

PHOTOGRAPH 1 of 2 - BH105 6.15m to 13.0m

Project: John Hunter Health and Innovation Precinct

PHOTOGRAPH 2 of 2 - BH105 13.0m to 20.83m

Project: John Hunter Health and Innovation Precinct

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

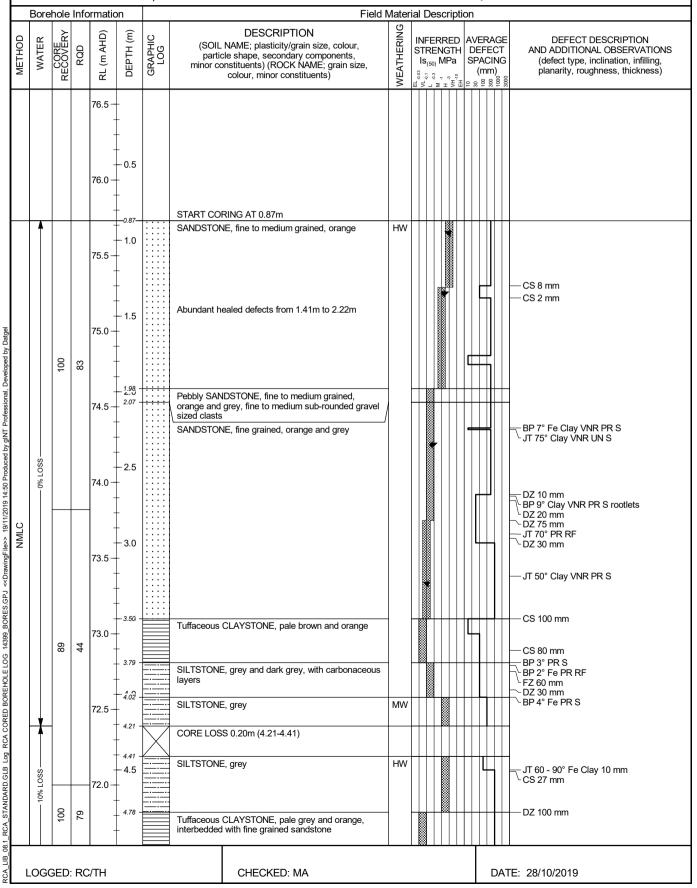
LOCATION: John Hunter Hospital

DATE COMMENCED: 04/10/2019 DATE COMPLETED: 09/10/2019 SURFACE RL: 76.60 m AHD

COORDS: 377830.00 m E 6356632.70 m N MGA94 56

LOCA	ATION: John H					DRILL MODEL: Hanjin D&B 8d Field Material Information									
	Borehole In	formatio	n			 	Field Material Inform	nation	ation						
METHOD	FIELD	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME;plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS					
AD/T	0.50m	0.30m BH106b 0.50m	76.5 - - -	-		SM	FILL, Gravelly silty SAND, fine to medium grained, grey-brown, fine to medium gravel	D		FILL - - - -					
A (Not Encounters	0.30m PP>600kPa SPT 6, 7, 3/10mm N=R 0.81m	D 0.81m	76.0	- 0.5 - 0.60 -		CI	Sandy CLAY, medium plasticity, grey mottled orange, with fine to medium sub-rounded gravel CONTINUED AS CORED BOREHOLE	w <pl< td=""><td>Н</td><td>RESIDUAL -</td></pl<>	Н	RESIDUAL -					
			75.5 - -	- 1.0 -			CONTINUED AS CORED BUREHOLE			- - -					
			75.0 – - -	1.5 						- - - -					
LOO			- - 74.5 - - -	-2.0						- - - -					
			- - 74.0 – -	-2.5						- - - -					
			- - 73.5 – -	3.0						- - - -					
ı			- - 73.0 – -	-3.5						- - - -					
			- - 72.5 – - -	-4.0 -						- - - -					
,			- 72.0 - - -	-4.5 -						- - - - -					
LOC	LOGGED: RC/TH					Cŀ	IECKED: MA	DATE: 28/10/2019							

SHEET 2 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

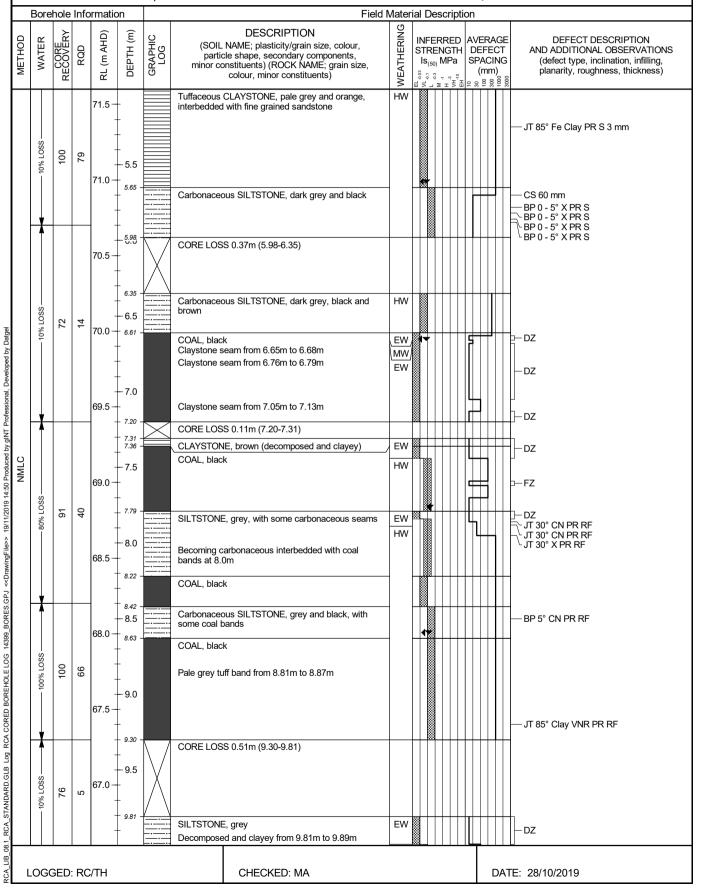
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 04/10/2019 DATE COMPLETED: 09/10/2019 SURFACE RL: 76.60 m AHD

COORDS: 377830.00 m E 6356632.70 m N MGA94 56

SHEET 3 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

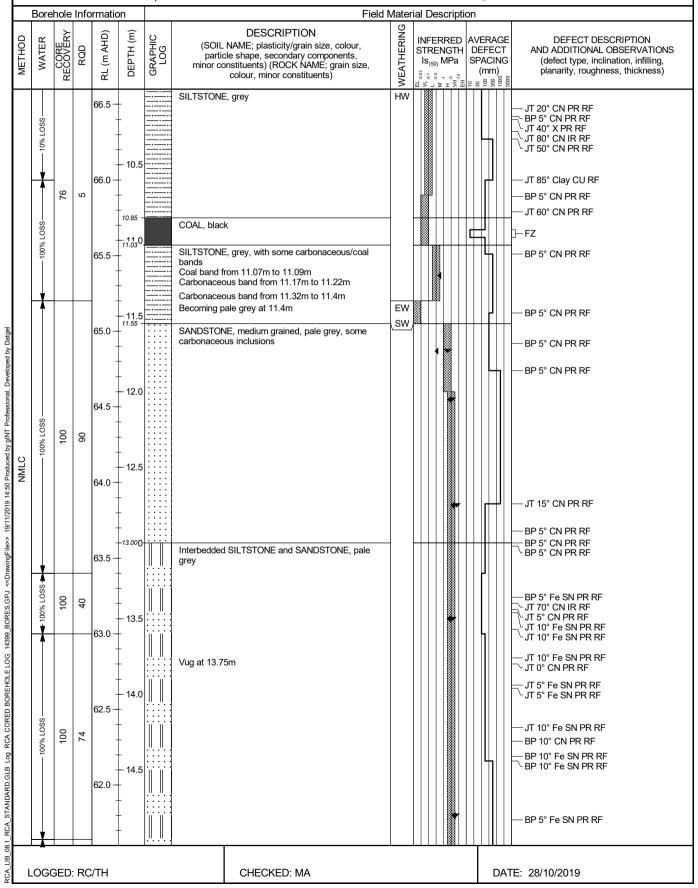
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 04/10/2019 DATE COMPLETED: 09/10/2019 SURFACE RL: 76.60 m AHD

COORDS: 377830.00 m E 6356632.70 m N MGA94 56

SHEET 4 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

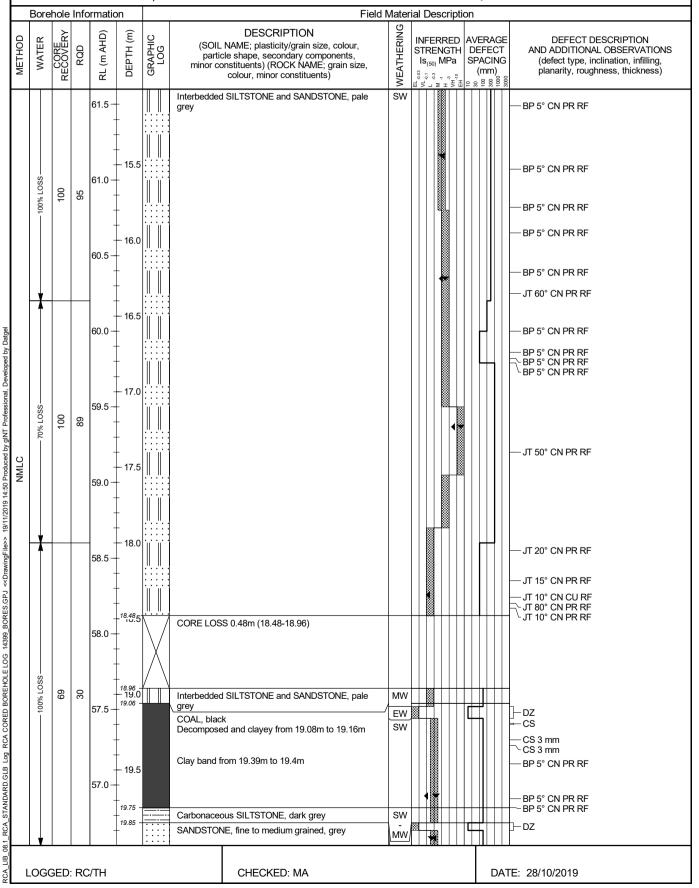
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 04/10/2019 DATE COMPLETED: 09/10/2019 SURFACE RL: 76.60 m AHD

COORDS: 377830.00 m E 6356632.70 m N MGA94 56

SHEET 5 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

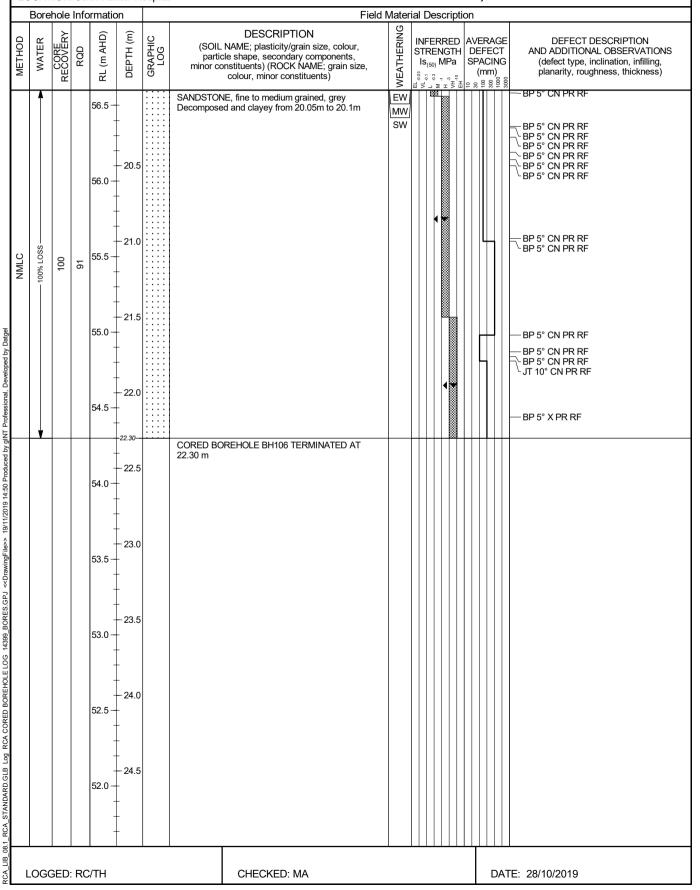
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 04/10/2019 DATE COMPLETED: 09/10/2019 SURFACE RL: 76.60 m AHD

COORDS: 377830.00 m E 6356632.70 m N MGA94 56

SHEET 6 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 04/10/2019 DATE COMPLETED: 09/10/2019 SURFACE RL: 76.60 m AHD

