu, DDT, Pb, Naphthalene, Ni and Zn* are adopted for this assessment. This guideline presents the methodology for deriving terrestrial ELs using both fresh and aged (i.e. > 2 years old) contamination for soil with the following land use types:

- Areas of ecological significance;
- Urban residential / public open space; and
- Commercial / industrial.

The methodology has been developed to protect soil processes, soil biota (flora and fauna) and terrestrial invertebrates and vertebrates. The current land use on site is primary school and hence the EILs for "Urban residential / public open space" have been adopted for this assessment.

The values presented for zinc, chromium (III), copper and lead are added contaminant limits (ACL) based on added concentrations.

The EIL is calculated from the sum of the ACL and the ambient background concentration (ABC) to derive the site-specific soil quality guideline (SQG) taking into account the effect caused by pH, exchangeable cations, iron and total organic carbon in soil that can affect concentration toxicity data. ACLs are based on soil characteristics of pH, CEC and clay content. Values presented for arsenic and naphthalene are generic EILs based on total concentrations and fresh contaminants. The EIL for lead has been calculated using the most conservative SQG value based upon the reported pH and exchangeable cation values. A summary of the EILs for aged contamination in soil (>2 years) for the current land use are presented in Table 3.

Table 3: Site Specific EILs					
Analyte	Ambient backgroundAdded contaminant limitconcentration (mg/kg)1(mg/kg)		EIL – Urban residential and public open space (mg/kg)		
Arsenic ²	13	100	113		
Naphthalene	ND	170	170		
Chromium (III)	17	400	417		
Copper	9.4	190	199		
Lead	19	1,100	1,119		
Nickel	< 5	170	170		
Zinc	11	270	281		

Notes:

1. Ambient background concentrations (ABC) were determined using natural soil samples analysed from TP23 during this investigation.

 Added contaminant limits were determined using Tables 1B(1-5), Schedule B1, NEPC (2013); and the following sample analysis results: pH of 5.5 and CEC of 10meq/100g. >10% clay content.

9.2 Screening Levels

9.2.1 Health screening levels (HSLs) for soil

For petroleum hydrocarbons, health screening levels (HSLs) have been derived in ASC NEPM (2013) based upon fraction ranges of hydrocarbons together with soil texture classes. The applied soil texture class is determined according to the observed stratigraphy during field assessment.

Soils encountered on site consisted of clay-silt and clay. In order to safely cover the risks associated with the fill material, a conservative approach was taken and silt soil texture was used for the selection of HSLs to be applied.

The HSL criteria, whilst non-limiting (NL) for vapour intrusion, are provided to prevent the occurrence of phase-separated hydrocarbons (PSH). Fractions F3 (>C16-C34) and F4 (>C34-C40) are semi-volatile and are not of concern for vapour intrusion, however, exposure to human receptors can occur via direct pathways such as dermal contact. The HSL criteria are summarised below in Table 4.

9.2.2 Ecological screening levels (ESLs) for soil

For petroleum hydrocarbons, ESLs have been derived in ASC NEPM (2013) based upon fraction ranges of hydrocarbons, BTEXN and benzo(a)pyrene (BaP) components together with soil texture classes. These ESLs are of low reliability except for the volatile and semi-volatile hydrocarbon fractions which are of moderate reliability. Nonetheless the ESLs will be adopted for the investigation due to the sensitivity of the proposed site use as a primary school.

The adopted ESLs are designed to be protective of soil fauna, soil processes, and plants. The ASC NEPM (2013) states that these factors only apply within the rhizome (i.e. zone in the top two metres of soil) and as such ESL criteria need not be applied to chemical results below this depth. These ESL values are included below in Table 4.

9.2.3 Management limits for hydrocarbon fractions F1-F4 in soil

Management limits for F1 and F2 are applied after consideration of relevant ESL and HSL criteria and are generally to be protective for dermal contact risk. The adopted management limits are based on fine grained soils with criteria summarised below in Table 4.

Analyte	Soil Texture	HSL A/ B	ESLs	Management Limits
		Land use: Residential		
	Coarse	40 (0 - < 1m)	180 *	700
F1 (C ₆ - C ₁₀)	Fine	— 65 (1 - < 2m) 100 (2 - < 4m) 190 (4m+)		800
	Coarse	220 (0 < 1 m)	100 *	1,000
F2 (>C ₁₀ -C ₁₆)	Fine	230 (0 - < 1m)	120 *	
	Coarse		300	2,500
F3 (>C ₁₆ -C ₃₄)	Fine		1,300	3,500
	Coarse		2,800	10,000
F4 (>C ₃₄ -C ₄₀)	Fine		5,600	
	Coarse	0.6 (0 - < 1m)	50	
Benzene	Fine	— 0.7 (1 - < 2m) — 1 (2 - < 4m) 2 (4m+)	65	
- 1	Coarse		85	
Toluene	Fine	390 (0 - < 1m)	105	
5 .1.1.1	Coarse		70	
Ethyl-benzene	Fine		125	
	Coarse	95 (0 - < 1m)	105	
Xylenes	Fine	210 (1 - < 2m)	45	
Naphthalene	Coarse		170	
	Fine	4 (0 - < 1m)		
_ / \	Coarse		0.7	
Benzo(a)pyrene	Fine		0.7	

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

GREENCAP

10 Results

10.1 Analytical Schedule

Soil samples were submitted to a NATA-Accredited laboratory *Eurofins* for chemical analysis of relevant combinations of the following Chemicals of Potential Concern (CoPC):

- Total Recoverable Hydrocarbons (TRH);
- Benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN);
- Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc)
- Polycyclic Aromatic Hydrocarbons (PAH);
- Organochlorine pesticides (OCPs)
- Organophosphate pesticides (OPPs);
- Polychlorinated biphenyls (PCBs);
- Asbestos in soils (presence/ absence); and
- Salinity Characteristics (total soluble salts, soluble chloride, electrical conductivity, saturated resistivity).

10.2 Soil Results

Analytical results for soil samples were compared against the assessment criteria (refer to Section 8) and presented on the results summary table in Appendix E (refer to Appendix F for laboratory transcripts). All analysis results were either non-detect (ND; not detected to the Limit of reporting) or below the applicable human health and ecological criteria for all samples.

10.3 Salinity

Due to the relatively consistent soils encountered across the site, the analysed samples are assumed to be characteristic of the soils at similar depths across the site. All samples were classed as non-saline (salinity effects mostly negligible) and non-aggressive for steel and concrete corrosivity according to applicable Australian standards and guidelines.

While the shallow soils sampled were all classified as non-sodic or sodic, the sample taken from depth 0.8-0.9m BGL was classified as highly sodic based on analysis results.

Further details of salinity investigation conducted as part of this DSI are detailed in the Salinity report attached in Appendix B.

10.4 Asbestos in soils

There was no visual evidence of potential asbestos containing materials (ACM) observed on the surface of the Site and no ACM fragments were encountered at any of the 35 test pit locations during excavation.

All soil samples analysed for asbestos by a NATA-Accredited Laboratory, returned negative results for asbestos detected at the reporting limit of 0.01% w/w, and no respirable fibres detected. Refer to Appendix E: Sample Analysis Summary.

10.5 QA/QC Procedures

The evaluation of the QA/QC procedures (refer to Appendix G) demonstrate that the established measurement data quality objectives for this project have been met and the data set is considered to be reliable.

Chain-of-Custody documentation for sample transfer from the site to the laboratory can be found in Appendix F.

C122140:J160656_Detailed Site Investigation_Proposed Alex Avenue Public School

11 Conceptual Site Model

A Conceptual Site Model (CSM) of the site can be formed by considering the geophysical characteristics of the site, the contaminant source, potential receptors to site contamination, and the pathways to the receptors. The CSM, as required by the NEPC (2013), is an iterative process constantly being updated during the investigation process as more information becomes available. The following CSM is presented based on the results of this DSI.

11.1 Sources

No on-site sources of contamination were identified on the site as a result of this investigation. The soil on site, however, shall be noted as a potential source of dust.

11.1.1 Chemicals of Potential Concern

Sample analysis results indicated no elevated levels of any of the chemical analytes listed in Section 9.1. However, there is always a possibility (for any site) to encounter contamination outside of the investigation points.

11.2 Pathways

Pathways identified for the fill material:

- Inhalation, ingestion, and dermal contact with contaminants in soil by utility workers during services works; and
- Creation of dust/vapour during potential demolition, excavation or development works where soils are disturbed.

11.3 Receptors

During development of the site, human receptors on site will include civil workers and other personnel involved in the site construction works.

Following the completion and occupation of the Primary School, human sensitive receptors on site will include: school staff (including teaching and administrative staff and cleaners), students and other temporary visitors to the site such as parents, maintenance workers, as well as workers involved in any future development work on the site.

Off-site human receptors include construction workers, residents and visitors of the neighbouring properties.

11.4 Source, Pathway, and Receptor Analysis

As a result of this investigation a CSM has been developed to assess actual or potential risks to human health and the environment. In this scope, a contaminant source, pathway and receptor analysis has been conducted with no identified linkages for the site. This excludes general considerations that are relevant to dust and unexpected finds.

12 Conclusions

This Detailed Site Investigation did not identify any unacceptable human health or ecological risk associated with the surface soil quality. Therefore, it can be concluded that the surface soil within the site boundary is suitable for its intended use as a primary school, consistent with *'Residential A'* land use as defined in the NEPM. This DSI report satisfies the conditions of Clause 7 (subclause 3) of SEPP 55 (Remediation of Land).

This investigation revealed no evidence to suggest a requirement for remediation of the site with respect to land contamination, for its intended use.

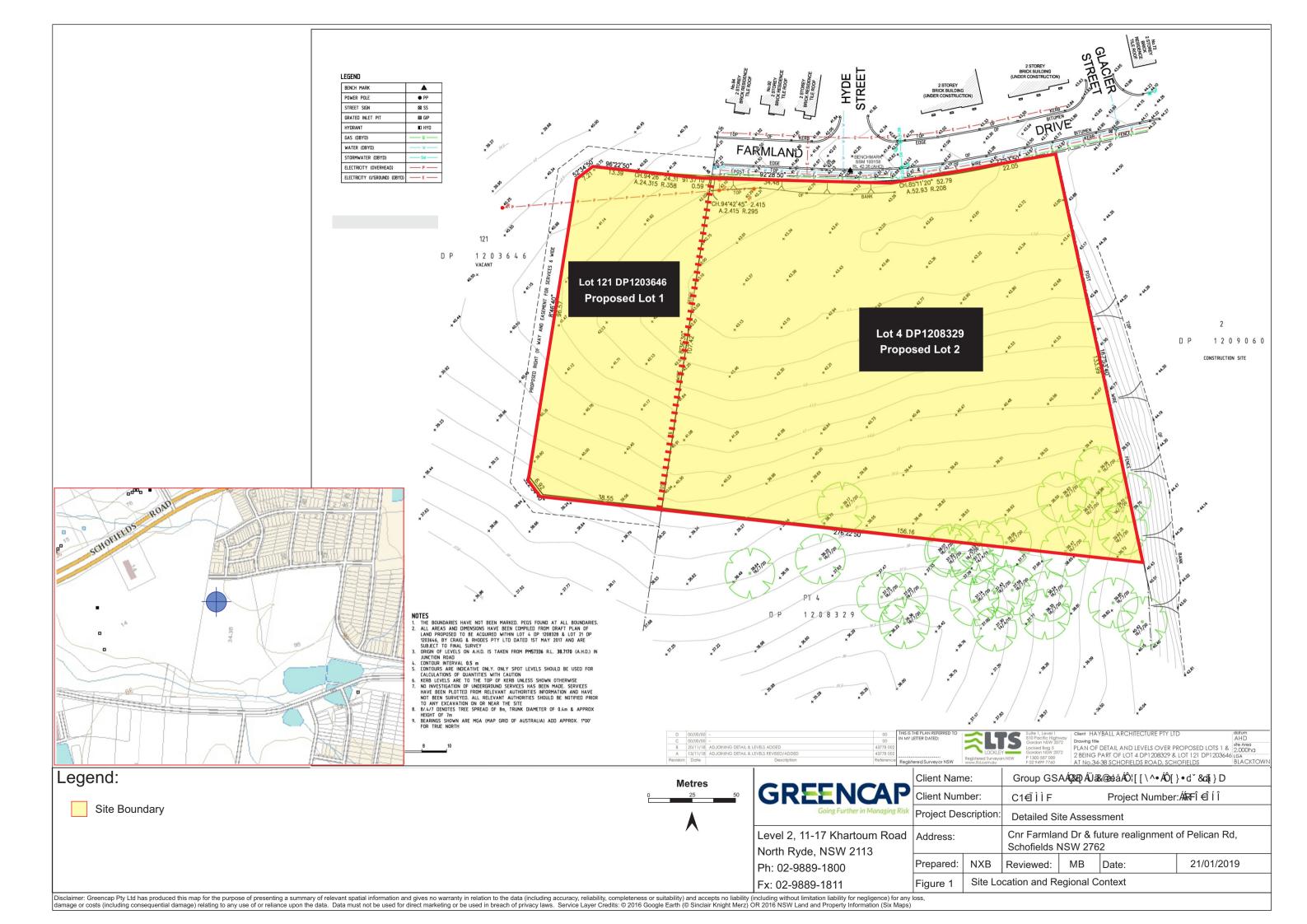
13 Recommendations

As a result of the findings of this investigation, Greencap recommends the following:

• Any material to be taken off-site must be classified in accordance with the NSW EPA Waste Classification Guidelines (2014).

14 References

- NEPC (1999), National Environment Protection (Assessment of Site Contamination) Amendment Measure (ASC NEPM. 2013 amendment).
- NSW OEH (2011), Guidelines for Consultants Reporting on Contaminated Sites.
- Department of Primary industries NSW (2014) Salinity training Manual Salinity Identification, Causes and Management.
- Environmental Investigation Services (EIS) (2017) Report to Hayball on Preliminary Environmental Site Assessment for Proposed New Primary School Development at 34-38 Schofields Rd, Schofields NSW. (EIS PSI)
- Department of Land and Water Conservation (2002), 'Site investigations for Urban Salinity'
- AS 2159-2009: Australian Standard Piling Design and Installation (Amendment No.1).


Level 2 / 11 Khartoum Street North Ryde NSW 2113 Australia T: (02) 9889 1800

Detailed Site Investigation

Group GSA Cnr of Farmland Dr & the future realignment of Pelican Rd, Schofields NSW 2762

Appendix A: Figures

greencap.com.au

_	T ()(0) ()
-	Test-pit Sample Locations

Disclaimer: Greencap Pty Ltd has produced this map for the purpose of presenting a summary of relevant spatial information and gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation liability for negligence) for any loss, damage or costs (including consequential damage) relating to any use of or reliance upon the data. Data must not be used for direct marketing or be used in breach of privacy laws. Service Layer Credits: © 2016 Google Earth (© Sinclair Knight Merz) OR 2016 NSW Land and Property Information (Six Maps)

1							
nber: C1€ÏÌÌF Project Number: J160656					: J160656		
scription: Detailed Site Assessment							
		Cnr Farmlar Schofields N		iture realignment 2	of Pelican Rd,		
	NXB	Reviewed:	21/01/2019				
Sample Locations							

Disclaimer: Greencap Pty Ltd has produced this map for the purpose of presenting a summary of relevant spatial information and gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation liability for negligence) for any loss, damage or costs (including coursequential damage) relating to any use of or reliance upon the data. Data must not be used for direct marketing or be used in breach of privacy laws. Service Layer Credits: © 2016 Google Earth (© Sinclair Knight Merz) OR 2016 NSW Land and Property Information (Six Maps)

	Cnr Farmla Schofields I	nd Dr & fu NSW 276	iture realignment	of Pelican Rd,			
В	Reviewed: MB Date: 21/01/20						

Locations Samples Tested for Salinity & Encountered Fill Material

Level 2 / 11 Khartoum Street North Ryde NSW 2113 Australia T: (02) 9889 1800

Detailed Site Investigation

Group GSA Cnr of Farmland Dr & the future realignment of Pelican Rd, Schofields NSW 2762

Appendix B: Salinity Report

greencap.com.au

Level 2 / 11 Khartoum Road North Ryde NSW 2113 Australia T: (02) 9889 1800

SALINITY REPORT

January 2019 J160656

GROUP GSA

Proposed Alex Avenue Public School, Schofields NSW

C107881: NXB

greencap.com.au

ABN 76 006 318 010

Document Control

Document Quality Management Details							
Report Name:	Salinity Report						
Site Details:	Cnr Farmland Dr and future realignment of Pelican Rd, Schofields NSW 2762						
Project Number:	J160656	J160656					
Client Name:	Group GSA c/o Richard Crookes Construction						
Client Number:	C107881						
	Prepared By:	Authorised By:					
Signatures:	N. Bouha	Unpy					
	Nicole Boukarim	Matthew Barberson					
	Consultant - Environment	Team Manager - Environment					

Issue Status

Version No.	Date	Creator	Reviewer
Draft	14/12/2018	4/12/2018 Nicole Boukarim Matthew Barberso	
1	21/12/2018	Nicole Boukarim	Matthew Barberson
2	15/01/2019	Nicole Boukarim	Matthew Barberson
3	21/01/2019	Nicole Boukarim	Matthew Barberson

Document Circulation

No of Copies	Type Customer Name		Company & Position		
1	Electronic	Frederic Terreaux	Associate Director – Group GSA		

Salinity Report

Group GSA c/o Richard Crookes Construction

Cnr Farmland Dr and future realignment of Pelican Rd, Schofields NSW

Table of Contents

1.	Intro	duction and BackgroundI
2.	Proje	ct ObjectiveI
3.	Meth	odology and Scope of Work
	3.1	Assessment Criteria and Sample DesignII
4.	Site D	DescriptionII
	4.1	Salinity MappingIII
5.	Field	ObservationsIII
	5.1	Site WalkoverIII
	5.2	Field observations of soil IV
6.	Soil A	nalysis Results IV
	6.1	Results summary IV
7.	Key F	indings & Discussion IV
	7.1	Soil Salinity IV
	7.2	Sodicity and PermeabilityV
	7.3	CorrosivityVI
	7.4	Evaluation and ManagementVI
8.	Data	Gaps VII
9.	Concl	lusions & Recommendations VII
10.	Refer	ences

C122140:J160656_Proposed Alex Avenue Public School_Salinity Report

Statements of Limitations

All and any Services proposed by Greencap to the Client are subject to the Terms and Conditions listed on the Greencap website at: www.greencap.com.au/about-greencap/terms-and-conditions. Unless otherwise expressly agreed to in writing and signed by Greencap, Greencap does not agree to any alternative terms or variation of these terms if subsequently proposed by the Client. The Services are to be carried out in accordance with the current and relevant industry standards of testing, interpretation and analysis. The Services are to be carried out in accordance with Commonwealth, State or Territory legislation, regulations and/or guidelines. The Client will be deemed to have accepted these Terms when the Client signs the Proposal (where indicated) or when the Company commences the Services at the request (written or otherwise) of the Client.

The services were carried out for the Specific Purpose, outlined in the body of the Proposal. To the fullest extent permitted by law, Greencap, its related bodies corporate, its officers, consultants, employees and agents assume no liability, and will not be liable to any person, or in relation to, any losses, damages, costs or expenses, and whether arising in contract, tort including negligence, under statute, in equity or otherwise, arising out of, or in connection with, any matter outside the Specific Purpose.

The Client acknowledges and agrees that proposed investigations rely on information provided to Greencap by the Client or other third parties. Greencap makes no representation or warranty regarding the completeness or accuracy of any descriptions or conclusions based on information supplied to it by the Client, its employees or other third parties during provision of the Services. The Client releases and indemnifies Greencap from and against all Claims arising from errors, omissions or inaccuracies in documents or other information provided to Greencap by the Client, its employees or other third parties. Under no circumstances shall Greencap have any liability for, or in relation to, any work, reports, information, plans, designs, or specifications supplied or prepared by any third party, including any third party recommended by Greencap.

The Client will ensure that Greencap has access to all sites and buildings as required by or necessary for Greencap to undertake the Services. Notwithstanding any other provision in these Terms, Greencap will have no liability to the Client or any third party to the extent that the performance of the Services is not able to be undertaken (in whole or in part) due to access to any relevant sites or buildings being prevented or delayed due to the Client or their respective employees or contractors expressing safety or health concerns associated with such access.

Greencap, its related bodies corporate, its officers, employees and agents assume no liability and will not be liable for lost profit, revenue, production, contract, opportunity, loss arising from business interruption or delay, indirect or consequential loss or loss to the extent caused or contributed to by the Client or third parties, suffered or incurred arising out of or in connection with our Proposals, Reports, the Project or the Agreement. In the event Greencap is found by a Court or Tribunal to be liable to the Client for any loss or damage arising in connection with the Services, the Client's entitlement to recover damages from Greencap shall be reduced by such amount as reflects the extent to which any act, default, omission or negligence of the Client, or any third party, caused or contributed to such loss or damage, unless otherwise agreed in writing and signed by both parties, Greencap's total aggregate liability will not exceed the total consulting fees paid by the client in relation to this Proposal. For further detail, see Greencap's Terms and Conditions available at www.greencap.com.au/about-greencap/terms-and-conditions

The Report is provided for the exclusive use of the Client for this Project only, in accordance with the Scope and Specific Purpose as outlined in the Agreement, and only those third parties who have been authorised in writing by Greencap. It should not be used for other purposes, other projects or by a third party unless otherwise agreed and authorised in writing by Greencap. Any person relying upon this Report beyond its exclusive use and Specific Purpose, and without the express written consent of Greencap, does so entirely at their own risk and without recourse to Greencap for any loss, liability or damage. To the extent permitted by law, Greencap assumes no responsibility for any loss, liability, damage, costs or expenses arising from interpretations or conclusions made by others, or use of the Report by a third party. Except as specifically agreed by Greencap in writing, it does not authorise the use of this Report by any third party. It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the site.

The conclusions, or data referred to in this Report, should not be used as part of a specification for a project without review and written agreement by Greencap. This Report has been written as advice and opinion, rather than with the purpose of specifying instructions for design or redevelopment. Greencap does not purport to recommend or induce a decision to make (or not make) any purchase, disposal, investment, divestment, financial commitment or otherwise in relation to the site it investigated.

This Report should be read in whole and should not be copied in part or altered. The Report as a whole sets out the findings of the investigations. No responsibility is accepted by Greencap for use of parts of the Report in the absence (or out of context) of the balance of the report.

C122140:J160656_Proposed Alex Avenue Public School_Salinity Report

1. Introduction and Background

Greencap Pty Ltd ('Greencap') was engaged by Richard Crookes Construction (RCC) on behalf of the NSW Department of Education to undertake a Detailed Site Investigation (DSI) for the property at the Cnr Farmland Dr and future realignment of Pelican Rd, Schofields NSW 2762 ('the site'). The site is currently undeveloped and occupies the northern portion of Lot 4 in Deposited Plan (DP) 1208329 (proposed Lot 2) and a small area of Lot 121 DP1203646 (proposed Lot 1). A salinity report was required as part of the DSI, following the findings of a Preliminary Site Investigation (PSI) previously prepared for the site by Environmental Investigation Services (EIS, August 2017). The PSI identified a small portion of the western side of the site as an area of potentially high hazard/risk of dryland salinity.

A proposed Primary School – Alex Avenue Public School – is to be constructed on the 25,250 m² site, consisting of several buildings and both sealed and unsealed outdoor areas. Site location and boundary is depicted in Figure 1 in the Figures section of the DSI Report.

This Salinity Report should be read in conjunction with the DSI report it is an attachment of.

2. Project Objective

The objective of this report was to address the PSI salinity findings of the Preliminary Site investigation conducted by EIS (EIS PSI) in 2017 and assess dryland salinity risk on site. The Site was identified to be directly adjacent to area classified as high hazard or risk defined for years 2000, 2010, 2050 by a Dryland Salinity Assessment, Land and Property information (a division of the department of Finance and Services) 2017 in the EIS PSI, 2017.

3. Methodology and Scope of Work

In order to achieve the above objectives, the following scope of works was undertaken, by taking into consideration the NSW Department of Primary Industries' *Salinity Training Manual* (2014) and the *Site investigations for Urban Salinity* (Department of Land and Water Conservation, 2002), referred to herein as "DPI Salinity Manual" and "The SIUS" respectively:

- A desktop review of site history and environmental context, including review of PSI report (reference here), particularly local topography, geology and hydrogeology, as well as salinity findings;
- A detailed site walkover and surface soil assessment was carried out to evaluate current site use, condition, visible signs of salinity (e.g. bare soil patches, plant dieback etc.), and surrounding site uses.
- Greencap conducted salinity analytical testing at 5 locations across the site. These locations were selected based on the results of the initial surface walkover inspection, as well as for the purposes of ensuring adequate coverage of the site and the encountered soil-types. Field logs from each test pit and borehole location are included in Appendix D and contain a description of the soil profile material, odours, and any other pertinent information. Test pit locations are indicated on Figure 2.
- The analytical analysis was conducted by a NATA-Accredited laboratory, Eurofins mgt., and the samples were analysed for the following analytes:
 - > Chloride
 - Conductivity (1:5 aqueous extract at 25°C)
 - Exchangeable Sodium Percentage (ESP)
 - pH (1:5 Aqueous extract at 25°C)
 - Resistivity

C122140:J160656_Proposed Alex Avenue Public School_Salinity Report

- Sulphate (as SO₄)
- Magnesium (exchangeable)
- Potassium (exchangeable)
- Sodium (exchangeable)
- Calcium (exchangeable)
- Cation Exchange Capacity
- Following the receipt of final laboratory results Greencap prepared this report in accordance with *Site investigations for Urban Salinity* (Department of Land and Water Conservation, 2002), stating our findings providing recommendations for further work and management if required.

Further detail on the methodology is provided in section 7.3 of the DSI Report.

3.1 Assessment Criteria and Sample Design

Sampling density was determined using the SIUS recommendations for land use deemed to be moderately intensive construction. Total area of the site is estimated to be \sim 25,500 m².

Five samples were collected and analysed, in accordance with the recommended sampling density of 0.5-4 laboratory samples per km² including (<1 per type profile)¹. Two soil profiles were encountered across the site with shallow layers consisting generally of a silt or clay-silt, and deeper soil profile consisting of natural clay. Accordingly, at least two samples were taken of each profile, and sample locations were selected to ensure adequate site coverage. Care was also taken to target the western side of the site (TP16 and TP29A) in order to target the mapped dryland salinity hazard potential identified in the PSI. Areas in which any visual indicators of salinity were observed were also targeted for sampling (TP29A).

4. Site Description

The site is underlain by Middle Triassic Bringelly Shale of the Wianamatta Group. This is characterised by shale, carbonaceous claystone, claystone, laminate, fine-to medium-grained lithic sandstone and rare coal and tuff. The site soil landscape is the Blacktown Residual soil landscape. Fill material was noted in the site PSI, consisting of two small stockpiles identified in the central area of the site (less than 1 tonne each) (EIS, 2017).

