Meadowbank Education and Employment Precinct Schools Project Supplementary Contamination Assessment

SSD 18_9343
Prepared by Alliance Geotechnical
For School Infrastructure NSW
11 October 2019

DOCUMENT CONTROL

Revision	Date	Author	Reviewer
Rev 0 2 July 2019		Sam Scully	Aidan Rooney
Rev 1 11 October 2019		Sam Scully	Aidan Rooney

Author Signature	Author Signature		A
Name Sam Scully		Name	Aidan Rooney
Title Environmental Scientist		Title	Principal Environmental Scientist

EXECUTIVE SUMMARY

Alliance Geotechnical Pty Ltd (AG) was engaged by Ward Civil, to undertake a Supplementary Contamination Assessment for Meadowbank Education and Employment Precinct Schools Project at 2 Rhodes Street, Meadowbank, NSW (refer **Figure 1** with the 'site' boundaries outlined in **Figure 2**).

This report has been prepared by AG on behalf of the NSW Department of Education (the Applicant). It accompanies an Environmental Impact Statement (EIS) in support of State Significant Development Application (SSD 18_9343) for the Meadowbank Education and Employment Precinct Schools Project (hereafter referred to as MEEPSP) at 2 Rhodes Street, Meadowbank (the site).

MEEPSP will cater for 1,000 primary school students and 1,620 high school students. The proposal seeks consent for:

- A multi-level, multi-purpose, integrated school building with a primary school wing and high school wing. The school building is connected by a centralised library that is embedded into the landscape. The school building contains:
 - Collaborative general and specialist learning hubs, with a combination of enclosed and open spaces;
 - Adaptable classroom home bases;
 - Four level central library, with primary school library located on ground floor and high school library on levels 1 to 3.
 - Laboratories and workshops;
 - Staff workplaces;
 - Canteens;
 - Indoor gymnasium;
 - Multipurpose communal hall;
 - Outdoor learning, play and recreational areas (both covered and uncovered).
- Associated site landscaping and public domain improvements;
- An on-site car park for 60 parking spaces; and
- Construction of ancillary infrastructure and utilities as required.

The objectives of this investigation were to:

- Assess data gaps and delineate the identified contamination presented in the Stage 2
 Detailed Site Investigation (DSI) completed by AG in 2018 (AG, 2018b) and the remedial
 action plan (RAP) completed by AG in 2018 (AG, 2018c);
- Assess the potential nature and extent of identified contaminants of potential concern on the site, with reference to the areas of environmental concern reported by AG in (AG, 2018b & AG, 2018c);
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting;
- Provide recommendations for further investigation, management and/or remediation (if warranted).

The scope of works undertaken to address the investigation objectives, included:

- A desktop review of relevant information relating to the site;
- A site walkover to understand current site conditions;
- Conduct an intrusive site investigation using both excavator and utility-mounted drill rig to assess subsurface ground conditions and to facilitate the collection of representative soil samples;
- Laboratory analysis to compliment the in-situ testing completed during the field investigation; and
- Data assessment and report preparation.

Conclusions and Recommendations

Based on AG's assessment of the desktop review information, fieldwork data and laboratory analytical data, in the context of the proposed redevelopment scenario, AG makes the following conclusions:

Data Gap Assessment (previously inaccessible areas)

- the detected concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present an unacceptable direct contact human health exposure risk;
- fibrous asbestos and asbestos fines detected in the soils assessed, may present an unacceptable human health exposure risk, at sampling points **TP53** and **TP57**;
- the detected concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present an unacceptable inhalation / vapour intrusion human health exposure risk; and
- the detected concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present a petroleum hydrocarbon management limit risk.

Chemical Delineation Assessment

- the extent of previously identified lead contamination at sampling points BH02, BH22 and BH24, is considered to have been adequately delineated; and
- the extent of previously identified benzo(a)pyrene contamination at sampling points BH04,
 BH16 and BH23, is considered to have been adequately delineated.

Asbestos Delineation Assessment

- the extent of previously identified asbestos contamination at sampling points **SS02**, **SS03**, **BH30**, **BH41** and **TP53** is considered to have been adequately delineated;
- the extent of previously identified asbestos contamination at sampling point BH07, has not been adequately delineated; and
- Non-friable ACM identified at sampling point **TP04B** may present an unacceptable human health exposure risk and has not been adequately delineated.