COORDS: 377830.00 m E 6356632.70 m N MGA94 56

PHOTOGRAPH 1 of 3 - BH106 0.87m to 5.0m

Project: John Hunter Health and Innovation Precinct

PHOTOGRAPH 2 of 3 - BH106 5.0m to 15.0m

Project: John Hunter Health and Innovation Precinct

PHOTOGRAPH 3 of 3 - BH106 15.0m to 22.3m

Project: John Hunter Health and Innovation Precinct

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

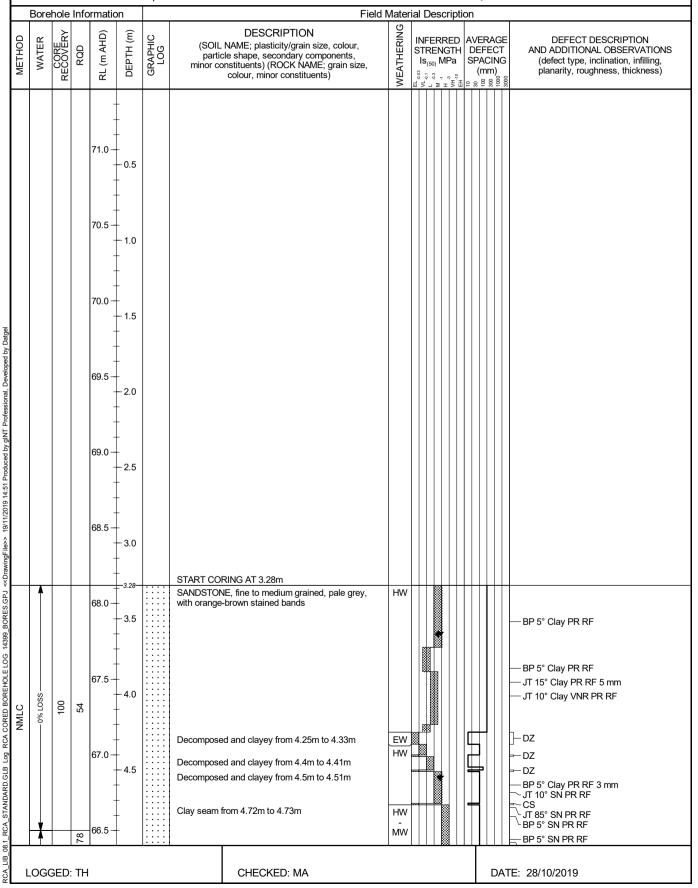
LOCATION: John Hunter Hospital

DATE COMMENCED: 10/10/2019 DATE COMPLETED: 11/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377791.50 m E 6356701.00 m N MGA94 56

<u> </u>	JOAI	ION: John H						Field Material Information							
	1	Borehole In	formatio	n	1		z	Field Material Infor		L					
МЕТНОВ	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS				
			0.10m BH107a (0.15m	71.0 -	0.10 -		CI- CH	FILL, MULCH/WOODCHIPS, dark brown FILL, Sandy Silty CLAY, medium to high plasticity, grey and pale brown, trace of fine to medium rounded to sub-rounded gravel	M w>PL		FILL - - - -				
		PP250 - 280kPa SPT 3, 4, 3 N=7	D 0.95m	70.5	-0.50		CI- CH	Silty CLAY, medium to high plasticity, pale grey with pale brown and red mottles, trace to with some fine to coarse grained sand		VSt	RESIDUAL				
	ering) —————			70.0 -	1.0						- - - -				
AD/T	(Not Encountered during augering)	1.50m -PP>450kPa SPT 6, 11, 13	1.50m BH107b		1.5 					Н	- - -				
	(Not Enco	N=24 1.95m	1.95m	69.5	-2.0			Becoming with relict rock structure at 1.9m			- - -				
				69.0 -	-2.50			Sandy Silty CLAY, low to medium plasticity, pale grey with orange-brown mottles (weathered from fine to	w <pl< td=""><td></td><td>EXTREMELY WEATHERED MATERIAL -</td></pl<>		EXTREMELY WEATHERED MATERIAL -				
		3.00m SPT 10, 18, 15/70mm HB	3.00m D 3.28m	68.5 - - - -	3.0			medium grained Silty SANDSTONE)			- - - -				
	•	N=R		68.0 -	-3.5 -			CONTINUED AS CORED BOREHOLE			- - -				
				67.5 -	-4.0						- - - -				
1				67.0	-4.5 -						- - - - -				
1	LOGGED: TH						CH	ECKED: MA	DATE: 28/10/2019						

SHEET 2 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

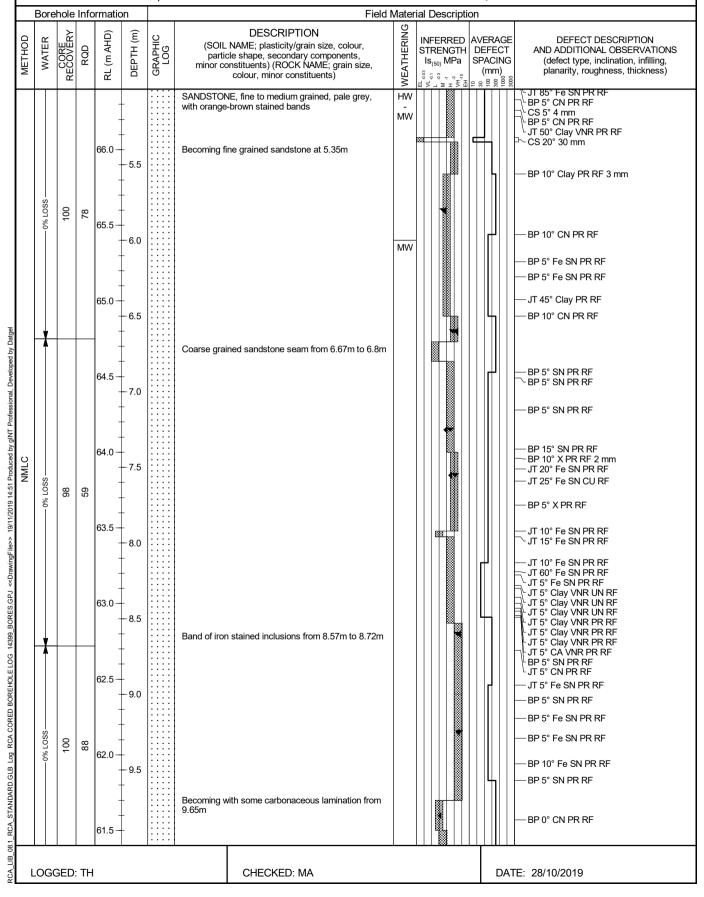
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 10/10/2019 DATE COMPLETED: 11/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377791.50 m E 6356701.00 m N MGA94 56

SHEET 3 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

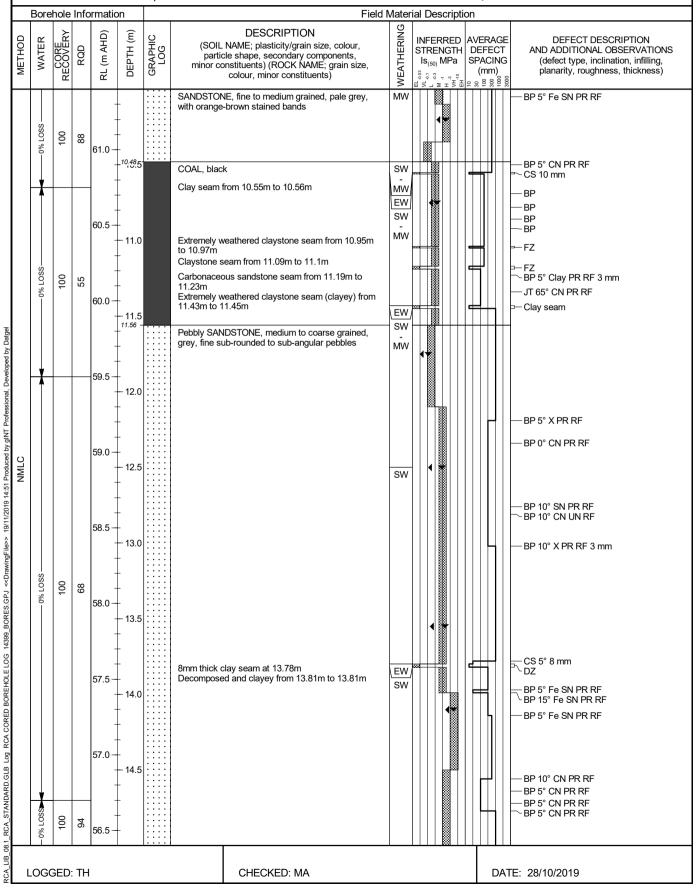
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 10/10/2019 DATE COMPLETED: 11/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377791.50 m E 6356701.00 m N MGA94 56

SHEET 4 OF 6


PROJECT No: 14399
CLIENT: Health Infrastructure

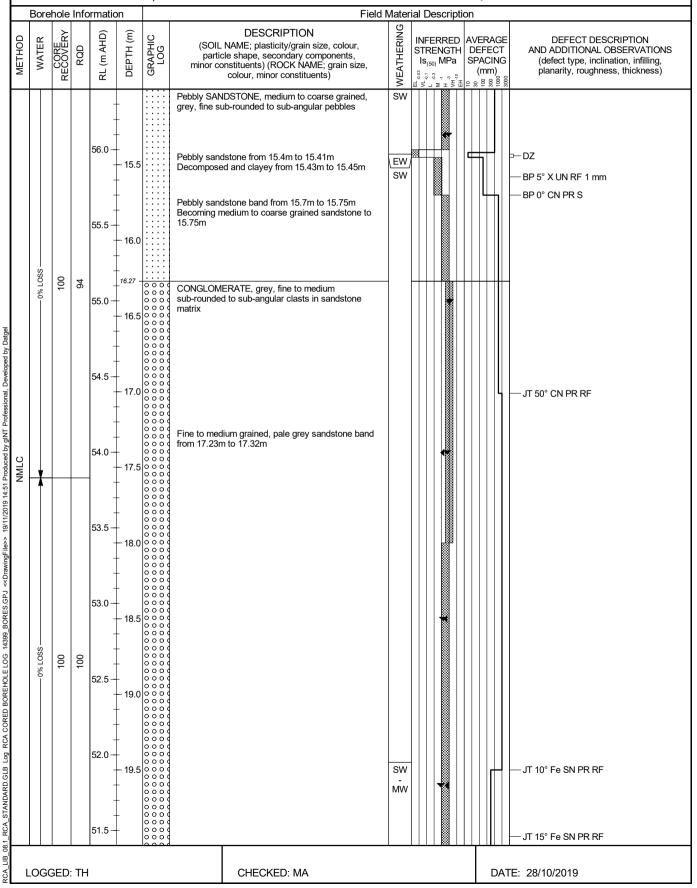
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 10/10/2019 DATE COMPLETED: 11/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377791.50 m E 6356701.00 m N MGA94 56

SHEET 5 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 10/10/2019 DATE COMPLETED: 11/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377791.50 m E 6356701.00 m N MGA94 56

SHEET 6 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

DATE COMMENCED: 10/10/2019 DATE COMPLETED: 11/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377791.50 m E 6356701.00 m N MGA94 56

Description	LOCATION: John Hunter Hospital	DRILL MODEL: Hanjin D&B 8d Field Material Description										
S10 - 20.5 S0.5 - 21.0 S0.5 - 22.0 S0.5 - 22.0 S0.5 - 22.5 S0.	Borehole Information	Field Material Description DESCRIPTION 9										
\$1.0 - 20.5 20.0 20		DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)										AND ADDITIONAL OBSERVATIONS (defect type, inclination, infilling,
CORED BOREHOLE SHI07 TERMINATED AT 20.14 m 51.0 - 20.5	1 8 8			Í	T	W	T	T	Ï	T	T	
46.5	Solution Solution					I		11				
LOGGED: TH CHECKED: MA DATE: 28/10/2019												

PHOTOGRAPH 1 of 2 - BH107 3.28m to 13.0m

Project: John Hunter Health and Innovation Precinct

PHOTOGRAPH 2 of 2 - BH107 13.0m to 20.14m

Project: John Hunter Health and Innovation Precinct

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

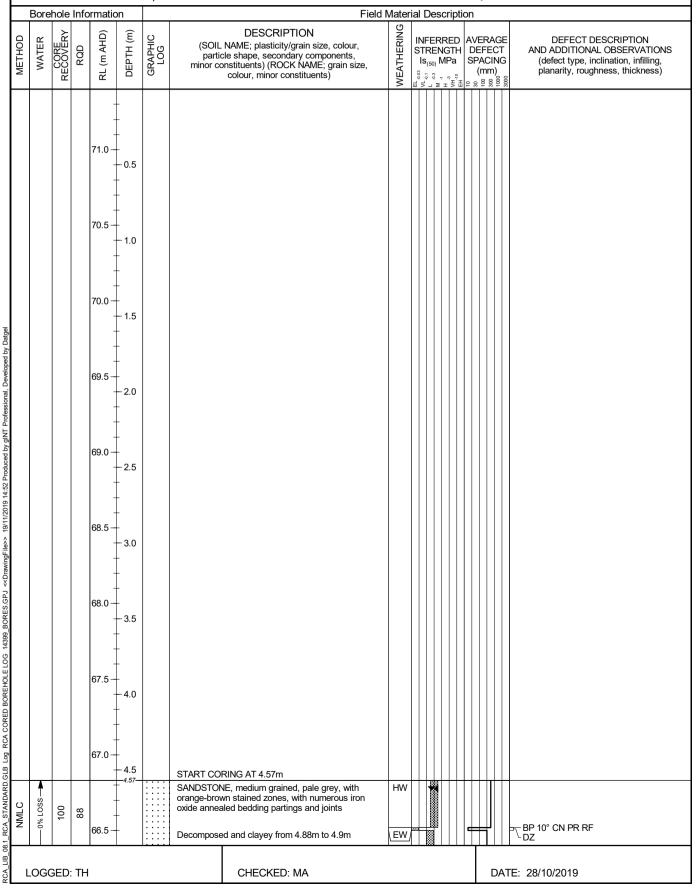
LOCATION: John Hunter Hospital

DATE COMMENCED: 09/10/2019 DATE COMPLETED: 10/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377792.30 m E 6356683.20 m N MGA94 56

