APPENDIX 13

Air Quality Impact Assessment

Glendell Continued Operations Project

Mt Owen Pty Ltd

Air Quality Impact Assessment

Final | Revision 1 29 November 2019 Umwelt 4166

Glendell Continued Operations Project

Project No:	IA160700
Document Title:	Air Quality Impact Assessment
Document No.:	Final
Revision:	Revision 1
Date:	29 November 2019
Client Name:	Mt Owen Pty Ltd
Client No:	Umwelt 4166
Project Manager:	Shane Lakmaker
Author:	Shane Lakmaker
File Name:	IA160700_Jacobs_AQIA

Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Level 4, 12 Stewart Avenue Newcastle West NSW 2302 Australia PO Box 2147 Dangar NSW 2309 Australia T +61 2 4979 2600 F +61 2 4979 2666 www.jacobs.com

© Copyright 2019 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Revision	Date	Description	Ву	Review	Approved
D1R0	9/08/19	Draft report	SL	-	-
D2R0	19/08/19	Draft report	SL	LS	PH
D3R0	18/09/19	Draft report	SL	Umw, MTO	PH
D4R0	19/09/19	Draft report	SL	Umw, MTO	PH
D5R0	11/10/19	Draft report	SL	Umw, MTO	PH
D6R0	22/11/19	Draft report following adequacy review	SL	Umw, MTO	PH
D7R2	27/11/19	Draft report	SL	Umw, MTO	PH
D8R0	29/11/19	Draft report	SL	Umw, MTO	PH
Final R1	29/11/19	Final report	SL	-	PH

Document history and status

Contents

Execut	tive Summary	1
1.	Introduction	4
2.	Project Description	7
3.	Air Quality Issues	.10
4.	Air Quality Criteria	.11
5.	Existing Environment	.14
5.1	Meteorological Conditions	.15
5.2	Air Quality Conditions	.19
5.2.	1 Particulate Matter (as PM ₁₀)	.19
5.2.2	2 Particulate Matter (as PM _{2.5})	. 28
5.2.3	3 Particulate Matter (as TSP)	. 29
5.2.4	4 Deposited Dust	. 30
5.2.	5 Nitrogen Dioxide (NO ₂)	. 30
5.3	Summary of the Existing Environment	.31
5.4	Assumed Background Levels	.32
6.	Emissions to Air	.34
7.	Approach to Assessment	.40
7.1	Overview	.40
7.2	Meteorological Modelling	.40
7.3	Dispersion Modelling	.44
8.	Model Performance	.51
9.	Assessment of Impacts	.56
9.1	Particulate Matter (as PM ₁₀)	.56
9.2	Particulate Matter (as PM _{2.5})	.62
9.3	Particulate Matter (as TSP)	.67
9.4	Deposited Dust	.70
9.5	Post-Blast Fume (NO ₂)	.73
9.6	Diesel Exhaust Emissions	.78
9.6.	1 Particulate Matter (as PM ₁₀ and PM _{2.5})	78
9.6.2	2 Nitrogen Dioxide (NO ₂)	79
10.	Assessment Against VLAMP	.82
10.1	Predicted Impacts	.82
10.1	.1 Project Only Impacts	82
10.1	.2 Cumulative Impacts	82
10.2	Land Holding Assessment	.84
11.	Construction	.86
12.	Management and Monitoring	.89
13.	Conclusions	.93
14.	References	.95

Appendix A. EPA Assessment Requirements
Appendix B. Wind-roses for all meteorological stations
Appendix C. Emissions Calculations
Appendix D. Peer Review Outcomes
Appendix E. Model Receptors
Appendix F. Additional Model Performance Evaluations
Appendix G. Tabulated Model Results
Appendix H. Model Inputs for Construction Activities

List of tables

Table 1 Relevant matters raised in SEARs	4
Table 2 EPA air quality assessment criteria	11
Table 3 VLAMP mitigation criteria for particulate matter	13
Table 4 VLAMP acquisition criteria for particulate matter	13
Table 5 Annual statistics from meteorological data collected between 2012 and 2018	
Table 6 Summary of measured PM ₁₀ concentrations	21
Table 7 Summary of measured PM _{2.5} concentrations	29
Table 8 Summary of measured TSP concentrations	
Table 9 Summary of measured deposited dust levels	
Table 10 Summary of measured NO ₂ concentrations	31
Table 11 Assumed non-modelled background levels that apply at sensitive receptors	
Table 12 Assumed ROM coal production from each operation located within the model domain	
Table 13 Estimated TSP emissions due to the Project and other operations	
Table 14 Estimated PM ₁₀ emissions due to the Project and other operations	
Table 15 Estimated PM _{2.5} emissions due to the Project and other operations	
Table 16 Model settings and inputs for TAPM	41
Table 17 Model settings and inputs for CALMET	41
Table 18 Model settings and inputs for CALPUFF	50
Table 19 Predicted number of days above 24-hour average PM10 criteria at Camberwell (property ID 156)	57
Table 20 Estimate of PM ₁₀ and PM _{2.5} emissions from diesel engines	78
Table 21 Estimated NO _x emissions from diesel exhausts	79
Table 22 Residences with predicted exceedance of VLAMP criteria	82
Table 23 Private land with predicted exceedance of VLAMP criteria	84
Table 24 Preliminary estimates of Year 1 construction material handling quantities	86
Table 25 Estimated emissions due to construction works for the Project	
Table 26 Emission management measures	
Table 27 Project approach to air quality emission control measures	
Table 28 Summary of compliance outcomes	

List of figures

Figure 1 Regional locality plan	6
Figure 2 Glendell Continued Operations Project Key Features	
Figure 3 Location of nearest sensitive receptors and identification labels	
Figure 4 Location of air quality and meteorological monitoring sites	14
Figure 5 Annual wind-roses for data collected at Glendell Met meteorological station	16
Figure 6 Wind speed and rainfall for data collected between 2012 and 2018	17
Figure 7 Measured 24-hour average PM ₁₀ concentrations	20
Figure 8 Spatial variation in maximum 24-hour average PM10 concentrations (µg/m3)	22
Figure 9 Spatial variation in the number of days per year above the 24-hour PM ₁₀ criterion (days)	23
Figure 10 Spatial variation in annual average PM ₁₀ concentrations (µg/m ³)	24

Figure 11 Measured PM ₁₀ concentrations by time of day and wind speed (2014 data) Figure 12 Measured PM ₁₀ concentrations by wind direction and wind speed (2014 data)	
Figure 13 Measured 24-hour average PM _{2.5} concentrations	
Figure 14 Assumed background PM ₁₀ and PM _{2.5} concentrations as inferred from the measurement data	
Figure 15 Estimated ROM coal and overburden movements over the life of the Project	
Figure 16 Model domain, grid, land-use and terrain information	
Figure 17 Example of CALMET simulated ground-level wind flows	
Figure 18 Location of modelled sources in 2014 (Existing Conditions)	
Figure 19 Location of modelled sources in Project Year 1	
Figure 20 Location of modelled sources in Project Year 6	47
Figure 21 Location of modelled sources in Project Year 13	48
Figure 22 Location of modelled sources in Project Year 18	49
Figure 23 Model performance for predicting maximum 24-hour average PM ₁₀ concentrations	
Figure 24 Model performance for predicting annual average PM ₁₀ concentrations	
Figure 25 Model performance for predicting annual average TSP concentrations	54
Figure 26 Model performance for predicting annual average deposited dust	
Figure 27 Predicted maximum 24-hour average PM ₁₀ concentrations due to the Project only	
Figure 28 Predicted maximum 24-hour average PM ₁₀ concentrations due all sources (cumulative)	
Figure 29 Predicted annual average PM ₁₀ concentrations due to the Project only	
Figure 30 Predicted annual average PM ₁₀ concentrations due to all sources (cumulative)	
Figure 31 Predicted maximum 24-hour average PM _{2.5} concentrations due to the Project only	
Figure 32 Predicted maximum 24-hour average PM _{2.5} concentrations due to all sources (cumulative)	
Figure 33 Predicted annual average PM _{2.5} concentrations due to the Project only	
Figure 34 Predicted annual average PM _{2.5} concentrations due to all sources (cumulative)	66
Figure 35 Predicted annual average TSP concentrations due to the Project only	68
Figure 36 Predicted annual average TSP concentrations due to all sources (cumulative)	
Figure 37 Predicted annual average deposited dust levels due to the Project only	
Figure 38 Predicted annual average deposited dust levels due to all sources (cumulative)	
Figure 39 Measured NO ₂ to NO _x ratios from hourly average data collected at Singleton by the OEH in 2014	
Figure 40 Predicted maximum 1-hour average NO ₂ concentrations due to blasting	
Figure 41 Predicted 99th percentile nose-response time average NO ₂ concentrations due to blasting	
Figure 42 Predicted maximum 1-hour average NO ₂ concentrations due to diesel exhausts	
Figure 43 Predicted annual average NO ₂ concentrations due to diesel exhausts	
Figure 44 Predicted cumulative air quality impacts in Year 1 with construction	88

Acronyms and definitions

Abbreviation	Definition
BAM	Beta attenuation monitor
ВоМ	Bureau of Meteorology
CALPUFF	Computer-based air dispersion model
CHPP	Coal handling and preparation plant
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DPIE	Department of Planning, Industry and Environment
EPA	NSW Environment Protection Authority
H ₂ S	Hydrogen sulphide
HVAS	High volume air sampler
Jacobs	Jacobs Group (Australia) Pty. Limited
Mtpa	Million tonnes per annum
NEPM	National Environment Protection Measure
NEPC	National Environmental Protection Council of Australia
NO	Molecular formula for nitric oxide
NO ₂	Molecular formula for nitrogen dioxide
NO _x	Molecular formula for oxides of nitrogen, (NO and NO ₂)
NPI	National Pollutant Inventory
OEH	Office of Environment and Heritage, now part of the Department of Planning, Industry and Environment
PM _{2.5}	Particulate matter with equivalent aerodynamic diameters less than 2.5 microns
PM ₁₀	Particulate matter with equivalent aerodynamic diameters less than 10 microns
ROM	Run-of-mine
SEARs	Secretary's Environmental Assessment Requirements
SO ₂	Sulphur dioxide
ТЕОМ	Tapered Element Oscillating Microbalance
ТАРМ	The Air Pollution Model – a meteorological and air dispersion model developed by CSIRO
TSP	Total Suspended Particulate matter
VLAMP	NSW Voluntary Land Acquisition and Mitigation Policy

Executive Summary

This report provides an assessment of the potential air quality impacts of the Glendell Continued Operations Project (the Project), a proposal for the continuation of mining at Glendell Mine into a new mining area to the immediate north of the existing operations. The purpose of this air quality impact assessment is to form part of an Environmental Impact Statement being prepared by Umwelt to accompany an application for development consent under Part 4 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) for the Project. The assessment has been undertaken in accordance with the *Secretary's Environmental Assessment Requirements* (SEARs) and the EPA's "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW" (EPA 2016). This assessment has also been peer reviewed by ERM.

The potential air quality issues for the Project were identified as:

- Dust from the general mining activities;
- Fume from blasting; and
- Emissions of substances from machinery exhausts.

A detailed review of the existing environment was carried out. The following conclusions were made in relation to the existing air quality and meteorological conditions:

- Wind patterns in the vicinity of Glendell Mine are similar to other parts of the Hunter Valley, with the prevailing winds being from either the northwest or southeast.
- There are seasonal variations in particulate matter concentrations, with PM₁₀ levels generally higher in spring and PM_{2.5} levels generally higher in winter.
- There are daily variations in particulate matter concentrations, with levels typically highest in the morning and evening.
- In 2018 particle levels increased across the State due to dust from the widespread, intense drought and smoke from bushfires and hazard reduction burning (OEH 2019).
- In terms of PM₁₀ concentrations, most monitoring sites in the vicinity of Glendell Mine have experienced at least one day above the EPA's 24-hour criterion in the past seven years. The averages exceeded the EPA 24-hour criterion in 2017 and 2018 in some locations. These results were heavily influenced by the drought conditions occurring during this period.
- Measured TSP and NO₂ concentrations are below their relevant EPA criteria.
- Deposited dust levels have exceeded EPA criteria at two of the 13 monitoring locations, but not in 2017 or 2018.
- The two closest PM_{2.5} monitoring stations, Camberwell and Singleton, have measured PM_{2.5} concentrations which are close to or have exceeded the EPA criteria. A study by the OEH (2013b) found that wood smoke from domestic heating was one of the main factors that influenced PM_{2.5} concentrations, especially in winter.
- Conditions in 2014 were representative of the longer-term air quality and meteorological conditions.

The computer-based dispersion model known as CALPUFF was used to predict the potential air quality impacts of the Project, including cumulative impacts. The dispersion modelling accounted for meteorological conditions, land use and terrain information and used dust emission estimates to predict the off-site air quality impacts. The performance of the model was reviewed by comparing predictions to measured results for a representative year. It was found that, with the adopted approach for modelling and assessment, the model predictions for average concentrations were typically within 20 per cent of measured results. This result is well within the factor-of-two accuracy that has been recognised for these types of models (DEFRA, 2010).

The outcomes of the assessment in terms of compliance against assessment criteria can be summarised by the table below.

Summary of compliance outcomes

Air quality indicator	Averaging time	Criterion (note, application may differ under EPA and VLAMP assessments, see Section 4)	Summary of outcomes for private sensitive receptors not subject to acquisition rights
Particulate matter (PM10)	24-hour	50 μg/m³	 Compliance with VLAMP Potential for one or more days above EPA criteria at most locations (detailed in Appendix G). The frequency of days above EPA criteria has been quantified.
	Annual	25 µg/m³	Compliance with VLAMPCompliance with EPA criteria
Particulate matter	24-hour	25 µg/m³	Compliance with VLAMPCompliance with EPA criteria
(PM _{2.5})	Annual	8 µg/m³	Compliance with VLAMPCompliance with EPA criteria
Particulate matter (TSP)	Annual	90 μg/m ³ - Compliance with VLAMP - Compliance with EPA criteria	
	Annual (maximum increase)	2 g/m ² /month	Compliance with VLAMPCompliance with EPA criteria
Deposited dust	Annual (maximum total)	4 g/m²/month	Compliance with VLAMPCompliance with EPA criteria
Nitrogen dioxide	1-hour	246 µg/m³	- Compliance with EPA criteria
(NO ₂)	Annual	62 µg/m ³	- Compliance with EPA criteria
Odour	Nose-response	-	- Odour impacts can be managed with appropriate blasting procedures

The main conclusions of the assessment were also described as follows:

- There is potential for the combined contribution of the Project, other existing and approved mines, and background levels to influence compliance outcomes for 24-hour average PM₁₀. While this conclusion was based on a conservative approach to the assessment which assumes that, with the exception of the Mount Owen Complex, all existing, approved or expected to be approved mines will be concurrently operating at approved maximum limits, it is anticipated that PM₁₀ concentrations will continue to be variable from day-today, due to existing conditions and sources as well as extreme events. Operations will need to continue to be managed in a way which minimises the contribution to off-site PM₁₀ levels.
- There are no private sensitive locations not subject to acquisition rights which are predicted to experience
 exceedances of the annual average PM₁₀, maximum 24-hour average PM_{2.5}, annual average PM_{2.5}, annual
 average TSP or annual average dust deposition criteria at any stage of the Project.
- Post blast fume emissions are not expected to result in any adverse air quality impacts (as NO₂ or odour), based on model predictions which show compliance with air quality criteria and with consideration of blast management practices that are currently employed at the Mount Owen Complex.
- Emissions from diesel exhausts associated with off-road vehicles and equipment are not expected to result in any adverse air quality impacts.
- Construction impacts will be lower than those associated with operations however appropriate dust management will need to be implemented to make sure that impacts are minimised. Monitoring would continue to be carried out during the construction phase to assess compliance with EPA criteria.

Important note about your report

The sole purpose of this report and the associated services performed by Jacobs is to quantify the potential air quality impacts of the Glendell Continued Operations Project in accordance with the scope of services set out in the contract between Jacobs and the Client. That scope of services, as described in this report, was developed with the Client.

In preparing this report, Jacobs has relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs derived the data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and reevaluation of the data, findings, observations and conclusions expressed in this report. Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, Jacobs's Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

1. Introduction

Jacobs Group (Australia) Pty Ltd (Jacobs) has been engaged by Umwelt (Australia) Pty Limited (Umwelt) on behalf of Glendell Tenements Pty Ltd (the Proponent), a subsidiary of Glencore Coal Pty Limited (Glencore) to complete an air quality impact assessment for the Glendell Continued Operations Project (the Project). The Project involves the continuation of mining at Glendell Mine into a new mining area to the immediate north of the existing operations. The purpose of the assessment is to form part of an Environmental Impact Statement (EIS) being prepared by Umwelt to accompany an application for development consent under Part 4 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) for the Project. The Project will also require a modification of development consent SSD-5850 covering the Mount Owen operations (Mount Owen Consent) to facilitate the extension of the life of the coal processing facilities at the Mount Owen Complex. The Project does not affect mining operations approved under the Mount Owen Consent. **Figure 1** shows the regional location of Glendell Mine and the Mount Owen Complex.

The air quality impact assessment has been carried out in accordance with relevant guidelines published by the Environment Protection Authority (EPA), namely, the "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW" (EPA 2016). This involved examining the Project and using a computer-based dispersion model to predict any potential impacts to air quality.

The main objectives of this assessment were to:

- Identify potential air quality issues;
- Quantify existing and potential air quality impacts; and
- Identify suitable air quality management measures, as appropriate, to minimise impacts.

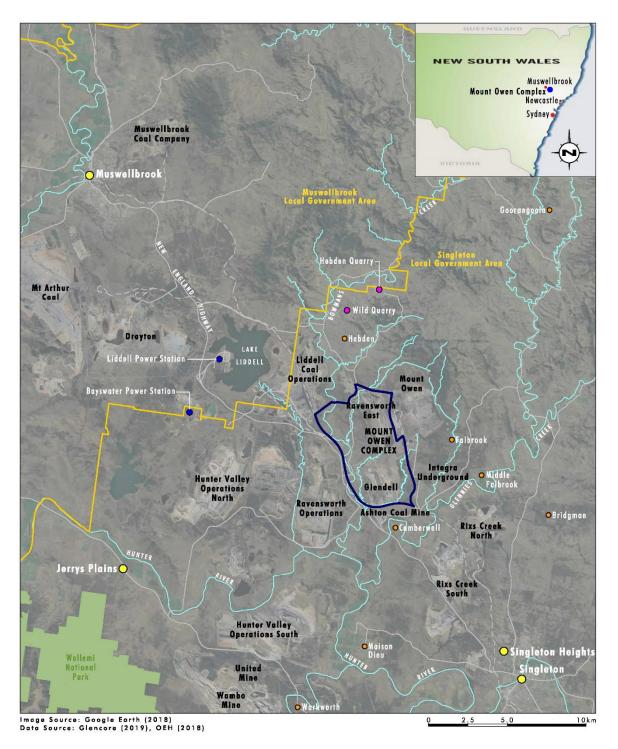
The Secretary's Environmental Assessment Requirements (SEARs) for the Project were issued by the Department of Planning, Industry and Environment (DPIE). The SEARs identify the specific requirements to be addressed by the EIS for the Project. This assessment has been prepared in accordance with the SEARs, as well as relevant governmental assessment requirements, guidelines and policies. **Table 1** lists the matters relevant to this assessment and where they are addressed in this report.

Table 1 Relevant matters raised in SEARs

Requirement	Section addressed
 Air quality – including: a detailed assessment of potential construction and operational air quality impacts, in accordance with the <i>Approved Methods for the Modelling and Assessment of Air Pollutants in NSW</i>, and with a particular focus on dust emissions including PM_{2.5} and PM₁₀, and having regard to the <i>Voluntary Land Acquisition and Mitigation Policy</i>, and an assessment of the likely greenhouse gas emissions of the development 	 This report, in particular: Section 3 (identification of issues) Section 6 (estimated emissions) Section 9 and 10 (assessment of impacts) Section 12 (mitigation, monitoring and management) Greenhouse gas emissions have been assessed in a separate study for the EIS (Umwelt 2019).

The assessment was based on the use of an air dispersion model, CALPUFF, to predict concentrations of substances emitted to air due to the proposed mining activities. Model predictions have been compared with air quality criteria referred to by the EPA in order to assess the effect that the Project may have on the existing air quality environment.

In summary, the report provides information on the following:


- Proposed mining activities (Section 2);
- Potential air quality issues (Section 3);
- Relevant air quality criteria (Section 4);
- Existing meteorological and air quality conditions (Section 5);

- Emissions to air from proposed mining activities (Section 6);
- Methods used to predict air quality impacts (Section 7);
- Expected air quality impacts, as determined by a comparison of model results with air quality assessment criteria (**Section 9**); and
- Management measures to be implemented, and monitoring of potential impacts (Section 12).

Air Quality Impact Assessment

Legend Project Area Local Government Area Boundary National Park Road Railway Drainage Line Village/Localities

Figure 1 Regional locality plan

2. **Project Description**

The Glendell Mine forms part of the Mount Owen Complex located in the Hunter Coalfields in the Upper Hunter Valley of New South Wales (NSW), approximately 20 km northwest of Singleton in the Singleton Local Government Area (LGA). The Mount Owen Complex and is owned and operated by subsidiaries of Glencore Coal Pty Limited (Glencore) and also includes Mount Owen Mine, Ravensworth East Mine, a coal handling and preparation plant (CHPP) and coal transport infrastructure.

The Project is an extension of open cut mining operations immediately to the north of the existing Glendell Mine (refer to **Figure 2**). The Project would extend the life of the Glendell Mine to approximately 2044 and allow for the recovery of approximately 135 million tonnes (Mt) of run-of-mine (ROM) coal and provide ongoing employment opportunities for existing Glendell workforce.

The key features of the Project include:

- extension of open cut mining to the north of the existing Glendell Mine until 2044;
- extraction of approximately 135 million tonnes of run-off-mine (ROM) coal;
- continued integration of the mine with the wider Mount Owen Complex, including the use of the Mount Owen CHPP, rail loop and associated infrastructure for ROM coal processing and product coal transport to 2045;
- demolition of the existing Glendell Mine Infrastructure Area (MIA) and the construction of a new MIA;
- realignment of a section of Hebden Road;
- realignment of a section of Yorks Creek;
- relocation of Ravensworth Homestead;
- other ancillary infrastructure works such as the construction of a Heavy Vehicle Access Road; and
- progressive rehabilitation of the site.

Figure 2 illustrates the key features of the Project and Figure 3 shows the location of nearest sensitive receptors.

This assessment supports both an application for a new development consent for the Project as well as the modification of the Mount Owen Consent.

Air Quality Impact Assessment

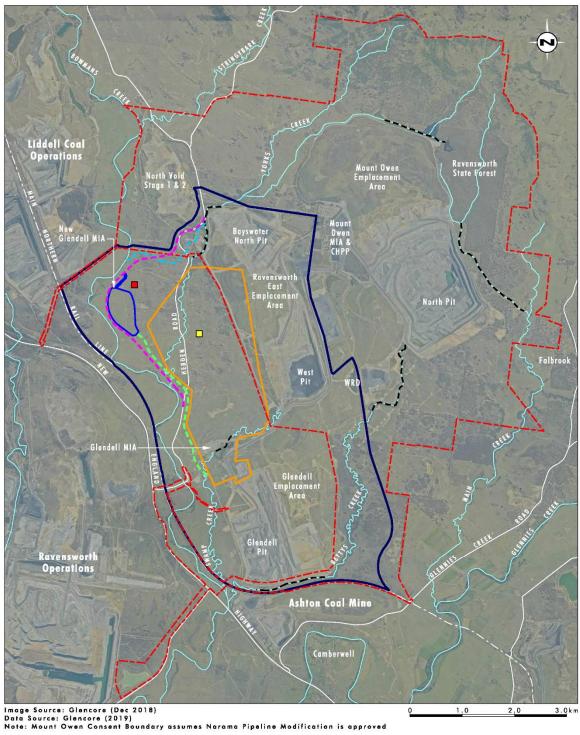
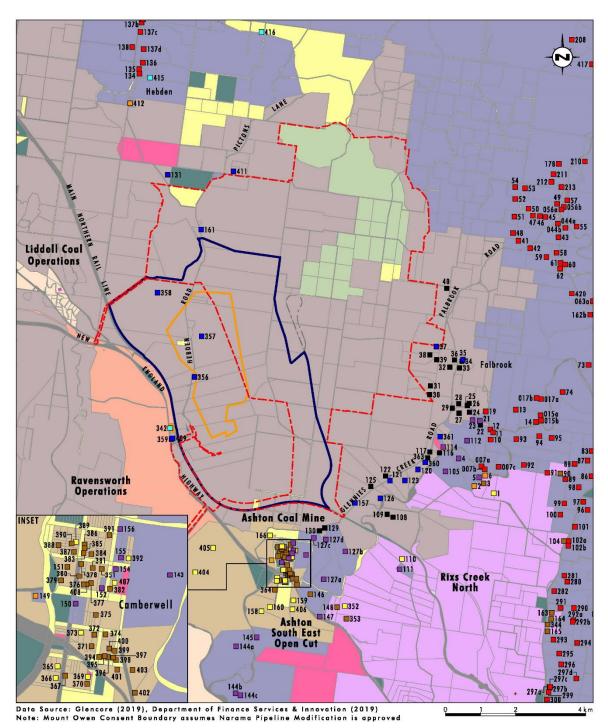



Figure 2 Glendell Continued Operations Project Key Features

Legend

Glencore Owned

Glencore Owned - Vacant Other Mine Owned

Other Mine Owned - Vacant

Figure 3 Location of nearest sensitive receptors and identification labels

3. Air Quality Issues

Air quality issues can arise when emissions from an industry or activity lead to deterioration in the ambient air quality. Potential air quality issues have been identified from a review of the Project and associated activities. This identification process has considered the types of emissions to air and proximity of these emission sources to sensitive receptors.

Emissions to air from the Project could occur from a variety of activities including material handling, material transport, processing, wind erosion, blasting and potentially, from the spontaneous combustion of coal. These emissions would mainly comprise of particulate matter in the form of total suspended particulates (TSP), particulate matter with equivalent aerodynamic diameter of 10 microns or less (PM₁₀) and particulate matter with equivalent aerodynamic diameter of 2.5 microns or less (PM_{2.5}). There would also be relatively minor emissions from machinery exhausts such as carbon monoxide (CO), oxides of nitrogen (NO_x) and particulate matter, and to a lesser extent sulphur dioxide (SO₂), hydrogen sulphide (H₂S) and potentially odour and other substances from the spontaneous combustion of coal. However, spontaneous combustion of coal has historically not been an issue at Glendell Mine and is not anticipated to be an issue for the Project as the same coal seams are proposed to be mined.

The area around Glendell Mine also contains various emission sources that will contribute to local air quality, including mining. Cumulative impacts is an important issue to address, particularly in Camberwell, given that this area has historically been the focus of studies to further understand the factors that contribute to cumulative impacts (see for example, Department of Planning 2010).

In summary, the potential air quality issues associated with the existing and proposed mining activities have been identified as:

- Dust (that is, particulate matter in the form of TSP, deposited dust, PM₁₀ or PM_{2.5}) from the general mining activities;
- Fume (that is, NO_x emissions) from blasting; and
- Emissions of substances from machinery exhausts, that is, diesel exhaust emissions such as NO_x , PM_{10} and $PM_{2.5}$.

The issues identified above are the focus of this assessment.

4. Air Quality Criteria

Typically, air quality is quantified by the concentrations of air pollutants in the ambient air. Air pollution occurs when the concentration (or some other measure of intensity) of substances known to cause health, nuisance and/or environmental effects, exceeds a certain level. With regard to human health and nuisance effects, the air pollutants most relevant to the Project are particulate matter due to emissions from blasting, excavation works and material handling, transport and processing activities (see **Section 3**).

There are various classifications of particulate matter and the EPA has developed assessment criteria for:

- TSP, to protect against nuisance amenity impacts;
- PM₁₀, to protect against health impacts;
- PM_{2.5}, to protect against health impacts; and
- Deposited dust, to protect against nuisance amenity impacts.

Most of the EPA criteria are drawn from national standards for air quality set by the National Environmental Protection Council of Australia (NEPC) as part of the National Environment Protection Measures (NEPM). To measure compliance with ambient air quality criteria, the NSW Government has established a network of monitoring stations across the State and up-to-date records are published on the DPIE air quality monitoring network website.

Air quality impacts from the Project have been assessed against the air quality criteria set by the EPA as part of its "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW" (EPA 2016). These criteria are outlined in **Table 2** and apply to existing and potentially sensitive receptors, where the "Approved Methods" defines a sensitive receptor as *"a location where people are likely to work or reside; this may include a dwelling, school, hospital, office or public recreational area"*. This has also been interpreted as places of near continuous occupation.

The impact assessment criteria from the development consent for Glendell Mine (DA 80/952) (Glendell Consent) as Mount Owen Consent are also included in **Table 2** for comparison. The criteria from the Glendell Consent are based on an earlier version of the "Approved Methods" (see DEC 2005) applicable at the time of approval, and the 2016 version of the Approved Methods introduced a revised, more stringent criterion for PM_{10} as well as new criteria for 24-hour and annual average $PM_{2.5}$.

Substance	Averaging time	Criterion	^d Impact assessment criteria from Glendell Consent (DA 80/952)	^d Impact assessment criteria from Mount Owen Consent (SSD-5850)
Particulate matter	24-hour	² 50 µg/m³	^ь 50 μg/m³	^ь 50 μg/m³
(PM ₁₀)	Annual	^a 25 µg/m ³	^a 30 µg/m ³	^a 30 µg/m ³
Particulate matter	24-hour	^a 25 µg/m ³	Nil	Nil
(PM _{2.5})	Annual	^a 8 µg/m ³	Nil	Nil
Particulate matter (TSP)	Annual	^a 90 µg/m ³	^a 90 µg/m ³	^a 90 µg/m ³
	Annual (maximum increase)	^a 2 g/m ² /month	^b 2 g/m ² /month	^b 2 g/m ² /month
^c Deposited dust	Annual (maximum total)	^a 4 g/m ² /month	^a 4 g/m ² /month	^a 4 g/m ² /month
Nitrogen dioxide	1-hour	^a 246 µg/m ³	Nil	Nil
(NO ₂)	Annual	^a 62 µg/m ³	Nil	Nil

Table 2 EPA air quality assessment criteria

^a Total impact (i.e. incremental increase in concentrations due to the development plus background concentrations due to all other sources). ^b Incremental impact (i.e. incremental increase in concentrations due to the development on its own).

^c Deposited dust is to be assessed as insoluble solids as defined by Standards Australia, AS/NZS 3580.10.1:2003: Methods for Sampling and Analysis of Ambient Air - Determination of Particulate Matter - Deposited Matter - Gravimetric Method. ^d Excludes extraordinary events such as bushfires, prescribed burning, dust storms, fire incidents or any other activity agreed to by the Secretary.

The EPA air quality assessment criteria relate to the total concentration of air pollutant in the air (that is, cumulative) and not just the contribution from project-specific sources. Therefore, some consideration of background levels needs to be made when using these criteria to assess the potential impacts. Further discussion of background levels in the model domain is provided in **Section 5**.

In situations where background levels are elevated the proponent must "demonstrate that no additional exceedances of the impact assessment criteria will occur as a result of the proposed activity and that best management practices will be implemented to minimise emissions of air pollutants as far as is practical" (EPA 2016). In the Glendell Consent the determination of impact, for the purposes of land acquisition, was based on either incremental or total concentrations, depending on the substance and averaging time and as can be seen in the footnotes of **Table 2**.

In December 2015 the Australian Government announced a National Clean Air Agreement (Agreement). This Agreement aims to reduce air pollution and improve air quality via the following main actions:

- The introduction of emission standards for new non-road spark ignition engines and equipment.
- Measures to reduce air pollution from wood heaters.
- Strengthened ambient air quality reporting standards for particle pollution.

The strengthening of ambient air quality reporting standards for particle pollution is relevant to the Project. Specifically, and at the time, the following was agreed:

"Taking into account the latest scientific evidence of health impacts, Ministers agreed to strengthen national ambient air quality reporting standards for airborne fine particles. Ministers agreed to adopt reporting standards for annual average and 24-hour $PM_{2.5}$ particles of 8 µg/m³ and 25 µg/m³ respectively, aiming to move to 7 µg/m³ and 20 µg/m³ respectively by 2025. Ministers also agreed to establish an annual average standard for PM_{10} particles of 25 µg/m³. Victoria and the Australian Capital Territory will set, and South Australia will consider setting, a more stringent annual average PM_{10} standard of 20 µg/m³ in the state, while ensuring nationally consistent monitoring and reporting against the agreed National Environment Protection Measure standards. The decision was also taken to review PM_{10} standards in 2018. The review will be co-led by the NSW and Victorian governments, in discussion with other jurisdictions."

On 25 February 2016, an amendment to the NEPM entered into force and introduced the new national air quality standards for PM₁₀ and PM_{2.5}, as noted above. The EPA subsequently revised its PM₁₀ and PM_{2.5} assessment criteria as part of an update to the "Approved Methods for the Modelling and Assessment of Air Pollutants NSW" (EPA 2016). These revised criteria are reflected in **Table 2** and took effect from January 2017 onwards. There is currently no State legislation regarding the aim to move to more stringent PM_{2.5} criteria by 2025. Accordingly, the Project is assessed against the current criteria detailed in the Approved Methods (2016) as these criteria would be applied by the consent authority in accordance with the provisions of Clause 12AB of the *State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007* (Mining SEPP) (2018 amendment).

The NSW Voluntary Land Acquisition and Mitigation Policy (VLAMP) (2018) includes the NSW Government's policy for voluntary mitigation and land acquisition to address dust (particulate matter) impacts from state significant mining, petroleum and extractive industry developments. VLAMP (2018) brings the air quality criteria in line with the NEPM standards and EPA criteria.

From this Policy, voluntary mitigation rights may apply where, even with best practice management, the development contributes to exceedances of the criteria in **Table 3** at any residence or workplace.

Substance	Averaging time	Mitigation criterion	Impact type
	Annual	8 µg/m³*	Human health
Particulate matter (PM _{2.5})	24-hour	25 µg/m³**	Human health
	Annual	25 μg/m³*	Human health
Particulate matter (PM ₁₀)	24-hour	50 μg/m ³ **	Human health
Particulate matter (TSP)	Annual	90 μg/m³*	Amenity
	Annual	2 g/m ² /month**	Amenity
Deposited dust	Annual	4 g/m ² /month*	Amenity

Table 3 VLAMP mitigation criteria for particulate matter

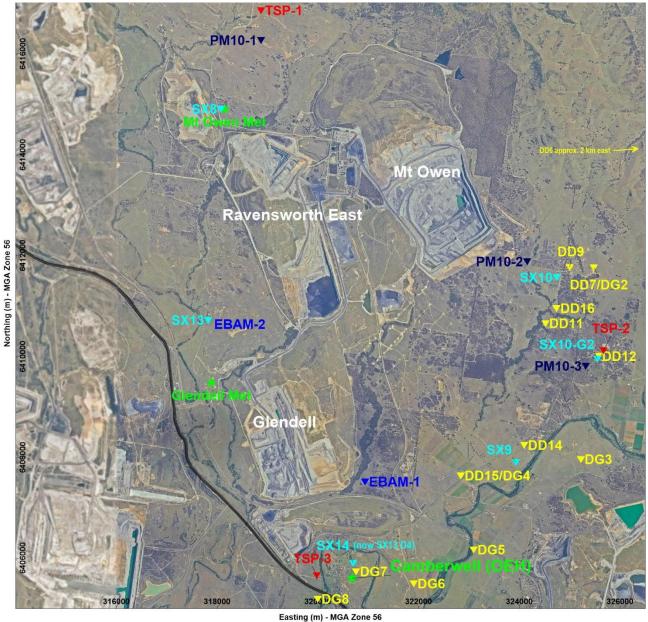
* Cumulative impact (i.e. increase in concentrations due to the development plus background concentrations due to all other sources). ** Incremental impact (i.e. increase in concentrations due to the development alone), with zero allowable exceedances of the criteria over the life of the development.

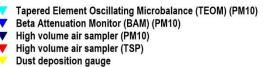
Voluntary acquisition rights may apply where, even with best practice management, the development contributes to exceedances of the criteria in **Table 4** at any residence or workplace on privately owned land, or on more than 25% of any privately-owned land where there is an existing dwelling or where a dwelling could be built under existing planning controls.

Table 4 VLAMP acquisition criteria for particulate matter

Substance	Averaging time	Acquisition criterion	Impact type
	Annual	8 µg/m³*	Human health
Particulate matter (PM _{2.5})	24-hour	25 μg/m ^{3**}	Human health
	Annual	25 μg/m³*	Human health
Particulate matter (PM ₁₀)	24-hour	50 μg/m ^{3**}	Human health
Particulate matter (TSP)	Annual	90 μg/m³*	Amenity
	Annual	2 g/m ² /month**	Amenity
Deposited dust	Annual	4 g/m ² /month*	Amenity

* Cumulative impact (i.e. increase in concentrations due to the development plus background concentrations due to all other sources).


** Incremental impact (i.e. increase in concentrations due to the development alone), with up to 5 allowable exceedances of the criteria over the life of the development.


The particulate matter levels for comparison with the criteria in **Table 3** and **Table 4** must be calculated in accordance with the EPA's "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW" (EPA 2016).

5. Existing Environment

This section provides a description of the environmental characteristics in the area, including a review of the local meteorological and ambient air quality conditions. The review considers data collected from the meteorological and air quality monitoring networks, the locations of which are shown in **Figure 4**. These locations were amended in the currently approved Mount Owen Complex Air Quality Management Plan however the data reviewed are based on the locations shown on **Figure 4**. One of the objectives for reviewing these data was to develop an understanding of existing air quality issues as well as the meteorological conditions which typically influence the local air quality conditions.

Meteorological station

Figure 4 Location of air quality and meteorological monitoring sites

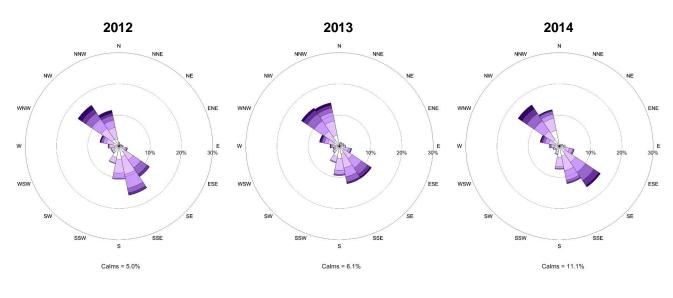
The OEH monitoring station also includes PM10 and PM25

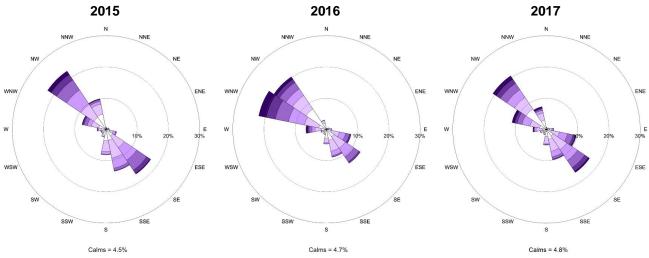
5.1 Meteorological Conditions

Meteorological conditions are important for determining the direction and rate at which emissions from a source will disperse. The key meteorological requirements of air dispersion models are, typically, hourly records of wind speed, wind direction, temperature, and atmospheric stability. For air quality assessments, a minimum one year of hourly data is usually required, which means that almost all possible meteorological conditions, including seasonal variations, are considered in the model simulations.

Three meteorological stations have been identified in a 20 km by 20 km domain around the Mount Owen Complex. These stations, shown in **Figure 4**, are referred to as:

- Glendell Met, operated by Mount Owen
- Mt Owen Met, operated by the Mount Owen
- Camberwell (OEH), operated by the DPIE


Meteorological data from seven recent years (2012 to 2018) have been analysed in order to identify a representative year for the modelling. Hourly records of wind speed and wind direction were examined. The procedure for identifying a representative meteorological year involved selecting a meteorological monitoring station and comparing wind patterns for each calendar year. Any of the three meteorological stations could have been chosen for identifying a representative year. For this exercise, data from the Glendell meteorological station (Glendell Met) were chosen since this station is closest to Glendell Mine.


Figure 5 shows the annual wind patterns for each year from 2012 to 2018. It can be seen from these windroses that the most common winds in the area are from the south-southeast, southeast and northwest and north-northwest. This pattern of winds is common for many parts of the Hunter Valley and reflects the northwest-southeast alignment of the valley.

It is also clear from **Figure 5** that wind patterns were similar in all seven years of data presented. This suggests that wind patterns do not vary significantly from year to year, and potentially the data from any of the years presented could be used as a representative year for modelling purposes.

Air Quality Impact Assessment

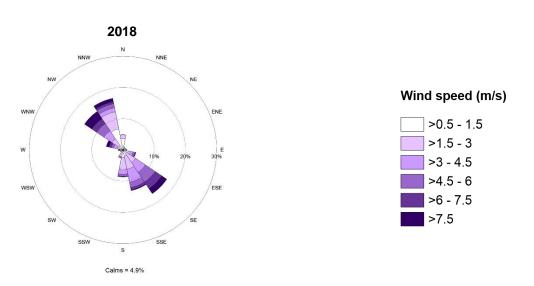


Figure 5 Annual wind-roses for data collected at Glendell Met meteorological station

Figure 6 shows the wind speed data from the Glendell Met meteorological station, as well as rainfall data from Singleton (station number 061397). In terms of wind conditions, the average and maximum wind speeds exhibited similar ranges across all seven years. Maximum wind speeds reached around 12 m/s (as an hourly average) and these winds typically occurred in spring.

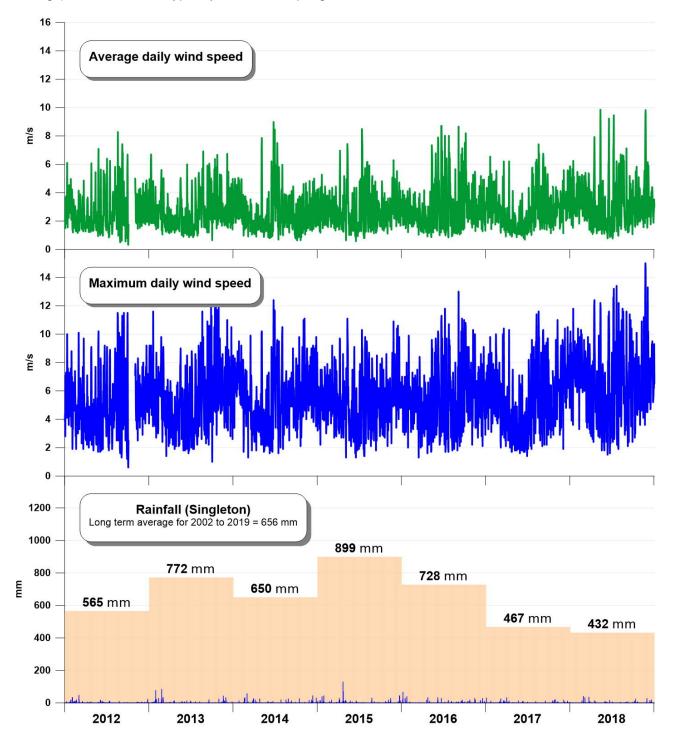


Figure 6 Wind speed and rainfall for data collected between 2012 and 2018

As can be seen from **Figure 6**, rainfall can occur at any time of the year and with varying intensity. Statistically, the annual rainfall (for 2012 to 2018) has ranged from 432 mm in 2018 to 899 mm in 2015. These annual values can be compared to the longer-term record which is as follows:

• Singleton STP (Bureau of Meteorology) 2002 to 2019 = 656 mm

Figure 6 also shows that rainfall in 2017 and 2018 was much lower than the long term average. This suggests that 2017 and 2018 were not typical meteorological years, in terms of rainfall.

Finally, the annual data statistics for the 2012 to 2018 years have been examined to assist with identifying a representative meteorological year. **Table 5** shows the statistics.

Location	Statistic	2012	2013	2014	2015	2016	2017	2018
Glendell	Percent complete (%)	88	98	98	96	95	97	99
Glendell	Mean wind speed (m/s)	2.7	2.7	2.6	2.7	2.9	2.8	3.3
Glendell	99th percentile wind speed (m/s)	8.9	8.9	8.8	8.5	9.3	9.0	10.9
Glendell	Percentage of calms (%)	5	6	11	5	5	5	5
Glendell	Percentage of winds >6 m/s (%)	7	7	8	6	10	9	14
Singleton	Rainfall (mm)	565	772	650	899	728	467	432

Table 5 Annual statistics from meteorological data collected between 2012 and 2018

Over these seven years the mean annual wind speed has ranged from 2.6 to 2.9 m/s, and the percentage of calms has ranged from 5 to 11 per cent. None of these years appear to be significantly different to the other years and again, data from any of the years reviewed may be considered as representative for the purposes of modelling.

For this assessment the 2014 calendar year has been selected as the meteorological modelling year, based on:

- High data capture rate, meeting the EPA's requirement for a 90% complete dataset
- Similar wind patterns to other years
- Rainfall being slightly below the long-term average, and the preference was for a slightly drier than average year
- Air quality conditions which showed similarities to other years and not adversely influenced by bushfire activity or extreme conditions (as will be seen in **Section 5.2**)
- Consistency with other recent air quality impact assessments for the Mount Owen Complex which enables comparative analysis of predicted impacts (see for example, Jacobs [2016] and Jacobs [2018])

Methods used for incorporating the 2014 data into the meteorological modelling (CALMET) and air dispersion modelling (CALPUFF) are discussed in detail in **Section 7**. Annual and seasonal wind-roses from roses from all three meteorological stations used in the modelling are provided in **Appendix B**.

5.2 Air Quality Conditions

The EPA air quality criteria refer to levels of substances which generally include the project of interest and existing sources, not just the contribution from local mining activities. To fully assess predicted impacts against all the relevant air quality criteria (see **Section 4**) it is necessary to have information or estimates of the existing air quality conditions. This section provides a description of the existing air quality.

Air quality in the vicinity of the Mount Owen Complex is monitored by Mount Owen and by the DPIE. This monitoring includes the measurement of:

- Particulate matter (as PM₁₀)
- Particulate matter (as PM_{2.5})
- Particulate matter (as TSP)
- Dust deposition

Concentrations of NO₂ have not been measured in the vicinity of the Mount Owen Complex, however the DPIE measures this substance at other locations as part of its Upper Hunter Air Quality Monitoring Network. **Sections 5.2.1** to **5.2.5** describe the existing air quality conditions, based on a review of monitoring results for the substances listed above, as well as for NO₂.

It should be noted that the measurement data represent the contributions from all sources that have at some stage been upwind of each monitor. In the case of particulate matter (as PM₁₀ and PM_{2.5}) for example, the background concentration may contain emissions from many sources such as from mining activities, construction works, bushfires and 'burning off', industry, vehicles, roads, wind-blown dust from nearby and remote areas, fragments of pollens, moulds, domestic wood fires and so on.

5.2.1 Particulate Matter (as PM₁₀)

Figure 4 shows the location of monitors which are used to measure PM_{10} concentrations. When assessing the data it is important to recognise the location of each monitor. For example, SX8 is located adjacent to active emplacement and mining operations and would not be representative of nearest sensitive receptors. The PM_{10} concentrations are measured by a variety of instruments including Tapered Element Oscillating Microbalance (TEOM), high volume air sampler (HVAS) and beta attenuation monitor (BAM). The data from the TEOMs have been used to characterise PM_{10} levels since these instruments provide records every day including at hourly resolution while, in contrast, the HVAS units only provide one record every six days. Data from the BAMs are available at hourly resolution however are not used for compliance purposes.

Figure 7 shows the measured 24-hour average PM_{10} concentrations from each TEOM monitoring site for data collected between 2012 and 2018. The EPA's 24-hour air quality assessment criteria for PM_{10} (50 µg/m³) has also been shown on these graphs. It can be seen from **Figure 7** that all sites recorded at least one day above the criterion in the past seven years. There is a seasonal variation in the air quality conditions, with most exceedances of the criterion occurring in spring. A dust storm was observed on 22 November 2018 and affected many parts of Eastern Australia including the Hunter Valley. This event adversely impacted on air quality around the Glendell Mine, resulting in 24-hour average PM_{10} concentrations in the order of 200 µg/m³ at all monitors, as can be seen in **Figure 7**.

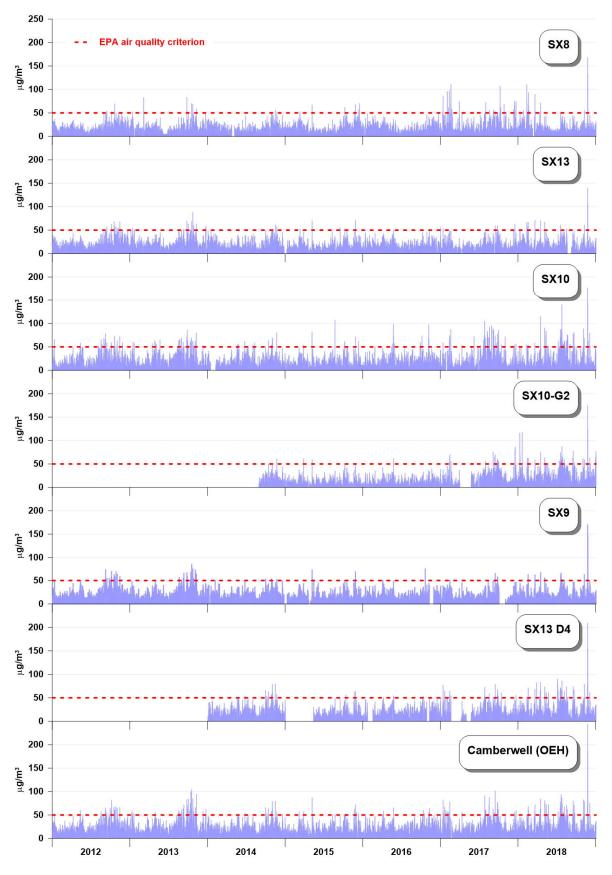
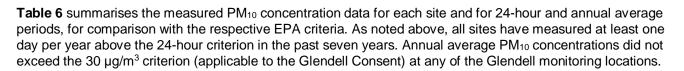
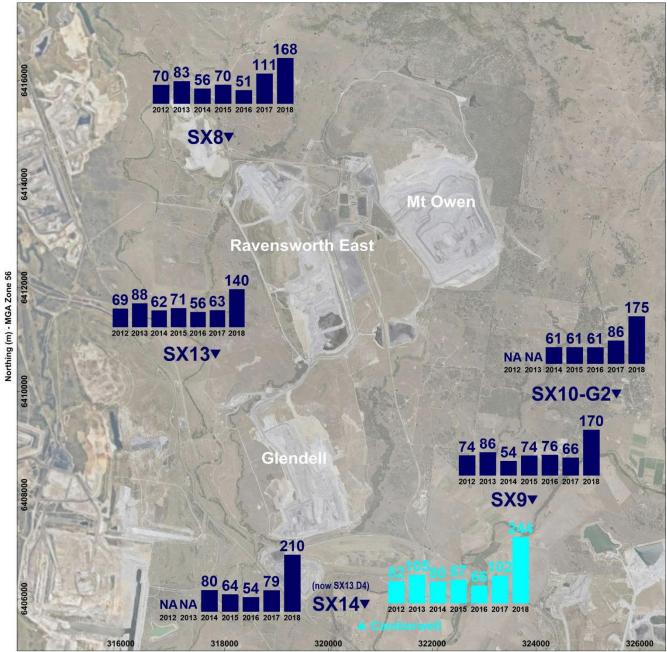



Figure 7 Measured 24-hour average PM₁₀ concentrations

Data from the DPIE's monitoring sites at Camberwell, Singleton and Newcastle have also been presented in **Table 6** for comparison. The average PM_{10} concentrations in the vicinity of the Mount Owen Complex have been, on average, between 15% lower (SX10-G2) to 8% percent higher (SX13 D4) than PM_{10} concentrations measured at the DPIE Newcastle site. At Camberwell the concentrations have been, on average, 20% higher than PM_{10} concentrations in Newcastle.

Table 6 Summary of measured PM₁₀ concentrations


Year	SX8	SX13	SX10	SX10-G2	6XS	SX13 D4	Camberwell (DPIE)	Singleton (DPIE)	Newcastle (DPIE)	EPA criterion
Maximum 24-hou	r average in	µg/m³								
2012	70	69	79	NA	74	NA	82	64	49	
2013	83	88	86	NA	86	NA	105	63	69	
2014	56	62	80	61	54	80	80	55	54	
2015	70	71	107	61	74	64	87	85	70	50
2016	51	56	98	61	76	54	66	61	89	
2017	111	63	105	86	66	79	102	57	55	
2018	168	140	177	175	170	210	244	198	146	
Number of days a	above 24-hou	ur average c	riteria							
2012	4	10	20	NA	15	NA	23	7	0	
2013	7	15	26	NA	15	NA	36	12	4	
2014	3	5	15	2	4	11	12	1	2	
2015	7	6	8	2	4	3	11	3	3	-
2016	1	2	11	1	2	5	11	1	1	
2017	25	5	39	17	4	16	27	4	1	
2018	15	15	43	37	11	33	44	10	8	
Annual average ir	ո µg/m³									
2012	21	23	24	-	22	22	27	22	21	
2013	20	23	25	-	23	24	28	23	23	
2014	20	22	22	21	21	24	25	21	21	30
2015	20	18	19	14	18	20	22	19	21	
2016	19	20	22	14	18	23	25	19	22	
2017	25	20	25	19	20	25	27	21	22	
2018	23	23	29	26	22	29	31	24	24	25

Note: shaded cells represent those results above EPA criteria

JACOBS

The spatial variation in PM₁₀ concentrations has been examined by plotting the measurement data according to the geographical position of each monitor. **Figure 8** shows the maximum 24-hour average PM₁₀ concentrations for the last seven years, and according to the position of each monitor. The data for Camberwell have been presented in a different colour to reflect the different operator of that monitor (that is, DPIE). This figure does not show any clear trend in maximum concentrations except for the higher results in 2018. In their "Annual Air Quality Statement 2018" the Office of Environment and Heritage (OEH, now DPIE) concluded that particle levels increased across the State due to dust from the widespread, intense drought and smoke from bushfires and hazard reduction burning (OEH 2019). Air quality conditions in the Hunter Valley were clearly influenced by the drought conditions in 2017 and 2018 and lower than average rainfall as described in **Section 5.1**.

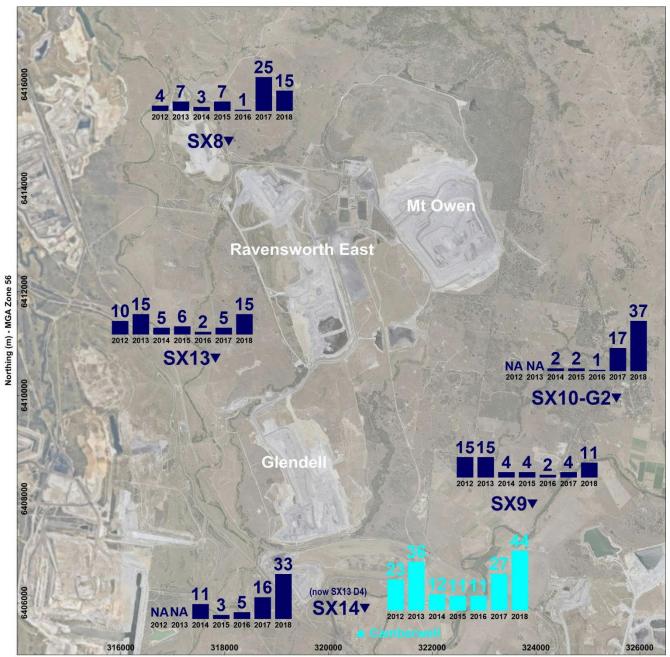

Easting (m) - MGA Zone 56

Figure 8 Spatial variation in maximum 24-hour average PM₁₀ concentrations (µg/m³)

Air Quality Impact Assessment

Figure 9 shows the number of days above the 24-hour PM₁₀ criterion, for the last seven years. From these data, Camberwell has typically experienced more days above the criterion than the other locations, with 2012, 2013, 2017 and 2018 standing out as years with more events. Betts et al (2014) and the OEH (2013a) both reported that the higher number of days above the criterion in 2013 was due to significant bushfires in the region, mainly in September, October and November. The 2017 and 2018 conditions were, according to OEH (2019), influenced by intense drought and smoke from bushfires. Results for the 2014 calendar year appeared to be around the average for most locations.

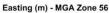


Figure 9 Spatial variation in the number of days per year above the 24-hour PM₁₀ criterion (days)

Figure 10 shows the annual average PM₁₀ concentrations for the last seven years and presented according to the position of each monitor. No exceedances of the EPA's previous annual average PM₁₀ criterion (30 μ g/m³) were recorded at any of the Mount Owen Complex monitoring sites however the DPIE Camberwell monitoring site was above this criterion in 2018. The EPA criterion was revised to 25 μ g/m³ after 20 January 2017. Annual average PM₁₀ concentrations did not exceed the 30 μ g/m³ criterion that was, and is currently, applicable to the Glendell Consent.

The highest annual average concentration was measured at the DPIE's monitor in Camberwell (31 μ g/m³ in 2018). Again, the results for the 2014 calendar year appear to be typical of the longer-term conditions experienced at each site which supports the earlier suggestion (**Section 5.1**) of 2014 being a typical or representative year.

Easting (m) - MGA Zone 56

Figure 10 Spatial variation in annual average PM_{10} concentrations (µg/m³)

The potential conditions which led to elevated PM₁₀ concentrations at SX9, SX13 and Camberwell (three locations around Glendell Mine) for 2014 have been analysed by the preparation of the following graphs:

- Hourly PM₁₀ concentrations by time of day and wind speed (Figure 11).
- Hourly PM₁₀ concentrations by wind direction and wind speed (Figure 12).

The information from **Figure 11** shows that, for these monitoring sites in 2014, the highest short-term (1-hour average) PM₁₀ concentrations could be at any time of day. However, on average, the PM₁₀ concentrations are typically highest in the morning (around 9 am) and evening (around 7 pm). This pattern may be explained by poorer dispersion conditions in the morning and evening whereby any dust emissions disperse more slowly and allow higher concentrations to exist for extended periods of time. Also, the higher average concentrations in the morning and evening anthropogenic (human) activity at these times, for example the use of wood heaters.

Figure 12 shows the measured hourly average PM_{10} concentrations by wind direction and wind speed, from 2014 data. It can be seen from these figures that at all sites the highest hourly average PM_{10} concentrations were typically associated with light to moderate winds from the northwest. The only deviation from this conclusion is a data point from SX9 where the highest concentration occurred during a strong (>6 m/s) wind from the southeast.

Air Quality Impact Assessment

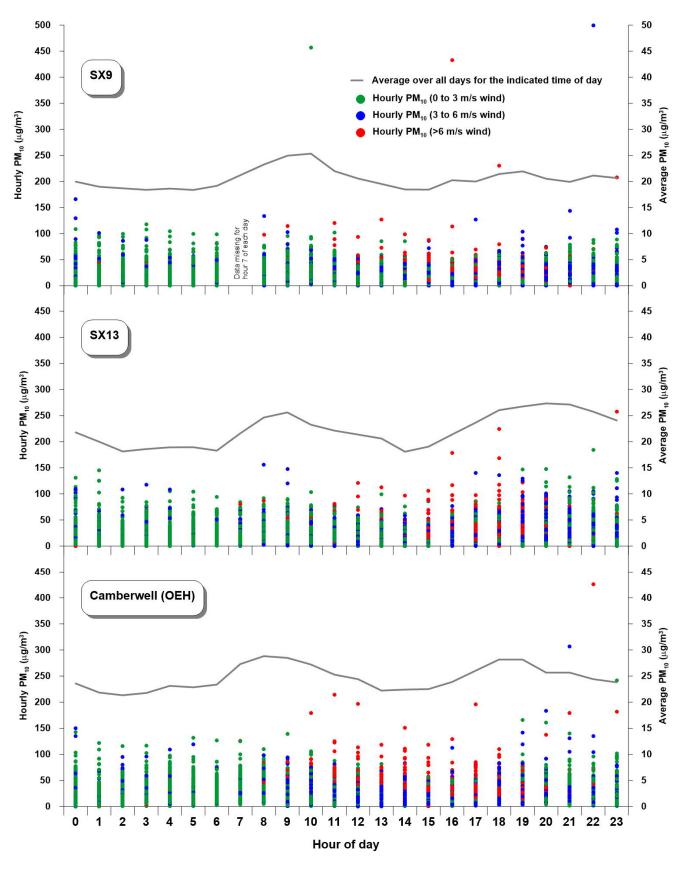


Figure 11 Measured PM₁₀ concentrations by time of day and wind speed (2014 data)

Air Quality Impact Assessment

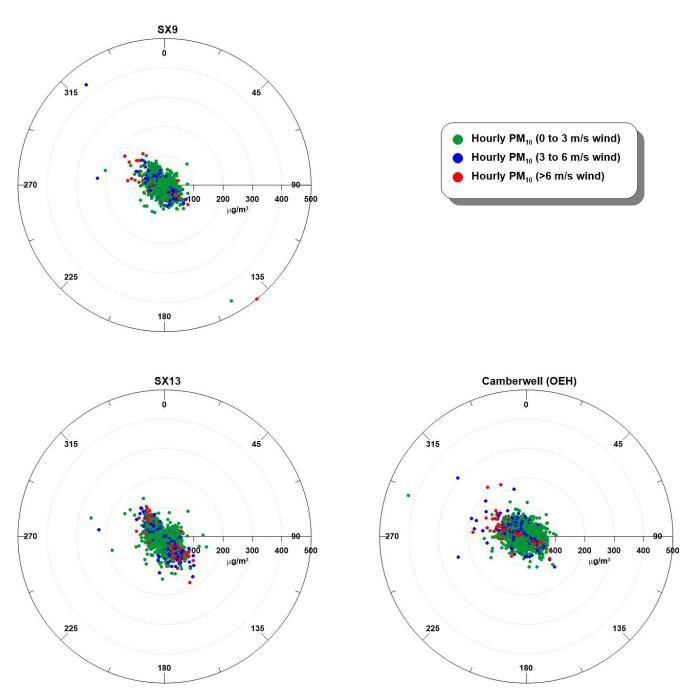


Figure 12 Measured PM_{10} concentrations by wind direction and wind speed (2014 data)

5.2.2 Particulate Matter (as PM_{2.5})

The closest air quality monitoring stations which record concentrations of PM_{2.5} with publicly available data are located at Singleton and Camberwell. These stations are operated by the DPIE and use Beta Attenuation Monitors (BAM) for the measurement of PM_{2.5}. Data from the DPIE's Newcastle monitoring site have also been reviewed, for comparison.