The elevation of the site ranges generally between 37-43 mAHD. The site slopes down-gradient towards the south, with the highest elevation at the north-eastern corner of the site. Topographic contours are presented in the PSI Appendix (EIS, 2017).

Based on site topography, surface water runoff is expected flow in a southern direction, towards the unnamed creek south of the site. Infiltration into on-site aquifers is also expected across the site due to the absence of any sealed surfaces or built structures. The PSI identified porous, extensive aquifers of low to moderate productivity on the site. Regional groundwater is expected to flow in a southern/south-western direction consistent with the regional topography. However, the possibility remains that groundwater flow may not follow this expected direction, particularly as groundwater data and water table depth were not available for the site and its surrounds.

¹ Table 1. Recommended Levels of Site Description, Site investigations for Urban Salinity (Department of Land and Water Conservation, 2002).

4.1 Salinity Mapping

The EIS PSI included review of Australian Dryland Salinity Assessment 2000.

This Assessment included mapping of dryland salinity risk and hazard mapping for 2000, 2020 and 2050 within NSW. Areas of risk are based on groundwater levels and air photo interpretation. Based on the derived maps "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050", the land directly west-adjacent to the site were identified as areas of high salinity hazard/risk, with minor overlap along the site's lower western boundary and far south-western corner.

Dryland salinity occurs when deep-rooted native vegetation is replaced with shallow-rooted annuals, leading to increased water leakage to the groundwater system. As a result, the rise in groundwater level brings salt to the soil surface.

Refer to EIS Appendix A, for the Dryland Salinity findings and mapping.

5. Field Observations

5.1 Site Walkover

A site walkover was conducted on the 16th November 2018 and 10th December 2018, by qualified Greencap consultants. Photographs from the site walkovers are provided in Appendix C of the DSI.

During the site walkover, an inspection of any visible indicators of salinity on the site was undertaken. The following observations were made during the site walkover:

Proposed Lot 1 of the site:

- There was no visual evidence of salt crystals or white crusts on any soil surfaces;
- There was no visual evidence of black staining on soils;
- There was no visual evidence of puffy soil surfaces;
- There was no visual evidence of phytotoxic impact (i.e. plant stress or dieback) observed on the site with the exception of the bare patch of otherwise-grass-covered soil in proposed Lot 1, described below (refer to Photo 11); and
- One bare/scaled patch of soil was identified at test pit location TP29A (refer to Figure 2 for test pit locations), suggesting potential dryland salinity impact to vegetation growth. However, no additional indicators (e.g. salt crystals, black soil staining etc) were observed in this location. Vegetation growth immediately surrounding the observed clear patch appeared consistent with the remainder of the site vegetation type, and did not suggest salt-impacted vegetation species occurrence (refer to Photo 11).

Proposed Lot 2 of the site:

- There was no visual evidence of bare and scaled soil patches;
- There was no visual evidence of salt crystals or white crusts on any soil surfaces;
- There was no visual evidence of black staining on soils;
- There was no visual evidence of puffy soil surfaces; and
- There was no visual evidence of phytotoxic impact (i.e. plant stress or dieback) observed to trees or grasses.

For further general site observations noted during the site inspection, refer to section 7 of the DSI report.

C122140:J160656_Proposed Alex Avenue Public School_Salinity Report

5.2 Field observations of soil

The soil profiles encountered across the site were relatively consistent. Surface soils generally consisted of silt material followed by clay. Below top soils or fill material was firm to stiff, red clay with moderate to high plasticity, generally mottled orange/yellow and grey, with grey mottling increasing with depth. Natural clay was generally encountered at depths between 0.2-0.3m Below Ground Level (BGL) across all sample locations.

All soil layers sampled for salinity testing are considered to have been naturally-occurring soils.

The visible soil profiles encountered are presented in Photos 10-12 Appendix C. Material descriptions of the soil encountered at each sample location are provided in the borehole logs presented in Appendix D.

6. Soil Analysis Results

6.1 Results summary

Table 1. Summary of Salinity Lab Analysis Results							
Apolyto		Units	TP2	TP15	TP16	TP24	TP29A
Analyte	LOR	Units	0.60-0.70	0.80-0.90	0.10-0.30	0.10-0.20	0.15-0.30
Chloride	5	ppm	24	46	< 5	14	170
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	47	87	11	100	97
Exchangeable Sodium Percentage (ESP)	0.1	%	7.9	20	2	5.8	9.1
pH (1:5 Aqueous extract at 25°C)	0.1	pH units	5.7	5.2	6.1	5.4	6.8
Resistivity*	0.5	ohm.m	210	110	940	93	100
Sulphate (as SO4)	30	ppm	140	82	< 30	52	<30
Magnesium (exchangeable)	0.5	meq/100g	5.7	9.2	3.2	7.1	6.7
Potassium (exchangeable)	0.1	meq/100g	0.4	0.6	0.2	0.3	0.5
Sodium (exchangeable)	0.1	meq/100g	0.8	2.8	0.2	1	1.4
Calcium (exchangeable)	0.1	meq/100g	3.5	1.0	5.3	8.2	6.3
Cation Exchange Capacity	0.05	meq/100g	10	14	8.8	16	15

7. Key Findings & Discussion

7.1 Soil Salinity

Using the electrical conductivity (1:5) results, EC_e values were determined using a correction factor of soil texture to determine the soil salinity class for each sample, tabulated below.

Soil texture was determined using the field testing methods outlined the DPI Salinity Manual.

All analysed samples are classed as non-saline, including samples TP16 and TP29A which were sampled from the area identified by the PSI as a forecasted area of high hazard/risk (Refer to Section 4.1 of this report). In addition, sample TP29A was observed to be an area bare of vegetation and was targeted as a possible salinity-impacted area.

Table 2. Calc	Table 2. Calculated Soil Salinity Classifications									
Sample ID	Sample depth (m)	Soil Type ²	Conversion factor ³	EC _e (dS/m)	Soil Salinity Class					
TP2	0.60-0.70	Heavy clay	6.7	0.32	Non-saline (1.5-2 dS/m)					
TP15	0.80-0.90	Medium clay	6.7	0.58	Non-saline (1.5-2 dS/m)					
TP16	0.10-0.30	Clay loam	8.6	0.95	Non-saline (1.5-2 dS/m)					
TP24	0.10-0.20	Clay loam	8.6	0.86	Non-saline (1.5-2 dS/m)					
TP29A	0.15-0.3	Loam	9.5	0.92	Non-saline (1.5-2 dS/m)					

7.2 Sodicity and Permeability

Sodicity relates to the likely dispersion on wetting, and soil shrinking/swelling properties. When wet, sodic soils create impermeable layers and impeding water movement in the soil.

Sodicity is expressed as the Exchangeable Sodium Percentage (ESP). While saline soils are high in total soluble salts, including any combination of ions (e.g. sodium, calcium or magnesium etc), sodic soils are exclusively high in exchangeable sodium ions.

Using the guidelines for categorising soil sodicity provided in the DPI Salinity Manual, the Sodicity of the analysed samples are summarised below. Refer to Figure 2 for sample locations.

Table 3. Sodicity r	able 3. Sodicity rating of analysed samples									
Sample ID	Sodicity Rating ⁴									
TP2	0.60-0.70	7.9	Sodic (6-15%)							
TP15	0.80-0.90	20	Highly Sodic (> 15%)							
TP16	0.10-0.30	2	Non-sodic (< 6%)							
TP24	0.10-0.20	5.8	Non-sodic (< 6%)							
TP29A	0.15-0.3	9.1	Sodic (6-15%)							

greencap.com.au

² Soil texture was determined using the field testing methods outlined in Chapter 12 of the DPI Salinity Manual (2014).

³ Conversions made using Table 12.4: Conversion factors for soil groups, DPI Salinity Manual (2014), adapted from Slavich and Petterson (1993).

⁴ Source: Northcote and Skene (1992), cited in DPI Manual.

C122140:J160656_Proposed Alex Avenue Public School_Salinity Report

Sodicity is the presence of a high amount exchangeable sodium ions relative to other exchangeable cations (positively charged ions) in soil.

Based on the above, the sample taken from TP15 is notably sodic (although not saline). The high sodium in sodic soils may cause poor drainage issues, as water infiltration is likely to be impeded at this depth, which may lead to potential tunnel erosion. Waterlogging is common in sodic soils as swelling and dispersion of clay particles clog pores and hence reduce internal drainage of the soil.

These results are likely to be characteristic of the clay encountered throughout the site at this depth. Similarly, the non-sodic surface layers in samples TP16-TP9A were also encountered at the majority of test pits and can be assumed to be characteristic of the surface soils on the site.

7.3 Corrosivity

All soil samples returned results consistent with AS2159 for soils classified as non-aggressive for concrete and steel corrosivity.

Table 4. Results Comparison with AS2159 Exposure Conditions for Non-aggressive soils								
Assalata	11.24	Exposure	Exposure	TP2	TP15	TP16	TP24	TP29A
Analyte	Units	conditions for Steel	conditions for Concrete	0.60-0.70	0.80-0.90	0.10-0.30	0.10-0.20	0.15-0.3
Chloride	ppm	<5000	-	24	46	< 5	14	170
pH (1:5 Aqueous extract at 25°C)	pH units	>5	>5.5	5.7	5.2	6.1	5.4	6.8
Resistivity	ohm.m	<5000	<5000	210	110	940	93	100
Sulphate (as SO4)	ppm	<5000	-	140	82	< 30	52	< 30

Although the pH of TP15 exceeded the exposure limit for non-aggressive soils for concrete, (to 'moderate aggressiveness'), all other variables for this sample were below the non-aggressive soil exposure conditions, and this condition on its own does not pose a concrete corrosivity risk.

Furthermore, chloride concentration, which is useful indicator subsoil salinity, was notably well below chloride toxicity critical levels⁵ provided in the DPI Salinity Manual for all samples.

7.4 Evaluation and Management

This soil salinity assessment did not reveal any analysis results that require further investigation, nor any that would require specific management of salinity risk or corrosivity risk.

All samples were classed as non-saline (salinity effects mostly negligible) and non-aggressive for steel and concrete corrosivity according to the SIUS and AS2159 respectively.

While the shallow soils sampled were all classified as non-sodic or sodic, sample TP15, taken from depth 0.8-0.9m BGL was classified as highly sodic based on analysis results. Due to the relatively consistent soils encountered across the site, the high sodicity of sample TP15 is likely to be characteristic of other soils at similar depths across the site. However, due to the depth of this highly sodic material (0.8-0.9m BGL), the risk of potential impact on development is decreased provided that an upper non-sodic surface layer of silt is not completely removed. According to site plans it the area that TP15 was taken from corresponds to the location of the "shared plaza area" east-adjacent to Block C. Therefore, risks associated with potential decreased soil structure in this area, caused by the deeper soil's sodicity, as well as potential for concrete corrosivity is also reduced. Further risk is also minimised if infiltration of water of effluent is designed to suit the site conditions.

⁵ Levels of chloride toxicity in subsoil for sensitive species: Non-toxic: <300 mg/kg, and toxic: <600 mg/kg.

C122140:J160656_Proposed Alex Avenue Public School_Salinity Report

Dryland salinity occurs due to rising groundwater levels bringing salt to the soil surface, often as a result of the removal of deep-rooted native vegetation, causing increased water infiltration into groundwater systems. Due to the future presence of sealed surfaces that will be on the site following construction of the primary school, the risk of increased water infiltration on the site is reduced. However, consideration may be given to the vegetation present on the site post-development.

8. Data Gaps

Data gaps identified in this investigation are noted to include water table depth, and groundwater data including data regarding the identified on-site aquifer, which were not available for review for the site and its surrounds.

9. Conclusions & Recommendations

The investigation did not reveal any analysis results that require further investigation, nor any significant soil salinity contamination or sources of salinity on the site. The findings of this assessment identified no evidence of any current existing significant salinity contamination or risk on the site. Therefore, the site is considered suitable for the intended land use as a primary school and is unlikely to require significant salinity-specific management.

Potential data gaps are noted to include groundwater data and water table depth which were not available for the site and its surrounds.

As a result of this investigation, Greencap recommends maintenance of proper drainage controls on the site during site development/construction.

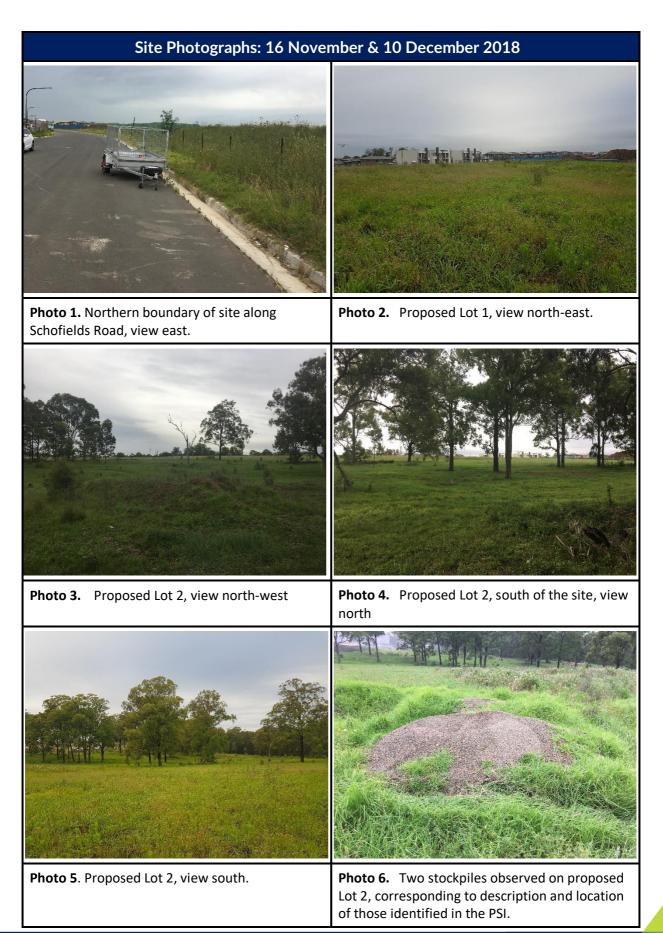
10. References

- NSW Department of Primary Industries (2014) 'Salinity Training Manual: Salinity Identification, causes and Management';
- Department of Land and Water Conservation (2002), 'Site investigations for Urban Salinity';
- AS 2159-2009: Australian Standard Piling Design and Installation (Amendment No.1); and
- NSW OEH (2011), Guidelines for Consultants Reporting on Contaminated Sites.

C122140:J160656_Proposed Alex Avenue Public School_Salinity Report

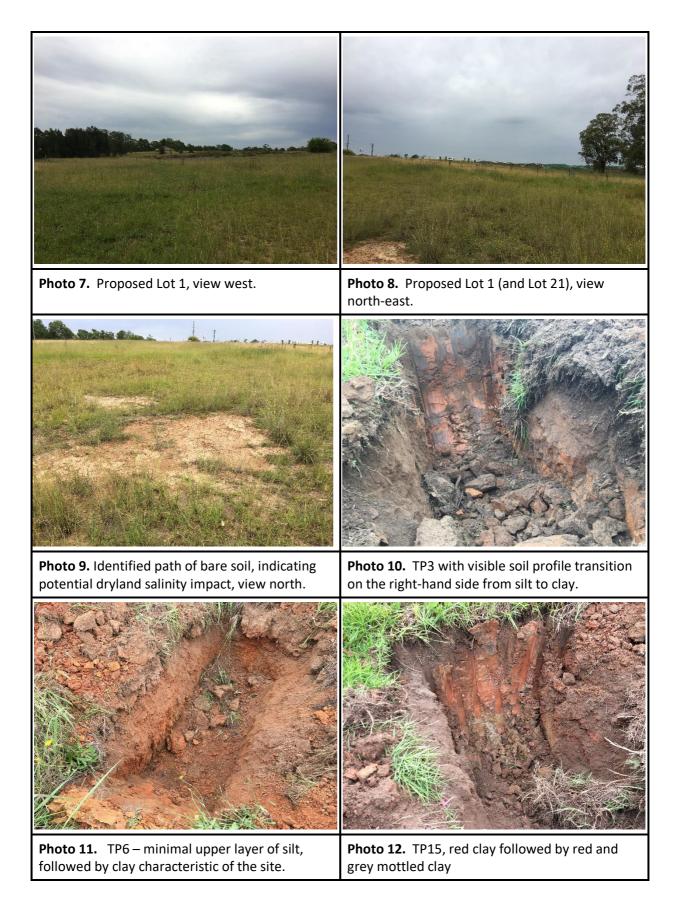
Level 2 / 11 Khartoum Street North Ryde NSW 2113 Australia T: (02) 9889 1800

Detailed Site Investigation


Group GSA Cnr of Farmland Dr & the future realignment of Pelican Rd, Schofields NSW 2762

Appendix C: Field Photographs

greencap.com.au


Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

greencap.com.au

greencap.com.au

Detailed Site Investigation

Group GSA Cnr of Farmland Dr & the future realignment of Pelican Rd, Schofields NSW 2762

Appendix D: Borehole Logs

greencap.com.au

Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

GF	REE	NCAI	2					TEST	PIT NUMBER TP1 PAGE 1 OF 1		
						Crookes Construction		Detailed Site Investigation TION34-38 Schofields Road, Schofields NSW DATUM BEARING DN 3/JG CHECKED BYMB			
DA EX EQ TE	TE S CAV	STAR ATIO MENT PIT SIZ	TED _ N CON _ <u>Exc</u>	16/11 NTRAC	/18 CTOR	COMPLETED 16/11/18 McMahons	_ R.L. SURFACE _ SLOPE _ TEST PIT LOCATION				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descript	ion	Samples Tests Remarks	Additional Observations		
Ш						Grass FILL: Firm, brown, clayey SILT, rootlets, bitumen fr	agments 1cm diameter ~ <0.5%	TP1 (0.1-0.2)	No olfactory evidence of contamination Moisture (D) PID (0.1)		
	None Observed		_ 0 <u>.5</u> _ _ _			NATURAL: Firm, orange/red, silty CLAY, yellow more grey mottling with depth	ottling, high plasticity, increases in	TP2 (0.5-0.6)	Moisture (DM) PID (0.1)		
			1.0 - - 1.5 - - - - - - - - - - - - - - - - - - -			Borehole TP1 terminated at 1m (Target depth reac	hed)				

G	REE	NCAI	P					TEST	PAGE 1 OF 1
						crookes Construction			
						COMPLETED 16/11/18			
						McMahons			
	ST F	VIENT VIT SL	<u></u>	1m			I OGGED BY NXB/JG		CHECKED BY MB
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Description		Samples Tests Remarks	Additional Observations
Ш			-			Grass FILL: Firm, light brown, clayey silty SAND, low plastici 1cm diameter, rootlets	ty, rock fragments approximately	TP2 (0.01-0.2)	No olfactory evidence of contamination Moisture (D) PID (0.0)
	None Observed		- 0 <u>.5</u> - - - - 1.0			NATURAL: Firm, orange/red sandy CLAY, red mottlin with depth		TP2 (0.6-0.7)	Moisture (DM) PID (0.0)
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING).GPJ TESTING TEMPLATE.GDT 23/1/19			 1. <u>5</u> 2. <u>0</u> 2.5						

GF	REE	NCAI	2					TEST	PAGE 1 OF 1	
								etailed Site Investigation		
DA EX EQ	TE S CAV	STAR ATIO	LED _ N CON _Exc	16/11 NTRAC	/18 CTOR	COMPLETED 16/11/18 McMahons	PROJECT LOCATION _34-38 Schofields Road, Schofields NSW R.L. SURFACE DATUM SLOPE BEARING TEST PIT LOCATION LOGGED BY _NXB/JG CHECKED BY _MB			
Method ON	Water		Depth (m)	Graphic Log	Classification	Material Descri	ption	Samples Tests Remarks	Additional Observations	
Ш	None Observed		0.5			Grass NATURAL: Firm, high density, clayey SILT, with NATURAL: Red/orange, CLAY, medium density,		TP3 (0.1-0.2)	No olfactory evidence of contamination Moisture (D) PID (0.1)	
	Nor					yellow mottling with dapth		TP3 (0.7-0.8)	Moisture (DM) PID (0.2)	
			- - 1 <u>.5</u>			Borehole TP3 terminated at 1m (Target depth rea	ached)			
			- - 2.0							

GF	REE	NCAI	5					TEST	F PIT NUMBER TP4 PAGE 1 OF 1
						Crookes Construction			
DA	TES	STAR	TED _	16/11	1/18	COMPLETED <u>16/11/18</u>	R.L. SURFACE		DATUM
EQ	UIPI	/IENT	Exc	avator			TEST PIT LOCATION		
		'IT SIZ		<u>1m</u>			LOGGED BY NXB/JG		CHECKED BY MB
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptic	n	Samples Tests Remarks	Additional Observations
ш						Grass FILL: Firm, light brown, clayey silty SAND, low plasti	city, wood chips and roots ~3%		No olfactory evidence of contamination
			_			······································		TP4 (0.1-0.2)	Moisture (D)
			_	***				11 4 (0.1-0.2)	PID (0.1)
			_						
	rved		_						
	None Observed		0 <u>.5</u>						
	None								
			_						
			_					TP4 (0.8-0.9)	Moisture (DM)
			_					1P4 (0.6-0.9)	PID (0.0)
			1.0			Borehole TP4 terminated at 1m (Target depth reach	ed)		
			_						
			_						
			-						
			1 <u>.5</u>						
			_						
			-						
			_						
			-						
			2 <u>.0</u>						
			-						
			2.5						

GF	REE	NCAI	5					TEST	PIT NUMBER TP5 PAGE 1 OF 1	
						rookes Construction	PROJECT NAME _ Detailed Site Investigation PROJECT LOCATION _ 34-38 Schofields Road, Schofields NSW			
						COMPLETED				
EX	CAV	ΑΤΙΟ		ITRA	CTOR	McMahons	SLOPE	E	BEARING	
			<u>~</u>	1m			LOGGED BY NXB/JG	(
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptio	n	Samples Tests Remarks	Additional Observations	
ш						NATURAL: Loose, brown, gravelly sandy SILT, grave sandstone	el is ~ 2cm diameter subrounded		No olfactory evidence of contamination	
	ed		_						Moisture (DM)	
	bserv		_			NATURAL: Stiff, red, CLAY		TP5 (0.1-0.2)	PID (0.0)	
	None Observed					NATURAL. Sull, ICu, CLAT				
	2									
			_					TP5 (0.5-0.6)	Moisture (M)	
			0.5			Borehole TP5 terminated at 0.5m (Target depth reac	hed)	11 0 (0.0-0.0)	PID (0.0)	
			_				,			
			_							
			_							
			_							
			1.0							
			-							
			_							
			_							
			_							
			1 <u>.5</u>							
			-							
			_							
			_							
			-							
			2 <u>.0</u>							
			-							
			_							
			2.5							

GF	REE	NCAI	5					TE	ST PIT NUMBER TP6 PAGE 1 OF 1
						rookes Construction			
						COMPLETED16/11/18 McMahons			
	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptio	n	Samples Tests Remarks	Additional Observations
Ш			_			Grass NATURAL: Still, brown clayey SILT with grass roots	(no observed rocks)	TP6 (0.0-0	No olfactory evidence of contamination Moisture (DM) PID (0.2)
	None Observed		- - 0 <u>.5</u>			NATURAL: Firm, red and yellow mottled CLAY, med increases with depth	ium plasticity, yellow mottling	TP6 (0.5-0	Moisture (M) PID (0.1)
			- - 1.0						
						Borehole TP6 terminated at 1m (Target depth reach	ed)		
			_						
			_ 1 <u>.5</u>						
			_						
			_						
			_ 2 <u>.0</u>						
			_						
			_						
			_ 2.5						

C	GRE	ENCA	P				TEST	PAGE 1 OF 1
					Crookes Construction			
E	ATE XC/	E STAR AVATIO PMENT	TED N CONTRA	1/18 ACTOR	COMPLETED _16/11/18 _McMahons	R.L. SURFACE SLOPE TEST PIT LOCATION	 	DATUM BEARING
Mothod		RL (m)	Graphic Log	Classification	Material Descri	ption	Samples Tests Remarks	Additional Observations
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING).GPJ TESTING TEMPLATE.GDT 23/1/19					Grass NATURAL: Soft to firm CLAY with organic matter NATURAL: Firm, red, CLAY, low plasticity, roots Yellow mottling & high plasticity with depth Borehole TP7 terminated at 1m (Target depth red)	· · · · · · · · · · · · · · · · · · ·	TP7 (0.1-0.2)	No olfactory evidence of contamination Moisture (D) PID (0.1) Moisture (DM) PID (0.0)
BOREHOLE /			2.5					

GF	REE	NCAI	2						•	TEST	PIT NUMBER TP8 PAGE 1 OF 1
								PROJECT NAME			
DA EX EQ	TE S CAV UIPN	STAR ATIO	red _ N Con _Exc	16/11 ITRAC	/18 CTOR	COMPLETED	16/11/18	R.L. SURFACE SLOPE TEST PIT LOCATION		C B	DATUM BEARING CHECKED BY _MB
	TES										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		Material Description	ı	Т	imples Fests emarks	Additional Observations
ш						FILL: Loose, brown, sandy SIL	T with pieces of wood	(15%)			No olfactory evidence of contamination
			-						ТРЕ	8 (0.1-0.2)	Moisture (DM) PID (0.0)
	None Observed		0 <u>.5</u> 			NATURAL: Firm, red, CLAY			TP8	8 (0.7-0.8)	Moisture (M) PID (0.1)
			1.5 - - 1.5 - - - - - - - - - - - - - - - - - - -			Borehole TP8 terminated at 1r	n (Target depth reache	sd)			

GR	REE	NCAI	P					1L01	PAGE 1 OF		
CLI	IENT	<u>C1</u>	07881	1 - Ricl	hard C	crookes Construction					
PR	OJE		JMBE	R _J1	60656	3	PROJECT LOCATION 34-38 Schofields Road, Schofields NSW				
DA	TES	STAR	TED _	16/11	/18	COMPLETED <u>16/11/18</u>	R.L. SURFACE DATUM				
EX	CAV	ATIO	N COI	NTRAC	CTOR	McMahons	SLOPE BEARING				
			ZE _~	1m			_ LOGGED BY <u>NXB/JG</u>	(
10	TES										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descript	ion	Samples Tests Remarks	Additional Observations		
Ц						FILL: Soft, brown, salny SILT with rootlets and woo	d pieces		No olfactory evidence of contamination		
			-						 Moisture (DM)		
	None Observed		_					TP9 (0.1-0.3)	PID (0.3)		
	Vone C		-			NATURAL: Firm, red, CLAY			Metal spool noted @0.3m		
			-						Moisture (M)		
			0.5					TP9 (0.4-0.6)	PID (0.0)		
									Natural black coal inclusions noted (2 @0.5m		
				····		Borehole TP9 terminated at 0.6m (Target depth rea	ached)		-		
			_								
			-								
			1 <u>.0</u>								
			-								
			_								
			1 <u>.5</u>								
			_								
			-								
			2 <u>.0</u>								
			-								
			-								
			_								
			2.5								