Ľ	.OCA	TION: John H	lunter Ho	ospital			DRILL MODEL: Hanjin D&B 8d Field Material Information									
L	_	Borehole In	formatic	n	1		 	Field Material Infor								
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME:plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS					
	1		BH108a QA3 0.10m	-				FILL, Silty Sandy GRAVEL, fine to medium, grey, sub-angular to angular, fine to coarse grained sand	D-M		FILL					
		0.50m	0.50m	71.0 - - - -	- 0.20 - - 0.30 - - 0.5			FILL, Silty Clayey SAND, brown FILL, Clayey Silty SAND, fine to coarse grained, yellow-brown, with fine gravel	М		- - -					
		5, 7, 4 N=11 0.95m	0.95m	70.5 - - - -	1.20 -						-					
jel		1.50m PP130 - 150kPa SPT	1.50m BH108b	70.0 	- 1.5		CI	Sandy CLAY, medium plasticity, grey mottled pale brown	w>PL	St	RESIDUAL -					
Professional, Developed by Datg AD/T	(Not Encountered during augering)	1, 2, 4 N=6 1.95m	1.95m	69.5 - - - -	-2.0			Becoming with red mottles at ~1.8m			-					
1/2019 14:51 Produced by gINT Pro	(Not Encountere	3.00m	3.00m	69.0 - - - - 68.5	2.50 -			Silty CLAY, medium to high plasticity, pale grey (Extremely Weathered Material derived from claystone with relict rock structure)	w <pl< td=""><td>Н</td><td>EXTREMELY WEATHERED MATERIAL</td></pl<>	Н	EXTREMELY WEATHERED MATERIAL					
RCA_LIB_08.1_RCA_STANDARD.GLB Log RCA NON CORED LOG 14399_BORES.GPJ <cdrawingfile>> 19/11/2019 14:51 Produced by gINT Professional, Developed by Dargel AD/T</cdrawingfile>		-PP>450kPa SPT 6, 12, 13 N=25 3.45m	D 3.45m	68.0 - -	-3.5						-					
RCA NON CORED LOG 143				67.5			CI- CH	SANDSTONE, fine to medium grained, orange	HW	VL	BEDROCK -					
D.GLB Log	1	4.50m 4.57m	4.50m D 4.57m	67.0 -	4.5						_					
.1_RCA_STANDARE		SPT 15/65mm HB N=R		66.5				CONTINUED AS CORED BOREHOLE								
RCA_LIB_08	LOGGED: TH						CH	IECKED: MA	DATE: 28/10/2019							

SHEET 2 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

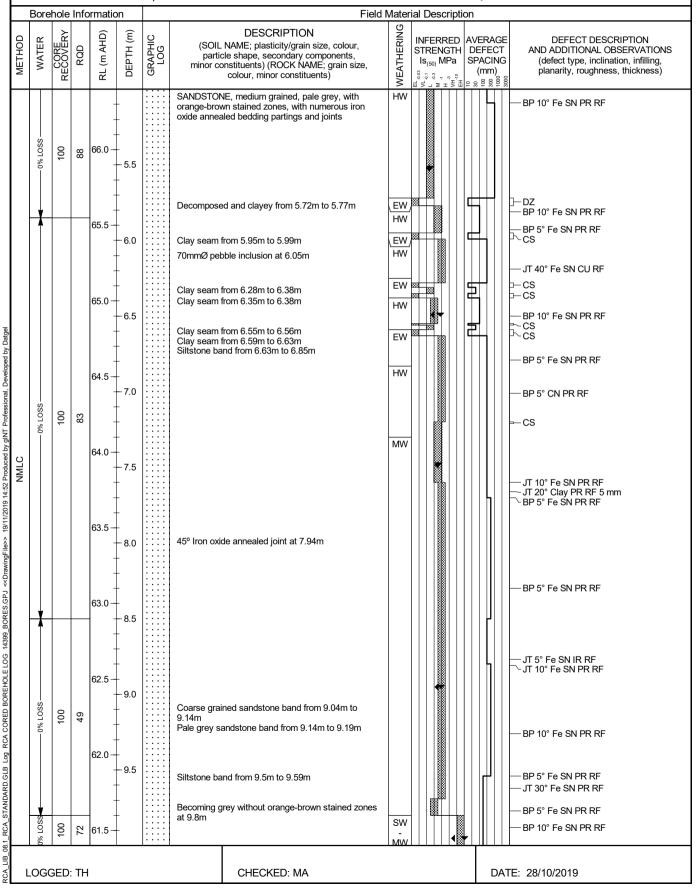
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 09/10/2019 DATE COMPLETED: 10/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377792.30 m E 6356683.20 m N MGA94 56

SHEET 3 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

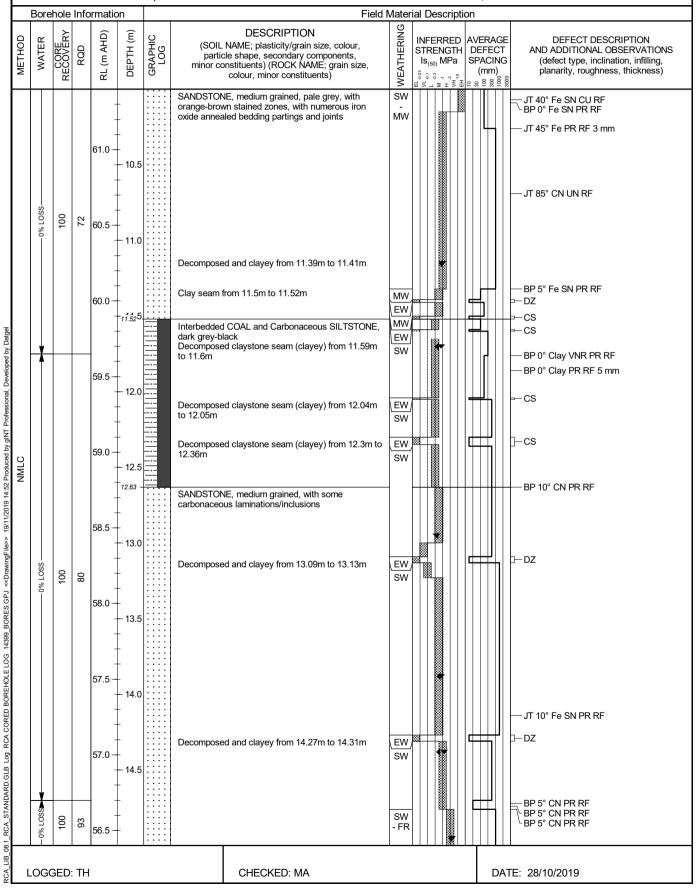
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 09/10/2019 DATE COMPLETED: 10/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377792.30 m E 6356683.20 m N MGA94 56

SHEET 4 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

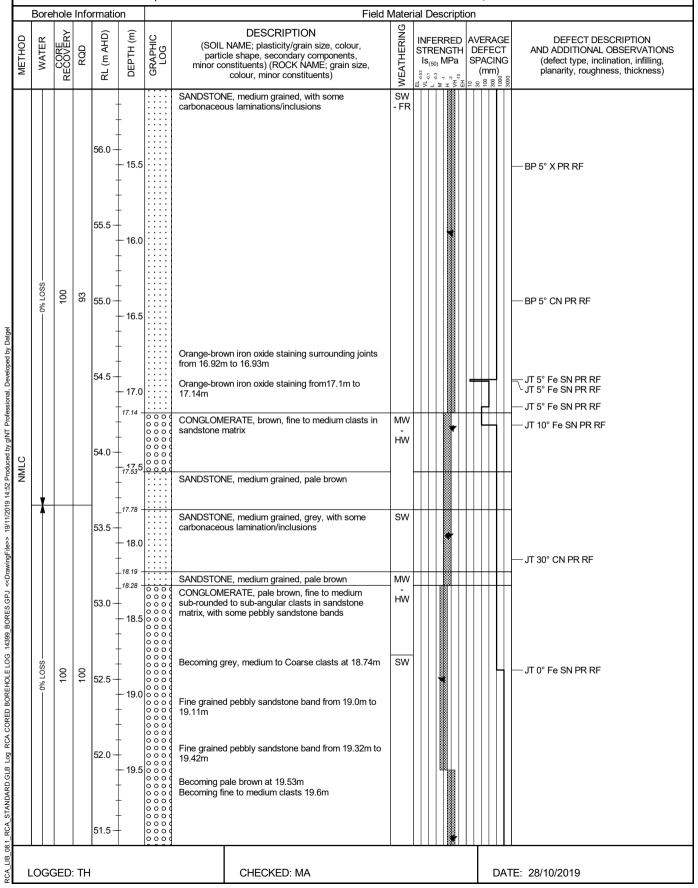
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 09/10/2019 DATE COMPLETED: 10/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377792.30 m E 6356683.20 m N MGA94 56

SHEET 5 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

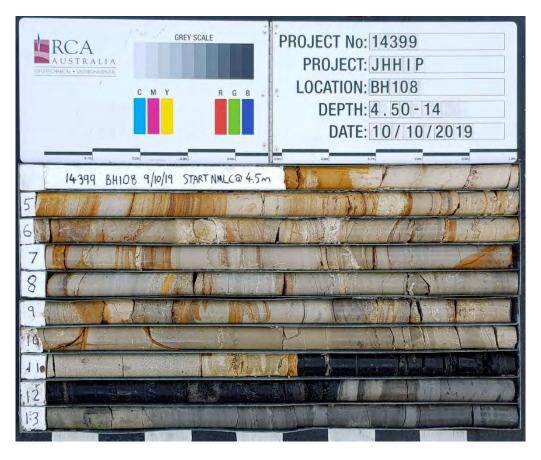
LOCATION: John Hunter Hospital

DATE COMMENCED: 09/10/2019 DATE COMPLETED: 10/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377792.30 m E 6356683.20 m N MGA94 56

SHEET 6 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure


PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 09/10/2019 DATE COMPLETED: 10/10/2019 SURFACE RL: 71.40 m AHD

COORDS: 377792.30 m E 6356683.20 m N MGA94 56

_						ospital									njin	ו טפ	&B 8d
			Info	rmatio	n			Fi									
METHOD	WATER	RECOVERY	RQD	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	partio	DESCRIPTION NAME; plasticity/grain size, colour, lle shape, secondary components, instituents) (ROCK NAME; grain size, colour, minor constituents)	THE	STI Is	REN (50)	NGT MPa	H a [₽] .⊞	DE SP	EFE AC	AGE ECT ING n)	AND ADDITIONAL OBSERVATIONS (defect type, inclination, infilling,
0-	ssc	0	0	-	- -		sub-rounde	ERATE, pale brown, fine to medium d to sub-angular clasts in sandstone some pebbly sandstone bands	MW - HW								
NMLC	SSO7 %0	100	100	51.0 — -	- 20.5 - -20.70	0000	Pebbly sand	istone band from 20.4m to 20.56m									
L				50.5 — 50.5 — 50.0 — 49.5 — 49.5 — 48.5 — 47.5 — 47.0 — 47.0 — 47.0 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 —	- 21.0 - 21.0 21.5 21.5 22.0 22.5 23.0 23.5 		20.70 m	REHOLE BH108 TERMINATED AT									
	46.5 – LOGGED: TH							CHECKED: MA									TE: 28/10/2019
	LOGGED: TH															_,,	

PHOTOGRAPH 1 of 2 - BH108 4.5m to 14.0m

Project: John Hunter Health and Innovation Precinct

PHOTOGRAPH 2 of 2 - BH108 14.0m to 20.7m

Project: John Hunter Health and Innovation Precinct

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 5

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 01/10/2019 DATE COMPLETED: 01/10/2019 SURFACE RL: 76.03 m AHD

COORDS: 377782.40 m E 6356650.90 m N MGA94 56

L	LOCATION: John Hunter Hospital Borehole Information								DRILL MODEL: Hanjin D&B 8d Field Material Information									
L			Borehole In	formatio	n			I I	Field Material Infor	mation								
	METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME;plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS						
ſ		^		BH109a 0.10m	76.0 –	-		SM	FILL, Silty SAND, fine to medium grained, brown, with organics	М		FILL -						
			0.50m	0.40m BH109b 0.50m	- - - 75.5 –	-0.5			Organics			- - - -						
			3, 4, 3 N=7 0.95m	0.95m	- - 75.0 —	-1.0						- - -						
					-	- 1.10 -		CI	FILL, Gravelly Sandy CLAY, medium plasticity, grey, fine to medium sub-rounded gravel, trace of coal fragments	w>PL	-	- - - -						
atgel			1.50m PP100 - 190kPa SPT 2, 4, 2 N=6	1.50m BH109c 1.70m	74.5 – - -	-1.5						- - -						
nal, Developed by D		(b)	1.95m	1.95m	74.0 –	-2.0						- -						
Produced by gINT Professio	AD/T	(Not Encountered during augering)	Is(50) d=0.35 a=0.74 MPa	2.45m	73.5 —	- 2.40 - - 2.5		СН	Tuffaceous CLAY, high plasticity, pale grey	w>PL	St - VSt	RESIDUAL						
File>> 19/11/2019 14:53		(Not	3.00m PP210 - 240kPa SPT	3.00m BH109d 3.20m	- - 73.0 -	-3.0						- - -						
ORES.GPJ < <drawing< td=""><td></td><td></td><td>11, 13, 16 N=29 3.45m</td><td>D 3.45m</td><td>72.5 —</td><td>-3.5</td><td></td><td>СН</td><td>CLAY, high plasticity, grey, highly weathered, very low to low siltstone layers</td><td>w~PL</td><td>Н</td><td>- - - -</td></drawing<>			11, 13, 16 N=29 3.45m	D 3.45m	72.5 —	-3.5		СН	CLAY, high plasticity, grey, highly weathered, very low to low siltstone layers	w~PL	Н	- - - -						
.08.1_RCA_STANDARD.GLB Log RCA NON CORED.LOG 14389_BORES.GPJ < <drawingfile>> 19/11/2019 14:53 Produced by gINT Professional, Developed by Datgel</drawingfile>					72.0 —	-4.0						- - - -						
TANDARD.GLB Log RCA N			4.50m PP450 - 550kPa SPT 15, 17, 14	4.50m D	- - 71.5 - -	-4.5						- - - -						
RCA_S			N=31 4.95m	4.95m	_	-]						
RCA_LIB_08.1	L	LOGGED: RC						CH	HECKED: MA	DATE: 28/10/2019								