Figure 13 shows the measured 24-hour average $PM_{2.5}$ concentrations from the Camberwell monitoring site for data collected between 2012 and 2018. The EPA's current air quality assessment criterion for $PM_{2.5}$ (25 µg/m³) has also been shown, but it should be noted that this assessment criterion came into effect from 20 January 2017 onwards. $PM_{2.5}$ concentrations have not exceeded the EPA criterion since it was introduced. A weak seasonal variation is also evident, with the higher concentrations tending to occur in spring.

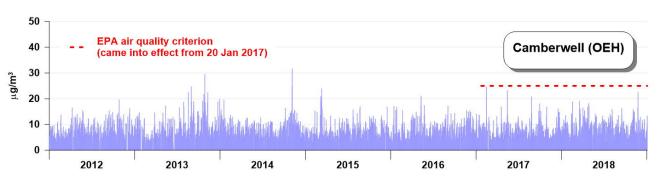


Figure 13 Measured 24-hour average PM_{2.5} concentrations

Table 7 summarises the measured PM_{2.5} results for data collected between 2012 and 2018. It can be seen from these data that the highest 24-hour average PM_{2.5} concentrations exceeded the criterion on one occasion, that is, in Singleton in 2017. Annual averages are close to the criterion (8 μ g/m³), exceeding in some years by up to 0.4 μ g/m³ in Camberwell. Again, the annual average assessment criterion came into effect from 20 January 2017, prior to which it was referred to as an advisory reporting goal.

It is also useful to compare the Hunter Valley data with information from other locations. Annual average $PM_{2.5}$ concentrations in Newcastle were similar to those measured in the Hunter Valley. At Cape Grimm, a site in rural Tasmania that is used as a global "baseline" reference for unpolluted air entering Australia, the mean $PM_{2.5}$ concentration was 5.6 µg/m³ for data collected between 1998 and 2008 (ANSTO 2008). Most of Cape Grimm's particulate matter mass is from sea salt.

The Upper Hunter Fine Particle Characterisation Study (OEH, 2013b) investigated the factors which contributed to elevated PM_{2.5} concentrations in the Hunter Valley. This study identified a clear seasonal trend with higher PM_{2.5} concentrations occurring in the cooler months, and predominantly due to wood smoke from domestic heating. Specifically, in Singleton, wood smoke accounted for an average of approximately 14% of the total PM_{2.5}, peaking at around 38% in winter.

Table 7 Summary of measured PM_{2.5} concentrations

Year	Camberwell (OEH)	Singleton (OEH)	Newcastle (OEH)	EPA criterion	
Maximum 24-h	nour average in μg/m³				
2012	20	20	-		
2013	30	23	-		
2014	32	29	21		
2015	24	25	28		
2016	21	28	66		
2017	25	30	18	05	
2018	23	19	20	25	
Number of day	vs above 24-hour average criteria				
2012	0	0	-		
2013	1	0	-		
2014	1	1	0		
2015	0	0	1	-	
2016	0	2	1		
2017	0	1	0		
2018	0	0	0		
Annual averag	e in μg/m³				
2012	7.5	8.0	-		
2013	8.2	7.9	-		
2014	7.8	7.8	8.1		
2015	7.2	7.6	7.8		
2016	7.5	7.9	7.8		
2017	7.4	8.2	7.3		
2018	8.4	8.1	7.8	- 8	

Note: shaded cells represent those results above EPA criteria

5.2.3 Particulate Matter (as TSP)

TSP concentrations have been measured at three locations by high volume air sampler (HVAS). **Figure 4** shows the location of the monitoring sites and **Table 8** shows the annual average concentrations from data collected in the past seven years, for comparison with the EPA's 90 μ g/m³ criterion. None of the monitoring sites have recorded annual average TSP concentrations above the criterion.

Year	TSP-1	TSP-2	TSP-3	EPA criterion
Annual average				
2012	59	77	65	
2013	47	85	73	
2014	58	76	70	
2015	55	61	57	90
2016	53	76	62	
2017	60	73	68	
2018	59	78	80	

Table 8 Summary of measured TSP concentrations

5.2.4 Deposited Dust

Table 9 shows the annual average deposited dust levels for each gauge from data collected in the past seven years, for locations representative of private properties. **Figure 4** shows the location of the monitoring sites. The results in **Table 9** can be compared with the EPA's 4 g/m²/month criterion. Contaminated monthly samples were excluded from the calculation of these annual averages.

Table 9 Summary of measured deposited dust levels

Year	DD6	DD7 / DG2	600	DD11	DD12	DD14	DD15 / DG4	DD16	DG3	DG5	DG6	DG7	DG8	EPA criterion
Annual a	average e	xpressed	as g/m²/ı	month										
2012	1.0	2.6	3.1	4.4	3.3	2.3	3.2	2.5	1.8	3.3	5.3	2.9	2.9	
2013	0.9	2.4	3.7	3.1	2.3	1.7	2.8	2.4	2.1	2.4	4.1	3.1	3.0	
2014	0.9	2.6	3.5	2.9	2.1	1.7	2.6	2.5	1.7	1.8	5.9	2.4	2.7	
2015	0.9	2.0	2.9	4.7	2.4	1.4	1.9	2.3	1.3	1.5	2.8	2.1	2.6	4
2016	1.0	2.3	4.0	4.3	2.6	1.5	1.8	3.3	1.6	1.6	2.0	2.1	2.7	
2017	1.3	2.2	N/A	3.8	2.4	1.7	2.6	2.4	1.7	2.6	3.2	2.4	2.8	
2018	1.1	2.4	N/A	N/A	2.5	2.3	2.6	2.5	1.5	2.4	2.5	2.5	3.2	

Note: shaded cells represent those results above EPA criteria

It can be seen from **Table 9** that two locations (D11 and DG6) have experienced deposition levels above the EPA's 4 g/m²/month criterion, in one or more years. D11 is located on Glencore owned land. No monitors have recorded above 4 g/m²/month in the past two years, that is 2017 or 2018.

5.2.5 Nitrogen Dioxide (NO₂)

Table 10 provides a summary of the measured NO₂ concentrations from Singleton (the closest known air quality monitoring site which records this substance). These data show that the maximum NO₂ concentrations have been well below the EPA's 1-hour average criterion of 246 μ g/m³. Annual averages have also been well below the EPA's annual average criterion of 62 μ g/m³.

Table 10 Summary of measured NO₂ concentrations

Year	Singleton (OEH)	EPA criterion
Maximum 1-hour av	rerage in μg/m³	
2012	82	
2013	84	
2014	74	
2015	66	246
2016	66	
2017	74	
2018	72	
Annual average in µ	ıg/m³	
2012	18	
2013	18	
2014	16	
2015	16	62
2016	16	
2017	17	
2018	16	

5.3 Summary of the Existing Environment

The following conclusions have been made from the review of local meteorological and ambient air quality monitoring data:

- Wind patterns in the vicinity of Glendell Mine are similar to other parts of the Hunter Valley, with the prevailing winds being from either the northwest or southeast.
- There are seasonal variations in particulate matter concentrations, with PM₁₀ levels generally higher in spring and PM_{2.5} levels generally higher in winter.
- There are daily variations in particulate matter concentrations, with levels typically highest in the morning and evening.
- In 2018 particle levels increased across the State due to dust from the widespread, intense drought and smoke from bushfires and hazard reduction burning (OEH 2019).
- In terms of PM₁₀ concentrations, most monitoring sites in the vicinity of Glendell Mine have experienced at least one day above the EPA's 24-hour criterion in the past seven years. The averages exceeded the EPA 24-hour criterion in 2017 and 2018 in some locations. These results were heavily influenced by the drought conditions occurring during this period.
- Measured TSP and NO₂ concentrations are below their relevant EPA criteria.
- Deposited dust levels have exceeded EPA criteria at two of the 13 monitoring locations, but not in the recent two years.
- The two closest PM_{2.5} monitoring stations, Camberwell and Singleton, have measured PM_{2.5} concentrations which are close to or have exceeded the EPA criteria. A study by the OEH (2013b) found that wood smoke from domestic heating was one of the main factors that influenced PM_{2.5} concentrations, especially in winter.
- Conditions in 2014 were representative of the longer-term air quality and meteorological conditions.

5.4 Assumed Background Levels

One of the objectives for reviewing the air quality monitoring data was to determine appropriate background levels to be added to model predictions for the assessment of potential cumulative impacts, that is, mining contribution plus non-mining contribution. For this objective, the approach was to utilise the data collected from all real-time air quality monitors in the vicinity of Glendell Mine and, at the same time, minimise the potential for adding model predictions to measurements which may already contain contributions from those sources being modelled (i.e. to avoid double counting).

The adopted approach involved developing an hourly variable background dataset that was added to the model predictions. This dataset (for PM₁₀) was created by using the minimum measured non-zero hourly average concentration from SX8, SX9, SX10, SX10-G2, SX13 and SX13 D4 for each day in the 2014 calendar year. A key assumption to this approach was that the minimum hourly value from these sites reflected a location that was not being influenced by emissions from the sources / operation to be modelled. This approach aimed to minimise double counting of modelled contributions with background contributions.

Figure 14 shows a graphical representation of the assumed background PM₁₀ and PM_{2.5} concentrations that were used in this assessment and added to the model predictions of concentrations due to the Project. There is no standard, prescribed methodology for developing a background dataset in this manner, so an estimation approach had to be adopted and it is acknowledged that other approaches could also have been adopted. However, the statistics of the resultant datasets (included in **Table 11**) indicate that this approach, and its inherent assumption, produce estimated background levels which are similar to actual measurements in the region.

Figure 14 Assumed background PM₁₀ and PM_{2.5} concentrations as inferred from the measurement data

The estimated background levels that apply at sensitive receptors are shown below in **Table 11**. These levels (or approach adopted) have been added to model predictions to determine the potential cumulative impacts.

Table 11 Assumed non-modelled background levels	that apply at sensitive receptors
---	-----------------------------------

Substance	Averaging time	Assumed background level that applies at sensitive receptors	Notes
Particulate matter (PM10)	24-hour and annual	Variable by hour of day	The adopted approach involved developing an hourly variable background dataset that was added to the model predictions. This dataset was created by using the minimum measured non-zero hourly average concentration from SX8, SX9, SX10, SX10-G2, SX13 and SX13 D4 for each hour in the 2014 calendar year. Statistics from the resultant dataset are as follows: - Maximum 24-hour average = 47 µg/m ³ - Annual average = 14 µg/m ³ The data derived above have been added to the predicted contributions of the Project for the assessment of potential cumulative impacts, in accordance with EPA guidelines.
Particulate matter (PM _{2.5})	24-hour and annual	Variable by hour of day	Given that there is only one $PM_{2.5}$ monitor it was not possible to derive an hourly variable background dataset that did not include contributions from the sources being modelled, as was done for PM_{10} . The hourly $PM_{2.5}$ concentration was calculated from the hourly PM_{10} concentration on the assumption that 40% of the PM_{10} is $PM_{2.5}$. The DPIE data for Camberwell show that $PM_{2.5}$ is up to 33% of the PM_{10} , so 40% is a conservative estimate. Statistics from the resultant dataset are as follows: - Maximum 24-hour average = $19 \ \mu g/m^3$ - Annual average = $5.4 \ \mu g/m^3$ The data derived above have been added to the predicted contributions of the Project for the assessment of potential cumulative impacts, in accordance with EPA guidelines.
Particulate matter (TSP)	Annual	68 µg/m ³	Average of the three annual average concentrations measured from TSP-1, TSP-2 and TSP-3 in 2014.
Deposited dust	Annual	2 g/m ² /month	Estimate of background levels that may exist in the vicinity of nearest sensitive receptors without the contribution from modelled sources.
Nitrogen dioxide	1-hour	74 μg/m³	Maximum 1-hour average from Singleton in 2014. Taking the maximum 1-hour average is a conservative approach.
(NO ₂)	Annual	16 µg/m³	Annual average from Singleton in 2014.

6. Emissions to Air

The most significant emission to air from the Project will be dust (particulate matter) due to material handling, material transport, processing, wind erosion, and blasting. Estimates of these emissions are required by the dispersion model. Total dust emissions have been estimated by analysing the material handling schedule, equipment listing and mine plans and identifying the location and intensity of dust generating activities. Operations have been combined with emission factors developed both locally and by the US EPA.

The emission factors used for this assessment have been drawn largely from the following sources:

- Emission Estimation Technique Manual for Mining (NPI 2012); and
- AP 42 (US EPA 1985 and updates).

Dust emission inventories have been developed for each of the modelled scenarios, namely:

- Existing conditions. Monitoring and operational data from 2014 were used, in combination with the intensity
 and scheduling of operations approved and occurring at that time, for model performance evaluations and
 calibration.
- Project Years 1, 6, 13 and 18. These years have been selected as they represent proposed future conditions, and assuming maximum production. The Mount Owen emission inventories were updated to reflect the additional coal from Glendell Mine.

The "existing" scenario has been developed to evaluate the performance of the model. In this case the model predictions were compared to monitored results to determine the level of confidence that can be assumed for the future scenarios. The assessment focusses primarily on the performance of the model for predicting PM_{10} concentrations. This approach was driven by the outcome of the existing air quality review (see **Section 5.2**) which showed that PM_{10} is one of the key air quality issues due to a higher number of historical exceedances of the EPA air quality criteria than other substances. It was not possible to evaluate the performance of the model for predicting $PM_{2.5}$ or NO_2 as there are insufficient $PM_{2.5}$ or NO_x monitors in the model domain to allow for a comparison between measured and predicted levels.

The four future scenarios have been selected to represent various stages in the life of the mine, including at maximum production and for times when operations are close to sensitive receptors. There are no specific guidelines or procedures which define an adequate level of information to demonstrate that selected scenarios are representative of worst-case impacts. The selection of Project Year 1, 6, 13 and 18 was therefore based on a review of material handling quantities, haul distances, and location of activities for each year in the proposed mine life and selecting four years for assessment.

Figure 15 shows the estimated ROM coal and overburden movements over the life of the Project. Year 1 represents mining and operations in closest proximity to Camberwell. Year 1 is also representative of potential worst case cumulative impacts from other mining operations, particularly in the Camberwell area. Year 6 represents an increased level of production relative to existing operations and emplacement occurring at its most elevated position. Year 6 is also significant in terms of potential cumulative impacts due to contributions from other mining operations. Year 13 represents peak production from the Glendell Mine and is representative of potential worst case Project only impacts in terms of overall emissions. Year 18 has been selected as being representative of potential worst case impacts in the Hebden area. During Year 18, mining related disturbance from the Glendell Pit Extension is at its most northern extent and at higher production rates than subsequent years. These years are therefore considered to address the worst case operating scenarios in terms of both Project only impacts in the various areas around the Project.

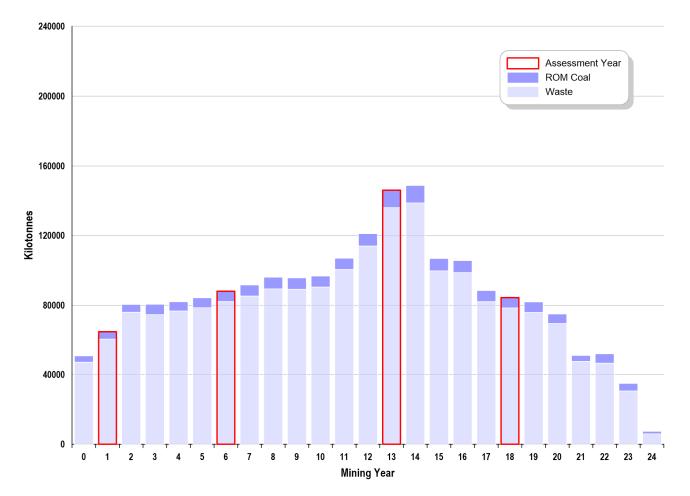


Figure 15 Estimated ROM coal and overburden movements over the life of the Project

In addition, the model includes predictions of contributions from surrounding existing operations, and in the case of future operating scenarios, approved mining operations to include the contribution of these mining sources to the total particulate matter levels in the surrounding area. **Table 12** shows the assumed ROM coal production data from each operation in the model domain. The data for 2014 were derived from the Annual Environmental Management Report (AEMR) produced by each mining operation and available on their respective websites. The AEMRs also included overburden handling quantities and plans showing the mining locations which are important for determining site dust emissions. For future mining scenarios, the production data and location of mining operations have been sourced from publicly available materials including relevant assessment documents (i.e. Environmental Assessments, EIS etc.) for the existing and approved operations. These have been included in the model for future mining scenarios reflective of their current approved life and maximum approved production limit in accordance with the development consent in place at the time of completing this assessment.

The approved Ashton South East Open Cut (SEOC) mining operation has been included in the future modelling scenarios despite the SEOC not being operational at the time of completing this assessment. The SEOC has been included as the existing development consent enables mining to occur during the life of the Project and has the potential to impact on air quality in the surrounding area. For the Rix's Creek South mining operation, it has been assumed that mining will occur in accordance with the approved Rix's Creek South Continuation Project (SSD 6300).

Estimated production quantities for the Project were provided by Glencore based on expected mine production schedules.

			ROM coal production (Mtpa)						
Operation	Notes / references	2014	Year 1 (2021) ¹	Year 6 (2026) ¹	Year 13 (2033) ¹	Year 18 (2038) ¹			
Glendell	As per Project References: Mt Owen (2015) Consent(s): DA 80/952	4.4	4.2	5.9	10.0	5.9			
Ashton (including SEOC)	Underground and current open cut approved to 2024. SEOC approved but not currently operating. SEOC consent lapses in 2020 if not commenced. Mining only approved for 12 years from commencement (i.e. ends 2032). Reference(s): Ashton (2015), PAE Holmes (2009) Consent(s): MP 08_0182, DA 309-11-2001-i	2.8	8.6 (cap for SEOC and underground)	8.6 (cap for SEOC and underground)	3.6 (underground only)	-			
HVO North and South ²	HVO North: Approved until July 2025. HVO South coal processed to 2030. HVO South: Approved until 2030, assume 16 Mtpa transferred to HVO North CHPP for washing. Future years as per maximum approved in development consents. Reference(s): Rio Tinto (2015), Todoroski (2017) Consent(s): DA 450-10-2003, 06_0261	18	HVO North: 22 (production), processing up to 26. HVO South: 20	HVO North: 16 processing only. HVO South: 20	-	-			
Integra Underground	Operation in care and maintenance (that is, no mining) from Apr 2014 to Feb 2017. Approved to 2035. Reference(s): Vale (2015) Consent(s): 08_0101	0.8	4.5	4.5	4.5	-			
Liddell Coal Operations	2023 is the last planned mining year. Future years as per maximum approved in development consent. Reference(s): Liddell Coal (2015). Consent(s): DA 305-11-01	6.7	8	-	-	-			
Mount Owen	As per Mount Owen Modification 2. Reference(s): Mt Owen (2015), Jacobs (2018) Consent(s): SSD-5850	10	9.9	7.2	3.2	0 ³			
Ravensworth Operations	Open cut approved to 2039 at up to 16 Mtpa. Complex approved to process 21 Mtpa. Underground approved to 2024 but not currently operating or proposed to operate. Future years as per maximum approved in development consent. Reference(s): Ravensworth (2015) Consent(s): 09_0176	10.9	16	16	16	16			
Rix's Creek South	As per the Rix's Creek South Continuation Project. Reference(s): Rix's Creek (2015), Todoroski (2015) Consent(s): DA 49/94, SSD 6300	2.8	4.5	4.5	4.5	4.5			
Rix's Creek North	Operation in care and maintenance (that is, no mining) in 2014. Recommenced operations in 2016. Approved to 2035. Future years as per maximum approved in development consent. Reference(s): Vale (2015) Consent(s): 08_0102	0	6 (1.5 North and 4.5 West)	6 (1.5 North and 4.5 West)	6 (1.5 North and 4.5 West)	-			

Table 12 Assumed ROM coal production from each operation located within the model domain

¹ Calendar years are indicative only and are to provide guidance for the duration of other mining operations relative to the Project.

² The component of HVO which is in the model domain.

³ CHPP operation only

Table 13, **Table 14** and **Table 15** summarise the estimated annual TSP, PM₁₀ and PM_{2.5} emissions, respectively, due to the Project as well as all other operating, or assumed to be operating, mines in the model domain. Estimates for 2014 were based on production and material handling quantities contained in the respective AEMRs. Estimates for future years, that is, Project Year 1 onwards, were based on the maximum approved production rates as per the relevant development consents with the exception of the Mount Owen contributions which were modelled according to the production schedules assessed in the Mount Owen Continued Operations Project Modification 2 Assessment and the increased coal throughput at the CHPP

associated with the Project. As noted above, the assessment has also been carried out on the assumption that the Ashton SEOC will be operating in the future. These assumptions mean that the model predictions will likely over-state actual impacts as the mines are not likely to operate at their maximum approved production rate in each year.

It should be noted that the main intent of the inventories is to capture the most significant emission sources that may affect off-site air quality. Not every source will be captured. However, the contribution of emissions from sources not identified will be captured in the air quality monitoring data and these data have been added to the predicted project contributions. **Appendix C** provides details of the dust emission calculations, including assumptions, emission controls and allocation of emissions to modelled locations.

Emissions from other mining operations are also important for quantifying the potential cumulative impacts. Two approaches were considered for estimating emissions from other mining operations. These approaches included:

- Deriving emission estimates from previously published EIS data, and
- Recalculating emissions from other mines in the model domain specifically for this assessment.

The approach of recalculating emissions from other mining operations in the model domain has been chosen for this assessment, with the exception of the Mount Owen mine where emissions were based on the Mount Owen Continued Operations Project Modification 2 Assessment as per Jacobs (2018). This approach has been favoured because it maintains consistency in the emission calculation methods for all mining operations. It also has the following advantages over recent EIS data:

- TSP, PM₁₀ and PM_{2.5} can be separated for each activity for each mining operations. To date, most EIS air quality assessments have only calculated TSP emissions, with PM₁₀ and PM_{2.5} emissions derived from regional ratios such as those published by the SPCC (1986).
- The proportions of wind sensitive, wind insensitive and wind erosion activities can be more accurately defined. Historical assessments have often applied fixed ratios of these three activity types, usually based on information from the Mt Arthur Mine EIS (URS 2000).
- Pit retention can be modelled and the adjusted emissions can be made specific to each activity and the hourly wind speed.
- Triggered control factors can be modelled. For example, the effect of rainfall for suppressing dust from exposed areas can be simulated for relevant hours in the year.

There are also disadvantages to the approach of recalculating emissions from other mines. The main disadvantages are potential inconsistencies between the emission estimates and other published EIS emissions data, and the inability to precisely match source locations to future mine plans. However, it will be seen in **Section 8**, that the emission estimation approach combined with model setup assumptions has produced results which do not underestimate average concentrations at the key sensitive receptor locations, for the existing scenario.

Table 13 Estimated TSP emissions due to the Project and other operations

	Annual TSP emissions (kg/y)							
Operation (see Table 12 for Consent references)	2014	Year 1 (2021) ¹	Year 6 (2026) ¹	Year 13 (2033) ¹	Year 18 (2038) ¹			
Glendell	2,411,539	2,241,625	3,274,887	5,017,124	2,992,017			
Ashton (including SEOC)	114,780	1,379,698	1,379,698	114,937				
HVO (component in model domain)	9,923,425	13,547,344	13,547,344					
Integra Underground	114,683	115,112	115,112	115,112				
Liddell Coal Operations	3,688,178	4,089,481						
Mount Owen	4,682,946	5,800,071	4,308,575	2,548,710	727,669			
Ravensworth Operations	5,941,622	7,440,069	7,440,069	7,440,069	7,440,069			
Rix's Creek South	2,199,466	2,635,613	2,635,613	2,635,613	2,635,613			
Rix's Creek North	210,391	2,163,828	2,163,828	2,163,828				

¹ Calendar years are indicative only and are to provide guidance for the duration of other mining operations relative to the Project.

Table 14 Estimated PM₁₀ emissions due to the Project and other operations

	Annual PM₁₀ emissions (kg/y)							
Operation (see Table 12 for Consent references)	2014	Year 1 (2021) ¹	Year 6 (2026) ¹	Year 13 (2033) ¹	Year 18 (2038) ¹			
Glendell	721,190	681,177	1,037,423	1,522,894	936,928			
Ashton (including SEOC)	37,909	413,100	413,100	37,983				
HVO (component in model domain)	2,780,851	3,704,001	3,704,001					
Integra Underground	37,863	38,066	38,066	38,066				
Liddell Coal Operations	1,147,692	1,268,767						
Mount Owen	1,428,982	1,847,572	1,357,871	828,889	252,176			
Ravensworth Operations	1,940,467	2,414,566	2,414,566	2,414,566	2,414,566			
Rix's Creek South	682,901	811,805	811,805	811,805	811,805			
Rix's Creek North	108,449	691,822	691,822	691,822				

¹ Calendar years are indicative only and are to provide guidance for the duration of other mining operations relative to the Project.

Table 15 Estimated PM_{2.5} emissions due to the Project and other operations

	Annual PM _{2.5} emissions (kg/y)							
Operation (see Table 12 for Consent references)	2014	Year 1 (2021) ¹	Year 6 (2026) ¹	Year 13 (2033) ¹	Year 18 (2038) ¹			
Glendell	130,163	128,378	191,639	287,474	173,953			
Ashton (including SEOC)	3,530	72,044	72,044	3,542				
HVO (component in model domain)	519,120	709,570	709,570					
Integra Underground	3,523	3,554	3,554	3,554				
Liddell Coal Operations	180,926	194,906						
Mount Owen	219,856	291,783	207,023	134,223	62,853			
Ravensworth Operations	290,083	345,834	345,834	345,834	345,834			
Rix's Creek South	118,692	133,542	133,542	133,542	133,542			
Rix's Creek North	15,779	111,572	111,572	111,572				

¹ Calendar years are indicative only and are to provide guidance for the duration of other mining operations relative to the Project.

Finally, there will be operational controls in place at Glendell Mine which will also have a direct effect on emissions to air. Specifically, Glencore is committed to the continued implementation of operational controls during adverse weather conditions in order to minimise impacts. The operational controls will result in reduced levels of activity at Glendell Mine relative to the capacity considered as part of the current air quality modelling. In practice these operational controls, which will vary on a daily basis, will lead to lower emissions to air than for unconstrained activities. Consequently the estimated emissions in **Table 13**, **Table 14** and **Table 15** should represent conservative estimates, as these further detailed operational controls are not included, and it follows that the predicted impacts of the Project will also be conservative. That is, the predicted impacts are likely to over-state actual impacts to some extent.

7. Approach to Assessment

7.1 Overview

This assessment has followed the EPA's "Approved Methods of the Modelling and Assessment of Air Pollutants in New South Wales" (EPA 2016), which specifies how assessments based on the use of air dispersion models should be undertaken. The "Approved Methods" include guidelines for the preparation of meteorological data, reporting requirements and air quality assessment criteria to assess the significance of dispersion model predictions.

The CALPUFF computer-based air dispersion model has been used to predict ground-level concentrations and deposition levels due to the identified emission sources, and the model predictions have been compared with relevant air quality criteria. The choice of model has considered the expected transport distances for the emissions, as well as the potential for temporally and spatially varying flow fields due to influences of the locally complex terrain, non-uniform land use, and potential for stagnation conditions characterised by calm or very low wind speeds with variable wind directions.

The CALPUFF model, through the CALMET meteorological pre-processor, simulates complex meteorological patterns that exist in a particular region. The effects of local topography and changes in land surface characteristics are accounted for by this model. The model comprises meteorological modelling as well as dispersion modelling, both of which are described below.

This Air Quality Impact Assessment has been subject to independent peer review, by ERM, in order to test all assumptions. Review comments have been addressed in this assessment and the peer review has been included as **Appendix D**. In summary, the peer review concluded that this assessment *"is consistent with the requirements of the NSW EPA Approved Methods for a Project of this nature. The methodology is sound and includes an acceptable level of conservatism. The assessment conclusions are consistent with what would be expected for a Project such as this"*.

7.2 Meteorological Modelling

The air dispersion model used for this assessment, CALPUFF, requires information on the meteorological conditions in the modelled region. This information is typically generated by the meteorological pre-processor, CALMET, using surface observation data from local weather stations and upper air data from radio-sondes or numerical models, such as the CSIRO's prognostic model known as TAPM (The Air Pollution Model). CALMET also requires information on the local land-use and terrain. The result of a CALMET simulation is a year-long, three-dimensional output of meteorological conditions that can be used as input to the CALPUFF air dispersion model.

There are no known meteorological stations in the Upper Hunter region that collect suitable upper air data for CALMET. The closest station with suitable data is operated by the Bureau of Meteorology at Williamtown, approximately 80 km to the east-southeast of Glendell Mine. The necessary upper air data were therefore generated by TAPM, using influence from the surface observations at the Glendell Met meteorological station. CALMET was then set up with three surface observations stations (Glendell Met, Mt Owen Met and Camberwell (OEH) meteorological stations) and one upper air station (based on TAPM output for the Glendell Met meteorological station). The meteorological modelling followed the guidance of TRC (2011) and adopted the "observations" mode. A "hybrid" mode was also tested but found to produce unrealistic wind-fields because of too much weighting towards the prognostic data.

Key model settings for TAPM are shown below in Table 16.

Table 16 Model settings and inputs for TAPM

Parameter	Value(s)
Model version	4.0.5
Number of grids (spacing)	4 (30 km, 10 km, 3 km, 1 km)
Number of grids point	35 x 35 x 25
Year(s) of analysis	2014, with one "spin-up" day.
Centre of analysis	Glendell Mine (32°24.5' S, 151°5.5' E)
Terrain data source	30 m Shuttle Research Topography Mission (SRTM)
Land use data source	Default
Meteorological data assimilation	Glendell Met meteorological station. Radius of influence = 15 km. Number of vertical levels for assimilation = 4

Table 17 lists the model settings and input data for CALMET. This information has been provided so that the user can reproduce the results if required.

Table 17 Model settings and inputs for CALME
--

Parameter	Value(s)
Model version	6.334
Terrain data source(s)	30 m SRTM
Land-use data source(s)	Digitized from aerial imagery
Meteorological grid domain	20 km x 20 km
Meteorological grid resolution	0.2 km
Meteorological grid dimensions	100 x 100 x 9
Meteorological grid origin	310000 mE, 6400000 mN. MGA Zone 56
Surface meteorological stations	Glendell Met (Observations of wind speed and wind direction. TAPM for ceiling height, cloud cover and air pressure)
Surface meteorological stations	Mount Owen Met (Observations of wind speed and wind direction)
	Camberwell (OEH) (Observations of wind speed, wind direction, temperature and humidity)
Upper air meteorological stations	Upper air data file for the location of Glendell Met station derived by TAPM
	Biased towards surface observations (-1, -0.8, -0.6, -0.4, -0.2, 0, 0, 0, 0)
Simulation length	8760 hours (1 Jan 2014 to 31 Dec 2014)
R1, R2	0.5, 1
RMAX1, RMAX2	5, 20
TERRAD	5

Terrain information was extracted from the NASA Shuttle Research Topography Mission database which has global coverage at approximately 30 metre resolution (in addition to the Project Digital Elevation Model). Higher resolution topographical data are not necessary in order to develop wind fields that reflect the influence of terrain and effects that are important for dispersion of emissions from the Project to the sensitive receptor areas. Land use data were extracted from aerial imagery. **Figure 16** shows the model grid, land-use and terrain information, as used by CALMET. It is noted that the extent of some land-uses will change over time, such as mining areas, however the model sensitivity has been tested and changes from grassland to barren land (i.e. mining areas) were found to have very little influence on the dispersion modelling results.

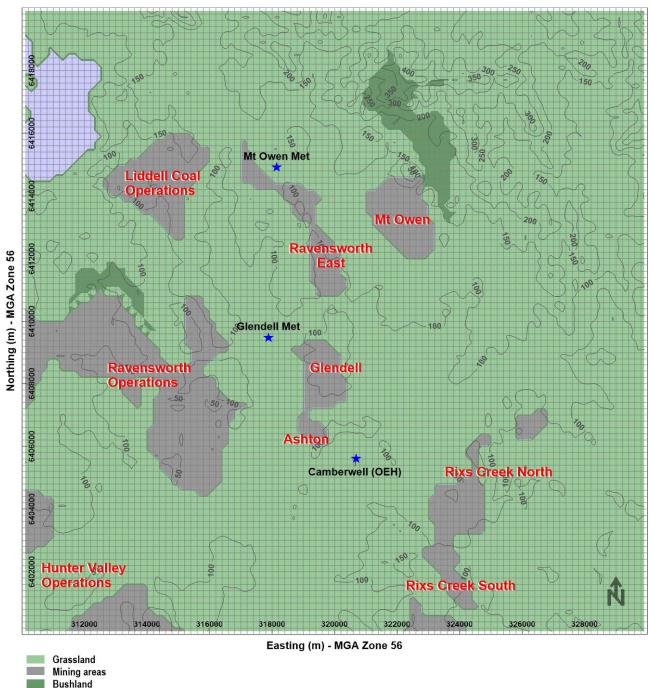
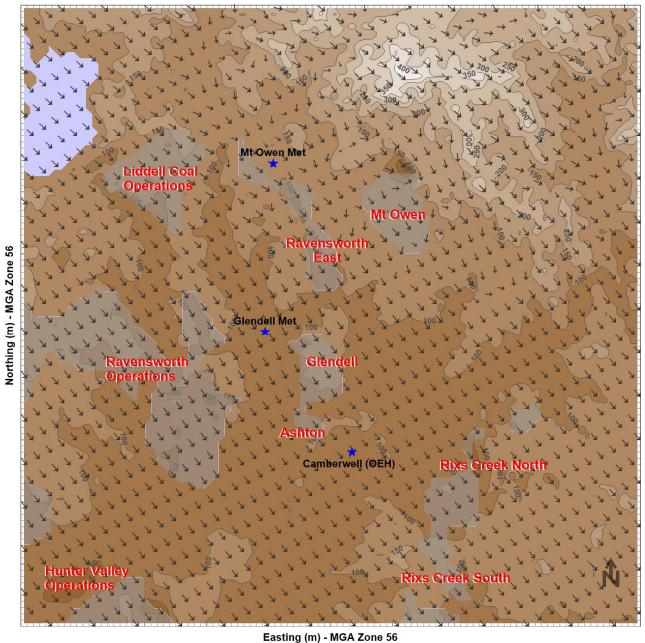



Figure 16 Model domain, grid, land-use and terrain information

Water Weather station

Figure 17 shows a snapshot of winds at 10 metres above ground-level as simulated by the CALMET model under stable conditions. This plot shows the effect of the topography on local winds (for this particular hour), and highlights the non-uniform wind patterns in the area, which further supports the use of a non-steady-state model such as CALPUFF.

→ Wind vectors: 2 Jan 2014, 4 am EST

★ Weather Station

Figure 17 Example of CALMET simulated ground-level wind flows

7.3 Dispersion Modelling

Ground-level concentration and deposition levels due to the emission sources have been predicted using the air dispersion model known as CALPUFF (Version 6.42). CALPUFF is a Lagrangian dispersion model that simulates the dispersion of pollutants within a turbulent atmosphere by representing emissions as a series of puffs emitted sequentially. Provided the rate at which the puffs are emitted is sufficiently rapid, the puffs overlap and the serial release is representative of a continuous release.

The CALPUFF model differs from traditional Gaussian plume models (such as AUSPLUME and ISCST3) in that it can model spatially varying wind and turbulence fields that are important in complex terrain, long-range transport and near calm conditions. CALPUFF has the ability to model the effect of emissions entrained into the thermal internal boundary layer that forms over land, both through fumigation and plume trapping. CALPUFF is an air dispersion model which has been approved by the EPA for these types of assessments (EPA 2016).

The modelling was performed using the emission estimates from **Section 6** and the meteorological information provided by the CALMET model, described in **Section 7.2**. Predictions were made at 1,003 discrete receptors (including sensitive receptors and monitoring locations) to allow for contouring of results. The locations of the model receptors are shown in **Appendix E**.

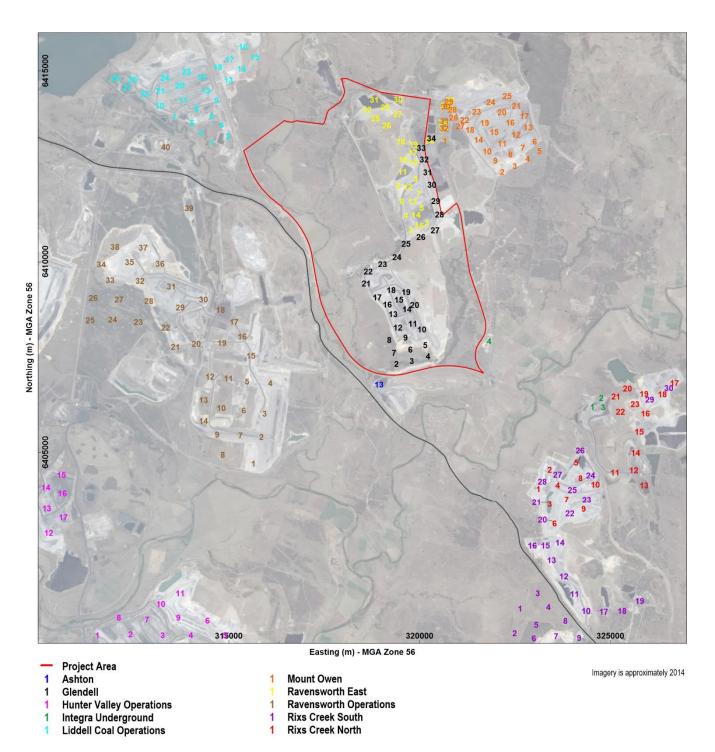
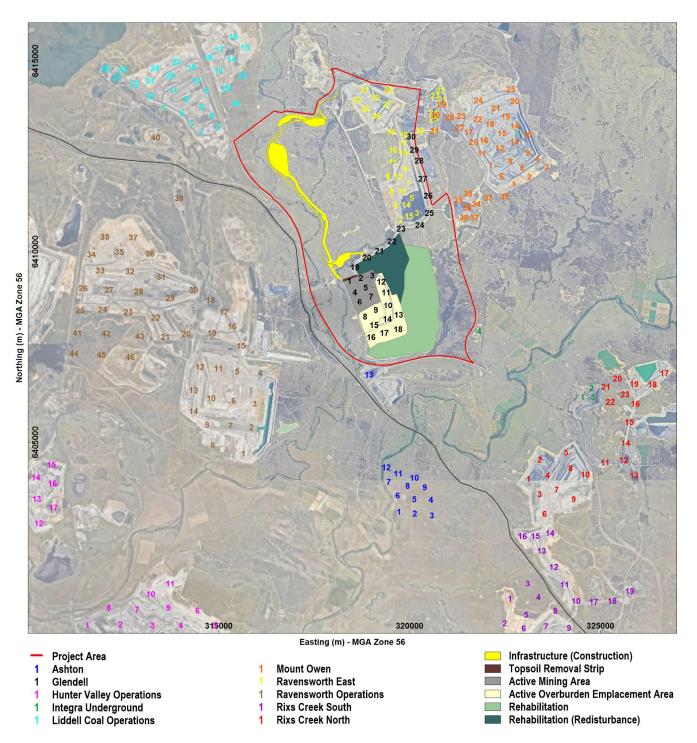
Mining operations were represented by a series of volume sources located according to the location of activities for each modelled scenario. **Figure 18** to **Figure 22** show the location of the modelled sources for 2014 and future Project years, where the emissions from the dust generating activities summarised in **Table 13** to **Table 15** were assigned to one or more of these source locations (refer to **Appendix C** for details of the allocations).

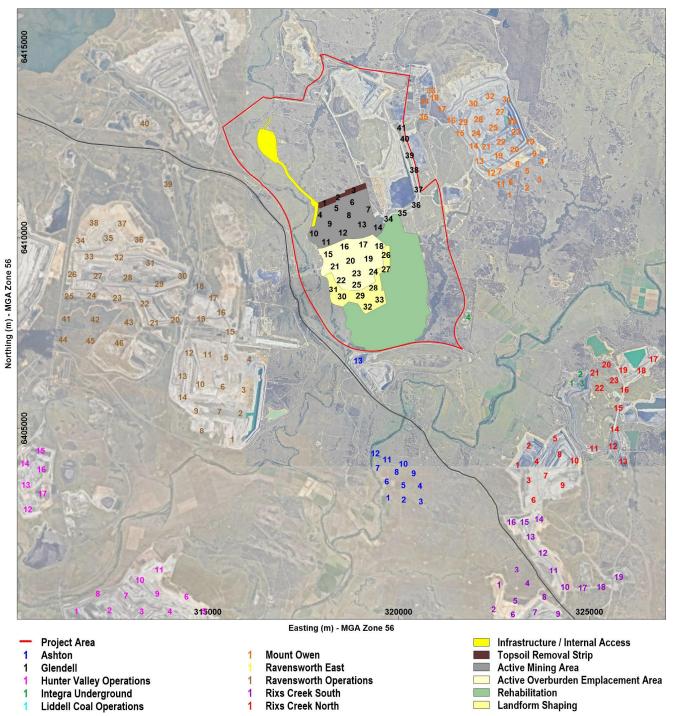
Dust emissions for all modelled mine-related sources have been considered to fit in one of three categories, as follows:

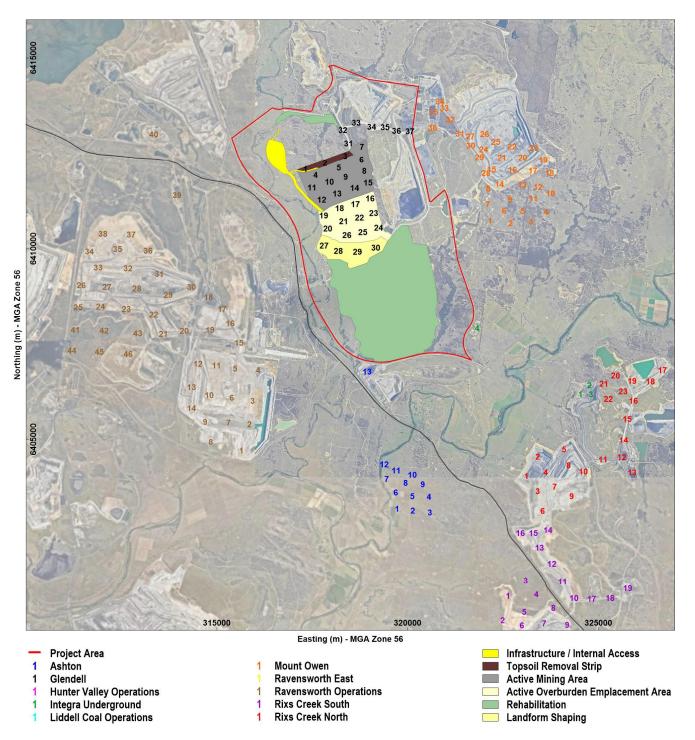
- Wind insensitive sources, where emissions are relatively insensitive to wind speed (for example, dozers).
- Wind sensitive sources, where emissions vary with the hourly wind speed, raised to the power of 1.3, a
 generic relationship published by the US EPA (1987). This relationship has been applied to sources such
 as loading and unloading of waste to/from trucks and results in increased emissions with increased wind
 speed.
- Wind sensitive sources, where emissions also vary with the hourly wind speed, but raised to the power of 3, a generic relationship published by Skidmore (1998). This relationship has been applied to sources including wind erosion from stockpiles, overburden dumps or active pits, and results in increased emissions with increased wind speed.

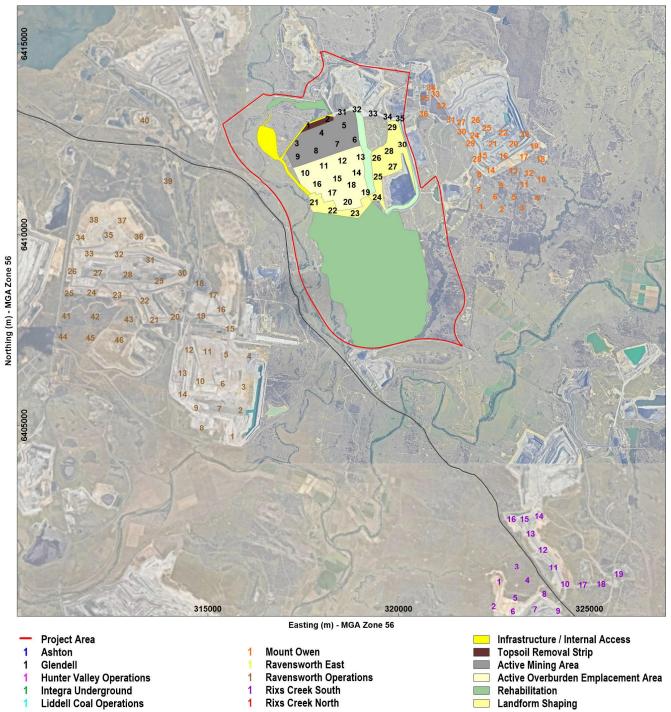
Emissions from each volume source were developed on an hourly time step, taking into account the level of activity at that location and, in some cases, the hourly wind speed. This approach ensured that light winds corresponded with lower dust generation and higher winds, with higher dust generation.

Blasting activities and associated emissions were assumed to take place only during daylight hours (9 am to 5 pm for the purposes of the modelling) while all other activities have been modelled for 24 hours per day.


Figure 18 Location of modelled sources in 2014 (Existing Conditions)





Final

Pit retention (that is, retention of dust particles within the open pits) has been included in the model simulations. The pit retention calculation determines the fraction of dust emitted in the pit that may escape the pit. The "escaped fraction" is a function of the gravitational settling velocity of the particles and the wind speed and is shown by the following relationship (US EPA, 1995).

Equation 1:

$$\varepsilon = \frac{1}{\left(1 + \frac{v_g}{\left(\alpha U_r\right)}\right)}$$

where:

 ϵ = escaped fraction for the particle size category V_g = gravitational settling velocity (m/s) U_r = approach wind speed at 10 m (m/s)

 α = proportionality constant in the relationship between flux from the pit and the product of U_r and concentration in the pit (0.029)

To model the effect of pit retention, the emissions from mining sources within the open pits have been reduced, as per the calculation above. This approach means that much of the coarser dust would remain trapped in the pits. Typically, five per cent of the PM₁₀ emissions are trapped in the pit using this calculation.

The effect of rainfall for suppressing dust from exposed areas has also been simulated. For each hour of rainfall above 0.254 mm (i.e. 0.1 inch) a 50% control on emissions has been applied to wind erosion from active pits and active dumps. Inclusion of rainfall in this manner has minimal (i.e. less than 1%) effect on the model results.

Key model settings and inputs for CALPUFF are provided in Table 18.

Table 18 Model settings and inputs for CALPUFF

Parameter	Value(s)					
Model version	6.42					
Computational grid domain	100 x 100					
Chemical transformation	None					
Dry deposition	Yes					
Wind speed profile	ISC rural					
Puff element	Puff					
Dispersion option	Turbulence from micrometeorology					
Time step	3600 seconds (1 hour)					
Terrain adjustment	Partial plume path					
Number of volume sources	See Appendix C. Height = 5 m, SY = 20 m, SZ = 10 m. Elevations from Project Digital Elevation Model (DEM)					
Number of discrete receptors	1003. See Appendix E.					

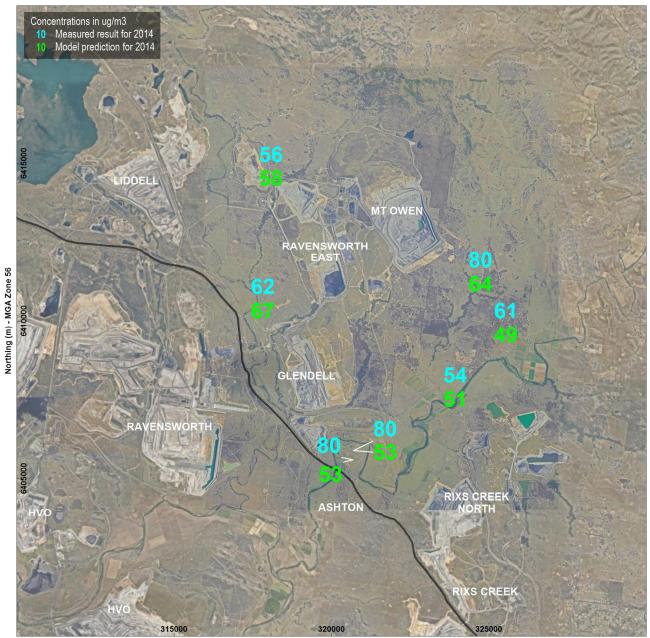
Finally, the model predictions at identified sensitive receptors were then compared with the EPA air quality criteria, previously discussed in **Section 4**. Contour plots have also been created to show the spatial distribution of model predictions. The results for each substance and averaging time were presented as a series of figures showing:

- Model predictions for future operational scenarios, as Project only contributions.
- Model predictions for future operational scenarios, due to the Project and other sources.

8. Model Performance

The performance of the model for predicting air quality conditions has been evaluated. This involved comparing predictions with measurements for a recent year (2014), using information on meteorological and operating conditions at the time, in order to establish the likely confidence in the model predictions for future operations.

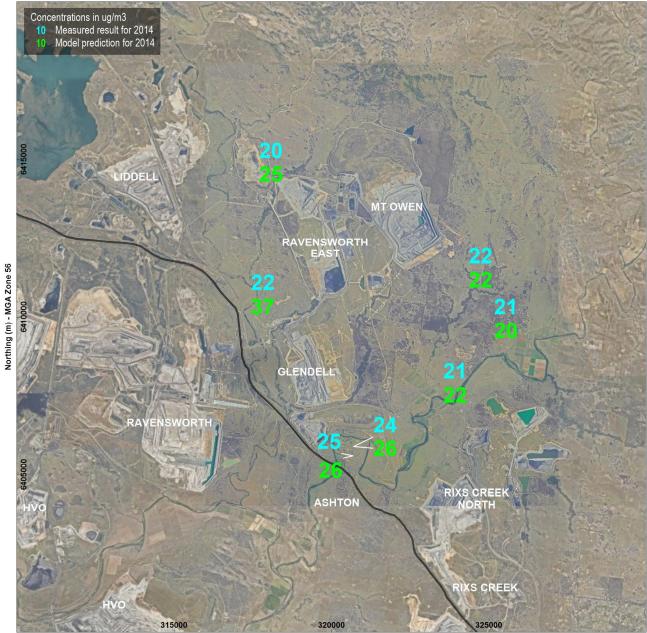
The model performance has been evaluated for:


- Maximum 24-hour average PM₁₀ concentrations;
- Annual average PM₁₀ concentrations;
- Annual average TSP concentrations; and
- Annual average dust deposition.

Model performance was not evaluated for $PM_{2.5}$ as there are insufficient $PM_{2.5}$ monitors in the model domain (only one) to allow for a comparison between measured and predicted levels.

Figure 23 shows the model performance for predicting maximum 24-hour average PM₁₀ concentrations, based on conditions in 2014. As noted above, this comparison is useful for determining the confidence in the model predictions for future operations. It should be noted that only one data point is shown for each location (that is, the highest value) and more detailed comparisons between measured and predicted results for all percentiles is provided in **Appendix F.**

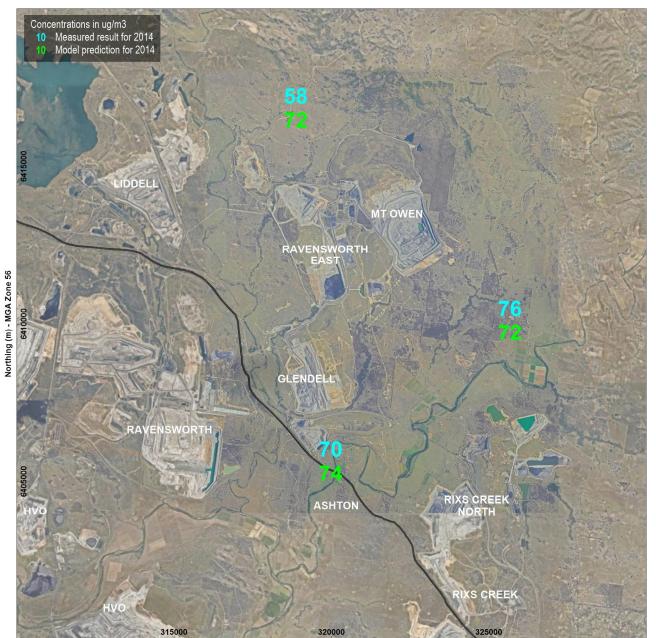
Figure 23 shows that the model predictions for 24-hour averages are in the range of 30 per cent lower to 10 per cent higher than the measured result, depending on the location. These results highlight the difficultly in predicting short-term (24-hour average) concentrations and the highly variable nature of daily PM_{10} concentrations but they are however well within a factor of two for all percentiles. **Appendix F** provides this detail.


Easting (m) - MGA Zone 56

EPA criterion is 50 μ g/m³.

Figure 23 Model performance for predicting maximum 24-hour average PM₁₀ concentrations

Figure 24 shows the measured and predicted annual average PM_{10} concentrations for 2014. These results show that, for locations around Glendell Mine, the model predictions range from 4 per cent lower to 27 per cent higher than measured results. In absolute numbers, these results show that the model predictions at sensitive receptor locations in the Middle Falbrook and Camberwell areas are within 1 to 2 µg/m³ of the measurements. There is a tendency for over-prediction to the northwest of Mount Owen Complex, however it is noted that the closest sensitive receptors are located to the southeast of the Project. Accordingly, the over prediction to the northwest is acceptable for determining the impacts of the Project. Similar performance may therefore be expected for the predictions of future conditions.


Easting (m) - MGA Zone 56

EPA criterion is 25 μ g/m³.

Figure 24 Model performance for predicting annual average PM₁₀ concentrations

Figure 25 shows the annual average TSP concentrations for existing conditions (2014). This figure shows that the model predictions for this statistic are within five per cent of the measured result in the Camberwell and Middle Falbrook areas. There is a tendency for over-prediction to the northwest of Mount Owen Complex, however it is noted that the closest sensitive receptors are located to the southeast of the Project. Accordingly, it is considered that the over prediction to the northwest is acceptable.

Easting (m) - MGA Zone 56

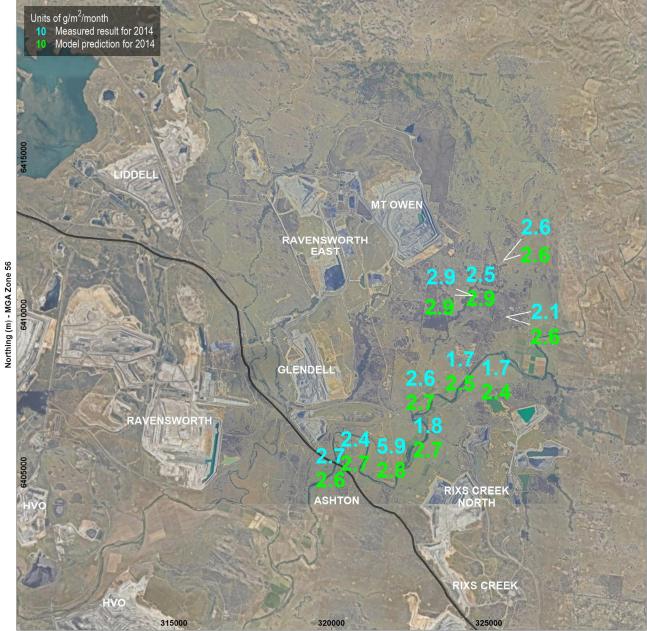

EPA criterion is 90 μ g/m³.

Figure 25 Model performance for predicting annual average TSP concentrations

JACOBS[®]

Air Quality Impact Assessment

Figure 26 shows the annual average dust deposition levels for existing conditions (2014). The model predictions are higher than the measured results at all but two locations and typically within 0.5 g/m²/month of the measured result. Similar performance may therefore be expected for the predictions of future conditions.

Easting (m) - MGA Zone 56

EPA criterion is 4 g/m²/month.

Figure 26 Model performance for predicting annual average deposited dust

9. Assessment of Impacts

This section provides an assessment of the key air quality issues associated with the Project primarily based on comparisons of model predictions to EPA air quality criteria. Assessment against the VLAMP criteria has been provided separately in **Section 10**. Outcomes of this assessment have been determined for all locations but with a focus on private sensitive receptors not already subject to acquisition rights. In this context a sensitive receptor is defined by the EPA as "a location where people are likely to work or reside; this may include a dwelling, school, hospital, office or public recreational area" and interpreted as places of near continuous occupation (e.g. with likely daily occupation). Two receptors have been excluded from consideration as private sensitive receptors for the purposes of the assessment:

- Receptor ID342, owned by Daracon Mining Pty Limited. This is an industrial workplace located adjacent to the New England Highway to the West of the Project Area; and
- Receptor ID2, The Glennies Creek Hall. This is a community based facility located on private land which is only occupied periodically for short periods.

One objective of this study was to predict the extent of air quality impacts due to the Project, and to identify potential changes in air quality over existing levels, recognising that the Glendell Mine is currently operational and the Project represents the progression of mining into a new area. For these objectives it is useful to understand the performance of the model (as per **Section 8**) as well as the expected change in impacts.

The complete list of tabulated results is provided in **Appendix G**. Contour plots have also been prepared and are discussed below. Additional information on the model performance is provided in **Appendix F**.

9.1 Particulate Matter (as PM₁₀)

Figure 27 and **Figure 28** show the predicted maximum 24-hour average PM₁₀ concentrations for the Project only and cumulative scenarios respectively.

Figure 27 shows that the contribution of the Project to maximum 24-hour average PM_{10} concentrations will not exceed 50 µg/m³ at any private (non-mine owned) sensitive receptors at any stage of the Project.

To fully assess the Project against the EPA's 24-hour average criterion for PM_{10} it is necessary to consider potential cumulative impacts since the criterion (50 µg/m³) relates to the total concentration in the air and not just the contribution from the project of interest. **Figure 28** shows that most areas of the model domain will experience at least one day each year when PM_{10} concentrations will exceed the 24-hour criterion due to the contributions of mining operations and other sources (with the exception of bushfires, dust storms and other extreme events). The analysis of existing air quality conditions (**Section 5.2.1**) also showed that this region, as well as other parts of NSW such as Newcastle, have historically experienced one or more days above the 24hour criterion each year so the model results are indicating that air quality outcomes will not change in terms of maximum PM_{10} concentrations.

As noted in **Section 4**, in situations where background levels are elevated the proponent must "*demonstrate that no additional exceedances of the impact assessment criteria will occur as a result of the proposed activity and that best management practices will be implemented to minimise emissions of air pollutants as far as is practical*" (EPA 2016). Additional investigation of the predictions has therefore been carried out, in particular for property 156 located in Camberwell; one of the nearest private sensitive receptors to the Project. This property is subject to existing acquisition rights.

Table 19 shows the predicted number of days above the EPA's 24-hour average criterion for PM_{10} at property 156 over the course of a year, for each assessment year, including the contributions from the Project, other mines and background levels. An increase in the number of days above 50 μ g/m³ is predicted at this location with the Project. Of the 17 potential exceedance days in Year 1, when mining operations will be at their closest to Camberwell, the contribution of the Project to this location is predicted to range from 2 to 24 μ g/m³ with an average of 12 μ g/m³.

ID	Due to background and other mines without Glendell				Due to background and other mines with Glendell (including Project)					
	2014	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18
156	1	3	1	1	0	7	17	6	1	1

Table 19 Predicted number of days above 24-hour average PM₁₀ criteria at Camberwell (property ID 156)

The air quality monitoring data (see **Section 5.2**) have shown that Camberwell has experienced between 11 and 44 days above 50 μ g/m³ in each of the past seven years and the predictions of future conditions represent a similar range of impacts. These impacts will be due to the combined contributions of all sources of dust that influence the region. With this information it can be anticipated that 24-hour average PM₁₀ concentrations will continue to be variable from day-to-day, due to existing conditions and sources as well as extreme events, and that operations will need to continue to be managed in a way which minimises the contribution to off-site PM₁₀ levels.

Figure 29 shows the predicted annual average PM_{10} concentrations due to the Project only and **Figure 30** shows the predicted cumulative concentrations. The cumulative predictions (**Figure 30**) can be compared to the EPA criteria, which is 25 µg/m³. Annual average PM_{10} concentrations are predicted to comply with the criterion at all private sensitive receptors not already subject to acquisition rights.

As noted from **Section 5.2**, the air quality monitoring data showed that annual average PM_{10} concentrations have exceeded 25 µg/m³ at Camberwell in four of the past seven years, and at two other locations in 2018 due in part to drought conditions. The modelling suggests that exceedances of the annual average criterion at Camberwell are likely for much of the life of the Project with levels declining in the later years of the Project as mining at Glendell moves away from Camberwell and other mining operations cease operations. It is noted however that the modelling indicates that this criterion is likely to be exceeded irrespective of the contribution from the Project.

The Daracon facility (ID 342), located near the New England Highway on the west side of the Project, to the northwest of Camberwell is predicted to experience an exceedance of the criteria for maximum 24-hour average PM_{10} concentrations (Project only) and cumulative annual average PM_{10} . The exceedance of the 24-hour Project only criterion is anticipated to occur in the Year 6 model year with three predicted exceedance days in the modelling year. The annual average PM_{10} criterion is predicted to be exceeded at this location in all modelling years however, as noted above, this facility is not considered to be a private sensitive receiver for the purposes of the assessment against the EPA or VLAMP criteria.