GREE	ENG	CAP						TESTI	PIT NUMBER TP1 PAGE 1 OF	
						rookes Construction		ME Detailed Site Investigation CATION 34-38 Schofields Road, Schofields NSW		
DATE EXCA EQUIP	ST. VA ⁻ PME PIT	ARTI TION ENT	ED CON Exca E1	16/11 TRAC vator m	/18 :TOR	COMPLETED 16/11/18 McMahons	R.L. SURFACE SLOPE TEST PIT LOCATION	C	Datum Bearing	
Water	F (RL C m)	0epth (m)	Graphic Log	Classification	Material Desc	cription	Samples Tests Remarks	Additional Observations	
Ш						Grass NATURAL: Firm, dark brown silty SAND, organ		TP10 (0.2-0.3)	No olfactory evidence of contaminati Moisture (D) PID (0.2)	
Dege 0.5 NATURAL: Firm, red CLAY, grey/yellow mottling with plasticity, @ 0.5-0.5 large light grey boulder encount sandstone 0.5 0.5 0.5 1.0 Borehole TP10 terminated at 1m (Target depth read)		countered - flat, angular fine grained	TP10 (0.6-0.7)	Moisture (M) PID (0.3)						
			- - - - - - - - - - - - - - - - - - -			Borehole TP10 terminated at 1m (Target depth	reached)			

GR	EE	NCAI	5					TEST I	PIT NUMBER TP11 PAGE 1 OF 1
						rookes Construction			
						COMPLETED16/11/18			
						McMahons			
NO	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptio	n	Samples Tests Remarks	Additional Observations
Ш				<u>× 14</u> .		Grass	w plooticity		No olfactory evidence of contamination
			_			NATURAL: Loose, light brown, clayey silty SAND, lo	w plasticity		Moisture (D)
			_					TP11 (0.1-0.3)	PID (0.1) FD2 taken @ 0.1-0.3
	77					NATURAL: Firm, red/brown CLAY, clay grades to ye	ellow/orange @ 0.7m		
	None Observed		_						
	e Obs		0 <u>.5</u>						
	Non								
			_					TD11 (0.0.0.7)	
			_					TP11 (0.6-0.7)	-
			_						Moisture (DM)
			_						PID (0.3)
			1.0						
			1.0	<u>···r/</u>		Borehole TP11 terminated at 1m (Target depth reac	hed)		
			_						
			_						
			_						
			4 5						
			1 <u>.5</u>						
			_						
			_						
			_						
			2 <u>.0</u>						
			-						
			_						
			-						
			2.5						

GF	852	NCAI	0					TEST	PIT NUMBER TP12 PAGE 1 OF 1		
						Crookes Construction					
							PROJECT LOCATION <u>34-38 Schofields Road, Schofields NSW</u>				
							R.L. SURFACE DATUM SLOPE BEARING				
							TEST PIT LOCATION LOGGED BY _NXB/JG CHECKED BY _MB				
	ST P DTES		Έ <u>~</u>	·1m			LOGGED BY <u>NXB/JG</u>	(
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptic	'n	Samples Tests Remarks	Additional Observations		
Ш			_			FILL: Loose, light brown, gravelly SAND. Gravel is ~ plastic pipe and golf ball noted ~0.5m	1-5cm diameter sub rounded rock,		2m3 soil mound		
			-						No odour		
			_					TP12 (0.3-0.5)	Moisture (D) PID (0.4) FD1 taken @ 0.3-0.5		
			0 <u>.5</u>						_		
	None Observed		_								
	Non		_								
			1 <u>.0</u>			NATURAL: Firm, red, CLAY with white mottling					
			-								
			_					TP12 (1.3-1.4)	Moisture (DM) PID (0.1)		
			1.5			Borehole TP12 terminated at 1.5m (Target depth rea	achod)	-			
			-								
			-								
			-								
			2 <u>.0</u> _								
			_								
			-								
			2.5								

						crookes Construction			
							R.L. SURFACE DATUM SLOPE BEARING		
							LOGGED BY <u>NXB/JG</u> CHECKED BY <u>MB</u>		
10.	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descrip	tion	Samples Tests Remarks	Additional Observations
IJ			-			\Grass FILL: Loose, light brown clayey silty SAND, low pla ∼5%	asticity, rock fragments 3cm diameter	TP13 (0.01-0.1)	No olfactory evidence of contaminat Moisture (D) PID (0.0)
			_					_	
	ed					NATURAL: Firm, red CLAY, high plasticity, orange minor natural coal lens 0.5%, grey mottling at 0.8n	e mottling increases with depth, n		Moisture (DM) PID (0.0)
	Observed							TP13 (0.3-0.5)	
	None C		0.5						
	2		-						
			-						
			_						
			1.0						
						Borehole TP13 terminated at 1m (Target depth rea	ached)		
			-						
			-						
			-						
			1 -						
			1 <u>.5</u>						
			-						
			-						
			2 <u>.0</u>						
			-						
			-						
- 1			1						1

G	REE	NCAI	P					TEST	PIT NUMBER TP14 PAGE 1 OF 1
			07881 - Rid UMBER _J		Crookes Construction				ation Road, Schofields NSW
D/ EX EQ TE	ATE (CA) QUIP EST I	STAR /ATIO MENT PIT SIZ	TED N CONTRA Excavato ZE _~1m	1/18 . CTOR r	COMPLETED McMahons	16/11/18	R.L. SURFACE SLOPE TEST PIT LOCATION _		DATUM BEARING CHECKED BYMB
Method		8 RL (m)	Graphic Log	Classification		Material Descri	iption	Samples Tests Remarks	Additional Observations
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING).GPJ TESTING TEMPLATE.GDT 23/1/19 E	None Observed				NATURAL: Loose, brown, SI NATURAL: Stiff, red CLAY Borehole TP14 terminated at		n reached)	TP14 (0-0.1)	Moisture (Divi)

GF	GREENCAP TEST PIT NUMBER TP15												
						crookes Construction							
DA EX EQ	TE S CAV	STAR ATIO	LED _	16/11 NTRAC	/18 CTOR	COMPLETED16/11/18 McMahons	R.L. SURFACE SLOPE TEST PIT LOCATION	C	earing				
Method	NOTES						วท	Samples Tests Remarks	Additional Observations				
E Meth	None Observed Wate		Depth (m) 	Grap	Class	FILL: Stiff, dark brown clayey SILT with roots, no roo NATURAL: Stiff, red CLAY with grey and yellow mo NATURAL: Grey CLAY with yellow mottling, firm, his Borehole TP15 terminated at 1m (Target depth read	tling, medium plasticity, rootlets	TP15 (0.1-0.2)	No olfactory evidence of contamination Moisture (D) PID (0.0) Moisture (DM) PID (0.0)				
			_ 2.5										

GF	REE	NCAI	2					TEST	PIT NUMBER TP16 PAGE 1 OF 1
						Crookes Construction			
						COMPLETED16/11/18			
		i							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptio	n	Samples Tests Remarks	Additional Observations
ш						Grass NATURAL: Firm, light brown, sandy clayey SILT, lov	/ plasticity		No olfactory evidence of contamination
			_				placed		Moisture (DM)
								TP16 (0.1-0.3)	PID (0.2)
						NATURAL: Firm, red/orange CLAY, orange increase	s with depth	TP 10 (0. 1-0.3)	
			_						-
	ved								
	None Observed								
	one C		0 <u>.5</u>						
	ž		_						
			_						
			_						
			_						
			1.0						
						Borehole TP16 terminated at 1m (Target depth reac	ied)		
			_						
			_						
			_						
			_						
			1.5						
			-						
			_						
			_						
			2.0						
			•						
			_						
			-						
			_						
			2.5						

GR	REE	NCAI	0					TEST F	PIT NUMBER TP17 PAGE 1 OF 1	
								ailed Site Investigation 34-38 Schofields Road, Schofields NSW		
DA EX EQ	DJECT NUMBERJ160656 PROJECT LOCATION34-38 Schofields TE STARTED16/11/18 R.L. SURFACE CAVATION CONTRACTORMcMahons SLOPE UIPMENTExcavator TEST PIT LOCATION ST PIT SIZE _~1m LOGGED BYNXB/JG								DATUM BEARING	
	Water SAL	RL	Depth	Graphic Log	Classification	Material Descrip		Samples Tests Remarks	Additional Observations	
E	None Observed Wat		Depth (m) - - - - - - - - - - - - - - - - - - -			Grass FILL: Firm, brown, clayey SILT with rootlets NATURAL: Stiff, orange-gold CLAY with black me white/cream mottline (minor) Borehole TP17 terminated at 1m (Target depth response) Borehole TP17 terminated at 1m (Target depth response)		TP17 (0.25-0.35)	No olfactory evidence of contamination Moisture (D) PID (0.0) Moisture (D) PID (0.0)	
			- - 2.5							

GR	REE	NCAI arter in Managing F	2					TESTI	PIT NUMBER TP18 PAGE 1 OF 1	
					hard C	crookes Construction				
DA	TES	STAR	TED	16/11	/18	COMPLETED <u>16/11/18</u>				
						McMahons				
			Έ <u>~</u>	1m			LOGGED BY NXB/JG	C	HECKED BY MB	
NO	TES									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descripti	on	Samples Tests Remarks	Additional Observations	
ш				<u>× //</u> .		REWORKED NATURAL: Brown, SILT, medium de	nsity, tree and grass roots		No olfactory evidence of contamination	
			_						Moisture (DM)	
			_	<u>1/- × 1/</u>				TP18 (0.1-0.2)	PID (0.0)	
				<u>\'</u>						
	_		_			NATURAL: Stiff red/orange and gret nottled CLAY,	low plasticity			
	None Observed		_							
	e Obs		0 <u>.5</u>							
	Non									
			_							
			-							
			_							
			_							
			1.0			Borehole TP18 terminated at 1m (Target depth read	ched)			
							,			
			_							
			_							
			_							
			1.5							
			1.5							
			_							
			_							
			2 <u>.0</u>							
			_							
			_							
			2.5							

G	REE	NCAI	P				TEST	PIT NUMBER TP19 PAGE 1 OF 1			
			07881 - Rid UMBER _J		crookes Construction						
EX EC	(CAV QUIPI	/ATIO MENT	N CONTRA	CTOR	COMPLETED McMahons	16/11/18	R.L. SURFACE SLOPE TEST PIT LOCATION	[DATUM BEARING CHECKED BYMB		
		3	Depth Depth	Classification		Material Descrip		Samples Tests Remarks	Additional Observations		
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING).GPJ TESTING TEMPLATE.GDT 23/1/19			(m) 5 (m) 5	ŏ	NATURAL: Loose, brown, cla NATURAL: Stiff, red, CLAY Borehole TP19 terminated at			TP19 (0.3-0.3)	No olfactory evidence of contamination Moisture (M) PID (0.0)		
BOREHOLI			2.5								

GF	REE	NCAI	P					TEST	PIT NUMBER TP20 PAGE 1 OF 1
						crookes Construction			
DA	TE S	STAR	TED _	16/11	/18	COMPLETED _16/11/18	R.L. SURFACE		DATUM
						McMahons			
TE	ST P	PIT SIZ	<u></u> ~	1m			LOGGED BY NXB/JG		CHECKED BY MB
						1		1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Description	n	Samples Tests Remarks	Additional Observations
ш						Grass FILL: Loose light brown, clayey SILT, low plasticity	/	TP20 (0.01-0.1)	No olfactory evidence of contamination Moisture (DM)
						NATURAL: Red/orange CLAY, orange mottling incr	eases with depth		PID (0.1)
	None Observed		0 <u>.5</u>			Borehole TP20 terminated at 1m (Target depth read	hed)		
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING), GPJ TESTING TEMPLATE. GDT 23/1/19			- - - 1. <u>5</u> - - - - - - - - - - - - - - - - - - -						

GF	REE	NCAI	5					TEST I	PIT NUMBER TP21 PAGE 1 OF 1
						Crookes Construction			
							PROJECT LOCATION _34-38 Schofields Road, Schofields NSW		
						COMPLETED 16/11/18			
						McMahons			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptio	'n	Samples Tests Remarks	Additional Observations
ш						Grass NATURAL: Loose light brown sandy clayey SILT	/		No olfactory evidence of contamination
			-			NATURAL: Firm yellow/orange CLAY, yellow mottlin	g, yellow content increase with		
			-			depth		TP21 (0.2-0.3)	Moisture (M) PID (0.0)
	None Observed		0 <u>.5</u> –						
			- 1.0			NATURAL: Grey weathered shale, minor natural coa	al inclusions	-	
			1.0	<u>r</u> 2		Borehole TP21 terminated at 1m (Target depth reac	hed)		
			-						
			_						
			-						
			1 <u>.5</u>						
			-						
			_						
			_						
			_						
			2.0						
			_						
			2.5						

GREENCA Cog furthe in Manager	5					TEST	PIT NUMBER TP22 PAGE 1 OF 1	
				rookes Construction			ion Road, Schofields NSW	
excavatio Equipment	N CON	ITRAC avator	CTOR	COMPLETED	_ Slope _ Test Pit location	E	BEARING	
Method Water (W)	Depth (m)	Graphic Log	Classification	Material Descripti	on	Samples Tests Remarks	Additional Observations	
Une Observed				Grass NATURAL: Loose light brown, clayey SILT, minor ro-0.1%, rootlets NATURAL: Firm red/orange CLAY, clay grades ligh increases with depth Borehole TP22 terminated at 1m (Target depth read	iter with depth, grey mottling	TP22 (0.1-0.2)	No olfactory evidence of contamination Moisture (D) PID (0.0)	

G	REE	NCAI						TEST	PIT NUMBER TP23 PAGE 1 OF 1
					rookes Construction				
DA EX EC TE	ATE S CAV QUIPN ST P	STAR /ATIO MENT PIT SIZ	TED N CONTRAC	/18 CTOR	COMPLETED16/11 McMahons	//18	R.L. SURFACE SLOPE TEST PIT LOCATION	 	DATUM BEARING CHECKED BY _MB
Method	Water	RL (m)	(m) Graphic Log	Classification	Mat	terial Descriptio	n	Samples Tests Remarks	Additional Observations
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING).GPJ TESTING TEMPLATE.GDT 23/1/19	None Observed				Arural: Loose yellow/light brown NATURAL: Firm orange/red CLAY, g	rades to red wit		TP23 (0.1-0.2)	No olfactory evidence of contamination Moisture (D) PID (0.1)

GI	REE	NCA						TEST	PIT NUMBER TP24 PAGE 1 OF 1
					Crookes Construction		PROJECT NAME		
D4 EX EQ TE	ATE S CAV QUIPN ST P	STAR /ATIO MENT PIT SIZ	TED N CONTRAC	/18 CTOR	COMPLETED	16/11/18	R.L. SURFACE SLOPE TEST PIT LOCATION	 	DATUM BEARING CHECKED BY _MB
Method	Water		Graphic Log	Classification		Material Descriptic	n	Samples Tests Remarks	Additional Observations
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING) GPJ TESTING TEMPLATE.GDT 23/1/19	None Observed				Grass NATURAL: Firm brown clayey NATURAL: Firm red CLAY, hi Borehole TP24 terminated at 1	gh plasticity, orange m		TP24 (0.1-0.2)	No olfactory evidence of contamination Moisture (DM) PID (0.2)

¢	GR	EEN Cong Fo	NCAI	5					TEST PI	T NUMBER TP25A PAGE 1 OF 1		
							rookes Construction	PROJECT NAME _ Detailed Site Investigation PROJECT LOCATION _ 34-38 Schofields Road, Schofields NSW				
C E E	DAT EXC EQL	TE S CAV/ JIPN	STAR ATIO	TED _ N CON Mar	10/12 NTRA	2/18 CTOR	COMPLETED _10/12/18	R.L. SURFACE SLOPE TEST PIT LOCATION _Pro	E Deposed Lot 1 of si	EARING		
		Water S31	RL	Depth	Graphic Log	Classification	Material Descrip	tion	Samples Tests Remarks	Additional Observations		
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.GDT 23/1/19		Wa		Depth (m) - - - - - - - - - - - - - - - - - - -	Gré	Ca	NATURAL: Brown silty clay with rootlets NATURAL: Red, stiff clay Borehole TP25A terminated at 0.3m (Target depth	reached)	TP25A(0.2-0.3)	No olfactory evidence of contamination		

G	RE	NCA	P					TEST PI	T NUMBER TP26A PAGE 1 OF 1			
C		T C1	07881	l - Ric	hard C	rookes Construction	PROJECT NAME Detailed Site Investigation					
							PROJECT NAME Detailed Site Investigation PROJECT LOCATION					
D	ΑΤΕ	STAR	TED	10/12	2/18	COMPLETED _ 10/12/18						
							LOGGED BY MB	c	CHECKED BY GB			
N		s										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descrip	tion	Samples Tests Remarks	Additional Observations			
┢			()			NATURAL: Brown silty clay with rootlets			No olfactory evidence of contamination			
						NATURAL: Red/brown, stiff clay		-				
			-						-			
			_					TP26A(0.1-0.3)				
						Borehole TP26A terminated at 0.3m (Target dept	n reached)					
			-									
			0 <u>.5</u>									
/1/19												
GDT 23/1/19			_									
TE.GI												
MPLA												
NG TE												
TESTI												
.GPJ												
25-35)												
SIT TP.			-									
NG 21			1 <u>.0</u>									
L PITT												
(TES ¹												
IS DSI												
FIELD												
SCHO												
9656 -												
L 1160			-									
ST PI1												
11E(_									
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35),GPJ TESTING TEMPLATE.												
BOR			1.5									

G	REE	NCAI	P					TEST P	IT NUMBER TP27A PAGE 1 OF 1			
						Crookes Construction		PROJECT NAME _ Detailed Site Investigation PROJECT LOCATION _34-38 Schofields Road, Schofields NSW				
D/ EX EC TE	ATE ((CAV QUIPI EST F	STAR /ATIO MENT PIT SI2	TED _ N CON ZE	10/12 NTRA	2/18 CTOR	COMPLETED <u>10/12/18</u>	R.L. SURFACE SLOPE TEST PIT LOCATION _Pr	oposed Lot 1 of s	DATUM BEARING			
Method	NOTES Method Method Material Description Material Description Material Description Material Description						ption	Samples Tests Remarks	Additional Observations			
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.GDT 23/1/19 Met	Mai		Depth (m)	Gra	Cla	NATURAL: Brown silty clay with rootlets NATURAL: Red/brown, stiff clay Borehole TP27A terminated at 0.3m (Target dept	h reached)	TP27A(0.2-0.3)	No olfactory evidence of contamination			
BOREHOLE / TEST PIT J160656 - SC												

CLENT C107881 - Refuted Cockets Construction PROJECT NUME Detailed Site Investigation PROJECT NUMER J1092018 COMPLETED 1012018 RL SUPRACE DATE STARTED 1012018 CALINT CONTRACTOR SUPPLATE DATE STARTED 1012018 COMPLETED 1012018 SUPPLATE Manual TEST PTI LOCATION 34-38 Startifieds NOW FEST PTI LOCATION Properties Manual TEST PTI LOCATION Properties Contexted by 100 NOTES Image: Started 1000000000000000000000000000000000000	GI	REE	NCAI	P					TEST PI	T NUMBER TP28A PAGE 1 OF 1		
DATE STARTED												
EXCAVATION CONTRACTOR	PR	OJE		JMBE	R _J′	160656	3	PROJECT LOCATION _3	4-38 Schofields	Road, Schofields NSW		
EQUIPMENT Manual TEST PIT LOCATION Proposed Lot 1 of site TEST PIT SIZE LOGGED BY MB CHECKED BY GB NOTES Material Description Samples Tests Additional Observations Notification Depth B Other Contactions Notifications Additional Observations Notes Image: Samples to the state of the	DA	TE S	STAR	TED _	10/12	2/18	COMPLETED 10/12/18	R.L. SURFACE	[DATUM		
LOGGED BY MBCHECKED BY _GB NOTES Notify Opposite Samples Additional Observations Notes Additional Observations Tests Additional Observations Notes Naterial Description Samples Additional Observations Notes Notes Notes No offactory evidence of contamination No I I I Notes No offactory evidence of contamination I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	EX	CAV	/ATIO	N COI	NTRA	CTOR		SLOPE		BEARING		
NOTES votes Samples Samples Additional Observations votes Remarks Additional Observations Tests Additional Observations votes Remarks No offactory evidence of contamination No offactory evidence of contamination votes - - - No offactory evidence of contamination votes - - - No offactory evidence of contamination votes - - - No offactory evidence of contamination votes - - - No offactory evidence of contamination votes - - - - No offactory evidence of contamination votes - - - - - - votes - - <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>												
No offactory evidence of contamination Potential RL (m) Depth (m) Samples Bigger Additional Observations Image:	TE	ST P	PIT SIZ	ZE				LOGGED BY MB	(CHECKED BY GB		
Image: Construction Image: Construction No offactory evidence of contamination Image: Construction Image: Construction Image: Construction Image: Const	NC	DTES	;							1		
Image: Section of the sectio	Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptior		Tests	Additional Observations		
Borehole TP28A terminated at 0.4m (Target depth reached)							NATURAL: Brown, firm gravelly clay-silt. Gravel is sh	ale: 1-3cm diameter, flat (15%)		No olfactory evidence of contamination		
Borehole TP28A terminated at 0.4m (Target depth reached)				_								
Borehole TP28A terminated at 0.4m (Target depth reached)				_						-		
				_					TP28A(0.2-0.4)			
							Borehole TP28A terminated at 0.4m (Target depth rea	ached)		-		
				0 <u>.5</u>								
	19											
	23/1/											
	GDT			-								
	-ATE.											
	EMPI			-								
	ING T											
	TEST											
	GPJ											
	5-35).											
	T TP2			-								
	NISI O											
	G 2NE			1 <u>.0</u>								
	Ň											
	STP											
	SI (TE			-								
	DSD											
	OFIEL											
	- SCH											
	0656 -											
	r J16											
	T PI											
	/ TES			_								
	HOLE											
	BORE			1.5								

GI	REE	NCAI	P					TEST PI	T NUMBER TP29A PAGE 1 OF 1		
						crookes Construction	PROJECT NAME Detailed Site Investigation PROJECT LOCATION 34-38 Schofields Road, Schofields NSW				
DA	TE S	STAR	TED _	10/12	2/18	COMPLETED <u>10/12/18</u>	_ R.L. SURFACE	D	DATUM		
EG	UIPI	MENT	Mar	nual			_ TEST PIT LOCATION _ Pro	oposed Lot 1 of sit	te		
		s				1					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descrip	tion	Samples Tests Remarks	Additional Observations		
						NATURAL: Red and grey stiff clay			No olfactory evidence of contamination		
									-		
			-								
								TP29A(0.15-0.3)			
						Borehole TP29A terminated at 0.3m (Target depth	reached)		-		
			-								
			0 <u>.5</u>								
/19											
GDT 23/1/19			-								
-ATE.GI											
5 TEMPL			-								
ESTING											
).GPJ T			-								
rP25-35											
- VISIT											
NG 2NE			1 <u>.0</u>								
DSI (TES			-								
IELDS I											
SCHOF											
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.											
r PIT J1											
E / TES'			_								
REHOLE											
BO			1.5								

G	REE	NCAI	P				TEST PI	T NUMBER TP30A PAGE 1 OF 1			
						rookes Construction	PROJECT NAME Detailed Site Investigation PROJECT LOCATION 34-38 Schofields Road, Schofields NSW				
D/ E) E(ATE ((CAV QUIPI	STAR /ATIO MENT	TED _ N CON	10/12 NTRA	2/18 CTOR	COMPLETED _10/12/18	R.L. SURFACE SLOPE TEST PIT LOCATION _Pro	D D Deposed Lot 1 of sit	DATUM BEARING te		
		PIT SIZ					LOGGED BY MB	C	HECKED BY <u>GB</u>		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descript	ion	Samples Tests Remarks	Additional Observations		
						NATURAL: Brown silty clay with rootlets NATURAL: Brown/red, stiff clay			No olfactory evidence of contamination		
			-			TATORAL. DOWINED, SUIT Day					
									_		
								TP30A(0.2-0.3)			
						Borehole TP30A terminated at 0.3m (Target depth	reached)				
			-								
			0 <u>.5</u>								
/1/19											
E.GDT 23/1/19			-								
TEMPLAT			_								
TESTING											
-35).GPJ											
ISIT TP25			-								
NG 2ND V			1 <u>.0</u>								
EST PITTI											
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.											
SCHOFIEL			-								
160656 - {											
EST PIT J											
HOLE / TI			-								
BORE			1.5								

G	REE	NCA						TEST P	IT NUMBER TP31A PAGE 1 OF 1		
						rookes Construction					
D	ATE S	STAR	TED _	10/12	2/18	COMPLETED10/12/18	R.L. SURFACE		DATUM		
EC TE	QUIPI EST F	MENT PIT SIZ	[.] <u>Mar</u> ZE	nual			TEST PIT LOCATION	roposed Lot 1 of s	site		
Method	Motes						btion	Samples Tests Remarks	Additional Observations		
		(m)				NATURAL: Brown-red stiff clay			No olfactory evidence of contamination		
			_					TP31A(0.1-0.2)		
						Borehole TP31A terminated at 0.3m (Target dept	h reached)	_			
			_								
GDT 23/1/19			0 <u>.5</u>								
VG TEMPLATE.GD			_								
:5-35).GPJ TESTI			_								
NG 2ND VISIT TP2			- 1 <u>.0</u>								
S DSI (TEST PITTI			_								
56 - SCHOFIELD			_								
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.			-								
BOREHOLE			1.5								

G	REE	NCA	P					TEST PI	T NUMBER TP32A PAGE 1 OF 1
						rookes Construction			
DA	ATE S	STAR	TED _	10/12	2/18	COMPLETED 10/12/18	_ R.L. SURFACE	C	DATUM
EC	QUIPI	MENT	Mar	nual			_ TEST PIT LOCATION _ Pro	pposed Lot 1 of si	te
		PIT SIZ					_ LOGGED BY _MB	C	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descrip	tion	Samples Tests Remarks	Additional Observations
		(,				NATURAL: Red stuff clay			No olfactory evidence of contamination
			-						
									_
								TP32A(0.2-0.3)	
\vdash						Borehole TP32A terminated at 0.3m (Target depth	reached)		-
			-						
			0.5						
1/19									
E.GDT 23/1/19			-						
EMPLATE			_						
ESTING T									
35).GPJ T			-						
SIT TP25-			_						
IG 2ND VI			1 <u>.0</u>						
ST PITTIN									
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.			-						
CHOFIELE			-						
60656 - St									
ST PIT J1									
IOLE / TES			-						
BOREH			1.5						