GEOTECHNICAL BOREHOLE LOG

SHEET 2 OF 5

PROJECT No: 14399
CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

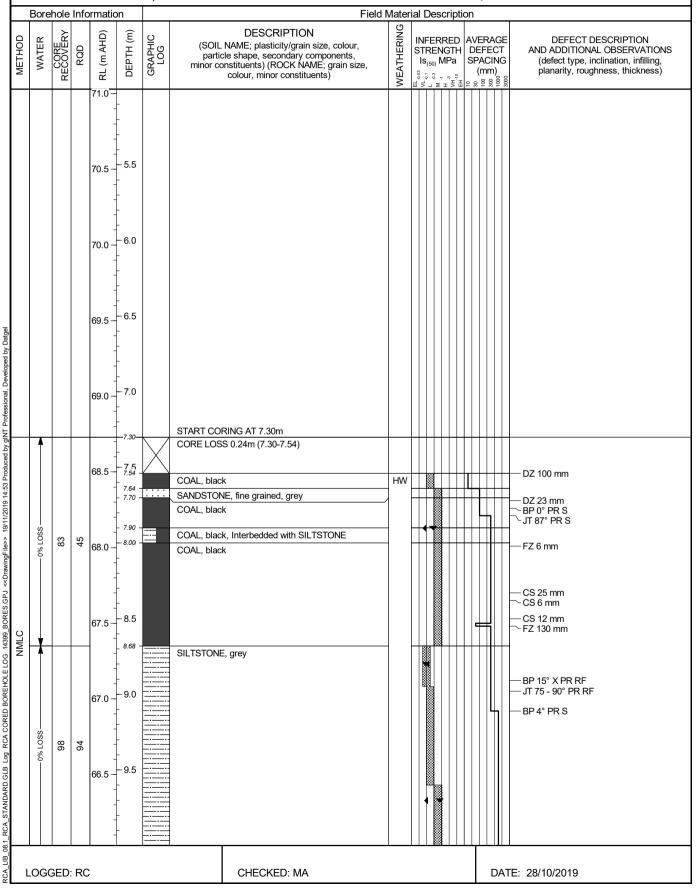
LOCATION: John Hunter Hospital

DATE COMMENCED: 01/10/2019 DATE COMPLETED: 01/10/2019 SURFACE RL: 76.03 m AHD

COORDS: 377782.40 m E 6356650.90 m N MGA94 56

Borehole Information								Field Material Information									
										} ⊤							
МЕТНОБ	WATER	FIELD	SAMPLE	RL (m AHD)	DEРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS						
				71.0 -	-		CH	CLAY, high plasticity, grey, highly weathered, very low to low siltstone layers	w~PL	Н	-						
				70.5 –	- 5.30 - 5.5		МН	Clayey SILT, high plasticity, black (weathered coal)	w <pl< td=""><td>Н</td><td>- - - -</td></pl<>	Н	- - - -						
AD/T	(Not Encountered during augering)	6.00m	6.00m	70.0 –	6.0						_ 						
	(Not Encounter	5, 11, 17 N=28 6.45m	6.45m	69.5	-6.5						- - -						
os de pade		7.00m	7.00m	- - - - -	-7.00 -			COAL block	MW	L	- - BEDROCK						
o di		40/150mm N=R	D 7.15m D 7.30m	-	7.15 -			COAL, black Laminated SILTSTONE, grey and dark grey	IVIVV		-						
6		(7.30m		68.5	-7.5			CONTINUED AS CORED BOREHOLE			- - - -						
TOTAL OF THE PROPERTY OF THE P				68.0 -	-8.0						- - - - -						
				67.5	-8.5						- - - -						
				67.0 -	9.0						- - -						
				66.5	9.5						- - - -						
				-	-						-						
<u> </u>	LOGGED: RC							IECKED: MA	DATE: 28/10/2019								

SHEET 3 OF 5


PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 01/10/2019 DATE COMPLETED: 01/10/2019 SURFACE RL: 76.03 m AHD

COORDS: 377782.40 m E 6356650.90 m N MGA94 56

SHEET 4 OF 5

PROJECT No: 14399 CLIENT: Health Infrastructure

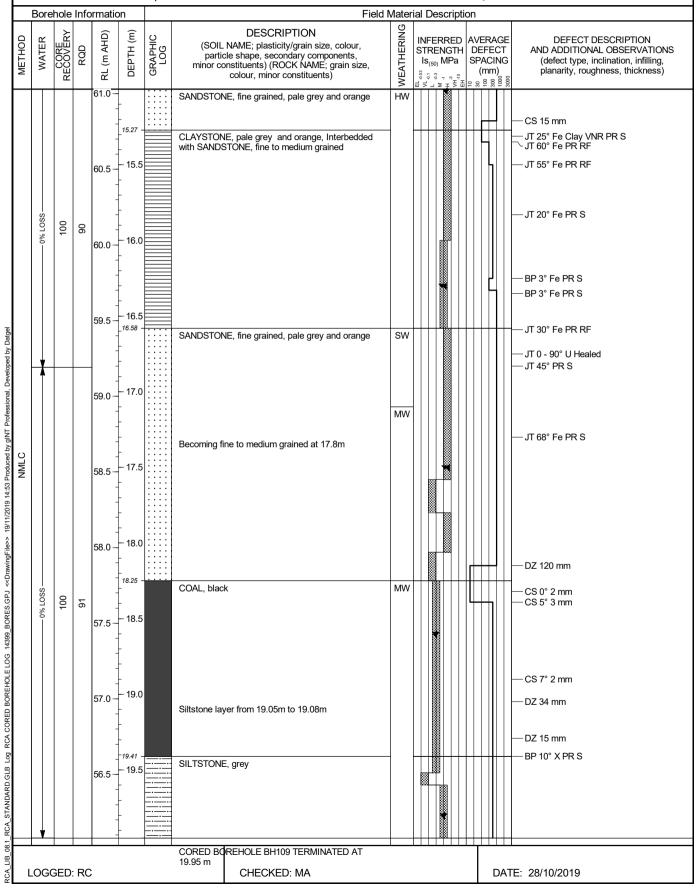
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 01/10/2019 DATE COMPLETED: 01/10/2019 SURFACE RL: 76.03 m AHD

COORDS: 377782.40 m E 6356650.90 m N MGA94 56

SHEET 5 OF 5


PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 01/10/2019 DATE COMPLETED: 01/10/2019 SURFACE RL: 76.03 m AHD

COORDS: 377782.40 m E 6356650.90 m N MGA94 56

PHOTOGRAPH 1 of 2 - BH109 7.3m to 12.0m

Project: John Hunter Health and Innovation Precinct

PHOTOGRAPH 2 of 2 - BH109 12.0m to 19.95m

Project: John Hunter Health and Innovation Precinct

GEOTECHNICAL BOREHOLE LOG

SHEET 1 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

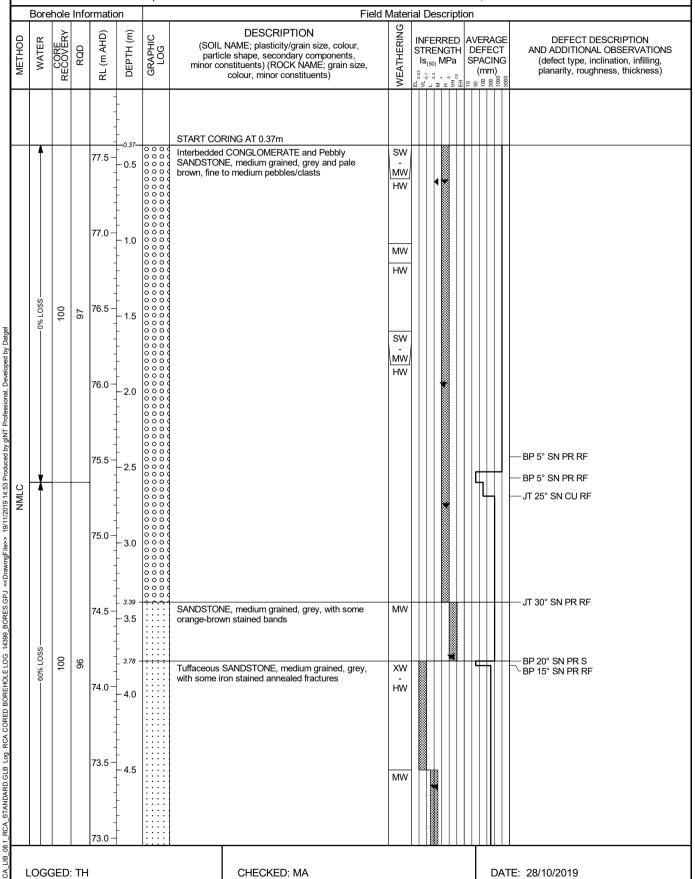
LOCATION: John Hunter Hospital

DATE COMMENCED: 14/10/2019 DATE COMPLETED: 15/10/2019 SURFACE RL: 77.95 m AHD

COORDS: 377858.70 m E 6356614.50 m N MGA94 56

1	JCAT	ION: John H					DRILL MODEL: Hanjin D&B 8d Field Material Information									
		Borehole In	formatio		Ι		Field Material Information									
METHOD	WATER	FIELD	SAMPLE	RL (m AHD)	ОЕРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	DESCRIPTION (SOIL NAME; plasticity/grain size, particle shape, colour, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE AND ADDITIONAL OBSERVATIONS					
AD/T	(Not Encountered during augering)		0.20m BH110a 0.30m	- - -	-			FILL/TOPSOIL, Gravelly Silty SAND, fine to medium grained, dark brown, fine to medium sub-rounded gravel, comprising red sandstone rock fragments	M		FILL / TOPSOIL					
	(Not Encountere			77.5 – - -	- -0.5			CONTINUED AS CORED BOREHOLE			-					
				77.0 -	-1.0											
				76.5 – -	- - - 1.5						- - -					
iai, Developed by Datger				76.0 - -	-2.0						- -					
WIIIGTINS** 1911/12/19 14:33 Fraduced by ginn Franssandia, Developed by Dangel				75.5 – - -	-2.5						- - -					
				75.0 – -	-3.0						- -					
				74.5 – - -	-3.5											
,				74.0 -	-4.0						- - - -					
THE				73.5 -	- - -4.5						- - -					
				73.0	- - - -											
L	LOGGED: TH						CH	HECKED: MA	DATE: 28/10/2019							

SHEET 2 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

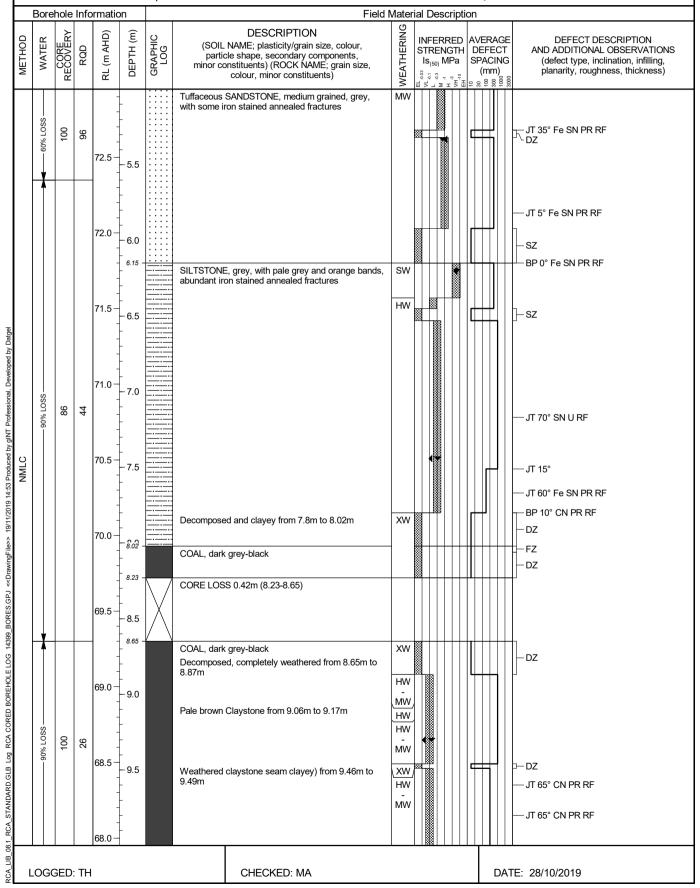
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 14/10/2019 DATE COMPLETED: 15/10/2019 SURFACE RL: 77.95 m AHD