JACOBS[°]

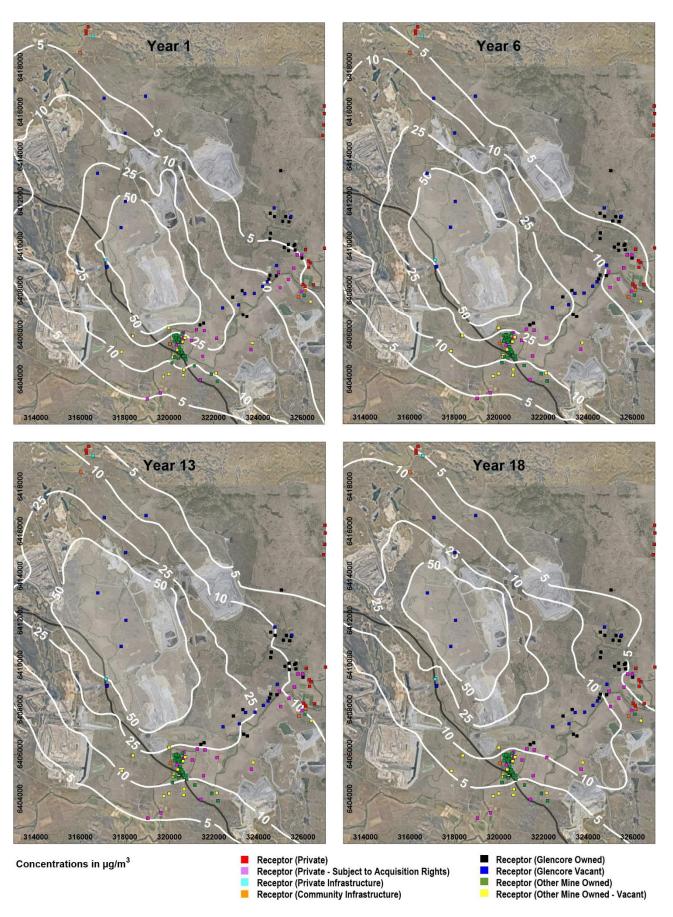


Figure 27 Predicted maximum 24-hour average PM₁₀ concentrations due to the Project only

JACOBS[°]

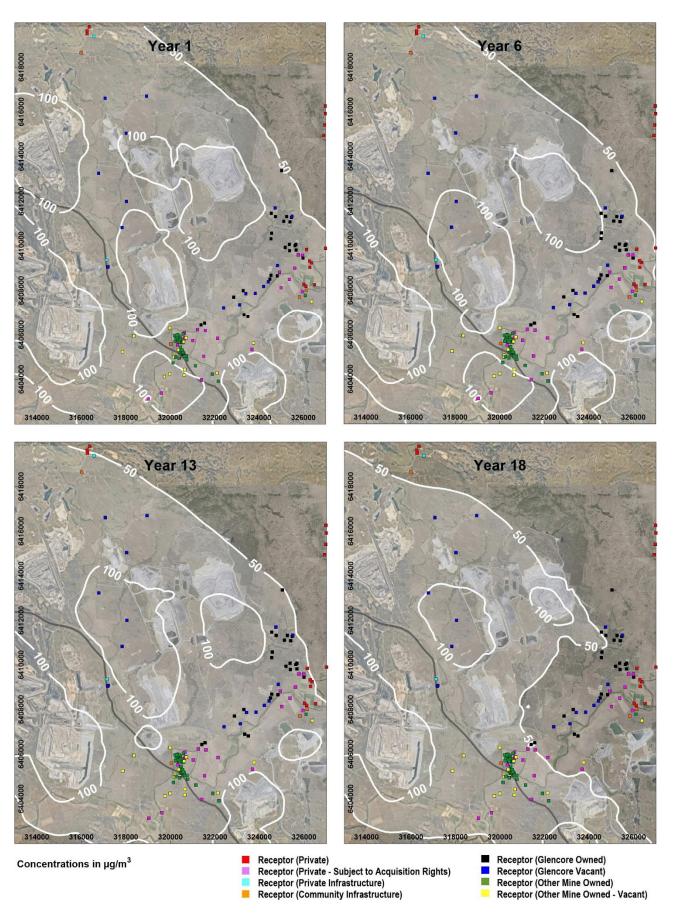


Figure 28 Predicted maximum 24-hour average PM₁₀ concentrations due all sources (cumulative)

JACOBS[°]

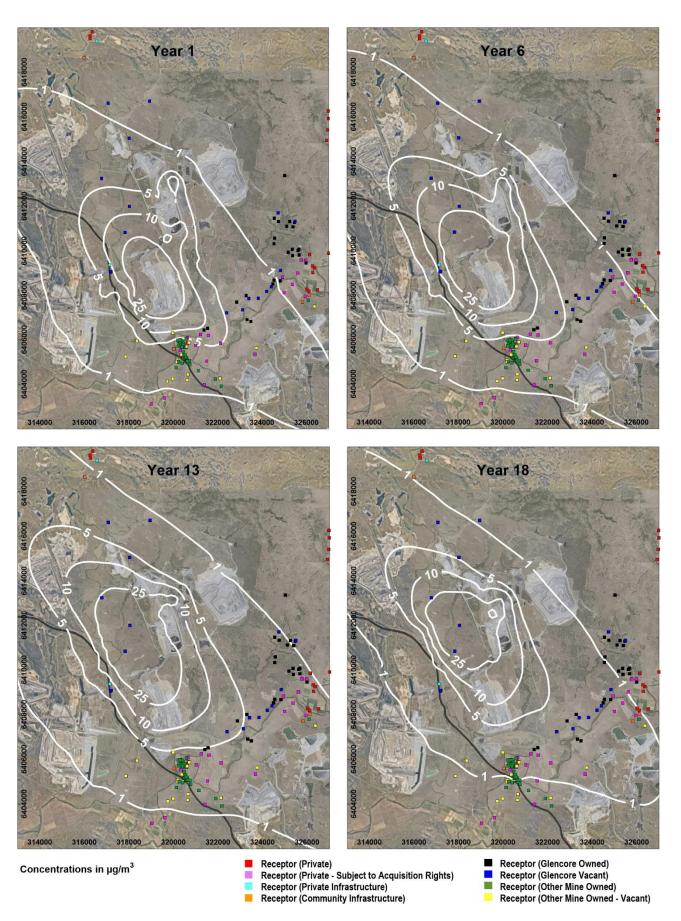


Figure 29 Predicted annual average PM₁₀ concentrations due to the Project only

JACOBS[°]

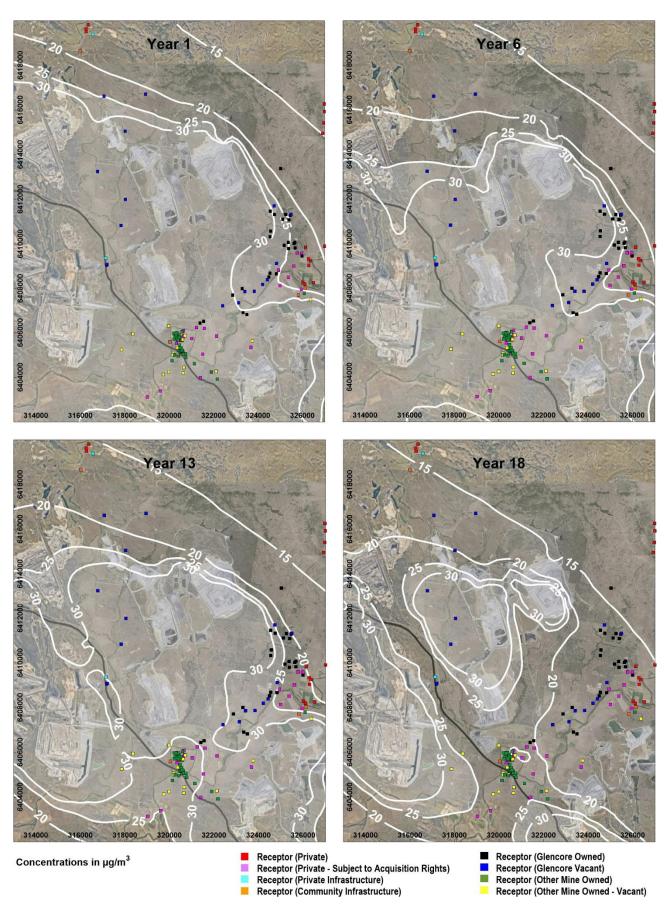


Figure 30 Predicted annual average PM₁₀ concentrations due to all sources (cumulative)

9.2 Particulate Matter (as PM_{2.5})

The results for PM_{2.5} are shown in **Figure 31** to **Figure 34**, including the Project only and cumulative scenarios, for maximum 24-hour and annual averages. **Appendix G** provides all PM_{2.5} model results for each receptor in tabular form.

Figure 31 shows that the contribution of the Project will not exceed 25 μ g/m³ at any private (non-mine owned) sensitive receptor at any stage of the Project. To fully assess the Project against the EPA's 24-hour average criterion for PM_{2.5} it is necessary to consider potential cumulative impacts since the criterion (25 μ g/m³) relates to the total concentration in the air and not just the contribution from the project of interest. **Figure 32** shows the predicted maximum 24-hour average PM_{2.5} concentrations due to all sources, that is, cumulative for the purposes of assessing against EPA criteria. Compliance with the EPA criteria for 24-hour average PM_{2.5} (25 μ g/m³) is demonstrated at all private sensitive receptors not subject to acquisition rights.

Figure 33 and **Figure 34** show the predicted annual average $PM_{2.5}$ concentrations due to the Project only and all sources scenarios respectively. Compliance with the EPA criteria for annual average $PM_{2.5}$ (8 µg/m³) is demonstrated at all private sensitive receptors not already subject to acquisition rights.

The Daracon facility (ID 342) is predicted to experience exceedances of the cumulative maximum 24-hour average and annual average $PM_{2.5}$ criteria. The exceedance of the 24-hour cumulative criterion is anticipated to occur in the Year 6 and Year 13 modelling years. The annual average $PM_{2.5}$ criterion is predicted to be exceeded at this location in the Year 1, 6 and 13 modelling years.

JACOBS[°]

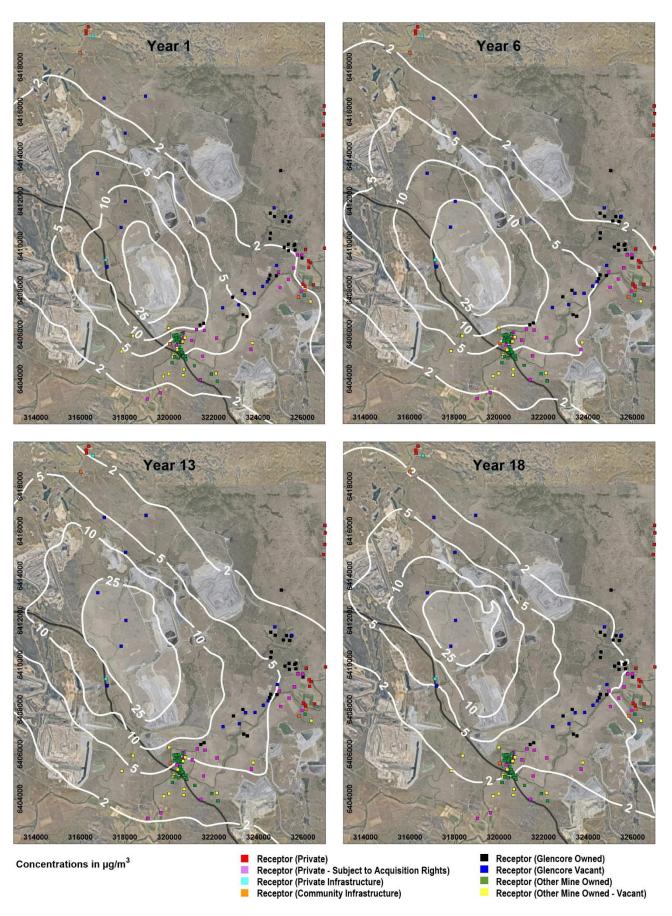


Figure 31 Predicted maximum 24-hour average PM_{2.5} concentrations due to the Project only

JACOBS[®]

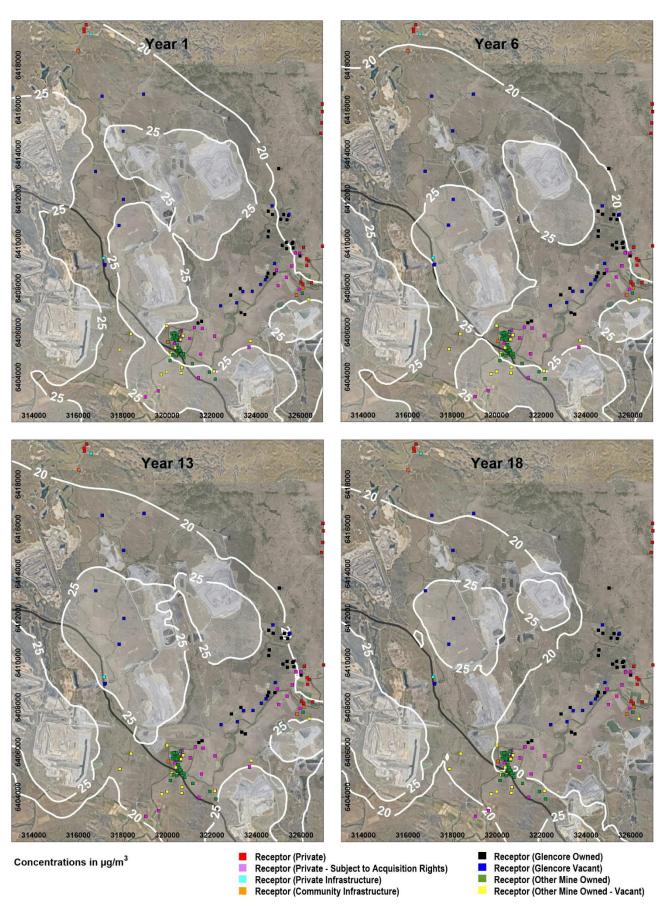


Figure 32 Predicted maximum 24-hour average PM_{2.5} concentrations due to all sources (cumulative)

JACOBS[°]

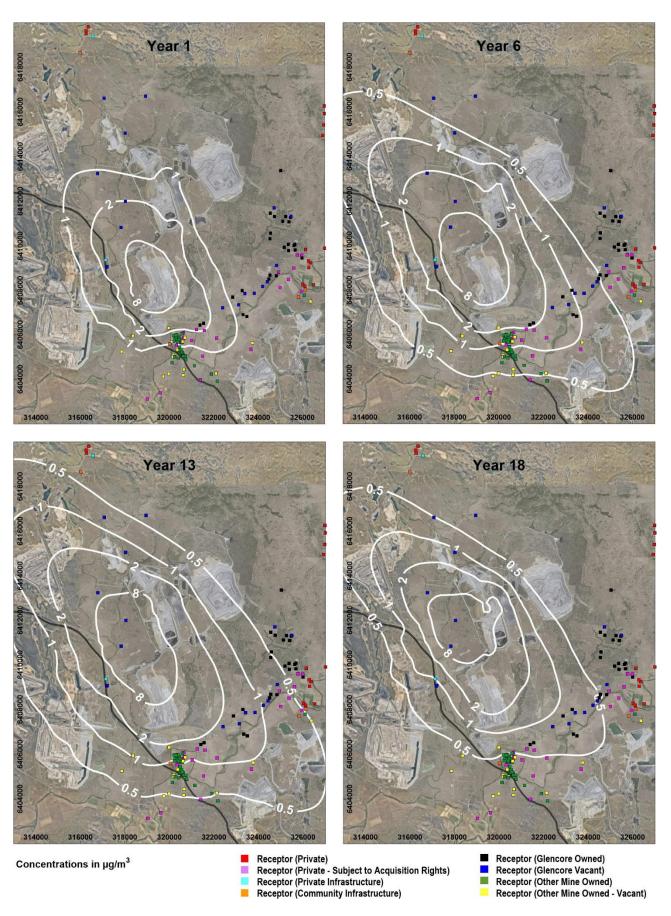


Figure 33 Predicted annual average PM_{2.5} concentrations due to the Project only

JACOBS[®]

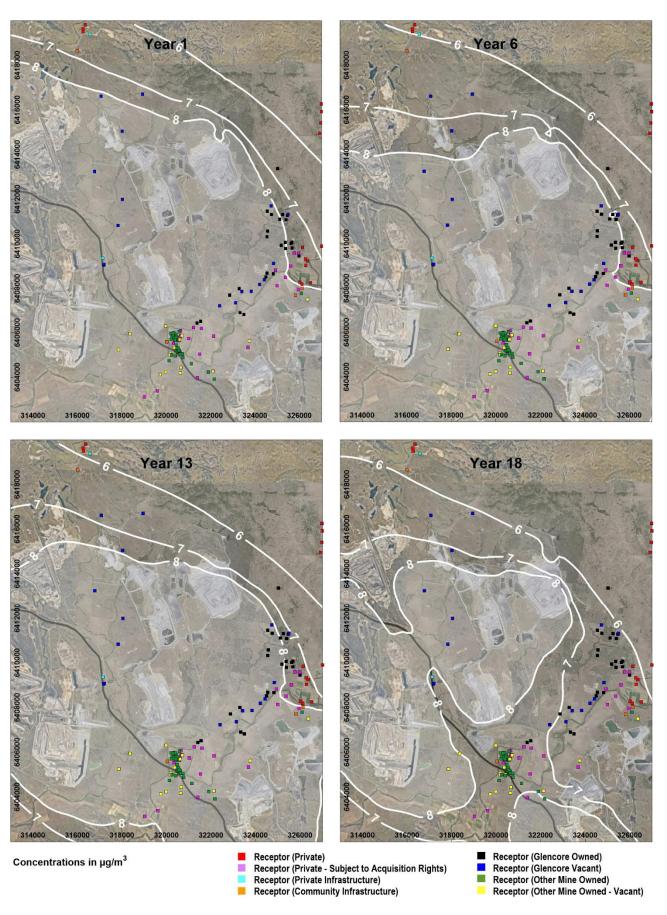


Figure 34 Predicted annual average PM_{2.5} concentrations due to all sources (cumulative)

9.3 Particulate Matter (as TSP)

Figure 35 and **Figure 36** show the predicted annual average TSP concentrations in future years for the Project only and cumulative scenarios respectively. Compliance with the EPA criteria for annual average TSP $(90 \ \mu g/m^3)$ is demonstrated at all private sensitive receptors not already subject to acquisition rights.

JACOBS[°]

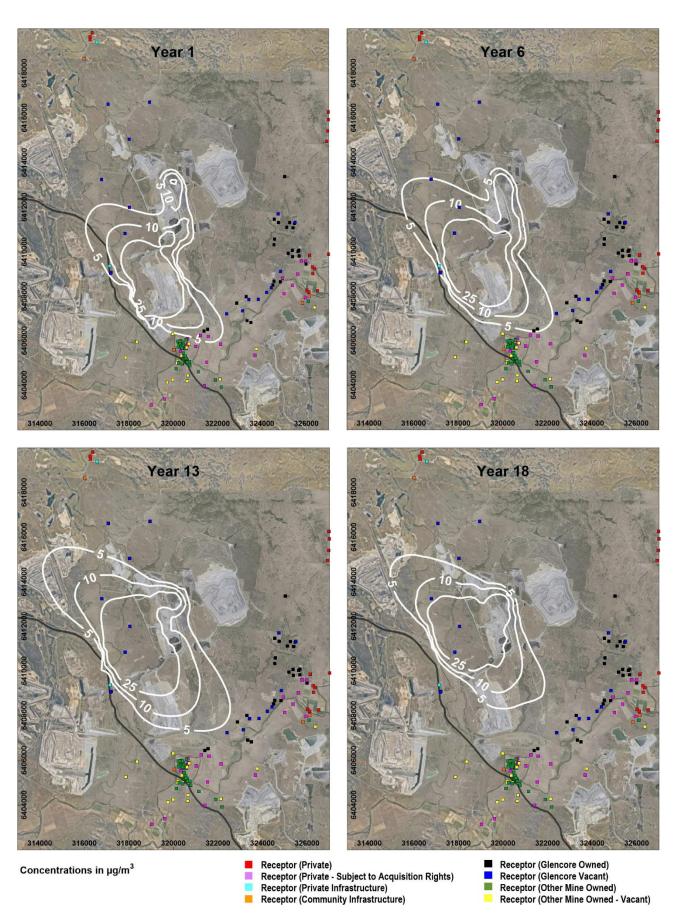


Figure 35 Predicted annual average TSP concentrations due to the Project only

JACOBS[®]

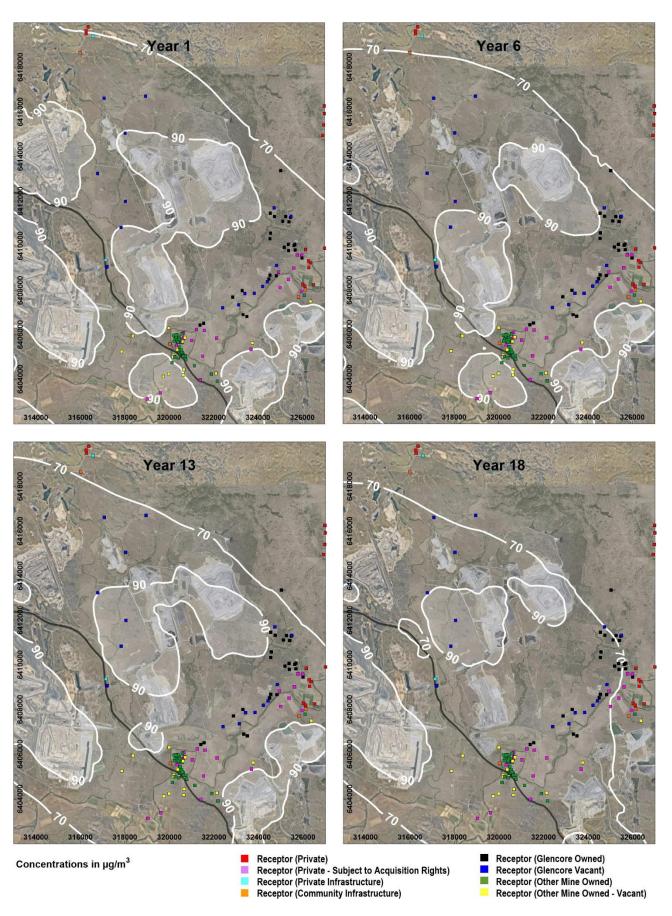


Figure 36 Predicted annual average TSP concentrations due to all sources (cumulative)

9.4 Deposited Dust

Figure 37 and **Figure 38** show the predicted annual average dust deposition levels in future years for the Project only and cumulative scenarios respectively. Compliance with the EPA criteria for annual average dust deposition (4 $g/m^2/month$) is demonstrated at all private sensitive receptors not already subject to acquisition rights.

JACOBS[®]

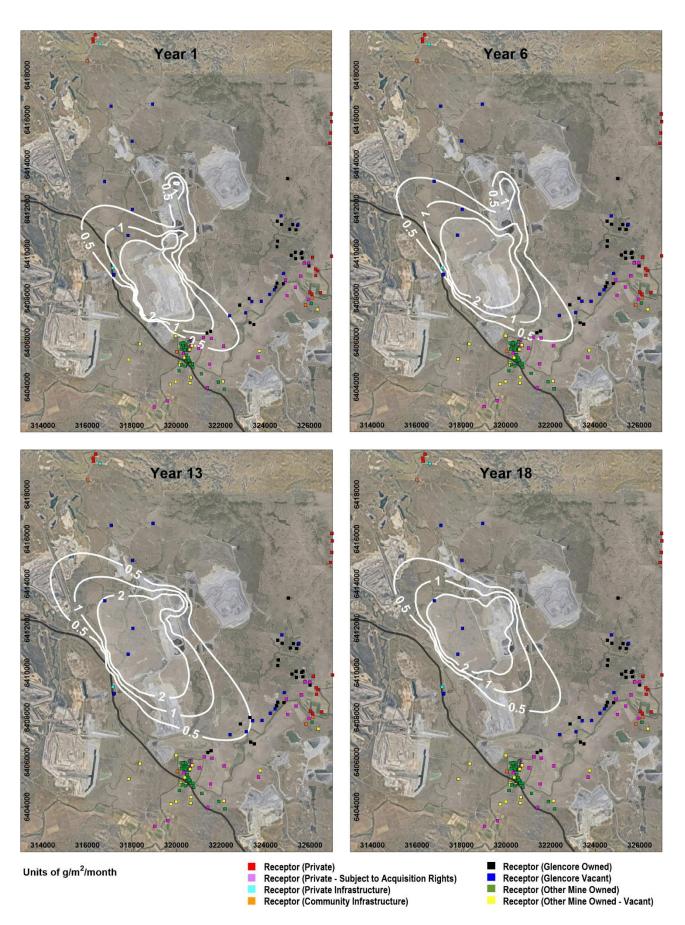


Figure 37 Predicted annual average deposited dust levels due to the Project only

JACOBS[®]

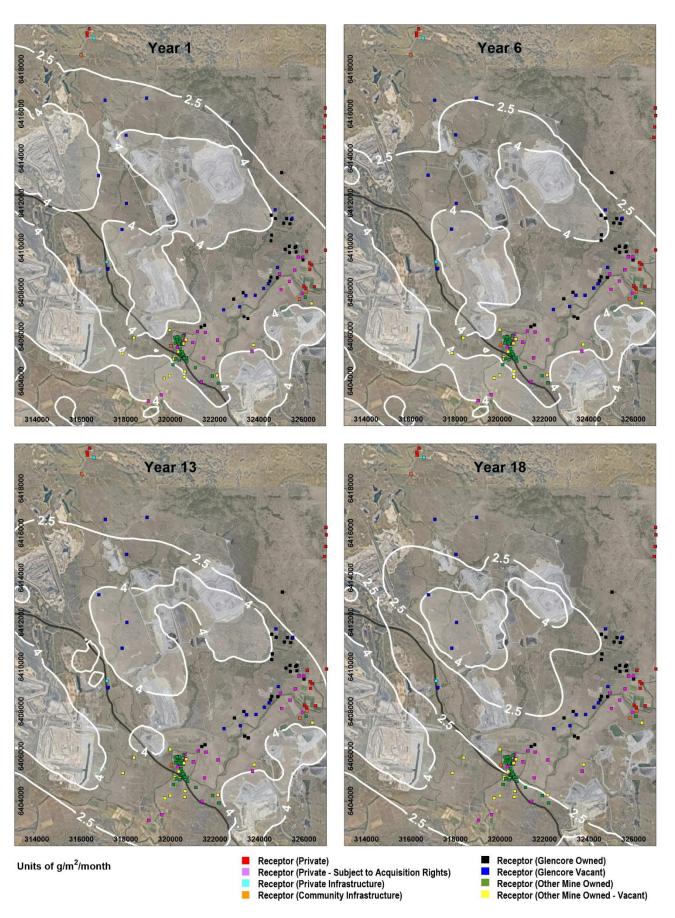


Figure 38 Predicted annual average deposited dust levels due to all sources (cumulative)

9.5 Post-Blast Fume (NO₂)

Blasting activities have the potential to result in fume and particulate matter emissions. Particulate matter emissions from blasting are included in the dispersion modelling results presented in **Sections 9.1** to **9.4**. Postblast fume can be produced in non-ideal explosive conditions of the ammonium nitrate/fuel oil (ANFO) and is visible as an orange / brown plume.

Post-blast fumes comprise of oxides of nitrogen (NO_x) including nitric oxide (NO) and nitrogen dioxide (NO₂). In general, at the point of emission, NO will comprise the greatest proportion of the total NO_x emission. Typically, this is 90% by volume of the NO_x. The remaining 10% will comprise mostly NO₂. It is the NO₂ which has been linked to adverse health effects.

Ultimately however, much of the NO emitted into the atmosphere is oxidised to NO₂. The rate at which this oxidisation takes place depends on prevailing atmospheric conditions including temperature, humidity and the presence of other substances in the atmosphere such as ozone. It can vary from a few minutes to many hours. The rate of conversion is important because from the point of emission to the point of maximum ground-level concentration there will be an interval of time during which some oxidation will take place. If the dispersion is sufficient to have diluted the plume to the point where the concentration is very low, then the level of oxidation is unimportant. However, if the oxidation is rapid and the dispersion is slow then high concentrations of NO₂ can occur.

In NO_x monitoring data near significant emission sources (for example, power stations and motorways) the percentage of NO₂ in the NO_x is (as a rule) inversely proportional to the total NO_x concentration, and when NO_x concentrations are high, the percentage of NO₂ in the NO_x is typically of the order of 20%. This is demonstrated by **Figure 39** which shows that, for high NO_x concentrations, the NO₂ to NO_x ratio reduces to less than 20%.

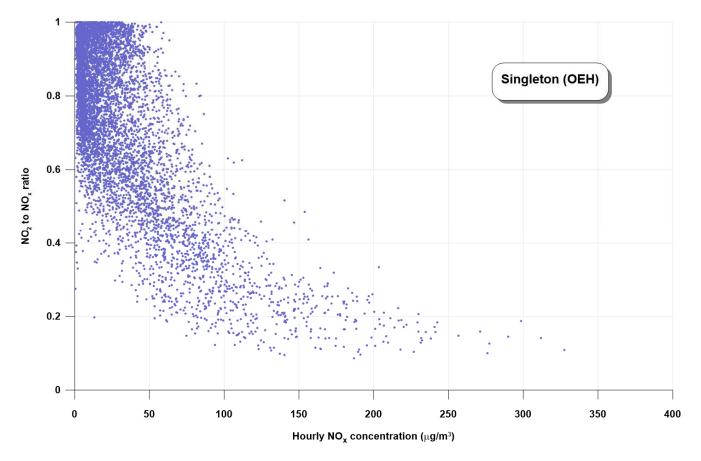


Figure 39 Measured NO₂ to NO_x ratios from hourly average data collected at Singleton by the OEH in 2014

For assessment of post-blast fume the applicable EPA air quality criterion for NO₂ is 246 μ g/m³ as a 1-hour average.

The CALPUFF dispersion model has been used to quantify potential NO₂ concentrations due to blasting. The methodology was as follows:

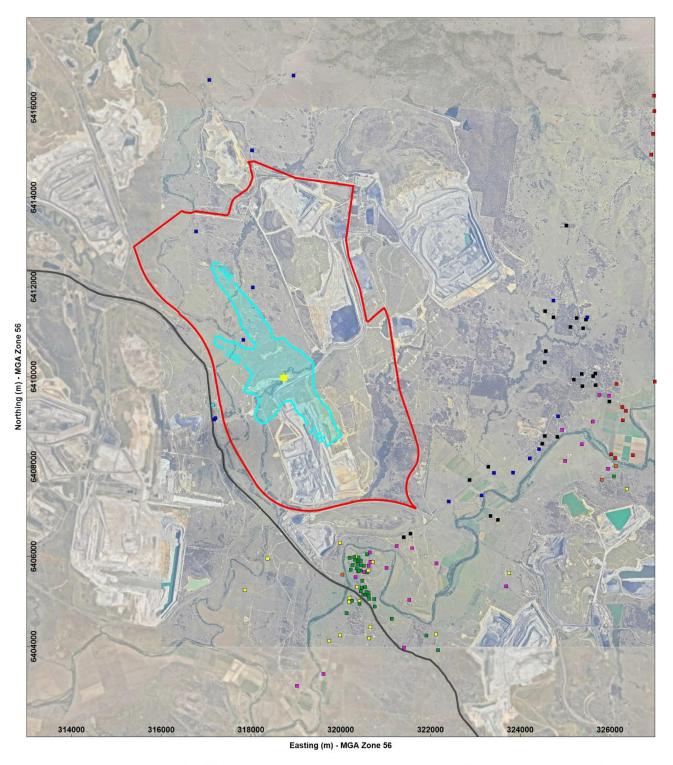

- Blast modelled as single volume source in a location indicative of the centre of the proposed operations over the life of the Project.
- Release heights of 20 m, effective plume heights of 40 m, initial horizontal spread (sigma y) of 25 m and initial vertical spread (sigma z) of 10 m. These are conservative estimates based on the data presented by Attalla *et al.* (2008). No plume rise due to buoyancy was modelled, which is again a conservative assumption.
- Emissions assumed to occur every hour between 9 am and 5 pm. However, it has been assumed that blasting would not occur if a temperature inversion was present, as identified in the existing Mount Owen Complex pre-blast meteorological assessment. In the meteorological datasets used for this assessment, temperature inversions may be present in the afternoon, from around 4 pm onwards, for approximately 2% of the time during daytime (9 am to 5 pm) hours. From January 2017 to March 2019 most blasts (around 80%) occurred between 11 and 1 pm and only one of the 280 blasts was between 4 and 5 pm.
- Blasting could be on any day of the week (a conservative assumption as, in accordance with the current Glendell Consent, blasting cannot occur on Sundays or public holidays unless written approval is obtained from the administering authority).
- NO_x emissions based on data presented in the Queensland *Guidance Note for the management of oxides in open cut blasting* (DEEDI, 2011). It was conservatively assumed that the initial NO₂ concentration in the plume would be 17 ppm (34.9 mg/m³) based on the Rating 3 Fume Category in the Queensland Guidance Note. Of the 280 blasts that occurred between January 2017 to March 2019, 61% were rated category 0, 26% were rated category 1, 9% were rated category 2 and 3% were rated category 3. The assumption of a fume rating 3 blast every hour is therefore very conservative.
- The initial NO₂ concentration in the plume was converted to a total NO_x emission rate based on a detailed measurement program of NO_x in blast plumes in the Hunter Valley made by Attalla *et al.* (2008) which found that the NO:NO₂ ratio was typically 27:1, giving a NO_x:NO₂ ratio of approximately 18.6 g NO_x/g NO₂.
- Calculated emission of 866 g/s of NO_x per blast and an emission release time of 5 minutes.
- 20% of the NO_x is NO₂ at the points of maximum 1-hour average concentrations and at sensitive receptors.

Figure 40 shows the predicted maximum 1-hour average NO₂ concentrations due to post-blast fume, based on the methodology outlined above. These results show that, under worst-case meteorological conditions with a rated 3 fume, blasting every day between 9 am and 5 pm and maximum background NO₂ concentrations from Singleton, the maximum 1-hour average NO₂ concentrations will not exceed EPA's criterion of 246 μ g/m³ at any off-site sensitive receptor location. While worst-case assumptions have been made with respect to time-of-day, fume rating and background levels, the modelling has been based on a blast positioned broadly in the middle of the proposed disturbance footprint. It is acknowledged that moving the blast location, for example further to the northwest, would lead to a corresponding shift in the contours, potentially changing the predicted extent of impacts. However, this potential will be managed through the design process for each individual blast which will be designed to comply with relevant criteria. The potential for post-blast fume impacts will be identified prior to all blasts, taking into account the specific parameters of each blast, to avoid worst-case conditions and to minimise fume emissions from blasting, in accordance with contemporary conditions of approval.

Glencore has developed a pre-blasting procedure which covers fume management. A site-specific blast management plan will be implemented during operations, including key fume management actions, such as defining the potential risk zone based upon weather patterns and obtaining permissions to fire based on an assessment of real-time weather conditions.

Based on the dispersion modelling (with predominantly worst-case assumptions) and proposed implementation of site-specific pre-blast procedures it has therefore been concluded that the Project will not lead to any adverse air quality impacts with respect to post blast fume.

Contours show the predicted extent of 246 µg/m3 concentrations due to fume rating 3 blast (including 74 ug/m3 background)

Receptor (Private) Receptor (Private - Subject to Acquisition Rights) Receptor (Private Infrastructure) Receptor (Community Infrastructure)

Receptor (Glencore Owned) Receptor (Glencore Vacant)

- Receptor (Other Mine Owned) Receptor (Other Mine Owned Vacant)

Figure 40 Predicted maximum 1-hour average NO₂ concentrations due to blasting

The potential for odour impacts due to blasting has also been considered. This has been done by comparing the odour threshold (concentration) for NO₂ with the current predictions of NO₂ concentrations due to blasting. The odour threshold for NO₂ has been reported by the World Health Organisation (WHO) to range between 100 μ g/m³ and 410 μ g/m³ (WHO 2000). **Figure 41** shows the predicted 99th percentile nose-response time average NO₂ concentrations, due to blasting. The results have been presented in this form as the EPA criteria for odour assessment criteria are frequency based and relate to 99th percentiles. A peak-to-mean ratio of 2.3 was used to convert the model's 1-hour average predictions to nose-response times.

The model predictions of NO₂ at the nearest sensitive receptors are between 30 and 50 μ g/m³. These predictions are below the odour threshold range reported by the WHO which suggests that the odour impacts can be managed with appropriate blasting procedures.

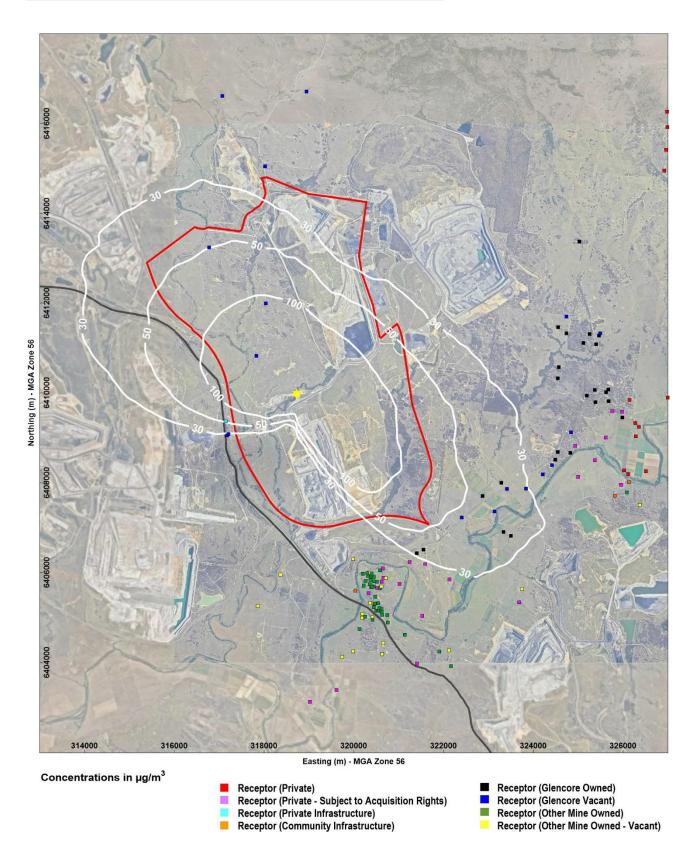


Figure 41 Predicted 99th percentile nose-response time average NO₂ concentrations due to blasting

9.6 Diesel Exhaust Emissions

Emissions from diesel exhausts associated with off-road vehicles and equipment at mine sites are often deemed a lower air quality impact risk than dust emissions from the material handling activities. This is because of the relatively few emission sources involved, for example when compared to a busy motorway, and the large distances between the sources and sensitive receptors. Nevertheless, a review of the potential impacts has been carried out.

The most significant emissions from diesel exhausts are products of combustion including carbon monoxide (CO), oxides of nitrogen (NO_x) and particulate matter (PM₁₀ and including PM_{2.5}). It is the NO_x, or more specifically NO₂, and PM₁₀ (including PM_{2.5}) which have been reviewed in this section. DPIE monitoring data have shown that CO concentrations have not exceeded relevant air quality criteria at rural or urban monitoring stations in NSW, indicating that this substance represents a much lower air quality risk.

9.6.1 Particulate Matter (as PM₁₀ and PM_{2.5})

The emission factors, presented in **Section 6** and **Appendix C**, represent the contribution from both wheel generated particulates and the exhaust particulates. These emission factors, including with control factors, are based on measured emissions which include diesel particulates in the form of both PM_{10} and $PM_{2.5}$. The emission factors are also likely to include more diesel exhaust particulate than from a modern truck as the factors were developed on the basis of emissions from trucks measured in the 1980s (that is, older trucks). Todoroski Air Sciences has also reported (TAS 2016) that several studies, reported to the EPA, confirmed that a control factor of 85% can be maintained, representing all components of the truck haulage emission.

Based on the information collated above, the potential impacts of diesel exhaust emissions (as PM_{10} and $PM_{2.5}$) are represented in the preceding results, in **Sections 9.1** to **9.4**.

Table 20 provides the explicit estimates of PM_{10} and $PM_{2.5}$ emissions due only to diesel plant and equipment exhausts. Emission factors for "Industrial off-road vehicles and equipment" from the EPA's 2008 Air Emissions Inventory (EPA 2012) were used for the calculations. These factors relate to diesel exhaust and evaporative emissions.

Parameter	Year 1	Year 6	Year 13	Year 18	
Estimated fuel used (L) (source: Glencore)	31,851,781	43,459,386	72,080,908	41,791,469	
PM ₁₀ calculations					
Diesel exhaust emission factor (kg/kL)	2.84	2.84	2.84	2.84	
Diesel exhaust emissions - all equipment (kg/y)	90,459	123,425	204,710	118,688	
PM _{2.5} calculations					
Diesel exhaust emission factor (kg/kL)	2.75	2.75	2.75	2.75	
Diesel exhaust emissions - all equipment (kg/y)	87,745	119,722	198,568	115,127	

Table 20 Estimate of PM₁₀ and PM_{2.5} emissions from diesel engines

Glencore has considered the practicalities of exhaust after-treatment technologies for in service non-road diesel engines. Consideration has been given to the emission reductions, capital costs, maintenance costs and operational costs. The proposed mitigation measures to manage diesel combustion emissions aim to address the equipment maintenance and engine replacement strategies from the *NSW Coal Mining Benchmarking Study: Best practice measures for reducing non-road diesel exhaust emissions"* (EPA 2014).

The emission control measures proposed by Glencore include:

• Servicing all machinery in accordance with maintenance contracts and adopting original equipment manufacturer recommendations for maintenance.

- Targeting the maintenance to ensure, as far as reasonably practical, equipment remains fit for purpose over its whole life cycle.
- Defining failure modes, effects and criticality which helps to minimise potential equipment failure.

9.6.2 Nitrogen Dioxide (NO₂)

Emissions of NO_x from diesel exhausts have been estimated using fuel consumption data, provided by Glencore, and an emission factor from the EPA's Air Emissions Inventory for 2008 (EPA 2012). **Table 21** shows the calculations.

Table 21 Estimated NO_X emissions from diesel exhausts

Parameter	Year 1	Year 6	Year 13	Year 18
Estimated fuel used (L) (source: Glencore)	31,851,781	43,459,386	72,080,908	41,791,469
NO _x calculations				
Diesel exhaust emission factor (kg/kL)	40.77	40.77	40.77	40.77
Diesel exhaust emissions - all equipment (kg/y)	1,298,597	1,771,839	2,938,739	1,703,838

The NO_x emission estimate from **Table 21** has been modelled using the same source locations as Year 13 (a potential worst case year based on above) to provide an indication of the off-site NO₂ concentrations due to diesel exhaust emissions. The predicted maximum 1-hour average NO₂ concentrations are shown in **Figure 42**, which assumes that 20% of the NO_x is NO₂ at the locations of maximum ground-level concentrations.

At the nearest sensitive receptors, the predicted maximum 1-hour average NO₂ concentrations are in the order of 50 μ g/m³. With the addition of maximum background levels (74 μ g/m³ from **Table 10**) the results demonstrate compliance with the EPA's 246 μ g/m³ criterion. The 172 μ g/m³ contour represents the EPA criterion assuming a background level of 74 μ g/m³.

Figure 43 shows the predicted annual average NO₂ concentrations. These predictions assume that 78% of the NO_x is NO₂ based on the annual average NO_x to NO₂ percentage in the data collected from Singleton in 2014. At nearest sensitive receptors the predicted average NO₂ concentrations are in the order of 10 μ g/m³ or less. With the addition of background levels (16 μ g/m³ from **Table 10**) the results show compliance with the EPA's 62 μ g/m³ criterion. The 46 μ g/m³ contour in **Figure 43** represents the EPA criterion assuming a background level of 16 μ g/m³.

Figure 42 Predicted maximum 1-hour average NO₂ concentrations due to diesel exhausts



Figure 43 Predicted annual average NO₂ concentrations due to diesel exhausts

10. Assessment Against VLAMP

The relevant VLAMP criteria are set out in **Table 3** and **Table 4**. These criteria apply to both existing and potential sensitive receptor locations. The criteria are based on project only contributions to impacts as well as potential cumulative impacts.

Where the VLAMP criteria are based on cumulative impacts, all private receptors have been assessed however consideration in **Table 22** and **Table 23** below has only been given to impacts on residences and properties located between the Mount Owen Complex and surrounding mining operations. Properties located beyond these other operations would be primarily impacted by activities at those closer mining operations. The contribution from the Mount Owen Complex (including Glendell Mine) to cumulative impacts at locations beyond these other operations is not considered to be significantly material to justify the Mount Owen Complex consents providing these properties with voluntary mitigation or acquisition rights.

10.1 Predicted Impacts

10.1.1 Project Only Impacts

As discussed in **Section 9** the impacts from the Project alone for maximum 24-hour average PM_{10} and $PM_{2.5}$ are not predicted to exceed the relevant VLAMP criteria at any private residences. The Project is similarly not anticipated to exceed the annual average depositional dust VLAMP criteria at any private residences.

10.1.2 Cumulative Impacts

As discussed in **Section 9** the Project is not predicted to result in any exceedance of the applicable annual average PM₁₀ or PM_{2.5} criteria at any private residences that do not currently have acquisition rights under existing development consents.

Table 22 contains a list of private residences with acquisition rights (noise and/or air quality) under existing development consents which the AQIA has identified as likely to experience an exceedance of the VLAMP voluntary mitigation and acquisition annual average PM_{10} (25 µg/m³) and $PM_{2.5}$ (8 µg/m³) criteria during the life of the Project.

			Project contribution (µg/m³)		m³)			
ID	Impact type (annual average)	Associated lots in land-holding	¥1	Y6	Y13	Y18	Existing mitigation and/or acquisition rights ⁷	
114	PM ₁₀	5//851867	-	1.2	-	-	Mount Owen Consent	
107	PM ₁₀		2.4	2.2	1.9	-	Glendell Consent Rix's Creek North (08_0102)	
127a	PM _{2.5}	1//741653	0.8	0.8	0.7	-	Rix's Creek South (SSD 6300) ^M Ashton SEOC (noise trigger) (08_0182)	
	PM ₁₀		5.0	4.5	3.2	-	Glendell Consent Rix's Creek North (08_0102)	
127b	PM _{2.5}	1//745211	1.4	1.4	1.1	-	Ashton SEOC (noise trigger) (08_0182) Rix's Creek South (SSD 6300) ^M Integra Underground ^M	
	PM10		7.7	6.1	4.1	-		
127c ⁶	PM _{2.5}	10//1169092	2.2	1.9	1.5	-	Rix's Creek North (08_0102)	
107.16	PM10		7.2	5.9	4.1	-		
127d ⁶	PM _{2.5}	11//1169092	2.0	1.8	1.4	-	Rix's Creek North (08_0102)	

Table 22 Residences with predicted exceedance of VLAMP criteria

			Project contribution (μg/m³)				
ID	Impact type ID (annual average)	Associated lots in land-holding	¥1	Y6	Y13	Y18	Existing mitigation and/or acquisition rights ⁷
1.10	PM ₁₀	0//4000400	3.8	3.3	2.6	-	Ashton SEOC (noise trigger) 08_0182 Rix's Creek South (SSD 6300) ⁵
143	PM _{2.5}	3//1088108	1.1	1.1	1.0	-	Mount Owen Consent ¹ Glendell Consent ^M
147	PM10	-30//1018512	1.3	1.2	1.2	-	Ashton SEOC (08_0182) _Rix's Creek North (08_0102)
	PM _{2.5}	50//1018512	0.4	0.5	0.5	-	Rix's Creek South (SSD 6300) ^M Ashton Underground (DA309-11-2001)
	PM ₁₀	1//248748 2/9/758214 3/9/758214 4/9/758214	2.9	2.8	2.4	-	Ashton SEOC (08_0182)
150	PM _{2.5}	-5/9/758214 6/9/758214 7/9/758214 8/9/758214 9/9/758214	0.9	1.0	0.9	-	[—] Rix's Creek South (SSD 6300) ³ Mount Owen Consent ¹
	PM ₁₀	1/8/758214	3.4	3.1	2.6	-	Ashton SEOC (noise trigger) (08_0182) Rix's Creek South (SSD 6300) ²
152	PM _{2.5}	2/8/758214	1.1	1.1	1.0	-	Mount Owen Consent ¹ Glendell Consent ^M Rix's Creek North (08_0102) ^M
154	PM ₁₀	105//055407	3.8	3.5	2.8	-	Ashton SEOC (08_0182) _Rix's Creek South (SSD 6300) ³
154	PM _{2.5}	105//855187	1.2	1.2	1.1	-	Mount Owen Consent ¹ Glendell Consent ^M
166	PM ₁₀	100//950484	4.1	3.7	2.9	-	Ashton SEOC (08_0182) Rix's Creek South (SSD 6300) ⁴
155	PM _{2.5}	-102//852484 -	1.2	1.2	1.1	-	Mount Owen Consent ¹ Glendell Consent ^M Rix's Creek North (08_0102) ^M
150	PM ₁₀	103//852484	5.0	4.3	3.2	-	Ashton SEOC (08_0182)
156	PM _{2.5}	104//852484	1.5	1.4	1.2	-	Rix's Creek South (SSD 6300) ⁴ Mount Owen Consent ¹

Notes:

1 - As per Mount Owen Consent, the Applicant is only required to acquire the identified land if acquisition is not reasonably achievable under the development consents for the Ashton SEOC Project (MP 08_0182), the Glendell Open Cut Coal Mine (DA 80/952), Ravensworth Operations Project (MP 09_0176), Rix's Creek South Continuation of Mining Project (SSD 6300) or the Rix's Creek North Open Cut Project (MP 08_0102).

2 - As per the Rix's Creek South Consent, the Applicant is only required to acquire these properties if acquisition is not reasonably achievable under the approval for Rix's Creek North Mine.

3 - As per the Rix's Creek South Consent, the Applicant is only required to acquire these properties if acquisition is not reasonably achievable under the approval for Rix's Creek North Mine or Ashton SEOC.

4 - As per the Rix's Creek South Consent, the Applicant is only required to acquire these properties if acquisition is not reasonably achievable under the approval for Rix's Creek North Mine, Ashton SEOC or Glendell Mine.

5 - As per the Rix's Creek South Consent, the Applicant is only required to acquire these properties if acquisition is not reasonably achievable under the approval for Rix's Creek North Mine or Glendell Mine.

6 - Dwelling constructed following approval of Glendell Mine (DA80/952). Lots have acquisition rights due to being contiguous landholding to 127a and 127b.7 - Current acquisition/mitigation status under Glendell and Mount Owen Consents will continue to apply should the Project be approved.

- VLAMP criterion not exceeded in this modelled year.

M - Mitigation only

Annual average TSP and dust deposition criteria are not predicted to exceed VLAMP criteria at any private residences.

10.2 Land Holding Assessment

An assessment of privately owned land where at least 25% of the lot is likely to experience an exceedance of relevant VLAMP criteria was also undertaken. **Table 23** contains a summary of the assessment of private land (including vacant land) where exceedances of VLAMP criteria are predicted but which do not have predicted exceedances at a residence located on that land.

		Impact	Percenta	Percentage of land affected (%)		(%)	Existing mitigation and acquisition	
Lot	ID	Туре	¥1	Y6	Y13	Y18	rights ²	
1//600327	4 ¹	PM ₁₀	26	18	13	0	Mount Owen (SSD-5850)	
1//600327	4	PM _{2.5}	84	67	45	0	Rix's Creek North (08_0102) ^M	
4//851867	115	PM ₁₀	100	100	77	0	Mount Ower (CCD 5950)	
4//851867	115	PM _{2.5}	100	100	100	0	Mount Owen (SSD-5850)	
0//054067	112 ¹	PM ₁₀	11	28	1.5	0	Mount Owen (SSD-5850)	
8//851867	112	PM _{2.5}	37	44	18	0	Rix's Creek North (08_0102) ^M	
4//4400047		PM ₁₀	100	100	100	0	Ashton SEOC (noise trigger) (08_0182) Rix's Creek South (SSD 6300) ⁴	
4//1166047	NA	PM _{2.5}	100	100	100	0	Mount Owen (SSD-5850) ³	
E//4400047		PM ₁₀	100	100	100	0	Ashton SEOC (noise trigger) (08_0182)	
5//1166047	NA	PM _{2.5}	100	100	100	0	Rix's Creek South (SSD 6300) ⁴ Mount Owen (SSD-5850) ³	
475//4000770		PM ₁₀	100	100	100	0	Ashton SEOC (noise trigger) (08_0182)	
175//1002770	NA	PM _{2.5}	100	100	100	0	Mount Owen (SSD-5850) ³	
106//855187	NA	PM ₁₀	100	100	100	0	Ashton SEOC (noise trigger) (08_0182) Rix's Creek South (SSD 6300) ⁵	
101000/		PM _{2.5}	100	100	100	0	Mount Owen (SSD-5850) ³	

Table 23 Private land with predicted exceedance of VLAMP criteria

Notes:

1 - Predicted cumulative annual average PM2.5 impacts at the dwelling in Years 1, 6 and 13 are at criteria.

2 - Current acquisition/mitigation status under Glendell and Mount Owen Consents will continue to apply should the Project be approved.

3 - As per Mount Owen Consent, the Applicant is only required to acquire the identified land if acquisition is not reasonably achievable under the development consents for the Ashton SEOC Project (MP 08_0182), the Glendell Open Cut Coal Mine (DA 80/952), Ravensworth Operations Project (MP 09_0176), Rix's Creek South Continuation of Mining Project (SSD 6300) or the Rix's Creek North Open Cut Project (MP 08_0102).

4 - As per the Rix's Creek South Consent, the Applicant is only required to acquire these properties if acquisition is not reasonably achievable under the approval for Rix's Creek North Mine.

5 - As per the Rix's Creek South Consent, the Applicant is only required to acquire these properties if acquisition is not reasonably achievable under the approval for Rix's Creek North Mine, Ashton SEOC or Glendell Mine.

Lot 11//1100029 is privately owned land however this contains the Glennies Creek Hall, used by the local community, and has been assessed as being community infrastructure (ID 2). The lot does not form part of a contiguous landholding and is approximately 0.2 ha, which does not meet the minimum lot size requirement in the RU1 – Primary Production zone under the Singleton LEP (>40 ha). As a dwelling could not be built on this land under existing planning controls and it does not form part of a larger contiguous landholding, the lot does not trigger either mitigation or acquisition rights under the VLAMP. It is also noted that this building is only used periodically and for relatively short periods (several hours). The application of the annual average PM₁₀ and

PM_{2.5} criteria to this land is not considered appropriate as a trigger for mitigation or acquisition rights given the intermittent use of the land.

No additional properties (i.e. properties that do not already have acquisition rights under existing development consents) are identified as having acquisition rights due to predicted impacts on at least 25% of the property as a result of the Project.

Annual average TSP and dust deposition criteria are not exceeded at any residences or privately owned land.

11. Construction

Dust emissions from construction works have the potential to cause nuisance impacts if not properly managed. In practice, it is not possible to realistically quantify impacts using dispersion modelling. To do so would require knowledge of weather conditions for the period in which work will be taking place in each location on the site.

Air quality impacts during construction would largely result from dust generated during earthworks and other engineering activities associated with the site construction works. Specifically, these works will primarily include the demolition of the existing Glendell MIA and construction of a new MIA, realignment of a section of Hebden Road and associated electricity and communication infrastructure, realignment of part of Yorks Creek, relocation of Ravensworth Homestead, and other ancillary infrastructure works such as the construction of a Heavy Vehicle Access Road. The total amount of dust generated would depend on the quantities of material handled, silt and moisture content of the soil, the types of operations being carried out, exposed areas, frequency of water spraying and speed of machinery. The detailed approach to construction will depend on decisions that will be made by Glencore in conjunction with the contractor(s) and changes to the construction methods and sequences that are expected to take place during the construction phase.

Given the uncertainties related to weather conditions, methods, sequences and material handling quantities, the modelling (**Sections 6** to **10**) has not explicitly included contributions from construction related activities. However, an assessment of the potential cumulative effects between construction activities and mining operations has been undertaken based on preliminary estimates of equipment inventories and material handling quantities as well as assumptions on how the construction activities may occur.

Table 24 shows preliminary estimates of material handling quantities for all key construction works in Year 1. It is anticipated that most of the construction works will occur in Year 1-2. The estimates in **Table 24** will include doubling counting with mine waste but have, nevertheless, been used to develop a construction dust (TSP, PM₁₀ and PM_{2.5}) emissions inventory for comparison with the Year 1 mine operation emission inventories, and for modelling of indicative impacts.

Construction works	Volume of earthworks moved (bank cubic metres)
New Mine Infrastructure Area	719,700
Heavy Vehicle Access Road	707,928
Hebden Road Realignment	259,361
Yorks Creek Realignment	167,467
Total	1,854,456

Table 24 Preliminary estimates of Year 1 construction material handling quantities

Construction activities will generally be undertaken within standard construction hours (7.00 am to 6.00 pm Monday to Friday, 8.00 am to 1.00 pm Saturday). Construction of the new MIA and ancillary works may be undertaken 24 hours per day, 7 days per week as required. Blasting associated with construction activities will only be undertaken 9.00 am to 5.00 pm, Monday to Friday and 9.00 am to 1.00 pm Saturday.

The material handling quantities from **Table 24** have been used to develop a construction dust emissions inventory based on the following assumptions:

- All construction works will occur concurrently;
- The combined total exposed areas of all work sites (approximately 93 ha) will be susceptible to wind erosion;
- Dust generating activities for construction works will include:
 - 2 dozers working
 - 3 excavators loading

- 3 trucks hauling and dumping (190 t capacity)
- 3 concrete trucks operating, and
- continuous wind erosion from exposed areas
- Trucks will transport the estimated material volumes over unsealed routes for approximately one kilometre each way. Water carts will be used for dust suppression;
- Dozers will work continuously for 11 hours per day, every day of the year;
- Blasting an area of approximately 5,000 m² will occur once per week.

Table 25 shows the calculated annual emissions due to construction works including the emission estimates for the mines operational activities (Year 1) for comparison. A conservative approach was taken for all assumptions listed above meaning that the resultant construction emission estimates in **Table 25** will represent maximum upper limits. **Table 25** shows that construction emissions have the potential to increase annual operational emissions in Year 1 by a maximum of 10% for TSP, 13% for PM₁₀ and 13% for PM_{2.5}.

Particulate matter	Annual emission	Construction as a	
classification	Construction	Mining Operation	percentage of operation
TSP	220,195	2,241,625	10%
PM ₁₀	88,608	681,177	13%
PM _{2.5}	17,089	128,378	13%

Table 25 Estimated emissions due to construction works for the Project

The emissions data from **Table 25** and information above on the location and intensity of activities have been used to create a model of construction activities. Outputs of the model have then been added to the Year 1 mining operations model to identify the potential cumulative effects of construction activities with mining operations. **Appendix H** provides details on the construction model inputs including emission breakdown by activities and source locations.

Figure 44 shows the predicted cumulative air quality impacts in Year 1 comparing "Operations" and "Operations including construction" scenarios. This figure includes annual average predictions of PM₁₀, PM_{2.5}, TSP and deposition, each showing the extent of potential impact based on the respective air quality assessment criteria. These results clearly show that, with the conservative assumptions for emission estimation, the contribution of maximum emissions from the proposed concurrent construction and mining operations will not change air quality outcomes for all private sensitive receptors. Consequently this analysis demonstrates that outcomes derived from **Sections 9** and **10** will not change with consideration of concurrent construction activities in the early stages of the Project.

However, as for mining operations, it is important that exposed areas be stabilised as quickly as possible and that appropriate dust suppression methods be used to keep dust impacts to a minimum. Dust management will require the use of water carts, the defining of trafficked areas, the imposition of site vehicle speed limits and constraints on work under extreme unfavourable weather conditions, such as dry wind conditions. Monitoring would also continue to be carried out during the construction phase to assess compliance with EPA criteria.

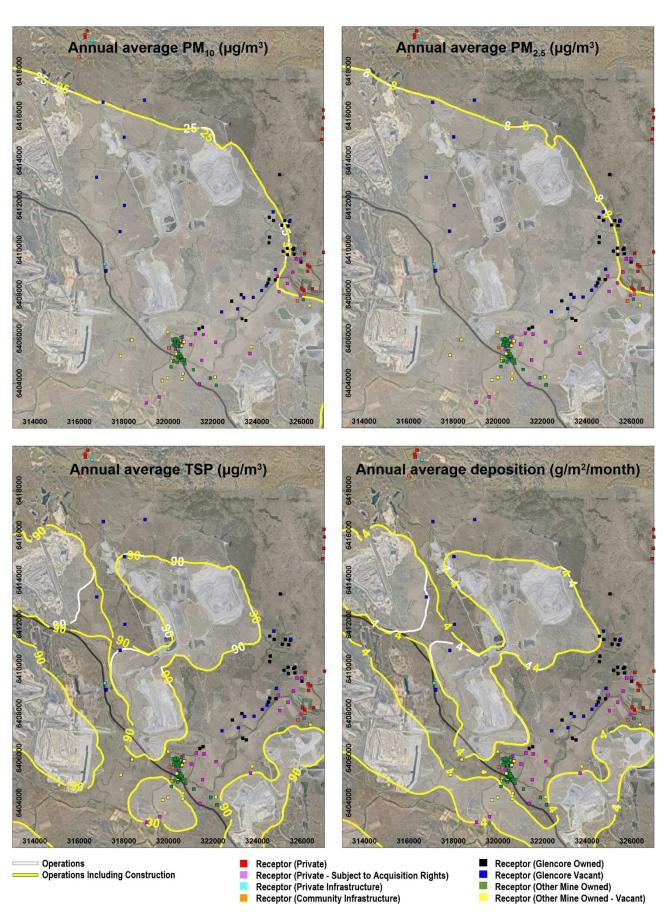


Figure 44 Predicted cumulative air quality impacts in Year 1 with construction

12. Management and Monitoring

Table 26 summarises the standard emission management measures, currently implemented as part of the existing Mount Owen Complex Air Quality Management Plan, that will continue to be adopted as part of the Project.