G	REE	NCAI	P					TEST P	IT NUMBER TP33A PAGE 1 OF 1
						Crookes Construction			
					160656				
						COMPLETED 10/12/18			
	DTES		<u> </u>						
		, <u> </u>							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descript	ion	Samples Tests Remarks	Additional Observations
-			()			NATURAL: Brown firm, silty clay with rootlets			No olfactory evidence of contamination
						NATURAL: Red/brown stiff clay		-	
			-						
								TP33A(0.2-0.25	
						Borehole TP33A terminated at 0.3m (Target depth	reached)		
			_						
			0.5						
			0.5						
1/19									
GDT 23/1/19									
E.GD									
TEM			-						
UNG									
TES									
.GPJ									
25-35									
T TP2			-						
NSI									
3 2NE			1.0						
NEL									
STPI									
I (TE			_						
SDS									
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.									
- 90 - 20									
1606£									
L T									
ESTF									
μ/ μ			-						
EHOL									
ŐR			1.5						

G	RE	ENCA	P						TEST P	PAGE 1 OF 1
c	LIEN	NT	107881	I - Ric	hard C	rookes Construction		PROJECT NAME	ed Site Investiga	tion
Р	ROJ	IECT N	UMBE	R 1	60656	i		PROJECT LOCATION _3	4-38 Schofields	Road, Schofields NSW
D	ATE	E STAR	TED	10/12	2/18					DATUM
										BEARING
										ite
		s								
Mathod	Water	RL (m)	Depth (m)	Graphic Log	Classification		al Description		Samples Tests Remarks	Additional Observations
F		(,	()	_	-	NATURAL: Red stiff clay				No olfactory evidence of contamination
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.GDT 23/1/19			0.5			Borehole TP34A terminated at 0.3m (Tan	get depth re	eached)	TP34A(0.1-0.2) & Field Dupliacte Sample FD2A	
BOREHOLE /			1.5							

GI	85	NCAI	P					TEST P	IT NUMBER TP35A PAGE 1 OF 1
						Crookes Construction			
PF	OJE		JMBE	R 1	60656	3	PROJECT LOCATION _3	4-38 Schofields	Road, Schofields NSW
DA	TES	STAR	TED _	10/12	2/18	COMPLETED <u>10/12/18</u>	R.L. SURFACE	I	DATUM
EX	CAV	/ATIO		ITRA	CTOR		SLOPE		BEARING
EC	UIP	MENT	Mar	nual			TEST PIT LOCATION _Pro	posed Lot 1 of s	ite
TE	ST F	PIT SIZ	ZE				LOGGED BY MB		CHECKED BY _GB
NC	TES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Material Descriptio	on	Samples Tests Remarks	Additional Observations
-	-	()	(,	-		NATURAL: Brown firm silty clay with rootlets			No olfactory evidence of contamination
						NATURAL: Red stiff clay with yellow/brown mottling	1		
									-
			-					TP35A(0.15-0.25	5)
						Borehole TP35A terminated at 0.3m (Target depth r	eached)		
			0 <u>.5</u>						
19									
GDT 23/1/19									
GDT			-						
ATE.0									
MPL									
G TE									
STIN									
L TE			_						
5).GF									
25-3									
LT TI			-						
D VIS									
G 2N			1 <u>.0</u>						
Z L									
STP									
al (TE			_						
SD SO									
BOREHOLE / TEST PIT J160656 - SCHOFIELDS DSI (TEST PITTING 2ND VISIT TP25-35).GPJ TESTING TEMPLATE.									
CHO									
S - 90									
16065									
ί									
STP									
王/二			_						
HOLE									
OREI			4 -						
۳ س	I		1.5						

Detailed Site Investigation

Group GSA Cnr of Farmland Dr & the future realignment of Pelican Rd, Schofields NSW 2762

Appendix E: Sample Analysis Results Summary Table

greencap.com.au

Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

GRE	ENCAP
	Going Further in Managing Risk

J160656 Alex Ave Public School, Schofields Detailed Site Investigation Soil Analysis Data Summary

				Sampl Sample De	epth (m)			TP1 0.1-0.2	TP2 0.01-0.2	TP2 0.6-0.7	TP3 0.1-0.2	TP4 0.1-0.2	TP5 0.1-0.2	TP6 0.0-0.2	TP7 0.1-0.2	TP8 0.1-0.2	TP9 0.1-0.3	TP10 0.2-0.3	TP11 0.1-0.3	TP12 0.3-0.5	TP13 0.01-0.1
Analyte	Units	LOR	(HIL-A)	Sample HSL - A/B		ESL - R	ML	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18	16/11/18
BTEX Benzene	mg/kg	0.1		0 - <1m 0.6		(coarse) 50	(coarse)	< 0.1	< 0.1	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene m&p-Xylenes	mg/kg mg/kg	0.1		-		-		< 0.1 < 0.2	< 0.1 < 0.2	-	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2
o-Xylene Toluene	mg/kg mg/kg	0.1		- 390		- 85		< 0.1 < 0.1	< 0.1 < 0.1	-	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
Xylenes - Total Heavy Metals	mg/kg	0.3		-		105		< 0.3	< 0.3	-	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Arsenic Cadmium	mg/kg mg/kg	2 0.4	100 20		- 113			12 < 0.4	14 < 0.4	-	7.8 < 0.4	8.6 < 0.4	9.8 < 0.4	10 < 0.4	8.7 < 0.4	5.2 < 0.4	8.5 < 0.4	7.3 < 0.4	10 < 0.4	4.5 < 0.4	8.4 < 0.4
Chromium Copper	mg/kg mg/kg	5 5	100 6000		417 199			18 11	12 11	-	9.3 15	9.1 17	13 15	13 15	11 11	7.7 7.2	12 12	7.9 15	13 16	15 17	12 14
Lead Mercury	mg/kg mg/kg	5 0.1	300 40		1,119 -			27 < 0.1	18 < 0.1	-	24 < 0.1	21 < 0.1	15 < 0.1	18 < 0.1	29 < 0.1	10 < 0.1	26 < 0.1	20 < 0.1	31 < 0.1	36 < 0.1	22 < 0.1
Nickel Zinc	mg/kg mg/kg	5 5	400 7400		170 281			7.2 31	5.9 25	-	6.6 38	7.7 43	< 5 29	8.7 44	6.9 31	< 5 21	5.8 30	8.3 42	7.1 43	9.4 99	6.4 26
Organochlorine Pesticides 4.4'-DDD	mg/kg	0.05						-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	< 0.05	-	-	-	-
4.4'-DDE 4.4'-DDT	mg/kg mg/kg	0.05 0.05						-	< 0.05 < 0.05	-	-	< 0.05 < 0.05	-	-	< 0.05 < 0.05	-	< 0.05 < 0.05	-	-	-	-
a-BHC Aldrin	mg/kg mg/kg	0.05						-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	< 0.05	-	-	-	-
Aldrin and Dieldrin (Total) b-BHC	mg/kg mg/kg	0.05						-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	< 0.05	-	-	-	-
Chlordanes - Total d-BHC	mg/kg mg/kg	0.05						-	< 0.1	-	-	< 0.1	-	-	< 0.1	-	< 0.1	-	-	-	-
DDT + DDE + DDD (Total) Dieldrin	mg/kg mg/kg	0.05						-	< 0.05	-	-	< 0.05 < 0.05 < 0.05	-	-	< 0.05 < 0.05 < 0.05	-	< 0.05 < 0.05 < 0.05	-	-	-	-
Endosulfan I Endosulfan II Endosulfan sulphate	mg/kg mg/kg mg/kg	0.05 0.05 0.05						-	< 0.05 < 0.05 < 0.05	-	-	< 0.05	-	-	< 0.05	-	< 0.05	-	-	-	-
Endrin aldehyde	mg/kg mg/kg	0.05						-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	< 0.05	-	-	-	-
Endrin ketone g-BHC (Lindane)	mg/kg mg/kg	0.05						-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	< 0.05	-	-	-	-
Heptachlor Heptachlor	mg/kg mg/kg	0.05						-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	< 0.05	-	-	-	-
Hexachlorobenzene Methoxychlor	mg/kg mg/kg	0.05						-	< 0.05	-	-	< 0.05	-	-	< 0.05	-	< 0.05	-	-	-	-
Toxaphene Vic EPA IWRG 621 OCP (Total)	mg/kg mg/kg	1 0.1						-	< 1 < 0.1	-	-	< 1 < 0.1	-	-	< 1 < 0.1	-	< 1 < 0.1	-	-	-	-
Vic EPA IWRG 621 Other OCP (Total) Physical Properties	mg/kg	0.1						-	< 0.1	-	-	< 0.1	-	-	< 0.1	-	< 0.1	-	-	-	-
Moisture Organophosphorus Pesticides	%	1						7.8	9	12	11	10	14	9.1	8	20	11	9.7	10	8.7	11
Azinphos-methyl Bolstar	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-	-	-	-
Chlorfenvinphos Chlorpyrifos	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-	-	-	-
Chlorpyrifos-methyl Coumaphos	mg/kg mg/kg	0.2						-	< 0.2 < 2	-	-	< 0.2 < 2	-	-	< 0.2 < 2	-	< 0.2 < 2	-	-	-	-
Demeton-O Demeton-S	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-		-	-
Diazinon Dichlorvos	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-		-	-
Dimethoate Disulfoton	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-	-	-	-
EPN Ethion	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-	-	-	-
Ethoprop Ethyl parathion	mg/kg mg/kg	0.2						-	< 0.2	-	-	< 0.2	-	-	< 0.2	-	< 0.2	-	-	-	-
Fenitrothion Fensulfothion	mg/kg mg/kg	0.2						-	< 0.2	-	-	< 0.2	-	-	< 0.2 < 0.2 < 0.2	-	< 0.2 < 0.2 < 0.2	-	-	-	-
Fenthion Malathion Merphos	mg/kg mg/kg	0.2 0.2 0.2						-	< 0.2 < 0.2 < 0.2	-	-	< 0.2 < 0.2 < 0.2	-	-	< 0.2 < 0.2 < 0.2	-	< 0.2 < 0.2 < 0.2	-	-	-	-
Methyl parathion Mevinphos	mg/kg mg/kg mg/kg	0.2						-	< 0.2	-	-	< 0.2	-	-	< 0.2	-	< 0.2	-	-	-	-
Monocrotophos Naled	mg/kg mg/kg	2						-	< 2	-	-	< 2	-	-	< 2	-	< 2	-	-	-	-
Omethoate Phorate	mg/kg mg/kg	2						-	< 2 < 0.2	-	-	< 2 < 0.2	-	-	< 2	-	< 2	-	-	-	-
Pirimiphos-methyl Pyrazophos	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2	-	-	< 0.2	-	< 0.2	-	-	-	-
Ronnel Terbufos	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-	-	-	-
Tetrachlorvinphos Tokuthion	mg/kg mg/kg	0.2						-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	-	< 0.2 < 0.2	-	< 0.2 < 0.2	-	-	-	-
Trichloronate Polychlorinated Biphenyls	mg/kg	0.2						-	< 0.2	-	-	< 0.2	-	-	< 0.2	-	< 0.2	-	-	-	-
Aroclor-1016 Aroclor-1221	mg/kg mg/kg	0.1						-	< 0.1 < 0.1	-	-	< 0.1 < 0.1	-	-	< 0.1 < 0.1	-	< 0.1 < 0.1	-		-	-
Aroclor-1232 Aroclor-1242	mg/kg mg/kg	0.1						-	< 0.1 < 0.1	-	-	< 0.1 < 0.1	-	-	< 0.1 < 0.1	-	< 0.1 < 0.1	-	-	-	-
Aroclor-1248 Aroclor-1254	mg/kg mg/kg	0.1 0.1						-	< 0.1 < 0.1	-	-	< 0.1 < 0.1	-	-	< 0.1 < 0.1	-	< 0.1 < 0.1	-	-	-	-
Aroclor-1260 Total PCB	mg/kg mg/kg	0.1 0.1						-	< 0.1 < 0.1	-	-	< 0.1 < 0.1	-	-	< 0.1 < 0.1	-	< 0.1 < 0.1	-	-	-	-
Polycyclic Aromatic Hydrocarbons Acenaphthene	mg/kg	0.5	-			-		< 0.5	-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	-	-	-	-
Acenaphthylene Anthracene	mg/kg mg/kg	0.5	-			-		< 0.5	-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	-	-	-	-
Benz(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.5	3			- 0.7		< 0.5	-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	-	-	-	-
Benzo(a)pyrene TEQ (lower bound) Benzo(a)pyrene TEQ (medium bound) Benzo(a)pyrene TEQ (upper bound)	mg/kg mg/kg	0.5 0.6 1.2	-			-		< 0.5 0.6 1.2	-		-	< 0.5 0.6 1.2		< 0.5 0.6 1.2	-	< 0.5 0.6 1.2	-	-	-	-	-
Benzo(a)pyrene IEQ (upper bound) Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	mg/kg mg/kg mg/kg	1.2 0.5 0.5	- 3			-		1.2 < 0.5 < 0.5	-	-	-	1.2 < 0.5 < 0.5	-	1.2< 0.5< 0.5	-	1.2< 0.5< 0.5	-	-	-	-	-
Benzo(k)fluoranthene Chrysene	mg/kg mg/kg mg/kg	0.5	3			-		< 0.5	-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	-	-	-	-
Dibenz(a.h)anthracene Fluoranthene	mg/kg mg/kg	0.5	-			-		< 0.5	-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	-	-	-	-
Fluorene Indeno(1.2.3-cd)pyrene	mg/kg mg/kg	0.5	-			-		< 0.5	-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	-	-	-	-
Naphthalene Phenanthrene	mg/kg mg/kg	0.5	-	4	170	170	-	< 0.5 < 0.5	-	-	-	< 0.5 < 0.5	-	< 0.5 < 0.5	-	< 0.5 < 0.5	-	-	-	-	-
Pyrene Total PAH	mg/kg mg/kg	0.5 0.5	- 300			-		< 0.5 < 0.5	-	-	-	< 0.5 < 0.5	-	< 0.5 < 0.5	-	< 0.5 < 0.5	-	-	-	-	-
Total Recoverable Hydrocarbons - 1999 NEPM TRH C10-36 (Total)	mg/kg	50						< 50	< 50	-	< 50	< 50	< 50	< 50	< 50	50	< 50	< 50	< 50	< 50	< 50
TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 50						< 20 < 50	< 20 < 50	-	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50
TRH C29-C36 TRH C6-C9	mg/kg mg/kg	50 20						< 50 < 20	< 50 < 20	-	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20	50 < 20	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20

G	REENCAP
	Going Further in Managing Risk

J160656 Alex Ave Public School, Schofields Detailed Site Investigation

									Soil Analysis	Data Sumn	nary								
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions																		
Naphthalene	mg/kg	0.5		170	-	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16	mg/kg	50		120	1,000	< 50	< 50	-	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	mg/kg	50		-	-	< 50	< 50	-	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
TRH >C10-C40 (total)*	mg/kg	100		-	-	< 100	< 100	-	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
TRH >C16-C34	mg/kg	100		300	2,500	< 100	< 100	-	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
TRH >C34-C40	mg/kg	100		2,800	10,000	< 100	< 100	-	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
TRH C6-C10	mg/kg	20		180	700	< 20	< 20	-	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)	mg/kg	20		-	-	< 20	< 20	-	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Asbestos																			
Asbestos	g/g	0.01% w/w				<0.01%	-	-	<0.01%	-	<0.01%	<0.01%	-	-	<0.01%	<0.01%	-	<0.01%	-
Respirable fibres		ND				ND*	-	-	ND*	-	ND*	ND*	-	-	ND*	ND*	-	ND*	-
Salinity																			
Chloride	mg/kg	5				-	-	24	-	-	-	-	-	-	-	-	-	-	-
Conductivity (1:5 aqueous extract at 25°C)	uS/cm	10				-	-	47	-	-	-	-	-	-	-	-	-	-	-
Exchangeable Sodium Percentage (ESP)	%	0.1				-	-	7.9	-	-	-	-	-	-	-	-	-	-	-
Magnesium (exchangeable)	meq/100g	0.1				-	-	5.7	-	-	-	-	-	-	-	-	-	-	-
pH (1:5 Aqueous extract at 25°C)	pH units	0.1				-	-	5.7	-	-	-	-	-	-	-	-	-	-	-
Potassium (exchangeable)	meq/100g	0.1				-	-	0.4	-	-	-	-	-	-	-	-	-	-	-
Resistivity	ohm.m	0.5				-	-	210	-	-	-	-	-	-	-	-	-	-	-
Sodium (exchangeable)	meq/100g	0.1				-	-	0.8	-	-	-	-	-	-	-	-	-	-	-
Sulphate (as SO4)	mg/kg	30				-	-	140	-	-	-	-	-	-	-	-	-	-	-
Cation Exchange Capacity																			
Calcium (exchangeable)	meq/100g	0.1				-	-	3.5	-	-	-	-	-	-	-	-	-	-	-
Cation Exchange Capacity	meg/100g	0.05				-	-	10	-	-	-	-	-	-	-	-	-	-	-

J160656 Alex Ave Public School, Schofields Detailed Site Investigation Soil Analysis Data Summary

				Sampl Sample De Sample	pth (m)			TP14 0.0-0.1 16/11/18	TP15 0.1-0.2 16/11/18	TP15 0.8-0.9 16/11/18	TP16 0.1-0.3 16/11/18	TP17 0.25-0.35 16/11/18	TP18 0.1-0.2 16/11/18	TP19 0.2-0.3 16/11/18	TP21 0.2-0.3 16/11/18	TP23 0.2-0.3 16/11/18	TP24 0.1-0.2 16/11/18	FD01 FD01 16/11/18	FD02 FD02 16/11/18
Analyte Uni BTEX		LOR	(HIL-A)	HSL - A/B 0 - <1m	EIL	ESL - R (coarse)	ML (coarse)												
Benzene mg/ Ethylbenzene mg/ m&p-Xylenes mg/	/kg	0.1 0.1 0.2		0.6 - -		50 - -		< 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.2	-	-	< 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.2
o-Xylene mg/ Toluene mg/	;/kg ;/kg	0.1 0.1		- 390		- 85		< 0.1 < 0.1	< 0.1	-	-	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
Xylenes - Total mg/ Heavy Metals Arsenic mg/		0.3	100	-	113	105		< 0.3 8.9	< 0.3 28	-	-	< 0.3 40	< 0.3 19	< 0.3 28	< 0.3	< 0.3	< 0.3 19	< 0.3 4.2	< 0.3 7.6
Arsenic mg/ Cadmium mg/ Chromium mg/	;/kg	0.4 5	20 100		- 417			< 0.4 13	< 0.4 17	-	-	< 0.4 11	< 0.4 17	< 0.4 31	< 0.4 9.2	< 0.4 17	< 0.4 15	< 0.4 17	< 0.4
Copper mg/ Lead mg/	/kg	5 5	6000 300		199 1,119			15 26	21 27	-	-	28 33	18 23	25 31	33 13	9.4 19	34 17	27 43	12 22
Mercury mg/ Nickel mg/ Zinc mg/	/kg	0.1 5 5	40 400 7400		- 170 281			< 0.1 6 28	< 0.1 7.8 51	-	-	< 0.1 17 77	< 0.1 9 25	< 0.1 12 37	< 0.1 11 67	< 0.1 < 5 11	< 0.1 9.2 66	< 0.1 8.8 140	< 0.1 5.5 35
Organochlorine Pesticides 4.4'-DDD mg/		0.05	7400		281			-	-	-	-	< 0.05	-	-	-	-	-	-	-
4.4'-DDE mg/ 4.4'-DDT mg/	/kg	0.05 0.05						-	-	-	-	< 0.05 < 0.05	-	-	-	-	-	-	-
a-BHC mg/ Aldrin mg/	/kg	0.05						-	-	-	-	< 0.05	-	-	-	-	-	-	-
Aldrin and Dieldrin (Total) mg/ b-BHC mg/ Chlordanes - Total mg/	;/kg	0.05 0.1 0.05						-	-	-	-	< 0.05 < 0.05 < 0.1	-	-	-	-	-	-	
d-BHC mg/ DDT + DDE + DDD (Total) mg/	;/kg	0.05						-	-	-	-	< 0.05 < 0.05	-	-	-	-	-	-	-
Dieldrin mg/ Endosulfan I mg/	/kg	0.05						-	-	-	-	< 0.05	-	-	-	-	-	-	-
Endosulfan II mg/ Endosulfan sulphate mg/ Endrin mg/	/kg	0.05 0.05 0.05						-	-	-	-	< 0.05 < 0.05 < 0.05	-	-	-	-	-	-	-
Endrin aldehyde mg/ Endrin ketone mg/	/kg	0.05						-	-	-	-	< 0.05 < 0.05	-	-	-	-	-	-	-
g-BHC (Lindane) mg/ Heptachlor mg/	/kg	0.05						-	-	-	-	< 0.05	-	-	-	-	-	-	-
Heptachlor epoxide mg/ Hexachlorobenzene mg/ Methoxychlor mg/	/kg	0.05 0.05 0.05						-	-	-	-	< 0.05 < 0.05 < 0.05	-	-	-	-	-	-	-
Toxaphene mg/ Vic EPA IWRG 621 OCP (Total) mg/	/kg	1 0.1						-	-	-	-	< 1 < 0.1	-	-	-	-	-	-	-
Vic EPA IWRG 621 Other OCP (Total) mg/ Physical Properties		0.1						-	-	-	-	< 0.1	-	-	-	-	-	-	-
Moisture % Organophosphorus Pesticides		1						14	15	18	11	12	11	-	19	6.9	14	8.9	9.8
Azinphos-methyl mg/ Bolstar mg/ Chlorfenvinphos mg/	/kg	0.2 0.2 0.2						-	-	-	-	< 0.2 < 0.2 < 0.2	-	-	-	-	-	-	
Chlorpyrifos mg/ Chlorpyrifos-methyl mg/	/kg	0.2 0.2						-	-	-	-	< 0.2 < 0.2	-	-	-	-	-		-
Coumaphos mg/ Demeton-O mg/	;/kg	2						-	-	-	-	< 2	-	-	-	-	-	-	-
Demeton-S mg/ Diazinon mg/ Dichlorvos mg/	;/kg	0.2 0.2 0.2						-	-	-	-	< 0.2 < 0.2 < 0.2	-	-	-	-	-	-	-
Dimethoate mg/ Disulfoton mg/	;/kg	0.2						-	-	-	-	< 0.2	-	-	-	-	-	-	-
EPN mg/	/kg	0.2						-	-	-	-	< 0.2	-	-	-	-	-	-	-
Ethoprop mg/ Ethyl parathion mg/ Fenitrothion mg/	/kg	0.2 0.2 0.2						-	-	-	-	< 0.2 < 0.2 < 0.2	-	-	-	-	-	-	-
Fensulfothion mg/	/kg	0.2						-	-	-	-	< 0.2	-	-	-	-	-	-	-
Malathion mg/ Merphos mg/	;/kg	0.2						-	-	-	-	< 0.2	-	-	-	-	-	-	-
Methyl parathion mg/ Mevinphos mg/ Monocrotophos mg/	;/kg	0.2 0.2 2						-	-	-	-	< 0.2 < 0.2 < 2	-	-	-	-	-	-	-
Naled mg/ Omethoate mg/	;/kg	0.2						-	-	-	-	< 0.2 < 2	-	-	-	-	-	-	-
Phorate mg/ Pirimiphos-methyl mg/	;/kg	0.2						-	-	-	-	< 0.2	-	-	-	-	-	-	-
Pyrazophos mg/ Ronnel mg/ Terbufos mg/	;/kg	0.2 0.2 0.2						-	-	-	-	< 0.2 < 0.2 < 0.2	-	-	-	-	-	-	-
Tetrachlorvinphos mg/ Tokuthion mg/	/kg	0.2						-	-	-	-	< 0.2	-	-	-	-	-	-	-
Trichloronate mg/ Polychlorinated Biphenyls		0.2						-	-	-	-	< 0.2							
Aroclor-1016 mg/ Aroclor-1221 mg/ Aroclor-1232 mg/	;/kg	0.1 0.1 0.1						-	-	-	-	< 0.1 < 0.1 < 0.1	-	-	-	-	-	-	-
Aroclor-1242 mg/ Aroclor-1248 mg/	;/kg ;/kg	0.1 0.1						-	-	-	-	< 0.1 < 0.1	-	-	-	-	-	-	-
Aroclor-1254 mg/ Aroclor-1260 mg/	;/kg	0.1						-	-	-	-	< 0.1	-	-	-	-	-	-	-
Total PCB mg/ Polycyclic Aromatic Hydrocarbons Acenaphthene mg/		0.1	-			-		-	-	-	-	- 0.1	- < 0.5	-	-	-	-	-	-
Acenaphthylene mg/	;/kg	0.5	-			-		-	-	-	-	-	< 0.5	-	-	-	-	-	-
Benz(a)anthracene mg/ Benzo(a)pyrene mg/	;/kg	0.5	3			- 0.7		-	-	-	-	-	< 0.5	-	-	-	-	-	-
Benzo(a)pyrene TEQ (lower bound) mg/ Benzo(a)pyrene TEQ (medium bound) mg/ Benzo(a)pyrene TEQ (upper bound) mg/	;/kg	0.5 0.6 1.2	-			-		-	-	-	-	-	< 0.5 0.6 1.2	-	-	-	-	-	-
Benzo(b&j)fluoranthene mg/ Benzo(g.h.i)perylene mg/	;/kg	0.5	3			-		-	-	-	-	-	< 0.5 < 0.5	-	-	-	-	-	-
Benzo(k)fluoranthene mg/ Chrysene mg/	;/kg	0.5	-			-		-	-	-	-	-	< 0.5 < 0.5	-	-	-	-	-	-
Dibenz(a.h)anthracene mg/ Fluoranthene mg/ Fluorene mg/	;/kg	0.5 0.5 0.5	-			-		-	-	-	-	-	< 0.5 < 0.5 < 0.5	-	-	-	-	-	-
Indeno(1.2.3-cd)pyrene mg/ Naphthalene mg/	;/kg ;/kg	0.5 0.5	-	4	170	- 170	-	-	-	-	-	-	< 0.5 < 0.5	-	-	-	-	-	-
Phenanthrene mg/ Pyrene mg/	;/kg ;/kg	0.5	-			-		-	-	-	-	-	< 0.5	-	-	-	-	-	-
Total PAH mg/ Total Recoverable Hydrocarbons - 1999 NEPM Fractio TRH C10-36 (Total) mg/	ons	0.5 50	300			-		- < 50	- < 50	-	-	- < 50	< 0.5 < 50	- < 50	- < 50	- < 50	- < 50	- < 50	- < 50
TRH C10-C14 mg/ TRH C15-C28 mg/	;/kg ;/kg	20 50						< 20 < 50	< 20 < 50	-	-	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50
TRH C29-C36 mg/ TRH C6-C9 mg/		50 20						< 50 < 20	< 50 < 20	-	-	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20	< 50 < 20