Indicative Waste Classification

General Solid Waste (Special Waste).

Based on these conclusions, AG makes the following recommendations:

- a further supplementary contamination assessment could be undertaken to further understand the nature and extent of asbestos contamination identified at sampling points **TP04B**, **TP07A** and **TP57**; or
- alternatively, AG (2018c) could be updated to include the recently identified contamination
 risks onsite and outline the appropriate remedial measures to adequately remove the
 contamination pathway and associated human health exposure risks. It is recommended
 that any update to AG (2018c) be undertaken by an appropriately experienced
 environmental consultant.

This report, including its conclusions and recommendations, must be read in conjunction with the limitations presented in **Section 15**.

TABLE OF CONTENTS

DOCUI	MENT CONTROL	i
EXECU	TIVE SUMMARY	ii
1. IN	ITRODUCTION	1
1.1.	Background	
1.2.	Objectives	
1.3.	Scope of Work	
	TE IDENTIFICATION	
	TE CONDITIONS AND SURROUNDING ENVIRONMENT	
3.1.	Geology	
3.2.	Acid Sulfate Soils	
3.3.	Topography	
3.4.	Hydrogeology	4
4. PF	REVIOUS CONTAMINATION ASSESSMENTS	5
4.1.	Alliance Geotechnical (2018a)	5
4.2.	Alliance Geotechnical (2018b)	€
4.3.	Alliance Geotechnical (2018c)	10
5. CC	ONCEPTUAL SITE MODEL	15
5.1.	Land Use Setting	16
5.2.	Direct Contact – Human Health	17
5.3.	Inhalation / Vapour Intrusion – Human Health	17
5.4.	Management Limits for Petroleum Hydrocarbon Compounds	17
5.5.	Aesthetics – Human Health	17
5.6.	Terrestrial Ecosystems	18
6. D	ATA QUALITY OBJECTIVES	19
6.1.	Step 1: State the problem	19
6.2.	Step 2: Identify the decision/goal of the study	19
6.3.	Step 3: Identify the information inputs	19
6.4.	Step 4: Define the boundaries of the study	20
6.5.	Step 5: Develop the analytical approach (or decision rule)	21
6.6.	Step 6: Specify the performance or acceptance criteria	22
6.7.	Step 7: Develop the plan for obtaining data	24
6.7	7.1. Sampling Point Layout Plan	24

	6.7.2	2.	Identification, Storage and Handling of Samples	26
	6.7.3	3.	Headspace Screening	27
	6.7.4	4.	Decontamination	27
	6.7.5	5.	Laboratory Selection	27
	6.7.6	ŝ.	Laboratory Analytical Schedule	27
	6.7.7	7.	Laboratory Holding Times, Analytical Methods and Limits of Reporting	28
7.	FIEL	DW(DRK	30
	7.1.	Soil	Sampling	30
	7.2.	Site	Geology	31
	7.3.	Hea	dspace Screening	31
	7.4.	Odo	urs	31
	7.5.	Stair	ning	31
	7.6.	Pote	ntial Asbestos Containing Materials	31
8.	LAB	ORA	TORY ANALYSIS	32
9.	DAT	A Q	JALITY INDICATOR ASSESSMENT	33
	9.1.	Com	pleteness	33
	9.2.	Com	parability	34
	9.3.	Repi	esentativeness	34
	9.4.	Prec	ision	35
	9.5.	Accı	ıracy	37
10). D	ATA	GAP ASSESSMENT (PREVIOUSLY INACCESSIBLE AREAS)	38
	10.1.	Hum	nan Health - Direct Contact	38
	10.1	.1.	TRH	38
	10.1	.2.	BTEX	38
	10.1	.3.	PAH	38
	10.1	.4.	OCP	38
	10.1	.5.	PCB	38
	10.1	.6.	Metals	39
	10.1	.7.	Asbestos in Soil – Fibrous Asbestos (FA)/ Asbestos Fines (AF)	39
	10.2.	Hum	nan Health – Inhalation / Vapour Intrusion (Residential)	39
	10.2	.1.	TRH	39
	10.2	.2.	BTEX	39
	10.2	.3.	PAH	39
	10.3.	TPH	Management Limits (Residential)	39
11	CI	HEM	ICAL DELINEATION ASSESSMENT	. 40
	11.1.	Lead		40