Table 26 Emission management measures

Activity	Emission management measures	Assumed emission control (%) (NPI 2012, Donnelly et el 2011)	Measures identified from Donnelly et al (2011)	Consistent with best practice
Stripping topsoil by scraper	Watering of haul routes Restricting vehicle speeds	50	Control measures for this activity are not specifically identified but can be inferred from the bulldozer information below.	Y
Drilling overburden	Water injection and application of water to drill cuttings upon removal Dust curtains Ceasing operations when visible dust is generated	70	"Best practice control measures include air extraction to a bag filter. No mines were found to use this practice."	N
Blasting overburden	Pre-blast checks including review of meteorological conditions	0	"Best practice control measures include delaying shot to avoid unfavourable weather conditions and minimising the area blasted"	Y
Hauling overburden and coal on unsealed roads	Watering of haul routes Gravel compaction and maintenance of haul routes Restricting vehicle speeds Clearly marked haul routes Fleet optimisation to reduce vehicle kilometres travelled Prompt clean-up of any material	85	"Control measures include watering, grading, well-defined haul routes, speed limits to 40 km/h and/or the use of suppressants."	Y
Loading and unloading of overburden	spillage Minimisation of fall distances during unloading and loading Planning of dump locations based on weather conditions Ceasing operations during adverse dust conditions	0	"Current practices adopted to control emissions from loading and dumping overburden were found to be water application, minimisation of drop heights and suspension or modification of activities during adverse weather conditions. Best practice control measures were identified as minimising drop heights and / or the application of water".	Y
Unloading coal to ROM hopper	Water sprays and partial enclosure	70	"Best practice control measures for minimising emissions from the ROM hopper is enclosure with air extraction to a fabric filter or other control device. No mines in the GMR adopt this approach."	N
Coal processing	Enclosure	70	Control measures for this process are not specifically identified.	N/A

Activity	Emission management measures	Assumed emission control (%) (NPI 2012, Donnelly et el 2011)	Measures identified from Donnelly et al (2011)	Consistent with best practice
Dozers or loaders on ROM and product coal stockpiles	Watering of travel routes Minimisation during dusty conditions Reduced travel speed during dusty conditions	50	"Best practice control measures include minimising the travel speed and distance travelled by bulldozers and the application of water to keep travel routes moist"	Y
Conveyors to stockpiles	Covered / enclosure Belt cleaning	70	"The use of wind shielding on conveyor sides, water sprays at conveyor transfers, enclosure of transfer points, and, soft-loading chutes."	Y (except for water sprays and soft-loading chutes)
Wind erosion from partially rehabilitated dumps	Partial rehabilitation / stabilisation	30	"Control measures include watering exposed areas, minimising areas of disturbance, progressive rehabilitation and use of suppressants"	Y
Wind erosion from ROM and product coal stockpiles	Water sprays, triggered by wind conditions Minimisation of FEL drop heights when loading	50	"Control measures include watering exposed areas, minimising areas of disturbance, progressive rehabilitation and use of suppressants"	Y
Grading roads	Watering of haul routes Restricting vehicle speeds Clearly marked routes	50	Control measures for this activity are not specifically identified. This activity forms part of the control measures for haul roads.	N/A
Machinery exhausts and plant and equipment	Servicing all machinery in accordance with maintenance contracts and adopting original equipment manufacturer recommendations for maintenance. Targeting the maintenance to ensure, as far as reasonably practical, equipment remains fit for purpose over its whole life cycle. Defining failure modes, effects and criticality.	0	Control measures for this activity are not specifically identified.	N/A

In addition to the measures listed above Glencore is committed to effectively managing the air quality impacts associated with the Project and will implement a range of dust management measures for the key dust generating activities. These measures are currently implemented as part of the existing Air Quality Management Plan for the Glendell Mine and will continue to be improved and implemented as part of the Project.

The key measures that will continue to be implemented and that have been incorporated into the modelling of the dust impacts of the Project include:

- minimising the area of disturbed land at any one time, in line with the approved Mining Operations Plan
- continued implementation of timely progressive rehabilitation

- adopting controls for haul road dust emissions
- review of meteorological conditions prior to blasting
- consideration of meteorological conditions in planning the loading and unloading of overburden
- applying water and using dust curtains when drilling overburden
- minimising fall distance during loading and unloading of overburden
- utilising water sprays and water carts on ROM coal stockpile area
- maintaining the existing covered conveyors and belt cleaning
- maintaining and servicing machinery, exhaust systems and plant equipment in accordance with contemporary maintenance practices
- using cameras to monitor dust
- continued implementation of the Trigger Action Response Plan (TARP) process and investigating dust levels when the TARP process is enacted to identify likely sources of dust from any complaints or potential compliance issues
- using temporary rehabilitation and stabilisation measures on disturbed land.

In addition to the measures listed above, both proactive and reactive dust control strategies informed by realtime dust and meteorological monitoring systems are currently implemented at Glendell Mine. Reactive air quality management will continue to assess the need to modify the activities in response to the following triggers:

- visual conditions, such as excessive visible dust
- meteorological conditions, such as dry, strong wind conditions
- ambient air quality conditions (that is, elevated short-term PM₁₀ concentrations).

Proactive air quality management involve the discussion and planning of activities in advance of potentially adverse conditions. Specifically, the pro-active air quality management approach includes:

- a system that provides personnel with a daily forecast of expected dust conditions in the vicinity of the operation
- discussion of the dust forecast at daily operational meetings
- modifying the planned mining activities, as appropriate, to minimise or avoid the potential dust impacts.

The dust management measures proposed for the Project have been compared to the measures outlined in the "NSW Coal Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining" (Donnelly et al, 2011). This comparison, as per **Table 26**, shows that the proposed measures are consistent with best practice dust mitigation measures. In some instances Donnelly et al (2011) identified control measures that were not common practice, or reasonable and/or feasible to apply at any mine in NSW. For example, air extraction to bag filters for drilling operations.

As part of the implementation of the Project the existing Air Quality Management Plan will be reviewed and updated. The Air Quality Management Plan will be revised to detail the implementation of monitoring and management controls to manage air quality impacts associated with the Project to maintain compliance with air quality criterion as required.

A review of the existing air quality monitoring locations will be undertaken prior to the commencement of the Project to make sure that the monitoring network provides adequate coverage of the Project Area. In addition there may need to be necessary changes to the monitoring network to suit the progression of mining, for example, relocation of the Glendell Mt weather station. Any changes to the monitoring network will also be included in the revised Air Quality Management Plan.

Table 27 provides details of the proposed air quality emission control measures, as requested by the SEARs.

Table 27 Project approach to air quality emission control measures

Requested SEARs information	Approach for the Project
Explicit linkage of proposed emission controls to the site specific best practice determination assessment	As per Table 26
Timeframe for implementation of all identified emission controls	From commencement of the Project
Key performance indicators for emission controls	Compliance with development consent criteria
Monitoring methods (location, frequency, duration)	The monitoring methods will be as per the current approved Mount Owen Complex Air Quality Management Plan. Should the Project be approved, the monitoring methods (location, frequency, duration) will be reviewed as part of the revised management plan and will reflect the expected areas of potential impact. The revised monitoring network will be developed to allow for evaluation of compliance at private landowners in accordance with conditions of consent.
Response mechanisms	Response mechanisms will be outlined in the dust Trigger Action Response Plan and revised Air Quality Management Plan.
Responsibilities for demonstrating and reporting achievement of KPIs	Responsibilities will be outlined the dust Trigger Action Response Plan and revised Air Quality Management Plan.
Record keeping and complaints response register	Details of records keeping and complaints response register are outlined in the currently approved Air Quality Management Plan. These will be reviewed and confirmed prior to the commencement of the Project.
Compliance reporting	Compliance reporting information is outlined in the currently approved Air Quality Management Plan. These will be reviewed and confirmed prior to the commencement of the Project.

It is anticipated that the existing Environment Protection Licence (EPL) will be revised under the *Protection of the Environment (Operations) Act 1997* (POEO Act). Relevant to air quality, the EPL includes requirements to minimise dust emissions and to monitor air quality. Also relevant is the *Protection of the Environment Operations (Clean Air) Regulation 2010* which prescribes requirements for domestic solid fuel heaters, control of burning, motor vehicle emissions and industrial emissions (such as Volatile Organic Compounds). Motor vehicle emissions would be addressed by regular maintenance of all vehicles associated with the Project.

13. Conclusions

This report has assessed the potential air quality impacts of the Glendell Continued Operations Project. In summary the assessment has involved identifying the key air quality issues, characterising the existing air quality and meteorological environment, quantifying Project emissions and using an air dispersion model to predict the impact of Project emissions on local air quality.

The potential air quality issues were identified as:

- Dust (that is, particulate matter in the form of TSP, PM₁₀ or PM_{2.5}) from the general mining activities;
- Fume (that is, NO_x emissions) from blasting; and
- Emissions of substances from machinery exhausts, that is, diesel emissions.

A detailed review of the existing environment was carried out. The following conclusions were made in relation to the existing air quality and meteorological conditions:

- Wind patterns in the vicinity of Glendell Mine are similar to other parts of the Hunter Valley, with the prevailing winds being from either the northwest or southeast.
- There are seasonal variations in particulate matter concentrations, with PM₁₀ levels generally higher in spring and PM_{2.5} levels generally higher in winter.
- There are daily variations in particulate matter concentrations, with levels typically highest in the morning and evening.
- In 2018 particle levels increased across the State due to dust from the widespread, intense drought and smoke from bushfires and hazard reduction burning (OEH 2019).
- In terms of PM₁₀ concentrations, most monitoring sites in the vicinity of Glendell Mine have experienced at least one day above the EPA's 24-hour criterion in the past seven years. The averages exceeded the EPA 24-hour criterion in 2017 and 2018 in some locations. These results were heavily influenced by the drought conditions occurring during this period.
- Measured TSP and NO₂ concentrations are below their relevant EPA criteria.
- Deposited dust levels have exceeded EPA criteria at two of the 13 monitoring locations, but not in 2017 or 2018.
- The two closest PM_{2.5} monitoring stations, Camberwell and Singleton, have measured PM_{2.5} concentrations which are close to or have exceeded the EPA criteria. A study by the OEH (2013b) found that wood smoke from domestic heating was one of the main factors that influenced PM_{2.5} concentrations, especially in winter.
- Conditions in 2014 were representative of the longer-term air quality and meteorological conditions.

The computer-based dispersion model known as CALPUFF was used to predict the potential air quality impacts of the Project, including cumulative impacts. The dispersion modelling accounted for meteorological conditions, land use and terrain information and used dust emission estimates to predict the off-site air quality impacts. The performance of the model was reviewed by comparing predictions to measured results for a representative year. It was found that, with the adopted approach for modelling and assessment, the model predictions for average concentrations were typically within 20 per cent of measured results. This result is well within the factor-of-two accuracy that has been recognised for these types of models (US EPA, 2005).

The outcomes of the assessment in terms of compliance against assessment criteria can be summarised by **Table 28** below.

Table 28 Summary of compliance outcomes

Air quality indicator	Averaging time	Criterion (note, application may differ under EPA and VLAMP assessments , see Section 4)	Summary of outcomes for private sensitive receptors not subject to acquisition rights
Particulate matter (PM10)	24-hour	50 µg/m³	 Compliance with VLAMP Potential for one or more days above EPA criteria at most locations (detailed in Appendix G). The frequency of days above EPA criteria has been quantified.
	Annual	25 µg/m³	Compliance with VLAMPCompliance with EPA criteria
Particulate matter	24-hour	25 µg/m³	Compliance with VLAMPCompliance with EPA criteria
(PM _{2.5})	Annual	8 µg/m³	Compliance with VLAMPCompliance with EPA criteria
Particulate matter (TSP)	Annual	90 µg/m³	Compliance with VLAMPCompliance with EPA criteria
	Annual (maximum increase)	2 g/m ² /month	Compliance with VLAMPCompliance with EPA criteria
Deposited dust	Annual (maximum total)	4 g/m²/month	 Compliance with VLAMP Compliance with EPA criteria
Nitrogen dioxide	1-hour	246 µg/m³	- Compliance with EPA criteria
(NO ₂)	Annual	62 µg/m ³	- Compliance with EPA criteria
Odour	Nose-response	-	- Odour impacts can be managed with appropriate blasting procedures

The main conclusions of the assessment can also be described as follows:

- There is potential for the combined contribution of the Project, other existing and approved mines, and background levels to influence compliance outcomes for 24-hour average PM₁₀. While this conclusion was based on a conservative approach to the assessment which assumes that, with the exception of the Mount Owen Complex, all existing, approved or expected to be approved mines will be concurrently operating at approved maximum limits, it is anticipated that PM₁₀ concentrations will continue to be variable from day-today, due to existing conditions and sources as well as extreme events. Operations will need to continue to be managed in a way which minimises the contribution to off-site PM₁₀ levels.
- There are no private sensitive locations not subject to acquisition rights which are predicted to experience exceedances of the annual average PM₁₀, maximum 24-hour average PM_{2.5}, annual average PM_{2.5}, annual average TSP or annual average dust deposition criteria at any stage of the Project.
- Post blast fume emissions are not expected to result in any adverse air quality impacts (as NO₂ or odour), based on model predictions which show compliance with air quality criteria and with consideration of blast management practices that are currently employed at the Mount Owen Complex.
- Emissions from diesel exhausts associated with off-road vehicles and equipment are not expected to result in any adverse air quality impacts.
- Construction impacts will be lower than those associated with operations however appropriate dust management will need to be implemented to make sure that impacts are minimised. Monitoring would continue to be carried out during the construction phase to assess compliance with EPA criteria.

14. References

ACARP (2015) "Development of Australia-specific PM₁₀ emission factors for coal mines". Published by the Australian Coal Association Research Program (ACARP), 21/9/2015.

ANSTO (2008) Fine particle aerosol sampling newsletter. Number 38, July 2008.

Ashton Coal (2015) "Annual Environmental Management Report 2014". 24/3/2015.

Attalla M I, Day S J, Lange T, Lilley W and Morgan S (2008) "NOx emissions from blasting operations in opencut coal mining" published in Atmospheric Environment, 42, (2008), 7874-7883. CSIRO Energy Technology, PO Box 330, Newcastle, NSW 2300.

Betts A, Dutt U, Jiang N, Warren L and Watt S (2014) "Observations of particulate matter concentrations from the Upper Hunter Air Quality Monitoring Network, NSW". Published in "Air Quality and Climate Change" journal from the Clean Air Society of Australia and New Zealand, Volume 48, No. 4, November 2014.

BoM (2019) Climatic Averages Australia, Bureau of Meteorology website, accessed July 2019. http://www.bom.gov.au/climate/averages/

DEC (2005) "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW". Published by the Department of Environment and Conservation, now EPA. August 2005.

DEEDI (2011) "Management of oxides of nitrogen in open cut blasting". Queensland Guidance Note QGN 20 v3. Department of Employment, Economic Development and Innovation.

DEFRA (2010) "Evaluating the Performance of Air Quality Models". Issue 3 / June 2010.

DoE (2016) National Environment Protection (Ambient Air Quality) Measure – as amended, Federal Register of Legislative Instruments F2016C00215, Department of the Environment, Canberra.

Department of Planning (2010) "Independent Review of Cumulative Impacts on Camberwell (noise, dust, emissions)".

Donnelly S-J, Balch A, Wiebe A, Shaw N, Welchman S, Schloss A, Castillo E, Henville K, Vernon A and Planner J (2011) "NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and / or Minimise Emissions of Particulate Matter from Coal Mining". Prepared by Katestone Environmental Pty Ltd for NSW Office of Environment and Heritage, December 2010.

EPA (2012) "Air Emissions Inventory for the Greater Metropolitan Region in New South Wales, 2008 Calendar Year, Off-Road Mobile Emissions". Technical Report No. 6. Prepared by the Environment Protection Authority. EPA 2012/0050. August 2012.

EPA (2016) "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW".

Jacobs (2016) United Wambo Open Cut Coal Mine Project – Air Quality Impact Assessment. Report dated 13 July 2016.

Jacobs (2018) "Mount Owen Continued Operations Modification 2 - Air Quality Impact Assessment". Report dated 20 June 2018.

Liddell Coal (2015) "2014 Annual Environmental Management Report". Final, version 0.1, effective 30/03/2015.

Mt Owen Pty Ltd (2015) "Mt Owen Complex Annual Review 2014".

National Pollutant Inventory (2012) "Emission Estimation Technique Manual for Mining". Version 3.1, January 2012.

NEPC (1998) "Ambient Air – National Environment Protection Measure for Ambient Air Quality", National Environment Protection Council, Canberra.

NERDDC (1988) "Air Pollution from Surface Coal Mining: Measurement, Modelling and Community Perception", Project No. 921, National Energy Research Development and Demonstration Council, Canberra.

NHMRC (1996) "Ambient Air Quality Goals Recommended by the National Health and Medical Research Council, National Health and Medical Research Council", Canberra.

NSW Government (2018) "Voluntary Land Acquisition and Mitigation Policy for State Significant Mining, Petroleum and Extractive Industry Developments". September 2018.

OEH (2013a) New South Wales Air Quality Statement 2013. http://www.environment.nsw.gov.au/aqms/140057nswairqual13.htm

OEH (2013b) "Upper Hunter Fine Particle Characterisation Study". Final report, dated 17 September 2013. CSIRO.

OEH (2019) Air quality monitoring data from the Office of Environment and Heritage website <u>http://www.environment.nsw.gov.au/AQMS/search.htm</u>. Accessed August 2019.

OEH (2019) "Annual Air Quality Statement 2018".

PAEHolmes (2009) "Air Quality Impact Assessment – Ashton South East Open Cut Mine". Report dated 23 October 2009.

Pacific Environment Limited (2013) "Air Quality and Greenhouse Gas Assessment – Liddell Coal Operations Modification 5". Job no. 5347. Report dated 20 February 2013.

Pacific Environment Limited (2014) "Air Quality Impact Assessment - Mount Owen Continued Operations". Dated 29 October 2014.

Pacific Environment Limited (2016) "Mount Owen Continued Operations – Refined Project". Dated 26 May 2016.

PAEHolmes (2009) "Air Quality Impact Assessment – Ashton South East Open Cut Mine". Job no. 2886, 23 October 2009.

Ravensworth Operations Pty Ltd (2015) "The Ravensworth Complex Annual Review for the period of 1 January 2014 to 31 December 2014". Dated March 2015.

Rio Tinto (2015) "2014 Hunter Valley Operations Annual Environmental Review". March 2015.

Rix's Creek Ltd (2015) "Annual Review 2015". Rix's Creek Mine. Dated 19/4/2016.

Skidmore, E.L. (1998) "Wind Erosion Processes". USDA-ARS Wind Erosion Research Unit, Kansas State University. Wind Erosion in Africa and West Asia: Problems and Control Strategies. Proceedings of the expert group meeting 22-25 April 1997, Cairo, Egypt.

SPCC (1986) "Particle size distributions in dust from open cut coal mines in the Hunter Valley". Report number 10636-002-71. Prepared for the State Pollution Control Commission of NSW (now EPA) by Dames and Moore.

Todoroski (2015) "Air Quality and Greenhouse Gas Assessment – Rix's Creek Continuation of Mining Project". Prepared by Todoroski Air Sciences, job number 13080222, report dated 26 August 2015.

Todoroski (2016) "Review – Air Quality Impact Assessment – Mt Owen Continued Operations Project". Prepared by Todoroski Air Sciences for the NSW Department of Planning and Environment. Job number 15090470, report dated 29 April 2016.

Todoroski (2017) "Air Quality and Greenhouse Gas Assessment – HVO South Modification 5". Prepared by Todoroski Air Sciences, job number 15010400, report dated 25 January 2017.

TRC (2007) CALPUFF model web-site (http://www.src.com/calpuff/regstat.htm).

TRC (2011) "Generic Guidance and Optimum Model Settings for the CALPUFF Modelling System for Inclusion into the 'Approved Methods for the Modelling and Assessments of Air Pollutants in NSW". Prepared for the Office of Environment and Heritage by TRC, March 2011.

URS (2000) "Mount Arthur North Coal Project". EIS produced for Coal Australia Pty Ltd by URS Australia Pty Ltd.

Umwelt (2019) "Glendell Continued Operations Project - Greenhouse gas assessment". Prepared by Umwelt (Australia) Pty Ltd.

US EPA (1985 and updates) "Compilation of Air Pollutant Emission Factors", AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711. Now a web-based document.

US EPA (1987) Update of fugitive dust emission factors in AP-42 Section 11.2, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, July 1987.

US EPA (1995) "User's Guide for the Industrial Source Complex (ISC3) Dispersion Models – Volume 1 User's Instructions" and "Volume 2 Description of Model Algorithms" US Environmental Protection Agency, Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division, Research Triangle Park, North Carolina 27711.

US EPA (2005) "Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Final Rule". Environmental Protection Agency.

Vale (2015) "Annual Review - Integra Coal Operations". Report dated March 2015.

WHO (2000) "Air Quality Guidelines for Europe – Second Edition". WHO Regional Publications, European Series, No. 91. World Health Organisation.

Appendix A. EPA Assessment Requirements

4 Air Issues

4.1 Air quality

The EIS must include an air quality impact assessment (AQIA) in accordance with the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW, including, as a minimum the following components:

Assessment Objective

- 1. Demonstrate the proposed project will incorporate and apply best management practice emission controls; and
- 2. Demonstrate that the project will not cause violation of the project adopted air quality impact assessment criteria at any residential dwelling or other sensitive receptor.

Assessment Criteria

- Define applicable assessment criteria for the proposed development referencing the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW, including appendices and updates
- Demonstrate the proposal's ability to comply with the relevant regulatory framework, specifically the *Protection of the Environment Operations* (POEO) *Act* (1997) and the POEO (Clean Air) Regulation (2010).

Existing Environment

- Provide a detailed description of the existing environment within the assessment domain, including:
 - o geophysical form and land-uses;
 - o location of all sensitive receptors;
 - o existing air quality; and
 - o local and regional prevailing meteorology.
- Justify all data used in the assessment, specifically including analysis of inter-annual trends (preferably five consecutive years of data), availability of monitoring data, and local topographical features.
- Meteorological modelling must be verified against monitored data. Verification should involve comparative analysis of wind speed, wind direction and temperature, at a minimum.
- A review of all existing, recently approved and planned developments likely to contribute to cumulative air quality impacts must be completed.

Emissions Inventory

- Provide a detailed description of the project and identify the key stages with regards to the potential for air emissions and impacts on the surrounding environment.
- Identify all sources of air emissions, including mechanically generated, combustion and transport related emissions likely to be associated with the proposed development.
- Estimate emissions of TSP, PM₁₀, PM_{2.5}, NO_x, (tonnes per year), at a minimum, for all identified sources during each key development stage. The emissions inventory should:
 - utilise USEPA (1995) (and updates) emission estimation techniques, direct measurement or other method approved in writing by EPA;
 - o calculate uncontrolled emissions (with no particulate matter controls in place); and
 - o calculate controlled emissions (with proposed particulate matter controls in place).

- The emissions inventory must be explicitly coupled with the project description.
- Provide a detailed summary and justification of all parameters adopted within all emission estimation calculations, including site specific measurements, proponent recommended values or published literature.
- Document, including quantification and justification, all air quality emission control techniques/practices proposed for implementation during the project. As a minimum, consideration must be given to source control techniques, emission control through mine planning and reactive/predictive management techniques.
- Blasting emission estimation should provide specific details on likely activities, including the frequency of blasts, area per blast, amount and type of explosives used and blasting hours.

Best Practice Determination

- Based on the TSP, PM₁₀ and PM_{2.5} emissions inventories calculated for the proposed development, undertake a site-specific best practice determination, in accordance with the document Coal Mine Particulate Matter Control Best Practice – Site specific determination guideline.
- Demonstrate that the proposed control techniques/practices are consistent with best management practice.
- Detail all sources possible sources of air pollution and activities/processes with the potential to cause air pollutants, including odours and fugitive dust emissions and odours; and
- Describe in detail the measures proposed to mitigate the impacts and quantify the extent to which the mitigation measures are likely to be effective in achieving the relevant environmental outcomes.

Dispersion Modelling and Interpretation of Results

- Atmospheric dispersion modelling should be undertaken in accordance with the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW, including appendices and updates.
- Modelling must implement fit for purpose modelling techniques that:
 - have regard for the most up to date and scientifically accepted dispersion modelling techniques;
 - contextualise all assumptions based on current scientific understanding and available data; and
 - o include a thorough validation of adopted methods and model performance.
- Use an appropriate atmospheric dispersion model to predict, at a minimum, incremental ground level concentrations/levels of the following:
 - o 24-hour and annual average PM₁₀ concentrations;
 - o 24-hour and annual average PM_{2.5} concentrations; and
 - 1-hour and annual average NO₂ concentrations. NO₂ concentrations should be assessed using a well justified approach for the transformation of NOx to NO₂.
- Ground level concentrations of pollutants should be presented for surrounding privately-owned properties, mine-owned properties and other sensitive receptors (as applicable).
- Undertake a cumulative assessment of predicted impacts. The contribution of all identified existing and recently approved developments should be accounted for in the cumulative assessment.
- Cumulative 24-hour PM₁₀ and PM_{2.5} concentrations must be assessed in accordance with the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW, including appendices and updates, and/or a suitably justified probabilistic methodology.

- Cumulative annual average PM₁₀, PM_{2.5}, and NO₂ should be assessed using a sufficiently justified background concentration(s);
- Results of dispersion modelling should be presented as follows:
 - isopleth plots showing the geographic extent of maximum pollutant concentrations (incremental and cumulative);
 - tables presenting the maximum predicted pollutant concentrations (increment and cumulative) and the frequency of any predicted exceedances at each surrounding privately-owned properties, mine-owned properties and other sensitive receptors (as applicable); and
 - time series and frequency distribution plots of pollutant concentrations at each private receptor location at which an exceedance is predicted to occur. Where no exceedances are predicted, the analysis must be performed for the most impacted off site sensitive receptor.

Air Quality Emission Control Measures

- Provide a detailed discussion of all proposed air quality emission control measures, including details of a reactive/predictive management system. The information provided must include:
 - explicit linkage of proposed emission controls to the site specific best practice determination assessment
 - o timeframe for implementation of all identified emission controls;
 - o key performance indicators for emission controls;
 - o monitoring methods (location, frequency, duration);
 - o response mechanisms;
 - o responsibilities for demonstrating and reporting achievement of KPIs;
 - o record keeping and complaints response register; and
 - o compliance reporting.

Air Quality Impact Assessment (Blasting)

The AQIA must also be undertaken to determine the potential impacts of blasting activities. This
must include assessment and modelling to determine the level of potential impacts (dust, gases
and offensive odour) and how these potential impacts would be mitigated.

Appendix B. Wind-roses for all meteorological stations

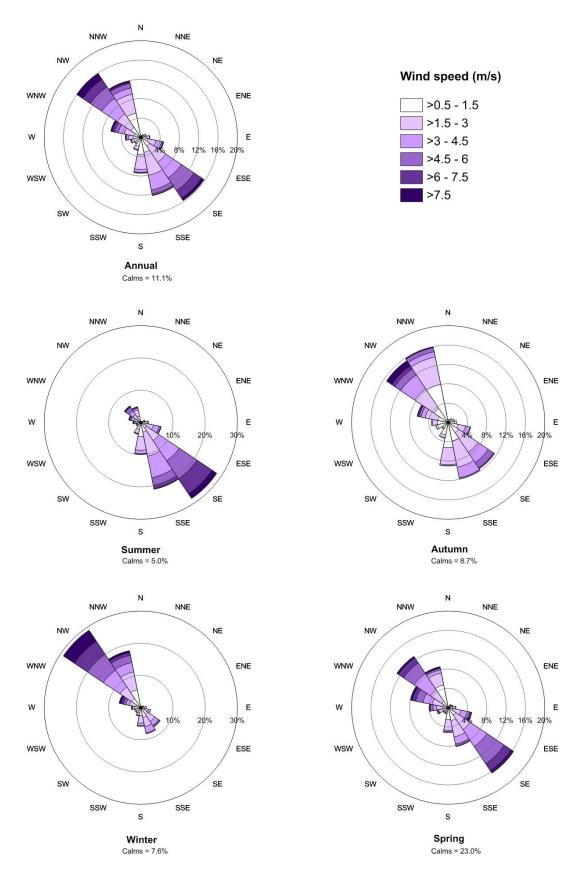


Figure B1 Annual and seasonal wind-roses for Glendell Met 2014



Figure B2 Annual and seasonal wind-roses for Mt Owen Met 2014

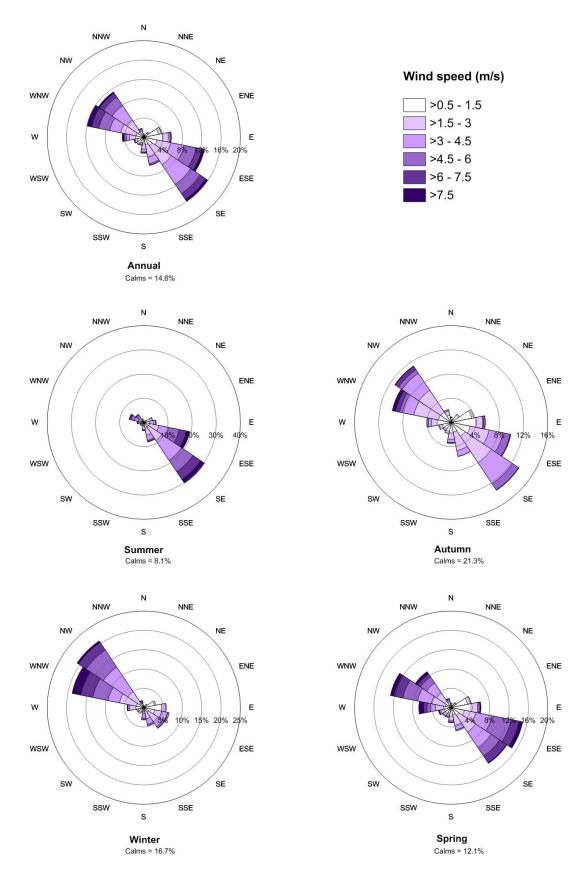


Figure B3 Annual and seasonal wind-roses for Camberwell (OEH) 2014

Figure B4 shows the wind data as determined by CALMET for the location of the Glendell Met meteorological station. This demonstrates that the data used by the model accurately reflects the measurement data, based on the similarities to **Figure B1**.

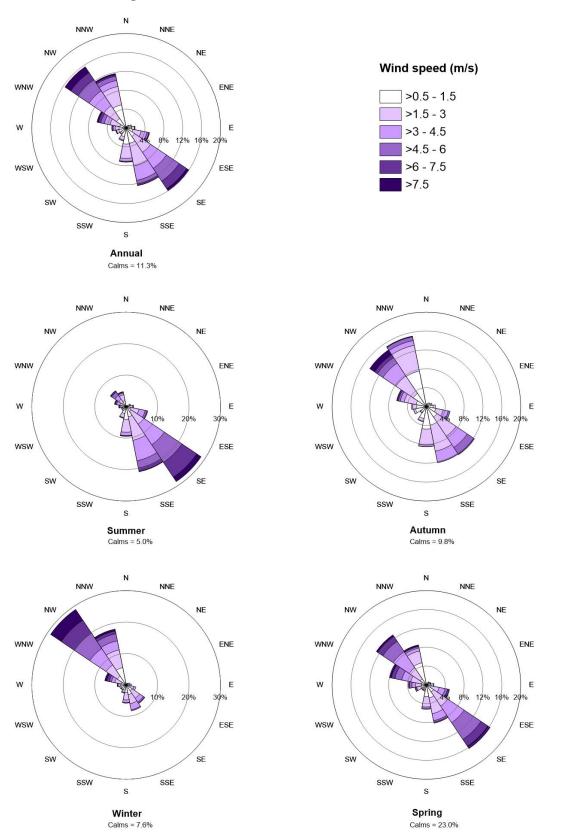


Figure B4 Annual and seasonal wind-roses for Glendell Met 2014 as determined by CALMET

Appendix C. Emissions Calculations

Emission factors

		Emission factor		Linite	Course
Activity	TSP	PM ₁₀	PM _{2.5}	Units	Source
Stripping topsoil by scraper	E _{TSP} = 0.029	E _{PM10} = 0.0073 x E _{TSP}	E _{PM2.5} = 0.05 x E _{TSP}	kg/t	US EPA / NPI
Drilling	E _{TSP} = 0.59	E _{PM10} = 0.52 x E _{TSP}	E _{PM2.5} = 0.03 x E _{TSP}	kg/hole	US EPA / NPI
Blasting	E _{TSP} = 0.00022 x A ^{1.5}	E _{PM10} = 0.52 x E _{TSP}	E _{PM2.5} = 0.03 x E _{TSP}	kg/blast	US EPA / NPI
Loading material / dumping overburden	$E_{TSP} = 0.74 \text{ x } 0.0016 \text{ x } ((U/2.2)^{1.3}/(M/2)^{1.4})$	$E_{PM10} = 0.35 \times 0.0016 \times ((U/2.2)^{1.3}/(M/2)^{1.4})$	$E_{PM2.5} = 0.053 \times 0.0016 \times ((U/2.2)^{1.3}/(M/2)^{1.4})$	kg/t	US EPA / NPI
Hauling on unsealed roads	E _{TSP} = 4	E _{PM10} = 0.3 x E _{TSP}	E _{PM2.5} = 0.03 x E _{TSP}	kg/VKT	SPCC
Dozers shaping overburden	$E_{TSP} = 2.6 \text{ x} (S^{1.2}/M^{1.3})$	E _{PM10} = 0.3375 x (S ^{1.5} /M ^{1.4})	E _{PM2.5} = 0.105 x E _{TSP}	kg/hour	US EPA / NPI
Dozers working on coal	$E_{TSP} = 35.6 \text{ x} (S^{1.2}/M^{1.3})$	$E_{PM10} = 6.33 \text{ x} (S^{1.5}/M^{1.4})$	E _{PM2.5} = 0.022 x E _{TSP}	kg/hour	US EPA / NPI
Loading coal	$E_{TSP} = 0.58 / M^{1.2}$	E _{PM10} = 0.0447 / M ^{0.9}	E _{PM2.5} = 0.019 x E _{TSP}	kg/t	US EPA / NPI
Unloading coal	E _{TSP} = 0.01	E _{PM10} = 0.0042	E _{PM2.5} = 0.019 x E _{TSP}	kg/t	NPI
Miscellaneous transfer	$E_{TSP} = 0.74 \text{ x } 0.0016 \text{ x } ((U/2.2)^{1.3}/(M/2)^{1.4})$	$E_{PM10} = 0.35 \times 0.0016 \times ((U/2.2)^{1.3}/(M/2)^{1.4})$	$E_{PM2.5} = 0.053 \times 0.0016 \times ((U/2.2)^{1.3}/(M/2)^{1.4})$	kg/t	US EPA / NPI
Loading product coal to trains	E _{TSP} = 0.0004	E _{PM10} = 0.00017	E _{PM2.5} = 0.05 x E _{TSP}	kg/t	NPI
Wind erosion from exposed areas	E _{TSP} = 0.1	E _{PM10} = 0.5 x E _{TSP}	E _{PM2.5} = 0.075 x E _{TSP}	kg/ha/h	US EPA
Grading roads	$E_{TSP} = 0.0034 \text{ x s}^{2.5}$	$E_{PM10} = 0.00336 \text{ x s}^2$	E _{PM2.5} = 0.0001054 x s ^{2.5}	kg/VKT	US EPA / NPI
Dragline working on overburden	$E_{TSP} = 0.0046^{*}(D^{1.1}/M^{0.3})$	$E_{TSP} = 0.0022^* (D^{0.7}/M^{0.3})$	E _{PM2.5} = 0.05 x E _{TSP}	kg/bcm	US EPA / NPI

Emission inventory Glendell Mine 2014

	Annua	al emissions (k	(g/y)			TSP	PM10	PM2.5				V	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Units	Factor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/WT	tAruck	kmArip	Silt (%)	Creed (trm (h)
Stripping topsoil by scraper	653	164	33	50	45000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t			-	-	-	-		-	
Drilling overburden	16001	8320	480	70	90400 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	70315	36564	2109	0	113 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	65412	30938	4685	0	40161366 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	÷ .	-	-	-	
Hauling overburden from pit to dump	442143	130657	13264	85	40161366 t/y	0.07339 kg/t	0.02169 kg/t	0.002 kg/t	(- 1	-	-		4	218	4	-	
Unloading overburden to dump	65412	30938	4685	0	40161366 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	439805	106281	46179	0	26280 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h		-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	219902	53141	23090	0	13140 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2		-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-		-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	323702	83815	7121	0	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	2-12	8		- 1	-	-	7	
Loading ROM coal to trucks	209027	30061	3972	0	4370000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8		-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	331200	97872	9936	85	4370000 t/y	0.50526 kg/t	0.14931 kg/t	0.015 kg/t		-	-	1 - 1	4	133	16.8		
Unloading ROM coal to ROM pad	13110	5506	249	70	4370000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	21850	9177	415	0	2185000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	511	242	37	50	4370000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t		1.38	8)	-		-	-	
Handling coal at CHPP	1540	728	22	70	4390000 t/y	0.00117 kg/t	0.00055 kg/t	0.0000 kg/t		1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-		-	-	7	
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	217	103	16	50	2899122 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11		-	-	-	-	
Loading product coal to trains	1153	490	58	0	2882479 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	76326	39343	5724	0	90 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	104028	53623	7802	0	122 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-		-	
Wind erosion from ROM coal stockpiles	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	9232	3226	286	50	30000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-		-		-	-	-	-)
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
		701107															
	2411539	721190	130163														

Notes: based on data from Mt Owen (2015)

	Annua	emissions (kg	y)			TSP	PM	10	PM2.5				V	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor	Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/MKT	tAruck	kmArip	Silt (%)	And the second
Stripping topsoil by scraper	2480	624	124	50	171000 t/y	0.029 kg/t	0.0073	kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden (including through seam)	6834	3554	205	70	38610 holes/y	0.59 kg/hole	0.31	kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden (including through seam)	54361	28268	1631	0	99 blasts/y	549.1 kg/blast	285.5	kg/blast	16.5 kg/blast	18400	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	98323	46504	7042	0	60367739 t/y	0.00163 kg/t	0.00077	kg/t	0.0001 kg/t	-	1.38	2	(-	Η.	-	-	-	
lauling overburden from pit to dump	664599	196394	19938	85	60367739 t/y	0.07339 kg/t	0.02169	kg/t	0.002 kg/t	-	-	-	-	4	218	4	-	
Unloading overburden to dump	98323	46504	7042	0	60367739 t/y	0.00163 kg/t	0.00077	kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	481375	116327	50544	0	28764 h/y	16.7 kg/h	4.04419	kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	160458	38776	16848	0	9588 h/y	16.7 kg/h	4.04419	kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31	kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	549.1 kg/blast	285.5	kg/blast	16.5 kg/blast	18400	-	-	H	-	-	-	-	
Dozers working on coal	73954	19149	1627	0	3002 h/y	24.6 kg/h	6.4	kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
oading ROM coal to trucks	201809	29023	3834	0	4219106 t/y	0.04783 kg/t	0.00688	kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
lauling ROM coal from pit to hopper / ROM pad	209369	61870	6281	85	4219106 t/y	0.33083 kg/t	0.09776	kg/t	0.010 kg/t	-	-	-	-	4	133	11	-	
Unloading ROM coal to ROM pad	0	0	0	70	0 t/y	0.01 kg/t	0.0042	kg/t	0.000 kg/t	-	-	-		-	-	-	-	
ROM coal rehandle to hopper	0	0	0	0	0 t/y	0.01 kg/t	0.0042	kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Fransferring ROM coal by conveyor to CHPP	0	0	0	50	0 t/y	0.00023 kg/t	0.00011	kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
landling coal at CHPP	0	0	0	70	0 t/y	0.00117 kg/t	0.00055	kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4	kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5	kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	0	0	0	50	0 t/y	0.00015 kg/t	0.00007	kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
oading product coal to trains	0	0	0	0	0 t/y	0.00040 kg/t	0.00017	kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	57812	29800	4336	0	68 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	109198	56288	8190	0	129 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from shaped dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	0	0	0	50	0 [°] ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	0	0	0	50	0 [°] ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	21110	7376	654	50	68600 km	0.61547 kg/VKT	0.21504	kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm		kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
Gravel crushing in-pit	1620	720	81	70	2000000 [°] t/y	0.00270 kg/t	0.0012		0.0001 kg/t	-	-	-	-	-	-	-	-	
	2241625	681177	128378															

	Annua	al emissions (I	(g/y)			TSP	PM10	PM2.5				Va	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)^1.3	Moisture (%)	Drop distance (m)	kg//KT	tðruck	kmårip	Silt (%)	Ample and
Stripping topsoil by scraper	2349	591	117	50	162000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-		-	-	-	-	
Drilling overburden (including through seam)	11183	5815	335	70	63180 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden (including through seam)	88954	46256	2669	0	162 blasts/y	549.1 kg/blast	285.5 kg/blast	16.5 kg/blast	18400	1 	(-	(-)	1)) . -	3 - -	
Excavators loading overburden to trucks	133859	63312	9587	0	82185900 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-			-	
Hauling overburden from pit to dump	904799	267376	27144	85	82185900 t/y	0.07339 kg/t	0.02169 kg/t	0.002 kg/t	-	-	-	-	4	218	4	-	
Unloading overburden to dump	133859	63312	9587	0	82185900 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	671995	162392	70559	0	40154 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-		-	10	
Dozers working on overburden for rehabilitation	223998	54131	23520	0	13385 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	(H)	-	100		(H)) - 1) - 1	3 - 3	
Blasting coal	0	0	0	0	0 blasts/y	549.1 kg/blast	285.5 kg/blast	16.5 kg/blast	18400	-	-	-	-				
Dozers working on coal	111818	28952	2460	0	4539 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h		2 -	8		-	-	-	7	
Loading ROM coal to trucks	280249	40304	5325	0	5859000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	253743	74983	7612	85	5859000 t/y	0.28872 kg/t	0.08532 kg/t	0.009 kg/t	-	-	-	-	4	133	9.6	-	
Unloading ROM coal to ROM pad	0	0	0	70	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	0	0	0	0	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	(1.	100) - 1) - 1) - 1	2 - 2	
Transferring ROM coal by conveyor to CHPP	0	0	0	50	0 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	n_ 1	n= 1	
Handling coal at CHPP	0	0	0	70	0 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t		1.38	8	·	-	-		-	
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	0	0	0	50	0 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t		1.38	11	-		-	-	-	
Loading product coal to trains	0	0	0	0	0 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	155499	80154	11662	0	183 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-		-				-	
Wind erosion from active dumps	152950	78840	11471	0	180 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y					-	-		-	
Wind erosion from shaped dumps	111823	57641	8387	30	188 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-		-		-	-	-	
Grading roads	36189	12644	1122	50	117600 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	· - ·	-	-	· · ·	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm		-	2	7	-	-	-	n_ 1	
Gravel crushing in-pit	1620	720	81	70	2000000 [°] t/y	0.00270 kg/t	0.0012 kg/t	0.0001 kg/t	5 - 1	3 - 1	-	-	-	3 -		-	
	3274887	1037423	191639														

	Annua	al emissions (I	(g/y)			TSP	PM10	PM2.5				V	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor	Factor Units	Area (m2)	(ws/2.2)^1.3	Moisture (%)	Drop distance (m)	kg/WT	tÅruck	kmårip	Silt (%)	
Stripping topsoil by scraper	2610	657	131	50	180000 [°] t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden (including through seam)	18224	9476	547	70	102960 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden (including through seam)	144962	75380	4349	0	264 blasts/y	549.1 kg/blast	285.5 kg/blast	16.5 kg/blast	18400	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	221357	104696	15854	0	135907000 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	3 - 2	(-	-	-	- T	
Hauling overburden from pit to dump	1496224	442147	44887	85	135907000 t/y	0.07339 kg/t	0.02169 kg/t	0.002 kg/t	· · · · · ·	-		-	4	218	4		
Unloading overburden to dump	221357	104696	15854	0	135907000 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t		1.38	2	-	-	-	-	-	
Dozers shaping overburden	1089294	263234	114376	0	65090 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2		-	-	-	10	
Dozers working on overburden for rehabilitation	363098	87745	38125	0	21697 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h		·	2	-	-	-	-	10	
Drilling coal	0	0	0	70	holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole		-	-	-	-	-	-	÷	
Blasting coal	0	0	0	0	blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	14	-	-) - 2) - 3) - 3	
Dozers working on coal	212057	54907	4665	0	8608 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h		-	8	-	-	-	-	7	
Loading ROM coal to trucks	478322	68790	9088	0	10000000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t			8		-	-		-	
Hauling ROM coal from pit to hopper / ROM pad	342857	101317	10286	85	10000000 t/y	0.22857 kg/t	0.06754 kg/t	0.007 kg/t		-	-		4	133	7.6	-	
Unloading ROM coal to ROM pad	0	0	0	70	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-		-				-	
ROM coal rehandle to hopper	0	0	0	0	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	0	0	0	50	0 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-			
Handling coal at CHPP	0	0	0	70	0 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	·	1.38	8	-	r	7 - 1			
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h		-	11	-	-		-	5	
Conveyer to product stockpiles	0	0	0	50	0 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t		1.38	11	-	-	-	-	-	
Loading product coal to trains	0	0	0	0	0 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	168807	87014	12661	0	199 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-		14) - -	3- 3	3- 3	
Wind erosion from active dumps	142487	73447	10687	0	168 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-	-	-	-	-	-	
Wind erosion from shaped dumps	53532	27594	4015	30	90 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-		-			-	
Wind erosion from ROM coal stockpiles	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-	-	-	-	-	-	
Grading roads	60316	21074	1870	50	196000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	3 - 2			1 -11	
Gravel crushing in-pit	1620	720	81	70	2000000 [°] t/y	0.00270 kg/t	0.0012 kg/t	0.0001 kg/t	-	-	-	-	-	r <u>-</u> ::	-	-	
	5017124	1522894	287474														

			g/y)			TSP	PM10	PM2.5					ariables				
ctivity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor Units	F actor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg//KT	tðruck	kmArip	Siit (%)	Creed (km/h)
stripping topsoil by scraper	1436	361	72	50	99000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
rilling overburden (including through seam)	10907	5672	327	70	61620 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-		-	14 C	(H)	(H)	(H)	
lasting overburden (including through seam)	86757	45114	2603	0	158 blasts/y	549.1 kg/blast	285.5 kg/blast	16.5 kg/blast	18400	(-	(-	14	(-		(-	(-	
xcavators loading overburden to trucks	127881	60484	9159	0	78515100 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
auling overburden from pit to dump	864386	255433	25932	85	78515100 t/y	0.07339 kg/t	0.02169 kg/t	0.002 kg/t	-	-	-	-	4	218	4	-	
Inloading overburden to dump	127881	60484	9159	0	78515100 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
lozers shaping overburden	620948	150056	65200	0	37104 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
lozers working on overburden for rehabilitation	206983	50019	21733	0	12368 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	<u> </u>	÷.	-	10	
prilling coal	0	0	0	70	holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-		-					
lasting coal	0	0	0	0	blasts/y	549.1 kg/blast	285.5 kg/blast	16.5 kg/blast	18400	-	-	-	-	-	-	-	
ozers working on coal	120859	31293	2659	0	4906 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
oading ROM coal to trucks	282592	40641	5369	0	5908000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
lauling ROM coal from pit to hopper / ROM pad	165246	48832	4957	85	5908000 t/y	0.18647 kg/t	0.0551 kg/t	0.006 kg/t	-	-	-	-	4	133	6.2	-	
Inloading ROM coal to ROM pad	0	0	0	70	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	14	-		
OM coal rehandle to hopper	0	0	0	0	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ransferring ROM coal by conveyor to CHPP	0	0	0	50	0 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
landling coal at CHPP	0	0	0	70	0 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
lozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
lozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
conveyer to product stockpiles	0	0	0	50	0 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
oading product coal to trains	0	0	0	0	0 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-		-	
Vind erosion from active pits	136448	70334	10234	0	161 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Vind erosion from active dumps	177899	91701	13342	0	209 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Vind erosion from shaped dumps	28662	14774	2150	30	48 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Vind erosion from ROM coal stockpiles	0	0	0	50	0 [°] ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Vind erosion from product coal stockpile	0	0	0	50	0 [°] ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	÷.	-	1	-	-		-	
Grading roads	31512	11010	977	50	102400 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-		-		-	-			1
ragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
Gravel crushing in-pit	1620	720	81	70	2000000 [°] t/y	0.00270 kg/t	0.0012 kg/t	0.0001 kg/t	-	-	-	-	-	-	-	-	
	2992017	936928	173953														

Source allocations Glendell Mine 2014

22-May-2019 15:27 DUST EMISSION CALCULATIONS XL1 Output emissions file C:\Users\slakmaker\Projects\IA160700 Glendell\calpuff\2014\Glendell \emiss.vol Meteorological file : NA Number of dust sources : 39 Number of activities : 28 ----ACTIVITY SUMMARY-----ACTIVITY NAME : Stripping topsoil by scraper ACTIVITY TYPE : Wind insensitive DUST EMISSION : 653 kg/y TSP 164 kg/y PM10 33 kg/y PM2.5 FROM SOURCES : 2 78 HOURS OF DAY ACTIVITY NAME : Drilling overburden ACTIVITY TYPE : Wind insensitive FROM SOURCES : 6 234567 HOURS OF DAY ACTIVITY NAME : Blasting overburden ACTIVITY TYPE : Wind insensitive DUST EMISSION : 70315 kg/y TSP 36564 kg/y PM10 2109 kg/y PM2.5 FROM SOURCES : 6 3 4 5 6 7 HOURS OF DAY ACTIVITY NAME : Excavators loading overburden to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 65412 kg/y TSP 30938 kg/y PM10 4685 kg/y PM2.5 FROM SOURCES 2 3 4 5 6 7 ACTIVITY NAME : Hauling overburden from pit to dump ACTIVITY TYPE : Wind insensitive DUST EMISSION : 442143 kg/y TSP 130657 kg/y PM10 13264 kg/y PM2.5 FROM SOURCES : 15 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 HOURS OF DAY : ACTIVITY NAME : Unloading overburden to dump ACTIVITY TYPE : Wind sensitive DUST EMISSION : 65412 kg/y TSP 30938 kg/y PM10 4685 kg/y PM2.5 FROM SOURCES : 6 11 12 13 14 15 16 HOURS OF DAY ACTIVITY NAME : Dozers shaping overburden ACTIVITY TYPE : Wind insensitive DUST EMISSION : 439805 kg/y TSP 106281 kg/y PM10 46179 kg/y PM2.5 FROM SOURCES 11 12 13 14 15 16 HOURS OF DAY ACTIVITY NAME : Dozers working on overburden for rehabilitation ACTIVITY TYPE : Wind insensitive DUST EMISSION : 219902 kg/y TSP 53141 kg/y PM10 23090 kg/y PM2.5 FROM SOURCES : 4 17 18 19 20 HOURS OF DAY ACTIVITY NAME : Drilling coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 6 3 4 5 6 7 HOURS OF DAY ACTIVITY NAME : Blasting coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES 234567 HOURS OF DAY ACTIVITY NAME : Dozers working on coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 323702 kg/y TSP 83815 kg/y PM10 7121 kg/y PM2.5 FROM SOURCES : 6 234567 HOURS OF DAY ACTIVITY NAME : Loading ROM coal to trucks ACTIVITY TYPE : Wind sensitive

DUST EMISSION : 209027 kg/y TSP 30061 kg/y PM10 3972 kg/y PM2.5 FROM SOURCES : 6 234567 HOURS OF DAY ACTIVITY NAME : Hauling ROM coal from pit to hopper / ROM pad ACTIVITY TYPE : Wind insensitive DUST EMISSION : 331200 kg/y TSP 97872 kg/y PM10 9936 kg/y PM2.5 FROM SOURCES 27 2 3 4 5 6 7 12 13 16 17 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 HOURS OF DAY ACTIVITY NAME : Unloading ROM coal to ROM pad ACTIVITY TYPE : Wind sensitive DUST EMISSION : 13110 kg/y TSP 5506 kg/y PM10 249 kg/y PM2.5 FROM SOURCES 35 36 37 ACTIVITY NAME : ROM coal rehandle to hopper ACTIVITY TYPE : Wind sensitive DUST EMISSION : 21850 kg/y TSP 9177 kg/y PM10 415 kg/y PM2.5 FROM SOURCES : 3 35 36 37 HOURS OF DAY ACTIVITY NAME : Transferring ROM coal by conveyor to CHPP ACTIVITY TYPE : Wind sensitive DUST EMISSION : 511 kg/y TSP 242 kg/y PM10 37 kg/y PM2.5 FROM SOURCES 35 36 37 HOURS OF DAY ACTIVITY NAME : Handling coal at CHPP ACTIVITY TYPE : Wind insensitive DUST EMISSION : 1540 kg/y TSP 728 kg/y PM10 22 kg/y PM2.5 FROM SOURCES : 1 37 HOURS OF DAY ACTIVITY NAME : Dozers on ROM coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 3 35 36 37 HOURS OF DAY ACTIVITY NAME : Dozers on product coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 38 39 HOURS OF DAY ACTIVITY NAME : Conveyer to product stockpiles ACTIVITY TYPE : Wind sensitive DUST EMISSION : 217 kg/y TSP 103 kg/y PM10 16 kg/y PM2.5 FROM SOURCES : 2 38 39 HOURS OF DAY ACTIVITY NAME : Loading product coal to trains ACTIVITY TYPE : Wind sensitive DUST EMISSION : 1153 kg/y TSP 490 kg/y PM10 58 kg/y PM2.5 FROM SOURCES : 1 1 HOURS OF DAY ACTIVITY NAME : Wind erosion from active pits ACTIVITY TYPE : Wind erosion DUST EMISSION : 76326 kg/y TSP 39343 kg/y PM10 5724 kg/y PM2.5 : 8 FROM SOURCES 23456789 ACTIVITY NAME : Wind erosion from active dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 104028 kg/y TSP 53623 kg/y PM10 7802 kg/y PM2.5 FROM SOURCES : 11 10 11 12 13 14 15 16 17 18 19 20 HOURS OF DAY : ACTIVITY NAME : Wind erosion from partially rehabilitated dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 3 18 19 20 HOURS OF DAY ACTIVITY NAME : Wind erosion from ROM coal stockpiles ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 3 35 36 37 HOURS OF DAY

ACTIVITY NAME : Wind erosion from product coal stockpile ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 38 39

ACTIVITY NAME : Dragline working on overburden ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 1

Pit retention sources: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Source allocations Glendell Continued Operations Project Year 1

03-JU1-2019 20:30 DUST EMISSION CALCULATIONS XL1 Number of dust sources : Number of activities : 29 ----ACTIVITY SUMMARY-----ACTIVITY NAME : Stripping topsoil by scraper ACTIVITY TYPE : Wind insensitive DUST EMISSION : 2480 kg/y TSP 624 kg/y PM10 124 kg/y PM2.5 FROM SOURCES : 2 --ACTIVITY SUMMARY----1 2 ACTIVITY NAME : Drilling overburden (including through seam) ACTIVITY TYPE : Wind insensitive DUST EMISSION : 6834 kg/y TSP 3554 kg/y PM10 205 kg/y PM2.5 FROM SOURCES : 7 1 2 3 4 5 6 7 HOURS OF DAY ACTIVITY NAME : Blasting overburden (including through seam) ACTIVITY TYPE : Wind insensitive DUST EMISSION : 54361 kg/y TSP 28268 kg/y PM10 1631 kg/y PM2.5 FROM SOURCES 1 2 3 4 5 6 7 HOURS OF DAY ACTIVITY NAME : Excavators loading overburden to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 98323 kg/y TSP 46504 kg/y PM10 7042 kg/y PM2.5 FROM SOURCES : 7 1234567 HOURS OF DAY ACTIVITY NAME : Hauling overburden from pit to dump ACTIVITY TYPE : Wind insensitive DUST EMISSION : 664599 kg/y TSP 196394 kg/y PM10 19938 kg/y PM2.5 ACTIVITY NAME : Unloading overburden to dump ACTIVITY TYPE : Wind sensitive DUST EMISSION : 98323 kg/y TSP 46504 kg/y PM10 7042 kg/y PM2.5 FROM SOURCES : 10 8 9 10 11 12 13 14 15 16 17 ACTIVITY NAME : Dozers shaping overburden ACTIVITY TYPE : Wind insensitive DUST EMISSION : 481375 kg/y TSP 116327 kg/y PM10 50544 kg/y PM2.5 FROM SOURCES : 10 ACTIVITY NAME : Dozers working on overburden for rehabilitation ACTIVITY TYPE : Wind insensitive DUST EMISSION : 160458 kg/y TSP 38776 kg/y PM10 16848 kg/y PM2.5 FROM SOURCES : 6 12 13 14 15 16 17 ACTIVITY NAME : Drilling coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 7 1234567 ACTIVITY NAME : Blasting coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 7 L 2 3 4 5 6 7 HOURS OF DAY ACTIVITY NAME : Dozers working on coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 73954 kg/y TSP 19149 kg/y PM10 1627 kg/y PM2.5 FROM SOURCES : 7 1 2 3 4 5 6 7 HOURS OF DAY ACTIVITY NAME : Loading ROM coal to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 201809 kg/y TSP 29023 kg/y PM10 3834 kg/y PM2.5 FROM SOURCES : 7 FROM SOURCES : 1234567 HOURS OF DAY

ACTIVITY NAME : Hauling ROM coal from pit to hopper / ROM pad ACTIVITY TYPE : Wind insensitive DUST EMISSION : 209369 kg/y TSP 61870 kg/y PM10 6281 kg/y PM2.5 FROM SOURCES : 20 1 2 3 4 5 6 7 19 20 21 22 23 24 25 26 27 28 29 30 31 HOURS OF DAY ACTIVITY NAME : Unloading ROM coal to ROM pad ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 : 1 FROM SOURCES 31 ACTIVITY NAME : ROM coal rehandle to hopper ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 31 HOURS OF DAY 11111111111111111111111111 ACTIVITY NAME : Transferring ROM coal by conveyor to CHPP ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 31 HOURS OF DAY ACTIVITY NAME : Handling coal at CHPP ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES 31 ACTIVITY NAME : Dozers on ROM coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 31 HOURS OF DAY ACTIVITY NAME : Dozers on product coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 32 33 HOURS OF DAY ACTIVITY NAME : Conveyer to product stockpiles ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 32 33 HOURS OF DAY ACTIVITY NAME : Loading product coal to trains ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 34 HOURS OF DAY : ACTIVITY NAME : Wind erosion from active pits ACTIVITY TYPE : Wind erosion DUST EMISSION : 57812 kg/y TSP 29800 kg/y PM10 4336 kg/y PM2.5 FROM SOURCES : 7 FROM SOURCES 1234567 ACTIVITY NAME : Wind erosion from active dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 109198 kg/y TSP 56288 kg/y PM10 8190 kg/y PM2.5 FROM SOURCES : 11 8 9 10 11 12 13 14 15 16 17 18 HOURS OF DAY : ACTIVITY NAME : Wind erosion from shaped dumps ACTIVITY TYPE : Wind crossen DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 11 8 9 10 11 12 13 14 15 16 17 18 HOURS OF DAY ACTIVITY NAME : Wind erosion from ROM coal stockpiles ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 31 HOURS OF DAY ACTIVITY NAME : Wind erosion from product coal stockpile ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5

Pit retention sources:

4 5 6 7

Source allocations Glendell Continued Operations Project Year 6

24-May-2019 14:20 DUST EMISSION CALCULATIONS XL1 Number of dust sources : Number of activities : 29 --ACTIVITY SUMMARY----ACTIVITY NAME : Stripping topsoil by scraper ACTIVITY TYPE : Wind insensitive DUST EMISSION : 2349 kg/y TSP 591 kg/y PM10 117 kg/y PM2.5 FROM SOURCES : 3 1 2 3 ACTIVITY NAME : Drilling overburden (including through seam) ACTIVITY TYPE : Wind insensitive DUST EMISSION : 11183 kg/y TSP 5815 kg/y PM10 335 kg/y PM2.5 FROM SOURCES : 11 4 5 6 7 8 9 10 11 12 13 14 HOURS OF DAY : ACTIVITY NAME : Blasting overburden (including through seam) ACTIVITY TYPE : Wind insensitive DUST EMISSION : 88954 kg/y TSP 46256 kg/y PM10 2669 kg/y PM2.5 FROM SOURCES : 11 4 5 6 7 8 9 10 11 12 13 14 HOURS OF DAY : : 11 ACTIVITY NAME : Excavators loading overburden to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 133859 kg/y TSP 63312 kg/y PM10 9587 kg/y PM2.5 FROM SOURCES : 11 4 5 6 7 8 9 10 11 12 13 14 ACTIVITY NAME : Hauling overburden from pit to dump ACTIVITY TYPE : Wind insensitive DUST EMISSION : 904799 kg/y TSP 267376 kg/y PM10 27144 kg/y PM2.5 FROM SOURCES : 22 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ACTIVITY NAME : Unloading overburden to dump ACTIVITY TYPE : Wind sensitive DUST EMISSION : 133859 kg/y TSP 63312 kg/y PM10 9587 kg/y PM2.5 FROM SOURCES : 11 15 16 17 18 19 20 21 22 23 24 25 ACTIVITY NAME : Dozers shaping overburden ACTIVITY TYPE : Wind insensitive DUST EMISSION : 671995 kg/y TSP 162392 kg/y PM10 70559 kg/y PM2.5 FROM SOURCES : 11
 1100
 111

 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

 HOURS OF DAY
 :
 :
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1 ACTIVITY NAME : Dozers working on overburden for rehabilitation ACTIVITY TYPE : Wind insensitive DUST EMISSION : 223998 kg/y TSP 54131 kg/y PM10 23520 kg/y PM2.5 FROM SOURCES : 8 26 27 28 29 30 31 32 33 ACTIVITY NAME : Drilling coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 11 4 5 6 7 8 9 10 11 12 13 14 ACTIVITY NAME : Blasting coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 11 4 5 6 7 8 9 10 11 12 13 14 HOURS OF DAY : ACTIVITY NAME : Dozers working on coal ACTIVITY NAME : DOZETS WORKING OF COAT ACTIVITY TYPE : Wind insensitive DUST EMISSION : 111818 kg/y TSP 28952 kg/y PM10 2460 kg/y PM2.5 FROM SOURCES : 11 4 5 6 7 8 9 10 11 12 13 14 HOURS OF DAY : ACTIVITY NAME : Loading ROM coal to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 280249 kg/y TSP 40304 kg/y PM10 5325 kg/y PM2.5 FROM SOURCES : 11 4 5 6 7 8 9 10 11 12 13 14 HOURS OF DAY :