< 0.5 < 50 < 50 < 100 < 100 < 100 < 20 < 20

J160656

GREENCAI Going Further in Managing I									Alex Ave Pu Detailed	J160656 Iblic School, S Site Investiga sis Data Sumi	ation						
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions																
Naphthalene	mg/kg	0.5		170	-	< 0.5	< 0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRH >C10-C16	mg/kg	50		120	1,000	< 50	< 50	-	-	< 50	< 50	< 50	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2)	mg/kg	50		-	-	< 50	< 50	-	-	< 50	< 50	< 50	< 50	< 50	< 50	< 50	
TRH >C10-C40 (total)*	mg/kg	100		-	-	< 100	< 100	-	-	< 100	< 100	< 100	< 100	< 100	< 100	< 100	
TRH >C16-C34	mg/kg	100		300	2,500	< 100	< 100	-	-	< 100	< 100	< 100	< 100	< 100	< 100	< 100	
TRH >C34-C40	mg/kg	100		2,800	10,000	< 100	< 100	-	-	< 100	< 100	< 100	< 100	< 100	< 100	< 100	
TRH C6-C10	mg/kg	20		180	700	< 20	< 20	-	-	< 20	< 20	< 20	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)	mg/kg	20		-	-	< 20	< 20	-	-	< 20	< 20	< 20	< 20	< 20	< 20	< 20	
Asbestos																	
Asbestos	g/g	0.01% w/w				-	<0.01%	-	-	-	-	-	-	<0.01%	-	-	
Respirable fibres		ND				-	ND*	-	-	-	-	-	-	ND*	-	-	
Salinity																	
Chloride	mg/kg	5				-	-	46	< 5	-	-	-	-	-	100	-	
Conductivity (1:5 aqueous extract at 25°C)	uS/cm	10				-	-	87	11	-	-	-	-	-	110	-	
Exchangeable Sodium Percentage (ESP)	%	0.1				-	-	21	2	-	-	-	-	-	5.8	-	
Magnesium (exchangeable)	meq/100g	0.1				-	-	9.2	3.2	-	-	-	-	-	7.1	-	
pH (1:5 Aqueous extract at 25°C)	pH units	0.1				-	-	5.2	6.1	-	-	-	-	-	5.4	-	
Potassium (exchangeable)	meq/100g	0.1				-	-	0.6	0.2	-	-	-	-	-	0.3	-	
Resistivity	ohm.m	0.5				-	-	110	940	-	-	-	-	-	93	-	
Sodium (exchangeable)	meq/100g	0.1				-	-	2.8	0.2	-	-	-	-	-	1	-	
Sulphate (as SO4)	mg/kg	30				-	-	82	< 30	-	-	-	-	-	52	-	
Cation Exchange Capacity																	
Calcium (exchangeable)	meq/100g	0.1				-	-	1	5.3	-	-	-	-	-	8.2	-	
Cation Exchange Capacity	meq/100g	0.05				-	-	14	8.8	-	-	-	-	-	16	-	

GREENCAP Going Further in Managing Risk

J160656 Alex Ave Public School, Schofields Detailed Site Investigation Soil Analysis Data Summary

				Sample De	epth (m)			TP25A 0.2-0.3	TP26A 0.1-0.3	TP27A 0.2-0.3	TP28A 0.2-0.4	TP29A 0.1-0.3	TP30A 0.2-0.3	TP31A 0.1-0.2	TP32A 0.2-0.3	TP33A 0.2-0.25	TP34A 0.1-0.2	TP35A 0.15-0.25	FD01A (TP34A)
Analyte BTEX	Units	LOR	(HIL-A)	Sample HSL - A/B 0 - <1m	EIL	ESL - R (coarse)	ML (coarse)	10/12/18	10/12/18	10/12/18	10/12/18	10/12/18	10/12/18	10/12/18	10/12/18	10/12/18	10/12/18	10/12/18	10/12/18
Benzene Ethylbenzene	mg/kg mg/kg	0.1		0.6		50		< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1									
m&p-Xylenes o-Xylene	mg/kg mg/kg	0.2		-		-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toluene Xylenes - Total	mg/kg mg/kg	0.1		390		85 105		< 0.1	< 0.1	< 0.1 < 0.3	< 0.1 < 0.3	< 0.1	< 0.1	< 0.1	< 0.1 < 0.3	< 0.1	< 0.1	< 0.1	< 0.1
Heavy Metals Arsenic	mg/kg	2	100		113			7.6	9.7	14	28	19	12	20	9.3	8.2	7.7	5.8	13
Cadmium	mg/kg mg/kg	0.4	20		- 417			< 0.4 10	< 0.4 11	< 0.4	< 0.4	< 0.4	< 0.4 14	< 0.4 18	< 0.4 11	< 0.4 10	< 0.4	< 0.4	< 0.4
Copper	mg/kg mg/kg	5	6000 300		199 1,119			14 22	16 21	17 19	22 22	41	27	20	16 21	18 23	15	13 17	20 14
Mercury Nickel	mg/kg mg/kg	0.1	40		- 170			< 0.1 8.1	< 0.1 9.1	< 0.1 9.6	< 0.1	< 0.1 7.9	< 0.1 12	< 0.1 14	< 0.1	< 0.1	< 0.1 8.6	< 0.1	< 0.1
Zinc Organochlorine Pesticides	mg/kg	5	7400		281			49	180	87	74	41	58	59	51	63	52	32	28
4.4'-DDD 4.4'-DDE	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
4.4'-DDT a-BHC	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
Aldrin Aldrin (Total)	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
b-BHC Chlordanes - Total	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
d-BHC DDT + DDE + DDD (Total)	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin Endosulfan I	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan II Endosulfan sulphate	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
Endrin Endrin Endrin aldehyde	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
Endrin ketone g-BHC (Lindane)	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
B-BHC (Lindane) Heptachlor Heptachlor epoxide	mg/kg mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-
Toxaphene Vic EPA IWRG 621 OCP (Total)	mg/kg mg/kg mg/kg	0.05 1 0.1						-	-	-	-	-	-	-	-	-	-	-	-
Vic EPA IWRG 621 OCP (Total) Vic EPA IWRG 621 Other OCP (Total) Physical Properties	mg/kg mg/kg	0.1						-	-	-	-	-	-	-	-	-	-	-	-
Moisture Organophosphorus Pesticides	%	1						8.2	7.8	9.7	8.6	6.4	12	9.4	9.7	10	12	6	6.3
Azinphos-methyl	mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Bolstar Chlorfenvinphos	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Chlorpyrifos Chlorpyrifos-methyl	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Coumaphos Demeton-O	mg/kg mg/kg	2						-	-	-	-	-	-	-	-	-	-	-	-
Demeton-S Diazinon	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Dichlorvos Dimethoate	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Disulfoton EPN	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Ethion Ethoprop	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Ethyl parathion Fenitrothion	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Fensulfothion Fenthion	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Malathion Merphos	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Methyl parathion Mevinphos	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Monocrotophos Naled	mg/kg mg/kg	2						-	-	-	-	-	-	-	-	-	-	-	-
Omethoate Phorate	mg/kg mg/kg	2 0.2						-	-	-	-	-	-	-	-	-	-	-	-
Pirimiphos-methyl Pyrazophos	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Ronnel Terbufos	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Tetrachlorvinphos Tokuthion	mg/kg mg/kg	0.2						-	-	-	-	-	-	-	-	-	-	-	-
Trichloronate Polychlorinated Biphenyls	mg/kg	0.2						-	-	-	-	-			1	1			
Aroclor-1016 Aroclor-1221	mg/kg mg/kg	0.1						-	-	-	-	-	-	-	-	-	-	-	-
Aroclor-1232 Aroclor-1242	mg/kg mg/kg	0.1						-	-	-	-	-	-	-	-	-	-	-	-
Aroclor-1248 Aroclor-1254	mg/kg mg/kg	0.1						-	-	-	-	-	-	-	-	-	-	-	-
Aroclor-1260 Total PCB	mg/kg mg/kg	0.1						-	-	-	-	-	-	-	-	-	-	-	-
Polycyclic Aromatic Hydrocarbons Acenaphthene	mg/kg	0.5	-			-		-	-	-	< 0.5	-	-	-	-	-	-	-	-
Acenaphthylene Anthracene	mg/kg mg/kg	0.5 0.5	-			-		-	-	-	< 0.5 < 0.5	-	-	-	-	-	-	-	-
Benz(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.5	3			- 0.7		-	-	-	< 0.5 < 0.5	-	-	-	-	-	-	-	-
Benzo(a)pyrene TEQ (lower bound) Benzo(a)pyrene TEQ (medium bound)	mg/kg mg/kg	0.5	-			-		-	-	-	< 0.5	-	-	-	-	-	-	-	-
Benzo(a)pyrene TEQ (upper bound) Benzo(b&j)fluoranthene	mg/kg mg/kg	1.2 0.5	- 3			-		-	-	-	1.2 < 0.5	-	-	-	-	-	-	-	-
Benzo(g.h.i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	0.5	- 3			-		-	-	-	< 0.5	-	-	-	-	-	-	-	-
Chrysene Dibenz(a.h)anthracene	mg/kg mg/kg	0.5	-			-		-	-	-	< 0.5	-	-	-	-	-	-	-	-
Fluoranthene Fluorene	mg/kg mg/kg	0.5	-			-		-	-	-	< 0.5	-	-	-	-	-	-	-	-
Indeno(1.2.3-cd)pyrene Naphthalene	mg/kg mg/kg	0.5	-	4	170	- 170	-	-	-	-	< 0.5 < 0.5	-	-	-	-	-	-	-	-
Phenanthrene Pyrene Total PAH	mg/kg mg/kg	0.5				-		-	-	-	< 0.5 < 0.5	-	-	-	-	-	-	-	-
Total Recoverable Hydrocarbons - 1999 NEPM	1	0.5	300			-		- < 50	- < 50	- < 50	< 0.5 < 50	- < 50	- < 50	- < 50	- < 50	- < 50	- < 50	- 83	-
TRH C10-36 (Total) TRH C10-C14 TRH C15-C28	mg/kg mg/kg	50 20						< 50 < 20 < 50	83 < 20 < 50	< 50 < 20 < 50									
TRH C15-C28 TRH C29-C36 TRH C6 C0	mg/kg mg/kg	50 50						< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	83	< 50
TRH C6-C9	mg/kg	20						< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20

J160656 Alex Ave Public School, Schofields Detailed Site Investigation Soil Analysis Data Summary

									SUIT Analy:	sis Data Sumi	illaiy						
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions																
Naphthalene	mg/kg	0.5		170	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16	mg/kg	50		120	1,000	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	mg/kg	50		-	-	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
TRH >C10-C40 (total)*	mg/kg	100		-	-	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
TRH >C16-C34	mg/kg	100		300	2,500	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
TRH >C34-C40	mg/kg	100		2,800	10,000	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
TRH C6-C10	mg/kg	20		180	700	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)	mg/kg	20		-	-	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Asbestos																	
Asbestos	g/g	0.01% w/w				-	-	-	-	-	-	-	-	-	-	-	-
Respirable fibres						-	-	-	-	-	-	-	-	-	-	-	-
Salinity																	
Chloride	mg/kg	5				-	-	-	-	170	-	-	-	-	-	-	-
Conductivity (1:5 aqueous extract at 25°C)	uS/cm	10				-	-	-	-	97	-	-	-	-	-	-	-
Exchangeable Sodium Percentage (ESP)	%	0.1				-	-	-	-	9.1	-	-	-	-	-	-	-
Magnesium (exchangeable)	meq/100g	0.1				-	-	-	-	6.7	-	-	-	-	-	-	-
pH (1:5 Aqueous extract at 25°C)	pH units	0.1				-	-	-	-	6.8	-	-	-	-	-	-	-
Potassium (exchangeable)	meq/100g	0.1				-	-	-	-	0.5	-	-	-	-	-	-	-
Resistivity	ohm.m	0.5				-	-	-	-	100	-	-	-	-	-	-	-
Sodium (exchangeable)	meq/100g	0.1				-	-	-	-	1.4	-	-	-	-	-	-	-
Sulphate (as SO4)	mg/kg	30				-	-	-	-	< 30	-	-	-	-	-	-	-
Cation Exchange Capacity																	
Calcium (exchangeable)	meq/100g	0.1				-	-	-	-	6.3	-	-	-	-	-	-	-
Cation Exchange Capacity	meq/100g	0.05				-	-	-	-	15	-	-	-	-	-	-	-

GREENCAP

Detailed Site Investigation

Group GSA Cnr of Farmland Dr & the future realignment of Pelican Rd, Schofields NSW 2762

Appendix F: Laboratory Analysis Reports & CoCs

greencap.com.au

Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

Greencap NSW P/L Level 2/11 Khartoum Road North Ryde NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Matthew Barberson

Report Project name Project ID Received Date 628453-S-V2 DSI - SCHOFIELDS J157372 Nov 19, 2018

Client Sample ID			TP1 0.1-0.2	TP2 0.01-0.2	TP2 0.6-0.7	TP3 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24369	S18-No24370	S18-No24371	S18-No24372
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
•			100 10, 2018	NOV 10, 2010	100 10, 2010	100 10, 2010
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	< 50
втех		1				
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	54	56	-	59
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	-				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-

Client Sample ID Sample Matrix			TP1 0.1-0.2 Soil	TP2 0.01-0.2 Soil	TP2 0.6-0.7 Soil	TP3 0.1-0.2 Soil
Eurofins mgt Sample No.			S18-No24369	S18-No24370	S18-No24371	S18-No24372
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	94	-	-	-
p-Terphenyl-d14 (surr.)	1	%	77	-	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.05	mg/kg	-	< 0.05	-	-
Toxaphene	1	mg/kg	-	< 1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	87	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	65	-	-
Organophosphorus Pesticides		. "				
Azinphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Bolstar	0.2	mg/kg	-	< 0.2	-	-
Chlorfenvinphos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	-
Coumaphos	2	mg/kg	-	< 2	-	-
Demeton-S	0.2	mg/kg	-	< 0.2	-	-
Demeton-O	0.2	mg/kg	-	< 0.2	-	-
Diazinon Dichlorvos	0.2	mg/kg mg/kg	-	< 0.2	-	-

Client Sample ID			TP1 0.1-0.2	TP2 0.01-0.2	TP2 0.6-0.7	TP3 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24369	S18-No24370	S18-No24371	S18-No24372
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit		10, 2010	107 10, 2010	
Organophosphorus Pesticides	LOR	Unit				
	0.0					
Dimethoate Disulfoton	0.2	mg/kg	-	< 0.2	-	-
EPN	0.2	mg/kg		< 0.2		
		mg/kg	-		-	-
Ethion	0.2	mg/kg	-	< 0.2	-	-
Ethoprop	0.2	mg/kg	-	< 0.2	-	-
Ethyl parathion		mg/kg	-	< 0.2	-	
Fenitrothion	0.2	mg/kg		< 0.2		-
Fensulfothion	0.2	mg/kg	-	< 0.2	-	-
Fenthion	0.2	mg/kg	-	< 0.2	-	-
Malathion	0.2	mg/kg	-	< 0.2	-	-
Merphos Mathul acasthica	0.2	mg/kg	-	< 0.2	-	-
Methyl parathion	0.2	mg/kg	-	< 0.2	-	-
Mevinphos	0.2	mg/kg	-	< 0.2	-	-
Monocrotophos	2	mg/kg	-	< 2	-	-
Naled	0.2	mg/kg	-	< 0.2	-	-
Omethoate	2	mg/kg	-	< 2	-	-
Phorate	0.2	mg/kg	-	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Pyrazophos	0.2	mg/kg	-	< 0.2	-	-
Ronnel	0.2	mg/kg	-	< 0.2	-	-
Terbufos	0.2	mg/kg	-	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	-
Tokuthion	0.2	mg/kg	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	-	74	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	-
Total PCB*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	87	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	65	-	-
Chloride	5	mg/kg	-	-	24	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	47	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	5.7	-
Resistivity*	0.5	ohm.m	-	-	210	-
Sulphate (as SO4)	30	mg/kg	-	-	140	-
Exchangeable Sodium Percentage (ESP)	0.1	%	-	-	7.9	-
Magnesium (exchangeable)	0.1	meq/100g	-	-	5.7	-
Potassium (exchangeable)	0.1	meq/100g	-	-	0.4	-
Sodium (exchangeable)	0.1	meq/100g	-	-	0.8	-
% Moisture	1	%	7.8	9.0	12	11

Client Sample ID Sample Matrix			TP1 0.1-0.2 Soil	TP2 0.01-0.2 Soil	TP2 0.6-0.7 Soil	TP3 0.1-0.2 Soil
Eurofins mgt Sample No.			S18-No24369	S18-No24370	S18-No24371	S18-No24372
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	12	14	-	7.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	18	12	-	9.3
Copper	5	mg/kg	11	11	-	15
Lead	5	mg/kg	27	18	-	24
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Nickel	5	mg/kg	7.2	5.9	-	6.6
Zinc	5	mg/kg	31	25	-	38
Cation Exchange Capacity						
Calcium (exchangeable)	0.1	meq/100g	-	-	3.5	-
Cation Exchange Capacity	0.05	meg/100g	-	-	10	-

Client Sample ID			TP4 0.1-0.2	TP5 0.1-0.2	TP6 0.0-0.2	TP7 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24373	S18-No24374	S18-No24375	S18-No24376
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	61	57	63	56
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-

Client Sample ID Sample Matrix			TP4 0.1-0.2 Soil	TP5 0.1-0.2 Soil	TP6 0.0-0.2 Soil	TP7 0.1-0.2 Soil
•			S18-No24373	S18-No24374	S18-No24375	S18-No24376
Eurofins mgt Sample No.						
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons			-			_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	96	-	98	-
p-Terphenyl-d14 (surr.)	1	%	97	-	68	-
Organochlorine Pesticides		"				
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05
a-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
b-BHC d-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan I	0.05	mg/kg mg/kg	< 0.05		-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	_	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin aldehvde	0.05	mg/kg	< 0.05		_	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	_	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05		_	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	_	-	< 0.05
Toxaphene	1	mg/kg	< 1	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	80	-	-	85
Tetrachloro-m-xylene (surr.)	1	%	76	-	-	85
Organophosphorus Pesticides	,					
Azinphos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Bolstar	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2

Client Sample ID Sample Matrix			TP4 0.1-0.2 Soil	TP5 0.1-0.2 Soil	TP6 0.0-0.2 Soil	TP7 0.1-0.2 Soil
Eurofins mgt Sample No.			S18-No24373	S18-No24374	S18-No24375	S18-No24376
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Coumaphos	2	mg/kg	< 2	-	-	< 2
Demeton-S	0.2	mg/kg	< 0.2	-	-	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	-	-	< 0.2
Diazinon	0.2	mg/kg	< 0.2	-	-	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	-	-	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	-	-	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	-	-	< 0.2
EPN	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethion	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	-	-	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	-	-	< 0.2
Fenthion	0.2	mg/kg	< 0.2	-	-	< 0.2
Malathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Merphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Monocrotophos	2	mg/kg	< 2	-	-	< 2
Naled	0.2	mg/kg	< 0.2	-	-	< 0.2
Omethoate	2	mg/kg	< 2	-	-	< 2
Phorate	0.2	mg/kg	< 0.2	-	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	-	-	< 0.2
Ronnel	0.2	mg/kg	< 0.2	-	-	< 0.2
Terbufos	0.2	mg/kg	< 0.2	-	-	< 0.2
Tetrachlorvinphos Tokuthion	0.2	mg/kg	< 0.2	-	-	< 0.2
	0.2	mg/kg	< 0.2	-	-	< 0.2
Trichloronate	0.2	mg/kg %	< 0.2 83	-	-	< 0.2
Triphenylphosphate (surr.) Polychlorinated Biphenyls		70	03	-	-	65
Aroclor-1016	0.1	mallea	.01			.01
	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1232 Aroclor-1242	0.1	mg/kg	< 0.1 < 0.1	-	-	< 0.1
Aroclor-1242 Aroclor-1248	0.1	mg/kg mg/kg	< 0.1	-	-	< 0.1
Aroclor-1248 Aroclor-1254	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1254 Aroclor-1260	0.1	mg/kg	< 0.1	-	-	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	111g/kg %	80	-	_	85
Tetrachloro-m-xylene (surr.)	1	%	76	-	_	85
		70	10	-	-	
% Moisture	1	%	10	14	9.1	8.0
Heavy Metals		1 70		i -r	0.1	0.0
Arsenic	2	mg/kg	8.6	9.8	10	8.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	<u>< 0.4</u> 9.1	13	13	<u>< 0.4</u> 11
Copper	5	mg/kg	9.1	15	15	11
Lead	5	mg/kg	21	15	13	29

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP4 0.1-0.2 Soil S18-No24373 Nov 16, 2018	TP5 0.1-0.2 Soil S18-No24374 Nov 16, 2018	TP6 0.0-0.2 Soil S18-No24375 Nov 16, 2018	TP7 0.1-0.2 Soil S18-No24376 Nov 16, 2018
Heavy Metals						
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	7.7	< 5	8.7	6.9
Zinc	5	mg/kg	43	29	44	31

Client Sample ID			TP8 0.1-0.2	TP9 0.1-0.3	TP10 0.2-0.3	TP11 0.1-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24377	S18-No24378	S18-No24379	S18-No24380
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit	,	,	,	,
Total Recoverable Hydrocarbons - 1999 NEPM Fract		0				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	53	62	96	87
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions	1				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-

Client Sample ID Sample Matrix			TP8 0.1-0.2 Soil	TP9 0.1-0.3 Soil	TP10 0.2-0.3 Soil	TP11 0.1-0.3 Soil
Eurofins mgt Sample No.			S18-No24377	S18-No24378	S18-No24379	S18-No24380
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	1					
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	98	-	-	-
p-Terphenyl-d14 (surr.)	1	%	71	-	-	-
Organochlorine Pesticides	1					
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.05	mg/kg	-	< 0.05	-	-
Toxaphene	1	mg/kg	-	< 1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	74	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	69	-	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Bolstar	0.2	mg/kg	-	< 0.2	-	-
Chlorfenvinphos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	-
Coumaphos	2	mg/kg	-	< 2	-	-
Demeton-S	0.2	mg/kg	-	< 0.2	-	-
Demeton-O	0.2	mg/kg	-	< 0.2	-	-
Diazinon	0.2	mg/kg	-	< 0.2	-	-
Dichlorvos	0.2	mg/kg	-	< 0.2	-	-
Dimethoate	0.2	mg/kg	-	< 0.2	-	-
Disulfoton	0.2	mg/kg	-	< 0.2	-	-
EPN	0.2	mg/kg	-	< 0.2	-	-

Client Sample ID			TP8 0.1-0.2	TP9 0.1-0.3	TP10 0.2-0.3	TP11 0.1-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24377	S18-No24378	S18-No24379	S18-No24380
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	2011	0				
Ethion	0.2	mg/kg	_	< 0.2		
Ethoprop	0.2	mg/kg	_	< 0.2		
Ethyl parathion	0.2	mg/kg		< 0.2	-	
Fenitrothion	0.2	mg/kg		< 0.2	-	
Fensulfothion	0.2			< 0.2		
Fenthion	0.2	mg/kg	-	< 0.2		
Malathion		mg/kg	-	< 0.2		
	0.2	mg/kg	-	< 0.2		
Merphos Mathud parathian	0.2	mg/kg			-	
Methyl parathion	0.2	mg/kg	-	< 0.2	-	-
Mevinphos	0.2	mg/kg	-	< 0.2	-	-
Monocrotophos	2	mg/kg	-	< 2	-	-
Naled	0.2	mg/kg	-	< 0.2	-	-
Omethoate	2	mg/kg	-	< 2	-	-
Phorate	0.2	mg/kg	-	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Pyrazophos	0.2	mg/kg	-	< 0.2	-	-
Ronnel	0.2	mg/kg	-	< 0.2	-	-
Terbufos	0.2	mg/kg	-	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	-
Tokuthion	0.2	mg/kg	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	-	96	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	-
Total PCB*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	74	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	69	-	-
	1		1			
% Moisture	1	%	20	11	9.7	10
Heavy Metals		,,,,				
Arsenic	2	mg/kg	5.2	8.5	7.3	10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	7.7	12	7.9	13
	5		7.2	12	15	16
Copper Lead	5	mg/kg	10	26	20	31
		mg/kg				
Mercury Niekol	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	5.8	8.3	7.1
Zinc	5	mg/kg	21	30	42	43

Client Sample ID			TP12 0.3-0.5	TP13 0.01-0.1	TP14 0.0-0.1	TP15 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24381	S18-No24382	S18-No24383	S18-No24384
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX	L					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	91	53	61	55
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	8.7	11	14	15
Heavy Metals						
Arsenic	2	mg/kg	4.5	8.4	8.9	28
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	15	12	13	17
Copper	5	mg/kg	17	14	15	21
Lead	5	mg/kg	36	22	26	27
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	9.4	6.4	6.0	7.8
Zinc	5	mg/kg	99	26	28	51

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference Total Recoverable Hydrocarbons - 1999 NEPM Fract	LOR	Unit	TP15 0.8-0.9 Soil S18-No24385 Nov 16, 2018	TP16 0.1-0.3 Soil S18-No24386 Nov 16, 2018	TP17 0.25-0.35 Soil S18-No24387 Nov 16, 2018	TP18 0.1-0.2 Soil S18-No24388 Nov 16, 2018
TRH C6-C9	20	mg/kg	_	-	< 20	< 20
TRH C10-C14	20	mg/kg	-	-	< 20	< 20
TRH C15-C28	50	mg/kg	-	-	< 50	< 50
TRH C29-C36	50	mg/kg	-	-	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	-	-	< 50	< 50