COORDS: 377858.70 m E 6356614.50 m N MGA94 56

SHEET 3 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

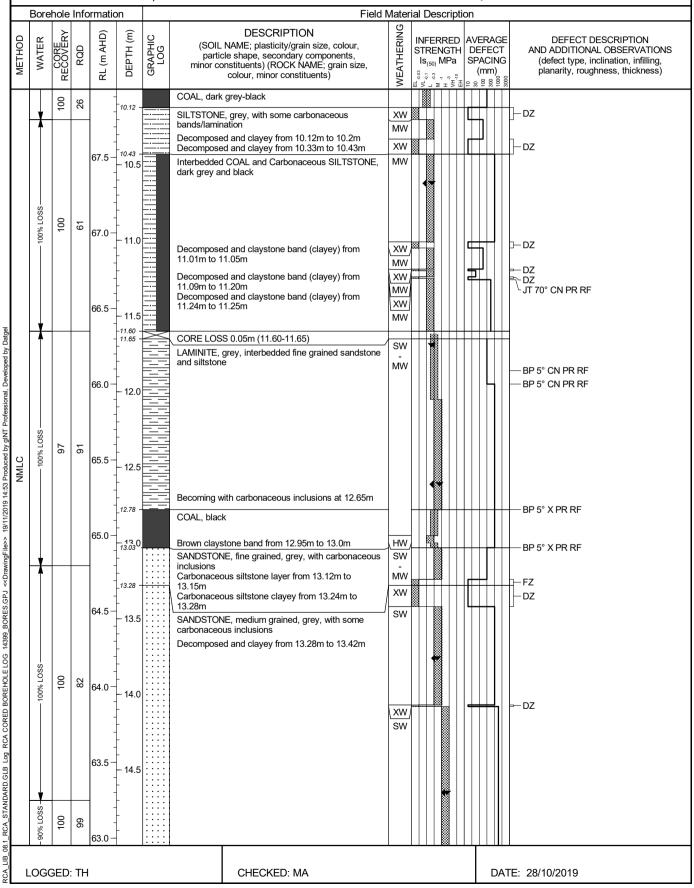
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 14/10/2019 DATE COMPLETED: 15/10/2019 SURFACE RL: 77.95 m AHD

COORDS: 377858.70 m E 6356614.50 m N MGA94 56

SHEET 4 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

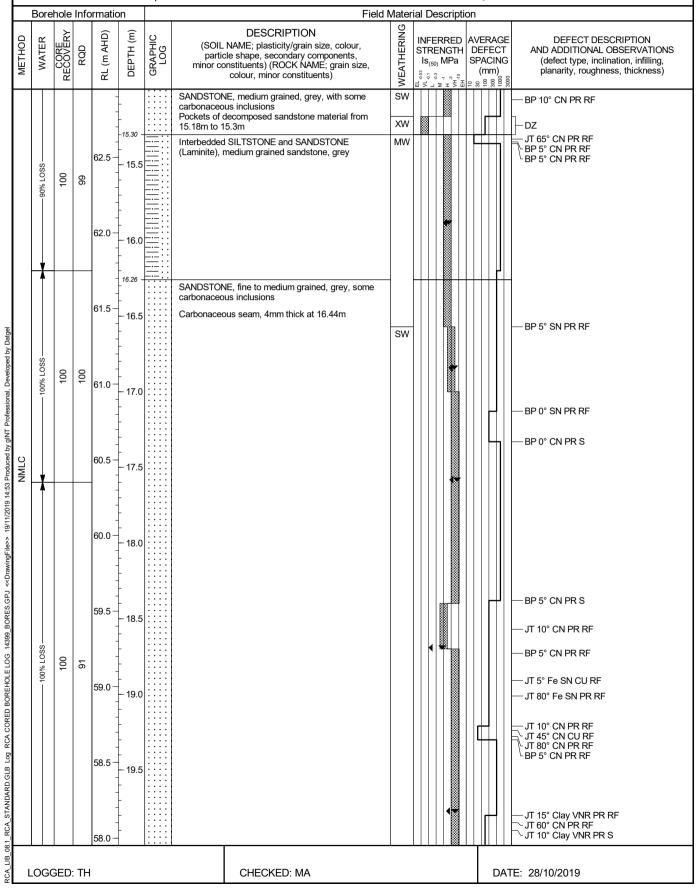
PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 14/10/2019 DATE COMPLETED: 15/10/2019 SURFACE RL: 77.95 m AHD

COORDS: 377858.70 m E 6356614.50 m N MGA94 56

SHEET 5 OF 6


PROJECT No: 14399 CLIENT: Health Infrastructure

PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 14/10/2019 DATE COMPLETED: 15/10/2019 SURFACE RL: 77.95 m AHD

COORDS: 377858.70 m E 6356614.50 m N MGA94 56

SHEET 6 OF 6

PROJECT No: 14399 CLIENT: Health Infrastructure


PROJECT: John Hunter Health and Innovation Precinct

LOCATION: John Hunter Hospital

DATE COMMENCED: 14/10/2019 DATE COMPLETED: 15/10/2019 SURFACE RL: 77.95 m AHD

COORDS: 377858.70 m E 6356614.50 m N MGA94 56

LC	LOCATION: John Hunter Hospital					ospital		DRILL MODEL: Hanjin D&B 8d									
	Borehole Information Field Material Description								tion								
METHOD	WATER	RCOOKERY ROD RL (m AHD) DEPTH (m) DEPTH (m) OGRAPHIC LOG LOG Name Name Name Name Name Name Name Name			retituents) (POCK NAME, grain size		EFE PAC	AGE ECT ING n)	AND ADDITIONAL OBSERVATIONS (defect type, inclination, infilling,								
		100	91	-	į		SANDSTON carbonaceo	IE, fine to medium grair us inclusions	ned, grey, some	SW							— JT 10° CN PR RF
NOTE TO THE STATE OF THE STATE				57.5 - 57.0 - 56.5 - 56.5 - 55	-20.5 -21.0 -21.5 -21.5 -22.0 -22.0 -23.5 -24.0 -24.5			PREHOLE BH110 TERN	MINATED AT								
	_OG(GED	TH					CHECKED: MA								DA	ΓΕ: 28/10/2019

PHOTOGRAPH 1 of 3 - BH110 0.37m to 5.0m

Client: Health Infrastructure RCA Australia

Project: John Hunter Health and Innovation Precinct

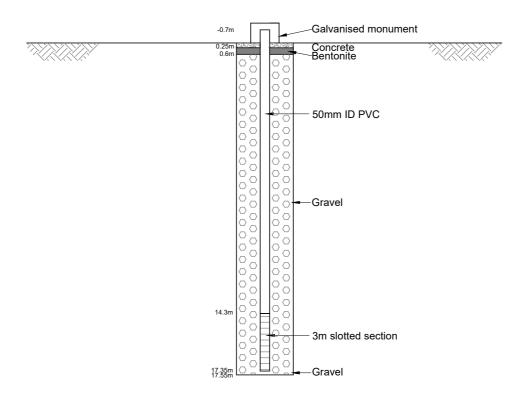
Location: John Hunter Hospital RCA ref: 14399

PHOTOGRAPH 2 of 3 - BH110 5.0m to 15.0m

Client: Health Infrastructure RCA Australia

Project: John Hunter Health and Innovation Precinct

Location: John Hunter Hospital RCA ref: 14399

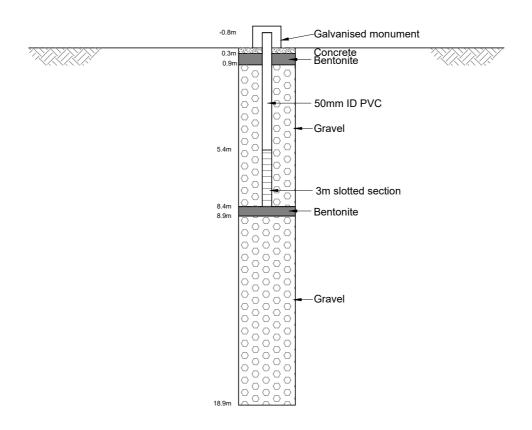

PHOTOGRAPH 3 of 3 - BH110 15.0m to 20.17m

Client: Health Infrastructure RCA Australia

Project: John Hunter Health and Innovation Precinct

Location: John Hunter Hospital RCA ref: 14399

BH102



STANDPIPE PIEZOMETER CONSTRUCTION DETAILS BH102 JOHN HUNTER HEALTH AND INNOVATION PRECINCT

CLIENT	Health Infr	Health Infrastructure					
DRAWN BY	TH	SCALE N.T.S	RCA Ref 14399	OFFICE			
APPROVED BY	MA	DATE 3/12/2019	DRAWING No 1 Rev 0	NEWCASTLE			

BH103

STANDPIPE PIEZOMETER CONSTRUCTION DETAILS BH103 JOHN HUNTER HEALTH AND INNOVATION PRECINCT

CLIENT	Health Infrastructure						
DRAWN BY	TH	SCALE N.T.S	RCA Ref 14399	OFFICE			
APPROVED BY	MA	DATE 3/12/2019	DRAWING No 2 Rev 0	NEWCASTLE			

Explanatory Notes – Soil Description

In engineering terms, soil includes every type of uncemented or partially cemented material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from AS 1726:2017 - Geotechnical Site Investigations and a soil symbol is used to define a soil layer.

METHOD

Method	Description
AD/T	Auger Drilling with tungsten carbide bit
AD/V	Auger Drilling with V Bit
AS	Auger Screwing
AT	Air Track
BH	Backhoe
CT	Cable Tool Rig
DB	Washbore Drag Bit
DT	Diatube
E	Excavator
EH	Excavator with Hammer
HA	Hand Auger
HQ	Diamond Core-63mm diameter
N	Natural Exposure
NMLC	Diamond Core-52mm diameter
NQ	Diamond Core-47mm diameter
Percussion	Percussion Drilling
PT	Push Tube
RR	Rock Roller
V	Vacuum Excavation
WS	Washbore
X	Existing Excavation
	<u> </u>

WATER

Water level at date shown

Seepage

NOT ENCOUNTERED: The borehole/test pit was dry soon after excavation. Inflow may have been observed had the borehole/test pit been left open for a longer period.

NOT OBSERVED: The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

SAMPLING

Sample	Description
В	Bulk Disturbed Sample
D	Disturbed Sample
SPT	Standard Penetration Test
U50	Undisturbed Sample - 50mm diameter
U75	Undisturbed Sample - 75mm diameter
ES	Soil Sample, Environmental
EW	Water Sample, Environmental
G	Gas Sample

SOIL CLASSIFICATION

The appropriate symbols are selected based on the result of visual examination, field tests and available laboratory test results, such as particle size analysis, liquid limit and plasticity index.

Group Symbol	Description
GW	Well graded gravel
GP	Poorly graded gravel
GM	Silty gravel
GC	Clayey gravel
SW	Well graded sand
SP	Poorly graded sand
SM	Silty sand
SC	Clayey sand
ML	Silt of low plasticity
CL	Clay of low plasticity
OL	Organic soil of low plasticity
CI	Clay of medium plasticity
MH	Silt of high plasticity
CH	Clay of high plasticity
OH	Organic soil of high plasticity
Pt	Peat, highly organic soil

MOISTURE CONDITION

For coarse grained soils, the following terms are used

Dry - Non-cohesive and free-running - Soil feels cool, darkened in colour Moist

- Soil tends to stick together

Wet - Soil feels cool, darkened in colour

- Soil tends to stick together, free water forms when handling

For fine grained soils, the following moisture content (w) terms are used:

w < PL - Moist, dry of plastic limit w≈PI - Moist, near plastic limit. - Moist, wet of plastic limit. w≈LL - Wet, near liquid limit. - Wet, wet of liquid limit

PLASTICITY

w > 11

Soil plasticity is a measure of the range of water content over which a soil exhibits plastic properties. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows.

Description of Plasticity	Range of Liquid Limit for Silt	Range of Liquid Limit for Clay
Non-plastic	Not applicable	Not applicable
Low plasticity	≤50	≤35
Medium plasticity	Not applicable	>35 and ≤50
High plasticity	>50	>50

COHESIVE SOILS - CONSISTENCY

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by hand penetrometer, dynamic cone penetrometer or vane shear values and by resistance to deformation to hand moulding.

A hand penetrometer may be used in the field or the laboratory to provide an approximate assessment of the unconfined compressive strength (UCS) of cohesive soils. Undrained shear strength

 c_u = 0.5×UCS. Undrained shear strength values are recorded in kPa as follows:

Strength	Symbol	Indicative Undrained Shear Strength, c _u (kPa)
Very Soft	VS	≤12
Soft	S	>12 and ≤25
Firm	F	>25 and ≤50
Stiff	St	>50 and ≤100
Very Stiff	VSt	>100 and ≤200
Hard	Н	>200
Friable	Fr	_

COHESIONLESS SOILS - RELATIVE DENSITY

Relative density terms such as very loose, loose, medium dense, dense and very dense are used to describe silty and sandy material, and these are usually based on resistance to drilling penetration, Standard Penetration Test (SPT) N values or Perth Sand Penetrometer resistance

Term	Symbol	Density Index	
Very Loose	VL	0 to 15	
Loose	L	15 to 35	
Medium Dense	MD	35 to 65	
Dense	D	65 to 85	
Very Dense	VD	>85	

SOIL PARTICLE SIZE DESCRIPTIVE TERMS

Fraction	Name	Subdivision	Size (mm)
Oversize	Boulders		>200
Oversize	Cobbles		63 to 200
		Coarse	19 to 63
	Gravel	Medium	6.7 to 19
Coarse	Fine		2.36 to 6.7
grained soil		Coarse	0.6 to 2.36
	Sand	Medium	0.21 to 0.6
		Fine	0.075 to 0.21
Fine	Silt		0.002 to 0.075
grained soil	Clay		<0.002

Explanatory Notes - Rock Description

METHOD

Refer to soil description sheet.

WATER

Refer to soil description sheet.

ROCK QUALITY

The defect spacing is shown where applicable and the Rock Quality Designation (RQD) and Total Core Recovery (TCR) for each core run is given where:

$$TCR = \frac{Length of core recovered}{Length of core run} \times 100\%$$

$$RQD = \frac{Sum \text{ of axial length of sound core pieces > 100mm long}}{Length \text{ of core run}} \times 100\%$$

ROCK MATERIAL WEATHERING

Rock material weathering is described using the abbreviations and definitions used in AS1726:2017– Geotechnical Site Investigations.

Term		Abbre	viation	Definition		
Residual	Soil	RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.		
Extremely weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	a	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.		
Slightly Weathere	d	SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.		
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.		