11.2.	Benzo(a)pyrene	40			
12.	ASBESTOS DELINEATION ASSESSMENT	41			
12.1.	Asbestos in Soil – Fibrous Asbestos (FA)/ Asbestos Fines (AF)	41			
12.2.	Non-friable Asbestos Containing Material (ACM)	41			
13.	INDICATIVE WASTE CLASSIFICATION ASSESSMENT	42			
14. (CONCLUSIONS AND RECOMMENDATIONS	44			
15.	STATEMENT OF LIMITATIONS	45			
16. I	REFERENCES	46			
SITE FIG	GURES				
Figure 1	L Site Locality				
Figure 2	2 Site Layout Plan				
Figure 3	Areas of Environmental Concern				
Figure 4					

DATA SUMMARY TABLES

Table 1	Laboratory Analytical Results – Data Gap Assessment
Table 2	Laboratory Analytical Results – Chemical Delineation Assessment
Table 3	Laboratory Analytical Results – Asbestos Delineation Assessment
Table 4	Laboratory Analytical Results – Relative Percent Difference
Table 5	Laboratory Analytical Results – Indicative Waste Classification

Previously Identified Chemical Contamination

Previously Identified Asbestos Contamination

Approximate Extent of Chemical Contamination

Approximate Extent of Asbestos Contamination

APPENDICES

Figure 5a

Figure 5b

Figure 6a

Figure 6b

- A Site Survey
- B Borehole Logs
- C Calibration Certificates
- D NATA Accredited Laboratory Documentation
- E ProUCL Calculations Lead Samples

LIST OF ABBREVIATIONS

A list of the common abbreviations used throughout this report is provided below:

ACM Asbestos Containing Material

AF/FA Asbestos Fines / Fibrous Asbestos
AEC Area of Environmental Concern
AG Alliance Geotechnical Pty Ltd
AHD Australian Height Datum

B(a)P TEQ Benzo(a)pyrene Toxic Equivalence Quotient
BTEX Benzene, toluene, ethyl benzene and xylenes

COPC Contaminant of Potential Concern

CSM Conceptual Site Model

DSI Detailed Site Investigation

DP Deposited Plan

EPA NSW Environment Protection Authority

m metres

m² square metres

m bgs metres below ground surface

mg/kg milligrams per kilogram
OCP Organochlorine pesticides

PAHs Polycyclic Aromatic Hydrocarbons

PCBs Polychlorinated Biphenyls
PSI Preliminary Site Investigation

RAP Remedial Action Plan

TRH Total Recoverable Hydrocarbons

UCL Upper Confidence Limit

1. INTRODUCTION

1.1. Background

Alliance Geotechnical Pty Ltd (AG) was engaged by Ward Civil, to undertake a supplementary contamination assessment (SCA) for Meadowbank Education and Employment Precinct Schools Project at 2 Rhodes Street, Meadowbank, NSW (refer **Figure 1** with the 'site' boundaries outlined in **Figure 2**).

This report has been prepared by AG on behalf of the NSW Department of Education (the Applicant). It accompanies an Environmental Impact Statement (EIS) in support of State Significant Development Application (SSD 18_9343) for the Meadowbank Education and Employment Precinct Schools Project (hereafter referred to as MEEPSP) at 2 Rhodes Street, Meadowbank (the site).

MEEPSP will cater for 1,000 primary school students and 1,620 high school students. The proposal seeks consent for:

- A multi-level, multi-purpose, integrated school building with a primary school wing and high school wing. The school building is connected by a centralised library that is embedded into the landscape. The school building contains:
 - Collaborative general and specialist learning hubs, with a combination of enclosed and open spaces;
 - Adaptable classroom home bases;
 - Four level central library, with primary school library located on ground floor and high school library on levels 1 to 3.
 - Laboratories and workshops;
 - Staff workplaces;
 - Canteens;
 - o Indoor gymnasium;
 - Multipurpose communal hall;
 - Outdoor learning, play and recreational areas (both covered and uncovered).
- Associated site landscaping and public domain improvements;
- An on-site car park for 60 parking spaces; and
- Construction of ancillary infrastructure and utilities as required.