ACTIVITY NAME : Hauling ROM coal from pit to hopper / ROM pad ACTIVITY TYPE : Wind insensitive DUST EMISSION : 253743 kg/y TSP 74983 kg/y PM10 7612 kg/y PM2.5 FROM SOURCES : 20 4 5 6 7 8 9 10 11 12 13 14 34 35 36 37 38 39 40 41 42 HOURS OF DAY : ACTIVITY NAME : Unloading ROM coal to ROM pad ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 : 1 FROM SOURCES 42 ACTIVITY NAME : ROM coal rehandle to hopper ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 42 HOURS OF DAY ACTIVITY NAME : Transferring ROM coal by conveyor to CHPP ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 43 44 HOURS OF DAY ACTIVITY NAME : Handling coal at CHPP ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES 43 44 ACTIVITY NAME : Dozers on ROM coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 42 HOURS OF DAY ACTIVITY NAME : Dozers on product coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 43 44 HOURS OF DAY ACTIVITY NAME : Conveyer to product stockpiles ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 43 44 HOURS OF DAY ACTIVITY NAME : Loading product coal to trains ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 45 HOURS OF DAY : ACTIVITY NAME : Wind erosion from active pits ACTIVITY TYPE : Wind erosion DUST EMISSION : 155499 kg/y TSP 80154 kg/y PM10 11662 kg/y PM2.5 FROM SOURCES : 11 4 5 6 7 8 9 10 11 12 13 14 ACTIVITY NAME : Wind erosion from active dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 152950 kg/y TSP 78840 kg/y PM10 11471 kg/y PM2.5 FROM SOURCES : 11 15 16 17 18 19 20 21 22 23 24 25 HOURS OF DAY : ACTIVITY NAME : Wind erosion from shaped dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 111823 kg/y TSP 57641 kg/y PM10 8387 kg/y PM2.5 6 FROM SOURCES : 0 26 27 28 29 30 31 HOURS OF DAY ACTIVITY NAME : Wind erosion from ROM coal stockpiles ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 42 HOURS OF DAY ACTIVITY NAME : Wind erosion from product coal stockpile ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5

Pit retention sources: 4 5 6 7 8 9 10 11 12 13 14

Source allocations Glendell Continued Operations Project Year 13

24-May-2019 14:25 DUST EMISSION CALCULATIONS XL1 Number of dust sources : Number of activities : 29 --ACTIVITY SUMMARY----ACTIVITY NAME : Stripping topsoil by scraper ACTIVITY TYPE : Wind insensitive DUST EMISSION : 2610 kg/y TSP 657 kg/y PM10 131 kg/y PM2.5 FROM SOURCES : 3 1 2 3 ACTIVITY NAME : Drilling overburden (including through seam) ACTIVITY TYPE : Wind insensitive DUST EMISSION : 18224 kg/y TSP 9476 kg/y PM10 547 kg/y PM2.5 FROM SOURCES : 12 4 5 6 7 8 9 10 11 12 13 14 15 HOURS OF DAY : ACTIVITY NAME : Blasting overburden (including through seam) ACTIVITY TYPE : Wind insensitive DUST EMISSION : 144962 kg/y TSP 75380 kg/y PM10 4349 kg/y PM2.5 : 12 FROM SOURCES : 12 4 5 6 7 8 9 10 11 12 13 14 15 HOURS OF DAY ACTIVITY NAME : Excavators loading overburden to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 221357 kg/y TSP 104696 kg/y PM10 15854 kg/y PM2.5 FROM SOURCES : 12 ACTIVITY NAME : Hauling overburden from pit to dump ACTIVITY TYPE : Wind insensitive DUST EMISSION : 1496224 kg/y TSP 442147 kg/y PM10 44887 kg/y PM2.5 FROM SOURCES : 12 4 5 6 7 8 9 10 11 12 13 14 15 HOURS OF DAY : ACTIVITY NAME : Unloading overburden to dump ACTIVITY TYPE : Wind sensitive DUST EMISSION : 221357 kg/y TSP 104696 kg/y PM10 15854 kg/y PM2.5 FROM SOURCES : 11
 Hours
 OF
 11
 20
 21
 22
 23
 24
 25
 26

 HOURS
 OF
 DAY
 :
 :
 :
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 ACTIVITY NAME : Dozers shaping overburden ACTIVITY TYPE : Wind insensitive DUST EMISSION : 1089294 kg/y TSP 263234 kg/y PM10 114376 kg/y PM2 5 FROM SOURCES : 11 16 17 18 19 20 21 22 23 24 25 26 ACTIVITY NAME : Dozers working on overburden for rehabilitation ACTIVITY TYPE : Wind insensitive DUST EMISSION : 363098 kg/y TSP 87745 kg/y PM10 38125 kg/y PM2.5 FROM SOURCES : 4 27 28 29 30 HOURS OF DAY ACTIVITY NAME : Drilling coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 12 4 5 6 7 8 9 10 11 12 13 14 15 ACTIVITY NAME : Blasting coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 12 ACTIVITY NAME : Dozers working on coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 212057 kg/y TSP 54907 kg/y PM10 4665 kg/y PM2.5 FROM SOURCES : 12 5 6 7 8 9 10 11 12 13 14 15 HOURS OF DAY : ACTIVITY NAME : Loading ROM coal to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 478322 kg/y TSP 68790 kg/y PM10 9088 kg/y PM2.5 FROM SOURCES : 12

4 5 6 7 8 9 10 11 12 13 14 15 ACTIVITY NAME : Hauling ROM coal from pit to hopper / ROM pad ACTIVITY TYPE : Wind insensitive DUST EMISSION : 342857 kg/y TSP 101317 kg/y PM10 10286 kg/y PM2.5 ACTIVITY NAME : Unloading ROM coal to ROM pad ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 41 HOURS OF DAY ACTIVITY NAME : ROM coal rehandle to hopper ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 41 HOURS OF DAY ACTIVITY NAME : Transferring ROM coal by conveyor to CHPP ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 FROM SOURCES 39 40 HOURS OF DAY ACTIVITY NAME : Handling coal at CHPP ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 39 40 HOURS OF DAY ACTIVITY NAME : Dozers on ROM coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 41 HOURS OF DAY ACTIVITY NAME : Dozers on product coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 39 40 HOURS OF DAY ACTIVITY NAME : Conveyer to product stockpiles ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 39 40 HOURS OF DAY ACTIVITY NAME : Loading product coal to trains ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 42 ACTIVITY NAME : Wind erosion from active pits ACTIVITY TYPE : Wind erosion DUST EMISSION : 168807 kg/y TSP 87014 kg/y PM10 12661 kg/y PM2.5 FROM SOURCES : 12 4 5 6 7 8 9 10 11 12 13 14 15 HOURS OF DAY 11111111111111111111111111 ACTIVITY NAME : Wind erosion from active dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 142487 kg/y TSP 73447 kg/y PM10 10687 kg/y PM2.5 FROM SOURCES : 11 16 17 18 19 20 21 22 23 24 25 26 HOURS OF DAY ACTIVITY NAME : Wind erosion from shaped dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 53532 kg/y TSP 27594 kg/y PM10 4015 kg/y PM2.5 FROM SOURCES : 4 27 28 29 30 ACTIVITY NAME : Wind erosion from ROM coal stockpiles ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 41 HOURS OF DAY

Pit retention sources: 4 5 6 7 8 9 10 11 12 13 14

Source allocations Glendell Continued Operations Project Year 18

24-May-2019 14:23 DUST EMISSION CALCULATIONS XL1 Number of dust sources : Number of activities : 29 ----ACTIVITY SUMMARY-----ACTIVITY NAME : Stripping topsoil by scraper ACTIVITY TYPE : Wind insensitive DUST EMISSION : 1436 kg/y TSP 361 kg/y PM10 72 kg/y PM2.5 FROM SOURCES : 2 --ACTIVITY SUMMARY----1 2 ACTIVITY NAME : Drilling overburden (including through seam) ACTIVITY TYPE : Wind insensitive DUST EMISSION : 10907 kg/y TSP 5672 kg/y PM10 327 kg/y PM2.5 FROM SOURCES : 7 3 4 5 6 7 8 9 HOURS OF DAY ACTIVITY NAME : Blasting overburden (including through seam) ACTIVITY TYPE : Wind insensitive DUST EMISSION : 86757 kg/y TSP 45114 kg/y PM10 2603 kg/y PM2.5 FROM SOURCES 3 4 5 6 7 8 9 HOURS OF DAY ACTIVITY NAME : Excavators loading overburden to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 127881 kg/y TSP 60484 kg/y PM10 9159 kg/y PM2.5 FROM SOURCES : 7 3456789 HOURS OF DAY ACTIVITY NAME : Hauling overburden from pit to dump ACTIVITY TYPE : Wind insensitive DUST EMISSION : 864386 kg/y TSP 255433 kg/y PM10 25932 kg/y PM2.5 FROM SOURCES : 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ACTIVITY NAME : Unloading overburden to dump ACTIVITY TYPE : Wind sensitive DUST EMISSION : 127881 kg/y TSP 60484 kg/y PM10 9159 kg/y PM2.5 FROM SOURCES : 11 10 11 12 13 14 15 16 17 18 19 20 ACTIVITY NAME : Dozers shaping overburden ACTIVITY TYPE : Wind insensitive DUST EMISSION : 620948 kg/y TSP 150056 kg/y PM10 65200 kg/y PM2.5 FROM SOURCES : 11
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 HOURS OF DAY
 :
 :
 :
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1 ACTIVITY NAME : Dozers working on overburden for rehabilitation ACTIVITY TYPE : Wind insensitive DUST EMISSION : 206983 kg/y TSP 50019 kg/y PM10 21733 kg/y PM2.5 FROM SOURCES : 10 21 22 23 24 25 26 27 28 29 30 ACTIVITY NAME : Drilling coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 7 3456789 ACTIVITY NAME : Blasting coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 7 3 4 5 6 7 8 9 HOURS OF DAY ACTIVITY NAME : Dozers working on coal ACTIVITY TYPE : Wind insensitive DUST EMISSION : 120859 kg/y TSP 31293 kg/y PM10 2659 kg/y PM2.5 FROM SOURCES : 7 3 4 5 6 7 8 9 HOURS OF DAY ACTIVITY NAME : Loading ROM coal to trucks ACTIVITY TYPE : Wind sensitive DUST EMISSION : 282592 kg/y TSP 40641 kg/y PM10 5369 kg/y PM2.5 FROM SOURCES : 3456789 HOURS OF DAY

ACTIVITY NAME : Hauling ROM coal from pit to hopper / ROM pad ACTIVITY TYPE : Wind insensitive DUST EMISSION : 165246 kg/y TSP 48832 kg/y PM10 4957 kg/y PM2.5 FROM SOURCES : 13 3 4 5 6 7 8 9 31 32 33 34 35 36 HOURS OF DAY ACTIVITY NAME : Unloading ROM coal to ROM pad ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES 36 ACTIVITY NAME : ROM coal rehandle to hopper ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 : 1 FROM SOURCES 36 HOURS OF DAY 11111111111111111111111111 ACTIVITY NAME : Transferring ROM coal by conveyor to CHPP ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 37 38 HOURS OF DAY ACTIVITY NAME : Handling coal at CHPP ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES 37 38 ACTIVITY NAME : Dozers on ROM coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 36 HOURS OF DAY ACTIVITY NAME : Dozers on product coal stockpiles ACTIVITY TYPE : Wind insensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 37 38 HOURS OF DAY ACTIVITY NAME : Conveyer to product stockpiles ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 2 37 38 HOURS OF DAY ACTIVITY NAME : Loading product coal to trains ACTIVITY TYPE : Wind sensitive DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 39 HOURS OF DAY : ACTIVITY NAME : Wind erosion from active pits ACTIVITY TYPE : Wind erosion DUST EMISSION : 136448 kg/y TSP 70334 kg/y PM10 10234 kg/y PM2.5 FROM SOURCES : 7 FROM SOURCES 3456789 HOURS OF DAY ACTIVITY NAME : Wind erosion from active dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 177899 kg/y TSP 91701 kg/y PM10 13342 kg/y PM2.5 FROM SOURCES : 11 10 11 12 13 14 15 16 17 18 19 20 HOURS OF DAY : ACTIVITY NAME : Wind erosion from shaped dumps ACTIVITY TYPE : Wind erosion DUST EMISSION : 28662 kg/y TSP 14774 kg/y PM10 2150 kg/y PM2.5 FROM SOURCES : 10 21 22 23 24 25 26 27 28 29 30 HOURS OF DAY ACTIVITY NAME : Wind erosion from ROM coal stockpiles ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5 FROM SOURCES : 1 36 HOURS OF DAY ACTIVITY NAME : Wind erosion from product coal stockpile ACTIVITY TYPE : Wind erosion DUST EMISSION : 0 kg/y TSP 0 kg/y PM10 0 kg/y PM2.5

Emission inventory Ashton (including SEOC) 2014

	Annual	emissions (kg	/y)			TSP	PM10	PM2.5				Va	riables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor	Factor	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg//KT	tAruck	kmđrip	Sitt (%)	
Stripping topsoil by scraper	0	0	0	50	0 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t		· · ·	-	-	-	-		-	
Drilling overburden	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	·	-	-	-	-	
Blasting overburden	0	0	0	0	0 blasts/y	157.4 kg/blast	81.9 kg/blast	4.7 kg/blast	8000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	0	0	0	0	0 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	0	0	0	85	0 t/y	0.03200 kg/t	0.00946 kg/t	0.001 kg/t	-	-	-	-	4	250	2	-	
Unloading overburden to dump	0	0	0	0	0 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	0	0	0	0	0 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	14	-	10	
Dozers working on overburden for rehabilitation	0	0	0	0	0 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole		·	-	·	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	0	0	0	0	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	0	0	0	0	0 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-		-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	0	0	0	85	0 t/y	0.07111 kg/t	0.02101 kg/t	0.002 kg/t	-	-	-	-	4	180	3.2	-	
Unloading ROM coal to ROM pad	0	0	0	70	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-		-		-	-	-	-	
ROM coal rehandle to hopper	0	0	0	0	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-		-		-	-	-	-	
Transferring ROM coal by conveyor to CHPP	0	0	0	50	0 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	- 1	1.38	8	-	-	-	-	-	
Handling coal at CHPP	0	0	0	70	0 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h		-	11	-	-		-	5	
Conveyer to product stockpiles	0	0	0	50	0 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	0	0	0	0	0 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	1.	1	(-	14	1-	14	-	
Wind erosion from active pits	0	0	0	0	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	0	0	0	0	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	0	0	0	50	0 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	14	12	2	7	-	14	-	-	
UG - ROM coal by conveyor to ROM stockpile	194	92	14	70	2771218 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-		-	
UG - Dozers on ROM coal stockpiles	80926	20954	1780	50	6570 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h			8	-	-	-	-	7	
UG Wind erosion from ROM coal stockpiles	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
UG Ventilation outlet(s)	31536	15768	1577	0	1.577E+10 m3/y	2E-06 kg/m3	1E-06 kg/m3	0.0000 kg/m3	-	-	-	-	-	-	-	-	
				, in the second s													
	114780	37909	3530														

Notes: based on data from Ashton (2015), PAE Holmes 2009, and MP 08_0182

Emission inventory Ashton (including SEOC) 2021 and 2026

	Annua	l emissions (k	g/y)			TSP		PM10	PM2.5				Va	riables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor	Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)^1.3	Moisture (%)	Drop distance (m)	kg//KT	tAruck	kmårip	Silt (%)	
Stripping topsoil by scraper	261	66	13	50	18000 t/y	0.029 kg/	/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden	8496	4418	255	70	48000 holes/y	0.59 kg/	/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	23613	12279	708	0	150 blasts/y	157.4 kg/	/blast	81.9 kg/blast	4.7 kg/blast	8000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	50426	23850	3612	0	30960000 t/y	0.00163 kg/	/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	148608	43915	4458	85	30960000 t/y	0.03200 kg/	/t	0.00946 kg/t	0.001 kg/t	-	-	-	-	4	250	2	-	
Unloading overburden to dump	50426	23850	3612	0	30960000 t/y	0.00163 kg/	/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	219902	53141	23090	0	13140 h/y	16.7 kg/	/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	(-	1-	- 1	10	
Dozers working on overburden for rehabilitation	109951	26570	11545	0	6570 h/y	16.7 kg/	/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/	/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/	/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	161851	41907	3561	0	6570 h/y	24.6 kg/	/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	172196	24764	3272	0	3600000 t/y	0.04783 kg/	/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	38400	11348	1152	85	3600000 t/y	0.07111 kg/	/t	0.02101 kg/t	0.002 kg/t	-	-	-	-	4	180	3.2	-	
Unloading ROM coal to ROM pad	10800	4536	205	70	3600000 t/y	0.01 kg/	/t	0.0042 kg/t	0.000 kg/t	-	-	-		-	-	-	-	
ROM coal rehandle to hopper	3600	1512	68	0	360000 t/y	0.01 kg/	/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	421	199	30	50	3600000 t/y	0.00023 kg/	/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
Handling coal at CHPP	1263	597	90	70	3600000 t/y	0.00117 kg/	/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	80926	20954	1780	50	6570 h/y	24.6 kg/	/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	35722	8099	786	50	6570 h/y	10.9 kg/	/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	111	52	8	50	1481578 t/y	0.00015 kg/	/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	(-	(-	
Loading product coal to trains	593	252	30	0	1481578 t/y	0.00040 kg/	/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	61180	31536	4588	0	72 ha	849.7 kg/	/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	61180	31536	4588	0	72 ha	849.7 kg/	/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/	/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	4249	2190	319	50	10 ha	849.7 kg/	/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/	/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	÷.	÷.	1	1	÷	1 - C	14 M	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/	/VKT	0.21504 kg/VKT	0.019 kg/VKT	H	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/	/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
UG - ROM coal by conveyor to ROM stockpile	351	166	25	70	5000000 t/y	0.00023 kg/	/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
UG - Dozers on ROM coal stockpiles	80926	20954	1780	50	6570 h/y	24.6 kg/	/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
UG Wind erosion from ROM coal stockpiles	2124	1095	159	50	5 ha	849.7 kg/	/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
UG Ventilation outlet(s)	31536	15768	1577	0	1.577E+10 m3/y	2E-06 kg/	/m3	1E-06 kg/m3	0.0000 kg/m3	-	-	-	-	1	-	-	-	
	1379698	413100	72044															

Notes: based on data from Ashton (2015), PAE Holmes 2009, and MP 08_0182

Emission inventory Ashton (including SEOC) 2033

	Annua	emissions (kg	/y)			TSP	PM10	PM2.5				Varia	bles			
Activity	ISP	PM10	PM2.5	Control (%)	Intensity Units	Factor Linits	Factor	Units Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/WT	t/Inuck	kimanp Silt (%)	
Stripping topsoil by scraper	0	0	0	50	0 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-		
Drilling overburden	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-		
Blasting overburden	0	0	0	0	0 blasts/y	157.4 kg/blast	81.9 kg/blas	4.7 kg/blast	8000		-	-	-	-		
Excavators loading overburden to trucks	0	0	0	0	0 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-		
Hauling overburden from pit to dump	0	0	0	85	0 t/y	0.03200 kg/t	0.00946 kg/t	0.001 kg/t	-	-	-	-	4 2	50	2 -	
Unloading overburden to dump	0	0	0	0	0 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-		
Dozers shaping overburden	0	0	0	0	0 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	- 10	
Dozers working on overburden for rehabilitation	0	0	0	0	0 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	- 10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-		
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blas	6.6 kg/blast	10000	-	-	-	-	-		
Dozers working on coal	0	0	0	0	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	- 7	
Loading ROM coal to trucks	0	0	0	0	0 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-		
Hauling ROM coal from pit to hopper / ROM pad	0	0	0	85	0 t/y	0.07111 kg/t	0.02101 kg/t	0.002 kg/t	-	-	-	-	4 1	80 3.	2 -	
Unloading ROM coal to ROM pad	0	0	0	70	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-		
ROM coal rehandle to hopper	0	0	0	0	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-		
Transferring ROM coal by conveyor to CHPP	0	0	0	50	0 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-		
Handling coal at CHPP	0	0	0	70	0 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-		
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	- 7	
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	- 5	
Conveyer to product stockpiles	0	0	0	50	0 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-		
Loading product coal to trains	0	0	0	0	0 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-		
Wind erosion from active pits	0	0	0	0	0 ha	849.7 kg/ha/y	438.0 kg/ha/y		-	-	-	-	-	-		
Wind erosion from active dumps	0	0	0	0	0 ha	849.7 kg/ha/y	438.0 kg/ha/y		-	-	-	-	-	-		
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y		-	-	-	-	-	-		
Wind erosion from ROM coal stockpiles	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y		-	-	-	-	-	-		
Wind erosion from product coal stockpile	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-		
Grading roads	0	0	0	50	0 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-		
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-		
UG - ROM coal by conveyor to ROM stockpile	351	166	25	70	5000000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-		
UG - Dozers on ROM coal stockpiles	80926	20954	1780	50	6570 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	- 7	
UG Wind erosion from ROM coal stockpiles	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y		-	-	-	-	-	-		
UG Ventilation outlet(s)	31536	15768	1577	0	1.577E+10 m3/y	2E-06 kg/m3	1E-06 kg/m3	0.0000 kg/m3	-	-	-	-	-	-		
				-												
	114937	37983	3542											_		

Notes: based on data from Ashton (2015), PAE Holmes 2009, and MP 08_0182

Emission inventory HVO North and South 2014

	Annua	I emissions (H	(g/y)			TSP	PN	10	PM2.5				V	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor Units	Factor	Units	Factor Units	Area (m2)	(ws/2.2)^1.3	Moisture (%)	Drop distance (m)	kg/MKT	t/truck	kmårip	Silt (%)	Consed (ten by)
Stripping topsoil by scraper	1450	365	73	50	100000 t/y	0.029 kg/t	0.0073	kg/t	0.001 kg/t	-	-	-	-	1-	-	-	-	
Drilling overburden	14921	7759	448	70	84300 holes/y	0.59 kg/hole	0.31	kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	65570	34096	1967	0	105 blasts/y	622.3 kg/blast	323.6	kg/blast	18.7 kg/blast	20000	-	-	-	-			-	
Excavators loading overburden to trucks	136912	64756	9806	0	84060000 t/y	0.00163 kg/t	0.00077	kg/t	0.0001 kg/t	-	1.38	2			-	-	-	
Hauling overburden from pit to dump	611537	180714	18346	85	84060000 t/y	0.04850 kg/t	0.01433	kg/t	0.001 kg/t	(-	(—	-	-	4	240	3	-	
Unloading overburden to dump	136912	64756	9806	0	84060000 t/y	0.00163 kg/t	0.00077	kg/t	0.0001 kg/t		1.38	2	-	(-	-		(-	
Dozers shaping overburden	1649267	398555	173173	0	98550 h/y	16.7 kg/h	4.04419	kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	549756	132852	57724	0	32850 h/y	16.7 kg/h	4.04419	kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	7461	3879	224	70	42150 holes/y	0.59 kg/hole	0.31	kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	23183	12055	695	0	105 blasts/y	220.0 kg/blast	114.4	kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	1618512	419073	35607	0	65700 h/y	24.6 kg/h	6.4	kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	860979	123822	16359	0	18000000 t/y	0.04783 kg/t	0.00688	kg/t	0.001 kg/t	-	-	8	1	14	14	14	-	
Hauling ROM coal from pit to hopper / ROM pad	882189	260694	26466	85	18000000 t/y	0.32674 kg/t	0.09655	kg/t	0.010 kg/t	-	-	-	-	4	190	16	-	
Unloading ROM coal to ROM pad	54000	22680	1026	70	18000000 t/y	0.01 kg/t	0.0042	kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	18000	7560	342	0	1800000 t/y	0.01 kg/t	0.0042	kg/t	0.000 kg/t	-		-	-		-	-	-	
Transferring ROM coal by conveyor to CHPP	2105	996	151	50	18000000 t/y	0.00023 kg/t	0.00011	kg/t	0.0000 kg/t	-	1.38	8	-	-	(-	-	-	
Handling coal at CHPP	6314	2987	452	70	18000000 t/y	0.00117 kg/t	0.00055	kg/t	0.0001 kg/t	-	1.38	8		-	-	<u>-</u>	-	
Dozers on ROM coal stockpiles	647405	167629	14243	50	52560 h/y	24.6 kg/h	6.4	kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	142889	32397	3144	50	26280 h/y	10.9 kg/h		kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	574	272	41	50	7669286 t/y	0.00015 kg/t	0.00007	kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	3068	1304	153	0	7669286 t/y	0.00040 kg/t	0.00017	ka/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	491958	253587	36897	0	579 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	491958	253587	36897	0	579 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y			-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-				-	-	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504		0.019 kg/VKT		-	-	-	-	- 1	-	-)
Dragline working on overburden	1483794	325836	74190	0	46700000 t/bcm	0.03 kg/bcm	0.01	kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
	9923425	2780851	519120															

Notes: based on data from Rio Tinto (2015), Todoroski (2017), DA 450-10-2003, 06_0261

Emission inventory HVO North and South 2021 and 2026

	Annu	al emissions (kg/y)			TSP	PM10	PM2.5				V	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Units	Factor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)^1.3	Moisture (%)	Drop distance (m)	kg/WT	tAruck	kmårip	Silt (%)	
Stripping topsoil by scraper	1450	365	73	50	100000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t		-	-	-	-	-	-	-	
Drilling overburden	21553	11207	647	70	121767 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-			-	-	-	-	
Blasting overburden	94712	49250	2841	0	152 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-) -	-	-)-	-	-	
Excavators loading overburden to trucks	197761	93536	14164	0	121420000 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t		1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	883331	261031	26500	85	121420000 t/y	0.04850 kg/t	0.01433 kg/t	0.001 kg/t	-	-	-	-	4	240	3	-	
Unloading overburden to dump	197761	93536	14164	0	121420000 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	2382275	575691	250139	0	142350 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	794092	191897	83380	0	47450 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	10776	5604	323	70	60883 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	(H-	-	18	-	1-	1-	
Blasting coal	33486	17413	1005	0	152 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	2337851	605328	51433	0	94900 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	1243636	178855	23629	0	26000000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	1274274	376558	38228	85	26000000 t/y	0.32674 kg/t	0.09655 kg/t	0.010 kg/t		-	-	-	4	190	16	-	
Unloading ROM coal to ROM pad	78000	32760	1482	70	26000000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	26000	10920	494	0	2600000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t			-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	3040	1438	218	50	26000000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	- 1	1.38	8	-	-	-	-	-	
Handling coal at CHPP	9121	4314	653	70	26000000 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	647405	167629	14243	50	52560 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	142889	32397	3144	50	26280 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11		-	-	-	5	
Conveyer to product stockpiles	2845	1346	204	50	38000000 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	15200	6460	760	0	38000000 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t		-	-		1 -		<u></u>		
Wind erosion from active pits	491958	253587	36897	0	579 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-		-	-	-	-	-	
Wind erosion from active dumps	491958	253587	36897	0	579 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-		-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-					-	-	-	
Wind erosion from ROM coal stockpiles	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	3 - 2	1.4	-		-	1	12	1	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	n_ 11	- 1	-		· -	-	-	-	
Dragline working on overburden	2143258	470652	107163	0	67455556 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
	13547344	3704001	709570														

Notes: based on data from Rio Tinto (2015), Todoroski (2017), DA 450-10-2003, 06_0261

Emission inventory Integra Underground 2014

	Annual	emissions (k	g/y)			TSP		PM10	PM2.5					Variables				
Activity	ISP	PM10	PM2.5	Control (%)	Intensity	Units Factor	Units	F actor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/WT	thruck	km <i>i</i> trip	Silt (%)	Speed (km/h)
ROM coal by conveyor to ROM stockpile	97	46	7	50	828813 t/y	0.00023 kg/t	0.000	11 kg/t	0.0000 kg/t	-	1.38	8	12	12	-	-	-	-
Dozers on ROM coal stockpiles	80926	20954	1780	50	6570 h/y	24.6 kg/h	11	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	-
Wind erosion from ROM coal stockpiles	2124	1095	159	50	5 ha	849.7 kg/ha	/y 43	3.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Ventilation outlet(s)	31536	15768	1577	0	1.577E+10 m3/y	2E-06 kg/m	3 1E-	06 kg/m3	0.0000 kg/m3									
	114683	37863	3523															

Notes: based on data from Vale (2015), 08_0101

Emission inventory Integra Underground 2021, 2026 and 2033

	Annua	l emissions (k	g/y)					rsp	PI	110	PM	2.5					Variables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity	(Factor	Units	Factor	Units	Factor	Units	Area (m2)	(ws/2.2)~1.3	Moisture (%)	Drop distance (m)	kg/WT	tňruck	km <i>î</i> trip	Sitt (%)	Speed (km/h)
ROM coal by conveyor to ROM stockpile	526	249	38	50	450000	0 t/y	0.0002	3 kg/t	0.00011	kg/t	0.0000	kg/t	-	1.38	8	-	-	-	-	-	-
Dozers on ROM coal stockpiles	80926	20954	1780	50	657	0 h/y	24.	6 kg/h	6.4	kg/h	0.542	kg/h	-	-	8	-	-	-	-	7	-
Wind erosion from ROM coal stockpiles	2124	1095	159	50		5 ha	849.	7 kg/ha/y	438.0	kg/ha/y	63.7	kg/ha/y	-	-	-	-	-	-	-	-	-
Ventilation outlet(s)	31536	15768	1577	0	1.577E+1	0 m3/y	2E-0	6 kg/m3	1E-06	kg/m3	0.0000										
	115112	38066	3554																		

Notes: based on data from Vale (2015), 08_0101

Emission inventory Liddell Coal Operations 2014

						TSP		PM2.5					riables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor		Factor Units	Area (m2)	(ws/2.2)/1.3	Moisture (%)	Drop distance (m)	kg//KT	tAruck	kmårip	Silt (%)	
Stripping topsoil by scraper	600	151	30	50	41400 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden	21806	11339	654	70	123200 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	95827	49830	2875	0	154 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	(H)	-	
Excavators loading overburden to trucks	158582	75005	11358	0	97365146 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t		1.38	2		-	-	-	-	
Hauling overburden from pit to dump	1168382	345266	35051	85	97365146 t/y	0.08000 kg/t	0.02364 kg/t	0.002 kg/t	-	-	-	-	4	300	6	-	
Unloading overburden to dump	158582	75005	11358	0	97365146 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	329853	79711	34635	0	19710 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	329853	79711	34635	0	19710 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	(*	14	2	1	-	-	10 A	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-		-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	323702	83815	7121	0	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	318385	45789	6049	0	6656285 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	150876	44585	4526	85	6656285 t/y	0.15111 kg/t	0.04465 kg/t	0.005 kg/t	-	-	-	-	4	180	6.8	-	
Unloading ROM coal to ROM pad	19969	8387	379	70	6656285 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	6656	2796	126	0	665629 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	778	368	56	50	6656285 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
Handling coal at CHPP	2335	1104	167	70	6656285 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	161851	41907	3561	50	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	71445	16198	1572	50	13140 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h		-	11	-	-	-	-	5	
Conveyer to product stockpiles	492	233	35	50	6567836 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	2627	1117	131	0	6567836 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	103666	53436	7775	0	122 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	177591	91542	13319	0	209 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	59480	30660	4461	30	100 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-		
Wind erosion from ROM coal stockpiles	4249	2190	319	50	10 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
	3688178	1147692	180926														

Notes: based on data from Liddell Coal (2015), DA 305-11-01

Emission inventory Liddell Coal Operations 2021

	Annua	al emissions (kg/y)			TSP	PM1	10	PM2.5				V	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor Units	Factor	Units	Factor Units	Area (m2)	(ws/2.2)*1.3	Moisture (%)	Drop distance (m)	kg/WT	tňruck	kmårip	Silt (%)	
Stripping topsoil by scraper	600	151	30	50	41400 t/y	0.029 kg/t	0.0073	kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden	21806	11339	654	70	123200 holes/y	0.59 kg/hole	0.31	kg/hole	0.018 kg/hole	-	-		-	-		-	-	
Blasting overburden	95827	49830	2875	0	154 blasts/y	622.3 kg/blast	323.6	kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	190596	90147	13651	0	117020406 t/y	0.00163 kg/t	0.00077	kg/t	0.0001 kg/t	-	1.38	2	· · ·	-	-		-	
Hauling overburden from pit to dump	1404245	414966	42127	85	117020406 t/y	0.08000 kg/t	0.02364	kg/t	0.002 kg/t	-	-	-	-	4	300	6	-	
Unloading overburden to dump	190596	90147	13651	0	117020406 t/y	0.00163 kg/t	0.00077	kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	329853	79711	34635	0	19710 h/y	16.7 kg/h	4.04419	kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	329853	79711	34635	0	19710 h/y	16.7 kg/h	4.04419	kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31	kg/hole	0.018 kg/hole	-	-	14	-	14	-	14	14	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4	kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	323702	83815	7121	0	13140 h/y	24.6 kg/h	6.4	kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	382657	55032	7270	0	8000000 t/y	0.04783 kg/t	0.00688	kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	181333	53586	5440	85	8000000 t/y	0.15111 kg/t	0.04465	kg/t	0.005 kg/t	-	-	-	-	4	180	6.8	-	
Unloading ROM coal to ROM pad	24000	10080	456	70	8000000 t/y	0.01 kg/t	0.0042	kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	8000	3360	152	0	800000 t/y	0.01 kg/t	0.0042	kg/t	0.000 kg/t	1-		-	(-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	935	442	67	50	8000000 t/y	0.00023 kg/t	0.00011	kg/t	0.0000 kg/t	-	1.38	8	- 1	-	-	-	-	
Handling coal at CHPP	2806	1327	201	70	8000000 t/y	0.00117 kg/t	0.00055	kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	161851	41907	3561	50	13140 h/y	24.6 kg/h	6.4	kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	71445	16198	1572	50	13140 h/y	10.9 kg/h	2.5	kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	599	283	43	50	8000000 t/y	0.00015 kg/t	0.00007	kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	3200	1360	160	0	8000000 t/y	0.00040 kg/t	0.00017	kg/t	0.0000 kg/t	-	-	14	-	-	-	-	-	
Wind erosion from active pits	103666	53436	7775	0	122 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	177591	91542	13319	0	209 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	59480	30660	4461	30	100 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	4249	2190	319	50	10 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0	kg/ha/y	63.7 kg/ha/y	-	-	14	-	-	-	-	-	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504	kg/VKT	0.019 kg/VKT	- 1	-	1-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01	kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
		10007-7																
Notes: based on data from Liddell Coal (2	4089481	1268767	194906															

Notes: based on data from Liddell Coal (2015), DA 305-11-01

Emission inventory Mount Owen 2014

Mt Owen 2014																	
	Annua	al emissions (k	g/y)			TSP	PM10	PM2.5				Var	iables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	F actor Units	Factor Units	Area (m2)	(WS/2.2)M.3	Moisture (%)	Drop distance (m)	kg//KT	tðruck	kmÅrip	Silt (%)	Speed (km/h)
Stripping topsoil by scraper	1305	329	65	50	90000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	-
Drilling overburden	13594	7069	408	70	76800 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	-
Blasting overburden	59736	31063	1792	0	96 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	-
Excavators loading overburden to trucks	140058	66244	10031	0	85992000 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	-
Hauling overburden from pit to dump	1183376	349697	35501	85	85992000 t/y	0.09174 kg/t	0.02711 kg/t	0.003 kg/t	-	-	-	-	4	218	5	-	-
Unloading overburden to dump	140058	66244	10031	0	85992000 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	-
Dozers shaping overburden	329853	79711	34635	0	19710 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	-
Dozers working on overburden for rehabilitation	109951	26570	11545	0	6570 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	-
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	-
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	-
Dozers working on coal	323702	83815	7121	0	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	-
Loading ROM coal to trucks	393180	56546	7470	0	8220000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	-
Hauling ROM coal from pit to hopper / ROM pad	229913	67941	6897	85	8220000 t/y	0.18647 kg/t	0.0551 kg/t	0.006 kg/t	-	-	-	-	4	133	6.2	-	-
Unloading ROM coal to ROM pad	24660	10357	469	70	8220000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	-
ROM coal rehandle to hopper	41100	17262	781	0	4110000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	-
Transferring ROM coal by conveyor to CHPP	961	455	69	50	8220000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	-
Handling coal at CHPP	2898	1370	208	70	8260000 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	-
Dozers on ROM coal stockpiles	14781	3827	325	50	1200 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	-
Dozers on product coal stockpiles	58722	13314	1292	50	10800 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	-
Conveyer to product stockpiles	347	164	25	50	4630000 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	-
Loading product coal to trains	1841	783	92	0	4603421 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	-
Wind erosion from active pits	88651	45696	6649	0	104 ha	849.7 kg/ha/y	438.0 kg/ha/v	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from active dumps	185650	95696	13924	0	218 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from ROM coal stockpiles	4881	2516	366	50	11 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from product coal stockpile	2549	1314	191	50	6 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	8
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	-
Machinery exhausts	0	0	0	100	45441 kL/y	2.84 kg/kL	2.84 kg/kL	2.75 kg/kL	-	-	-	-	-	-	-	-	-
	3370232	1034433	150460														

Ravensworth East 2014																	
	Annual	emissions (k	g/y)			TSP	PM10	PM2.5					Variables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/WT	tðruck	kmđrip	Silt (%)	Speed (km/h)
Stripping topsoil by scraper	653	164	33	50	45000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	-
Drilling overburden	3823	1988	115	70	21600 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	-
Blasting overburden	16801	8736	504	0	27 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	-
Excavators loading overburden to trucks	26644	12602	1908	0	16358634 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	-
Hauling overburden from pit to dump	270143	79829	8104	85	16358634 t/y	0.11009 kg/t	0.03253 kg/t	0.003 kg/t	-	-	-	-	4	218	6	-	-
Unloading overburden to dump	26644	12602	1908	0	16358634 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	-
Dozers shaping overburden	219902	53141	23090	0	13140 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	-
Dozers working on overburden for rehabilitation	109951	26570	11545	0	6570 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	-
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	-
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	-
Dozers working on coal	323702	83815	7121	0	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	(-	-	8	Ξ.	-	-	-	7	-
Loading ROM coal to trucks	85141	12245	1618	0	1780000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	-
Hauling ROM coal from pit to hopper / ROM pad	56211	16611	1686	85	1780000 t/y	0.21053 kg/t	0.06221 kg/t	0.006 kg/t	-	-	-	-	4	133	7	-	-
Unloading ROM coal to ROM pad	5340	2243	101	70	1780000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	-
ROM coal rehandle to hopper	8900	3738	169	0	890000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-		-	-	-	-	-
Transferring ROM coal by conveyor to CHPP	208	98	15	50	1780000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	-
Handling coal at CHPP	772	365	55	70	2200000 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	-
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	-
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	-
Conveyer to product stockpiles	88	42	6	50	1180878 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	-
Loading product coal to trains	470	200	23	0	1174099 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	(-	-		-	-	-	-	-	-
Wind erosion from active pits	58224	30013	4367	0	69 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from active dumps	89865	46322	6740	0	106 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	÷	-	-	-	-	-	-	-	-
Wind erosion from ROM coal stockpiles	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-	-	-	-	-	-	-
Wind erosion from product coal stockpile	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Grading roads	9232	3226	286	50	30000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	8
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	-
	1312714	394549	69396														

Emission inventory Mount Owen 2021

Mt Owen 2021																	
	Annual	emissions (kg	a/y)			TSP	PM10	PM2.5					Variables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor	F actor Units	F actor Units	Area (m2)	(ws/2.2)^1.3	Moisture (%)	Drop distance (m)	kg/WT	t/truck	kmårip	Siit (%)	Speed (km/h)
Stripping topsoil by scraper	2114	532	106	50	145800 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	-
Drilling overburden (including through seam)	12949	6734	388	70	73160 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden (including through seam)	141751	73711	4253	0	124 blasts/y	1143.2 kg/blast	594.4 kg/blast	34.3 kg/blast	30000	-		-	-	-	-	-	-
Excavators loading overburden to trucks	152630	72190	10932	0	93710777 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-		-	-	-
Hauling overburden from pit to dump	1702269	503035	51068	85	93710777 t/y	0.12110 kg/t	0.03579 kg/t	0.004 kg/t		-	-	-	4	218	6.6	-	-
Unloading overburden to dump	152630	72190	10932	0	93710777 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	- 1	-	-	-	-
Dozers shaping overburden	559395	135181	58736	0	33426 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h			2	-				10	
Dozers working on overburden for rehabilitation	186465	45060	19579	0	11142 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h			2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole		-	-	-	-	-	-	-	-
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-			-	-	-
Dozers working on coal	138103	35758	3038	0	5606 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	392596	56462	7459	0	8207785 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	-
Hauling ROM coal from pit to hopper / ROM pad	429520	126927	12886	85	8207785 t/y	0.34887 kg/t	0.10309 kg/t	0.010 kg/t			-	-	4	133	11.6		
Unloading ROM coal to ROM pad, inc Glendell	34450	14469	655	70	11483388 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	·	-	-	-	-		-	-	-
ROM coal rehandle to hopper	57417	24115	1091	0	5741694 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t				-	-	-	-	-	
Transferring ROM coal to CHPP	665	315	48	70	9483388 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	-
Handling coal at CHPP	3327	1573	238	70	9483388 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t		1.38	8	-		-		-	-
Dozers on ROM coal stockpiles	10716	2775	236	50	870 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h		-	8	-		-	-	7	
Dozers on product coal stockpiles	42573	9653	937	50	7830 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h		-	11	-	-	-	-	5	-
Conveyer to product stockpiles	373	177	27	70	8308860 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t		1.38	11	-	-	-	-	-	-
Loading product coal to trains	3324	1413	166	0	8308860 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t		-	-	-	-	-	-	-	-
Wind erosion from active pits, inc topsoil stockpiles	232823	120012	17462	0	274 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from active dumps	252367	130086	18928	0	297 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y						2 - 1			-
Wind erosion from shaped or partially rehabilitated dumps	25492	13140	1912	0	30 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y			-	-	-	-	-	-	-
Wind erosion from ROM coal stockpiles	5821	3000	437	50	14 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y				-	-		-	-	-
Wind erosion from product coal stockpile	5268	2716	395	50	12 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Grading roads	32598	11389	1011	50	105928 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	6			2 <u>-</u> 1	-	-	8
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm		-	2	7	-	-	-	-	
Machinery exhausts	0	0	0	100	51372 kL/y	2.84 kg/kL	2.84 kg/kL	2.75 kg/kL		-	-	-	-		-	-	-
Gravel crushing in-pit	810	360	41	85	2000000 t/y	0.00270 kg/t	0.0012 kg/t	0.0001 kg/t			-	-	-	-	-	-	-
- ·																	
	4578447	1462971	222957														

Ravensworth East 2021 (BNP only)																	
	Annua	l emissions (k	g/y)			TSP	PM10	PM2.5				Variab	oles				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor	F actor	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/MfT	titruck	kmårip	Silt (%)	Speed (km/h)
Stripping topsoil by scraper	352	89	18	50	24282 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	-
Drilling overburden	1971	1025	59	70	11134 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	10 A	10 M		-	14	-	-	-	-
Blasting overburden	64714	33651	1941	0	104 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	-
Excavators loading overburden to trucks	44432	21015	3182	0	27280080 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	-
Hauling overburden from pit to dump	450497	133126	13515	85	27280080 t/y	0.11009 kg/t	0.03253 kg/t	0.003 kg/t	-	12	1	1	4	218	6	-	-
Unloading overburden to dump	44432	21015	3182	0	27280080 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t		1.38	2	-	-	-	(H		-
Dozers shaping overburden	223132	53921	23429	0	13333 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	-
Dozers working on overburden for rehabilitation	109951	26570	11545	0	6570 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	-
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	-
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	-
Dozers working on coal	29808	7718	656	0	1210 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	-
Loading ROM coal to trucks	82218	11824	1562	0	1718882 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t		-	8	-	-	-	-	-	-
Hauling ROM coal from pit to hopper / ROM pad	48077	14207	1442	85	1718882 t/y	0.18647 kg/t	0.0551 kg/t	0.006 kg/t	-	-	-	-	4	133	6.2	-	-
Unloading ROM coal to ROM pad	5157	2166	98	70	1718882 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	-
ROM coal rehandle to hopper	1719	722	33	0	171888 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	-
Transferring ROM coal by conveyor to CHPP	201	95	14	50	1718882 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	-
Handling coal at CHPP	603	285	43	70	1718882 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	-
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	-
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	-
Conveyer to product stockpiles	75	35	5	50	996952 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	-
Loading product coal to trains	399	169	20	0	996952 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	-
Wind erosion from active pits	58631	30222	4397	0	69 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-	-	-	-	-	-	-
Wind erosion from active dumps	45035	23214	3378	0	53 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-			-
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from ROM coal stockpiles	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Wind erosion from product coal stockpile	0	0	0	50	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	-
Grading roads	10720	3746	332	50	34837 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	8
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	-
	1222124	384816	68852														

Emission inventory Mount Owen 2026

	Annua	al emissions (I	(g/y)			TSP	PM10	PM2.5				Va	riables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor	Factor Units	Factor Units	Area (m2)	(wsi2.2)M.3	Moisture (%)	Drop distance (m)	kg/WT	tAruck	kmårip	Silt (%)	
Stripping topsoil by scraper	914	230	46	50	63000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden (including through seam)	12427	6462	373	70	70210 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden (including through seam)	136035	70738	4081	0	119 blasts/y	1143.2 kg/blast	594.4 kg/blast	34.3 kg/blast	30000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	147546	69785	10567	0	90588946 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	1595695	471541	47871	85	90588946 t/y	0.11743 kg/t	0.0347 kg/t	0.004 kg/t	-	-	-	-	4	218	6.4	-	
Unloading overburden to dump	147546	69785	10567	0	90588946 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	547881	132399	57528	0	32738 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	182633	44134	19176	0	10913 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	119479	30936	2629	0	4850 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	342281	49225	6503	0	7155874 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	503601	148818	15108	85	7155874 t/y	0.46917 kg/t	0.13864 kg/t	0.014 kg/t	-	-	-	-	4	133	15.6	-	
Unloading ROM coal to ROM pad, inc Glendell	39045	16399	742	70	13014874 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	65074	27331	1236	0	6507437 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal to CHPP	1522	720	109	50	13014874 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
Handling coal at CHPP		327	70	13014874 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-		
Dozers on ROM coal stockpiles	9977	2583	219	50	810 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	39637	8987	872	50	7290 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	582	275	42	50	7775725 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	3110	1322	156	0	7775725 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits, inc topsoil stockpiles	185239	95484	13893	0	218 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	170794	88038	12810	0	201 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from shaped or partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	6373	3285	478	50	15 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	5268	2716	395	50	12 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	40621	14193	1259	50	132000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	6	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
Machinery exhausts	0	0	0	100	51064 kL/y	2.84 kg/kL	2.84 kg/kL	2.75 kg/kL	-	-	-	-	-	-	-	-	
Gravel crushing in-pit	810	360	41	85	2000000 t/y	0.00270 kg/t	0.0012 kg/t	0.0001 kg/t	-	-	-	-	-	-	-	-	
	(200050	1057057	007007														
	4308656	1357907	207027														

Emission inventory Mount Owen 2033

	Annua	al emissions (kg/y)			TSP	PM10	PM2.5				Va	riables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg//KT	tňruck	kmårip	Silt (%)	
Stripping topsoil by scraper	1436	361	72	50	99000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-		-		-		
Drilling overburden (including through seam)	5744	2987	172	70	32450 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole		-	-	-	-		-	-	
Blasting overburden (including through seam)	62873	32694	1886	0	55 blasts/y	1143.2 kg/blast	594.4 kg/blast	34.3 kg/blast	30000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	68144	32230	4881	0	41838670 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-) -	-	-	-	
Hauling overburden from pit to dump	829097	245005	24873	85	41838670 t/y	0.13211 kg/t	0.03904 kg/t	0.004 kg/t) - 7	(-	1	E	4	218	7.2	-	
Unloading overburden to dump	68144	32230	4881	0	41838670 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t		1.38	2	-	-	-	-	-	
Dozers shaping overburden	396025	95702	41583	0	23664 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-		-	-	10	
Dozers working on overburden for rehabilitation	132008	31901	13861	0	7888 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h		-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole		-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-		-	-	-	
Dozers working on coal	86370	22363	1900	0	3506 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h		-	8	14	-	-	-	7	
Loading ROM coal to trucks	152423	21921	2896	0	3186632 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t		-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	207011	61174	6210	85	3186632 t/y	0.43308 kg/t	0.12798 kg/t	0.013 kg/t		-	-	-	4	133	14.4	-	
Unloading ROM coal to ROM pad, inc Glendell	39560	16615	752	70	13186632 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-			-	-	-	
ROM coal rehandle to hopper	65933	27692	1253	0	6593316 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal to CHPP	1542	729	110	50	13186632 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t		1.38	8	-	-	-	-	-	
Handling coal at CHPP	4626	2188	331	70	13186632 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t		1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	10100	2615	222	50	820 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h		-	8	-	-	-	-	7	
Dozers on product coal stockpiles	40126	9098	883	50	7380 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	609	288	44	50	8138340 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	3255	1384	163	0	8138340 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits, inc topsoil stockpiles	175042	90228	13128	0	206 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	0 -	1	1 -	-	-	-	
Wind erosion from active dumps	169094	87162	12682	0	199 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y			-	-		-	-	-	
Wind erosion from shaped or partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-		-	-	
Wind erosion from ROM coal stockpiles	6373	3285	478	50	15 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	- 1	(-	-	
Wind erosion from product coal stockpile	5268	2716	395	50	12 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-	-	-	-	-	-	
Grading roads	17233	6021	534	50	56000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	n_ 1		6	-	· -	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm		-	2	7	-	-	-	-	
Machinery exhausts	0	0	0	100	28846 kL/y	2.84 kg/kL	2.84 kg/kL	2.75 kg/kL		-	-	-	-	-	-	-	
Gravel crushing in-pit	810	360	41	85	2000000 t/y	0.00270 kg/t	0.0012 kg/t	0.0001 kg/t	-	-		-	-	-	-	-	
	2548849	828949	134230														

Emission inventory Mount Owen 2038

	Annua	al emissions (kg/y)			TSP	PM10	PM2.5				Va	riables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/WT	tňruck	kmårip	Silt (%)	
Stripping topsoil by scraper	0	0	0	50	0 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden (including through seam)	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden (including through seam)	0	0	0	0	0 blasts/y	1143.2 kg/blast	594.4 kg/blast	34.3 kg/blast	30000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	0	0	0	0	0 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	0	0	0	85	0 t/y	0.13211 kg/t	0.03904 kg/t	0.004 kg/t	-	-	-	-	4	218	7.2	-	
Unloading overburden to dump	0	0	0	0	0 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	0	0	0	0	0 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	407807	98549	42820	0	24368 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/v	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	0	0	0	0	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	0	0	0	0	0 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	0	0	0	85	0 t/y	0.43308 kg/t	0.12798 kg/t	0.013 kg/t	-	-	-	-	4	133	14.4	-	
Unloading ROM coal to ROM pad, inc Glendell	17724	7444	337	70	5908000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	29540	12407	561	0	2954000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal to CHPP	691	327	49	50	5908000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
Handling coal at CHPP	2073	980	148	70	5908000 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	4188	1084	92	50	340 h/v	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	16638	3772	366	50	3060 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	290	137	21	50	3869198 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	1548	658	77	0	3869198 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits, inc topsoil stockpiles	0	0	0	0	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	0	0	0	0	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from shaped or partially rehabilitated dumps	234353	120800	17576	30	394 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	4036	2081	303	50	10 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	5268	2716	395	50	12 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	3594	1256	111	50	11680 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	6	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
Machinery exhausts	0	0	0	100	4333 kL/y	2.84 kg/kL	2.84 kg/kL	2.75 kg/kL	-	-	-	-	-	-	-	-	
Gravel crushing in-pit	0	0	0	85	0 t/y	0.00270 kg/t	0.0012 kg/t	0.0001 kg/t	-	-	-	-	-	-	-	-	
	727749	252210	62858														

Notes: based on data from Mt Owen (2015), Jacobs (2018), SSD-5850

Emission inventory Ravensworth Operations 2014

Excavators loading overburden to trucks 237493 112328 Hauling overburden from pit to dump 1685280 498014 Unloading overburden for mp it to dump 237493 112328 Dozers shaping overburden 439805 106281 Dozers working on overburden for rehabilitation 439805 106281 Drilling coal 0 0 0 Blasting coal 0 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 75622 Loading ROM coal to trucks 523323 75622 Lunbading ROM coal to ROM pad 212817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 71445 16198 Conveyer to product coal stockpiles 357668 184365 <th></th> <th></th> <th>TSP</th> <th>PM10</th> <th>PM2.5</th> <th></th> <th></th> <th></th> <th>Varia</th> <th>ables</th> <th></th> <th></th> <th></th> <th></th>			TSP	PM10	PM2.5				Varia	ables				
Drilling overburden 58198 30263 Blasting overburden 255746 132988 Excavators loading overburden to trucks 237493 112328 Hauling overburden from pit to dump 185280 498014 Unloading overburden to dump 237493 112328 Dozers shaping overburden to dump 237493 112328 Dozers working on overburden for rehabilitation 439805 106281 Dozers working on overburden for rehabilitation 0 0 0 Blasting coal 0 0 0 0 Dozers working on coal 647405 167629 167629 Loading ROM coal to trucks 523323 75262 14817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal to ROM pad 32822 13785 ROM coal to ROM pad 32822 13785 ROM coal at CHPP 1107 524 Handling coal at CHPP 4118 1948 1947 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 71445	ē (Intensity Units	Factor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg//KT	tňruck	kmårip	Siit (%)	
Blasting overburden 255746 132988 Excavators loading overburden to trucks 237493 112328 Hauling overburden from pit to dump 1685280 498014 Unloading overburden to dump 237493 112328 Dozers shaping overburden to dump 237493 112328 Dozers shaping overburden for rehabilitation 439805 106281 Dozers working on overburden for rehabilitation 439805 106281 Dozers working on coal 0 0 0 Blasting coal 0 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 75262 Hauling ROM coal to ROM pad 218817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on ROM coal stockpiles 71445 16198 Conveyer to product coal stockpiles 71445 <td< td=""><td></td><td>0 54000 t/y</td><td>0.029 kg/t</td><td>0.0073 kg/t</td><td>0.001 kg/t</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></td<>		0 54000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Excavators loading overburden to trucks 237493 112328 Hauling overburden from pit to dump 1685280 498014 Unloading overburden for mp it to dump 237493 112328 Dozers shaping overburden 439805 106281 Dozers working on overburden for rehabilitation 439805 106281 Driling coal 0 0 0 Blasting coal 0 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 75262 Hauling ROM coal to trucks 523323 75262 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on product coal stockpiles 71445 16198 Conveyer to product sockpiles 879 416 Loading product coal stockpiles 357668 184365 Wind erosion from active pits 357668 184365 </td <td>1746</td> <td>328800 holes/y</td> <td>0.59 kg/hole</td> <td>0.31 kg/hole</td> <td>0.018 kg/hole</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>	1746	328800 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Hauling overburden from pit to dump 1685280 498014 Unloading overburden to dump 237493 1112328 Dozers shaping overburden 439805 106281 Dozers working on overburden for rehabilitation 439805 106281 Drilling coal 0 0 0 Blasting coal 0 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 75262 Hauling ROM coal to trucks 523323 75262 Unloading ROM coal to ROM pad 218817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product sockpiles 879 416 Dozers on product coal stockpiles 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from active pits 357668 184365	7672	0 411 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	
Unloading overburden to dump 237493 112328 Dozers shaping overburden 439805 106281 Dozers working on overburden for rehabilitation 439805 106281 Dozing coal 0 0 0 Blasting coal 0 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 75262 Hauling ROM coal to ROM pad 218817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at Stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pts 357668 184365 Wind erosion from active pabilitated dumps 125184 64528 Wind erosion from Active pabilitated dumps 4254 2190 <td>17010</td> <td>0 168528000 t/y</td> <td>0.00141 kg/t</td> <td>0.00067 kg/t</td> <td>0.0001 kg/t</td> <td>-</td> <td>1.19</td> <td>2</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>	17010	0 168528000 t/y	0.00141 kg/t	0.00067 kg/t	0.0001 kg/t	-	1.19	2	-	-	-	-	-	
Dozers shaping overburden 439805 106281 Dozers working on overburden for rehabilitation 439805 106281 Drilling coal 0 0 Blasting coal 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 7562 Hauling ROM coal to trucks 52322 13785 ROM coal rom pit to hopper / ROM pad 218817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from active pits 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from product coal stockpiles 4249 2190 Wind e		5 168528000 t/y	0.06667 kg/t	0.0197 kg/t	0.002 kg/t	-	-	-	-	4	300	5	-	
Dozers working on overburden for rehabilitation 439805 106281 Drilling coal 0 0 0 Blasting coal 0 0 0 Blasting coal 0 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 75262 Hauling ROM coal to trucks 523322 13785 ROM coal rom pit to hopper / ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on product coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from product coal stockpiles 4249 2190	17010	0 168528000 t/y	0.00141 kg/t	0.00067 kg/t	0.0001 kg/t	-	1.19	2	-	-	-	-	-	
Drilling coal 0 0 Blasting coal 0 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 75262 Hauling ROM coal to trucks 523323 75262 Hauling ROM coal to Trucks 523323 75262 Hauling ROM coal to ROM pad 218817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal stockpiles 5427 2306 Wind erosion from active pts 357668 184365 Wind erosion from active pabilitated dumps 125184 64528 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from product coal stockpiles 4249 2190 Wind	46179	0 26280 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Blasting coal 0 0 Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 75262 Hauling ROM coal to trucks 523323 75262 Unloading ROM coal to ROM pad 218817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184385 Wind erosion from active pits 357668 184385 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from partially rehabilitated stockpile 2124 1095	46179	0 26280 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	1 4	14	2	-	-	-	-	10	
Dozers working on coal 647405 167629 Loading ROM coal to trucks 523323 7562 Hauling ROM coal to trucks 523323 7562 Hauling ROM coal from pit to hopper / ROM pad 218817 64662 Unbading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on product coal stockpiles 161851 41907 Dozers on product coal stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from active pits 357668 184365 Wind erosion from matily rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	0	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-		-	-	
Loading ROM coal to trucks 523323 75262 Hauling ROM coal from pit to hopper / ROM pad 218817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpiles 4249 2190	0	0 0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad 218817 64662 Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on product coal stockpiles 161851 41907 Dozers on product coal stockpiles 879 416 Loading product coal stockpiles 879 416 Wind erosion from active pits 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpiles 4249 2190	14243	0 26280 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Unloading ROM coal to ROM pad 32822 13785 ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184385 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	9943	0 10940825 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
ROM coal rehandle to hopper 10941 4595 Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	6564	5 10940825 t/y	0.13333 kg/t	0.0394 kg/t	0.004 kg/t		-	-	-	4	180	6	-	
Transferring ROM coal by conveyor to CHPP 1107 524 Handling coal at CHPP 4118 1948 Dozers on ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal stockpiles 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from product coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	624	0 10940825 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Handling coal at CHPP 4118 1948 Dozers on ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from active dumps 257668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from partially coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	208	0 1094083 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Dozers on ROM coal stockpiles 161851 41907 Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from active dumps 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from partially coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	79	0 10940825 t/y	0.00020 kg/t	0.00010 kg/t	0.0000 kg/t	-	1.19	8	-	-	-	-	-	
Dozers on product coal stockpiles 71445 16198 Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	295	13566539 t/y	0.00101 kg/t	0.00048 kg/t	0.0001 kg/t	-	1.19	8	-	-	-	-	-	
Conveyer to product stockpiles 879 416 Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from active dumps 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from portical stockpiles 4249 2190	3561	0 13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading product coal to trains 5427 2306 Wind erosion from active pits 357668 184365 Wind erosion from active dumps 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from partially coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095		0 13140 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Wind erosion from active pits 357668 184365 Wind erosion from active dumps 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	63 5	13566539 t/y	0.00013 kg/t	0.00006 kg/t	0.0000 kg/t	-	1.19	11	-	-	-	-	-	
Wind erosion from active dumps 357668 184365 Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	271	0 13566539 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps 125184 64528 Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	26825	0 421 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles 4249 2190 Wind erosion from product coal stockpile 2124 1095	26825	0 421 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile 2124 1095	9389	210 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-		-	-	-	-	-	-	
	319 5	0 10 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-	-	-	-	-	-	
Grading roads 18464 6451	159	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-	-	-	-	-	-	
	572	60000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden 43529 9559	2176	0 1370000 bcm/y	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
5941622 1940467	290083													

Notes: based on data from Ravensworth (2015), 09_0176

Emission inventory Ravensworth Operations 2021, 2026, 2033, 2038

	Annua	al emissions (k	g/y)			TSP	PM10	PM2.5				Va	riables				
Activity	TSP	PM10	PM2.5	Control (%)	Units	Factor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg//KT	tňruck	kmårip	Silt (%)	Creed (tru (h)
Stripping topsoil by scraper	783	197	39	50	54000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden	58198	30263	1746	70	328800 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	255746	132988	7672	0	411 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	409246	193562	29311	0	251265763 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2		10 C		-	-	
Hauling overburden from pit to dump	2512658	742511	75380	85	251265763 t/y	0.06667 kg/t	0.0197 kg/t	0.002 kg/t		-	-	-	4	300	5	-	
Unloading overburden to dump	409246	193562	29311	0	251265763 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	439805	106281	46179	0	26280 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	439805	106281	46179	0	26280 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	647405	167629	14243	0	26280 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	765315	110064	14541	0	16000000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	320000	94563	9600	85	16000000 t/y	0.13333 kg/t	0.0394 kg/t	0.004 kg/t	-	-	-	-	4	180	6	-	
Unloading ROM coal to ROM pad	48000	20160	912	70	16000000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	16000	6720	304	0	1600000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	1871	885	134	50	16000000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-		-	
Handling coal at CHPP	7367	3484	528	70	21000000 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	161851	41907	3561	50	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	71445	16198	1572	50	13140 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	1572	744	113	50	21000000 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	8400	3570	420	0	21000000 t/v	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	357668	184365	26825	0	421 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	(-	-	-	9-1	(-	
Wind erosion from active dumps	357668	184365	26825	0	421 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	125184	64528	9389	30	210 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	4249	2190	319	50	10 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 bcm/y	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
	7440069	2414566	345834														