Where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock the term 'Distinctly Weathered' may be used. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in the pores'. There is some change in rock strength.

ROCK MATERIAL STRENGTH

Rock strength is described using AS1726:2017– Geotechnical Site Investigations and ISRM – Commission on Standardisation of Laboratory and Field Tests, 'Suggested method of determining the Uniaxial Compressive Strength of Rock materials and the Point Load Index' as follows:

Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Index Is ₅₀ (MPa)
Very Low	VL	0.6 to 2	0.03 to 0.1
Low	L	2 to 6	0.1 to 0.3
Medium	M	6 to 20	0.3 to 1
High	Н	20 to 60	1 to 3
Very High	VH	60 to 200	3 to 10
Extremely High	EH	>200	>10

Diametral Point Load Index test.

Axial Point Load Index test.

DEFECT SPACING/BEDDING THICKNESS

Depending on the project, may be either described as mean perpendicular spacing within a set of defects or bedding, or as the spacing between all defects within the rock mass.

Term	Defect Spacing	Bedding
Extremely closely spaced	<6 mm	Thinly laminated
	6 to 20 mm	Laminated
Very closely spaced	20 to 60 mm	Very thin
Closely spaced	0.06 to 0.2 m	Thin
Moderately widely spaced	0.2 to 0.6 m	Medium
Widely spaced	0.6 to 2.0 m	Thick
Very widely spaced	>2 m	Very thick

DEFECT DESCRIPTION

Туре	Definition
JT	Joint
BP	Bedding Parting
CO	Contact
CS	Clay Seam
CZ	Crush Zone
DK	Dyke
DZ	Decomposed Zone
FC	Fracture
FZ	Fracture Zone
FL	Foliation
FLT	Fault
VN	Vein
SM	Seam
IS	Infilled Seam
SZ	Shear Zone

Planarity	Roughness	
PR – Planar	VR – Very Rough	
CU – Curved	RF – Rough	
U – Undulating	S – Smooth	
ST – Stepped	POL – Polished	
IR – Irregular	SL – Slickensided	

Symbol	Coating or Infill	
CA	Calcite	
Clay	Clay	
CN	Clean	
Fe	Iron oxide	
KT	Chlorite	
Qz	Quartz	
Χ	Carbonaceous	
SN	Stain	
VNR	Veneer	

The inclinations of defects are measured from perpendicular to the core axis.

Appendix C

Laboratory Test Reports

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 **Construction Materials Testing**

California Bearing Ratio Report (1 Point)

Client: **NSW Health Infrastructure**

Project Number: 14399

Project Name: Geotechnical Investigation

Location:

John Hunter Health and Innovation Precinct

Report Number: 14399 - 001 Report Date: 24/10/2019

Order Number:

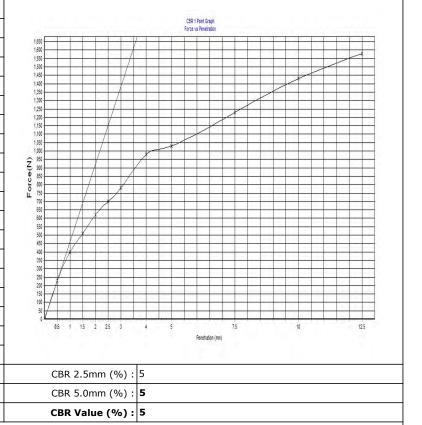
Test Method: AS 1289.6.1.1

Page 1 of 9

Sample Number: 19-3511

Date Sampled: 8/10/2019 22/10/2019 Date Tested:

Sampled By: RCA Geotech Sampling Method: AS 1289.1.2.1-6.5.4


Material Source : Material Type:

SAMPLE LOCATION

TP101 0.2-0.4m

Lot Number: Test Number :

Remarks :	
Moisture Method :	AS 1289.2.1.1
Maximum Dry Density (t/m³) :	1.623
Optimum Moisture Content (%) :	20.6
Compactive Effort :	Standard
Nominated Percentage of MDD :	100
Nominated Percentage of OMC :	100
Achieved Percentage of MDD :	100
Achieved Percentage of OMC :	100.0
Dry Density Before Soak (t/m³) :	1.623
Dry Density After Soak (t/m³) :	1.617
Moisture Content Before Soak (%) :	20.7
Moisture Content After Soak (%) :	24.3
Density Ratio After Soak (%) :	100
Field Moisture Content (%):	16.0
Top Moisture Content - After Penetration (%):	26.2
Total Moisture Content - After Penetration (%):	23.6
Soak Condition :	Soaked
Soak Period (days) :	4
Swell (%):	0.5
CBR Surcharge (kg) :	4.5
Oversize (%) :	2
Oversize Material Replaced (%):	Excluded

Site Selection :

Sandy CLAY Soil Description :

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number:

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au 53 063 515 711 ABN

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

California Bearing Ratio Report (1 Point)

Client: **NSW Health Infrastructure**

Project Number: 14399

Project Name: Geotechnical Investigation

Location: John Hunter Health and Innovation Precinct

Report Number: 14399 - 001 Report Date: 24/10/2019

Order Number:

Test Method: AS 1289.6.1.1

Page 2 of 9

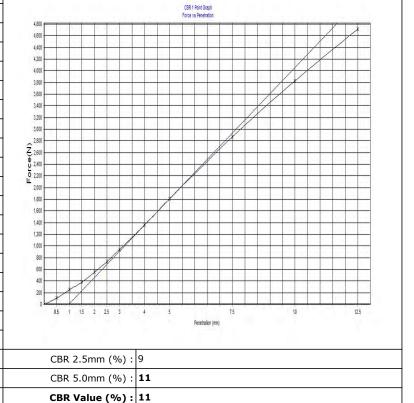
SAMPLE LOCATION

TP102

0.3-0.4m

Sample Number: 19-3512 Date Sampled: 8/10/2019

Date Tested: 21/10/2019 Sampled By: RCA Geotech


Sampling Method: AS 1289.1.2.1-6.5.4

Material Source : Material Type:

Lot Number:

Test Number :

Remarks: Moisture Method: AS 1289.2.1.1 1.86 Maximum Dry Density (t/m3): 13.9 Optimum Moisture Content (%): Compactive Effort: Standard Nominated Percentage of MDD: 100 Nominated Percentage of OMC: 100 Achieved Percentage of MDD: 100 99.0 Achieved Percentage of OMC : Dry Density Before Soak (t/m3): 1.863 Dry Density After Soak (t/m³) : 1.86 Moisture Content Before Soak (%): 13.8 Moisture Content After Soak (%): 14.9 Density Ratio After Soak (%): 100 Field Moisture Content (%): 12.2 Top Moisture Content - After Penetration 15.0 (%) Total Moisture Content - After Penetration 14.3 Soak Condition: Soaked 4 Soak Period (days): Swell (%): 0.0 4.5 CBR Surcharge (kg): 5 Oversize (%): Oversize Material Replaced (%): Excluded

Site Selection :

Soil Description : Silty SAND, traces of clay

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number:

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804
Construction Materials Testing

California Bearing Ratio Report (1 Point)

Client : NSW Health Infrastructure

Project Number: 14399

Project Name : Geotechnical Investigation

Location: John Hunter Health and Innovation Precinct

Report Number: Report Date: Order Number: Test Method:

Lot Number:

Test Number :

1.5 2 2.5 3

CBR 2.5mm (%): 2

CBR 5.0mm (%): 2

CBR Value (%): 2

CBR 1 Point Graph Force vs Penetration 14399 - 001 24/10/2019

24/

AS 1289.6.1.1

Page 3 of 9

SAMPLE LOCATION

TP103

0.2-0.4m

Sample Number: 19-3513

Date Sampled: 8/10/2019
Date Tested: 21/10/2019

Sampled By: RCA Geotech
Sampling Method: AS 1289.1.2.1-6.5.4

Material Source : Material Type : A3 1209.1.2.1-0.5.

 Remarks :
 Moisture Method :
 AS 1289.2.1.1

 Maximum Dry Density (t/m³) :
 1.542

 Optimum Moisture Content (%) :
 23.8

Compactive Effort: Standard

Nominated Percentage of MDD: 100

Nominated Percentage of OMC: 100

Achieved Percentage of MDD: 101

 Achieved Percentage of OMC :
 97.0

 Dry Density Before Soak (t/m³) :
 1.555

 Dry Density After Soak (t/m³) :
 1.516

 Moisture Content Before Soak (%):
 23.2

 Moisture Content After Soak (%):
 27.8

 Density Ratio After Soak (%):
 98

Field Moisture Content (%):

Top Moisture Content - After Penetration
(%):

35.2

Total Moisture Content - After Penetration

Total Moisture Content - After Penetration (%):

Soak Condition:

Soaked

Soak Period (days):

4

 Swell (%):
 2.5

 CBR Surcharge (kg):
 4.5

 Oversize (%):
 1

Site Selection :

Soil Description : CLAY

Oversize Material Replaced (%):

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

Excluded

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number :

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au
ABN 53 063 515 711

ABN 53 063 515 711 NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

California Bearing Ratio Report (1 Point)

Client : NSW Health Infrastructure

Project Number: 14399

Project Name : Geotechnical Investigation

Location: John Hunter Health and Innovation Precinct

Report Number: 14399 - 001
Report Date : 24/10/2019

Order Number :

Test Method : AS 1289.6.1.1

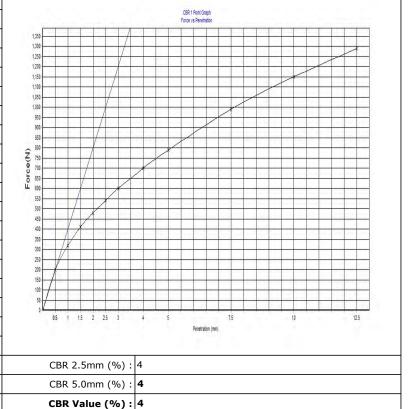
Page 4 of 9

 Sample Number :
 19-3514

 Date Sampled :
 8/10/2019

 Date Tested :
 21/10/2019

Sampled By: RCA Geotech


Sampling Method: AS 1289.1.2.1-6.5.4

Material Source :
Material Type :
Remarks :

SAMPLE LOCATION
TP104
0,4-0.5m

Lot Number : Test Number :

Remarks :	
Moisture Method :	AS 1289.2.1.1
Maximum Dry Density (t/m³) :	1.579
Optimum Moisture Content (%):	20.1
Compactive Effort :	Standard
Nominated Percentage of MDD :	100
Nominated Percentage of OMC :	100
Achieved Percentage of MDD :	101
Achieved Percentage of OMC :	99.0
Dry Density Before Soak (t/m³) :	1.6
Dry Density After Soak (t/m³) :	1.566
Moisture Content Before Soak (%):	19.8
Moisture Content After Soak (%) :	25.7
Density Ratio After Soak (%):	99
Field Moisture Content (%):	19.7
Top Moisture Content - After Penetration (%):	28.0
Total Moisture Content - After Penetration (%):	24.4
Soak Condition :	Soaked
Soak Period (days) :	4
Swell (%):	2.0
CBR Surcharge (kg) :	4.5
Oversize (%):	0

Site Selection :

Soil Description : CLAY with sand

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number :

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 **Construction Materials Testing**

California Bearing Ratio Report (1 Point)

Client: **NSW Health Infrastructure**

Project Number: 14399

Project Name: Geotechnical Investigation

Location: John Hunter Health and Innovation Precinct

Report Number: 14399 - 001 Report Date: 24/10/2019

Order Number:

Test Method: AS 1289.6.1.1

Page 5 of 9

0.6-0.9m

Sample Number : 19-3515

Date Sampled: 8/10/2019 21/10/2019 Date Tested:

Sampled By: RCA Geotech Sampling Method: AS 1289.1.2.1-6.5.4

Material Source : Material Type:

SAMPLE LOCATION TP105

Lot Number:

Test Number:

AS 1289.2.1.1
1.634
17.9
Standard
100
100
100
101.0
1.626
1.598
18.0
25.4
98
18.0
28.2
23.4
Soaked
4
2.0
4.5
5

00	1									1															
0										/															
50									1															/	
00									1														/		
0									/													/			
00								1	1_												\angle				
0								1				-							1	/					
00				-				/			-	-													
50	+			-	-		1	4	-			-					-	K						-	_
00				-			1	1				_				1									
10	+				_		/				-	-													
10						1								/											
0						1							/												
0						/						/													
10					1						1	1													
0					1					/	1_														
0									1	*													-		
0	-			1				1															-		
10	+			+	Н		-	*	-		-	-				-							-		
10	+		1	\leftarrow	-	-	-	-				-													
10			-/			/		1			1														
0			/		/																				
10		1	/	1																					
10		1	1																-						
0		1/2																							
0	1	/	-																						
0	1/			_							-														
10	1/															_									
0	1																								
10 /	4							-			\vdash														
0/																									
0 4	0.5	1.	5 2	2.	5	3	-	4		5				7						0					2.5
	4.0	1.		2.5				7							o .				1	v				14	- 4
												Penetra	on (mm												
(CBR	2.	5m	ım	(%	6)	: 4	-																	
-	CBR	5.	0m	m	(%	<u>ش</u>	. 4																		

Site Selection : Soil Description :

Oversize Material Replaced (%):

Extremely Weathered Sandy SILTSTONE

Excluded

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number :

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 **Construction Materials Testing**

California Bearing Ratio Report (1 Point)

Client: **NSW Health Infrastructure**

Project Number: 14399

Project Name: Geotechnical Investigation

Location:

AS 1289.1.2.1-6.5.4

John Hunter Health and Innovation Precinct

Report Number: Report Date:

Order Number:

Test Method: AS 1289.6.1.1

Page 6 of 9

14399 - 001

24/10/2019

Sample Number : 19-3516

Date Sampled: 8/10/2019 Date Tested : 22/10/2019

Sampled By: RCA Geotech

Sampling Method: Material Source :

Material Type:

SAMPLE LOCATION

TP106 0.2-0.5m

Lot Number:

Test Number :

CBR 1 Point Graph

Remarks :	
Moisture Method :	AS 1289.2.1.1
Maximum Dry Density (t/m³) :	1.421
Optimum Moisture Content (%) :	28.9
Compactive Effort :	Standard
Nominated Percentage of MDD :	100
Nominated Percentage of OMC :	100
Achieved Percentage of MDD :	100
Achieved Percentage of OMC :	101.0
Dry Density Before Soak (t/m³) :	1.416
Dry Density After Soak (t/m³) :	1.359
Moisture Content Before Soak (%):	29.3
Moisture Content After Soak (%):	35.3
Density Ratio After Soak (%):	96
Field Moisture Content (%):	33.4
Top Moisture Content - After Penetration (%):	53.9
Total Moisture Content - After Penetration (%):	30.8
Soak Condition :	Soaked
Soak Period (days) :	4
Swell (%):	4.0
CBR Surcharge (kg) :	4.5
Oversize (%):	1

				Force vs Penetr	tion	, ,				
750		1/								
700										
650										
600								/		
550							1			
500								1111		
450	-//-				4+					
450	+									
350	/							+		
300	/ 	4					Н	+		
250	*							+		
200	$\langle \dots \rangle$									
150							Ш			
100										
50								de		
1/-				100	in/jiidjii					
0.5 1 1.5	5 2 25 3	4	5		7.5		10		1	25
				Penetrati	n (mm)					
CBR 2.	.5mm (%	b) : 2								
CBR 5.	.0mm (%	b) : 2								

Site Selection : CLAY Soil Description :

Oversize Material Replaced (%):

Accredited for compliance with ISO/IEC 17025 - Testing.