1.2. Objectives

The objectives of this project were to:

- Assess data gaps from previous investigations and delineate the identified contamination presented in the Stage 2 – Detailed Site Investigation (DSI) completed by AG in 2018 (AG, 2018b) and the Remedial Action Plan (RAP) completed by AG in 2018 (AG, 2018c);
- Assess the potential nature and extent of identified contaminants of potential concern on the site, with reference to the areas of environmental concern (AECs) reported by AG in (AG, 2018b & AG, 2018c);
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting;

 Provide recommendations for further investigation, management and/or remediation (if warranted).

1.3. Scope of Work

AG undertook the following scope of works to address the project objectives:

- A desktop review of the previous investigation reports and other relevant information relating to the site;
- A site walkover to understand current site conditions;
- Conducted an intrusive site investigation using both excavators and ute-mounted drill rig to assess subsurface ground conditions and to facilitate the collection of representative soil samples;
- Laboratory analysis to compliment the in-situ testing completed during the field investigation; and
- Data assessment and report preparation.

A <u>Supplementary Contamination Assessmen</u>t is required by the Secretary's Environmental Assessment Requirements (SEARs) for SSD 18_9343. This table identifies the SEARs and relevant reference within this report.

Table 1.1 – SEARs and Relevant Reference

SEARs Item	Report Reference
13 Contamination	
Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP 55.	Whole Report

2. SITE IDENTIFICATION

The site is registered with NSW Land and Property Information as a portion of Portion of Lot 1 in DP837179 (Lot 10 in DP1232584).

A registered Lot survey plan of acquisition drawing provided by the client indicates the site is Lot 10 in DP1232584 being part of Lot 1 in DP837179.

The Section 10.7 (formally Section 149) planning certificate for the site (refer Alliance Geotechnical (2018a)) refers to the site as being Lot 10 in DP1232584, with a street address of 2 Rhodes Street, Meadowbank, NSW.

For the purpose of this investigation, the site will be defined as Lot 10 in DP1232584 being part of Lot 1 in DP837179.

The approximate geographic coordinates of the middle of the site, inferred from Google Earth were $33^{\circ}48'46''$ S and $151^{\circ}05'27''$ E.

The locality of the site is set out in **Figure 1**.

The general layout of the site is set out in Figure 2.

The site covers an area of 3.329 hectares (by Lot survey plan).

A copy of a detail and level survey and the Lot plan survey is presented in **Appendix A**.

3. SITE CONDITIONS AND SURROUNDING ENVIRONMENT

3.1. Geology

A review of the Sydney 1;100,000 Geological Series Sheet 9130 (Edition 1) 1983, indicated that the site is underlain by Middle Triassic Hawkesbury Sandstone, which is comprised of medium to coarse grained quartz sandstone, very minor shale and laminite lenses. A portion of the eastern boundary of the site is in close proximity to Ashfield Shale, which is comprised of black to dark grey shale and laminite.

3.2. Acid Sulfate Soils

A review of the Prospect Parramatta Acid Sulfate Soil Risk Map (1:25,000 scale) indicates that the site is in a map class description of "*No Known Occurrence*". Land management activities are not likely to be affected by acid sulfate soil materials.

3.3. Topography

The site topography was generally undulating, with overall slopes generally towards the south and south west, and some localised slopes in the northern portion, towards the east.

The detail and level survey presented in **Appendix A** provides further information on surface contours and elevations.

3.4. Hydrogeology

Surface water courses proximal to the site included:

• Parramatta River located approximately 400m to the south of the site.

Based on distances to the nearest surface water course and the site topography, groundwater flow in the vicinity of the site is considered likely to be towards the south.

A review of the NSW Office of Water groundwater database (www.

http://allwaterdata.water.nsw.gov.au/water) indicated there are three (3) registered groundwater features located within a 500m radius of the site (GW1048997, GW1048998, and GW1048999):

- GW1048997 with an authorised purpose for "monitoring bore". The water bearing zone for the feature was at 2.4m and the standing water level in that bore was measured at 2.32m.
- GW1048998 with an authorised purpose for "monitoring bore". The water bearing zone for the feature was at 2.1m and the standing water level in that bore was measured at 2.5m.
- GW1048999 with an authorised purpose for "monitoring bore". The water bearing zone for the feature was at 2.4m and the standing water level in that bore was measured at 2.32m.

Each of the three features were located to the west of the site, considered to be in an inferred down or cross gradient location, relative to the site.