Notes: based on data from Ravensworth (2015), 09_0176

Emission inventory Rixs Creek South 2014

	Annua	al emissions (kg/y)			TSP	PM10	PM2.5				V	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)^1.3	Moisture (%)	Drop distance (m)	kg/MT	t/truck	kmårip	Silt (%)	
Stripping topsoil by scraper	869	219	43	50	59958 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden	16709	8689	501	70	94400 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	73426	38182	2203	0	118 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	÷.	Ξ.	-	-	-	
Excavators loading overburden to trucks	51732	24468	3705	0	31761804 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	381142	112631	11434	85	31761804 t/y	0.08000 kg/t	0.02364 kg/t	0.002 kg/t	-	-	-	-	4	300	6	-	
Unloading overburden to dump	51732	24468	3705	0	31761804 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	329853	79711	34635	0	19710 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	219902	53141	23090	0	13140 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	323702	83815	7121	0	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	132050	18991	2509	0	2760693 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	62576	18492	1877	85	2760693 t/y	0.15111 kg/t	0.04465 kg/t	0.005 kg/t	-	-	-	-	4	180	6.8	-	
Unloading ROM coal to ROM pad	8282	3478	157	70	2760693 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	2761	1159	52	0	276069 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	323	153	23	50	2760693 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
Handling coal at CHPP	968	458	69	70	2760693 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	161851	41907	3561	50	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	71445	16198	1572	50	13140 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	111	52	8	50	1481578 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	593	252	30	0	1481578 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	142302	73351	10673	0	167 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	142302	73351	10673	0	167 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	4249	2190	319	50	10 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
	2199466	682901	118692														
Notes: based on data from Rix's Creek (2)																	_

Notes: based on data from Rix's Creek (2015), Todoroski (2015), DA 49/94

Emission inventory Rixs Creek South 2021, 2026, 2033, 2038

	Annua	l emissions (kg/y)			TSP	PM10	PM2.5				Var	iables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor	Grims Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/WT	thruck	kmårip	Siit (%)	
Stripping topsoil by scraper	869	219	43	50	59958 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden	16709	8689	501	70	94400 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	73426	38182	2203	0	118 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	84324	39883	6039	0	51772551 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	621271	183591	18638	85	51772551 t/y	0.08000 kg/t	0.02364 kg/t	0.002 kg/t	-	-	-	-	4	300	6	-	
Unloading overburden to dump	84324	39883	6039	0	51772551 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	329853	79711	34635	0	19710 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	219902	53141	23090	0	13140 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	323702	83815	7121	0	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	215245	30956	4090	0	4500000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	102000	30142	3060	85	4500000 t/y	0.15111 kg/t	0.04465 kg/t	0.005 kg/t	-	-	-	-	4	180	6.8	-	
Unloading ROM coal to ROM pad	13500	5670	257	70	4500000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	4500	1890	86	0	450000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	526	249	38	50	4500000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
Handling coal at CHPP	1579	747	113	70	4500000 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	161851	41907	3561	50	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	71445	16198	1572	50	13140 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	181	86	13	50	2415010 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	966	411	48	0	2415010 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	142302	73351	10673	0	167 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	H	-	н,	-	-	-	-	-	
Wind erosion from active dumps	142302	73351	10673	0	167 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	4249	2190	319	50	10 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
	2635613	811805	133542														

Notes: based on data from Rix's Creek (2015), Todoroski (2015), DA 49/94

Emission inventory Rixs Creek North 2014

	Annua	emissions (kg	y)			TSP	PM10	PM2.5				Va	riables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	F actor Units	Factor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/MT	thruck	kmårip	Silt (%)	
Stripping topsoil by scraper	0	0	0	50	0 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-	-	-	-	-	-	-	-	
Drilling overburden	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	0	0	0	0	0 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-	-	-	-	-	-	
Excavators loading overburden to trucks	0	0	0	0	0 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	0	0	0	85	0 t/y	0.02667 kg/t	0.00788 kg/t	0.001 kg/t	-	-	-	-	4	300	2	-	
Unloading overburden to dump	0	0	0	0	0 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t	-	1.38	2	-	-	-	-	-	
Dozers shaping overburden	0	0	0	0	0 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	0	0	0	0	0 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	0	0	0	0	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	0	0	0	0	0 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-	-	8	-	-	-	-	-	
Hauling ROM coal from pit to hopper / ROM pad	0	0	0	85	0 t/y	0.12444 kg/t	0.03677 kg/t	0.004 kg/t	-	-	-	-	4	180	5.6	-	
Unloading ROM coal to ROM pad	0	0	0	70	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	0	0	0	0	0 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	0	0	0	50	0 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
Handling coal at CHPP	0	0	0	70	0 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	0	0	0	50	0 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	0	0	0	50	0 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	-	11	-	-	-	-	5	
Conveyer to product stockpiles	0	0	0	50	0 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	0	0	0	0	0 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	-	-	-	-	-	-	
Wind erosion from active pits	102009	52582	7651	30	172 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	102009	52582	7651	30	172 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from ROM coal stockpiles	4249	2190	319	50	10 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Grading roads	0	0	0	50	0 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
	210391	108449	15779														

Notes: based on data from Vale (2015), 08_0102

Emission inventory Rixs Creek North 2021, 2026, 2033

	Annua	lemissions (I	(g/y)			TSP	PM10	PM2.5				V	ariables				
Activity	TSP	PM10	PM2.5	Control (%)	Intensity Units	Factor Inits	F actor Units	Factor Units	Area (m2)	(ws/2.2)M.3	Moisture (%)	Drop distance (m)	kg/MtT	tAruck	kmårip	Sitt (%)	
Stripping topsoil by scraper	783	197	39	50	54000 t/y	0.029 kg/t	0.0073 kg/t	0.001 kg/t	-		-	-	-	-	-	-	
Drilling overburden	30302	15757	909	70	171200 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting overburden	133162	69244	3995	0	214 blasts/y	622.3 kg/blast	323.6 kg/blast	18.7 kg/blast	20000	-	-		-	-	-	-	
Excavators loading overburden to trucks	84043	39750	6019	0	51600000 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t		1.38	2	-	-	-	-	-	
Hauling overburden from pit to dump	206400	60993	6192	85	51600000 t/y	0.02667 kg/t	0.00788 kg/t	0.001 kg/t	i-	(-	-	(-	4	300	2	1	
Unloading overburden to dump	84043	39750	6019	0	51600000 t/y	0.00163 kg/t	0.00077 kg/t	0.0001 kg/t		1.38	2			· · · ·		-	
Dozers shaping overburden	329853	79711	34635	0	19710 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h		-	2	-	-	-	-	10	
Dozers working on overburden for rehabilitation	109951	26570	11545	0	6570 h/y	16.7 kg/h	4.04419 kg/h	1.757 kg/h	-	-	2	-	-	-	-	10	
Drilling coal	0	0	0	70	0 holes/y	0.59 kg/hole	0.31 kg/hole	0.018 kg/hole	-	-	-	-	-	-	-	-	
Blasting coal	0	0	0	0	0 blasts/y	220.0 kg/blast	114.4 kg/blast	6.6 kg/blast	10000	-	-	-	-	-	-	-	
Dozers working on coal	323702	83815	7121	0	13140 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Loading ROM coal to trucks	286993	41274	5453	0	6000000 t/y	0.04783 kg/t	0.00688 kg/t	0.001 kg/t	-		8		-	-	-		
Hauling ROM coal from pit to hopper / ROM pad	112000	33097	3360	85	6000000 t/y	0.12444 kg/t	0.03677 kg/t	0.004 kg/t	-	-	-	-	4	180	5.6	-	
Unloading ROM coal to ROM pad	18000	7560	342	70	6000000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
ROM coal rehandle to hopper	6000	2520	114	0	600000 t/y	0.01 kg/t	0.0042 kg/t	0.000 kg/t	-	-	-	-	-	-	-	-	
Transferring ROM coal by conveyor to CHPP	702	332	50	50	6000000 t/y	0.00023 kg/t	0.00011 kg/t	0.0000 kg/t	-	1.38	8	-	-	-	-	-	
Handling coal at CHPP	2105	996	151	70	6000000 t/y	0.00117 kg/t	0.00055 kg/t	0.0001 kg/t	-	1.38	8	-	-	-	-	-	
Dozers on ROM coal stockpiles	80926	20954	1780	50	6570 h/y	24.6 kg/h	6.4 kg/h	0.542 kg/h	-	-	8	-	-	-	-	7	
Dozers on product coal stockpiles	35722	8099	786	50	6570 h/y	10.9 kg/h	2.5 kg/h	0.239 kg/h	-	18	11		(-	-	1	5	
Conveyer to product stockpiles	449	212	32	50	6000000 t/y	0.00015 kg/t	0.00007 kg/t	0.0000 kg/t	-	1.38	11	-	-	-	-	-	
Loading product coal to trains	2400	1020	120	0	6000000 t/y	0.00040 kg/t	0.00017 kg/t	0.0000 kg/t	-	-	- 1	-	-	-	-	-	
Wind erosion from active pits	145727	75117	10930	0	172 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from active dumps	145727	75117	10930	0	172 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from partially rehabilitated dumps	0	0	0	30	0 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y		-	-	-	-	-		-	
Wind erosion from ROM coal stockpiles	4249	2190	319	50	10 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	-	-	-	-	-	-	-	-	
Wind erosion from product coal stockpile	2124	1095	159	50	5 ha	849.7 kg/ha/y	438.0 kg/ha/y	63.7 kg/ha/y	1.	1H		1	1	1	1	(H)	
Grading roads	18464	6451	572	50	60000 km	0.61547 kg/VKT	0.21504 kg/VKT	0.019 kg/VKT	-	-	-	-	-	-	-	-	
Dragline working on overburden	0	0	0	0	0 t/bcm	0.03 kg/bcm	0.01 kg/bcm	0.002 kg/bcm	-	-	2	7	-	-	-	-	
	0400000	004000	414570														
Notes: based on data from Vale (2015). 0	2163828	691822	111572														

Notes: based on data from Vale (2015), 08_0102

Appendix D. Peer Review Outcomes

Level 15 309 Kent Street Sydney NSW 2000 Telephone: +61 2 8584 8888

www.erm.com

David Holmes Principal Environmental Consultant Umwelt 75 York Street Teralba, NSW 2284

12 November 2019

Reference: 0518191

Dear David

Subject: Glendell Continued Operations Project – Peer Review of Air Quality Assessment

1 Introduction

Judith Cox has over 20 years' experience in air quality assessment, dispersion modelling, emissions estimation and meteorology. She has extensive experience in the assessment of coal mines in the Hunter Valley and it is in this context that she completed a review of the above mentioned project.

The air quality assessment for the Glendell Continued Operations Project (the Project) was completed by Jacobs Group (Australia) Pty Limited (Jacobs).

As detailed in the following sections, Judith has reviewed the input and output data applied in the dispersion modelling completed for the air quality assessment, together with the draft version of the report dated 18 September (Jacobs, 2019).

The purpose of this review is to ensure all the essential recommendations have incorporated, the methodology is sound and that the requirements of the Secretary's Environmental Assessment Requirements (SEARs) have been met.

2 Background

The Glendell Mine forms part of the Mount Owen Complex in the Hunter Region of New South Wales (NSW) and is owned and operated by subsidiaries of Glencore Coal Pty Limited (Glencore). The site is part of the Hunter Valley Coalfields and is located approximately 20 km northwest of Singleton in the Singleton Local Government Area (LGA). The Mount Owen Complex also includes Mount Owen Mine, Ravensworth East Mine, a coal handling and preparation plant (CHPP), and coal transport infrastructure.

The Project is an extension of open cut mining operations immediately to the north of the existing Glendell Mine. The Project would extend the life of the Glendell Mine to approximately 2044 and allow for the recovery of approximately 135 million tonnes (Mt) of run-of-mine (ROM) coal.

The Jacobs assessment was based on dispersion modelling to predict ground level concentrations of particulate matter and other pollutants emitted to air as a result of mining activities. The report referred to procedures outlined by the EPA in their *Approved Methods for the Modelling and Assessment of Air Pollutants in NSW* (EPA, 2016) (Approved Methods) and considered four operational years of the life of the mine (Year 1, 6, 13 and 18).

The potential air quality issues assessed by Jacobs were:

Page 1 of 7

- Dust (that is, particulate matter in the form of TSP, PM₁₀ or PM_{2.5}) from the general mining activities;
- Fume (that is, NO_x emissions) from blasting; and
- Emissions of substances from machinery exhausts, that is, diesel emissions.

This review has considered the adequacy of the air quality assessment with respect to the methodology used and its consistency with the SEARs and EPA's Approved Methods.

3 Selection of representative modelling year

Meteorological and monitoring data were reviewed for the seven-year period 2012 to 2018.

With respect to wind patterns, and average and maximum wind speeds, these do not vary significantly from year-to-year. However, when considering rainfall, the annual rainfall has ranged from 432 mm in 2018 to 899 mm in 2015, with 2017 and 2018 having much lower rainfall.

Air quality monitoring data collected by Mount Owen in the vicinity of the Mount Owen Complex, and at sites operated by NSW Department of Planning, Industry & Environment (DPIE) were also reviewed for the period 2012 to 2018.

It is agreed that that calendar year 2014 selected as the meteorological modelling year is representative of longer-term conditions, based on:

- Similar wind patterns to other years.
- Rainfall being slightly below the long-term average.
- Consistency with other recent air quality impact assessments for the Mount Owen Complex which enables comparative analysis of predicted impacts.
- Air quality conditions which showed similarities to other years and not adversely influenced by bushfire activity or extreme conditions.

4 Determination of background levels

- PM₁₀ and PM_{2.5},
 - \circ $\;$ hourly variable background dataset was created to add to the model predictions
- TSP
 - Average of the 2014 annual average concentrations measured at three gauges operated by Mount Owen.
- Deposited dust
 - The assumption of 2 g/m²/month is considered a reasonable estimate of levels that would exist in the absence of the mining activities.
- Nitrogen dioxide (NO₂)
 - o 1-hour average
 - A conservative assumption was made using the maximum 1-hour average measured at Singleton in 2014 (matching the selected meteorological year).
 - o Annual average
 - 2014 annual average from Singleton was assumed (matching the selected meteorological year).

5 Selection of modelling years

The assessment years for the Project (Project Year 1, 6, 13 and 18) were selected based on a review of material handling quantities, haul distances, and location of activities for each year in the proposed mine life and the potential for cumulative impacts from other mining operations.

In addition, an existing scenario was assessed to evaluate the performance of the dispersion model based on the determined representative year 2014.

6 Best Practice Review

Dust control measures have been benchmarked against the recommendations of the NSW Coal Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining (Donnelly et al, 2011) and are deemed adequate.

7 Dust emissions

7.1 The Project

The emission factors and related assumptions used for this assessment have been drawn largely from the Emission Estimation Technique Manual for Mining (NPI, 2012) and US EPA AP42 (US EPA, 1985 and updates).

A thorough review of all emission factors and assumptions applied was completed. A number of questions were asked in relation to these, as detailed below:

7.1.1 Overburden silt and moisture assumptions

The values stated in the Emission Estimation Technique Manual for Mining (EETMM) of 10% for overburden (silt =10% and moisture = 2%) have been applied.

It has been previously confirmed with EPA (pers. comm. Nick Agapides) that it is not known where the silt and moisture assumptions in the EETMM originated from, other than they used to be the default values for air quality assessments in the Hunter Valley before it was more common practice to collect site-specific data.

It was therefore suggested that the data collected as part of the ACARP emission factor project be applied (Pacific Environment, 2015). The average values for uncontrolled active overburden derived from the ACARP study were silt = 4% and moisture = 4.1%.

Jacobs explained they would prefer to retain the EETMM data because of the variability that is reported from site-to-site and from day-to-day, and use of these in the dispersion modelling of the existing scenario has produced annual average PM₁₀ results within a few micrograms of measurements.

They are also consistent with values used in previous modelling for site which allows for easier comparison between the studies.

Given the explanation provided by Jacobs, and the fact the application of the EETMM values result in higher emissions estimates than the application of the ACARP values, the predicted results are likely to be conservative. It was therefore considered appropriate for the EETMM values to be applied.

7.1.2 Haul road emission factor

The emission factor applied to calculate TSP emissions from hauling on unsealed roads is 4 kg per vehicle-km travelled (km/VKT). PM_{10} and $PM_{2.5}$ emission factors were derived from the TSP emission factor by applying the PM_{10} :TSP and $PM_{2.5}$:TSP ratios that are derived from the US EPA AP-42 equation for wheel-generated dust.

This TSP emission factor of 4 kg/VKT is sourced from the SPCC document *Air Pollution from Coal Mining and Related Developments* (SPCC, 1983).

It was queried why the US EPA AP-42 equation for wheel-generated dust had not been applied to calculate TSP, PM_{10} and $PM_{2.5}$ emissions as most air quality assessment completed by ERM (formerly Pacific Environment and PAEHolmes) for extractive operations have applied these equations for at least five years.

Jacobs completed some sensitivity tests for the haul road emission factor, being either from SPCC or from the AP-42 equation approaches. The calculation using the AP-42 equation assumed an average 4% silt content (based on the ACARP study) (Pacific Environment 2015).

Table 1 summarises the differences based on the Glendell Continued Operations Project Year 6 inventory.

Glendell Continued Operations Project Year 6	Annu	al emission (kg/y)
	TSP	PM 10	PM _{2.5}
Total emission with haul road emission factor as per AP-42 equation	3,542,289	1,045,471	191,924
Total emission with haul road emission factor as per SPCC factor	3,274,887	1,037,423	191,639
Difference as a percentage (%)	+8%	+1%	0%

Table 1: Comparison of total emissions using the AP-42 and SPCC haul road emission factor

On the basis of these small differences in emissions, experience has shown there would be no change in the predicted concentrations, and as such it was considered valid for the SPCC emission factor to be applied.

7.2 Other Mines

Emissions from other mines in the vicinity were calculated based on the maximum approved production limits at the time the assessment was completed. This included the assumption that the Ashton South East Open Cut project will be operating in the future.

This is considered to be a conservative approach as it is unlikely that all the approved mines would be operating at the maximum approved production limit at all times, but it does provide an assessment of the potential cumulative air quality concentrations that could occur.

Rather than use published emissions for each mine (such as those presented in previous EISs), Jacobs recalculated the emissions which retained consistency in the calculation methods for all mining operations.

12 November 2019 Reference: 0518191 Page 5 of 7

7.3 Summary

Based upon the above, ERM is satisfied that the emissions factors have been used in an appropriate manner and the total values calculated for both the Project and other mining operations are reasonable.

8 Meteorological and dispersion modelling

The CALPUFF suite of models was selected and is considered to be an appropriate tool for the assessment.

As discussed in Section 3, the meteorology in 2014 was determined to be representative of the Project area and is considered suitable for use in the assessment. Meteorological model settings used for TAPM and CALMET were provided and are confirmed as appropriate for the chosen model.

Gridded receptors were not used for the CALPUFF dispersion modelling but the discrete receptors used provide sufficient coverage of the modelling domain and sensitive receptors to generate the contours.

9 Post-blast fume

A conservative assessment of post-blast fumes was completed assuming emissions would occur every hour between 9am and 5pm, assuming that all blasts would be a Rating 3 Fume Category as defined in the Queensland *Guidance Note for the management of oxides of nitrogen in open cut blasting* (DEEDI, 2011).

Of the 280 blasts that occurred between January 2017 to March 2019, 61% were rated category 0, 26% were rated category 1, 9% were rated category 2 and 3% were rated category 3. The assumption of a category 3 fume rating blast every hour is therefore very conservative.

Even taking into account the conservative assumptions applied, the maximum 1-hour average NO₂ concentrations are not predicted to exceed EPA's criterion of 246 μ g/m³ at any off-site sensitive receptor location.

10 Diesel exhaust emissions

The dispersion modelling for PM_{10} and $PM_{2.5}$ included emissions from diesel engines and the assessment of NOx emissions showed no predicted exceedances of the criteria at any sensitive receptor.

11 Model performance

In order to determining the confidence in the model, the dispersion modelling was completed for a recent year of operations (2014) and the predicted concentrations compared against measured concentrations.

- 24-hour averages were in the range of 30 per cent lower to 10 per cent higher than the measured result, depending on the location. These results highlight the difficultly in predicting short-term (24-hour average) concentrations and the highly variable nature of daily PM₁₀ concentrations but they are however well within a factor of two for all percentiles.
- Annual average PM₁₀ concentrations for 2014 ranged from 4 per cent lower to 27 per cent higher than measured results. In absolute numbers, these results show that the model predictions at sensitive receptor locations in the Middle Falbrook and Camberwell areas are within 1 to 2 μg/m³ of the measurements.

 Annual average TSP concentrations were within five per cent of the measured result in the Camberwell and Middle Falbrook areas.

Whilst there is a tendency for over-prediction of annual average to the northwest of Mount Owen Complex, the closest sensitive receptors are located to the southeast of the Project. Accordingly, it is considered that the over prediction to the northwest is acceptable.

On the basis of these results it is considered that model is performance is acceptable.

12 Assessment results

In terms of predicted air quality impacts, the main conclusions are summarised as follows:

- No private sensitive receptors are predicted to exceed the 24-hour average PM_{10} criterion of 50 μ g/m³ due to the Project-alone.
- Cumulative 24-hour average PM₁₀ concentrations shows that most areas of the model domain will experience at least one day each year when PM₁₀ concentrations will exceed the 24-hour criterion due to the contributions of mining operations and other sources (with the exception of bushfires, dust storms and other extreme events). Detail on the number of days above the cumulative criterion of 50 µg/m³ is only presented for one receptor located in Camberwell (ID 156) but has demonstrated that the predicted number of days above the criterion are similar to current.
- Annual average PM₁₀ concentrations are predicted to comply with the criterion of 25 μg/m³ due to the Project-alone and cumulatively at all private sensitive receptors that are not already subject to acquisition rights.
- No private sensitive receptors (not already subject to acquisition rights) are predicted to exceed the 24-hour average PM_{2.5} criterion of 25 μg/m³ due to the Project-alone or cumulatively.
- Annual average PM_{2.5} concentrations are predicted to comply with the criterion of 8 μg/m³ due to the Project-alone and cumulatively at all private sensitive receptors that are not already subject to acquisition rights.
- Annual average TSP concentrations are predicted to comply with the criterion of 90 μg/m³ due to the Project-alone and cumulatively at all private sensitive receptors that are not already subject to acquisition rights.
- Annual average dust deposition levels are predicted to comply with the cumulative criterion of 4 g/m²/month at all private sensitive receptors that are not already subject to acquisition rights.
- Post-blast fume and emissions from vehicle exhausts are not expected to result in any adverse air quality impacts.

13 Review conclusions

It is ERM's professional opinion that the air quality impact assessment carried out by Jacobs is consistent with the requirements of the NSW EPA Approved Methods for a Project of this nature. The methodology is sound and includes an acceptable level of conservatism. The assessment conclusions are consistent with what would be expected for a Project such as this.

I confirm that the above reflects the detailed peer review of Judith Cox. I have reviewed Judith's opinions and concur with her findings.

Yours sincerely

Kark

Damon Roddis Partner – Air Quality and Greenhouse ERM

14 References

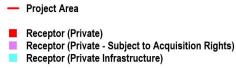
Donnelly S-J, Balch A, Wiebe A, Shaw N, Welchman S, Schloss A, Castillo E, Henville K, Vernon A and Planner J (2011). NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and / or Minimise Emissions of Particulate Matter from Coal Mining. Prepared by Katestone Environmental Pty Ltd for NSW Office of Environment and Heritage, December 2010.

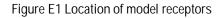
EPA (2016). Approved Methods for the Modelling and Assessment of Air Pollutants in NSW. December 2016

Jacobs (2019). Glendell Continued Operations Project Air Quality Impact Assessment. Mt Owen Pty Ltd, Draft 3 Revision 0, Umwelt 4166, dated 18 September 2019.

Pacific Environment (2015). Development of Australia-specific PM₁₀ emission factors for coal mines. Published by the Australian Coal Association Research Program (ACARP), 21 September 2015. ACARP Project C22027.

NPI (2012), "National Pollutant Inventory Emission Estimation Technique Manual for Mining, Version 3.1", January 2012.


SPCC (1986). Particle size distributions in dust from open cut coal mines in the Hunter Valley. Report number 10636-002-71. Prepared for the State Pollution Control Commission of NSW (now EPA) by Dames and Moore.


US EPA (1985 and updates). Compilation of Air Pollutant Emission Factors, AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711. This is now a web-based document.

Northing (m) - MGA Zone 56 6410000 315000 320000

Easting (m) - MGA Zone 56

- Receptor (Community Infrastructure) Receptor (Glencore Owned) Receptor (Glencore Vacant) Receptor (Other Mine Owned) Receptor (Other Mine Owned Vacant) Model receptor
- +

Appendix F. Additional Model Performance Evaluations

This section provides information on the performance of the model for predicting measured PM₁₀ concentrations. The performance evaluation has been carried out by predicting PM₁₀ concentrations for the 2014 calendar year (based on mining and activities rates in 2014) and comparing these results to measurement data.

Figure F1 shows quantile-quantile plots of measured and predicted 24-hour average PM₁₀ concentrations at Camberwell, SX9 and SX10. These plots show the measured data and predictions paired by highest to lowest, and not matched in time. Dispersion models often encounter difficulties when trying to reproduce monitoring results for a single point, especially for the extreme statistics such as the maximum 24-hour average. The most significant factor is the limitation of using computers to model large, complex systems (this would be the case even if all the physics were perfectly correct). The quantile-quantile plots **Figure F1** do however show that the model predictions are well within a factor of two for all percentiles.

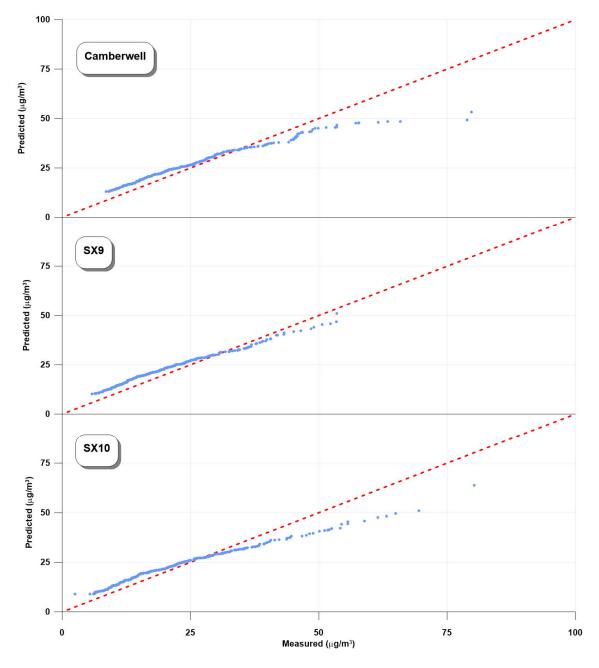


Figure F1 Quantile-quantile plots of measured and predicted 24-hour average PM₁₀ concentrations

Appendix G. Tabulated Model Results

Model predictions at properties

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
Maximu	ım 24-hour average PM10 (ug/m3)	1	I	I	I			I	I	J	
001	Other Mine Owned - Vacant	6	7	10	8	49	63	63	63	48	50
002	Community Infrastructure	7	8	12	9	50	60	60	60	48	50
003	Other Mine Owned	6	7	10	8	49	58	58	58	48	50
004	Private - Subject to Acq. Rights	6	7	10	7	49	53	54	53	48	50
005	Private - Subject to Acq. Rights	6	7	10	7	49	55	55	55	48	50
006	Community Infrastructure	5	6	9	6	49	53	53	53	48	50
007a	Private	5	6	9	6	48	52	52	52	48	50
007b	Private	5	6	9	6	48	52	52	52	48	50
007c	Private	4	5	8	5	48	51	51	51	48	50
010	Private	5	6	7	4	48	53	54	51	48	50
010	Private	5	6	7	4	48	52	54	50	48	50
012	Private	5	6	7	4	48	53	55	50	48	50
012	Private	4	4	5	3	48	55	49	49	40	50
013	Private	3	4	5	3	40	52	49	49	47	50
014 015a	Private	3	4	4	2	40	50	49	49	47	50
015a	Private	3	4	4	2	40	50	49	49	47	50
0155 017a	Private	3	4	4	3	40	48	49	40	47	50
017a	Private	3	4	5	3	40	40	49	40	47	50
0175	Private	4	6	7	4	48		49 59	49 50	47	
			6				61				50
021	Private - Subject to Acq. Rights	5		8	5	48	56	59	51	48	50
022	Glencore Owned	5	6	8	4	48	55	58	51	48	50
023	Private - Subject to Acq. Rights	5	7	9	5	48	56	61	51	48	50
024	Glencore Owned	5	7	9	5	49	59	64	53	48	50
025	Glencore Owned	5	6	9	5	49	63	65	54	48	50
026	Glencore Owned	5	6	9	5	49	65	64	53	48	50
027	Glencore Owned	5	7	10	6	49	59	67	56	48	50
028	Glencore Owned	5	7	10	6	50	63	69	57	48	50
029	Glencore Owned	5	7	11	6	50	61	71	59	48	50
030	Glencore Owned	5	8	12	7	51	67	100	73	48	50
031	Glencore Owned	4	7	10	6	53	69	101	71	48	50
032	Glencore Owned	3	5	9	6	61	76	73	59	48	50
033	Glencore Owned	3	5	9	6	57	67	61	53	48	50
034	Glencore Owned	3	4	9	6	54	57	55	51	48	50
035	Glencore Owned - Vacant	2	4	8	6	52	54	54	51	48	50
036	Glencore Owned	3	4	9	6	57	63	59	54	48	50
037	Glencore Owned - Vacant	2	4	10	8	62	67	85	64	48	50
038	Glencore Owned	2	4	10	7	68	91	99	64	48	50
039	Glencore Owned	2	4	10	7	65	84	84	61	48	50
040	Glencore Owned	1	1	4	4	49	51	51	50	48	50
041	Private	1	1	2	1	48	48	48	48	47	50
042	Private	0	1	2	1	48	48	48	48	47	50
043	Private	0	1	2	1	47	48	48	47	47	50
044a	Private	0	1	1	1	47	48	48	47	47	50
044b	Private	0	1	1	1	47	48	48	47	47	50
045	Private	0	1	1	1	47	48	48	47	47	50
046	Private	0	1	1	1	47	48	48	47	47	50
047	Private	0	1	1	1	47	48	48	48	47	50

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
048	Private	1	1	2	1	48	48	48	48	47	50
049	Private	0	0	1	1	47	48	48	47	47	50
050	Private	0	1	1	1	47	48	48	48	47	50
051	Private	0	1	2	1	48	48	48	48	47	50
052	Private	0	1	1	1	48	48	48	48	47	50
053	Private	0	1	1	1	47	48	48	47	47	50
054	Private	0	1	1	1	47	48	48	47	47	50
055	Private	0	1	1	1	47	47	47	47	47	50
056a	Private	0	0	1	1	47	48	48	47	47	50
056b	Private	0	0	1	1	47	48	47	47	47	50
057	Private	0	0	1	1	47	47	47	47	47	50
058	Private	0	1	2	1	47	48	48	48	47	50
059	Private	1	1	2	2	47	48	48	48	47	50
060	Private	1	1	2	2	47	48	48	47	47	50
061	Private	1	1	2	2	47	48	48	48	47	50
062	Private	1	1	2	2	47	48	48	48	47	50
063a	Private	1	1	3	2	47	48	48	47	47	50
068	Private	1	1	2	2	47	48	48	47	47	50
069a	Private	1	2	3	2	47	48	48	47	47	50
069b	Private	1	2	2	2	47	48	48	47	47	50
071	Private	1	2	3	2	47	48	48	47	47	50
072	Private	2	2	3	1	47	48	48	47	47	50
073	Private	1	2	3	2	47	48	48	48	47	50
074	Private	2	3	4	2	47	48	48	48	47	50
075	Private	2	2	3	1	47	48	48	48	47	50
076	Private	2	2	3	1	47	48	48	48	47	50
077	Private	2	2	3	1	47	48	48	48	47	50
082	Private	2	2	3	2	47	48	48	48	47	50
083	Private	2	3	4	2	47	48	48	48	47	50
084a	Private	2	2	3	2	47	48	48	48	47	50
085	Private	2	3	3	2	47	48	48	48	47	50
086	Private	2	3	4	3	47	48	48	48	47	50
087	Private	2	3	4	2	47	48	48	48	47	50
088	Private	3	3	4	3	47	49	48	48	47	50
089	Private	3	3	5	3	47	49	49	48	47	50
090	Other Mine Owned	3	3	5	3	47	49	49	49	47	50
091	Private	3	4	6	4	48	49	49	49	47	50
092	Private	4	4	7	4	48	50	50	50	47	50
093	Private	4	4	5	3	48	52	50	49	47	50
094	Private	3	4	5	3	48	53	49	49	47	50
095	Private	3	4	5	3	48	52	49	49	47	50
096	Private	3	4	5	3	47	48	48	48	47	50
097	Private	2	4	5	3	47	48	48	48	47	50
098	Private	3	3	5	3	47	48	48	48	47	50
099	Private	3	4	6	4	47	49	49	49	47	50
100	Private	4	5	6	5	48	50	49	49	47	50
101	Private	3	5	6	5	47	48	48	48	47	50
102a	Private	4	6	7	7	47	48	49	48	47	50
102b	Private	4	6	8	7	47	49	49	48	47	50
104	Other Mine Owned	4	6	8	7	47	49	49	48	47	50
105	Private - Subject to Acq. Rights	7	8	15	10	50	55	56	55	48	50
108	Glencore Owned	21	23	23	14	51	58	58	57	49	50
109	Glencore Owned	22	24	24	14	52	57	57	56	49	50

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
110	Other Mine Owned - Vacant	18	19	22	13	54	67	67	66	49	50
111	Private - Subject to Acq. Rights	17	21	21	12	56	84	84	84	50	50
112	Private - Subject to Acq. Rights	6	7	8	5	49	52	53	51	48	50
114	Private - Subject to Acq. Rights	7	9	11	7	50	54	54	54	48	50
115	Private - Subject to Acq. Rights	8	10	12	8	50	54	59	54	48	50
116	Glencore Owned	8	9	12	9	50	54	55	54	48	50
117	Glencore Owned	10	11	15	10	50	55	56	55	48	50
120	Glencore Owned - Vacant	11	13	22	14	51	57	57	57	48	50
121	Glencore Owned - Vacant	13	23	28	15	51	56	57	56	49	50
122	Glencore Owned	14	23	29	16	51	56	57	56	49	50
123	Glencore Owned - Vacant	12	18	25	14	51	57	57	57	49	50
125	Glencore Owned	19	30	27	16	52	56	56	56	49	50
126	Glencore Owned - Vacant	22	27	25	15	53	56	56	56	49	50
127a	Private - Subject to Acq. Rights	16	13	11	6	53	62	62	60	51	50
127b	Private - Subject to Acq. Rights	31	27	22	10	55	63	63	62	50	50
127c	Private - Subject to Acq. Rights	42	35	24	11	75	73	61	59	50	50
127d	Private - Subject to Acq. Rights	41	33	23	11	72	71	62	60	50	50
129	Glencore Owned	42	38	28	13	79	73	61	60	50	50
130	Glencore Owned	46	38	26	13	83	77	63	60	50	50
131	Glencore Owned - Vacant	6	9	21	14	58	65	56	54	51	50
134	Private	2	4	8	5	52	54	52	50	49	50
135	Private	2	4	7	5	52	53	51	50	49	50
136	Private	2	3	6	4	51	53	51	50	49	50
143	Private - Subject to Acq. Rights	23	18	15	7	53	60	60	57	50	50
144a	Private - Subject to Acq. Rights	5	5	5	3	64	107	104	53	53	50
144b	Private - Subject to Acq. Rights	3	3	3	2	52	54	54	50	49	50
144c	Private - Subject to Acq. Rights	3	3	3	2	51	54	54	50	49	50
145	Private - Subject to Acq. Rights	5	5	6	3	56	220	217	54	54	50
146	Other Mine Owned	9	9	9	4	53	69	69	57	52	50
147	Private - Subject to Acq. Rights	8	8	7	4	55	101	100	64	55	50
148	Other Mine Owned	10	9	8	4	54	79	79	78	54	50
149	Community Infrastructure	15	15	15	8	53	63	63	55	51	50
150	Private - Subject to Acq. Rights	16	14	14	7	53	62	62	56	51	50
151	Other Mine Owned	17	16	16	8	53	61	61	56	51	50
152	Private - Subject to Acq. Rights	19	16	14	7	53	61	61	57	51	50
154	Private - Subject to Acq. Rights	19	18	15	7	53	61	60	57	51	50
155	Private - Subject to Acq. Rights	20	19	16	8	53	60	60	57	51	50
156	Private - Subject to Acq. Rights	26	22	18	8	56	60	60	57	50	50
157	Glencore Owned - Vacant	31	32	30	16	65	62	58	56	49	50
158	Other Mine Owned - Vacant	7	7	8	4	56	440	440	55	54	50
159	Other Mine Owned - Vacant	10	9	8	4	54	90	90	57	53	50
160	Other Mine Owned - Vacant	7	8	8	4	54	238	237	55	53	50
161	Glencore Owned - Vacant	9	15	38	25	58	99	56	59	54	50
162b	Private	1	1	3	2	47	48	48	47	47	50
163	Other Mine Owned	7	9	9	7	48	52	50	48	48	50
164	Other Mine Owned	7	9	9	7	48	51	49	48	48	50
165	Other Mine Owned	7	8	11	6	48	51	49	48	48	50
166	Other Mine Owned - Vacant	43	31	25	13	82	80	72	57	51	50
178	Private	0	0	1	1	47	47	47	47	47	50
209	Private	0	0	0	0	47	47	47	47	47	50
210	Private	0	0	1	0	47	47	47	47	47	50
211	Private	0	0	1	1	47	47	47	47	47	50
212	Private	0	0	1	1	47	47	47	47	47	50

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
213	Private	0	0	1	1	47	47	47	47	47	50
259	Private	2	2	3	2	47	48	48	48	47	50
260	Private	2	2	3	2	47	48	48	48	47	50
280	Private	5	7	9	6	47	53	51	49	47	50
281	Private	5	6	9	6	47	53	51	49	47	50
282	Private	5	9	8	6	48	55	52	50	47	50
288	Private	3	6	5	4	47	48	48	47	47	50
289	Private	4	7	6	5	47	48	48	48	47	50
290	Private	5	9	7	6	47	51	49	48	47	50
291	Private	6	9	8	6	48	53	50	48	47	50
292a	Private	5	9	8	6	47	50	48	48	47	50
292b	Private	6	9	8	6	47	50	48	48	47	50
293	Private	7	8	10	6	48	50	49	48	48	50
294	Private	6	7	8	6	47	48	48	48	47	50
295	Private	6	8	10	6	47	50	49	48	47	50
296	Private	6	8	10	7	47	50	49	48	47	50
297a	Private	7	9	12	7	48	53	52	48	48	50
297b	Private	7	9	12	7	48	53	52	48	48	50
297c	Private	7	9	12	7	48	53	52	48	48	50
297d	Private	5	8	9	6	47	49	48	48	47	50
299	Private	7	9	12	7	48	54	52	49	48	50
300	Private	8	10	12	7	48	55	54	50	48	50
302	Private	7	11	11	6	48	56	54	51	47	50
303	Private	4	6	7	5	47	47	47	47	47	50
305	Private	5	7	9	6	47	48	47	47	47	50
306	Private	6	8	9	5	47	49	48	47	47	50
307	Private	6	8	9	5	47	49	48	47	47	50
308	Private	6	9	10	5	47	50	49	48	47	50
309	Private	6	9	10	5	47	51	50	48	47	50
310	Private	6	9	10	5	47	51	50	48	47	50
311	Private	6	9	10	5	47	51	50	48	47	50
312	Private	6	9	9	5	47	51	49	48	47	50
314	Private	7	9	8	4	47	50	49	48	47	50
315	Private	8	10	8	4	47	51	50	48	47	50
316	Private	8	10	9	4	47	53	51	48	47	50
317	Private	8	10	9	4	47	53	51	48	47	50
318	Private	7	10	9	5	47	53	51	48	47	50
319	Private	7	10	10	5	47	53	51	48	47	50
320	Private	7	10	10	5	47	53	52	49	47	50
321	Private	7	10	10	5	47	53	52	49	47	50
322	Private	8	10	10	5	47	54	53	49	47	50
323	Private	8	11	9	5	48	55	54	50	47	50
324	Private	8	11	10	5	48	56	54	51	48	50
325	Private	9	11	10	5	48	56	55	51	48	50
326	Private	9	11	9	4	48	56	54	51	48	50
327	Private	9	11	8	4	48	55	53	50	48	50
328	Private	9	10	8	4	48	54	52	49	48	50
329	Private	9	10	7	4	48	54	52	49	48	50
330	Private	8	9	6	3	48	52	51	48	48	50
337	Private	0	0	0	0	47	47	47	47	47	50
342	Private Infrastructure	50	58	50	17	60	75	82	76	56	50
344	Other Mine Owned	7	9	10	6	48	51	49	48	48	50
349a	Private	5	7	10	6	47	48	47	47	47	50

	_		Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
349b	Private	5	7	10	6	47	48	48	47	47	50
350	Community Infrastructure	1	1	2	2	47	48	48	47	47	50
351	Other Mine Owned	19	17	15	8	53	61	61	56	51	50
352	Other Mine Owned - Vacant	11	9	8	4	54	72	71	68	53	50
353	Other Mine Owned	9	8	7	4	55	91	90	88	55	50
356	Glencore Owned - Vacant	86	231	585	198	66	105	251	602	213	50
357	Glencore Owned - Vacant	62	107	394	281	70	86	129	419	302	50
358	Glencore Owned - Vacant	30	51	131	96	59	70	71	146	107	50
359	Glencore Owned - Vacant	47	50	43	15	59	73	77	72	56	50
360	Glencore Owned - Vacant	10	12	19	12	51	56	57	56	48	50
361	Glencore Owned - Vacant	8	10	11	7	50	53	62	54	48	50
363	Glencore Owned	10	12	17	12	50	56	56	56	48	50
364	Other Mine Owned	10	9	10	5	53	87	86	55	53	50
365	Other Mine Owned - Vacant	11	11	12	6	53	65	64	55	52	50
366	Other Mine Owned - Vacant	11	10	11	6	53	67	65	55	52	50
367	Other Mine Owned	12	10	11	6	53	67	65	55	52	50
369	Other Mine Owned - Vacant	13	11	11	6	53	68	67	56	52	50
370	Other Mine Owned	12	11	11	6	53	69	69	56	52	50
371	Other Mine Owned	16	13	12	6	53	63	62	56	52	50
372	Other Mine Owned	17	14	13	7	53	62	62	56	52	50
373	Other Mine Owned - Vacant	16	13	13	7	53	62	62	56	52	50
374	Other Mine Owned	18	14	13	7	53	62	61	57	52	50
375	Other Mine Owned	18	15	13	7	53	62	61	56	52	50
376	Other Mine Owned	17	15	14	8	53	61	61	56	51	50
377	Other Mine Owned	18	16	14	8	53	61	61	56	51	50
378	Other Mine Owned	19	17	15	8	53	61	61	56	51	50
379	Other Mine Owned	16	15	15	8	53	62	61	56	51	50
380	Other Mine Owned	18	16	15	8	53	61	61	56	51	50
381	Other Mine Owned	19	17	15	8	53	61	61	56	51	50
382	Other Mine Owned	19	16	14	7	53	61	61	57	51	50
383	Other Mine Owned	19	18	16	8	53	61	61	56	51	50
384	Other Mine Owned	19	18	15	8	53	61	61	56	51	50
385	Other Mine Owned	20	19	16	8	53	61	61	56	51	50
386	Other Mine Owned	20	19	16	8	53	61	61	56	51	50
387	Other Mine Owned	19	18	16	8	54	61	61	56	51	50
388	Other Mine Owned	19	18	17	9	54	61	61	56	51	50
389	Other Mine Owned - Vacant	20	19	16	9	54	61	61	56	51	50
390	Other Mine Owned	20	19	17	9	54	61	61	56	51	50
391	Other Mine Owned	23	21	17	8	54	60	60	57	51	50
392	Other Mine Owned - Vacant	22	19	16	8	53	60	60	57	51	50
394	Other Mine Owned	15	13	12	6	53	65	63	56	52	50
395	Other Mine Owned	15	13	12	6	53	65	63	56	52	50
396	Other Mine Owned	15	13	12	6	53	65	63	56	52	50
397	Other Mine Owned	15	13	12	6	53	65	63	57	52	50
398	Other Mine Owned	15	13	11	6	53	65	64	57	52	50
399	Other Mine Owned	16	13	12	6	53	64	62	57	52	50
400	Other Mine Owned	16	13	12	6	53	64	61	57	52	50
401	Other Mine Owned	14	12	11	6	53	67	66	57	52	50
402	Other Mine Owned	12	11	10	5	53	70	70	57	52	50
403	Other Mine Owned	14	12	11	6	53	66	65	57	52	50
404	Other Mine Owned - Vacant	13	11	11	5	89	71	71	71	71	50
405	Other Mine Owned - Vacant	30	23	19	9	76	90	75	63	58	50
406	Other Mine Owned - Vacant	9	8	7	4	54	115	113	57	54	50

			Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
407	Other Mine Owned - Vacant	20	17	15	7	53	61	61	57	51	50
408	Other Mine Owned	18	16	14	8	53	61	61	56	51	50
409	Glencore Owned - Vacant	46	50	42	15	59	72	77	72	55	50
411	Glencore Owned - Vacant	3	4	9	6	59	62	57	54	52	50
412	Community Infrastructure	4	6	13	9	54	57	53	51	50	50
415	Private Infrastructure	2	4	8	5	53	54	52	50	49	50
417	Private	0	0	0	0	47	47	47	47	47	50
Days ab	ove PM10 criterion (days)		1				1	1			
001	Other Mine Owned - Vacant	0	0	0	0	0	4	4	3	0	-
002	Community Infrastructure	0	0	0	0	1	1	1	1	0	-
003	Other Mine Owned	0	0	0	0	0	1	1	1	0	-
004	Private - Subject to Acq. Rights	0	0	0	0	0	1	1	1	0	-
005	Private - Subject to Acq. Rights	0	0	0	0	0	1	1	1	0	-
006	Community Infrastructure	0	0	0	0	0	1	1	1	0	-
007a	Private	0	0	0	0	0	1	1	1	0	-
007b	Private	0	0	0	0	0	1	1	1	0	-
007c	Private	0	0	0	0	0	1	1	1	0	-
010	Private	0	0	0	0	0	2	2	1	0	-
011	Private	0	0	0	0	0	3	3	1	0	-
012	Private	0	0	0	0	0	3	3	1	0	-
013	Private	0	0	0	0	0	1	0	0	0	-
014	Private	0	0	0	0	0	1	0	0	0	-
015a	Private	0	0	0	0	0	1	0	0	0	-
015b	Private	0	0	0	0	0	1	0	0	0	-
017a	Private	0	0	0	0	0	0	0	0	0	-
017b	Private	0	0	0	0	0	0	0	0	0	-
019	Private	0	0	0	0	0	3	3	1	0	-
021	Private - Subject to Acq. Rights	0	0	0	0	0	3	3	1	0	-
022	Glencore Owned	0	0	0	0	0	3	3	1	0	-
023	Private - Subject to Acq. Rights	0	0	0	0	0	3	3	3	0	-
024	Glencore Owned	0	0	0	0	0	4	5	3	0	-
025	Glencore Owned	0	0	0	0	0	4	7	3	0	-
026	Glencore Owned	0	0	0	0	0	4	6	2	0	-
027	Glencore Owned	0	0	0	0	0	3	9	4	0	-
028	Glencore Owned	0	0	0	0	0	6	11	4	0	-
029	Glencore Owned	0	0	0	0	1	7	14	4	0	-
030	Glencore Owned	0	0	0	0	2	32	115	58	0	-
031	Glencore Owned	0	0	0	0	1	40	120	51	0	-
032	Glencore Owned	0	0	0	0	1	14	35	7	0	-
033 034	Glencore Owned Glencore Owned	0	0	0	0	1	6 4	13 7	4	0	-
		0	0			1	4	7	2	0	-
035 036	Glencore Owned - Vacant	0	0	0	0	1	6	12	5	0	-
036	Glencore Owned Glencore Owned - Vacant	0	0	0	0	2	6 24	47	5	0	-
037	Glencore Owned	0	0	0	0	2	42	47	18	0	-
038	Glencore Owned	0	0	0	0	2	23	73	9	0	-
039	Glencore Owned	0	0	0	0	0	1	1	1	0	-
040	Private	0	0	0	0	0	0	0	0	0	-
041	Private	0	0	0	0	0	0	0	0	0	-
042	Private	0	0	0	0	0	0	0	0	0	-
043 044a	Private	0	0	0	0	0	0	0	0	0	-
044a 044b	Private	0	0	0	0	0	0	0	0	0	-
0440	- mate	5	0	0	0	0	5	0	0	0	-

	_		Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
045	Private	0	0	0	0	0	0	0	0	0	-
046	Private	0	0	0	0	0	0	0	0	0	-
047	Private	0	0	0	0	0	0	0	0	0	-
048	Private	0	0	0	0	0	0	0	0	0	-
049	Private	0	0	0	0	0	0	0	0	0	-
050	Private	0	0	0	0	0	0	0	0	0	-
051	Private	0	0	0	0	0	0	0	0	0	-
052	Private	0	0	0	0	0	0	0	0	0	-
053	Private	0	0	0	0	0	0	0	0	0	-
054	Private	0	0	0	0	0	0	0	0	0	-
055	Private	0	0	0	0	0	0	0	0	0	-
056a	Private	0	0	0	0	0	0	0	0	0	-
056b	Private	0	0	0	0	0	0	0	0	0	-
057	Private	0	0	0	0	0	0	0	0	0	-
058	Private	0	0	0	0	0	0	0	0	0	-
059	Private	0	0	0	0	0	0	0	0	0	-
060	Private	0	0	0	0	0	0	0	0	0	-
061	Private	0	0	0	0	0	0	0	0	0	-
062	Private	0	0	0	0	0	0	0	0	0	-
063a	Private	0	0	0	0	0	0	0	0	0	-
068	Private	0	0	0	0	0	0	0	0	0	-
069a	Private	0	0	0	0	0	0	0	0	0	-
069b	Private	0	0	0	0	0	0	0	0	0	-
071	Private	0	0	0	0	0	0	0	0	0	-
072	Private	0	0	0	0	0	0	0	0	0	-
073	Private	0	0	0	0	0	0	0	0	0	-
074	Private	0	0	0	0	0	0	0	0	0	-
075	Private	0	0	0	0	0	0	0	0	0	-
076	Private	0	0	0	0	0	0	0	0	0	-
077	Private	0	0	0	0	0	0	0	0	0	-
082	Private	0	0	0	0	0	0	0	0	0	-
083	Private	0	0	0	0	0	0	0	0	0	-
084a	Private	0	0	0	0	0	0	0	0	0	-
085	Private	0	0	0	0	0	0	0	0	0	-
086	Private	0	0	0	0	0	0	0	0	0	-
087	Private	0	0	0	0	0	0	0	0	0	-
088	Private	0	0	0	0	0	0	0	0	0	-
089	Private	0	0	0	0	0	0	0	0	0	-
090	Other Mine Owned	0	0	0	0	0	0	0	0	0	-
091	Private	0	0	0	0	0	0	0	0	0	-
092	Private	0	0	0	0	0	0	0	0	0	-
093	Private Private	0		0		0	1				-
094		0	0	0	0	0	1	0	0	0	-
095 096	Private Private	0	0	0	0	0	0	0	0	0	-
096	Private	0	0	0	0	0	0	0	0	0	-
097	Private	0	0	0	0	0	0	0	0	0	
			0		0		0		0		-
099 100	Private Private	0	0	0	0	0	0	0	0	0	-
100	Private	0	0	0	0	0	0	0	0	0	-
		0	0	0	0	0	0	0	0	0	
102a 102b	Private Private	0	0	0	0	0	0	0	0	0	-
1026	Other Mine Owned	0	0	0	0	0	0	0	0	0	-
104		U	U	U	U	U	U	U	U	U	-

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
105	Private - Subject to Acq. Rights	0	0	0	0	1	1	1	1	0	-
108	Glencore Owned	0	0	0	0	4	6	2	1	0	-
109	Glencore Owned	0	0	0	0	4	5	2	1	0	-
110	Other Mine Owned - Vacant	0	0	0	0	1	23	18	15	0	-
111	Private - Subject to Acq. Rights	0	0	0	0	1	105	96	80	0	-
112	Private - Subject to Acq. Rights	0	0	0	0	0	2	2	1	0	-
114	Private - Subject to Acq. Rights	0	0	0	0	0	2	2	1	0	-
115	Private - Subject to Acq. Rights	0	0	0	0	0	3	3	2	0	-
116	Glencore Owned	0	0	0	0	0	1	1	1	0	-
117	Glencore Owned	0	0	0	0	1	3	4	2	0	-
120	Glencore Owned - Vacant	0	0	0	0	1	1	2	1	0	-
121	Glencore Owned - Vacant	0	0	0	0	1	3	1	2	0	-
122	Glencore Owned	0	0	0	0	1	4	2	3	0	-
123	Glencore Owned - Vacant	0	0	0	0	1	2	1	1	0	-
125	Glencore Owned	0	0	0	0	4	8	6	3	0	-
126	Glencore Owned - Vacant	0	0	0	0	4	6	4	2	0	-
127a	Private - Subject to Acq. Rights	0	0	0	0	1	15	11	2	1	-
127b	Private - Subject to Acq. Rights	0	0	0	0	7	15	6	1	0	-
127c	Private - Subject to Acq. Rights	0	0	0	0	37	50	12	2	1	-
127d	Private - Subject to Acq. Rights	0	0	0	0	36	45	11	1	0	-
129	Glencore Owned	0	0	0	0	59	57	17	3	0	-
130	Glencore Owned	0	0	0	0	61	62	16	4	0	-
131	Glencore Owned - Vacant	0	0	0	0	1	2	1	1	1	-
134	Private	0	0	0	0	1	1	1	1	0	-
135	Private	0	0	0	0	1	1	1	0	0	-
136	Private	0	0	0	0	1	1	1	0	0	-
143	Private - Subject to Acq. Rights	0	0	0	0	1	10	5	2	1	-
144a	Private - Subject to Acq. Rights	0	0	0	0	6	140	136	5	5	-
144b	Private - Subject to Acq. Rights	0	0	0	0	1	6	6	0	0	-
144c	Private - Subject to Acq. Rights	0	0	0	0	1	5	4	0	0	-
145	Private - Subject to Acq. Rights	0	0	0	0	4	285	284	3	3	-
146	Other Mine Owned	0	0	0	0	1	17	13	1	1	-
147	Private - Subject to Acq. Rights	0	0	0	0	2	71	65	7	1	-
148	Other Mine Owned	0	0	0	0	1	82	76	43	1	-
149	Community Infrastructure	0	0	0	0	1	21	13	2	1	-
150	Private - Subject to Acq. Rights	0	0	0	0	1	19	12	2	1	-
151	Other Mine Owned	0	0	0	0	2	17	8	2	1	-
152	Private - Subject to Acq. Rights	0	0	0	0	1	24	10	2	1	-
154	Private - Subject to Acq. Rights	0	0	0	0	2	20	7	2	1	-
155	Private - Subject to Acq. Rights	0	0	0	0	3	18	6	2	1	-
156	Private - Subject to Acq. Rights	0	0	0	0	7	17	6	1	1	-
157	Glencore Owned - Vacant	0	0	0	0	14	23	13	11	0	-
158	Other Mine Owned - Vacant	0	0	0	0	3	359	359	3	3	-
159	Other Mine Owned - Vacant	0	0	0	0	2	76	66	1	1	-
160	Other Mine Owned - Vacant	0	0	0	0	2	340	340	3	2	-
161	Glencore Owned - Vacant	0	0	0	0	1	140	2	4	1	-
162b	Private	0	0	0	0	0	0	0	0	0	-
163	Other Mine Owned	0	0	0	0	0	1	1	0	0	-
164	Other Mine Owned	0	0	0	0	0	1	0	0	0	-
165	Other Mine Owned	0	0	0	0	0	2	0	0	0	-
166	Other Mine Owned - Vacant	0	0	0	0	60	97	55	15	1	-
178	Private	0	0	0	0	0	0	0	0	0	-
170				1	1		1	i i		1	

	2.1		Project ir	isolation				Cumulative			0.11
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
210	Private	0	0	0	0	0	0	0	0	0	-
211	Private	0	0	0	0	0	0	0	0	0	-
212	Private	0	0	0	0	0	0	0	0	0	-
213	Private	0	0	0	0	0	0	0	0	0	-
259	Private	0	0	0	0	0	0	0	0	0	-
260	Private	0	0	0	0	0	0	0	0	0	-
280	Private	0	0	0	0	0	1	1	0	0	-
281	Private	0	0	0	0	0	1	1	0	0	-
282	Private	0	0	0	0	0	1	1	1	0	-
288	Private	0	0	0	0	0	0	0	0	0	-
289	Private	0	0	0	0	0	0	0	0	0	-
290	Private	0	0	0	0	0	1	0	0	0	-
291	Private	0	0	0	0	0	1	0	0	0	-
292a	Private	0	0	0	0	0	0	0	0	0	-
292b	Private	0	0	0	0	0	0	0	0	0	-
293	Private	0	0	0	0	0	2	0	0	0	-
294	Private	0	0	0	0	0	0	0	0	0	-
295	Private	0	0	0	0	0	1	0	0	0	-
296	Private	0	0	0	0	0	1	0	0	0	-
297a	Private	0	0	0	0	0	2	2	0	0	-
297b	Private	0	0	0	0	0	2	2	0	0	-
297c	Private	0	0	0	0	0	2	2	0	0	-
297d	Private	0	0	0	0	0	0	0	0	0	-
299	Private	0	0	0	0	0	2	2	0	0	-
300	Private	0	0	0	0	0	3	2	0	0	-
302	Private	0	0	0	0	0	2	1	1	0	-
303	Private	0	0	0	0	0	0	0	0	0	-
305	Private	0	0	0	0	0	0	0	0	0	-
306	Private	0	0	0	0	0	0	0	0	0	-
307	Private	0	0	0	0	0	0	0	0	0	-
308	Private	0	0	0	0	0	0	0	0	0	-
309	Private	0	0	0	0	0	1	0	0	0	-
310	Private	0	0	0	0	0	1	1	0	0	-
311	Private	0	0	0	0	0	1	0	0	0	-
312	Private	0	0	0	0	0	1	0	0	0	-
314	Private	0	0	0	0	0	1	0	0	0	-
315	Private	0	0	0	0	0	1	1	0	0	-
316	Private	0	0	0	0	0	1	1	0	0	-
317	Private	0	0	0	0	0	1	1	0	0	-
318	Private	0	0	0	0	0	1	1	0	0	-
319	Private	0	0	0	0	0	1	1	0	0	-
320	Private	0	0	0	0	0	1	1	0	0	-
321	Private	0	0	0	0	0	1	1	0	0	-
322	Private	0	0	0	0	0	1	1	0	0	-
323	Private	0	0	0	0	0	1	1	1	0	-
324	Private	0	0	0	0	0	1	1	1	0	-
325	Private	0	0	0	0	0	1	1	1	0	-
326	Private	0	0	0	0	0	1	1	1	0	-
327	Private	0	0	0	0	0	1	1	0	0	-
328	Private	0	0	0	0	0	1	1	0	0	-
329	Private	0	0	0	0	0	2	1	0	0	-
330	Private	0	0	0	0	0	2	1	0	0	-
337	Private	0	0	0	0	0	0	0	0	0	-

	_		Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
342	Private Infrastructure	0	3	0	0	5	41	59	21	2	-
344	Other Mine Owned	0	0	0	0	0	1	0	0	0	-
349a	Private	0	0	0	0	0	0	0	0	0	-
349b	Private	0	0	0	0	0	0	0	0	0	-
350	Community Infrastructure	0	0	0	0	0	0	0	0	0	-
351	Other Mine Owned	0	0	0	0	1	19	6	2	1	-
352	Other Mine Owned - Vacant	0	0	0	0	1	67	61	36	1	-
353	Other Mine Owned	0	0	0	0	1	104	100	72	1	-
356	Glencore Owned - Vacant	18	222	339	204	32	123	275	361	256	-
357	Glencore Owned - Vacant	1	29	312	343	14	23	104	329	359	-
358	Glencore Owned - Vacant	0	1	55	30	7	57	16	134	94	-
359	Glencore Owned - Vacant	0	0	0	0	7	45	60	14	2	-
360	Glencore Owned - Vacant	0	0	0	0	1	2	2	1	0	-
361	Glencore Owned - Vacant	0	0	0	0	0	3	4	3	0	-
363	Glencore Owned	0	0	0	0	1	3	3	1	0	-
364	Other Mine Owned	0	0	0	0	2	149	138	1	1	-
365	Other Mine Owned - Vacant	0	0	0	0	1	40	32	1	1	-
366	Other Mine Owned - Vacant	0	0	0	0	1	60	49	1	1	-
367	Other Mine Owned	0	0	0	0	1	54	41	1	1	-
369	Other Mine Owned - Vacant	0	0	0	0	1	38	30	1	1	-
370	Other Mine Owned	0	0	0	0	1	46	35	1	1	-
371	Other Mine Owned	0	0	0	0	1	31	23	2	1	-
372	Other Mine Owned	0	0	0	0	1	31	20	2	1	-
373	Other Mine Owned - Vacant	0	0	0	0	1	30	21	2	1	-
374	Other Mine Owned	0	0	0	0	1	28	19	2	1	-
375	Other Mine Owned	0	0	0	0	1	26	18	2	1	-
376	Other Mine Owned	0	0	0	0	1	20	8	2	1	-
377	Other Mine Owned	0	0	0	0	1	21	9	2	1	-
378	Other Mine Owned	0	0	0	0	3	19	9	2	1	-
379	Other Mine Owned	0	0	0	0	1	15	7	2	1	-
380	Other Mine Owned	0	0	0	0	1	19	8	2	1	-
381	Other Mine Owned	0	0	0	0	1	19	7	2	1	-
382	Other Mine Owned	0	0	0	0	1	24	10	2	1	-
383	Other Mine Owned	0	0	0	0	5	19	8	2	1	-
384	Other Mine Owned	0	0	0	0	4	19	6	2	1	-
385	Other Mine Owned	0	0	0	0	5	18	7	2	1	-
386	Other Mine Owned	0	0	0	0	5	18	7	2	1	-
387	Other Mine Owned	0	0	0	0	5	19	8	2	1	-
388	Other Mine Owned	0	0	0	0	5	20	9	2	1	-
389	Other Mine Owned - Vacant	0	0	0	0	5	20	8	2	1	-
390	Other Mine Owned	0	0	0	0	5	20	10	2	1	-
391	Other Mine Owned	0	0	0	0	4	16	6	2	1	-
392	Other Mine Owned - Vacant	0	0	0	0	3	18	6	2	1	-
394	Other Mine Owned	0	0	0	0	1	32	23	1	1	-
395	Other Mine Owned	0	0	0	0	1	31	23	1	1	-
396	Other Mine Owned	0	0	0	0	1	31	22	1	1	-
397	Other Mine Owned	0	0	0	0	1	30	22	2	1	-
398	Other Mine Owned	0	0	0	0	1	30	21	1	1	-
399	Other Mine Owned	0	0	0	0	1	27	19	2	1	-
400	Other Mine Owned	0	0	0	0	1	28	20	2	1	-
401	Other Mine Owned	0	0	0	0	1	30	23	1	1	-
402	Other Mine Owned	0	0	0	0	1	26	15	1	1	-
403	Other Mine Owned	0	0	0	0	1	25	14	1	1	-

			Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
404	Other Mine Owned - Vacant	0	0	0	0	34	90	72	33	21	-
405	Other Mine Owned - Vacant	0	0	0	0	42	93	68	23	3	-
406	Other Mine Owned - Vacant	0	0	0	0	2	126	114	1	1	-
407	Other Mine Owned - Vacant	0	0	0	0	1	23	8	2	1	-
408	Other Mine Owned	0	0	0	0	1	20	9	2	1	-
409	Glencore Owned - Vacant	0	0	0	0	6	44	60	14	2	-
411	Glencore Owned - Vacant	0	0	0	0	1	1	1	1	1	
412	Community Infrastructure	0	0	0	0	1	1	1	1	0	
415	Private Infrastructure	0	0	0	0	1	1	1	1	0	
417	Private	0	0	0	0	0	0	0	0	0	
Annual	average PM10 (ug/m3)	L	L	L	L	L	1	1	L		
001	Other Mine Owned - Vacant	0.7	1.0	1.7	1.1	19	31	30	30	16	25
002	Community Infrastructure	0.8	1.2	1.9	1.3	19	28	27	27	16	25
003	Other Mine Owned	0.7	1.1	1.7	1.1	19	27	26	26	16	25
004	Private - Subject to Acq. Rights	0.7	1.1	1.8	1.2	19	24	24	23	16	25
005	Private - Subject to Acq. Rights	0.7	1.0	1.7	1.1	19	25	24	24	16	25
006	Community Infrastructure	0.7	1.0	1.6	1.0	18	23	23	22	16	25
007a	Private	0.6	0.9	1.5	1.0	18	23	23	22	16	25
007b	Private	0.6	0.9	1.5	1.0	18	23	23	22	16	25
007c	Private	0.5	0.8	1.3	0.9	18	22	22	21	16	25
010	Private	0.5	0.7	1.2	0.8	18	22	22	20	16	25
011	Private	0.5	0.7	1.1	0.7	18	22	22	20	16	25
012	Private	0.5	0.7	1.1	0.7	18	22	22	20	16	25
013	Private	0.3	0.5	0.8	0.5	17	19	19	18	15	25
014	Private	0.3	0.4	0.7	0.5	17	19	19	17	15	25
015a	Private	0.3	0.4	0.7	0.4	17	18	18	17	15	25
015b	Private	0.3	0.4	0.7	0.4	17	18	18	17	15	25
017a	Private	0.2	0.3	0.6	0.4	16	18	18	16	15	25
017b	Private	0.3	0.4	0.6	0.4	17	18	18	17	15	25
019	Private	0.4	0.6	1.0	0.7	19	22	22	20	16	25
021	Private - Subject to Acq. Rights	0.5	0.7	1.2	0.8	19	23	23	21	16	25
022	Glencore Owned	0.5	0.7	1.2	0.8	19	23	23	21	16	25
023	Private - Subject to Acq. Rights	0.5	0.7	1.2	0.8	19	23	24	21	16	25
024	Glencore Owned	0.5	0.7	1.2	0.8	20	24	25	22	16	25
025	Glencore Owned	0.5	0.7	1.2	0.8	20	24	25	22	16	25
025	Glencore Owned	0.5	0.7	1.2	0.8	20	24	25	22	16	25
020	Glencore Owned	0.6	0.8	1.4	0.9	20	25	25	23	16	25
028	Glencore Owned	0.5	0.8	1.3	0.8	20	25	20	23	16	25
029	Glencore Owned	0.6	0.8	1.4	0.9	20	26	28	23	16	25
02.9	Glencore Owned	0.6	0.0	1.4	1.1	21	31	40	33	17	25
030	Glencore Owned	0.6	0.9	1.5	1.0	23	31	40	33	17	25
032	Glencore Owned	0.0	0.6	1.1	0.7	23	26	30	24	16	25
032	Glencore Owned	0.4	0.6	1.0	0.7	21	20	26	24	16	25
033	Glencore Owned	0.4	0.5	0.9	0.6	19	24	20	21	15	25
034	Glencore Owned - Vacant	0.4	0.5	0.9	0.6	19	23	24	20	15	25
035	Glencore Owned	0.3							20		25
			0.5	1.0	0.6	20	24	26		16 16	
037	Glencore Owned - Vacant	0.4	0.6	1.0	0.7	22	28	33	25	16 17	25
038	Glencore Owned	0.4	0.6	1.2	0.8	23	31	40	29	17	25
039	Glencore Owned	0.4	0.6	1.1	0.7	22	29	35	26	16	25
040	Glencore Owned	0.2	0.3	0.6	0.4	17	18	18	17	15	25
041	Private	0.1	0.1	0.2	0.2	15	15	15	14	14	25
042	Private	0.1	0.1	0.2	0.2	15	15	15	14	14	25

15	21.4		Project ir	isolation				Cumulative			0.1
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
043	Private	0.1	0.1	0.2	0.1	14	15	14	14	14	25
044a	Private	0.1	0.1	0.2	0.1	14	15	14	14	14	25
044b	Private	0.1	0.1	0.2	0.1	14	14	14	14	14	25
045	Private	0.1	0.1	0.2	0.1	14	15	14	14	14	25
046	Private	0.1	0.1	0.2	0.1	14	15	14	14	14	25
047	Private	0.1	0.1	0.2	0.1	14	15	14	14	14	25
048	Private	0.1	0.1	0.2	0.2	15	15	15	14	14	25
049	Private	0.1	0.1	0.1	0.1	14	14	14	14	14	25
050	Private	0.1	0.1	0.2	0.1	14	15	14	14	14	25
051	Private	0.1	0.1	0.2	0.1	14	15	15	14	14	25
052	Private	0.1	0.1	0.2	0.1	14	15	14	14	14	25
053	Private	0.1	0.1	0.2	0.1	14	14	14	14	14	25
054	Private	0.1	0.1	0.2	0.1	14	15	14	14	14	25
055	Private	0.1	0.1	0.2	0.1	14	14	14	14	14	25
056a	Private	0.1	0.1	0.1	0.1	14	14	14	14	14	25
056b	Private	0.1	0.1	0.1	0.1	14	14	14	14	14	25
057	Private	0.1	0.1	0.1	0.1	14	14	14	14	14	25
058	Private	0.1	0.1	0.2	0.1	14	15	15	14	14	25
059	Private	0.1	0.1	0.2	0.1	15	15	15	14	14	25
060	Private	0.1	0.1	0.2	0.1	14	15	15	14	14	25
061	Private	0.1	0.1	0.2	0.1	14	15	15	14	14	25
062	Private	0.1	0.1	0.2	0.1	15	15	15	14	14	25
063a	Private	0.1	0.1	0.2	0.1	14	15	15	14	14	25
068	Private	0.1	0.1	0.2	0.2	15	15	15	15	14	25
069a	Private	0.1	0.2	0.3	0.2	15	15	15	15	14	25
069b	Private	0.1	0.1	0.2	0.2	15	15	15	15	14	25
071	Private	0.1	0.2	0.3	0.2	15	15	15	15	14	25
072	Private	0.1	0.2	0.3	0.2	15	15	15	15	14	25
073	Private	0.1	0.2	0.3	0.2	15	16	15	15	14	25
074	Private	0.2	0.3	0.5	0.3	16	17	16	16	14	25
075	Private	0.1	0.2	0.3	0.2	15	16	15	15	14	25
076	Private	0.1	0.2	0.3	0.2	15	16	16	15	14	25
077	Private	0.1	0.2	0.3	0.2	15	16	15	15	14	25
082	Private	0.2	0.2	0.4	0.2	15	16	16	15	14	25
083	Private	0.2	0.3	0.5	0.3	16	17	17	16	15	25
084a	Private	0.2	0.3	0.5	0.3	15	16	16	16	14	25
085	Private	0.2	0.3	0.5	0.3	16	17	17	16	15	25
086	Private	0.3	0.4	0.6	0.4	16	17	17	16	15	25
087	Private	0.2	0.3	0.6	0.4	16	17	17	16	15	25
088	Private	0.3	0.4	0.7	0.4	16	18	18	17	15	25
089	Private	0.3	0.5	0.8	0.5	17	19	18	17	15	25
090	Other Mine Owned	0.3	0.5	0.8	0.5	17	19	18	18	15	25
091	Private	0.4	0.5	0.9	0.6	17	19	19	18	15	25
092	Private	0.4	0.6	1.0	0.7	17	20	20	19	15	25
093	Private	0.4	0.6	0.9	0.6	18	20	20	19	15	25
094	Private	0.3	0.5	0.7	0.5	17	19	19	17	15	25
095	Private	0.3	0.4	0.7	0.4	17	18	18	17	15	25
096	Private	0.3	0.5	0.8	0.5	16	18	18	17	15	25
097	Private	0.3	0.5	0.8	0.5	16	18	18	17	15	25
098	Private	0.3	0.4	0.7	0.5	16	18	18	17	15	25
099	Private	0.4	0.6	0.9	0.6	17	19	19	18	15	25
100	Private	0.4	0.6	1.1	0.7	17	20	20	19	15	25
101	Private	0.4	0.6	1.0	0.6	17	19	19	18	15	25

			Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
102a	Private	0.5	0.7	1.1	0.7	17	20	20	19	15	25
102b	Private	0.5	0.7	1.1	0.7	17	21	20	20	15	25
104	Other Mine Owned	0.5	0.7	1.1	0.7	17	21	20	20	15	25
105	Private - Subject to Acq. Rights	0.9	1.4	2.3	1.5	20	25	25	24	17	25
108	Glencore Owned	2.9	3.9	4.3	2.4	25	31	30	29	18	25
109	Glencore Owned	3.0	4.0	4.4	2.4	24	30	29	29	18	25
110	Other Mine Owned - Vacant	2.8	3.3	3.1	1.6	24	36	36	34	18	25
111	Private - Subject to Acq. Rights	3.0	3.2	2.9	1.4	25	44	43	42	19	25
112	Private - Subject to Acq. Rights	0.6	0.9	1.5	1.0	19	23	24	22	16	25
114	Private - Subject to Acq. Rights	0.9	1.2	2.1	1.4	20	25	26	25	17	25
115	Private - Subject to Acq. Rights	0.9	1.3	2.2	1.5	20	26	27	26	17	25
116	Glencore Owned	0.9	1.3	2.2	1.5	20	26	25	25	17	25
117	Glencore Owned	1.1	1.5	2.6	1.7	20	27	27	26	17	25
120	Glencore Owned - Vacant	1.4	2.1	3.3	2.1	21	28	27	27	18	25
121	Glencore Owned - Vacant	2.2	3.3	4.6	2.8	24	29	28	28	18	25
122	Glencore Owned	2.2	3.4	4.8	2.9	24	29	28	28	19	25
123	Glencore Owned - Vacant	1.8	2.7	4.0	2.5	22	29	28	28	18	25
125	Glencore Owned	3.0	4.5	5.5	3.1	25	30	29	29	19	25
126	Glencore Owned - Vacant	2.9	4.2	4.9	2.8	25	30	29	28	19	25
127a	Private - Subject to Acq. Rights	2.4	2.2	1.9	0.9	24	35	34	30	20	25
127b	Private - Subject to Acq. Rights	5.0	4.5	3.2	1.5	27	37	34	31	19	25
127c	Private - Subject to Acq. Rights	7.7	6.1	4.1	1.9	31	38	34	30	20	25
127d	Private - Subject to Acq. Rights	7.2	5.9	4.1	1.9	31	38	35	30	20	25
129	Glencore Owned	8.5	7.2	4.9	2.2	33	38	35	30	20	25
130	Glencore Owned	8.8	7.1	4.7	2.2	33	39	35	30	20	25
131	Glencore Owned - Vacant	0.7	1.1	2.8	1.9	21	25	19	19	17	25
134	Private	0.3	0.4	0.8	0.5	16	17	16	15	15	25
135	Private	0.2	0.4	0.7	0.5	16	17	16	15	15	25
136	Private	0.2	0.3	0.6	0.4	16	16	15	15	14	25
143	Private - Subject to Acq. Rights	3.8	3.3	2.6	1.2	25	33	31	27	20	25
144a	Private - Subject to Acq. Rights	0.8	0.8	0.8	0.4	25	46	45	26	24	25
144b	Private - Subject to Acq. Rights	0.4	0.4	0.5	0.2	22	28	27	22	21	25
144c	Private - Subject to Acq. Rights	0.4	0.4	0.5	0.2	22	27	27	22	21	25
145	Private - Subject to Acq. Rights	0.8	0.8	0.8	0.4	24	85	84	25	23	25
146	Other Mine Owned	1.6	1.5	1.5	0.7	23	34	33	28	21	25
147	Private - Subject to Acq. Rights	1.3	1.2	1.2	0.6	26	41	40	33	25	25
148	Other Mine Owned	1.5	1.4	1.4	0.7	25	42	41	37	23	25
149	Community Infrastructure	2.9	2.8	2.4	1.2	25	36	34	27	21	25
150	Private - Subject to Acq. Rights	2.9	2.8	2.4	1.2	25	35	34	27	21	25
151	Other Mine Owned	3.5	3.3	2.7	1.3	26	35	33	27	20	25
152	Private - Subject to Acq. Rights	3.4	3.1	2.6	1.3	26	35	34	28	21	25
154	Private - Subject to Acq. Rights	3.8	3.5	2.8	1.3	26	34	33	27	20	25
155	Private - Subject to Acq. Rights	4.1	3.7	2.9	1.4	26	34	32	27	20	25
156	Private - Subject to Acq. Rights	5.0	4.3	3.2	1.5	27	34	31	27	20	25
157	Glencore Owned - Vacant	4.6	6.0	5.7	2.9	28	33	32	30	19	25
158	Other Mine Owned - Vacant	1.2	1.2	1.2	0.6	24	197	196	26	23	25
159	Other Mine Owned - Vacant	1.5	1.5	1.5	0.7	24	40	39	28	23	25
160	Other Mine Owned - Vacant	1.3	1.3	1.3	0.6	24	107	106	26	20	25
161	Glencore Owned - Vacant	1.3	2.0	6.2	4.6	24	44	21	20	20	25
162b	Private	0.1	0.1	0.2	0.2	15	15	15	14	14	25
163	Other Mine Owned	0.8	1.1	1.4	0.2	18	22	21	21	16	25
164	Other Mine Owned	0.8	1.1	1.4	0.8	18	22	21	21	16	25
164	Other Mine Owned	0.8	1.1	1.4	0.8	18	22	21	21	16	25
105		0.3	1.1	1.4	0.0	10	~~	21	21	10	25

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
166	Other Mine Owned - Vacant	8.6	6.5	4.6	2.1	34	42	38	31	22	25
178	Private	0.0	0.1	0.1	0.1	14	14	14	14	14	25
209	Private	0.0	0.0	0.1	0.0	14	14	14	14	14	25
210	Private	0.0	0.1	0.1	0.1	14	14	14	14	14	25
211	Private	0.1	0.1	0.1	0.1	14	14	14	14	14	25
212	Private	0.1	0.1	0.1	0.1	14	14	14	14	14	25
213	Private	0.1	0.1	0.1	0.1	14	14	14	14	14	25
259	Private	0.2	0.2	0.4	0.3	15	16	16	15	14	25
260	Private	0.2	0.2	0.4	0.2	15	16	16	15	14	25
280	Private	0.6	0.9	1.2	0.8	17	21	21	20	16	25
281	Private	0.6	0.9	1.3	0.8	17	21	21	21	16	25
282	Private	0.8	1.0	1.4	0.8	18	22	21	21	16	25
288	Private	0.4	0.6	0.8	0.5	16	18	18	17	15	25
289	Private	0.5	0.7	1.0	0.6	17	19	19	19	15	25
290	Private	0.7	0.9	1.2	0.7	17	21	20	20	16	25
291	Private	0.8	1.0	1.3	0.8	17	21	21	21	16	25
292a	Private	0.7	0.9	1.2	0.7	17	21	20	20	16	25
292b	Private	0.7	0.9	1.2	0.7	17	21	20	20	16	25
293	Private	0.8	1.1	1.3	0.8	18	22	21	21	16	25
294	Private	0.7	0.9	1.1	0.7	17	20	20	19	16	25
295	Private	0.8	1.0	1.2	0.7	18	21	21	20	16	25
296	Private	0.8	1.0	1.2	0.7	18	21	21	20	16	25
297a	Private	0.8	1.0	1.1	0.6	18	22	21	21	17	25
297b	Private	0.8	1.0	1.1	0.6	18	22	21	21	17	25
297c	Private	0.8	1.0	1.1	0.6	18	22	21	21	17	25
297d	Private	0.7	0.9	1.0	0.6	17	20	20	19	16	25
299	Private	0.8	1.0	1.1	0.6	18	22	21	21	17	25
300	Private	0.8	1.0	1.0	0.5	18	22	21	21	17	25
302	Private	0.8	0.9	0.9	0.5	18	22	21	21	17	25
303	Private	0.5	0.6	0.7	0.4	16	18	18	18	15	25
305	Private	0.6	0.7	0.8	0.4	17	19	19	18	16	25
306	Private	0.6	0.7	0.7	0.4	17	20	19	19	16	25
307	Private	0.6	0.7	0.7	0.4	17	20	20	19	16	25
308	Private	0.6	0.8	0.7	0.4	17	20	20	19	16	25
309	Private	0.7	0.8	0.8	0.4	17	20	20	19	16	25
310	Private	0.7	0.8	0.8	0.4	18	21	20	20	17	25
311	Private	0.7	0.8	0.8	0.4	18	20	20	19	17	25
312	Private	0.6	0.7	0.7	0.4	18	20	20	19	17	25
314	Private	0.6	0.7	0.7	0.3	18	21	20	20	17	25
315	Private	0.7	0.7	0.7	0.3	18	21	21	20	17	25
316	Private	0.7	0.8	0.7	0.4	18	21	21	20	17	25
317	Private	0.7	0.8	0.7	0.4	18	21	21	20	17	25
318	Private	0.7	0.8	0.8	0.4	18	21	21	20	17	25
319	Private	0.7	0.8	0.8	0.4	18	21	21	20	17	25
320	Private	0.7	0.8	0.8	0.4	18	21	21	20	17	25
321	Private	0.7	0.8	0.8	0.4	18	21	21	20	17	25
322	Private	0.7	0.8	0.8	0.4	18	21	21	20	17	25
323	Private	0.7	0.8	0.8	0.4	19	22	21	21	17	25
324	Private	0.8	0.9	0.8	0.4	19	22	22	21	17	25
325	Private	0.8	0.9	0.8	0.4	19	22	22	21	18	25
326	Private	0.7	0.8	0.8	0.4	19	22	22	21	18	25
327	Private	0.7	0.8	0.7	0.4	19	22	22	21	18	25
328	Private	0.7	0.8	0.7	0.4	19	22	21	21	18	25

	•		Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
329	Private	0.7	0.7	0.6	0.3	19	22	22	21	18	25
330	Private	0.6	0.7	0.6	0.3	19	22	21	21	18	25
337	Private	0.0	0.0	0.1	0.0	14	14	14	14	14	25
342	Private Infrastructure	9.3	12.3	8.4	3.1	31	39	37	30	23	25
344	Other Mine Owned	0.9	1.2	1.4	0.8	18	22	21	21	16	25
349a	Private	0.6	0.7	0.8	0.4	17	19	19	19	16	25
349b	Private	0.6	0.7	0.8	0.4	17	19	19	19	16	25
350	Community Infrastructure	0.1	0.1	0.2	0.1	14	15	15	14	14	25
351	Other Mine Owned	3.7	3.4	2.8	1.3	26	35	33	27	20	25
352	Other Mine Owned - Vacant	1.5	1.4	1.3	0.7	23	40	39	36	21	25
353	Other Mine Owned	1.3	1.2	1.2	0.6	25	44	43	39	23	25
356	Glencore Owned - Vacant	17.4	70.0	266.5	64.3	37	46	91	286	81	25
357	Glencore Owned - Vacant	7.9	20.9	131.9	126.0	34	36	41	150	142	25
358	Glencore Owned - Vacant	4.1	8.4	27.0	22.3	33	40	27	45	38	25
359	Glencore Owned - Vacant	8.8	11.0	6.9	2.7	31	38	36	30	23	25
360	Glencore Owned - Vacant	1.2	1.8	2.9	1.9	21	28	27	27	17	25
361	Glencore Owned - Vacant	0.8	1.2	2.0	1.3	20	26	27	25	17	25
363	Glencore Owned	1.2	1.7	2.8	1.8	21	27	27	27	17	25
364	Other Mine Owned	1.7	1.7	1.6	0.8	24	46	45	26	22	25
365	Other Mine Owned - Vacant	2.0	2.0	1.9	0.9	24	38	37	26	21	25
366	Other Mine Owned - Vacant	1.9	1.9	1.8	0.9	24	39	38	26	21	25
367	Other Mine Owned	2.0	2.0	1.8	0.9	24	39	37	26	21	25
369	Other Mine Owned - Vacant	2.1	2.0	1.9	0.9	25	38	36	27	22	25
370	Other Mine Owned	2.0	2.0	1.8	0.9	24	38	37	27	22	25
371	Other Mine Owned	2.6	2.4	2.2	1.1	25	37	36	28	22	25
372	Other Mine Owned	2.8	2.6	2.3	1.1	26	37	35	28	22	25
373	Other Mine Owned - Vacant	2.7	2.5	2.2	1.1	25	37	35	28	21	25
374	Other Mine Owned	2.8	2.6	2.3	1.1	26	37	35	29	22	25
375	Other Mine Owned	3.0	2.8	2.4	1.2	26	36	35	28	21	25
376	Other Mine Owned	3.2	3.1	2.6	1.2	26	35	33	27	20	25
377	Other Mine Owned	3.3	3.1	2.6	1.3	26	35	33	27	21	25
378	Other Mine Owned	3.7	3.4	2.8	1.3	26	35	33	27	20	25
379	Other Mine Owned	3.1	3.0	2.5	1.2	25	35	33	27	20	25
380	Other Mine Owned	3.4	3.2	2.7	1.3	26	35	33	27	20	25
381	Other Mine Owned	3.7	3.4	2.8	1.3	26	35	33	27	20	25
382	Other Mine Owned	3.4	3.1	2.6	1.3	26	35	33	28	21	25
383	Other Mine Owned	3.9	3.6	2.9	1.4	26	34	33	27	20	25
384	Other Mine Owned	3.9	3.6	2.9	1.4	26	34	32	27	20	25
385	Other Mine Owned	4.1	3.7	3.0	1.4	26	34	32	27	20	25
386	Other Mine Owned	4.2	3.8	3.0	1.4	26	34	32	27	20	25
387	Other Mine Owned	4.0	3.7	2.9	1.4	26	35	33	27	20	25
388	Other Mine Owned	3.9	3.7	3.0	1.4	26	35	33	27	20	25
389	Other Mine Owned - Vacant	4.2	3.8	3.0	1.4	27	34	33	27	20	25
390	Other Mine Owned	4.2	3.8	3.0	1.4	27	35	33	27	20	25
391	Other Mine Owned	4.6	4.1	3.1	1.5	27	34	32	27	20	25
392	Other Mine Owned - Vacant	4.2	3.7	2.9	1.4	26	34	32	27	20	25
394	Other Mine Owned	2.4	2.3	2.1	1.0	25	37	36	28	22	25
395	Other Mine Owned	2.5	2.3	2.1	1.1	25	37	36	28	22	25
396	Other Mine Owned	2.4	2.3	2.1	1.0	25	37	35	28	22	25
397	Other Mine Owned	2.4	2.3	2.1	1.0	25	37	35	28	22	25
398	Other Mine Owned	2.4	2.3	2.1	1.0	25	37	35	28	22	25
399	Other Mine Owned	2.5	2.4	2.1	1.1	25	37	35	28	22	25
400	Other Mine Owned	2.6	2.4	2.2	1.1	25	37	35	28	22	25

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
401	Other Mine Owned	2.3	2.2	2.0	1.0	25	37	35	28	22	25
402	Other Mine Owned	2.0	1.9	1.8	0.9	24	36	35	28	22	25
403	Other Mine Owned	2.2	2.1	2.0	1.0	25	36	35	28	21	25
404	Other Mine Owned - Vacant	2.1	1.8	1.6	0.8	32	42	40	32	29	25
405	Other Mine Owned - Vacant	4.4	3.5	2.6	1.2	32	43	40	31	25	25
406	Other Mine Owned - Vacant	1.3	1.3	1.3	0.7	24	45	44	28	23	25
407	Other Mine Owned - Vacant	3.6	3.3	2.7	1.3	26	35	33	28	21	25
408	Other Mine Owned	3.3	3.1	2.6	1.3	26	35	33	27	21	25
409	Glencore Owned - Vacant	8.9	11.2	7.0	2.7	31	38	36	29	23	25
411	Glencore Owned - Vacant	0.4	0.6	1.3	0.9	19	21	18	17	16	25
412	Community Infrastructure	0.4	0.6	1.4	0.9	18	19	17	17	15	25
415	Private Infrastructure	0.3	0.4	0.8	0.5	16	17	16	15	15	25
417	Private	0.0	0.0	0.0	0.0	14	14	14	14	14	25
Maximu	m 24-hour average PM2.5 (ug/m3)		r	r			r	r		-	
001	Other Mine Owned - Vacant	2	3	3	2	19	25	25	25	19	25
002	Community Infrastructure	3	3	3	2	19	23	23	23	19	25
003	Other Mine Owned	2	3	3	2	19	22	22	22	19	25
004	Private - Subject to Acq. Rights	2	3	3	2	19	20	21	20	19	25
005	Private - Subject to Acq. Rights	2	3	3	2	19	21	21	21	19	25
006	Community Infrastructure	2	3	3	2	19	21	21	21	19	25
007a	Private	2	3	3	1	19	20	20	20	19	25
007b	Private	2	3	3	1	19	20	20	20	19	25
007c	Private	2	2	3	1	19	20	20	20	19	25
010	Private	2	3	3	2	19	20	20	20	19	25
011	Private	2	3	3	1	19	20	20	20	19	25
012	Private	2	3	3	2	19	20	20	20	19	25
013	Private	1	2	2	1	19	19	20	19	19	25
014	Private	1	2	2	1	19	19	19	19	19	25
015a	Private	1	2	2	1	19	19	19	19	19	25
015b	Private	1	2	2	1	19	19	19	19	19	25
017a	Private	1	2	2	1	19	19	19	19	19	25
017b	Private	1	2	2	1	19	19	19	19	19	25
019	Private	2	2	3	2	19	20	20	20	19	25
021	Private - Subject to Acq. Rights	2	3	4	2	19	20	20	20	19	25
022	Glencore Owned	2	3	3	2	19	20	20	20	19	25
023	Private - Subject to Acq. Rights	2	3	4	2	19	20	20	20	19	25
024	Glencore Owned	2	3	4	2	19	20	20	20	19	25
025	Glencore Owned	2	3	4	2	19	20	20	20	19	25
026	Glencore Owned	2	3	4	2	19	20	20	20	19	25
027	Glencore Owned	2	3	4	2	19	20	20	20	19	25
028	Glencore Owned	2	3	4	2	19	20	20	20	19	25
029	Glencore Owned	2	3	4	2	19	20	20	20	19	25
030	Glencore Owned	2	3	5	3	19	20	22	21	19	25
031	Glencore Owned	1	3	4	2	19	20	22	21	19	25
032	Glencore Owned	1	2	3	2	19	20	20	20	19	25
033	Glencore Owned	1	2	3	2	19	20	20	20	19	25
034	Glencore Owned	1	2	3	2	19	20	20	20	19	25
035	Glencore Owned - Vacant	1	2	3	2	19	20	20	20	19	25
036	Glencore Owned	1	2	3	2	19	20	20	20	19	25
037	Glencore Owned - Vacant	1	1	3	2	19	20	21	21	19	25
038	Glencore Owned	1	2	3	2	19	21	21	21	19	25
039	Glencore Owned	1	2	3	2	19	20	21	21	19	25

ID	Status	Project in isolation				Cumulative					
		Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
040	Glencore Owned	1	1	1	1	19	20	20	20	19	25
041	Private	0	0	1	0	19	19	19	19	19	25
042	Private	0	0	1	0	19	19	19	19	19	25
043	Private	0	0	1	0	19	19	19	19	19	25
044a	Private	0	0	0	0	19	19	19	19	19	25
044b	Private	0	0	1	0	19	19	19	19	19	25
045	Private	0	0	0	0	19	19	19	19	19	25
046	Private	0	0	0	0	19	19	19	19	19	25
047	Private	0	0	0	0	19	19	19	19	19	25
048	Private	0	0	1	0	19	19	19	19	19	25
049	Private	0	0	0	0	19	19	19	19	19	25
050	Private	0	0	0	0	19	19	19	19	19	25
051	Private	0	0	0	0	19	19	19	19	19	25
052	Private	0	0	0	0	19	19	19	19	19	25
053	Private	0	0	0	0	19	19	19	19	19	25
054	Private	0	0	0	0	19	19	19	19	19	25
055	Private	0	0	0	0	19	19	19	19	19	25
056a	Private	0	0	0	0	19	19	19	19	19	25
056b	Private	0	0	0	0	19	19	19	19	19	25
057	Private	0	0	0	0	19	19	19	19	19	25
058	Private	0	0	1	0	19	19	19	19	19	25
059	Private	0	0	1	0	19	19	19	19	19	25
060	Private	0	0	1	0	19	19	19	19	19	25
061	Private	0	0	1	0	19	19	19	19	19	25
062	Private	0	0	1	1	19	19	19	19	19	25
063a	Private	0	1	1	1	19	19	19	19	19	25
068	Private	0	1	1	1	19	19	19	19	19	25
069a	Private	1	1	1	1	19	19	19	19	19	25
069b	Private	0	1	1	1	19	19	19	19	19	25
071	Private	1	1	1	1	19	19	19	19	19	25
072	Private	1	1	1	1	19	19	19	19	19	25
073	Private	1	1	1	1	19	19	19	19	19	25
074	Private	1	1	2	1	19	19	19	19	19	25
075	Private	1	1	1	1	19	19	19	19	19	25
076	Private	1	1	1	1	19	19	19	19	19	25
077	Private	1	1	1	1	19	19	19	19	19	25
082	Private	1	1	1	1	19	19	19	19	19	25
083	Private	1	1	2	1	19	19	19	19	19	25
084a	Private	1	1	1	1	19	19	19	19	19	25
085	Private	1	1	1	1	19	19	19	19	19	25
086	Private	1	1	2	1	19	19	19	19	19	25
087	Private	1	1	2	1	19	19	19	19	19	25
088	Private	1	1	2	1	19	19	19	19	19	25
089	Private	1	2	2	1	19	19	19	19	19	25
090	Other Mine Owned	1	2	2	1	19	19	19	19	19	25
091	Private	1	2	2	1	19	20	20	20	19	25
092	Private	1	2	2	1	19	20	20	20	19	25
093	Private	1	2	2	1	19	20	20	20	19	25
094	Private	1	2	2	1	19	19	19	19	19	25
095	Private	1	2	2	1	19	19	19	19	19	25
096	Private	1	1	1	1	19	19	19	19	19	25
097	Private	1	1	2	1	19	19	19	19	19	25
098	Private	1	1	2	1	19	19	19	19	19	25

	Status	Project in isolation				Cumulative]
ID		Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
099	Private	1	2	2	1	19	19	19	19	19	25
100	Private	1	2	2	1	19	19	19	19	19	25
101	Private	1	1	2	1	19	19	19	19	19	25
102a	Private	1	1	2	2	19	19	19	19	19	25
102b	Private	1	1	2	2	19	19	19	19	19	25
104	Other Mine Owned	1	1	2	2	19	19	19	19	19	25
105	Private - Subject to Acq. Rights	3	4	4	2	19	21	21	21	19	25
108	Glencore Owned	5	6	6	3	20	21	21	21	19	25
109	Glencore Owned	6	6	6	3	20	21	21	21	19	25
110	Other Mine Owned - Vacant	4	5	6	3	20	23	23	23	20	25
111	Private - Subject to Acq. Rights	4	5	5	3	21	25	25	25	20	25
112	Private - Subject to Acq. Rights	2	3	4	2	19	20	20	20	19	25
114	Private - Subject to Acq. Rights	3	4	4	2	19	21	21	21	19	25
115	Private - Subject to Acq. Rights	3	4	5	3	19	21	21	21	19	25
116	Glencore Owned	3	4	4	2	19	21	21	21	19	25
117	Glencore Owned	4	5	6	3	20	21	21	21	19	25
120	Glencore Owned - Vacant	4	5	6	3	20	21	21	21	19	25
121	Glencore Owned - Vacant	4	6	7	3	20	21	21	21	19	25
122	Glencore Owned	5	6	8	4	20	21	21	21	19	25
123	Glencore Owned - Vacant	4	6	6	3	20	21	21	21	19	25
125	Glencore Owned	5	8	7	4	20	21	21	21	19	25
126	Glencore Owned - Vacant	5	7	6	3	20	21	21	21	19	25
127a	Private - Subject to Acq. Rights	4	4	4	2	20	22	22	22	20	25
127b	Private - Subject to Acq. Rights	7	7	6	2	20	23	23	22	20	25
127c	Private - Subject to Acq. Rights	10	9	7	3	21	23	22	22	20	25
127d	Private - Subject to Acq. Rights	10	9	7	3	20	22	22	22	20	25
129	Glencore Owned	10	10	9	4	21	22	22	22	20	25
130	Glencore Owned	11	10	8	4	22	23	22	22	20	25
131	Glencore Owned - Vacant	2	3	5	3	21	23	21	21	20	25
134	Private	1	1	2	1	20	20	20	20	19	25
135	Private	1	1	2	1	20	20	20	19	19	25
136	Private	1	1	2	1	20	20	20	19	19	25
143	Private - Subject to Acq. Rights	5	5	5	2	20	22	22	21	20	25
144a	Private - Subject to Acq. Rights	2	2	2	1	20	31	30	20	20	25
144b	Private - Subject to Acq. Rights	1	1	1	1	19	21	21	20	19	25
144c	Private - Subject to Acq. Rights	1	1	1	1	19	21	21	20	19	25
145	Private - Subject to Acq. Rights	2	2	2	1	20	58	57	21	20	25
146	Other Mine Owned	3	3	3	1	20	22	22	21	20	25
147	Private - Subject to Acq. Rights	3	3	3	1	21	35	34	23	21	25
148	Other Mine Owned Community Infrastructure	3	3	3	1	21	27	27	23	20	25
149	,	4 5	5 5	5 5	3	20 20	23 23	23 23	21 21	20 20	25 25
150 151	Private - Subject to Acq. Rights Other Mine Owned	5		5	2	20	23	23	21	20	25
151	Private - Subject to Acq. Rights	5 6	5 6	5	2	20	23	23	21	20	25 25
152	Private - Subject to Acq. Rights	6	6	5	2	20	23	22	21	20	25
154	Private - Subject to Acq. Rights	6	6	5	2	20	22	22	21	20	25
155	Private - Subject to Acq. Rights	6	6	6	3	20	22	22	21	20	25
150	Glencore Owned - Vacant	8	8	8	4	20	22	22	21	20	25
157	Other Mine Owned - Vacant	° 2	3	3	2	20	112	111	21	20	25
158	Other Mine Owned - Vacant	3	3	3	2	20	28	27	21	20	25
160	Other Mine Owned - Vacant	2	3	3	2	20	28 81	81	21	20	25
160	Glencore Owned - Vacant	3	4	3 9	6	20	27	21	21	20	25
162b	Private	0	4	9	1	19	19	19	19	19	25
1020	- mate	U			1	13	13	13	13	15	25

	_		Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
163	Other Mine Owned	2	2	2	2	19	19	19	19	19	25
164	Other Mine Owned	2	2	2	2	19	19	19	19	19	25
165	Other Mine Owned	2	2	3	2	19	19	19	19	19	25
166	Other Mine Owned - Vacant	13	10	8	4	22	23	23	21	20	25
178	Private	0	0	0	0	19	19	19	19	19	25
209	Private	0	0	0	0	19	19	19	19	19	25
210	Private	0	0	0	0	19	19	19	19	19	25
211	Private	0	0	0	0	19	19	19	19	19	25
212	Private	0	0	0	0	19	19	19	19	19	25
213	Private	0	0	0	0	19	19	19	19	19	25
259	Private	1	1	1	1	19	19	19	19	19	25
260	Private	1	1	1	1	19	19	19	19	19	25
280	Private	1	2	2	1	19	19	19	19	19	25
281	Private	1	2	2	1	19	19	19	19	19	25
282	Private	1	2	2	1	19	19	19	19	19	25
288	Private	1	1	1	1	19	19	19	19	19	25
289	Private	1	2	2	1	19	19	19	19	19	25
290	Private	1	2	2	1	19	19	19	19	19	25
291	Private	1	2	2	1	19	19	19	19	19	25
292a	Private	1	2	2	1	19	19	19	19	19	25
292b	Private	1	2	2	1	19	19	19	19	19	25
293	Private	2	2	3	1	19	19	19	19	19	25
294	Private	1	2	2	1	19	19	19	19	19	25
295	Private	2	2	3	1	19	19	19	19	19	25
296	Private	2	2	3	2	19	19	19	19	19	25
297a	Private	2	2	3	2	19	19	19	19	19	25
297b	Private	2	2	3	2	19	19	19	19	19	25
297c	Private	2	2	3	2	19	19	19	19	19	25
297d	Private	1	2	2	1	19	19	19	19	19	25
299	Private	2	2	3	2	19	19	19	19	19	25
300	Private	2	2	3	2	19	19	19	19	19	25
302	Private	2	2	3	1	19	19	19	19	19	25
303	Private	1	1	2	1	19	19	19	19	19	25
305	Private	1	2	2	1	19	19	19	19	19	25
306	Private	1	2	2	1	19	19	19	19	19	25
307	Private	1	2	2	1	19	19	19	19	19	25
308	Private	1	2	3	1	19	19	19	19	19	25
309	Private	2	2	3	1	19	19	19	19	19	25
310	Private	2	2	3	1	19	19	19	19	19	25
311	Private	2	2	3	1	19	19	19	19	19	25
312 314	Private	1	2	2	1	19	19 19	19	19 19	19 19	25 25
	Private					19		19			
315 316	Private Private	2	2	2	1	19 19	19 19	19 19	19 19	19 19	25 25
316	Private	2	2	2	1	19	19	19	19	19	25
317	Private	2	2	3	1	19	19	19	19	19	25
318	Private	2	2	3	1	19	19	19	19	19	25
319	Private	2	2	3	1	19	19	19	19	19	25
320		2	2		1		19 19		19 19		
321	Private Private	2	2	3	1	19 19	19	19 19	19	19 19	25 25
323	Private Private	2	3	3	1	19	19	19	19	19	25
324		2	3	3	1	19	19	19	19	19	25
325	Private	2	3	3	1	19	19	19	19	19	25

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
326	Private	2	3	2	1	19	19	19	19	19	25
327	Private	2	3	2	1	19	19	19	19	19	25
328	Private	2	3	2	1	19	19	19	19	19	25
329	Private	2	2	2	1	19	19	19	19	19	25
330	Private	2	2	2	1	19	19	19	19	19	25
337	Private	0	0	0	0	19	19	19	19	19	25
342	Private Infrastructure	13	21	19	6	22	23	28	28	21	25
344	Other Mine Owned	2	2	2	2	19	19	19	19	19	25
349a	Private	1	2	2	1	19	19	19	19	19	25
349b	Private	1	2	2	1	19	19	19	19	19	25
350	Community Infrastructure	0	1	1	1	19	19	19	19	19	25
351	Other Mine Owned	6	6	5	3	20	22	22	21	20	25
352	Other Mine Owned - Vacant	3	3	3	1	20	24	23	23	20	25
353	Other Mine Owned	3	3	3	1	21	29	29	24	21	25
356	Glencore Owned - Vacant	20	51	179	54	24	26	56	186	60	25
357	Glencore Owned - Vacant	15	26	74	73	23	23	33	81	81	25
358	Glencore Owned - Vacant	7	12	30	21	22	23	22	35	25	25
359	Glencore Owned - Vacant	13	18	17	5	22	23	25	27	21	25
360	Glencore Owned - Vacant	4	5	6	3	20	21	21	21	19	25
361	Glencore Owned - Vacant	3	4	5	2	19	20	21	21	19	25
363	Glencore Owned	4	5	6	3	20	21	21	21	19	25
364	Other Mine Owned	3	3	4	2	20	28	28	21	20	25
365	Other Mine Owned - Vacant	3	4	4	2	20	24	24	21	20	25
366	Other Mine Owned - Vacant	3	3	4	2	20	24	24	21	20	25
367	Other Mine Owned	3	3	4	2	20	24	24	21	20	25
369	Other Mine Owned - Vacant	4	4	4	2	20	23	23	21	20	25
370	Other Mine Owned	4	4	4	2	20	23	23	21	20	25
371	Other Mine Owned	5	4	4	2	20	23	23	21	20	25
372	Other Mine Owned	6	5	4	2	20	23	23	21	20	25
373	Other Mine Owned - Vacant	5	5	4	2	20	23	23	21	20	25
374	Other Mine Owned	6	5	4	2	20	23	23	21	20	25
375	Other Mine Owned	6	5	4	2	20	23	23	21	20	25
376	Other Mine Owned	5	5	5	3	20	23	23	21	20	25
377	Other Mine Owned	6	5	5	3	20	23	23	21	20	25
378	Other Mine Owned	6	5	5	3	20	23	22	21	20	25
379	Other Mine Owned	4	5	5	3	20	23	23	21	20	25
380	Other Mine Owned	5	5	5	3	20	23	23	21	20	25
381	Other Mine Owned	6	5	5	3	20	22	22	21	20	25
382	Other Mine Owned	6	6	5	2	20	23	22	21	20	25
383	Other Mine Owned	6	6	5	3	20	22	22	21	20	25
384	Other Mine Owned	6	6	5	3	20	22	22	21	20	25
385	Other Mine Owned	6	6	5	3	20	22	22	21	20	25
386	Other Mine Owned	6	6	5	3	20	22	22	21	20	25
387	Other Mine Owned	6	6	5	3	21	23	22	21	20	25
388	Other Mine Owned	5	6	6	3	21	23	22	21	20	25
389	Other Mine Owned - Vacant	6	6	6	3	21	22	22	21	20	25
390	Other Mine Owned	6	6	6	3	21	23	22	21	20	25
391	Other Mine Owned	6	6	5	3	20	22	22	21	20	25
392	Other Mine Owned - Vacant	6	6	5	2	20	22	22	21	20	25
394	Other Mine Owned	5	4	4	2	20	23	23	21	20	25
395	Other Mine Owned	5	4	4	2	20	23	23	21	20	25
396	Other Mine Owned	5	4	4	2	20	23	23	21	20	25
397	Other Mine Owned	5	4	4	2	20	23	23	21	20	25

	a		Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
398	Other Mine Owned	5	4	4	2	20	23	23	21	20	25
399	Other Mine Owned	5	5	4	2	20	23	23	21	20	25
400	Other Mine Owned	5	5	4	2	20	23	23	21	20	25
401	Other Mine Owned	5	4	4	2	20	23	23	21	20	25
402	Other Mine Owned	4	4	3	2	20	22	22	21	20	25
403	Other Mine Owned	5	4	4	2	20	22	22	21	20	25
404	Other Mine Owned - Vacant	4	4	4	2	22	23	23	21	20	25
405	Other Mine Owned - Vacant	9	8	7	3	21	24	23	21	20	25
406	Other Mine Owned - Vacant	3	3	3	1	21	37	37	21	20	25
407	Other Mine Owned - Vacant	6	6	5	2	20	22	22	21	20	25
408	Other Mine Owned	5	5	5	3	20	23	23	21	20	25
409	Glencore Owned - Vacant	12	18	17	5	22	23	25	27	21	25
411	Glencore Owned - Vacant	1	1	2	2	21	22	21	20	20	25
412	Community Infrastructure	1	2	3	2	20	21	20	20	19	25
415	Private Infrastructure	1	1	2	1	20	20	20	20	19	25
417	Private	0	0	0	0	19	19	19	19	19	25
Annual	average PM2.5 (ug/m3)	1	1	1			1	1	1		
001	Other Mine Owned - Vacant	0.2	0.3	0.5	0.3	7	11	11	11	6	8
002	Community Infrastructure	0.3	0.4	0.6	0.3	7	9	9	9	6	8
003	Other Mine Owned	0.2	0.3	0.5	0.3	7	9	9	9	6	8
004	Private - Subject to Acq. Rights	0.2	0.3	0.5	0.3	7	8	8	8	6	8
005	Private - Subject to Acq. Rights	0.2	0.3	0.5	0.3	7	8	8	8	6	8
006	Community Infrastructure	0.2	0.3	0.5	0.3	7	8	8	8	6	8
007a	Private	0.2	0.3	0.5	0.3	7	8	8	8	6	8
007b	Private	0.2	0.3	0.5	0.3	7	8	8	8	6	8
007c	Private	0.2	0.2	0.4	0.2	6	8	8	7	6	8
010	Private	0.2	0.2	0.4	0.2	7	8	8	7	6	8
011	Private	0.2	0.2	0.3	0.2	7	7	7	7	6	8
012	Private	0.2	0.2	0.4	0.2	7	7	7	7	6	8
013	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
014	Private	0.1	0.1	0.2	0.1	6	7	7	6	6	8
015a	Private	0.1	0.1	0.2	0.1	6	7	7	6	6	8
015b	Private	0.1	0.1	0.2	0.1	6	7	7	6	6	8
017a	Private	0.1	0.1	0.2	0.1	6	6	6	6	6	8
017b	Private	0.1	0.1	0.2	0.1	6	7	6	6	6	8
019	Private	0.2	0.2	0.3	0.2	7	7	7	7	6	8
021	Private - Subject to Acq. Rights	0.2	0.2	0.4	0.2	7	8	8	7	6	8
022	Glencore Owned	0.2	0.2	0.4	0.2	7	8	8	7	6	8
023	Private - Subject to Acq. Rights	0.2	0.3	0.4	0.2	7	8	8	7	6	8
024	Glencore Owned	0.2	0.3	0.4	0.2	7	8	8	8	6	8
025	Glencore Owned	0.2	0.2	0.4	0.2	7	8	8	8	6	8
026	Glencore Owned	0.2	0.2	0.4	0.2	7	8	8	8	6	8
027	Glencore Owned	0.2	0.3	0.4	0.3	7	8	8	8	6	8
028	Glencore Owned	0.2	0.3	0.4	0.3	7	8	8	8	6	8
029	Glencore Owned	0.2	0.3	0.5	0.3	7	8	9	8	6	8
030	Glencore Owned	0.2	0.3	0.5	0.3	7	9	10	10	7	8
031	Glencore Owned	0.2	0.3	0.5	0.3	7	9	10	10	7	8
032	Glencore Owned	0.2	0.2	0.4	0.2	7	8	9	8	6	8
033	Glencore Owned	0.1	0.2	0.3	0.2	7	8	8	7	6	8
034	Glencore Owned	0.1	0.2	0.3	0.2	7	7	8	7	6	8
035	Glencore Owned - Vacant	0.1	0.2	0.3	0.2	7	7	8	7	6	8
036	Glencore Owned	0.1	0.2	0.3	0.2	7	8	8	8	6	8

			Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
037	Glencore Owned - Vacant	0.2	0.2	0.4	0.2	7	8	9	8	6	8
038	Glencore Owned	0.2	0.2	0.4	0.2	7	9	10	9	6	8
039	Glencore Owned	0.2	0.2	0.4	0.2	7	9	10	9	6	8
040	Glencore Owned	0.1	0.1	0.2	0.1	6	7	7	6	6	8
041	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
042	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
043	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
044a	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
044b	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
045	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
046	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
047	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
048	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
049	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
050	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
051	Private	0.0	0.1	0.1	0.0	6	6	6	6	6	8
052	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
053	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
054	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
055	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
056a	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
056b	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
057	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
058	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
059	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
060	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
061	Private	0.0	0.0	0.1	0.1	6	6	6	6	6	8
062	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
063a	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
068	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
069a	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
069b	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
071	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
072	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
073	Private	0.1	0.1	0.1	0.1	6	6	6	6	6	8
074	Private	0.1	0.1	0.2	0.1	6	6	6	6	6	8
075	Private	0.1	0.1	0.1	0.1	6	6	6	6	6	8
076	Private	0.1	0.1	0.1	0.1	6	6	6	6	6	8
077	Private	0.1	0.1	0.1	0.1	6	6	6	6	6	8
082	Private	0.1	0.1	0.1	0.1	6	6	6	6	6	8
083	Private	0.1	0.1	0.2	0.1	6	6	6	6	6	8
084a	Private	0.1	0.1	0.1	0.1	6	6	6	6	6	8
085	Private	0.1	0.1	0.2	0.1	6	6	6	6	6	8
086	Private	0.1	0.1	0.2	0.1	6	6	6	6	6	8
087	Private	0.1	0.1	0.2	0.1	6	6	6	6	6	8
088	Private	0.1	0.1	0.2	0.1	6	7	6	6	6	8
089	Private	0.1	0.2	0.2	0.2	6	7	7	7	6	8
090	Other Mine Owned	0.1	0.2	0.2	0.2	6	7	7	7	6	8
091	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
092	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
093	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
094	Private	0.1	0.2	0.2	0.1	6	7	7	7	6	8
095	Private	0.1	0.1	0.2	0.1	6	7	7	6	6	8

5	21.4		Project ir	isolation				Cumulative			0.1.1
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
096	Private	0.1	0.1	0.2	0.1	6	7	7	6	6	8
097	Private	0.1	0.1	0.2	0.1	6	7	7	6	6	8
098	Private	0.1	0.1	0.2	0.1	6	7	7	6	6	8
099	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
100	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
101	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
102a	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
102b	Private	0.1	0.2	0.3	0.2	6	7	7	7	6	8
104	Other Mine Owned	0.2	0.2	0.3	0.2	6	7	7	7	6	8
105	Private - Subject to Acq. Rights	0.3	0.4	0.7	0.4	7	8	8	8	6	8
108	Glencore Owned	0.8	1.1	1.3	0.7	8	10	9	9	7	8
109	Glencore Owned	0.8	1.1	1.3	0.7	8	9	9	9	7	8
110	Other Mine Owned - Vacant	0.8	0.9	1.0	0.5	8	11	11	10	7	8
111	Private - Subject to Acq. Rights	0.8	0.9	0.9	0.4	8	13	12	12	7	8
112	Private - Subject to Acq. Rights	0.2	0.3	0.5	0.3	7	8	8	8	6	8
114	Private - Subject to Acq. Rights	0.3	0.4	0.6	0.4	7	8	8	8	6	8
115	Private - Subject to Acq. Rights	0.3	0.4	0.7	0.4	7	9	9	9	6	8
116	Glencore Owned	0.3	0.4	0.7	0.4	7	8	8	8	6	8
117	Glencore Owned	0.4	0.5	0.8	0.5	7	9	9	9	7	8
120	Glencore Owned - Vacant	0.5	0.6	1.0	0.6	7	9	9	9	7	8
121	Glencore Owned - Vacant	0.6	1.0	1.3	0.8	8	9	9	9	7	8
122	Glencore Owned	0.7	1.0	1.4	0.8	8	9	9	9	7	8
123	Glencore Owned - Vacant	0.6	0.8	1.2	0.7	8	9	9	9	7	8
125	Glencore Owned	0.9	1.3	1.6	0.9	8	9	9	9	7	8
126	Glencore Owned - Vacant	0.8	1.2	1.5	0.8	8	9	9	9	7	8
127a	Private - Subject to Acq. Rights	0.8	0.8	0.7	0.3	8	11	11	10	7	8
127b	Private - Subject to Acq. Rights	1.4	1.4	1.1	0.5	9	11	11	10	7	8
127c	Private - Subject to Acq. Rights	2.2	1.9	1.5	0.6	10	12	11	10	7	8
127d	Private - Subject to Acq. Rights	2.0	1.8	1.4	0.6	9	12	11	10	7	8
129	Glencore Owned	2.3	2.2	1.7	0.7	10	12	11	10	7	8
130	Glencore Owned	2.4	2.2	1.7	0.7	10	12	11	10	7	8
131	Glencore Owned - Vacant	0.2	0.3	0.7	0.5	7	8	7	7	6	8
134	Private	0.1	0.1	0.2	0.2	6	6	6	6	6	8
135	Private	0.1	0.1	0.2	0.1	6	6	6	6	6	8
136	Private	0.1	0.1	0.2	0.1	6	6	6	6	6	8
143	Private - Subject to Acq. Rights	1.1	1.1	1.0	0.4	8	10	10	9	7	8
144a	Private - Subject to Acq. Rights	0.3	0.3	0.3	0.2	8	14	14	8	8	8
144b	Private - Subject to Acq. Rights	0.2	0.2	0.2	0.1	8	9	9	7	7	8
144c	Private - Subject to Acq. Rights	0.2	0.2	0.2	0.1	7	9	9	7	7	8
145	Private - Subject to Acq. Rights	0.3	0.3	0.3	0.2	8	21	21	8	7	8
146	Other Mine Owned	0.5	0.6	0.6	0.3	8	11	11	9	7	8
147	Private - Subject to Acq. Rights	0.4	0.5	0.5	0.2	9	13	13	11	8	8
148	Other Mine Owned	0.5	0.5	0.5	0.2	9	13	12	11	8	8
149	Community Infrastructure	0.9	1.0	0.9	0.4	8	11	11	9	7	8
150	Private - Subject to Acq. Rights	0.9	1.0	0.9	0.4	8	11	11	9	7	8
151	Other Mine Owned	1.1	1.2	1.0	0.4	8	11	11	9	7	8
152	Private - Subject to Acq. Rights	1.1	1.1	1.0	0.4	8	11	11	9	7	8
154	Private - Subject to Acq. Rights	1.2	1.2	1.1	0.5	8	11	10	9	7	8
155	Private - Subject to Acq. Rights	1.2	1.2	1.1	0.5	8	11	10	9	7	8
156	Private - Subject to Acq. Rights	1.5	1.4	1.2	0.5	9	11	10	9	7	8
157	Glencore Owned - Vacant	1.3	1.7	1.8	0.8	9	10	10	10	7	8
158	Other Mine Owned - Vacant	0.4	0.5	0.5	0.2	8	57	57	8	8	8
159	Other Mine Owned - Vacant	0.5	0.6	0.6	0.3	8	13	13	9	8	8

	_		Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
160	Other Mine Owned - Vacant	0.5	0.5	0.5	0.2	8	34	34	9	8	8
161	Glencore Owned - Vacant	0.4	0.6	1.5	1.2	8	13	7	8	7	8
162b	Private	0.0	0.1	0.1	0.1	6	6	6	6	6	8
163	Other Mine Owned	0.2	0.3	0.4	0.2	6	7	7	7	6	8
164	Other Mine Owned	0.2	0.3	0.4	0.2	6	7	7	7	6	8
165	Other Mine Owned	0.2	0.3	0.4	0.2	6	7	7	7	6	8
166	Other Mine Owned - Vacant	2.7	2.3	1.8	0.7	10	13	12	10	8	8
178	Private	0.0	0.0	0.0	0.0	6	6	6	6	6	8
209	Private	0.0	0.0	0.0	0.0	6	6	6	6	5	8
210	Private	0.0	0.0	0.0	0.0	6	6	6	6	5	8
211	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
212	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
213	Private	0.0	0.0	0.1	0.0	6	6	6	6	6	8
259	Private	0.1	0.1	0.1	0.1	6	6	6	6	6	8
260	Private	0.1	0.1	0.1	0.1	6	6	6	6	6	8
280	Private	0.2	0.3	0.4	0.2	6	7	7	7	6	8
281	Private	0.2	0.3	0.4	0.2	6	8	7	7	6	8
282	Private	0.2	0.3	0.4	0.2	6	8	7	7	6	8
288	Private	0.1	0.2	0.2	0.1	6	7	7	6	6	8
289	Private	0.2	0.2	0.3	0.2	6	7	7	7	6	8
290	Private	0.2	0.3	0.3	0.2	6	7	7	7	6	8
291	Private	0.2	0.3	0.4	0.2	6	7	7	7	6	8
292a	Private	0.2	0.3	0.3	0.2	6	7	7	7	6	8
292b	Private	0.2	0.3	0.3	0.2	6	7	7	7	6	8
293	Private	0.2	0.3	0.4	0.2	6	7	7	7	6	8
294	Private	0.2	0.3	0.3	0.2	6	7	7	7	6	8
295	Private	0.2	0.3	0.4	0.2	6	7	7	7	6	8
296	Private	0.2	0.3	0.3	0.2	6	7	7	7	6	8
297a	Private	0.2	0.3	0.3	0.2	7	7	7	7	6	8
297b	Private	0.2	0.3	0.3	0.2	7	7	7	7	6	8
297c	Private	0.2	0.3	0.3	0.2	7	7	7	7	6	8
297d	Private	0.2	0.2	0.3	0.2	6	7	7	7	6	8
299	Private	0.2	0.3	0.3	0.2	7	7	7	7	6	8
300	Private	0.2	0.3	0.3	0.2	7	7	7	7	6	8
302	Private	0.2	0.3	0.3	0.1	7	7	7	7	6	8
303	Private	0.1	0.2	0.2	0.1	6	7	7	6	6	8
305	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
306	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
307	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
308	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
309	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
310	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
311	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
312	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
314	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
315	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8
316	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8
317	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8
318	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8
319	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
320	Private	0.2	0.2	0.3	0.1	7	7	7	7	6	8
321	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8
322	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8

			Project in	isolation				Cumulative			a 11 - 1
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
323	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8
324	Private	0.2	0.2	0.3	0.1	7	7	7	7	6	8
325	Private	0.2	0.2	0.3	0.1	7	8	7	7	6	8
326	Private	0.2	0.2	0.2	0.1	7	8	7	7	6	8
327	Private	0.2	0.2	0.2	0.1	7	8	7	7	6	8
328	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8
329	Private	0.2	0.2	0.2	0.1	7	8	7	7	6	8
330	Private	0.2	0.2	0.2	0.1	7	7	7	7	6	8
337	Private	0.0	0.0	0.0	0.0	6	6	6	6	5	8
342	Private Infrastructure	2.5	4.0	3.5	1.0	10	12	12	11	8	8
344	Other Mine Owned	0.2	0.3	0.4	0.2	6	7	7	7	6	8
349a	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
349b	Private	0.2	0.2	0.2	0.1	6	7	7	7	6	8
350	Community Infrastructure	0.0	0.0	0.1	0.0	6	6	6	6	6	8
351	Other Mine Owned	1.2	1.2	1.1	0.5	8	11	11	9	7	8
352	Other Mine Owned - Vacant	0.5	0.5	0.5	0.2	8	12	12	11	7	8
353	Other Mine Owned	0.4	0.4	0.5	0.2	9	13	13	12	8	8
356	Glencore Owned - Vacant	4.0	13.8	87.4	20.2	12	13	21	94	27	8
357	Glencore Owned - Vacant	2.0	4.9	25.8	28.3	11	11	12	32	34	8
358	Glencore Owned - Vacant	1.1	2.1	6.2	4.8	10	12	9	13	11	8
359	Glencore Owned - Vacant	2.4	3.8	2.9	0.9	10	12	12	10	8	8
360	Glencore Owned - Vacant	0.4	0.6	0.9	0.5	7	9	9	9	7	8
361	Glencore Owned - Vacant	0.3	0.4	0.6	0.4	7	8	9	8	6	8
363	Glencore Owned	0.4	0.5	0.8	0.5	7	9	9	9	7	8
364	Other Mine Owned	0.6	0.6	0.6	0.3	8	15	14	9	7	8
365	Other Mine Owned - Vacant	0.7	0.7	0.7	0.3	8	12	12	9	7	8
366	Other Mine Owned - Vacant	0.6	0.7	0.7	0.3	8	12	12	9	7	8
367	Other Mine Owned	0.7	0.7	0.7	0.3	8	12	12	9	7	8
369	Other Mine Owned - Vacant	0.7	0.8	0.7	0.3	8	12	12	9	7	8
370	Other Mine Owned	0.7	0.7	0.7	0.3	8	12	12	9	7	8
371	Other Mine Owned	0.9	0.9	0.8	0.4	8	12	11	9	8	8
372	Other Mine Owned	0.9	0.9	0.9	0.4	9	12	11	9	8	8
373	Other Mine Owned - Vacant	0.9	0.9	0.9	0.4	8	12	11	9	7	8
374	Other Mine Owned	0.9	1.0	0.9	0.4	9	12	11	9	8	8
375	Other Mine Owned	1.0	1.0	0.9	0.4	9	11	11	9	7	8
376	Other Mine Owned	1.0	1.1	1.0	0.4	8	11	11	9	7	8
377	Other Mine Owned	1.1	1.1	1.0	0.4	8	11	11	9	7	8
378	Other Mine Owned	1.2	1.2	1.1	0.5	8	11	11	9	7	8
379	Other Mine Owned	1.0	1.1	1.0	0.4	8	11	11	9	7	8
380	Other Mine Owned	1.1	1.1	1.0	0.4	8	11	11	9	7	8
381	Other Mine Owned	1.1	1.2	1.1	0.5	8	11	11	9	7	8
382	Other Mine Owned	1.1	1.1	1.0	0.4	8	11	11	9	7	8
383	Other Mine Owned	1.2	1.3	1.1	0.5	8	11	10	9	7	8
384	Other Mine Owned	1.2	1.2	1.1	0.5	8	11	10	9	7	8
385	Other Mine Owned	1.3	1.3	1.1	0.5	8	11	10 10	9	7	8
386	Other Mine Owned	1.3	1.3	1.1	0.5	9	11				8
387	Other Mine Owned	1.2	1.3	1.1	0.5	9	11	11	9	7	8
388	Other Mine Owned	1.2	1.3	1.1	0.5	8	11	10	9	7	8
389	Other Mine Owned - Vacant	1.3	1.3	1.1	0.5	9	11	10	9	7	8
390	Other Mine Owned	1.3	1.3	1.2	0.5	9	11	11	9	7	8
391	Other Mine Owned	1.4	1.4	1.2	0.5	9	11	10	9	7	8
392	Other Mine Owned - Vacant	1.3	1.3	1.1	0.5	8	11	10	9	7	8
394	Other Mine Owned	0.8	0.8	0.8	0.4	8	12	11	9	8	8

			Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
395	Other Mine Owned	0.8	0.9	0.8	0.4	8	12	11	9	8	8
396	Other Mine Owned	0.8	0.9	0.8	0.4	8	12	11	9	8	8
397	Other Mine Owned	0.8	0.9	0.8	0.4	8	12	11	9	8	8
398	Other Mine Owned	0.8	0.8	0.8	0.4	8	12	11	9	8	8
399	Other Mine Owned	0.8	0.9	0.8	0.4	8	12	11	9	8	8
400	Other Mine Owned	0.9	0.9	0.8	0.4	8	12	11	9	8	8
401	Other Mine Owned	0.8	0.8	0.8	0.4	8	12	11	9	8	8
402	Other Mine Owned	0.7	0.7	0.7	0.3	8	11	11	9	7	8
403	Other Mine Owned	0.8	0.8	0.8	0.3	8	11	11	9	7	8
404	Other Mine Owned - Vacant	0.7	0.7	0.7	0.3	10	12	12	9	9	8
405	Other Mine Owned - Vacant	1.4	1.3	1.0	0.4	10	12	12	9	8	8
406	Other Mine Owned - Vacant	0.5	0.5	0.5	0.2	8	14	14	9	8	8
407	Other Mine Owned - Vacant	1.1	1.1	1.0	0.4	8	11	11	9	7	8
408	Other Mine Owned	1.0	1.1	1.0	0.4	8	11	11	9	7	8
409	Glencore Owned - Vacant	2.4	3.9	2.9	0.9	10	12	12	10	8	8
411	Glencore Owned - Vacant	0.1	0.2	0.4	0.3	7	7	7	6	6	8
412	Community Infrastructure	0.1	0.2	0.4	0.3	6	7	6	6	6	8
415	Private Infrastructure	0.1	0.1	0.2	0.1	6	6	6	6	6	8
417	Private	0.0	0.0	0.0	0.0	5	6	6	5	5	8
Annual	average TSP (ug/m3)	•		•				•		•	
001	Other Mine Owned - Vacant	0.4	0.6	1.2	0.9	71	83	83	83	70	90
002	Community Infrastructure	0.5	0.7	1.4	1.1	71	78	77	78	70	90
003	Other Mine Owned	0.4	0.6	1.3	0.9	71	77	77	77	70	90
004	Private - Subject to Acq. Rights	0.4	0.6	1.3	1.0	71	75	74	75	70	90
005	Private - Subject to Acq. Rights	0.4	0.6	1.2	0.9	71	76	75	75	70	90
006	Community Infrastructure	0.4	0.6	1.1	0.9	71	75	74	74	70	90
007a	Private	0.3	0.5	1.1	0.8	71	74	74	74	70	90
007b	Private	0.3	0.5	1.1	0.8	71	74	74	74	70	90
007c	Private	0.3	0.4	0.9	0.7	71	74	73	73	70	90
010	Private	0.2	0.4	0.8	0.6	71	74	74	73	70	90
011	Private	0.2	0.3	0.7	0.5	71	74	74	73	70	90
012	Private	0.2	0.3	0.7	0.5	71	74	74	73	70	90
013	Private	0.1	0.2	0.5	0.4	71	72	72	71	69	90
014	Private	0.1	0.2	0.4	0.3	70	72	72	71	69	90
015a	Private	0.1	0.2	0.4	0.3	70	71	71	70	69	90
015b	Private	0.1	0.2	0.4	0.3	70	72	71	70	69	90
017a	Private	0.1	0.2	0.3	0.3	70	71	71	70	69	90
017b	Private	0.1	0.2	0.3	0.3	70	71	71	70	69	90
019	Private	0.2	0.3	0.6	0.5	72	74	75	73	70	90
021	Private - Subject to Acq. Rights	0.2	0.3	0.7	0.5	72	75	75	73	70	90
022	Glencore Owned	0.2	0.3	0.7	0.6	71	74	75	73	70	90
023	Private - Subject to Acq. Rights	0.2	0.3	0.7	0.6	72	75	76	74	70	90
024	Glencore Owned	0.2	0.3	0.7	0.6	72	75	76	74	70	90
025	Glencore Owned	0.2	0.3	0.7	0.5	72	76	77	75	70	90
026	Glencore Owned	0.2	0.3	0.6	0.5	72	76	77	75	70	90
027	Glencore Owned	0.2	0.4	0.8	0.6	72	76	77	75	70	90
028	Glencore Owned	0.2	0.3	0.7	0.6	73	77	78	76	70	90
029	Glencore Owned	0.2	0.4	0.8	0.6	73	77	79	77	70	90
030	Glencore Owned	0.2	0.4	0.9	0.7	74	80	86	84	71	90
031	Glencore Owned	0.2	0.3	0.8	0.6	74	81	87	85	71	90
032	Glencore Owned	0.1	0.2	0.5	0.4	73	78	79	77	70	90
033	Glencore Owned	0.1	0.2	0.5	0.4	73	76	76	74	70	90

	_		Project ir	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
034	Glencore Owned	0.1	0.2	0.5	0.4	72	75	75	73	70	90
035	Glencore Owned - Vacant	0.1	0.2	0.4	0.4	72	74	74	72	69	90
036	Glencore Owned	0.1	0.2	0.5	0.4	73	76	76	74	70	90
037	Glencore Owned - Vacant	0.1	0.2	0.5	0.4	74	79	80	78	70	90
038	Glencore Owned	0.1	0.2	0.6	0.5	75	82	87	83	71	90
039	Glencore Owned	0.1	0.2	0.6	0.5	74	80	84	80	71	90
040	Glencore Owned	0.1	0.1	0.2	0.2	70	71	70	69	69	90
041	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
042	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
043	Private	0.0	0.0	0.1	0.1	68	68	68	68	68	90
044a	Private	0.0	0.0	0.1	0.1	68	68	68	68	68	90
044b	Private	0.0	0.0	0.1	0.1	68	68	68	68	68	90
045	Private	0.0	0.0	0.1	0.1	68	68	68	68	68	90
046	Private	0.0	0.0	0.1	0.1	68	68	68	68	68	90
047	Private	0.0	0.0	0.1	0.1	68	68	68	68	68	90
048	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
049	Private	0.0	0.0	0.1	0.0	68	68	68	68	68	90
050	Private	0.0	0.0	0.1	0.1	68	68	68	68	68	90
051	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
052	Private	0.0	0.0	0.1	0.1	68	68	68	68	68	90
053	Private	0.0	0.0	0.1	0.0	68	68	68	68	68	90
054	Private	0.0	0.0	0.1	0.0	68	68	68	68	68	90
055	Private	0.0	0.0	0.1	0.0	68	68	68	68	68	90
056a	Private	0.0	0.0	0.1	0.0	68	68	68	68	68	90
056b	Private	0.0	0.0	0.1	0.0	68	68	68	68	68	90
057	Private	0.0	0.0	0.1	0.0	68	68	68	68	68	90
058	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
059	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
060	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
061	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
062	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
063a	Private	0.0	0.0	0.1	0.1	68	69	68	68	68	90
068	Private	0.0	0.1	0.1	0.1	69	69	69	68	68	90
069a	Private	0.0	0.1	0.1	0.1	69	69	69	69	68	90
069b	Private	0.0	0.1	0.1	0.1	69	69	69	68	68	90
071	Private	0.0	0.1	0.1	0.1	69	69	69	69	68	90
072	Private	0.1	0.1	0.1	0.1	69	69	69	69	68	90
073	Private	0.1	0.1	0.2	0.1	69	69	69	69	68	90
074	Private	0.1	0.1	0.3	0.2	69	70	70	69	69	90
075	Private	0.1	0.1	0.2	0.1	69	69	69	69	68	90
076	Private	0.1	0.1	0.2	0.1	69	69	69	69	68	90
077	Private	0.1	0.1	0.2	0.1	69	69	69	69	68	90
082	Private	0.1	0.1	0.2	0.2	69	70	69	69	68	90
083	Private	0.1	0.2	0.3	0.2	70	70	70	70	69	90
084a	Private	0.1	0.1	0.3	0.2	69	70	70	69	69	90
085	Private	0.1	0.2	0.3	0.3	69	70	70	70	69	90
086	Private	0.1	0.2	0.4	0.3	70	71	70	70	69	90
087	Private	0.1	0.2	0.4	0.3	70	71	70	70	69	90
088	Private	0.2	0.2	0.4	0.3	70	71	71	70	69	90
089	Private	0.2	0.3	0.6	0.4	70	71	71	71	69	90
090	Other Mine Owned	0.2	0.3	0.6	0.4	70	71	71	71	69	90
091	Private	0.2	0.3	0.6	0.5	70	72	72	71	69	90
092	Private	0.2	0.4	0.7	0.5	71	73	72	72	69	90

5	0		Project ir	isolation				Cumulative			0.11
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
093	Private	0.2	0.3	0.6	0.5	71	73	73	72	69	90
094	Private	0.2	0.2	0.5	0.4	70	72	72	71	69	90
095	Private	0.1	0.2	0.4	0.3	70	71	71	70	69	90
096	Private	0.2	0.3	0.6	0.4	70	71	71	70	69	90
097	Private	0.2	0.3	0.5	0.4	70	71	71	70	69	90
098	Private	0.2	0.3	0.5	0.4	70	71	71	70	69	90
099	Private	0.2	0.4	0.7	0.5	70	72	71	71	69	90
100	Private	0.3	0.4	0.8	0.6	70	72	72	71	69	90
101	Private	0.3	0.4	0.7	0.5	70	72	71	71	69	90
102a	Private	0.3	0.5	0.8	0.6	70	72	72	72	69	90
102b	Private	0.3	0.5	0.8	0.6	70	73	72	72	69	90
104	Other Mine Owned	0.3	0.5	0.9	0.6	70	73	72	72	69	90
105	Private - Subject to Acq. Rights	0.5	0.8	1.7	1.3	71	76	75	75	70	90
108	Glencore Owned	2.1	2.8	3.2	1.9	74	78	78	78	71	90
109	Glencore Owned	2.3	3.0	3.4	2.0	74	77	77	77	71	90
110	Other Mine Owned - Vacant	2.4	2.5	2.2	1.1	74	81	81	80	70	90
111	Private - Subject to Acq. Rights	2.5	2.4	1.9	0.9	74	86	86	85	70	90
112	Private - Subject to Acq. Rights	0.3	0.5	1.0	0.8	71	75	75	74	70	90
114	Private - Subject to Acq. Rights	0.4	0.6	1.4	1.1	71	75	75	75	70	90
115	Private - Subject to Acq. Rights	0.4	0.7	1.5	1.2	71	76	75	76	70	90
116	Glencore Owned	0.4	0.7	1.6	1.2	71	76	75	75	70	90
117	Glencore Owned	0.5	0.8	1.8	1.4	71	76	75	76	70	90
120	Glencore Owned - Vacant	0.7	1.2	2.4	1.8	72	77	75	76	70	90
121	Glencore Owned - Vacant	1.3	2.1	3.6	2.4	73	76	75	77	71	90
122	Glencore Owned	1.3	2.2	3.7	2.5	73	76	75	76	71	90
123	Glencore Owned - Vacant	1.0	1.7	3.0	2.1	72	77	75	77	71	90
125	Glencore Owned	1.9	3.1	4.3	2.7	74	77	76	77	71	90
126	Glencore Owned - Vacant	2.0	3.0	3.8	2.3	74	77	77	77	71	90
127a	Private - Subject to Acq. Rights	1.4	0.9	0.5	0.2	73	79	78	77	71	90
127b	Private - Subject to Acq. Rights	4.4	3.3	1.7	0.7	75	82	80	78	71	90
127c	Private - Subject to Acq. Rights	6.7	4.1	1.8	0.7	77	82	79	76	71	90
127d	Private - Subject to Acq. Rights	6.4	4.2	2.0	0.8	77	82	79	76	71	90
129	Glencore Owned	7.8	5.4	2.7	1.1	78	83	79	76	71	90
130	Glencore Owned	8.0	5.2	2.4	0.9	79	83	79	76	71	90
131	Glencore Owned - Vacant	0.4	0.5	1.5	1.3	73	76	72	71	70	90
134	Private	0.1	0.2	0.4	0.3	70	70	69	69	69	90
135	Private	0.1	0.2	0.3	0.3	69	70	69	69	69	90
136	Private	0.1	0.1	0.3	0.2	69	70	69	69	68	90
143	Private - Subject to Acq. Rights	2.6	1.7	0.8	0.3	74	79	77	75	71	90
144a	Private - Subject to Acq. Rights	0.1	0.1	0.1	0.1	74	85	84	75	74	90
144b	Private - Subject to Acq. Rights	0.1	0.1	0.1	0.0	72	74	74	72	72	90
144c	Private - Subject to Acq. Rights	0.1	0.1	0.1	0.0	72	74	74	72	72	90
145	Private - Subject to Acq. Rights	0.1	0.1	0.1	0.1	73	122	122	74	74	90
146	Other Mine Owned	0.5	0.4	0.3	0.2	72	78	77	75	72	90
147	Private - Subject to Acq. Rights	0.4	0.3	0.2	0.1	73	80	80	76	73	90
148	Other Mine Owned	0.7	0.5	0.3	0.2	73	81	80	78	72	90
149	Community Infrastructure	0.9	0.7	0.5	0.3	73	80	79	75	71	90
150	Private - Subject to Acq. Rights	1.0	0.7	0.5	0.3	73	79	78	75	71	90
151	Other Mine Owned	1.4	1.0	0.7	0.3	74	79	78	75	71	90
152	Private - Subject to Acq. Rights	1.4	1.0	0.6	0.3	73	79	78	75	71	90
154	Private - Subject to Acq. Rights	2.0	1.3	0.7	0.3	74	79	78	75	71	90
155	Private - Subject to Acq. Rights	2.4	1.5	0.8	0.4	74	79	77	75	71	90
156	Private - Subject to Acq. Rights	3.5	2.1	1.0	0.4	74	79	77	75	71	90

			Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
157	Glencore Owned - Vacant	3.6	4.6	4.3	2.3	75	79	78	78	71	90
158	Other Mine Owned - Vacant	0.2	0.2	0.2	0.1	73	493	492	74	74	90
159	Other Mine Owned - Vacant	0.4	0.3	0.2	0.1	73	81	81	74	73	90
160	Other Mine Owned - Vacant	0.3	0.2	0.2	0.1	73	221	221	74	73	90
161	Glencore Owned - Vacant	0.7	1.0	3.5	3.2	76	93	74	75	73	90
162b	Private	0.0	0.1	0.1	0.1	69	69	69	68	68	90
163	Other Mine Owned	0.6	0.8	1.0	0.6	70	73	72	72	69	90
164	Other Mine Owned	0.7	0.8	1.0	0.6	70	73	72	72	69	90
165	Other Mine Owned	0.7	0.8	1.0	0.6	70	73	72	72	69	90
166	Other Mine Owned - Vacant	4.2	2.3	1.2	0.5	77	83	81	77	71	90
178	Private	0.0	0.0	0.0	0.0	68	68	68	68	68	90
209	Private	0.0	0.0	0.0	0.0	68	68	68	68	68	90
210	Private	0.0	0.0	0.0	0.0	68	68	68	68	68	90
211	Private	0.0	0.0	0.0	0.0	68	68	68	68	68	90
212	Private	0.0	0.0	0.0	0.0	68	68	68	68	68	90
213	Private	0.0	0.0	0.0	0.0	68	68	68	68	68	90
259	Private	0.1	0.1	0.2	0.2	69	70	69	69	68	90
260	Private	0.1	0.1	0.2	0.2	69	70	69	69	68	90
280	Private	0.5	0.7	0.9	0.6	70	73	72	72	69	90
281	Private	0.5	0.7	0.9	0.6	70	73	73	73	69	90
282	Private	0.6	0.8	1.0	0.7	70	73	73	73	69	90
288	Private	0.3	0.4	0.5	0.3	69	71	70	70	69	90
289	Private	0.4	0.5	0.7	0.4	70	71	71	71	69	90
290	Private	0.5	0.7	0.9	0.6	70	72	72	72	69	90
291	Private	0.6	0.8	1.0	0.6	70	73	72	72	69	90
292a	Private	0.5	0.7	0.8	0.5	70	72	72	72	69	90
292b	Private	0.6	0.7	0.9	0.5	70	72	72	72	69	90
293	Private	0.7	0.8	0.9	0.6	70	73	72	72	69	90
294	Private	0.5	0.7	0.8	0.5	70	72	71	71	69	90
295	Private	0.6	0.7	0.8	0.5	70	72	72	72	69	90
296	Private	0.6	0.7	0.8	0.5	70	72	72	72	69	90
297a	Private	0.6	0.7	0.7	0.4	70	73	72	72	69	90
297b	Private	0.6	0.7	0.7	0.4	70	73	72	72	69	90
297c	Private	0.6	0.7	0.7	0.4	70	73	72	72	69	90
297d	Private	0.5	0.6	0.7	0.4	70	72	71	71	69	90
299	Private	0.6	0.7	0.7	0.4	70	73	72	72	69	90
300	Private	0.6	0.7	0.6	0.3	70	73	72	72	69	90
302	Private	0.6	0.6	0.6	0.3	70	73	72	72	70	90
303	Private	0.3	0.4	0.4	0.2	69	71	70	70	69	90
305	Private	0.4	0.5	0.5	0.3	70	71	71	71	69	90
306	Private	0.4	0.5	0.4	0.2	70	72	71	71	69	90
307	Private	0.4	0.5	0.4	0.2	70	72	71	71	69	90
308	Private	0.5	0.5	0.5	0.2	70	72	72	71	69	90
309	Private	0.5	0.5	0.5	0.3	70	72	72	71	69	90
310	Private	0.5	0.5	0.5	0.3	70	72	72	71	69	90
311	Private	0.5	0.5	0.5	0.2	70	72	72	71	69 70	90
312	Private	0.5	0.5	0.4	0.2	70	72	72	71	70	90
314	Private	0.4	0.4	0.4	0.2	70	72	72	71	70	90
315	Private	0.5	0.5	0.4	0.2	70	72	72	72	70	90
316	Private	0.5	0.5	0.4	0.2	70	72	72	72	70	90
317	Private	0.5	0.5	0.4	0.2	70	72	72	72	70	90
318	Private	0.5	0.5	0.4	0.2	70	72	72	72	70	90
319	Private	0.5	0.5	0.5	0.3	70	72	72	72	70	90

	0		Project in	isolation				Cumulative			0.11
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
320	Private	0.5	0.5	0.5	0.3	70	72	72	72	70	90
321	Private	0.5	0.5	0.5	0.2	70	72	72	72	70	90
322	Private	0.5	0.5	0.5	0.2	70	72	72	72	70	90
323	Private	0.5	0.5	0.5	0.2	70	73	72	72	70	90
324	Private	0.5	0.6	0.5	0.3	70	73	73	72	70	90
325	Private	0.6	0.6	0.5	0.2	71	73	73	72	70	90
326	Private	0.5	0.5	0.4	0.2	71	73	73	72	70	90
327	Private	0.5	0.5	0.4	0.2	71	73	73	72	70	90
328	Private	0.5	0.5	0.4	0.2	71	73	73	72	70	90
329	Private	0.5	0.4	0.4	0.2	71	73	73	73	71	90
330	Private	0.4	0.4	0.3	0.2	71	73	73	72	71	90
337	Private	0.0	0.0	0.0	0.0	68	68	68	68	68	90
342	Private Infrastructure	7.3	7.6	3.9	0.9	76	82	80	76	71	90
344	Other Mine Owned	0.7	0.8	1.0	0.6	70	73	72	72	69	90
349a	Private	0.4	0.5	0.5	0.3	70	71	71	71	69	90
349b	Private	0.4	0.5	0.5	0.3	70	71	71	71	69	90
350	Community Infrastructure	0.0	0.0	0.1	0.1	68	69	68	68	68	90
351	Other Mine Owned	1.8	1.2	0.7	0.3	73	79	78	75	71	90
352	Other Mine Owned - Vacant	0.8	0.6	0.4	0.2	73	81	81	79	72	90
353	Other Mine Owned	0.5	0.4	0.3	0.1	73	82	81	79	73	90
356	Glencore Owned - Vacant	15.0	56.5	609.4	125.1	80	90	127	679	194	90
357	Glencore Owned - Vacant	4.7	12.2	87.4	188.6	78	81	82	157	257	90
358	Glencore Owned - Vacant	2.6	5.1	20.2	19.6	80	88	75	90	88	90
359	Glencore Owned - Vacant	6.3	6.1	2.4	0.7	75	81	79	75	71	90
360	Glencore Owned - Vacant	0.6	1.0	2.1	1.6	71	76	75	76	70	90
361	Glencore Owned - Vacant	0.4	0.6	1.3	1.0	71	76	76	76	70	90
363	Glencore Owned	0.6	0.9	2.0	1.5	71	76	75	76	70	90
364	Other Mine Owned	0.4	0.3	0.3	0.2	73	89	89	74	73	90
365	Other Mine Owned - Vacant	0.5	0.4	0.3	0.2	72	81	80	74	72	90
366	Other Mine Owned - Vacant	0.5	0.4	0.3	0.2	72	82	81	74	72	90
367	Other Mine Owned	0.5	0.4	0.3	0.2	73	81	81	74	72	90
369	Other Mine Owned - Vacant	0.6	0.4	0.4	0.2	73	80	79	74	72	90
370	Other Mine Owned	0.5	0.4	0.3	0.2	73	80	79	74	72	90
371	Other Mine Owned	0.8	0.6	0.4	0.2	73	79	79	75	72	90
372	Other Mine Owned	0.9	0.6	0.5	0.2	73	79	78	75	72	90
373	Other Mine Owned - Vacant	0.8	0.6	0.5	0.2	73	79	79	75	72	90
374	Other Mine Owned	0.9	0.7	0.5	0.2	73	79	78	75	72	90
375	Other Mine Owned	1.1	0.7	0.5	0.3	73	79	78	75	71	90
376	Other Mine Owned	1.3	0.9	0.6	0.3	73	79	78	75	71	90
377	Other Mine Owned	1.4	1.0	0.6	0.3	73	79	78	75	71	90
378	Other Mine Owned	1.6	1.1	0.7	0.3	74	79	78	75	71	90
379	Other Mine Owned	1.1	0.8	0.6	0.3	73	79	79	75	71	90
380	Other Mine Owned	1.4	1.0	0.6	0.3	73	79	78	75	71	90
381	Other Mine Owned	1.7	1.2	0.7	0.3	74	79	78	75	71	90
382	Other Mine Owned	1.5	1.0	0.6	0.3	73	79	78	75	71	90
383	Other Mine Owned	1.9	1.3	0.7	0.3	74	79	78	75	71	90
384	Other Mine Owned	2.0	1.3	0.8	0.3	74	79	78	75	71	90
385	Other Mine Owned	2.1	1.4	0.8	0.4	74	79	78	75	71	90
386	Other Mine Owned	2.2	1.4	0.8	0.4	74	79	78	75	71	90
387	Other Mine Owned	1.8	1.3	0.7	0.3	74	79	78	75	71	90
388	Other Mine Owned	1.7	1.2	0.7	0.3	74	80	78	75	71	90
389	Other Mine Owned - Vacant	2.1	1.4	0.8	0.4	74	79	78	75	71	90
390	Other Mine Owned	2.0	1.4	0.8	0.4	74	79	78	75	71	90

	_		Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
391	Other Mine Owned	3.0	1.8	0.9	0.4	74	79	77	75	71	90
392	Other Mine Owned - Vacant	2.6	1.6	0.8	0.4	74	79	77	75	71	90
394	Other Mine Owned	0.7	0.5	0.4	0.2	73	79	78	75	72	90
395	Other Mine Owned	0.7	0.5	0.4	0.2	73	79	78	75	72	90
396	Other Mine Owned	0.8	0.5	0.4	0.2	73	79	78	75	72	90
397	Other Mine Owned	0.8	0.5	0.4	0.2	73	79	78	75	72	90
398	Other Mine Owned	0.8	0.5	0.4	0.2	73	79	78	75	72	90
399	Other Mine Owned	0.8	0.6	0.4	0.2	73	79	78	75	72	90
400	Other Mine Owned	0.8	0.6	0.4	0.2	73	79	78	75	72	90
401	Other Mine Owned	0.7	0.5	0.4	0.2	73	79	78	75	72	90
402	Other Mine Owned	0.6	0.4	0.3	0.2	73	78	78	75	72	90
403	Other Mine Owned	0.7	0.5	0.4	0.2	73	78	78	75	72	90
404	Other Mine Owned - Vacant	0.5	0.3	0.3	0.1	76	85	85	78	77	90
405	Other Mine Owned - Vacant	1.5	0.9	0.5	0.2	76	84	84	77	74	90
406	Other Mine Owned - Vacant	0.3	0.2	0.2	0.1	73	89	88	74	73	90
407	Other Mine Owned - Vacant	1.7	1.1	0.7	0.3	73	79	78	75	71	90
408	Other Mine Owned	1.3	0.9	0.6	0.3	73	79	78	75	71	90
409	Glencore Owned - Vacant	6.6	6.5	2.5	0.7	75	81	80	75	71	90
411	Glencore Owned - Vacant	0.2	0.2	0.5	0.4	72	74	72	71	69	90
412	Community Infrastructure	0.2	0.3	0.7	0.6	70	71	70	70	69	90
415	Private Infrastructure	0.1	0.2	0.4	0.3	70	70	69	69	69	90
417	Private	0.0	0.0	0.0	0.0	68	68	68	68	68	90
Annual	average dust deposition (g/m2/month	ı)									
001	Other Mine Owned - Vacant	0.1	0.1	0.2	0.1	2.4	3.4	3.3	3.3	2.2	4
002	Community Infrastructure	0.1	0.1	0.2	0.2	2.4	3.1	3.0	3.1	2.2	4
003	Other Mine Owned	0.1	0.1	0.2	0.1	2.4	3.0	2.9	2.9	2.2	4
004	Private - Subject to Acq. Rights	0.0	0.1	0.2	0.2	2.4	2.8	2.7	2.8	2.3	4
005	Private - Subject to Acq. Rights	0.1	0.1	0.2	0.1	2.4	2.9	2.8	2.8	2.2	4
006	Community Infrastructure	0.0	0.1	0.2	0.1	2.4	2.8	2.7	2.7	2.2	4
007a	Private	0.0	0.1	0.2	0.1	2.4	2.8	2.7	2.7	2.2	4
007b	Private	0.0	0.1	0.2	0.1	2.4	2.8	2.7	2.7	2.2	4
007c	Private	0.0	0.1	0.1	0.1	2.4	2.7	2.7	2.6	2.2	4
010	Private	0.0	0.0	0.1	0.1	2.5	2.8	2.8	2.7	2.2	4
011	Private	0.0	0.0	0.1	0.1	2.5	2.8	2.8	2.7	2.2	4
012	Private	0.0	0.0	0.1	0.1	2.5	2.8	2.9	2.7	2.2	4
013	Private	0.0	0.0	0.1	0.1	2.4	2.7	2.6	2.4	2.2	4
014	Private	0.0	0.0	0.1	0.0	2.4	2.6	2.5	2.4	2.2	4
015a	Private	0.0	0.0	0.1	0.0	2.3	2.5	2.5	2.3	2.2	4
015b	Private	0.0	0.0	0.1	0.0	2.3	2.5	2.5	2.3	2.2	4
017a	Private	0.0	0.0	0.0	0.0	2.3	2.5	2.4	2.3	2.1	4
017b	Private	0.0	0.0	0.0	0.0	2.3	2.5	2.4	2.3	2.1	4
019	Private	0.0	0.0	0.1	0.1	2.5	2.9	3.0	2.7	2.3	4
021	Private - Subject to Acq. Rights	0.0	0.0	0.1	0.1	2.5	3.0	3.0	2.8	2.3	4
022	Glencore Owned	0.0	0.0	0.1	0.1	2.5	2.9	3.0	2.8	2.3	4
023	Private - Subject to Acq. Rights	0.0	0.0	0.1	0.1	2.6	3.0	3.1	2.8	2.3	4
024	Glencore Owned	0.0	0.0	0.1	0.1	2.6	3.1	3.2	2.9	2.3	4
025	Glencore Owned	0.0	0.0	0.1	0.1	2.6	3.1	3.2	2.9	2.3	4
026	Glencore Owned	0.0	0.0	0.1	0.1	2.6	3.1	3.2	2.9	2.3	4
027	Glencore Owned	0.0	0.0	0.1	0.1	2.6	3.1	3.2	3.0	2.3	4
028	Glencore Owned	0.0	0.0	0.1	0.1	2.6	3.2	3.3	3.0	2.3	4
	Glencore Owned	0.0	0.0	0.1	0.1	2.6	3.2	3.4	3.1	2.3	4
029	Gielicole Owlied			-	-	-		-		-	

			Project in	isolation			Oritoria				
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
031	Glencore Owned	0.0	0.0	0.1	0.1	2.8	3.6	4.3	3.9	2.4	4
032	Glencore Owned	0.0	0.0	0.1	0.1	2.8	3.4	3.5	3.0	2.3	4
033	Glencore Owned	0.0	0.0	0.1	0.1	2.7	3.1	3.1	2.7	2.3	4
034	Glencore Owned	0.0	0.0	0.1	0.0	2.7	3.0	2.9	2.6	2.2	4
035	Glencore Owned - Vacant	0.0	0.0	0.1	0.0	2.7	2.9	2.9	2.5	2.2	4
036	Glencore Owned	0.0	0.0	0.1	0.1	2.7	3.2	3.1	2.7	2.3	4
037	Glencore Owned - Vacant	0.0	0.0	0.1	0.1	3.0	3.5	3.5	3.0	2.3	4
038	Glencore Owned	0.0	0.0	0.1	0.1	3.1	4.1	4.5	3.7	2.4	4
039	Glencore Owned	0.0	0.0	0.1	0.1	3.0	3.8	4.0	3.4	2.4	4
040	Glencore Owned	0.0	0.0	0.0	0.0	2.2	2.3	2.2	2.1	2.1	4
041	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.0	2.0	2.0	4
042	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.0	2.0	2.0	4
043	Private	0.0	0.0	0.0	0.0	2.0	2.1	2.0	2.0	2.0	4
044a	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
044b	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
045	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
046	Private	0.0	0.0	0.0	0.0	2.0	2.1	2.0	2.0	2.0	4
047	Private	0.0	0.0	0.0	0.0	2.0	2.1	2.0	2.0	2.0	4
048	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.0	2.0	2.0	4
049	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
050	Private	0.0	0.0	0.0	0.0	2.0	2.1	2.0	2.0	2.0	4
051	Private	0.0	0.0	0.0	0.0	2.0	2.1	2.0	2.0	2.0	4
052	Private	0.0	0.0	0.0	0.0	2.0	2.1	2.0	2.0	2.0	4
053	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
054	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
055	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
056a	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
056b	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
057	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
058	Private	0.0	0.0	0.0	0.0	2.0	2.1	2.0	2.0	2.0	4
059	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.0	2.0	2.0	4
060	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.0	2.0	2.0	4
061	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.0	2.0	2.0	4
062	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.0	2.0	4
063a	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.0	2.0	4
068	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.0	4
069a	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.0	4
069b	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.0	4
071	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.0	4
072	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.1	2.0	4
073	Private	0.0	0.0	0.0	0.0	2.1	2.2	2.1	2.1	2.0	4
074	Private	0.0	0.0	0.0	0.0	2.2	2.3	2.3	2.2	2.1	4
075	Private	0.0	0.0	0.0	0.0	2.1	2.2	2.2	2.1	2.1	4
076	Private	0.0	0.0	0.0	0.0	2.1	2.2	2.2	2.1	2.1	4
077	Private	0.0	0.0	0.0	0.0	2.1	2.2	2.1	2.1	2.1	4
082	Private	0.0	0.0	0.0	0.0	2.2	2.2	2.2	2.1	2.1	4
083	Private	0.0	0.0	0.0	0.0	2.2	2.4	2.3	2.2	2.1	4
084a	Private	0.0	0.0	0.0	0.0	2.2	2.3	2.2	2.2	2.1	4
085	Private	0.0	0.0	0.1	0.0	2.2	2.3	2.3	2.2	2.1	4
086	Private	0.0	0.0	0.1	0.0	2.2	2.4	2.3	2.3	2.1	4
087	Private	0.0	0.0	0.1	0.0	2.3	2.4	2.3	2.3	2.1	4
088	Private	0.0	0.0	0.1	0.1	2.3	2.4	2.4	2.3	2.1	4
089	Private	0.0	0.0	0.1	0.1	2.3	2.5	2.4	2.4	2.2	4

	_		Project in	isolation				Cumulative			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
090	Other Mine Owned	0.0	0.0	0.1	0.1	2.3	2.5	2.5	2.4	2.2	4
091	Private	0.0	0.0	0.1	0.1	2.3	2.5	2.5	2.4	2.2	4
092	Private	0.0	0.1	0.1	0.1	2.4	2.6	2.6	2.5	2.2	4
093	Private	0.0	0.0	0.1	0.1	2.4	2.7	2.7	2.5	2.2	4
094	Private	0.0	0.0	0.1	0.1	2.4	2.6	2.5	2.4	2.2	4
095	Private	0.0	0.0	0.1	0.1	2.3	2.5	2.5	2.3	2.2	4
096	Private	0.0	0.0	0.1	0.1	2.3	2.4	2.4	2.3	2.1	4
097	Private	0.0	0.0	0.1	0.1	2.3	2.4	2.4	2.3	2.1	4
098	Private	0.0	0.0	0.1	0.1	2.3	2.4	2.4	2.3	2.1	4
099	Private	0.0	0.1	0.1	0.1	2.3	2.5	2.4	2.4	2.2	4
100	Private	0.0	0.1	0.1	0.1	2.3	2.5	2.5	2.4	2.2	4
101	Private	0.0	0.1	0.1	0.1	2.3	2.5	2.4	2.4	2.2	4
102a	Private	0.0	0.1	0.1	0.1	2.3	2.6	2.5	2.5	2.2	4
102b	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.5	2.5	2.2	4
104	Other Mine Owned	0.1	0.1	0.1	0.1	2.3	2.6	2.6	2.5	2.2	4
105	Private - Subject to Acq. Rights	0.1	0.1	0.2	0.2	2.4	2.9	2.7	2.9	2.3	4
108	Glencore Owned	0.3	0.4	0.4	0.2	2.7	3.1	3.1	3.1	2.4	4
109	Glencore Owned	0.3	0.4	0.4	0.3	2.7	3.1	3.1	3.1	2.4	4
110	Other Mine Owned - Vacant	0.3	0.3	0.3	0.1	2.7	3.4	3.3	3.2	2.3	4
111	Private - Subject to Acq. Rights	0.3	0.3	0.2	0.1	2.7	3.9	3.8	3.7	2.3	4
112	Private - Subject to Acq. Rights	0.0	0.1	0.1	0.1	2.5	2.9	2.9	2.8	2.3	4
114	Private - Subject to Acq. Rights	0.0	0.1	0.2	0.2	2.4	2.9	2.8	2.9	2.3	4
115	Private - Subject to Acq. Rights	0.1	0.1	0.2	0.2	2.4	2.9	2.8	2.9	2.3	4
116	Glencore Owned	0.1	0.1	0.2	0.2	2.4	2.9	2.7	2.8	2.3	4
117	Glencore Owned	0.1	0.1	0.3	0.2	2.4	2.9	2.7	2.9	2.3	4
120	Glencore Owned - Vacant	0.1	0.2	0.3	0.3	2.5	3.0	2.7	2.9	2.3	4
121	Glencore Owned - Vacant	0.2	0.3	0.5	0.3	2.6	3.0	2.9	3.0	2.4	4
122	Glencore Owned	0.2	0.3	0.5	0.3	2.6	2.9	2.8	3.0	2.4	4
123	Glencore Owned - Vacant	0.1	0.2	0.4	0.3	2.6	3.0	2.8	3.0	2.4	4
125	Glencore Owned	0.2	0.4	0.6	0.3	2.7	3.0	3.0	3.1	2.4	4
126	Glencore Owned - Vacant	0.3	0.4	0.5	0.3	2.7	3.0	3.0	3.1	2.4	4
127a	Private - Subject to Acq. Rights	0.2	0.1	0.0	0.0	2.6	3.4	3.3	3.1	2.4	4
127b	Private - Subject to Acq. Rights	0.6	0.4	0.2	0.1	2.9	3.7	3.4	3.1	2.3	4
127c	Private - Subject to Acq. Rights	0.8	0.5	0.2	0.1	3.1	3.7	3.3	2.9	2.3	4
127d	Private - Subject to Acq. Rights	0.8	0.5	0.2	0.1	3.1	3.7	3.4	3.0	2.3	4
129	Glencore Owned	1.0	0.7	0.3	0.1	3.4	3.8	3.4	2.9	2.3	4
130	Glencore Owned	1.0	0.7	0.3	0.1	3.4	3.9	3.4	2.9	2.3	4
131	Glencore Owned - Vacant	0.0	0.1	0.1	0.1	2.5	2.8	2.4	2.4	2.2	4
134	Private	0.0	0.0	0.0	0.0	2.2	2.2	2.2	2.1	2.1	4
135	Private	0.0	0.0	0.0	0.0	2.2	2.2	2.1	2.1	2.1	4
136	Private	0.0	0.0	0.0	0.0	2.1	2.2	2.1	2.1	2.1	4
143	Private - Subject to Acq. Rights	0.3	0.2	0.1	0.0	2.7	3.3	3.1	2.9	2.3	4
144a	Private - Subject to Acq. Rights	0.0	0.0	0.0	0.0	2.8	3.7	3.7	2.9	2.9	4
144b	Private - Subject to Acq. Rights	0.0	0.0	0.0	0.0	2.5	2.7	2.7	2.5	2.5	4
144c	Private - Subject to Acq. Rights	0.0	0.0	0.0	0.0	2.5	2.7	2.7	2.5	2.5	4
145	Private - Subject to Acq. Rights	0.0	0.0	0.0	0.0	2.8	6.9	6.9	2.9	2.9	4
146	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.1	2.9	2.5	4
147	Private - Subject to Acq. Rights	0.0	0.0	0.0	0.0	2.7	3.4	3.4	3.0	2.7	4
148	Other Mine Owned	0.1	0.1	0.0	0.0	2.6	3.4	3.4	3.2	2.6	4
149	Community Infrastructure	0.1	0.1	0.0	0.0	2.7	3.3	3.3	2.9	2.5	4
150	Private - Subject to Acq. Rights	0.1	0.1	0.0	0.0	2.7	3.3	3.2	2.9	2.4	4
151	Other Mine Owned	0.1	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
152	Private - Subject to Acq. Rights	0.1	0.1	0.0	0.0	2.7	3.3	3.2	2.9	2.4	4

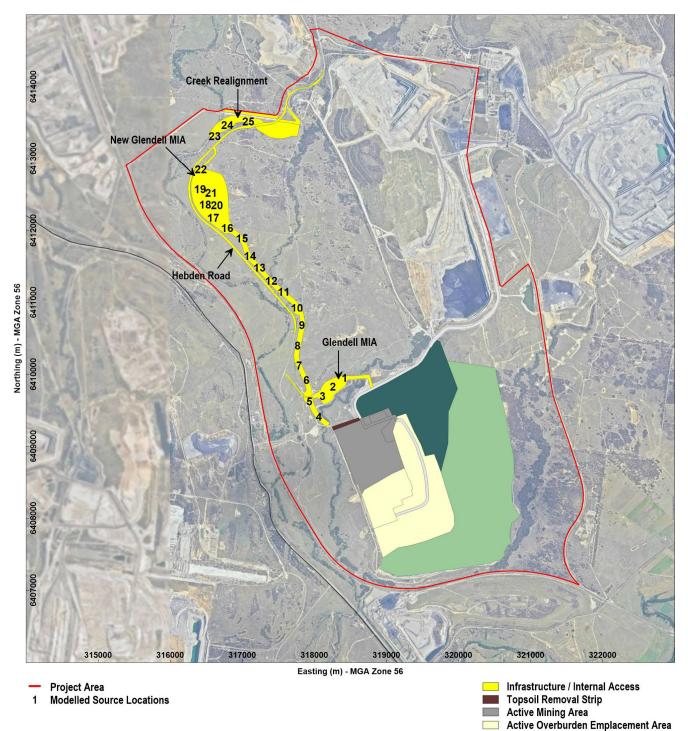
		Project in isolation			Cumulative			Critoria			
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
154	Private - Subject to Acq. Rights	0.2	0.1	0.1	0.0	2.7	3.3	3.1	2.9	2.4	4
155	Private - Subject to Acq. Rights	0.3	0.2	0.1	0.0	2.7	3.3	3.1	2.9	2.4	4
156	Private - Subject to Acq. Rights	0.4	0.2	0.1	0.0	2.8	3.4	3.1	2.8	2.3	4
157	Glencore Owned - Vacant	0.5	0.6	0.6	0.3	2.9	3.2	3.2	3.1	2.4	4
158	Other Mine Owned - Vacant	0.0	0.0	0.0	0.0	2.7	44.9	44.9	2.9	2.8	4
159	Other Mine Owned - Vacant	0.0	0.0	0.0	0.0	2.6	3.4	3.4	2.8	2.6	4
160	Other Mine Owned - Vacant	0.0	0.0	0.0	0.0	2.7	15.0	15.0	2.9	2.8	4
161	Glencore Owned - Vacant	0.1	0.1	0.3	0.3	2.8	4.5	2.6	2.7	2.5	4
162b	Private	0.0	0.0	0.0	0.0	2.1	2.1	2.1	2.0	2.0	4
163	Other Mine Owned	0.1	0.1	0.1	0.1	2.3	2.6	2.6	2.6	2.2	4
164	Other Mine Owned	0.1	0.1	0.1	0.1	2.3	2.6	2.6	2.5	2.2	4
165	Other Mine Owned	0.1	0.1	0.1	0.1	2.3	2.6	2.6	2.5	2.2	4
166	Other Mine Owned - Vacant	0.4	0.2	0.1	0.0	2.9	3.6	3.3	3.0	2.4	4
178	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
209	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
210	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
211	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
212	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
213	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
259	Private	0.0	0.0	0.0	0.0	2.2	2.3	2.2	2.1	2.1	4
260	Private	0.0	0.0	0.0	0.0	2.2	2.3	2.2	2.1	2.1	4
280	Private	0.1	0.1	0.1	0.1	2.3	2.7	2.6	2.6	2.2	4
281	Private	0.1	0.1	0.1	0.1	2.3	2.7	2.6	2.6	2.2	4
282	Private	0.1	0.1	0.2	0.1	2.3	2.7	2.6	2.6	2.2	4
288	Private	0.0	0.1	0.1	0.1	2.2	2.4	2.3	2.3	2.1	4
289	Private	0.1	0.1	0.1	0.1	2.2	2.5	2.4	2.4	2.1	4
290	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.5	2.5	2.2	4
291	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.6	2.5	2.2	4
292a	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.5	2.5	2.2	4
292b	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.5	2.5	2.2	4
293	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.6	2.5	2.2	4
294	Private	0.1	0.1	0.1	0.1	2.3	2.5	2.5	2.4	2.2	4
295	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.5	2.5	2.2	4
296	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.5	2.5	2.2	4
297a	Private	0.1	0.1	0.1	0.1	2.3	2.7	2.6	2.6	2.2	4
297b	Private	0.1	0.1	0.1	0.1	2.3	2.7	2.6	2.6	2.2	4
297c	Private	0.1	0.1	0.1	0.1	2.3	2.6	2.6	2.6	2.2	4
297d	Private	0.1	0.1	0.1	0.1	2.3	2.5	2.5	2.4	2.2	4
299	Private	0.1	0.1	0.1	0.1	2.3	2.7	2.6	2.5	2.2	4
300	Private	0.1	0.1	0.1	0.0	2.3	2.7	2.6	2.5	2.2	4
302	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.2	4
303	Private	0.0	0.1	0.1	0.0	2.2	2.4	2.4	2.3	2.1	4
305	Private	0.1	0.1	0.1	0.0	2.2	2.5	2.5	2.4	2.2	4
306	Private	0.1	0.1	0.1	0.0	2.3	2.5	2.5	2.4	2.2	4
307	Private	0.1	0.1	0.1	0.0	2.3	2.5	2.5	2.4	2.2	4
308	Private	0.1	0.1	0.1	0.0	2.3	2.5	2.5	2.4	2.2	4
309	Private	0.1	0.1	0.1	0.0	2.3	2.5	2.5	2.5	2.2	4
310	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.5	2.5	2.2	4
311	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.5	2.5	2.2	4
312	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.5	2.5	2.2	4
314	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.2	4
315	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.3	4

	2	Project in isolation						Cumulative		0.11	
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
317	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.2	4
318	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.2	4
319	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.2	4
320	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.2	4
321	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.2	4
322	Private	0.1	0.1	0.1	0.0	2.3	2.6	2.6	2.5	2.2	4
323	Private	0.1	0.1	0.1	0.0	2.3	2.7	2.6	2.5	2.2	4
324	Private	0.1	0.1	0.1	0.0	2.3	2.7	2.6	2.5	2.2	4
325	Private	0.1	0.1	0.1	0.0	2.4	2.7	2.7	2.6	2.3	4
326	Private	0.1	0.1	0.1	0.0	2.4	2.7	2.6	2.6	2.3	4
327	Private	0.1	0.1	0.1	0.0	2.4	2.7	2.6	2.6	2.3	4
328	Private	0.1	0.1	0.1	0.0	2.4	2.7	2.6	2.5	2.3	4
329	Private	0.1	0.1	0.0	0.0	2.4	2.7	2.7	2.6	2.3	4
330	Private	0.1	0.1	0.0	0.0	2.4	2.7	2.6	2.5	2.3	4
337	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4
342	Private Infrastructure	0.8	0.7	0.3	0.1	2.9	3.5	3.2	2.7	2.3	4
344	Other Mine Owned	0.1	0.1	0.1	0.1	2.3	2.6	2.6	2.5	2.2	4
349a	Private	0.1	0.1	0.1	0.0	2.2	2.5	2.5	2.4	2.2	4
349b	Private	0.1	0.1	0.1	0.0	2.3	2.5	2.5	2.4	2.2	4
350	Community Infrastructure	0.0	0.0	0.0	0.0	2.1	2.1	2.0	2.0	2.0	4
351	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
352	Other Mine Owned - Vacant	0.1	0.1	0.0	0.0	2.6	3.6	3.5	3.3	2.5	4
353	Other Mine Owned	0.1	0.0	0.0	0.0	2.7	3.5	3.4	3.2	2.6	4
356	Glencore Owned - Vacant	1.5	5.9	57.5	11.1	3.4	4.4	8.2	59.7	13.2	4
357	Glencore Owned - Vacant	0.4	1.2	7.9	16.5	3.2	3.4	3.4	10.1	18.5	4
358	Glencore Owned - Vacant	0.2	0.5	2.2	2.1	3.4	4.1	2.7	4.3	4.2	4
359	Glencore Owned - Vacant	0.6	0.5	0.2	0.1	2.9	3.4	3.1	2.6	2.3	4
360	Glencore Owned - Vacant	0.1	0.1	0.3	0.2	2.4	2.9	2.7	2.9	2.3	4
361	Glencore Owned - Vacant	0.0	0.1	0.2	0.2	2.5	2.9	2.9	2.9	2.3	4
363	Glencore Owned	0.1	0.1	0.3	0.2	2.4	2.9	2.7	2.9	2.3	4
364	Other Mine Owned	0.0	0.0	0.0	0.0	2.6	4.0	3.9	2.8	2.6	4
365	Other Mine Owned - Vacant	0.0	0.0	0.0	0.0	2.6	3.4	3.3	2.8	2.5	4
366	Other Mine Owned - Vacant	0.0	0.0	0.0	0.0	2.6	3.4	3.4	2.8	2.6	4
367	Other Mine Owned	0.0	0.0	0.0	0.0	2.6	3.4	3.3	2.8	2.6	4
369	Other Mine Owned - Vacant	0.0	0.0	0.0	0.0	2.6	3.3	3.2	2.8	2.5	4
370	Other Mine Owned	0.0	0.0	0.0	0.0	2.6	3.3	3.3	2.8	2.6	4
371	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.3	3.2	2.9	2.5	4
372	Other Mine Owned	0.1	0.1	0.0	0.0	2.6	3.3	3.2	2.9	2.5	4
373	Other Mine Owned - Vacant	0.1	0.1	0.0	0.0	2.6	3.3	3.2	2.9	2.5	4
374	Other Mine Owned	0.1	0.1	0.0	0.0	2.6	3.3	3.2	2.9	2.5	4
375	Other Mine Owned	0.1	0.1	0.0	0.0	2.6	3.3	3.2	2.9	2.5	4
376	Other Mine Owned	0.1	0.1	0.0	0.0	2.7	3.3	3.2	2.9	2.4	4
377	Other Mine Owned	0.1	0.1	0.0	0.0	2.7	3.3	3.2	2.9	2.4	4
378	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
379	Other Mine Owned	0.1	0.1	0.0	0.0	2.7	3.3	3.2	2.9	2.4	4
380	Other Mine Owned	0.1	0.1	0.0	0.0	2.7	3.3	3.2	2.9	2.4	4
381	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
382	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
383	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
384	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
385	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
386	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
387	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4

	0		Project ir	n isolation				Cumulative			0.11
ID	Status	Year 1	Year 6	Year 13	Year 18	2014	Year 1	Year 6	Year 13	Year 18	Criteria
388	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
389	Other Mine Owned - Vacant	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
390	Other Mine Owned	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
391	Other Mine Owned	0.3	0.2	0.1	0.0	2.8	3.3	3.1	2.9	2.3	4
392	Other Mine Owned - Vacant	0.3	0.2	0.1	0.0	2.7	3.3	3.1	2.9	2.4	4
394	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.2	2.9	2.5	4
395	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.2	2.9	2.5	4
396	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.2	2.9	2.5	4
397	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.2	2.9	2.5	4
398	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.2	2.9	2.5	4
399	Other Mine Owned	0.1	0.1	0.0	0.0	2.6	3.2	3.2	2.9	2.5	4
400	Other Mine Owned	0.1	0.1	0.0	0.0	2.6	3.2	3.2	2.9	2.5	4
401	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.2	2.9	2.5	4
402	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.1	2.9	2.5	4
403	Other Mine Owned	0.1	0.0	0.0	0.0	2.6	3.2	3.1	2.9	2.5	4
404	Other Mine Owned - Vacant	0.0	0.0	0.0	0.0	3.1	4.3	4.2	3.3	3.2	4
405	Other Mine Owned - Vacant	0.1	0.1	0.0	0.0	2.9	3.7	3.7	3.0	2.8	4
406	Other Mine Owned - Vacant	0.0	0.0	0.0	0.0	2.7	4.0	4.0	2.9	2.7	4
407	Other Mine Owned - Vacant	0.2	0.1	0.1	0.0	2.7	3.3	3.2	2.9	2.4	4
408	Other Mine Owned	0.1	0.1	0.0	0.0	2.7	3.3	3.2	2.9	2.4	4
409	Glencore Owned - Vacant	0.7	0.5	0.2	0.1	2.9	3.4	3.1	2.6	2.3	4
411	Glencore Owned - Vacant	0.0	0.0	0.1	0.0	2.5	2.7	2.5	2.3	2.2	4
412	Community Infrastructure	0.0	0.0	0.1	0.1	2.3	2.4	2.2	2.2	2.1	4
415	Private Infrastructure	0.0	0.0	0.0	0.0	2.2	2.3	2.2	2.1	2.1	4
417	Private	0.0	0.0	0.0	0.0	2.0	2.0	2.0	2.0	2.0	4

Appendix H. Model Inputs for Construction Activities

Emission inventory Glendell Mine Construction


	Annual	emissions				T	SP	PN	/10	PN	12.5		Variables						
Activity	TSP	PM10	PM2.5	Control (%)	Intensity	Units	Factor	Units	Factor	Units	Factor	Units	Area (m2)	(ws/2.2)^1.3	Moisture (%)	kg/NKT	t/truck	km/trip	Silt (%)
MIA - dozers working	16798	4059	1764	0	1004 h/y	/	16.7	kg/h	4.04419	kg/h	1.757	kg/h	-		2	-	-		10
MIA - excavators loading	2696	1275	193	0	1655310 t/y		0.00163	kg/t	0.00077	kg/t	0.0001	kg/t	-	1.38	2		-	-	
MIA - trucks hauling	10455	3089	314	85	1655310 t/y		0.04211	kg/t	0.01244	kg/t	0.001	kg/t	-	-		4	190	2	
MIA - trucks dumping	2696	1275	193	0	1655310 t/y	,	0.00163		0.00077	kg/t	0.0001		-	1.38	2	-		-	
MIA - wind erosion	27031	13934	2027	0	32 ha		849.7	kg/ha/y	438.0	kg/ha/y	63.7	kg/ha/y		-		-		-	
HVAR - dozers working	16798	4059	1764	0	1004 h/y	V	16.7	kg/h	4.04419	kg/h	1.757	kg/h			2				10
HVAR - excavators loading	2652	1254	190	0	1628234 t/y	e	0.00163	kg/t	0.00077	kg/t	0.0001	kg/t	-	1.38	2		-	-	-
HVAR - trucks hauling	10284	3039	309	85	1628234 t/y	C	0.04211	kg/t	0.01244	kg/t	0.001	kg/t	(-		<u> (-</u>	4	190	2	-
HVAR - trucks dumping	2652	1254	190	0	1628234 t/y		0.00163	kg/t	0.00077	kg/t	0.0001	kg/t	(m.	1.38	2		(-		6
HVAR - wind erosion	27031	13934	2027	0	32 ha		849.7	kg/ha/y	438.0	kg/ha/y	63.7	kg/ha/y	-	· · - ·			c	-	
Hebden Rd - dozers working	16798	4059	1764	0	1004 h/y	/	16.7	kg/h	4.04419	kg/h	1.757	kg/h	-		2	-		-	10
Hebden Rd - excavators loading	972	460	70	0	596530 t/y		0.00163	kg/t	0.00077	kg/t	0.0001	kg/t	-	1.38	2				
Hebden Rd - trucks hauling	3768	1113	113	85	596530 t/y		0.04211	kg/t	0.01244	kg/t	0.001	kg/t		-	-	4	190	2	
Hebden Rd - trucks dumping	972	460	70	0	596530 t/y	1	0.00163	kg/t	0.00077	kg/t	0.0001	kg/t		1.38	2				
Hebden Rd - wind erosion	27031	13934	2027	0	32 ha		849.7	kg/ha/y	438.0	kg/ha/y	63.7	kg/ha/y	-	-	-		-		
Yorks Ck - dozers working	16798	4059	1764	0	1004 h/y	/	16.7	kg/h	4.04419	kg/h	1.757	kg/h	- (2		(-	-	10
Yorks Ck - excavators loading	627	297	45	0	385174 t/y		0.00163	kg/t	0.00077	kg/t	0.0001	kg/t	<u>-</u>	1.38	2		(-	1	9
Yorks Ck - trucks hauling	2433	719	73	85	385174 t/y		0.04211	kg/t	0.01244	kg/t	0.001	kg/t	-		14	4	190	2	1
Yorks Ck - trucks dumping	627	297	45	0	385174 t/y		0.00163	kg/t	0.00077	kg/t	0.0001	kg/t		1.38	2			-	
Yorks Ck - wind erosion	27031	13934	2027	0	32 ha		849.7	kg/ha/y	438.0	kg/ha/y	63.7	kg/ha/y			-	-	5-		
Blasting	4045	2103	121	0	52 bla	asts/y	77.8	kg/blast	40.4	kg/blast	2.3	kg/blast	5000		-		/-	-	-
Total (Construction)	220195	88608	17089																
Total (Operations Year 1)	2241625	681177	128378																
	10%	13%	13%																

Rehabilitation

Rehabilitation (Redisturbance)

Source locations Glendell Mine Construction

Source allocations Glendell Mine Construction

```
26-Nov-2019 13:55
    DUST EMISSION CALCULATIONS XL1
      ----ACTIVITY SUMMARY-----
  ACTIVITY NAME : MIA - dozers working
  ACTIVITY TYPE : Wind insensitive
DUST EMISSION : 16798 kg/y TSP 4059 kg/y PM10 1764 kg/y PM2.5
  FROM SOURCES
                              : 8

        HOURS OF DAY
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        <t
  ACTIVITY NAME : MIA - excavators loading
  ACTIVITY MADE : Wind sensitive
DUST EMISSION : 2696 kg/y TSP 1275 kg/y PM10 193 kg/y PM2.5
FROM SOURCES : 8
FROM SOURCES : 8
15 16 17 18 19 20 21 22
ACTIVITI NAME : M1A - trucks hauling
ACTIVITY TYPE : Wind insensitive
DUST EMISSION : 10455 kg/y TSP 3089 kg/y PM10 314 kg/y PM2.5
FROM SOURCES : 8
15 16 17 18 19 20 21 22
HOURS C PAP.
   ACTIVITY NAME : MIA - trucks hauling
ACTIVITY NAME : MIA - trucks dumping
  ACTIVITY TYPE : Wind sensitive
DUST EMISSION : 2696 kg/y TSP 1275 kg/y PM10 193 kg/y PM2.5
  FROM SOURCES
                              : 8
 15 16 17 18 19 20 21 22
  HOURS OF DAY :
ACTIVITY NAME : MIA - wind erosion
ACTIVITY TYPE : Wind erosion
DUST EMISSION : 27031 kg/y TSP 13934 kg/y PM10 2027 kg/y PM2.5
FROM SOURCES : 8
15 16 17 18 19 20 21 22
ACTIVITY NAME : HVAR - dozers working
ACTIVITY TYPE : Wind insensitive
DUST EMISSION : 16798 kg/y TSP 4059 kg/y PM10 1764 kg/y PM2.5
FROM SOURCES : 16

      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

      HOURS OF DAY

      0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

  ACTIVITY NAME : HVAR - excavators loading
  ACTIVITY TYPE : Wind sensitive
DUST EMISSION : 2652 kg/y TSP 1254 kg/y PM10 190 kg/y PM2.5
 FROM SOURCES : 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HOURS OF DAY :
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
  ACTIVITY NAME : HVAR - trucks hauling
ACTIVITY TYPE : Wind insensitive
DUST EMISSION : 10284 kg/y TSP 3039 kg/y PM10 309 kg/y PM2.5

        DIST EMISSION
        10224 kg/y ISP
        3039 kg/y PMI0

        FROM SOURCES
        16

        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

        HOURS OF DAY

        0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

  ACTIVITY NAME : HVAR - trucks dumping
  ACTIVITY TYPE : Wind sensitive
DUST EMISSION : 2652 kg/y TSP 1254 kg/y PM10 190 kg/y PM2.5
  FROM SOURCES : 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HOURS OF DAY :
 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
  ACTIVITY NAME : HVAR - wind erosion
  ACTIVITY TYPE : Wind erosion
DUST EMISSION : 27031 kg/y TSP 13934 kg/y PM10 2027 kg/y PM2.5
ACTIVITY NAME : Hebden Rd - excavators loading
  ACTIVITY TYPE : Wind sensitive
DUST EMISSION : 972 kg/y TSP 460 kg/y PM10 70 kg/y PM2.5
```

Air Quality Impact Assessment


```
FROM SOURCES : 15

        HOURS OF DAY
        10
        11
        12
        13
        14
        15
        16
        17
        18
        19
        20
        21
        22
        23
        24
        25

        HOURS OF DAY
        :
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0

   ACTIVITY NAME : Hebden Rd - trucks hauling
  ACTIVITY TYPE : Wind insensitive
DUST EMISSION : 3768 kg/y TSP 1113 kg/y PM10 113 kg/y PM2.5
FROM SOURCES : 15

        HOURS OF DAY
        11
        11
        12
        13
        14
        15
        16
        17
        18
        19
        20
        21
        22
        23
        24
        25

        HOURS OF DAY
        :
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0

   ACTIVITY NAME : Hebden Rd - trucks dumping
  ACTIVITY TYPE : Wind sensitive
DUST EMISSION : 972 kg/y TSP 460 kg/y PM10 70 kg/y PM2.5
FROM SOURCES : 15
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
   HOURS OF DAY
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
ACTIVITY NAME : Hebden Rd - wind erosion
ACTIVITY TYPE : Wind erosion
DUST EMISSION : 27031 kg/y TSP 13934 kg/y PM10 2027 kg/y PM2.5
FROM SOURCES : 15
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ACTIVITY NAME : Yorks Ck - dozers working
   ACTIVITY TYPE : Wind insensitive
DUST EMISSION : 16798 kg/y TSP 4059 kg/y PM10 1764 kg/y PM2.5
   FROM SOURCES : 3
 23
       24 25
   HOURS OF DAY
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
  ACTIVITY NAME : Yorks Ck - excavators loading
ACTIVITY TYPE : Wind sensitive
DUST EMISSION : 627 kg/y TSP 297 kg/y PM10 45 kg/y PM2.5
FROM SOURCES : 3
23 24 25
HOURS OF DAY :
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
  ACTIVITY NAME : Yorks Ck - trucks hauling
ACTIVITY TYPE : Wind insensitive
DUST EMISSION : 2433 kg/y TSP 719 kg/y PM10 73 kg/y PM2.5
FROM SOURCES : 3
23 24 25
ACTIVITY NAME : Yorks Ck - trucks dumping
  ACTIVITY TYPE : Wind sensitive
DUST EMISSION : 627 kg/y TSP 297 kg/y PM10 45 kg/y PM2.5
   FROM SOURCES : 3
 23 24 25
   HOURS OF DAY
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
   ACTIVITY NAME : Yorks Ck - wind erosion ACTIVITY TYPE : Wind erosion
   DUST EMISSION: 27031 kg/y TSP 13934 kg/y PM10 2027 kg/y PM2.5
FROM SOURCES : 3
23 24 25
ACTIVITY NAME : Blasting
   ACTIVITY TYPE : Wind insensitive
   DUST EMISSION : 4045 kg/y TSP 2103 kg/y PM10 121 kg/y PM2.5
FROM SOURCES : 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
HOURS OF DAY :
```