Client Sample ID			TP15 0.8-0.9	TP16 0.1-0.3	TP17 0.25-0.35	TP18 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24385	S18-No24386	S18-No24387	S18-No24388
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit	100 10, 2010	100 10, 2010	100 10, 2010	100 10, 2010
BTEX	LOR	Unit				
	0.1	mallea			.0.1	- 0.1
Benzene Toluene	0.1	mg/kg	-	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg mg/kg	-	-	< 0.1	< 0.1
m&p-Xylenes	0.1	mg/kg	-		< 0.1	< 0.1
o-Xylene	0.2	mg/kg	-		< 0.2	< 0.2
Xylenes - Total	0.1	mg/kg	_		< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	//////////////////////////////////////	_	_	62	69
Total Recoverable Hydrocarbons - 2013 NEPM I	-	70			02	00
Naphthalene ^{N02}	0.5	mg/kg	_	_	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-		< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-		< 20	< 20
TRH >C10-C16	50	mg/kg	-	_	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	_	< 50	< 50
TRH >C16-C34	100	mg/kg	-		< 100	< 100
TRH >C34-C40	100	mg/kg	-	_	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	_	_	< 100	< 100
Polycyclic Aromatic Hydrocarbons	100	ing/kg				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-		_	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_		-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-		-	1.2
Acenaphthene	0.5	mg/kg	_			< 0.5
Acenaphthylene	0.5	mg/kg	-	_	_	< 0.5
Anthracene	0.5	mg/kg	-	_	_	< 0.5
Benz(a)anthracene	0.5	mg/kg	_	_	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	_	_	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	_	_	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	_	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	83
p-Terphenyl-d14 (surr.)	1	%	-	-	-	88
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-BHC	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-

Client Sample ID Sample Matrix			TP15 0.8-0.9 Soil	TP16 0.1-0.3 Soil	TP17 0.25-0.35 Soil	TP18 0.1-0.2 Soil
Eurofins mgt Sample No.			S18-No24385	S18-No24386	S18-No24387	S18-No24388
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
•		11.2	100 10, 2018	NOV 10, 2010	NOV 10, 2010	100 10, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone g-BHC (Lindane)	0.05	mg/kg		-	< 0.05	-
— · · · · · · · · · · · · · · · · · · ·		mg/kg		-		-
Heptachlor	0.05	mg/kg		-	< 0.05	-
Heptachlor epoxide Hexachlorobenzene	0.05	mg/kg		-	< 0.05	-
Methoxychlor	0.05	mg/kg		-	< 0.05	-
Toxaphene	1	mg/kg		-	< 0.05	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg		-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%		_	80	_
Tetrachloro-m-xylene (surr.)	1	%		_	77	_
Organophosphorus Pesticides		70				
Azinphos-methyl	0.2	ma/ka			< 0.2	
Bolstar	0.2	mg/kg mg/kg	-	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	-	-	< 0.2	-
Coumaphos	2	mg/kg	-	_	< 2	-
Demeton-S	0.2	mg/kg		-	< 0.2	_
Demeton-O	0.2	mg/kg		-	< 0.2	-
Diazinon	0.2	mg/kg	-	-	< 0.2	-
Dichlorvos	0.2	mg/kg	-	-	< 0.2	-
Dimethoate	0.2	mg/kg	-	-	< 0.2	-
Disulfoton	0.2	mg/kg	_	-	< 0.2	_
EPN	0.2	mg/kg	_	-	< 0.2	-
Ethion	0.2	mg/kg	_	-	< 0.2	-
Ethoprop	0.2	mg/kg	_	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	_	-	< 0.2	-
Fenitrothion	0.2	mg/kg	_	-	< 0.2	-
Fensulfothion	0.2	mg/kg	-	-	< 0.2	-
Fenthion	0.2	mg/kg	-	-	< 0.2	-
Malathion	0.2	mg/kg	-	-	< 0.2	-
Merphos	0.2	mg/kg	-	-	< 0.2	-
Methyl parathion	0.2	mg/kg	-	-	< 0.2	-
Mevinphos	0.2	mg/kg	-	-	< 0.2	-
Monocrotophos	2	mg/kg	-	-	< 2	-
Naled	0.2	mg/kg	-	-	< 0.2	-
Omethoate	2	mg/kg	-	-	< 2	-
Phorate	0.2	mg/kg	-	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Pyrazophos	0.2	mg/kg	-	-	< 0.2	_
Ronnel	0.2	mg/kg	_	-	< 0.2	_

Client Sample ID			TP15 0.8-0.9	TP16 0.1-0.3	TP17 0.25-0.35	TP18 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24385	S18-No24386	S18-No24387	S18-No24388
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	1	-				
Terbufos	0.2	mg/kg	-	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	-	-	< 0.2	-
Tokuthion	0.2	mg/kg	-	-	< 0.2	-
Trichloronate	0.2	mg/kg	-	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	-	78	-
Polychlorinated Biphenyls	·					
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	80	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	77	-
Chloride	5	mg/kg	46	< 5	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	87	11	-	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.2	6.1	-	-
Resistivity*	0.5	ohm.m	110	940	-	-
Sulphate (as SO4)	30	mg/kg	82	< 30	-	-
Exchangeable Sodium Percentage (ESP)	0.1	%	21	2.0	-	-
Magnesium (exchangeable)	0.1	meq/100g	9.2	3.2	-	-
Potassium (exchangeable)	0.1	meq/100g	0.6	0.2	-	-
Sodium (exchangeable)	0.1	meq/100g	2.8	0.2	-	-
% Moisture	1	%	18	11	12	11
Heavy Metals						
Arsenic	2	mg/kg	-	-	40	19
Cadmium	0.4	mg/kg	-	-	< 0.4	< 0.4
Chromium	5	mg/kg	-	-	11	17
Copper	5	mg/kg	-	-	28	18
Lead	5	mg/kg	-	-	33	23
Mercury	0.1	mg/kg	-	-	< 0.1	< 0.1
Nickel	5	mg/kg	-	-	17	9.0
Zinc	5	mg/kg	-	-	77	25
Cation Exchange Capacity						
Calcium (exchangeable)	0.1	meq/100g		5.3	-	-
Cation Exchange Capacity	0.05	meq/100g	14	8.8	-	-

Client Sample ID			TP19 0.2-0.3	TP21 0.2-0.3	TP23 0.2-0.3	TP24 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-No24389	S18-No24390	S18-No24391	S18-No24392
Date Sampled			Nov 16, 2018	Nov 16, 2018	Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit		100 10, 2010	107 10, 2010	
Total Recoverable Hydrocarbons - 1999 NEPM Fra	-	Unit				
	20	maller	. 20	. 20	. 20	. 20
TRH C6-C9 TRH C10-C14	20	mg/kg	< 20 < 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 20	< 20
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg mg/kg	< 50	< 50	< 50	< 50
BTEX	50	IIIg/kg	< 50	< 50	< 30	< 30
	0.1	maller	.01	.01	.01	.01
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
		mg/kg	< 0.1		< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1 < 0.2	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg			< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1		< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)		%	54	56	112	53
Total Recoverable Hydrocarbons - 2013 NEPM Fra						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Chloride	5	mg/kg	-	-	-	100
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	-	110
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	-	5.4
Resistivity*	0.5	ohm.m	-	-	-	93
Sulphate (as SO4)	30	mg/kg	-	-	-	52
Exchangeable Sodium Percentage (ESP)	0.1	%	-	-	-	5.8
Magnesium (exchangeable)	0.1	meq/100g		-	-	7.1
Potassium (exchangeable)	0.1	meq/100g		-	-	0.3
Sodium (exchangeable)	0.1	meq/100g		-	-	1.0
% Moisture	1	%	15	19	6.9	14
Heavy Metals						
Arsenic	2	mg/kg	28	12	13	19
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	31	9.2	17	15
Copper	5	mg/kg	25	33	9.4	34
Lead	5	mg/kg	31	13	19	17
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	12	11	< 5	9.2
Zinc	5	mg/kg	37	67	11	66
Cation Exchange Capacity						
Calcium (exchangeable)	0.1	meq/100g	-	-	-	8.2
Cation Exchange Capacity	0.05	meq/100g	-	-	-	16

Client Sample ID			FD01	FD02
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S18-No24405	S18-No24406
Date Sampled			Nov 16, 2018	Nov 16, 2018
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
BTEX	•			
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	72	74
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
% Moisture	1	%	8.9	9.8
Heavy Metals	· · · · · · · · · · · · · · · · · · ·			
Arsenic	2	mg/kg	4.2	7.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	17	7.8
Copper	5	mg/kg	27	12
Lead	5	mg/kg	43	22
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	8.8	5.5
Zinc	5	mg/kg	140	35

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B6			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	Nov 23, 2018	14 Day
BTEX	Melbourne	Nov 23, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 23, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Nov 23, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Melbourne	Nov 23, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins mgt Suite B7			
Polycyclic Aromatic Hydrocarbons	Melbourne	Nov 23, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Eurofins mgt Suite B15			
Organochlorine Pesticides	Melbourne	Nov 23, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Nov 23, 2018	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Melbourne	Nov 23, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			-
Chloride	Melbourne	Nov 23, 2018	28 Day
- Method: LTM-INO-4090 Chloride by Discrete Analyser			-
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Nov 23, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Melbourne	Nov 23, 2018	28 Day
- Method: LTM-INO-4110 Sulfate by Discrete Analyser		,	,
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Nov 23, 2018	7 Day
- Method: LTM-INO-4030 Conductivity		,	
Magnesium (exchangeable)	Melbourne	Nov 24, 2018	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP			
Potassium (exchangeable)	Melbourne	Nov 24, 2018	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP			
Sodium (exchangeable)	Melbourne	Nov 24, 2018	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity and ESP	Weibburne	1007 24, 2010	100 Duyo
Cation Exchange Capacity	Melbourne	Nov 24, 2018	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage	Webburne	100 24, 2010	Too Days
	Melbourne	Nov 24, 2018	28 Day
Exchangeable Sodium Percentage (ESP)	MEIDOUTTE	Nov 24, 2018	28 Day
- Method: LTM-MET-3060 - Cation Exchange Capacity (CEC) & Exchangeable Sodium Percentage (ESP) 9/ Moisture	Melbourne	Nov 10, 2019	14 Dov
% Moisture	weboutte	Nov 19, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Termo	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			•			
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank					•	
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	1		л — Г	1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		< 0.5		0.0	1 433	
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4-DDE	mg/kg	< 0.05		0.05	Pass	
4.4-DDE 4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg mg/kg	< 0.05		0.05	Pass	
Endosulfan I Endosulfan II	mg/kg mg/kg	< 0.05 < 0.05		0.05	Pass Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
		< 0.2	0.2	Pass	
Dimethoate	mg/kg				
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	 0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	 2	Pass	
Naled	mg/kg	< 0.2	 0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	 0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	 0.2	Pass	
Pyrazophos	mg/kg	< 0.2	 0.2	Pass	
Ronnel	mg/kg	< 0.2	 0.2	Pass	
Terbufos	mg/kg	< 0.2	 0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	 0.2	Pass	
Tokuthion	mg/kg	< 0.2	 0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls	i				
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1260	mg/kg	< 0.1		0.1	Pass	
Total PCB*	mg/kg	< 0.1		0.1	Pass	
Method Blank						
Exchangeable Sodium Percentage (ESP)	%	< 0.1		0.1	Pass	
Magnesium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Potassium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Sodium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
Method Blank	під/ку	< 0 <		<u> </u>	F d 55	
Cation Exchange Capacity	mag/400	.04		0.4	Bass	
Calcium (exchangeable)	meq/100g	< 0.1		0.1	Pass	
Cation Exchange Capacity	meq/100g	< 0.05		0.05	Pass	
LCS - % Recovery		1			1	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					_	
TRH C6-C9	%	84		70-130	Pass	
TRH C10-C14	%	83		70-130	Pass	
LCS - % Recovery					1	
BTEX						
Benzene	%	87		70-130	Pass	
Toluene	%	84		70-130	Pass	
Ethylbenzene	%	81		70-130	Pass	
m&p-Xylenes	%	78		70-130	Pass	
Xylenes - Total	%	79		70-130	Pass	
LCS - % Recovery			1 1	1	I	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	99		70-130	Pass	
TRH C6-C10	%	79		70-130	Pass	
TRH >C10-C16	%	83		70-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	89		70-130	Pass	
Acenaphthylene	%	90		70-130	Pass	
Anthracene	%	77		70-130	Pass	
Benz(a)anthracene	%	120		70-130	Pass	
Benzo(a)pyrene	%	92		70-130	Pass	
Benzo(b&j)fluoranthene	%	95		70-130	Pass	
Benzo(g.h.i)perylene	%	80		70-130	Pass	
Benzo(k)fluoranthene	%	108		70-130	Pass	
Chrysene	%	111		70-130	Pass	
Dibenz(a.h)anthracene	%	94		70-130	Pass	
Fluoranthene	%	97		70-130	Pass	
Fluorene	%	89		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	77		70-130	Pass	
Naphthalene	%	98		70-130	Pass	
	/0	30		10-130	1 033	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Pyrene				97		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
4.4'-DDD			%	79		70-130	Pass	
4.4'-DDE			%	99		70-130	Pass	
4.4'-DDT			%	88		70-130	Pass	
a-BHC			%	92		70-130	Pass	
Aldrin			%	90		70-130	Pass	
b-BHC			%	88		70-130	Pass	
d-BHC			%	86		70-130	Pass	
Dieldrin			%	107		70-130	Pass	
Endosulfan I			%	103		70-130	Pass	
Endosulfan II			%	98		70-130	Pass	
Endosulfan sulphate			%	98		70-130	Pass	
Endrin			%	115		70-130	Pass	
Endrin aldehyde			%	95		70-130	Pass	
Endrin ketone			%	95		70-130	Pass	
g-BHC (Lindane)			%	92		70-130	Pass	
Heptachlor			%	85		70-130	Pass	
Heptachlor epoxide			%	104		70-130	Pass	
Hexachlorobenzene			%	81		70-130	Pass	
Methoxychlor			%	75		70-130	Pass	
LCS - % Recovery			70	10		10 100	1 400	
Organophosphorus Pesticides								
Diazinon			%	72		70-130	Pass	
Dimethoate			%	71		70-130	Pass	
Ethion			%	99		70-130	Pass	
Fenitrothion			%	79		70-130	Pass	
Methyl parathion			%	74		70-130	Pass	
Mevinphos			%	74		70-130	Pass	
LCS - % Recovery			70			10-130	1 835	
Polychlorinated Biphenyls								
Aroclor-1260			%	82		70-130	Pass	
LCS - % Recovery			70	02		70-130	F d 55	
							1	
Heavy Metals			0/	105		80.420	Deee	
Arsenic			%	105		80-120	Pass	
Cadmium			%	103		80-120	Pass	
Chromium			%	109		80-120	Pass	
Copper			%	112		80-120	Pass	
Lead			% %	106		80-120	Pass	
	Mercury			87		75-125	Pass	
Nickel			%	109	<u> </u>	80-120	Pass	
Zinc			%	104	<u> </u>	80-120	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1		1	1	
Polycyclic Aromatic Hydrocarbor	าร	1		Result 1				
Acenaphthene	M18-No26616	NCP	%	94		70-130	Pass	
Acenaphthylene	M18-No26616	NCP	%	99		70-130	Pass	
Anthracene	M18-No26616	NCP	%	90		70-130	Pass	
Benz(a)anthracene	M18-No26616	NCP	%	100		70-130	Pass	
Benzo(a)pyrene	M18-No26616	NCP	%	88		70-130	Pass	
Benzo(b&j)fluoranthene	M18-No26616	NCP	%	75		70-130	Pass	
Benzo(g.h.i)perylene	M18-No26616	NCP	%	83		70-130	Pass	
Benzo(k)fluoranthene	M18-No26616	NCP	%	88		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptar Limits	ce Pass Limits	Qualifying Code
Chrysene	M18-No26616	NCP	%	103	70-130	Pass	
Dibenz(a.h)anthracene	M18-No26616	NCP	%	80	70-130	Pass	
Fluoranthene	M18-No26616	NCP	%	87	70-130	Pass	
Fluorene	M18-No26616	NCP	%	100	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-No26616	NCP	%	71	70-130	Pass	
Naphthalene	M18-No26616	NCP	%	100	70-130	Pass	
Phenanthrene	M18-No26616	NCP	%	88	70-130	Pass	
Pyrene	M18-No26616	NCP	%	89	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S18-No24370	CP	%	86	70-130	Pass	
TRH C10-C14	S18-No24370	CP	%	74	70-130	Pass	
Spike - % Recovery	-				· · ·		
BTEX				Result 1			
Benzene	S18-No24370	CP	%	79	70-130	Pass	
Toluene	S18-No24370	CP	%	79	70-130		
Ethylbenzene	S18-No24370	CP	%	79	70-130		1
m&p-Xylenes	S18-No24370	CP	%	77	70-130		1
o-Xylene	S18-No24370	CP	%	78	70-130		
Xylenes - Total	S18-No24370	CP	%	77	70-130		+
Spike - % Recovery	01011021010	01	70			1 400	
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1			1
Naphthalene	S18-No24370	CP	%	97	70-130	Pass	+
TRH C6-C10	S18-No24370	CP	%	82	70-130		+
TRH >C10-C16	S18-No24370	CP	%	72	70-130		+
Spike - % Recovery	310-11024370		/0	12	70-130	F d 55	
				Deput 1			+
Organochlorine Pesticides 4.4'-DDD	M18-No22489	NCP	%	Result 1 128	70-130	Pass	+
4.4'-DDE	M18-No22489	NCP	%	120	70-130		+
4.4'-DDE		NCP	%				+
	M18-No22489			106	70-130		+
a-BHC	M18-No22489	NCP	%	77	70-130		-
Aldrin	M18-No22489	NCP	%	98	70-130		+
b-BHC	M18-No22489	NCP	%	102	70-130		+
d-BHC	M18-No22489	NCP	%	96	70-130		+
Dieldrin	M18-No22489	NCP	%	96	70-130		+
Endosulfan I	M18-No22489	NCP	%	99	70-130		
Endosulfan II	M18-No22489	NCP	%	82	70-130		
Endosulfan sulphate	M18-No22489	NCP	%	88	70-130		
Endrin	M18-No22489	NCP	%	104	70-130		
Endrin aldehyde	M18-No22489	NCP	%	83	70-130		+
Endrin ketone	M18-No22489	NCP	%	101	70-130		+
g-BHC (Lindane)	M18-No22489	NCP	%	87	70-130		───
Heptachlor	M18-No22489	NCP	%	98	70-130		<u> </u>
Heptachlor epoxide	M18-No22489	NCP	%	96	70-130		<u> </u>
Hexachlorobenzene	M18-No22489	NCP	%	85	70-130		<u> </u>
Methoxychlor	M18-No22489	NCP	%	117	70-130	Pass	<u> </u>
Spike - % Recovery				Desult 4			<u> </u>
Organophosphorus Pesticides		NOD	0/	Result 1			<u> </u>
Diazinon	M18-No28383	NCP	%	95	70-130		+
Dimethoate	M18-No28383	NCP	%	78	70-130		───
Ethion	M18-No28383	NCP	%	122	70-130		
Fenitrothion	M18-No28383	NCP	%	79	70-130		<u> </u>
Methyl parathion	M18-No28383	NCP	%	72	70-130		<u> </u>
Mevinphos	M18-No28383	NCP	%	88	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptane Limits	e Pass Limits	Qualifying Code
Spike - % Recovery				-			
Polychlorinated Biphenyls				Result 1			
Aroclor-1260	M18-No30380	NCP	%	100	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S18-No24370	CP	%	105	75-125	Pass	
Cadmium	S18-No24370	CP	%	108	75-125	Pass	
Chromium	S18-No24370	CP	%	109	75-125	Pass	
Copper	S18-No24370	CP	%	122	75-125	Pass	
Lead	S18-No24370	CP	%	104	75-125	Pass	
Mercury	S18-No24370	CP	%	89	70-130	Pass	
Nickel	S18-No24370	CP	%	121	75-125	Pass	
Zinc	S18-No24370	CP	%	121	75-125	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S18-No24381	CP	%	119	70-130	Pass	
TRH C10-C14	S18-No24381	CP	%	70	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S18-No24381	CP	%	85	70-130	Pass	
Toluene	S18-No24381	CP	%	90	70-130	Pass	
Ethylbenzene	S18-No24381	CP	%	100	70-130	Pass	
m&p-Xylenes	S18-No24381	CP	%	96	70-130	Pass	
o-Xylene	S18-No24381	CP	%	98	70-130	Pass	
Xylenes - Total	S18-No24381	CP	%	97	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S18-No24381	CP	%	80	70-130	Pass	
TRH C6-C10	S18-No24381	CP	%	106	70-130	Pass	
TRH >C10-C16	S18-No24381	CP	%	78	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S18-No24381	CP	%	114	75-125	Pass	
Cadmium	S18-No24381	CP	%	103	75-125	Pass	
Chromium	S18-No24381	CP	%	124	75-125	Pass	
Copper	S18-No24381	CP	%	135	75-125	Fail	Q08
Lead	S18-No24381	CP	%	113	75-125	Pass	
Nickel	S18-No24381	CP	%	123	75-125	Pass	
Zinc	S18-No24381	CP	%	148	75-125	Fail	Q08
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S18-No24393	CP	%	95	70-130	Pass	
TRH C10-C14	S18-No24393	CP	%	82	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S18-No24393	CP	%	86	70-130	Pass	
Toluene	S18-No24393	СР	%	84	70-130	Pass	
Ethylbenzene	S18-No24393	СР	%	86	70-130	Pass	
m&p-Xylenes	S18-No24393	CP	%	83	70-130	Pass	
o-Xylene	S18-No24393	CP	%	84	70-130	Pass	
Xylenes - Total	S18-No24393	CP	%	84	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S18-No24393	CP	%	98	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C10	S18-No24393	CP	%	90			70-130	Pass	
TRH >C10-C16	S18-No24393	CP	%	79			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S18-No24393	CP	%	106			75-125	Pass	
Cadmium	S18-No24393	CP	%	102			75-125	Pass	
Chromium	S18-No24393	CP	%	104			75-125	Pass	
Copper	S18-No24393	CP	%	110			75-125	Pass	
Lead	S18-No24393	СР	%	92			75-125	Pass	
Mercury	S18-No24393	СР	%	84			70-130	Pass	
Nickel	S18-No24393	СР	%	108			75-125	Pass	
Zinc	S18-No24393	CP	%	121			75-125	Pass	
Spike - % Recovery			,.		11		1		
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S18-No24403	CP	%	109			70-130	Pass	
Spike - % Recovery	01011021100		/0	100	<u> </u>		10 100	1 400	
BTEX				Result 1			1		
Benzene	S18-No24403	СР	%	97			70-130	Pass	
Toluene	S18-No24403	CP	%	113			70-130	Pass	
	S18-No24403	CP	%	123			70-130	Pass	
Ethylbenzene		CP	%	123					
m&p-Xylenes o-Xylene	S18-No24403	CP	%				70-130	Pass	
	S18-No24403	CP CP	%	123 124				Pass	
Xylenes - Total	S18-No24403	CP	70	124			70-130	Pass	
Spike - % Recovery				D 14			1	_	
Total Recoverable Hydrocarb			<u> </u>	Result 1			70.400		
Naphthalene	S18-No24403	CP	%	70			70-130	Pass	
TRH C6-C10	S18-No24403	CP	%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1					
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-No24369	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-No24369	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S18-No24369	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S18-No24369	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	01011024303	01							
Duplicate	01011024303	01							
BTEX	01011024003	01		Result 1	Result 2	RPD			
	S18-No24369	СР	mg/kg	ł	Result 2 < 0.1	RPD <1	30%	Pass	
BTEX				Result 1			30% 30%	Pass	
BTEX Benzene	S18-No24369	СР	mg/kg	Result 1 < 0.1	< 0.1	<1			
BENZENE Toluene	S18-No24369 S18-No24369	СР	mg/kg mg/kg	Result 1 < 0.1 < 0.1	< 0.1 < 0.1	<1 <1	30%	Pass	
BTEX Benzene Toluene Ethylbenzene	S18-No24369 S18-No24369 S18-No24369	CP CP CP	mg/kg mg/kg mg/kg	Result 1 < 0.1 < 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.1	<1 <1 <1	30% 30%	Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1	< 0.1 < 0.1 < 0.1 < 0.2	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total	S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.1 < 0.1 < 0.1 < 0.2	< 0.1 < 0.1 < 0.1 < 0.2 < 0.1	<1 <1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate	S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3	<1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarb	S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 1	< 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2	<1 <1 <1 <1 <1 <1 <1 RPD	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarb Naphthalene	S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5	<1 <1 <1 <1 <1 <1 <1 RPD <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarb Naphthalene TRH C6-C10	S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369	CP CP CP CP CP CP CP ions CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.1	< 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 RPD <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Duplicate Total Recoverable Hydrocarb Naphthalene	S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369 S18-No24369	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.1	< 0.1 < 0.1 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5	<1 <1 <1 <1 <1 <1 <1 RPD <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S18-No24369	CP				<1 <1		1 1	
Naphthalene			mg/kg	< 0.5	< 0.5		30%	Pass	
Phenanthrene	S18-No24369	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-No24369	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Deskt	During	DEE			
Organophosphorus Pesticides	040 11 0 1000	05		Result 1	Result 2	RPD	000/		
Azinphos-methyl	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S18-No24369	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S18-No24369	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S18-No24369	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
		CP							
Tetrachlorvinphos	S18-No24369		mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S18-No24369	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S18-No24369	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate						RPD			
				Result 1	Result 2				