4. PREVIOUS CONTAMINATION ASSESSMENTS

The following reports were considered during the undertaking of this project:

- AG 2018a, 'Stage 1 Preliminary Site Investigation, Portion of Lot 1 in DP837179 (Lot 10 in DP1232584), Meadowbank Education and Employment Precinct Schools Project, 2 Rhodes Street, Meadowbank, NSW', dated June 2019, ref: 6179-ER-1-1 REV5;
- AG 2018b, 'Stage 2 Detailed Site Investigation, Portion of Lot 1 in DP837179 (Lot 10 in DP1232584), Meadowbank Education and Employment Precinct Schools Project, 2 Rhodes Street, Meadowbank, NSW', dated June 2019, ref: 6179-ER-1-2 REV6;
- AG 2018c, 'Remedial Action Plan, Portion of Lot 1 in DP837179 (Lot 10 in DP1232584), Meadowbank Education and Employment Precinct Schools Project, 2 Rhodes Street, Meadowbank, NSW', dated 12 June 2019, ref: 6179-ER-1-3 REV5.

A summary of these reports is presented in **Section 4.1 to 4.3**.

4.1. Alliance Geotechnical (2018a)

Alliance Geotechnical Pty Ltd (AG) was engaged by Woods Bagot in 2017, to conduct a Stage 1 – Preliminary Site Investigation (PSI) for a portion of the Meadowbank Education and Employment Precinct Schools Project site at 2 Rhodes Street, Meadowbank, NSW (the site).

For this investigation, AG had the following project appreciation:

- TAFE and NSW Department of Education are in negotiations for the sale/purchase of the site;
- the site is being considered for redevelopment, comprising a primary school and secondary school: and
- contamination assessment works are required to inform the property transaction process and master planning process.

The objectives of this investigation were to:

- assess the potential for contamination to be present on the site as a result of past and current land use activities;
- provide advice on whether the site would be suitable (in the context of land contamination) for a primary school and secondary school land use setting; and
- provide recommendations for further investigation, management and/or remediation (if warranted).

The scope of works undertaken to address the investigation objectives, included:

- a desktop review;
- a site walkover; and
- data assessment and reporting.

Alliance Geotechnical (2018a) reported that the predominant historical land title holdings for the site included the Metropolitan Water Sewerage and Drainage Board, and the Meadowbank Manufacturing Company.

The site history data collected and site walkover observations made were assessed within the objectives of the investigation and in the context of the proposed development works. That assessment identified areas of environmental concern (AEC) and contaminants of potential concern (COPC) which have the potential to be present onsite.

Based on AG's assessment of the desktop review and site walkover data, in the context of the proposed development scenario, AG concluded that:

- there is a moderate potential for land contamination to be present on the site, as a result of past and current land use activities; and
- further investigation would be required to make an assessment of the suitability of the site, for a primary school and secondary school land use setting.

Based on these conclusions, AG made the following recommendations:

- A Stage 2 Detailed Site Investigation (DSI) should be undertaken for the site. AG notes that, if a Stage 2 DSI is undertaken while the site remains operational and/or while existing buildings and infrastructure remain on the site, there will likely be constraints limiting further assessment of some areas of the site, which may increase uncertainty around the contamination status of the site; and
- The Stage 2 DSI should be undertaken by a suitably experienced environmental consultant.

4.2. Alliance Geotechnical (2018b)

Alliance Geotechnical Pty Ltd (AG) was engaged by Woods Bagot (the client), to conduct a Stage 2 – Detailed Site Investigation (DSI) for a portion of the Meadowbank Education and Employment Precinct Schools Project site at 2 Rhodes Street, Meadowbank, NSW (the site).

For this investigation, AG had the following project appreciation:

- TAFE and NSW Department of Education are in negotiations for the sale/purchase of the site;
- The site is being considered for redevelopment, comprising a primary school and secondary school; and
- contamination assessment works are required to inform the property transaction process and master planning process.

The objectives of this investigation were to:

- assess the nature and likely extent of identified contaminants of potential concern (COPC) in the identified areas of environmental concern;
- provide advice on whether the identified COPC present an unacceptable human health exposure risk (in the context of land contamination) for the proposed land use setting; and
- provide recommendations for further investigation, management and/or remediation (if warranted).

The scope of works undertaken to address the investigation objectives, included:

- a desktop review;
- intrusive drilling and soil sampling fieldwork;
- laboratory analysis; and

• data assessment and reporting.