Excluded

CBR Value (%): 2

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number:

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN

53 063 515 711 NATA Accredited Laboratory: 9811

Corporate Site No: 9804 **Construction Materials Testing**

Report Number:

Report Date:

California Bearing Ratio Report (1 Point)

Client: **NSW Health Infrastructure**

Project Number: 14399

Project Name: Geotechnical Investigation

Location: John Hunter Health and Innovation Precinct

Test Method:

Order Number:

Page 7 of 9

14399 - 001

24/10/2019

AS 1289.6.1.1

Sample Number : 19-3517

Date Sampled: 8/10/2019 22/10/2019 Date Tested:

Sampled By: RCA Geotech

Sampling Method: AS 1289.1.2.1-6.5.4

Material Source : Material Type:

SAMPLE LOCATION TP107

0.4-0.6m

Lot Number: Test Number:

CBR 1 Point Graph

Remarks :	
Moisture Method :	AS 1289.2.1.1
Maximum Dry Density (t/m³) :	1.584
Optimum Moisture Content (%):	22.0
Compactive Effort :	Standard
Nominated Percentage of MDD :	100
Nominated Percentage of OMC :	100
Achieved Percentage of MDD :	100
Achieved Percentage of OMC :	101.0
Dry Density Before Soak (t/m³) :	1.578
Dry Density After Soak (t/m³) :	1.542
Moisture Content Before Soak (%) :	22.2
Moisture Content After Soak (%):	28.6
Density Ratio After Soak (%):	97
Field Moisture Content (%):	26.3
Top Moisture Content - After Penetration (%):	40.4
Total Moisture Content - After Penetration (%):	27.7
Soak Condition :	Soaked
Soak Period (days) :	4
Swell (%):	2.5
CBR Surcharge (kg) :	4.5
Oversize (%) :	2

600						Force	vs Penetratio											
580				/1						- (1					
560	1 1 1 1 1								1									
			1					i i i i i i	1 = 1	-								
540			1/			-							1					
520			1															
500	1 1 1 1 1 1 1	1 1 1 1	1							(/							/	
480		1 7	1					1								1		
460		1/																
440		1/								1								
420	1 1 1							-		-	\neg		X					
400		//																
380		/						1			1		1					
360		/									-	\vdash						
340 320 300 280 260								1										
320									*				1					
300	1 /							1										
280	1/					100		1		-	\neg	-						
260	1/					1		+			\rightarrow							
240	1/1				*			1				1						_
220	/		1	1				+			\rightarrow		+			\rightarrow	_	_
200	1							1					1					
180	+	1				-					\rightarrow		+			_		=
160	11/	*										_						
140	1							+			\rightarrow	-	1			_		
120	\star					-		+			\rightarrow		+			\neg		
100					1			+						1				
80								+			\pm	_	1				_	-
60								-			_	_	_					
40						-		1				+	1					
20																	_	
0 1	b color		-	-		-		-			-	-	-	-	-		-	_
0.5 1	1.5 2 2	25 3		4	5		Penetration (1.5				10				12.5	
CBR :	2.5mm	(%)	: 1															
CDD	5.0mm	(0/)	1.															

Site Selection : Soil Description :

Oversize Material Replaced (%):

CLAY with sand

Excluded

Accredited for compliance with ISO/IEC 17025 - Testing.

CBR Value (%): 1

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number:

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

California Bearing Ratio Report (1 Point)

Client : NSW Health Infrastructure

Project Number: 14399

Project Name : Geotechnical Investigation

Location: John Hunter Health and Innovation Precinct

Report Number: 14399 - 001
Report Date : 24/10/2019

Order Number :

Test Method : AS 1289.6.1.1

Page 8 of 9

 Sample Number :
 19-3518

 Date Sampled :
 8/10/2019

 Date Tested :
 21/10/2019

AS 1289.1.2.1-6.5.4

Sampled By: RCA Geotech

Sampling Method :
Material Source :
Material Type :

Domonico :

SAMPLE LOCATION
TP108
0.3-0.6m

Lot Number : Test Number :

Remarks :	
Moisture Method :	AS 1289.2.1.1
Maximum Dry Density (t/m³) :	1.561
Optimum Moisture Content (%) :	24.3
Compactive Effort :	Standard
Nominated Percentage of MDD :	100
Nominated Percentage of OMC :	100
Achieved Percentage of MDD :	99
Achieved Percentage of OMC :	100.0
Dry Density Before Soak (t/m³) :	1.542
Dry Density After Soak (t/m³) :	1.519
Moisture Content Before Soak (%):	24.4
Moisture Content After Soak (%):	28.0
Density Ratio After Soak (%):	97
Field Moisture Content (%):	24.0
Top Moisture Content - After Penetration (%):	31.7
Total Moisture Content - After Penetration (%):	26.9
Soak Condition :	Soaked
Soak Period (days) :	4
Swell (%):	1.5
CBR Surcharge (kg) :	4.5
Oversize (%) :	0

	CSR 1 Point Graph Force vs Penetration
05 1 15 2 25 3	4 5 7.5 10 12.5 Penetration (mt)
CBR 2.5mm (%):	: 2.5
CBR 5.0mm (%):	
CBR Value (%):	: 2.5

Site Selection :

Soil Description : CLAY

Oversize Material Replaced (%):

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number :

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

California Bearing Ratio Report (1 Point)

Client : NSW Health Infrastructure

Project Number: 14399

Project Name : Geotechnical Investigation

Location: John Hunter Health and Innovation Precinct

echnical Investigation | Order Numb

Report Number: 14399 - 001
Report Date : 24/10/2019

Order Number :

Test Method : AS 1289.6.1.1

Page 9 of 9

Sample Number: 19-3519

Date Sampled : 8/10/2019
Date Tested : 22/10/2019

Sampled By: RCA Geotech

Sampling Method: AS 1289.1.2.1-6.5.4

Material Source : Material Type :

Remarks :

SAMPLE LOCATION

TP109 0.4-0.7m

Lot Number : Test Number :

Remarks :	
Moisture Method :	AS 1289.2.1.1
Maximum Dry Density (t/m³) :	1.714
Optimum Moisture Content (%):	20.0
Compactive Effort :	Standard
Nominated Percentage of MDD :	100
Nominated Percentage of OMC :	100
Achieved Percentage of MDD :	100
Achieved Percentage of OMC :	101.0
Dry Density Before Soak (t/m³) :	1.706
Dry Density After Soak (t/m³) :	1.672
Moisture Content Before Soak (%) :	20.1
Moisture Content After Soak (%):	23.3
Density Ratio After Soak (%):	98
Field Moisture Content (%):	20.2
Top Moisture Content - After Penetration (%):	27.4
Total Moisture Content - After Penetration (%):	22.0
Soak Condition :	Soaked
Soak Period (days) :	4
Swell (%):	2.0
CBR Surcharge (kg) :	4.5
Oversize (%):	1
Oversize Material Replaced (%) :	Excluded

CBR 2.5mm (%): 2.5

CBR 5.0mm (%): 2.5

CBR Value (%): 2.5

Site Selection :

Soil Description : CLAY with gravel

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number :

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Emerson Class Report

Client:NSW Health InfrastructureReport Number:14399 - 002Project Name:Geotechnical InvestigationReport Date:24/10/2019Project Number:14399Order Number:HI19320Location:John Hunter Health and Innovation PrecinctTest Method:AS 1289.3.8.1

Page 1 of 3

Sample Number :	19-3511	19-3512	19-3513	19-3514
Test Number :				
Sampling Method :	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4
Date Sampled :	8/10/2019	8/10/2019	8/10/2019	8/10/2019
Date Tested :	17/10/2019	17/10/2019	17/10/2019	17/10/2019
Material Type :				
Material Source :				
Lot Number :				
Sample Location :	TP101	TP102	TP103	TP104
	0.2-0.4m	0.3-0.4m	0.2-0.4m	0.4-0.5m
Primary Water Type :	Distilled Water	Distilled Water	Distilled Water	Distilled Water
Primary Soil Description :	Sandy CLAY	Silty SAND, traces of clay	CLAY	CLAY with sand
Primary Temperature :	23	23	23	23
Primary Emerson Class Number :	Class 2	Class 2	Class 5	Class 5
Secondary Water Type :				
Secondary Soil Description :				
Secondary Temperature :				
Secondary Emerson Class Number :				
Remarks :				•

NATA WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number 9811

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Emerson Class Report

Client:NSW Health InfrastructureReport Number:14399 - 002Project Name:Geotechnical InvestigationReport Date:24/10/2019Project Number:14399Order Number:HI19320Location:John Hunter Health and Innovation PrecinctTest Method:AS 1289.3.8.1

Page 2 of 3

Sample Number :	19-3515	19-3516	19-3517	19-3518
Test Number :				
Sampling Method :	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4
Date Sampled :	8/10/2019	8/10/2019	8/10/2019	8/10/2019
Date Tested :	17/10/2019	17/10/2019	17/10/2019	17/10/2019
Material Type :				
Material Source :				
Lot Number :				
Sample Location :	TP105	TP106	TP107	TP108
	0.6-0.9m	0.2-0.5m	0.4-0.6m	0.3-0.6m
Primary Water Type :	Distilled Water	Distilled Water	Distilled Water	Distilled Water
Primary Soil Description :	Extremely Weathered Sandy SILTSTONE	CLAY	CLAY with sand	CLAY
Primary Temperature :	23	23	23	23
Primary Emerson Class Number :	Class 5	Class 5	Class 5	Class 5
Secondary Water Type :				
Secondary Soil Description :				
Secondary Temperature :				
Secondary Emerson Class Number :				
Remarks :				

NATA WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number 9811

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711 NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Emerson Class Report

Client:NSW Health InfrastructureReport Number:14399 - 002Project Name:Geotechnical InvestigationReport Date:24/10/2019Project Number:14399Order Number:HI19320Location:John Hunter Health and Innovation PrecinctTest Method:AS 1289.3.8.1

Page 3 of 3

Sample Number :	19-3519		
Test Number :			
Sampling Method :	AS 1289.1.2.1-6.5.4		
Date Sampled :	8/10/2019		
Date Tested :	17/10/2019		
Material Type :			
Material Source :			
Lot Number :			
Sample Location :	TP109		
	0.4-0.7m		
Primary Water Type :	Distilled Water		
Primary Soil Description :	CLAY with gravel		
Primary Temperature :	23		
Primary Emerson Class Number :	Class 1		
Secondary Water Type :			
Secondary Soil Description :			
Secondary Temperature :			
Secondary Emerson Class Number :			
Remarks :			

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number 9811

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 **Construction Materials Testing**

Atterberg Limits Report

Client : **NSW Health Infrastructure**

Address:

Project Name: **Geotechnical Investigation**

Project Number : 14399

Location:

Report Number: 14399 - 003 Report Date: 24/10/2019

Order Number : Test Method:

Lagation	Table House Hardship and Tone		lest Method :	404200 2 4 2 2 2 4 2 2
Location:	John Hunter Health and Inno	vation Precinct	Page	AS1289.3.1.2, 3.2.1, 3.3. 1 of 3
Sample Number :	19-3511	19-3512	19-3513	19-3514
Test Number :				
Date Sampled :	8/10/2019	8/10/2019	8/10/2019	8/10/2019
Date Tested :	18/10/2019	18/10/2019	18/10/2019	18/10/2019
Sampled By :	RCA Geotech	RCA Geotech	RCA Geotech	RCA Geotech
Sampling Method :	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4
Material Source :				
Material Type :				
Sample Location :	TP101	TP102	TP103	TP104
	0.2-0.4m	0.3-0.4m	0.2-0.4m	0.4-0.5m
Lot Number :				
Moisture Method :	AS 1289.2.1.1	AS 1289.2.1.1	AS 1289.2.1.1	AS 1289.2.1.1
Sample History :	Oven dried prep (50°C)	Oven dried prep (50°C)	Oven dried prep (50°C)	Oven dried prep (50°C)
Sample Preparation:	Dry	Dry	Dry	Dry
Notes:				
Mould Length (mm) :				
_iquid Limit (%) :	51	17	41	41
Plastic Limit (%) :	21	15	21	20
Plasticity Index (%) :	30	2	20	21
inear Shrinkage (%):				
SPECIFICATION DETAILS				
Specification Number :				
iquid Limit - Max :				
Plasticity Index - Max :				
inear Shrinkage - Max :				
Remarks :	-	•	•	•