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-No24369	СР	mg/kg	12	12	<1	30%	Pass	
Cadmium	S18-No24369	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-No24369	CP	mg/kg	18	15	18	30%	Pass	
	S18-No24369	CP		10	13	15	30%	Pass	
Copper		CP	mg/kg	27	28				
Lead	S18-No24369	CP	mg/kg		< 0.1	4.0 <1	30%	Pass	
Mercury	S18-No24369		mg/kg	< 0.1			30%	Pass	
Nickel	S18-No24369	CP	mg/kg	7.2	7.0	3.0	30%	Pass	
Zinc	S18-No24369	CP	mg/kg	31	36	13	30%	Pass	
Duplicate				Desilit	Devilio	DDD	1		
Organochlorine Pesticides		NOR	4	Result 1	Result 2	RPD	0.001		
Chlordanes - Total	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M18-No25615	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M18-No25615	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticide	S			Result 1	Result 2	RPD			
Azinphos-methyl	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S18-No24710	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S18-No24710	NCP				<1	30%	Pass	
			mg/kg	< 0.2	< 0.2				
Fenthion Malathian	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Methyl parathion	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S18-No24710	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S18-No24710	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S18-No24710	NCP		< 0.2	< 0.2	<1	30%	Pass	
		NCP	mg/kg			<1 <1			
Ronnel	S18-No24710		mg/kg	< 0.2	< 0.2		30%	Pass	
Terbufos	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S18-No24710	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				1			1		
Polychlorinated Biphenyls		1		Result 1	Result 2	RPD			
Aroclor-1016	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M18-No25615	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-No24370	CP	mg/kg	14	15	4.0	30%	Pass	
Cadmium	S18-No24370	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-No24370	СР	mg/kg	12	12	2.0	30%	Pass	
Copper	S18-No24370	CP	mg/kg	11	11	2.0	30%	Pass	
Lead	S18-No24370	CP	mg/kg	18	19	3.0	30%	Pass	
Mercury	S18-No24370	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-No24370	CP	mg/kg	5.9	6.1	4.0	30%	Pass	
Zinc	S18-No24370	CP	mg/kg	25	27	6.0	30%	Pass	
Duplicate	01011024070		iiig/kg	2.5	21	0.0	5070	1 435	
Duplicate				Result 1	Result 2	RPD	1		
Chloride	M18-No26700	NCP	mg/kg	14	13	12	30%	Pass	
Sulphate (as SO4)	M18-No26700	NCP	mg/kg	140	130	3.0	30%	Pass	
Duplicate	10110-10020700		nig/kg	140	150	5.0	5078	1 835	
Duplicate				Result 1	Result 2	RPD			
% Moisture	S18-No24379	СР	%	9.7	9.6	1.0	30%	Pass	
	310-11024379		70	9.7	9.0	1.0	30%	F 455	
Duplicate				Desult 1	Desult 0	DDD		1	
Total Recoverable Hydrocarbor				Result 1	Result 2	RPD	2001		
TRH C6-C9	S18-No24380	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-No24380	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S18-No24380	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S18-No24380	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S18-No24380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-No24380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-No24380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-No24380	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-No24380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
		CP		< 0.3	< 0.3	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-No24380	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-No24380	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S18-No24380	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S18-No24380	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S18-No24380	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	01011021000	0.	iiig/iig	4 100	100	1	0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-No24380	СР	mg/kg	10	10	2.0	30%	Pass	
Cadmium	S18-No24380	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-No24380	CP	mg/kg	13	11	15	30%	Pass	
Copper	S18-No24380	CP	mg/kg	16	13	17	30%	Pass	
Lead	S18-No24380	CP	mg/kg	31	26	18	30%	Pass	
Mercury	S18-No24380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-No24380	CP	mg/kg	7.1	7.0	2.0	30%	Pass	
Zinc	S18-No24380	CP	mg/kg	43	37	17	30%	Pass	
Duplicate	01011024000		<u>9</u> , Ng				0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-No24381	СР	mg/kg	4.5	4.4	2.0	30%	Pass	
Cadmium	S18-No24381	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-No24381	CP	mg/kg	15	14	<1	30%	Pass	
Copper	S18-No24381	CP	mg/kg	17	17	1.0	30%	Pass	
Lead	S18-No24381	CP	mg/kg	36	36	1.0	30%	Pass	
Mercury	S18-No24381	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-No24381	CP	mg/kg	9.4	9.2	2.0	30%	Pass	
Zinc	S18-No24381	CP	mg/kg	99	100	2.0	30%	Pass	
Duplicate	010-11024301		iiig/kg	33	100	2.0	3078	1 455	
Duplicate				Result 1	Result 2	RPD			
% Moisture	S18-No24389	СР	%	15	16	4.0	30%	Pass	
Duplicate	01011024303		/0	10		4.0	5078	1 435	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-No24392	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-No24392	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S18-No24392	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S18-No24392	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	01011024332		ing/kg				5078	1 435	
BTEX				Result 1	Result 2	RPD			
Benzene	S18-No24392	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-No24392	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-No24392	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-No24392	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	S18-No24392	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total	S18-No24392	CP	mg/kg	< 0.3	< 0.1	<1	30%	Pass	
Duplicate	01011024002		i iiig/ikg	0.0	< 0.0	~ 1	0070	1 433	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-No24392	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-No24392	CP					30%	Pass	
TRH >C10-C16	S18-No24392	CP	mg/kg	< 20	< 20	<1			
			mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S18-No24392	CP CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S18-No24392	67	mg/kg	< 100	< 100	<1	30%	Pass	•

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-No24392	СР	mg/kg	19	18	3.0	30%	Pass	
Cadmium	S18-No24392	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-No24392	CP	mg/kg	15	13	11	30%	Pass	
Copper	S18-No24392	CP	mg/kg	34	31	7.0	30%	Pass	
Lead	S18-No24392	CP	mg/kg	17	16	5.0	30%	Pass	
Mercury	S18-No24392	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-No24392	CP	mg/kg	9.2	8.6	7.0	30%	Pass	
Zinc	S18-No24392	CP	mg/kg	66	61	7.0	30%	Pass	
Duplicate	310-11024392		nig/kg	00	01	7.0	30 %	F 855	
Heavy Metals				Result 1	Result 2	RPD		1	
Arsenic	S18-No24393	СР	mg/kg	10	10	<1	30%	Pass	
Cadmium	S18-No24393	CP		< 0.4	< 0.4	<1	30%	Pass	
		CP	mg/kg	1			30%		
Chromium	S18-No24393		mg/kg	13	13	1.0		Pass	
Copper	S18-No24393	CP	mg/kg	14	14	<1	30%	Pass	
Lead	S18-No24393	CP	mg/kg	47	47	1.0	30%	Pass	
Mercury	S18-No24393	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-No24393	CP	mg/kg	5.7	5.7	<1	30%	Pass	
Zinc	S18-No24393	CP	mg/kg	48	48	1.0	30%	Pass	
Duplicate								1	
			1	Result 1	Result 2	RPD			
% Moisture	S18-No24399	CP	%	15	14	6.0	30%	Pass	
Duplicate				1	I I				
Total Recoverable Hydroca				Result 1	Result 2	RPD			
TRH C6-C9	S18-No24402	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				1				_	
BTEX			I	Result 1	Result 2	RPD			
Benzene	S18-No24402	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-No24402	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-No24402	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-No24402	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-No24402	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-No24402	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate					1				
Total Recoverable Hydroca	rbons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-No24402	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-No24402	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate							1		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-No24402	CP	mg/kg	18	18	1.0	30%	Pass	
Cadmium	S18-No24402	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-No24402	CP	mg/kg	24	23	2.0	30%	Pass	
Copper	S18-No24402	CP	mg/kg	22	21	2.0	30%	Pass	
Lead	S18-No24402	CP	mg/kg	22	21	2.0	30%	Pass	
Mercury	S18-No24402	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
•									
Nickel	S18-No24402	CP	mg/kg	17	16	2.0	30%	Pass	

Comments

This report has been revised (V2) to exclude samples S18-No24393 - S18-No24404 as per client's request.

mgt

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q08	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Authorised By

Nibha Vaidya	Analytical Services Manager
Chris Bennett	Senior Analyst-Metal (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)
Julie Kay	Senior Analyst-Inorganic (VIC)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

li ja

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

 * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofine | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine | mg the liable for cost, outs and additions and lot stronges included by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine | mg the liable for cost, outs and additions and lot stronges included by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine | mg the liable for cost, outs additions and lot stronges and experiments and in the reported experiment addition or interpretation given in this report. In no case shall Eurofine | mg the liable for cost, outs additions and lot stronges and experiment additions. This document shall not be reported expecting that additions and lot stronges that additions and lot stronges and expecting. The mg the liable for the report on the second to the reported expecting that additions and lot stronges. The stronges that additions and lot stronges additions and lot stronges additions. The stronges that additions additexpecting addited additions additions additions additions a

Certificate of Analysis

Greencap NSW P/L Level 2/11 Khartoum Road North Ryde NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	Matthew Barberson
Report	628453-V2-AID
Project Name	DSI - SCHOFIELDS
Project ID	J157372
Received Date	Nov 19, 2018
Date Reported	Nov 27, 2018

Methodology:

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

DSI - SCHOFIELDS
J157372
Nov 16, 2018
628453-V2-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
TP1 0.1-0.2	18-No24369	Nov 16, 2018	Approximate Sample 72g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
TP3 0.1-0.2	18-No24372	Nov 16, 2018	Approximate Sample 69g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
TP5 0.1-0.2	18-No24374	Nov 16, 2018	Approximate Sample 81g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
TP6 0.0-0.2	18-No24375	Nov 16, 2018	Approximate Sample 61g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
TP9 0.1-0.3	18-No24378	Nov 16, 2018	Approximate Sample 56g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
TP10 0.2-0.3	18-No24379	Nov 16, 2018	Approximate Sample 66g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
TP12 0.3-0.5	18-No24381	Nov 16, 2018	Approximate Sample 88g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.
TP15 0.1-0.2	18-No24384	Nov 16, 2018	Approximate Sample 60g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
TP23 0.2-0.3	18-No24391	Nov 16, 2018	Approximate Sample 62g	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyNov 19, 2018Indefinite

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

mgt

Units

% w/w: weight for weig	ight basis	grams per kilogram					
Filter loading:		fibres/100 graticule areas					
Reported Concentration	on:	fibres/mL					
Flowrate:		L/min					
Terms							
Dry	Sample is dried by heating prior to analysis						
LOR	Limit of Reporting						
coc	Chain of Custody						
SRA	Sample Receipt Advice						
ISO	International Standards Organisation						
AS	Australian Standards						
WA DOH	. DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)						
NEPM	National Environment Protection (Assessment of Site Contamination	n) Measure, 2013 (as amended)					
ACM	Asbestos Containing Materials. Asbestos contained within a non-as NEPM, ACM is generally restricted to those materials that do not pa	bestos matrix, typically presented in bonded and/or sound condition. For the purposes of the ss a 7mm x 7mm sieve.					
AF	Asbestos Fines. Asbestos containing materials, including friable, we equivalent to "non-bonded / friable".	athered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as					
FA	Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.						
Friable	Asbestos-containing materials of any size that may be broken or cru outside of the laboratory's remit to assess degree of friability.	imbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is					
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres	s in the matrix.					

Greencap NSW P/L Level 2/11 Khartoum Road North Ryde NSW 2113

Attention:

Matthew Barberson

mgt

Report Project name Project ID Received Date 632214-S

J157372 Dec 10, 2018

Client Sample ID			TP25A	TP26A	TP27A	TP28A
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-De12277	S18-De12278	S18-De12279	S18-De12280
Date Sampled			Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	Dec 10, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	105	98	91	97
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			TP25A	TP26A	TP27A	TP28A	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S18-De12277	S18-De12278	S18-De12279	S18-De12280	
Date Sampled			Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5	
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5	
Fluorene	0.5	mg/kg	-	-	-	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5	
Naphthalene	0.5	mg/kg	-	-	-	< 0.5	
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5	
Pyrene	0.5	mg/kg	-	-	-	< 0.5	
Total PAH*	0.5	mg/kg	-	-	-	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	-	-	-	76	
p-Terphenyl-d14 (surr.)	1	%	-	-	-	73	
% Moisture	1	%	8.2	7.8	9.7	8.6	
Heavy Metals		/0	0.2	7.0	5.7	0.0	
Arsenic	2	mg/kg	7.6	9.7	14	28	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	10	11	19	9.0	
Copper	5	mg/kg	14	16	17	22	
Lead	5	mg/kg	22	21	19	22	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	8.1	9.1	9.6	23	
Zinc	5	mg/kg	49	180	87	74	

Client Sample ID			TP29A	TP30A	TP31A	TP32A	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S18-De12281	S18-De12282	S18-De12283	S18-De12284	
Date Sampled			Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	70	53	67	68	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100	

Client Sample ID Sample Matrix			TP29A Soil	TP30A Soil	TP31A Soil	TP32A Soil
Eurofins mgt Sample No.			S18-De12281	S18-De12282	S18-De12283	S18-De12284
Date Sampled			Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	Dec 10, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Salinity* (1:5 aqueous extract calc. from EC at 25C)	1	mg/kg	68	-	-	-
% Moisture	1	%	6.4	12	9.4	9.7
Heavy Metals						
Arsenic	2	mg/kg	19	12	20	9.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	17	14	18	11
Copper	5	mg/kg	41	27	20	16
Lead	5	mg/kg	22	19	39	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	7.9	12	14	12
Zinc	5	mg/kg	41	58	59	51

Client Sample ID			TP33A	TP34A	TP35A	FD1A
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-De12285	S18-De12286	S18-De12287	S18-De12288
Date Sampled			Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	Dec 10, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	83	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	83	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	62	68	75	92
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
		-				
% Moisture	1	%	10	12	6.0	6.3

Client Sample ID Sample Matrix			TP33A Soil	TP34A Soil	TP35A Soil	FD1A Soil S18-De12288	
Eurofins mgt Sample No.			S18-De12285	S18-De12286	S18-De12287		
Date Sampled			Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	Dec 10, 2018	
Test/Reference	LOR	Unit					
Heavy Metals							
Arsenic	2	mg/kg	8.2	7.7	5.8	13	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	10	12	9.8	13	
Copper	5	mg/kg	18	15	13	20	
Lead	5	mg/kg	23	23	17	14	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	13	8.6	5.7	6.3	
Zinc	5	mg/kg	63	52	32	28	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B6			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Dec 17, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Dec 17, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Dec 17, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Dec 17, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Melbourne	Dec 17, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins mgt Suite B7			
Polycyclic Aromatic Hydrocarbons	Melbourne	Dec 16, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Salinity* (1:5 aqueous extract calc. from EC at 25C)	Melbourne	Dec 16, 2018	21 Day
- Method: LTM-INO-4030			
% Moisture	Melbourne	Dec 10, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

	🔅 eur	ofins	mgt		ABN– 50 005 (e.mail : Envirot web : www.eur	Sales@	eurofins m.au	.com	2- 0 Pl N	akleigh hone : + ATA # 1	ton Town Close VIC 3166 61 3 8564 5000	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736
Ad	Company Name: Greencap NSW P/L Address: Level 2/11 Khartoum Road North Ryde NSW 2113 Project Name:					Order No.: Report #: Phone: Fax:			632214 02 9889 1800 02 9889 1811			Due: I Priority: 5	Dec 10, 2018 7:39 PM Dec 17, 2018 5 Day Matthew Barberson	
	oject ID:	J157372										Eurofir	ns mgt Analytical Serv	ices Manager : Nibha Vaidya
	Sample Detail				HOLD	Salinity* (1:5 aqueous extract calc. from EC at 25C)	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B6					
Mell	bourne Laborate	ory - NATA Site	# 1254 & 142	.71		х	х	Х	Х	Х				
-	ney Laboratory													
	bane Laborator													
	th Laboratory - I		'36											
	ernal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	TP25A	Dec 10, 2018		Soil	S18-De12277			Х		Х				
2	TP26A	Dec 10, 2018		Soil	S18-De12278			Х		х				
3	TP27A	Dec 10, 2018		Soil	S18-De12279			Х		Х				
4	TP28A	Dec 10, 2018		Soil	S18-De12280			Х	Х					
5	TP29A	Dec 10, 2018		Soil	S18-De12281		х	Х		Х				
6	TP30A	Dec 10, 2018		Soil	S18-De12282			Х		Х				
7	TP31A	Dec 10, 2018		Soil	S18-De12283			Х		Х				
8	TP32A	Dec 10, 2018		Soil	S18-De12284			Х		Х				
9	TP33A	Dec 10, 2018		Soil	S18-De12285			Х		Х				

🔅 eurofins	mgt	ABN– 50 005 (e.mail : Enviro web : www.eur	Sales@	eurofins	.com	2- 0 PI N)akleigh 'hone : + IATA # 1	e ton Town Close VIC 3166 61 3 8564 5000 261 54 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 460 NATA # 1261 Site # 207	Perth 2/91 Leach Highway Kewdale WA 6105 0 Phone : +61 8 9251 9600 94 NATA # 1261 Site # 23736
Company Name: Greencap NSW P/L Address: Level 2/11 Khartoum Road North Ryde NSW 2113				Order No.: Report #: Phone: Fax:				632214 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	Dec 10, 2018 7:39 PM Dec 17, 2018 5 Day Matthew Barberson
Project Name: Project ID: J157372									Eurofir	ns mgt Analytical Se	rvices Manager : Nibha Vaidya
Sa	mple Detail		HOLD	Salinity* (1:5 aqueous extract calc. from EC at 25C)	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B6				
Melbourne Laboratory - NATA Site	# 1254 & 14271		Х	Х	Х	Х	Х				
Sydney Laboratory - NATA Site # 1											
Brisbane Laboratory - NATA Site #											
Perth Laboratory - NATA Site # 23		C40 D-40000			v						
10 TP34A Dec 10, 2018 11 TP35A Dec 10, 2018	Soil Soil	S18-De12286 S18-De12287			X X		X X				
11 1P35A Dec 10, 2018 12 FD1A Dec 10, 2018	Soil	S18-De12287			X		X				
12 FD1A Dec 10, 2018 13 FD2A Dec 10, 2018	Soil	S18-De12289	х		~						
Test Counts		10.00 200 2200	1	1	12	1	11				

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

i ci ilia	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank		•	• •	•	•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		1.00			1 400	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene		< 0.5		0.5	Pass	
Method Blank	mg/kg	< 0.5		0.5	F d 55	
Heavy Metals Arsenic	malka			2	Baaa	
Arsenic Cadmium	mg/kg	< 2			Pass	
	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5	<u> </u>	5	Pass	
	mg/kg	< 5		5	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	1	.				
TRH C6-C9	%	116		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	79		70-130	Pass	
LCS - % Recovery						.		
BTEX								
Benzene			%	105		70-130	Pass	
Toluene			%	114		70-130	Pass	
Ethylbenzene			%	114		70-130	Pass	
m&p-Xylenes			%	110		70-130	Pass	
Xylenes - Total			%	111		70-130	Pass	
LCS - % Recovery					r		1	
Total Recoverable Hydrocarbons - 2	2013 NEPM Fraction	ons						
Naphthalene			%	99		70-130	Pass	
TRH C6-C10			%	110		70-130	Pass	
TRH >C10-C16			%	79		70-130	Pass	
LCS - % Recovery				1	1	1		
Polycyclic Aromatic Hydrocarbons								
Acenaphthene			%	93		70-130	Pass	
Acenaphthylene			%	106		70-130	Pass	
Anthracene			%	104		70-130	Pass	
Benz(a)anthracene			%	111		70-130	Pass	
Benzo(a)pyrene			%	91		70-130	Pass	
Benzo(b&j)fluoranthene			%	88		70-130	Pass	
Benzo(g.h.i)perylene			%	93		70-130	Pass	
Benzo(k)fluoranthene			%	116		70-130	Pass	
Chrysene			%	107		70-130	Pass	
Dibenz(a.h)anthracene			%	109		70-130	Pass	
Fluoranthene			%	109		70-130	Pass	
Fluorene			%	104		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	100		70-130	Pass	
Naphthalene			%	95		70-130	Pass	
Phenanthrene			%	98		70-130	Pass	
Pyrene			%	105		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	105		80-120	Pass	
Cadmium			%	101		80-120	Pass	
Chromium			%	119		80-120	Pass	
Copper			%	102		80-120	Pass	
Lead			%	116		80-120	Pass	
Mercury			%	119		75-125	Pass	
Nickel			%	104		80-120	Pass	
Zinc			%	102		80-120	Pass	
	Lab Sample ID	QA	Units	Result 1		Acceptance	Pass	Qualifying
		Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery				Densitia				
Total Recoverable Hydrocarbons - 1			~ /	Result 1	<u> </u>	70.400		
TRH C10-C14	M18-De15719	NCP	%	101		70-130	Pass	
Spike - % Recovery				D				
Total Recoverable Hydrocarbons - 2			~ /	Result 1	<u>├</u> ───	70.400		
TRH >C10-C16	M18-De15719	NCP	%	102		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons - 1				Result 1				
TRH C6-C9	S18-De12278	СР	%	102		70-130	Pass	
Spike - % Recovery					1			
BTEX				Result 1	↓			
Benzene	S18-De12278	CP	%	93		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Toluene	S18-De12278	CP	%	93			70-130	Pass	
Ethylbenzene	S18-De12278	CP	%	108			70-130	Pass	
m&p-Xylenes	S18-De12278	CP	%	111			70-130	Pass	
o-Xylene	S18-De12278	CP	%	110			70-130	Pass	
Xylenes - Total	S18-De12278	CP	%	111			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1					
Naphthalene	S18-De12278	CP	%	92			70-130	Pass	
TRH C6-C10	S18-De12278	CP	%	98			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S18-De12278	CP	%	110			75-125	Pass	
Cadmium	S18-De12278	CP	%	102			75-125	Pass	
Chromium	S18-De12278	CP	%	117			75-125	Pass	
Copper	S18-De12278	CP	%	102			75-125	Pass	
Lead	S18-De12278	CP	%	116			75-125	Pass	
Mercury	S18-De12278	CP	%	113			70-130	Pass	
Nickel	S18-De12278	CP	%	104			75-125	Pass	
Zinc	S18-De12278	CP	%	80			75-125	Pass	
Spike - % Recovery				1	1		1		
Polycyclic Aromatic Hydrocarb	ons			Result 1					
Acenaphthene	M18-De15980	NCP	%	94			70-130	Pass	
Acenaphthylene	M18-De15980	NCP	%	100			70-130	Pass	
Anthracene	M18-De15980	NCP	%	100			70-130	Pass	
Benz(a)anthracene	M18-De15980	NCP	%	106			70-130	Pass	
Benzo(a)pyrene	M18-De15980	NCP	%	117			70-130	Pass	
Benzo(b&j)fluoranthene	M18-De15980	NCP	%	109			70-130	Pass	
Benzo(g.h.i)perylene	M18-De15980	NCP	%	80			70-130	Pass	
Benzo(k)fluoranthene	M18-De15980	NCP	%	117			70-130	Pass	
Chrysene	M18-De15980	NCP	%	109			70-130	Pass	
Dibenz(a.h)anthracene	M18-De15980	NCP	%	87			70-130	Pass	
Fluoranthene	M18-De15980	NCP	%	109			70-130	Pass	
Fluorene	M18-De15980	NCP	%	109			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-De15980	NCP	%	83			70-130	Pass	
· · · · · · · · · · · · · · · · · · ·	M18-De15980			93					
Naphthalene Phenanthrene		NCP NCP	%				70-130	Pass	
	M18-De15980		%	93			70-130 70-130	Pass	
Pyrene	M18-De15980	NCP	%	106				Pass Pass	Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-De12277	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M18-De16559	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-De16559	NCP	mg/kg	110	90	16	30%	Pass	
TRH C29-C36	M18-De16559	NCP	mg/kg	190	160	18	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S18-De12277	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-De12277	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-De12277	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-De12277	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-De12277	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-De12277	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-De12277	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-De12277	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M18-De16559	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate		1101	mg/ng				0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-De12277	CP	mg/kg	7.6	7.3	4.0	30%	Pass	
Cadmium	S18-De12277	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-De12277	CP	mg/kg	10	11	4.0	30%	Pass	
Copper	S18-De12277	CP	mg/kg	14	13	11	30%	Pass	
Lead	S18-De12277	CP	mg/kg	22	20	9.0	30%	Pass	
Mercury	S18-De12277	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-De12277	CP	mg/kg	8.1	7.5	8.0	30%	Pass	
Zinc	S18-De12277	CP	mg/kg	49	44	10	30%	Pass	
Duplicate	510-De12277		iiig/kg	43	44	10	5078	1 833	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-De12278	СР	mg/kg	9.7	9.9	2.0	30%	Pass	
Cadmium	S18-De12278	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-De12278	CP	mg/kg	11	11	<1	30%	Pass	
Copper	S18-De12278	CP	mg/kg	16	16	1.0	30%	Pass	
Lead	S18-De12278	CP	mg/kg	21	21	1.0	30%	Pass	
Mercury	S18-De12278	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
		CP		9.1	9.2				
Nickel Zinc	S18-De12278	CP	mg/kg			1.0	30%	Pass	
	S18-De12278	CP	mg/kg	180	180	1.0	30%	Pass	
Duplicate	hana			Decult 1	Deput 2	RPD			
Polycyclic Aromatic Hydrocar		СР	mallea	Result 1	Result 2		30%	Deeg	
Acenaphthene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1		Pass	
Acenaphthylene	S18-De12280		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-De12280	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-De12280		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene Dihana (a. h.) anthronous	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-De12280	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-De12280	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate						000			
		a-		Result 1	Result 2	RPD			
% Moisture	S18-De12281	CP	%	6.4	6.4	<1	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya	Analytical Services Manager
Joseph Edouard	Senior Analyst-Organic (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Julie Kay	Senior Analyst-Inorganic (VIC)
Chris Bennett	Senior Analyst-Metal (VIC)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service Measurement uncertainty of test data is available on request or please <u>click here</u>.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Detailed Site Investigation

Group GSA Cnr of Farmland Dr & the future realignment of Pelican Rd, Schofields NSW 2762

Appendix G: QA-QC Procedures

greencap.com.au

Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

Table of Contents

1.	Introduction 2 -
2.	Data Quality Objectives3 -
3.	Quality Control and Quality Assurance 5 -
	3.1 Measurement Data Quality Objectives 5 -
	3.2 Repeatability (Field collected intra-laboratory duplicates) 5 -
	3.3 Precision 6 -
	3.4 Accuracy 6 -
	3.5 Representativeness
	3.5.1 Data Point Evaluation 7 -
	3.5.2 Data Set Evaluation 7 -
	3.6 Completeness7 -
	3.7 Comparability7 -
	3.8 Sensitivity 7 -
	3.9 Blanks 8 -
	3.10 Holding Times 8 -
	3.11 Confirmation Checking 8 -
	3.12 Field QA/QC 8 -
	3.12.1 Details of Sampling Team
	3.12.2 Sampling Controls 8 -
	3.13 Laboratory QA/QC 8 -
	3.13.1 Holding time
	3.1 QA/QC Data Evaluation 9 -
4.	QAQC Appendix References9 -
5.	QA/QC Attachment – RPD Table 9 -

greencap.com.au

1

1 Introduction

The aim of quality control and quality assurance (QA/QC) is to deliver data that is:

- Representative of what is sampled;
- Precise;
- Accurate; and
- Reproducible.

As investigations involve both field and laboratory QA/QC, these are similarly divided. The objective of this document is to evaluate and identify the data quality objectives (DQOs) and the data quality indicators (DQIs), which are used to assess whether the DQOs have been met.

The NSW guideline documents used in the evaluation of the data set for this investigation are:

- NSW Department of Environment and Conservation (DEC) (2006). Contaminated sites: Guidelines for NSW Site Auditors Scheme (2nd edition);
- National Environment Protection Council (NEPC) (2013). National Environment Protection (Assessment of Site Contamination) Amendment Measure;
- NSW Environment Protection Authority (EPA) (1995). Contaminated Sites: Sampling design guidelines; and
- NSW Office of Environment and Heritage (OEH) (2011). Contaminated sites: Guidelines for consultants reporting on contaminated sites.

Data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. These are referred to as the PARCC parameters. The PARCC (and additional QA) parameters are discussed within this report.

The following items form part of the QA/QC appendix:

- Repeatability;
- Precision;
- Accuracy;
- Representativeness;
- Completeness;
- Comparability;
- Sensitivity;
- Holding times;
- Procedures for anomalous samples and confirmation checking.