The site history data collected and site walkover observations made were assessed within the objectives of this investigation and in the context of the proposed development works. That assessment identified areas of environmental concern (AEC) and contaminants of potential concern (COPC) which have the potential to be present on site. The identified AEC and associated COPC are presented in **Table 4.2**.

Table 4.2 AEC and COPC

ID	AEC	Land Use Activity	Contaminants of Potential Concern
AEC01	Embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC02	Block Y1	Boat building and chemical storage / handling	Hydrocarbons and metals
AEC03	Block Y6	Boat building and chemical storage / handling	Hydrocarbons and metals
AEC04	Former dwelling	Uncontrolled demolition	Metals and asbestos
AEC05	Former dwelling	Uncontrolled demolition	Metals and asbestos
AEC06	Open space	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC07	Embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC08	Former building	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC09	Former dwelling	Uncontrolled demolition	Metals and asbestos
AEC10	Former greenhouse	Pesticide storage / handling	Pesticides and metals
AEC11	Multipurpose courts	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos

ID	AEC	Land Use Activity	Contaminants of Potential Concern
AEC12	Embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC13	Embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC14	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos.
AEC15	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC16	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC17	Carpark and grassed area	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC18	Small embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC19	Embankment next to path	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
-	General site footprint	Potential uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos

Soil sampling was undertaken by AG on 13 and 14 January 2018. A total of 44 sampling points (BH01 to BH41 and SS01 to SS03) were established on site. Sampling points BH01 to BH41 were excavated using a track mounted drilling rig fitted with push tube and solid flight augers, or a hand auger where access was limited. Soil samples at SS01 to SS03 were collected as grab samples from the surface.

Based on AG's assessment of the desktop review information, fieldwork data and laboratory analytical data, in the context of the proposed redevelopment scenario, AG made the following conclusions:

the concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present an unacceptable direct contact human health exposure risk, with the exception of:

- lead in soil at BH02 (560mg/kg), lead in soil at BH22 (490mg/kg) and lead in soil at BH24 (610mg/kg);
- benzo(a)pyrene (TEQ) in soil at BH04 (8.5mg/kg), BH16 (18mg/kg), and BH23 (8.4mg/kg); and
- asbestos in soils in the vicinity of sampling points BH07, SS02, SS03, BH30, BH40 and BH41;
- the concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present an unacceptable inhalation / vapour intrusion human health exposure risk;
- the concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present a petroleum hydrocarbon management limit risk;
- the asbestos detected in the soils assessed, may present an unacceptable human health exposure risk and unacceptable aesthetics risk;
- the site could be made suitable for the proposed land use setting, subject to the further assessment, management and/or remediation of potential unacceptable contamination risks and those areas unable to be assessed.

Based on these conclusions, AG made the following recommendations:

- a Supplementary Contamination Assessment should be undertaken by a suitably experienced environmental consultant to:
 - o further characterise the nature and extent of the elevated concentrations of lead in soil risks and benzo(a)pyrene (TEQ) in soil risks;
 - o further characterise the nature and extent of asbestos in soil risks, and provide a quantitative assessment of those risks;
 - address data gaps associated with AEC13, the southern portion of AEC10, and the central portions of AEC02, AEC03, AEC09, AEC12, AEC14, AEC15, AEC16 (constrained due to the presence of existing structures and/or accessibility constraints);
- consideration should be given to removal of existing structure and accessibility constraints, prior to undertaking the supplementary contamination assessment. Removal of access constraints would likely also require provision for significant surface and pavement disturbance across the site to facilitate quantitative asbestos in soil risk assessment;
- pending the findings of the supplementary contamination assessment, a remedial action plan should be prepared to address unacceptable soil contamination related human health exposure risks. The RAP should be prepared by a suitably experience consultant with reference to NSW OEH (2011) and include (but not be limited to) the following:
 - a remedial goal for the site;
 - an assessment of remedial options available to address the identified asbestos risks.
 These options may include removal offsite, in-situ containment, ex-situ containment, or a combination of these:
 - Offsite removal would likely involve excavation and disposal of impacted materials.
 Subject to successful removal of all impacted material, it is unlikely that a long term operational environmental management plan (EMP) would be required for the proposed development site;
 - In-situ containment could include application of a capping layer across the site.
 Typically, concrete and/or asphalt pavements are adequate for non-exposed soils, while a minimum 0.5m thickness of clean fill (excluding planting media) would be

required in unsealed areas (e.g. playgrounds, soft landscaping etc). Depending on design levels for the development, a portion of the impacted soils may require removal offsite to allow for capping layer thicknesses. This remedial strategy would likely require a long-term environmental management plan (EMP) for the proposed development site, and notification on the Section 10.7 (formally Section 149) planning certificate and/or title for the site;