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number: 9811

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804
Construction Materials Testing

Atterberg Limits Report

Client : NSW Health Infrastructure

Address:

Project Name : Geotechnical Investigation

Project Number: 14399

Location: John Hunter Health and Innovation Precinct

Report Number: Report Date : 14399 - 003 24/10/2019

Order Number :

Test Method:

AS1289.3.1.2, 3.2.1, 3.3.1

Location: John Hunter Health and Innovation Precinct			AS1289.3.1.2, 3.2.1, 3.3.1		
			Page	2 of 3	
Sample Number :	19-3515	19-3516	19-3517	19-3518	
Test Number :					
Date Sampled :	8/10/2019	8/10/2019	8/10/2019	8/10/2019	
Date Tested :	18/10/2019	18/10/2019	21/10/2019	21/10/2019	
Sampled By :	RCA Geotech	RCA Geotech	RCA Geotech	RCA Geotech	
Sampling Method :	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	AS 1289.1.2.1-6.5.4	
Material Source :					
Material Type :					
Sample Location :	TP105	TP106	TP107	TP108	
	0.6-0.9m	0.2-0.5m	0.4-0.6m	0.3-0.6m	
Lab Marahama					
Lot Number :	10 1000 0 1 1	40 4200 2 4 4	40,4200,2,4,4	10 1000 0 1 1	
Moisture Method :	AS 1289.2.1.1	AS 1289.2.1.1	AS 1289.2.1.1	AS 1289.2.1.1	
Sample History :	Oven dried prep (50°C)	Oven dried prep (50°C)	Oven dried prep (50°C)	Oven dried prep (50°C)	
Sample Preparation :	Dry	Dry	Dry	Dry	
Notes :					
Mould Length (mm) :					
Liquid Limit (%) :	41	86	70	60	
Plastic Limit (%) :	23	23	26	21	
Plasticity Index (%) :	18	63	44	39	
Linear Shrinkage (%):					
SPECIFICATION DETAILS					
Specification Number :					
Liquid Limit - Max :					
Plasticity Index - Max :					
Linear Shrinkage - Max :					
Remarks :	-	!	!	!	

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number : 9811

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804 Construction Materials Testing

Atterberg Limits Report

Client : **NSW Health Infrastructure**

Address:

Project Name : **Geotechnical Investigation**

Project Number :

Report Number: 14399 - 003 Report Date: 24/10/2019

Order Number :

Test Method:

John Hunter Health and Innov	vation Precinct		AS1289.3.1.2, 3.2.1, 3.3.1
1			Page 3 of 3
19-3519			
8/10/2019			
21/10/2019			
RCA Geotech			
AS 1289.1.2.1-6.5.4			
TP109			
0.4-0.7m			
AS 1289.2.1.1			
Oven dried prep (50°C)			
Dry			
57			
21			
36			
!			
1_		1	
	19-3519 8/10/2019 21/10/2019 RCA Geotech AS 1289.1.2.1-6.5.4 TP109 0.4-0.7m AS 1289.2.1.1 Oven dried prep (50°C) Dry 57 21	8/10/2019 21/10/2019 RCA Geotech AS 1289.1.2.1-6.5.4 TP109 0.4-0.7m AS 1289.2.1.1 Oven dried prep (50°C) Dry 57 21	19-3519 8/10/2019 21/10/2019 RCA Geotech AS 1289.1.2.1-6.5.4 TP109 0.4-0.7m AS 1289.2.1.1 Oven dried prep (50°C) Dry 57 21

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number: 9811

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811

Corporate Site No: 9804

Construction Materials Testing

Atterberg Limits Report

Report Number: Client : **NSW Health Infrastructure** 14399 - 004 Project Name : **Geotechnical Investigation** Order Number: HI19320

Project Number:

Test Method: Location: AS1289.3.1.2, 3.2.1, 3.3.1 **John Hunter Health and Innovation Precinct**

Locationi	John Hanter Health and Imm		Page 1 of 1	
Sample Number :	19-3917	19-3918		
Test Number :				
Date Sampled :	26/09/2019	26/09/2019		
Date Tested :	19/11/2019	19/11/2019		
Sampled By :	RCA Geotech	RCA Geotech		
Sampling Method :	AS SUPPLIED	AS SUPPLIED		
Material Source :				
Material Type :				
Sample Location :	BH105	BH105		
	1.5-1.95m	6.0-6.15m		
Lot Number :				
Moisture Method :	AS 1289.2.1.1	AS 1289.2.1.1		
Sample History :	Oven dried prep (50°C)	Oven dried prep (50°C)		
Sample Preparation :	Dry	Dry		
Notes :				
Mould Length (mm) :				
Liquid Limit (%) :	61	47		
Plastic Limit (%) :	26	22		
Plasticity Index (%) :	35	25		
Linear Shrinkage (%):				
SPECIFICATION DETAILS	1			
Specification Number :				
Liquid Limit - Max :				
Plasticity Index - Max :				
Linear Shrinkage - Max :				
Remarks :	-	-	+	

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY

Joseph Scully - Laboratory Manager NATA Accreditation Number: 9811

CERTIFICATE OF ANALYSIS

Work Order : ES1935812

: ROBERT CARR & ASSOCIATES P/L

Contact : MR ROBERT CATER

Address : P O BOX 175

CARRINGTON NSW. AUSTRALIA 2294

Telephone : +61 02 49029200

Project : 14399

Order number : 14399

C-O-C number : ----

Sampler : Rob Cater and Tom Hosking

Site : ---

Quote number : SYBQ/400/18

No. of samples received : 30
No. of samples analysed : 30

Page : 1 of 8

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 30-Oct-2019 16:07

Date Analysis Commenced : 04-Nov-2019

Issue Date · 07-Nov-2019 10:00

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
-------------	----------	------------------------

Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Celine Conceicao Senior Spectroscopist Sydney Inorganics, Smithfield, NSW Evie Sidarta Sydney Inorganics, Smithfield, NSW

Kim McCabe Senior Inorganic Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 8
Work Order : ES1935812

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

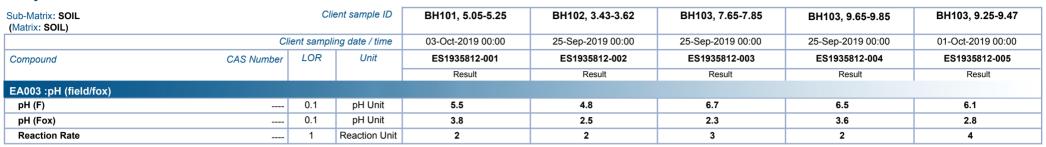
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ASS: EA003 (NATA Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme

Page : 3 of 8
Work Order : ES1935812

Client : ROBERT CARR & ASSOCIATES P/L

Project : 1439

Page : 4 of 8
Work Order : ES1935812

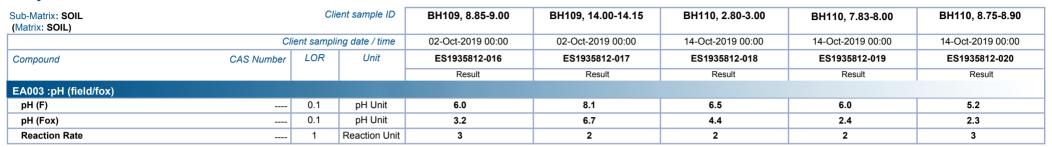
Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

Page : 5 of 8
Work Order : ES1935812

Client : ROBERT CARR & ASSOCIATES P/L

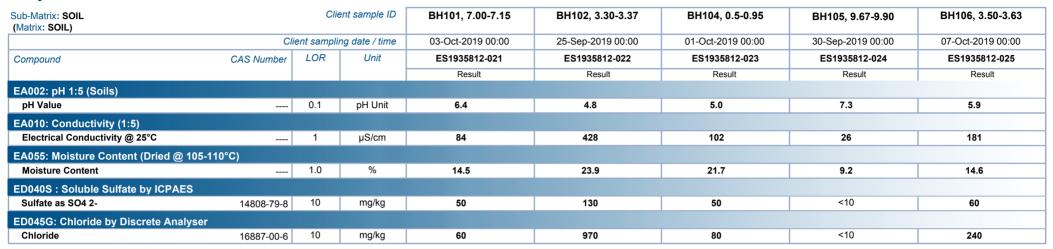
Project : 14399



Page : 6 of 8
Work Order : ES1935812

Client : ROBERT CARR & ASSOCIATES P/L

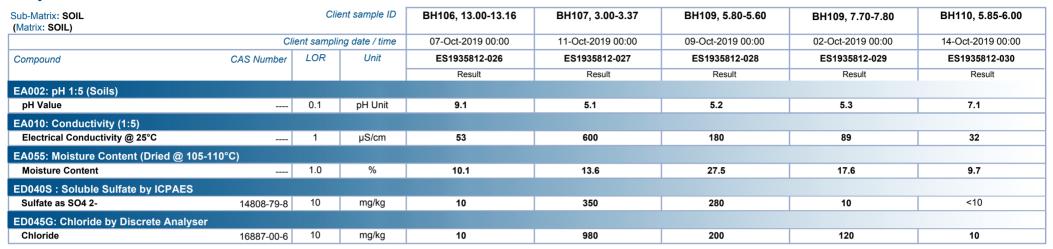
Project : 1439



Page : 7 of 8
Work Order : ES1935812

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399



Page : 8 of 8 Work Order : ES1935812

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

CERTIFICATE OF ANALYSIS

Work Order : ES1936896

Client : ROBERT CARR & ASSOCIATES P/L

Contact : MR ROBERT CATER

Address : P O BOX 175

CARRINGTON NSW, AUSTRALIA 2294

Telephone : +61 02 49029200

Project : 14399 Order number : ----

C-O-C number : ----

Sampler : ROBERT CATER, TOM HOSKING

Site : ---

Quote number : SYBQ/400/18

No. of samples received : 7
No. of samples analysed : 7

Page : 1 of 4

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61-2-8784 8555

 Date Samples Received
 : 30-Oct-2019 19:30

 Date Analysis Commenced
 : 12-Nov-2019

Issue Date : 14-Nov-2019 16:36

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 4 Work Order : ES1936896

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

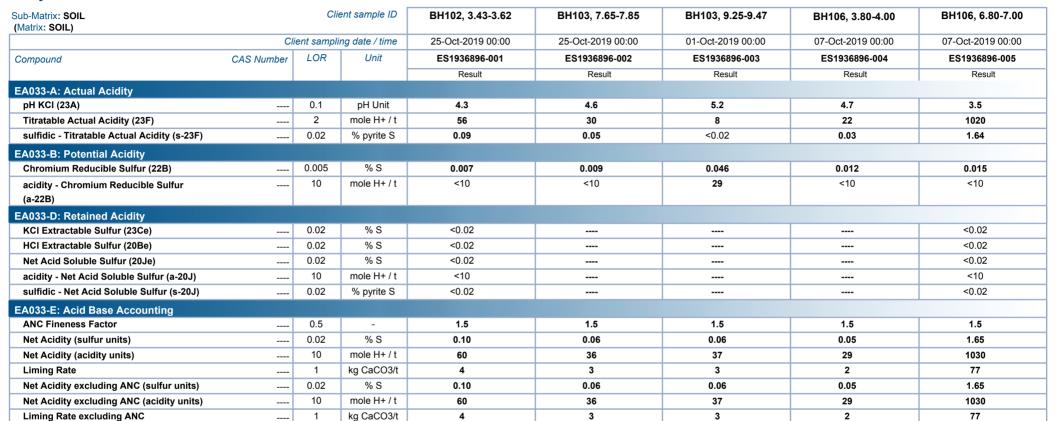
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

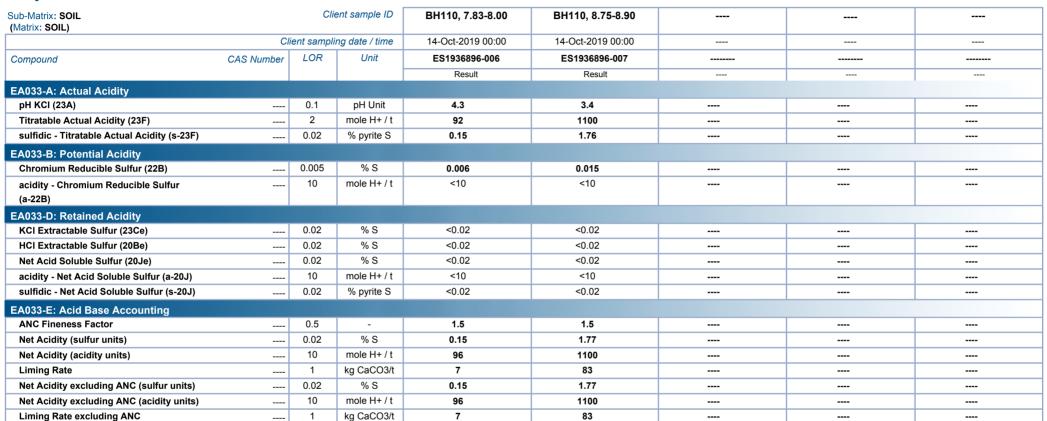
LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ASS: EA033 (CRS Suite): ANC not required because pH KCl less than 6.5
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

Page : 3 of 4
Work Order : ES1936896

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399



Page : 4 of 4 Work Order : ES1936896

Client : ROBERT CARR & ASSOCIATES P/L

Project : 14399