Quality Assurance (QA) is "a set of activities intended to establish confidence that quality requirements will be met" (AS/NZS ISO 9000:2005).

This encompasses all actions, procedures, checks and decisions undertaken to ensure the accuracy and reliability of analysis results. It includes routine procedures which ensure proper sample control, data transfer, instrument calibration, the decisions required to select and properly train staff, select equipment

and analytical methods, and the day to day judgments resulting from regular scrutiny and maintenance of the laboratory system.

Quality Control (QC) is "a set of activities intended to ensure that quality requirements are actually being *met*" (AS/NZS ISO 9000:2005). In other words, the operational techniques and activities used to fulfill the requirements for quality.

These are the components of QA which serve to monitor and measure the effectiveness of other QA procedures by comparison with previously decided objectives. They include measurement of the quality of reagents, cleanliness of apparatus, accuracy and precision of methods and instrumentation, and reliability of all of these factors as implemented in a given laboratory from day to day.

A complete discussion of either of these terms or the steps for implementing them is beyond the scope of this document. It is widely recognised, however, that adoption of sound laboratory QA and QC procedures is essential and readers are referred to documentation available from the National Association of Testing Authorities (NATA), if further information is required.

2 Data Quality Objectives

The Data Quality Objectives (DQOs) process is a systematic approach used to define the type, quantity and quality of data supporting decisions which relate to the environmental condition of a site. Undertaking DQOs for site assessment and remediation is a requirement of the DEC (2006). *Contaminated sites: Guidelines for NSW Site Auditors Scheme*. The DQO process was formulated by the US EPA and provides sound guidance for a consistent approach to understanding site assessment and remediation.

Table 1	Table 1. Data Quality Objectives								
Step	Description	Comment							
1	State the problem	There may be a potential for human health and environmental risk associated with the surface soils at the site.							
2	ldentify the decision	Results of the Detailed Site Investigation (DSI) undertaken, provide sufficient data to inform the decision-making process for further investigations and remedial actions (if required).							
3	Identify the inputs for the decision	 Inputs to the decision will include the scientific data collected during the soil assessment, as part of the DSI. This will include but not be limited to: Borehole logs and observations made by the field scientist; and Laboratory analysis results of sampled site soils. 							
4	Define the boundaries for the study	Site boundaries are indicated in Figure 1, Appendix A. The horizontal boundary is limited to the provided site boundary of the proposed development on the site (a primary school). The vertical boundary was limited to the first 1m of the surface soils. The temporal boundary of the project is restricted to the timing of the investigations.							
5	Develop a decision rule	The following decision rules are identified for the DSI: Chemicals of potential concern do not exist in any of the sampled soil material at concentrations which exceed the adopted site criteria. If systematic or judgmental samples fail these decision rules, then further assessment or remediation will be required.							

The DQOs are defined in a series of seven steps, outlined and addressed in Table 1.

6	Specify tolerable limits on decision error	Potential for decision errors will be minimised through an analysis of a site specific worst case scenario. In this context maximum values and peak concentrations of contaminants will be used for comparison against the acceptance criteria threshold concentrations.
7	Optimise the design for obtaining data	The following sampling design has been developed to provide the most resource- effective sampling and analysis: Total area of the open surfaces at the site is approximately 2.5 ha. To comply with the sampling density requirements for systematic assessment provided in NSW EPA (1995) 'Sampling Design Guidelines', a minimum of 35 investigation locations were required for the soil assessment. This sampling density corresponds to 14 points per hectare and is designed to capture a hotspot with a diameter greater than or equal to 31.5 m with 95% confidence.

The following measurement data quality indicators (MDQIs) have been established, based on the DQOs of this investigation, provided in Table 2 below.

Table 2. Measurement Data Quality Indicators (MDQIS)								
Parameter	Procedure	Minimum Frequency	Crit	eria				
			(5 to 10x LOR ⁴)	>10x LOR				
Precision	Field Duplicates	1 in 20 - metals	<80 RPD	<50 RPD				
		1 in 20 - semi-volatiles	<100 RPD	<80 RPD				
		1 in 20 - volatiles	<150 RPD	<130 RPD				
	Lab Replicate*	1 in 20	<50 RPD	<30 RPD				
Accuracy*	Reference Material	1 in 10	60% to 140%R	80% to 120%R				
	Matrix spikes							
	Surrogate spikes							
Representativeness*	Reagent Blanks	1 per batch	No detection					
	Holding Times*	Every sample		-				
Blanks**	Trip Blank	1 per batch	No det	tection				
Sensitivity	Limit of Reporting	Every sample	LOR < ½ s	ite criteria				

Notes:

- 1. RPD relative percentage difference
- 2. %R percent recovery
- 3. LOR limit of reporting
- 4. 4 no limit at <5x LOR
- 5. * the MDQI is usually specified in the standard method. If not, use the default values set out in this table
- 6. ** only necessary when measuring dissolved metals and volatile organic compounds in water samples. It is noted that dedicated sampling equipment was utilised, therefore rinsate blanks were not required.

greencap.com.au

4

Standards Australia (AS4482.1) specifies that typical MDQIs for precision should be ≤50% RPD, although low concentrations and organic compounds in particular can be acceptably outside this range. The standard stipulates that ≤50% RPD be used as a 'trigger' and values above this level of repeatability must be noted and explained.

3 Quality Control and Quality Assurance

3.1 Measurement Data Quality Objectives

Step 7 of the DQO process is a focus on the quality of the information by measurement, that is, measurement data quality objectives (MDQOs). The aim of a quality control and quality assurance (QA/QC) is to deliver data that is representative of what is sampled, precise, accurate and reproducible. As investigations involve both field and laboratory QA/QC, these are similarly divided. The objective of this section is to provide the MDQOs and the measurement data quality indicators (MDQIs), which will be used to establish whether the DQOs have been met.

All soil sampling procedures need to be undertaken according to a standard procedure, for example those procedures set out in:

- NSW Environment Protection Authority (EPA) (1995). *Contaminated sites: Sampling design guidelines;*
- NSW OEH (2011). Contaminated sites: Guidelines for consultants reporting on contaminated sites;
- Standards Australia (2005). *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds, (AS 4482.1);* and
- Standards Australia (1999). Guide to the investigation and sampling of sites with potentially contaminated soil, Part 2: Volatile substances, (AS 4482.2).

The laboratories used should be NATA-accredited for the analytical methods performed. Containers, sample preservation (if necessary) and holding times should be consistent with industry practices as set out in NEPM and as defined by ASTM.

Measurement data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. Although not necessarily considered in list order, the following items should form part of the QA/QC data evaluation:

- Measured Parameters: precision, accuracy, repeatability (comparability), blanks; and
- Assessed Parameters: completeness, representative of site conditions, sensitivity, and holding times.

These QA parameters and the criteria used to evaluate the analytical data obtained as a result of this investigation, are addressed below.

3.2 Repeatability (Field collected intra-laboratory duplicates)

These samples provide a check on the analytical performance of the laboratory. At least 5 percent of samples (1 in 20) per day of sampling from a site are collected in duplicate. For comparability of data, it is important that there is little delay in the sample submission. For split samples, due to error associated with field splitting, an RPD of between 80 and 150% (depending on the substance) will be allowed as the MDQI.

Any value >50% RPD will be noted and discussed, as per Standards Australia requirements, with respect to its acceptability for inclusion in the data-set.

3.3 Precision

Precision is a measure of the reproducibility of results, and is assessed on the basis of agreement between a set of replicate results obtained from duplicate analyses. The precision of a duplicate determination can be measured as relative percentage difference (RPD), and is calculated from the following equation:

$$\mathsf{RPD} = \left\lfloor \frac{\mathsf{X1} - \mathsf{X2}}{\left(\frac{\mathsf{X1} + \mathsf{X2}}{2}\right)} \right\rfloor \times 100$$

where: X1 is the first duplicate value X2 is the second duplicate value

The field duplicate (FD1) and inter lab duplicate (FT1) results and calculated RPDs are presented in the following reports. All results are within the acceptable range, RPD calculations area available in the Attachment (RPD Table) of this report.

3.4 Accuracy

Accuracy is a measure of the agreement between an experimental determination and the true value of the parameter being measured. The determination of accuracy can be achieved through the analysis of known reference materials or assessed by the analysis of matrix spikes. Accuracy is measured in terms of percentage recovery as defined by the following equation:

$$%R = \frac{SSR - SR}{SA} \times 100$$

where:

%R = percentage recovery of the spike
SSR = spiked sample result
SR = sample result (native)
SA = spike added

Laboratories calculate percentage recoveries of spiked compounds, which are evaluated against control or acceptance limits taken from the appropriate method or the Contract Laboratory Program Statement of Work. If the spike recovery for a sample does not fall within the prescribed control limits, laboratory based corrective action is required.

Surrogate spikes consist of spiking non-target compounds into the sample prior to analysis. The spiked compounds are expected to behave during analysis in the same way as the target compounds. Every sample is spiked prior to extraction or analysis with surrogate compounds that are representative of the analysis. If surrogate spike recovery does not meet the prescribed control limits, samples should be reanalysed.

Spike recover results and surrogate spike recover results are available in the Laboratory Analysis Reports (Appendix F).

3.5 Representativeness

3.5.1 Data Point Evaluation

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition.

Representativeness is primarily dependent on the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handling and analysis protocols, and use of proper chain-of-custody and documentation procedures. Blanks, holding times and field duplicates are all QA parameters that can assist in the analysis of representativeness for data point evaluation and will need to be analysed as part of the measurement data quality assessment.

3.5.2 Data Set Evaluation

Whether the data is representative of the site is checked in part by undertaking an evaluation of the whole data set to establish the data is compatible. Data compatibility is authenticated by confirming that the laws of chemistry are upheld (i.e. nitrate is not present when Eh is -250 mV), that intra-laboratory analysis relationships are consistent (i.e. BTEX is a subset of the TPH C₆-C₉ fraction), that observations and field measurements are in agreement with other field data and the laboratory data and that results are consistent with the geology, history and logic.

3.6 Completeness

The following information is required to check for completeness of data sets:

- chain-of-custody forms (completed by Greencap and the laboratory);
- sample receipt forms;
- all requested sample results reported;
- all blank data reported;
- all laboratory duplicates reported and relative percent differences (RPDs) calculated;
- all surrogate spike data reported;
- all matrix spike data reported; and
- NATA stamp on reports.

3.7 Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity, sampling procedures) under which separate sets of data are produced to ensure minimal common error. Data comparability should be demonstrated by the use of standardised sampling and analysis procedures. Data comparability was maintained by undertaking the investigations as follows:

- sampling during the monitoring program was conducted by trained Greencap field team using Greencap's standard operating procedures; and
- the same laboratories (Eurofins and Envirolab) were used for organic and inorganic analysis for all relevant samples using the same NATA approved analytical methods.

3.8 Sensitivity

When interferences are present in the sample, a loss of sensitivity can occur resulting in an increase in the method detection limit. In some instances (e.g. where one or more compounds have particularly high concentrations) the sample must be diluted for analysis. This increases the method detection limit by the dilution factor.

2

The detection limits achieved by the laboratory, when adjusted for interferences from the presence of other chemicals within the sampled matrix, must be less than half the site criteria for all analytes tested (i.e. 2 x LOR <site criteria).

3.9 Blanks

To meet the QC acceptance criteria, laboratory blanks should have no detectable concentrations of the target compounds.

3.10 Holding Times

Where standard holding times are exceeded, a discussion, using professional judgement, as to the integrity of the data will be required, taking into account such factors as field storage, laboratory storage and even sample jar characteristics.

3.11 Confirmation Checking

For blind duplicates, if one sample has more than two analytes exceeding the data quality objectives, the sample is carefully checked. If the error is not apparent, the sample is rejected. If more than three samples are rejected all the samples collected at that time are rejected. These samples are then resampled and reanalysed.

3.12 Field QA/QC

3.12.1 Details of Sampling Team

All fieldwork was conducted by qualified and experienced Greencap scientists trained in hazardous field investigation techniques and health and safety procedures.

3.12.2 Sampling Controls

Soil sampling for chemical analyses and the completion of field documentation entailing sample locations, soil borelogs and general field observations were conducted using Greencap standard operating procedures, and in accordance with the *Sampling Design Guidelines* (NSW EPA, 1995), NEPM (NEPC, 2013), AS4482.1-2005.

Boreholes were advanced by an excavator, allowing for ample collection using a decontaminated trowel. All sampling implements were cleaned between sampling locations, and gloves changed between sampling locations. Once collected, the samples were immediately transferred to laboratory-supplied airtight sample containers of appropriate composition. These containers were then promptly stored on ice, to prevent the loss of potential volatile components and transported to a NATA accredited laboratory.

Samples were delivered to NATA accredited laboratories (Eurofins and Envirolab) under a completed Chain of Custody (CoC). Copies of the CoC documentation and laboratory analysis reports are provided in Appendix F of the main DSI report.

3.13 Laboratory QA/QC

3.13.1 Holding time

All analysed primary samples were extracted and analysed within acceptable holding times as defined in AS4482.1-2005.

As appropriate sampling procedure was followed and samples were kept refrigerated. No significant degradation to samples has been deemed to have occurred.

greencap.com.au ⁸

3.1 QA/QC Data Evaluation

RPD values for soil samples are tabulated in the attachment section of this report (QA/QC Attachment – RPD Tables). All RPD values for intra- and inter-laboratory samples were within the acceptable criteria defined in Table 2. Data quality objectives for all analysis undertaken on this project are reliable and accurate.

Extraction and analysis of primary samples were within the relevant prescribed holding times. As appropriate sampling procedure was followed and samples were kept refrigerated no significant degradation to samples is thought to have occurred.

The internal laboratory control results (blanks, duplicates and spikes) are considered to be acceptable. All results adhered to chemical laws or were not outside logical explanation. Based on information presented in Section 3 it can be confidently stated that the MDQO's for this project have been met and the data set is considered to be reliable.

4 QAQC Appendix References

- American Public Health Association (APHA) 2005, *Standard methods for the examination of water and waste-water*, 21st edition, APHA, Washington DC.
- Australian and New Zealand Environment and Conservation Council 1992, *Australian and New Zealand Guidelines for the assessment and management of contaminated sites*, Australia and New Zealand Environment Council, National Health and Medical Research Council, Melbourne, Victoria.
- Australian/New Zealand Standard 2008, *Quality management systems Requirements* (AS/NZS ISO 9001:2008) Standards Australia/Standards New Zealand, Sydney/Wellington.
- International Organisation for Standardisation 2005, *Quality management systems Fundamentals and vocabulary*, (ISO 9000:2005).Lock, WH 1996, *Composite sampling*, National Environmental Health Forum (NEHF), Adelaide, SA.
- National Environment Protection Council (NEPC) 1999, *National environment protection* (assessment of site contamination) measure, National Environment Protection Council, Adelaide, SA.
- NSW Department of Environment and Conservation (2006), Contaminated sites: Guidelines for NSW Site Auditors Scheme (2nd edition).
- NSW Environment Protection Authority (EPA) 1995, *Contaminated sites:* Sampling design guidelines, EPA NSW, Chatswood, NSW.
- NSW EPA 2011, Contaminated sites: Guidelines for consultants reporting on contaminated sites, EPA NSW, Chatswood, NSW.
- Rayment, GE & Higginson, FR 1992, Australian laboratory handbook of soil and water chemical methods, Inkarta Press, Melbourne.

5 QA/QC Attachment – RPD Table

9

Project Name: Detailed Site Assessment		34-38 Schofields R	oad, Scho	ofields	Project Number:	J157372 (J160656)	
Primary Laboratory:		Eurof			Lab Certificate Number:	628453-S & 632214-S	
Secondary Laboratory:		Envirolab			Lab Certificate Number:	205951	
Date Sampled:		16/12/2			Sample Medium:	Soil	
			e Informat	tion			
Number of Primary Samples:		2					
Number of Duplicate Samples:		2			er Field QAQC Samples:	0	
		Documentation and S	ample Ha	ndling Informati	on		
				Y/N	Co	omments	
COC completed properly?				Y	Signed by both field scientists and labs p	ersonnel.	
All requested analysis completed?				Y	- 3 ,		
All requested analysis completed?				T			
Samples received in appropriate condition for a	analysis?			Y			
Samples analysed within appropriate holding ti			Y				
Sample volumes sufficient for QC analysis?				Y			
Are there non-NATA accredited methods used	?			Ν			
Chromatograms supplied as appropriate?				N/A	Not required		
Laboratory reports signed by authorised person	nnel?			Y			
	ormation (Method Blank - MB,	Rinsate E	Blank - RB, Field	Blank - FB, Trip Blank - TB)			
Туре	San	nple ID			Comments		
Lab Method Blanks		od Blank			Of Reporting (LOR)		
Trip Blank		ТВ			Of Reporting (LOR)		
		Trip Spike lı	nformatio	n (BTEX)			
Analyte	Spike Concentrations	Recovery Concentrati	on	% Recovery	Co	omments	
Benzene	-	-		105			
Toluene	-	-		114			
Ethylbenzene	-	-		114	Trip spike recoveries	s all pass lab control limits	
meta- & para-Xylene	-	-		110			
Lead	-			116			
Analyte Group	n	Laboratory Control	о эріке (і	LCS) Analyses	Comments		
TRH, BTEXN, Me				All re	ecoveries are within lab control limits		
		Matrix Spil	ke (MS) A				
Analyte Group	p				Comments		
TRH, BTEXN, Me				All re	ecoveries are within lab control limits		
		Laboratory Dup	olicates (L				
Analyte Group					Comments		
TRH, BTEXN, Me	itals	Field Dunlin	tee (ED)		lues are within 30% acceptance limits		
		Field Duplica	ates (FD)	Analyses			
Analyte Group	Primary ID	Duplicate ID			Comments		
TRH, Metals, BTEX	TP12 (0.3-0.5)	FD01	All FD1 F		n acceptable RPD criteria. TRH BTEX withi Results less than 5 times LOR, therefore c	in acceptable RDP range. Elevated metal RPD onsidered acceptable.	
TRH, Metals, BTEX	TP11 (0.1-0.3)	FD02	All FD1 F		n acceptable RPD criteria. TRH BTEX withi Results less than 5 times LOR, therefore c	in acceptable RDP range. Elevated metal RPD onsidered acceptable.	
TRH, Metals, BTEX	TP34A (0.1-0.2)	FD01A	All FD1 F		n acceptable RPD criteria. TRH BTEX withi Results less than 5 times LOR, therefore o	in acceptable RDP range. Elevated metal RPD onsidered acceptable.	
	1	Inter-Lab Du	plicates /	Analyses			
Analyte Group	Primary ID	Duplicate ID			Comments		
TRH, Metals, BTEX	TP05 (0.5-0.6)	FT1			All FT1 RPD results within acceptab	le RPD criteria	
		Surrogate Compo	und Monit	oring Analyses			
Analyte Group	Sample ID			Comments			
TRH, Metals, BT	EX	Primary Samples			r all regular sample matrices, NO surrogate	e recovery outliers occur.	
	ad a side bla faa in t		II Comme	nts			
		nd site assessment					
This batch has been validated and is considered	ed suitable for interpretive use a						
This batch has been validated and is considered Note: Data validation assesses each analyte in *When concentrations are less than the LOR for	n terms of all the data validation	variables and only the exceedan		utliers are reporte	ed in this form.		

J157372 Field Duplicate/Triplicate RPDs Detailed Site Assessment: 34-38 Schofields Road, Schofields NSW

GREENCAP

Qualatal							FD1	FT1
Our Label			TP5 (0.5-0.6) S18-No24374 16/11/2018 PS	FT1	TP12(0.3-0.5)	FD01 S18-No24405 16/11/2018 FD	1	RPD Primary vs Interlab
Laboratory Label	205951-1 16/11/2018 IL Re:	S18-No24381 16/11/201 PS		RPD				
Sample Date				Primary vs Duplicate				
Sample Type								
Analyte	Units	LOR						
BTEX								
Benzene	mg/kg	0.1	< 0.1	<0.2	< 0.1	< 0.1	N/A	N/A
Ethylbenzene	mg/kg	0.1	< 0.1	<1	< 0.1	< 0.1	N/A	N/A
m&p-Xylenes	mg/kg	0.1	< 0.2	<2	< 0.2	< 0.2	N/A	N/A
o-Xylene	mg/kg	0.2	< 0.1	<1	< 0.1	< 0.1	N/A	N/A
Toluene	mg/kg	0.1	< 0.1	<0.5	< 0.1	< 0.1	N/A	N/A
Xylenes - Total	mg/kg	0.3	< 0.3	<1	< 0.3	< 0.3	N/A	N/A
Heavy Metals								
Arsenic	mg/kg	2	9.8	7	4.5	4.2	7%	33%
Cadmium	mg/kg	0.4	< 0.4	<0.4	< 0.4	< 0.4	N/A	N/A
Chromium	mg/kg	5	13	9	15	17	13%	36%
Copper	mg/kg	5	15	8	17	27	45%	61%
Lead	mg/kg	5	15	17	36	43	18%	13%
Mercury	mg/kg	0.1	< 0.1	<0.1	< 0.1	< 0.1	N/A	N/A
Nickel	mg/kg	5	< 5	8	9.4	8.8	7%	N/A
Zinc	mg/kg	5	29	38	99	140	34%	27%
Total Recoverable Hydrocarbons - 1999 NEPM	M Fractions							
TRH C10-36 (Total)	mg/kg	< 50	< 50	<50	< 50	< 50	N/A	N/A
TRH C10-C14	mg/kg	< 20	< 20	<50	< 20	< 20	N/A	N/A
TRH C15-C28	mg/kg	< 50	< 50	<100	< 50	< 50	N/A	N/A
TRH C29-C36	mg/kg	< 50	< 50	<100	< 50	< 50	N/A	N/A
TRH C6-C9	mg/kg	< 20	< 20	<25	< 20	< 20	N/A	N/A
Total Recoverable Hydrocarbons - 2013 NEPM	M Fractions							
Naphthalene	mg/kg	0.5	< 0.5	<1	< 0.5	< 0.5	N/A	N/A
TRH >C10-C16	mg/kg	50	< 50	<50	< 50	< 50	N/A	N/A
TRH >C10-C16 less Naphthalene (F2)	mg/kg	50	< 50	<50	< 50	< 50	N/A	N/A
TRH >C10-C40 (total)*	mg/kg	100	< 100	<50	< 100	< 100	N/A	N/A
TRH >C16-C34	mg/kg	100	< 100	<100	< 100	< 100	N/A	N/A
TRH >C34-C40	mg/kg	100	< 100	<100	< 100	< 100	N/A	N/A
TRH C6-C10	mg/kg	20	< 20	<25	< 20	< 20	N/A	N/A
TRH C6-C10 less BTEX (F1)	mg/kg	20	< 20	<25	< 20	< 20	N/A	N/A
-: Not analysed	•							
PS: Primary Sample			Acceptable			<5 x LOR		1
FD: Field Duplicate	TP5 (1.4-1.5)		RPDs:			>5 x LOR		1
IL: Inter-Laboratory Duplicate			r1					•
N/A: Not Applicable (RPDs not calculate	ed where one or more result <p(< td=""><td>(10</td><td>Acceptable RPD limits read</td><td>bed</td><td></td><td></td><td></td><td></td></p(<>	(10	Acceptable RPD limits read	bed				

J157372 Field Duplicate/Triplicate RPDs Detailed Site Assessment: 34-38 Schofields Road, Schofields NSW

GREENCAP

Our Label			T011 (0 1 0 2)	FD02	T0344 (0 1 0 3)	FD01A	FD2	FD01A
Laboratory Label	TP11 (0.1-0.3)	S18-No24406 16/11/2018	TP34A (0.1-0.2) S18-De12286 10/12/2018	S18-De12288 10/12/2018	RPD Primary vs Duplicate	RPD Primary v Duplicate		
Sample Date	S18-No24380 16/11/2018							
Sample Type								
	PS	FD	PS esult	FD				
Analyte	Units	LOR		N	esuit			
STEX				1	1	1		
lenzene	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	N/A	N/A
thylbenzene	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	N/A	N/A
n&p-Xylenes	mg/kg	0.1	< 0.2	< 0.2	< 0.2	< 0.2	N/A	N/A
o-Xylene	mg/kg	0.2	< 0.1	< 0.1	< 0.1	< 0.1	N/A	N/A
oluene	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	N/A	N/A
iylenes - Total	mg/kg	0.3	< 0.3	< 0.3	< 0.3	< 0.3	N/A	N/A
Heavy Metals								
Arsenic	mg/kg	2	10	7.6	7.7	13	27%	51%
Cadmium	mg/kg	0.4	< 0.4	< 0.4	< 0.4	< 0.4	N/A	N/A
Chromium	mg/kg	5	13	7.8	12	13	50%	10%
Copper	mg/kg	5	16	12	15	20	N/A	N/A
ead	mg/kg	5	31	22	23	14	34%	40%
Aercury	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	N/A	N/A
Nickel	mg/kg	5	7.1	5.5	8.6	6.3	N/A	N/A
linc	mg/kg	5	43	35	52	28	21%	39%
Total Recoverable Hydrocarbons - 1999 NEPM Fractions								
IRH C10-36 (Total)	mg/kg		< 50	< 50	< 50	< 50	N/A	N/A
IRH C10-C14	mg/kg		< 20	< 20	< 20	< 20	N/A	N/A
RH C15-C28	mg/kg		< 50	< 50	< 50	< 50	N/A	N/A
BH C29-C36	mg/kg		< 50	< 50	< 50	< 50	N/A	N/A
TBH C6-C9	mg/kg		< 20	< 20	< 20	< 20	N/A	N/A
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	5					1		
Naphthalene	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	N/A	N/A
rRH >C10-C16	mg/kg	50	< 50	< 50	< 50	< 50	N/A	N/A
IRH >C10-C16 less Naphthalene (F2)	mg/kg	50	< 50	< 50	< 50	< 50	N/A	N/A
RH >C10-C40 (total)*	mg/kg	100	< 100	< 100	< 100	< 100	N/A	N/A
RH >C16-C34	mg/kg	100	< 100	< 100	< 100	< 100	N/A	N/A
RH >C34-C40	mg/kg	100	< 100	< 100	< 100	< 100	N/A	N/A
RH 06-C10	mg/kg	20	< 20	< 20	< 20	< 20	N/A	N/A
IRH C6-C10 less BTEX (F1)	mg/kg	20	< 20	< 20	< 20	< 20	N/A	N/A
: Not analysed	oo				1 140			
PS: Primary Sample			Acceptable	<5 x LOR	Δn	Any RPD acceptable		
FD: Field Duplicate TP5 (1.4-1.5)			RPDs:	<5 x LOR >5 x LOR		0 - 50% RPD acceptable		
IL: Inter-Laboratory Duplicate IPS (1.4-1.5)			INFUS.	>5 X LUK	0-5	or a coptable	-	L