- Ex-situ containment could include excavation and relocation of a portion of the impacted material elsewhere on the site, and application of a capping layer (similar to that discussed for in-situ containment). This remedial strategy would likely require a long term operational environmental management plan (EMP) for the proposed development site, and notification on the Section 10.7 (formally Section 149) planning certificate and/or title for the site;
- the proposed testing to validate the site after remediation;
- o the proposed testing to validate the site after remediation;
- a contingency plan to address unexpected finds or if the selected remedial strategy fails; and
- o a site management plan (for the remediation works).

4.3. Alliance Geotechnical (2018c)

Alliance Geotechnical Pty Ltd (AG) was engaged by Woods Bagot, to prepare a Remedial Action Plan (RAP) for the site.

AG had the following project appreciation:

- The site is being considered for redevelopment, comprising a primary school and secondary school;
- A Stage 1 Preliminary Site Investigation (PSI) and Stage 2 Detailed Site Investigation (DSI) of the site were reported by AG in February 2018;
- The Stage 2 DSI were considered adequate in providing a reasonable characterisation of land contamination at the site, in those areas that were accessible at the time the Stage 2 DSI works were undertaken;
- It is not considered reasonable (nor would it be considered to be industry accepted practice)
 to assume that the condition of the land in areas that were inaccessible, would be the same
 as the land nearby which may have been investigated as part of the Stage 2 DSI;
- It is considered impractical to assess the condition of the land in those inaccessible areas, prior to demolition and removal of access constraints on site (including buildings and hardstand materials), as those constraints would prevent implementation of industry accepted investigation techniques required to address relevant data gaps identified in the Stage 2 DSI;
- A Remedial Action Plan (RAP) is required to provide a strategy for addressing contamination already identified at the site, as well as a strategy for addressing contamination related data gaps identified in the Stage 2 DSI. AG considers this is an industry accepted approach to managing sites where further contamination assessment works may be constrained by site accessibility, and that development consent for a site would incorporate a condition requiring implementation of all strategies in the RAP (including any supplementary contamination assessment works necessary);
- The RAP is required to include remedial strategies for contamination identified to date (by way of the previously reported Stage 2 DSI), and remedial strategies for unexpected finds

(which may be identified by supplementary contamination assessment works and/or during planned remedial works);

- A supplementary RAP would not be needed following supplementary contamination assessment works. Rather, an addendum to the existing RAP would be produced (if needed), to further refine the extent of remedial works required in those areas already nominated for remedial works, as well as confirm the extent of remedial works (if any) in areas which might be identified during supplementary contamination assessment works; and
- The RAP should address the need for, and structure of, an addendum to the RAP.

The objectives of this project were to prepare a remedial action plan to address:

- Investigation of areas of environmental concern identified in the previous AG contamination assessments, that have not yet been investigated;
- Supplementary investigation of those areas of environmental concern identified in the previous AG contamination assessments, where additional investigation is required to characterise those AEC; and
- Management and/or remediation of already identified unacceptable land contamination risks.

AG notes that, subsequent to the findings of the supplementary contamination assessment works being undertaken, an addendum to this RAP may be required to address newly identified unacceptable land contamination risks.

AG undertook the following scope of works to address the project objectives:

- A desktop review; and
- Reporting.

The site history data collected was assessed within the objectives of this project and in the context of the proposed development works. That assessment identified the following areas of environmental concern (AEC) and contaminants of potential concern (COPC) which either require assessment, further assessment, and/or remediation. The AEC identified and associated COPC are presented in the table below.

ID	Area of Environmental Concern	Land Use Activity	Contaminants of Potential Concern
AEC01	Previous sampling point BH02	Uncontrolled filling	Lead
AEC02 (central portion)	Block Y1	Boat building and chemical storage / handling	Hydrocarbons and metals
AEC02	Previous sampling point BH04	Boat building and chemical storage / handling	Benzo(a)pyrene (TEQ)
AEC03 (central portion)	Block Y6	Boat building and chemical storage / handling	Hydrocarbons and metals

ID	Area of Environmental Concern	Land Use Activity	Contaminants of Potential Concern
AEC05	Previous sampling point BH07	Uncontrolled demolition	Asbestos
AEC09 (central portion)	Former dwelling	Uncontrolled demolition	Metals and asbestos
AEC10 (southern portion)	Former greenhouse	Pesticide storage / handling	Pesticides and metals
AEC11	Previous sampling point BH16	Manufacturing and demolition	Benzo(a)pyrene (TEQ)
AEC12 (central portion)	Embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC13	Embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC14 (central portion)	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos.
AEC14 (BH22)	Previous sampling point BH22	Manufacturing and demolition	Lead
AEC15 (central portion)	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC15	Previous sampling point BH23	Manufacturing and demolition	Benzo(a)pyrene (TEQ)
AEC15	Previous sampling point BH24	Manufacturing and demolition	Lead
AEC16 (central portion)	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC18	Previous sampling point SS03	Uncontrolled filling	Asbestos
AEC19	Previous sampling point BH30	Uncontrolled filling	Asbestos

ID	Area of Environmental Concern	Land Use Activity	Contaminants of Potential Concern
-	Previous sampling point SS02	Potential uncontrolled filling	Asbestos
-	Previous sampling point BH40	Potential uncontrolled filling	Asbestos
-	Previous sampling point BH41	Potential uncontrolled filling	Asbestos

The remedial goal for this site is to remediate potential soil contamination (where identified) to a level that does not present an unacceptable human health exposure risk, based on the proposed land use setting. AG notes that the client would prefer that the remedial works be undertaken in a manner that does not result in the need for:

- Notation on a planning certificate for the site;
- A covenant registered on the title to the land; or
- A long-term environmental management plan (EMP).

The lateral extent of remediation on the site is considered to be, as a minimum, the following:

- lead impacted soils in the vicinity of BH02;
- benzo(a)pyrene TEQ impacted soils in the vicinity of BH04;
- asbestos impacted soils in the vicinity of BH07;
- benzo(a)pyrene TEQ impacted soils in the vicinity of BH16;
- lead impacted soils in the vicinity of BH22;
- benzo(a)pyrene TEQ impacted soils in the vicinity of BH23;
- lead impacted soils in the vicinity of BH24;
- asbestos impacted soils in the vicinity of SS03;
- asbestos impacted soils in the vicinity of SS02;
- asbestos impacted soils in the vicinity of BH40; and
- asbestos impacted soils in the vicinity of BH41.

It is noted that the extent of remediation may be altered, pending the outcomes of the supplementary contamination assessment works, still needing to be undertaken on the site. The nature and extent of supplementary assessment works is set out in this RAP.

Based on the extent of the remediation identified, and the proposed site redevelopment works, remedial options considered appropriate for this site include:

- In-situ containment by capping;
- Ex-situ containment by capping;
- Excavation and removal off site.

Taking into consideration the client's objectives for the site, and the nature and extent of the proposed site redevelopment works, the preferred remedial option for the site is:

• excavation and offsite disposal.

Based on the information presented in the historical contamination assessment reports, AG made the following conclusions:

- Implementation of the strategies, methodologies and measures set out in this remedial action plan would:
 - provide information to address previously identified data gaps for the site;
 - facilitate further characterisation of previously identified potentially unacceptable land contamination risks;
 - facilitate management and/or remediation of potentially unacceptable land contamination risks;
- should newly identified unacceptable land contamination risks be identified during supplementary assessment works, an addendum to this RAP may be required. The addendum should be prepared by a suitably experienced environmental consultant;
- Prior to any removal of soils from site for offsite disposal during remedial works, a waste classification for those soils should be prepared by a suitably experienced environmental consultant;
- Future remedial works should be monitored and validated by a suitably experienced environmental consultant.

5. CONCEPTUAL SITE MODEL

The site history data collected was assessed within the objectives of this project and in the context of the proposed development works. That assessment identified he following areas of environmental concern (AEC) and contaminants of potential concern (COPC) which either require assessment, further assessment, and/or remediation. The AECs identified are presented in attached **Figure 3** and associated COPC are presented in **Table 5.1**.

Table 5.1: AEC and COPC

ID	Area of Environmental Concern	Land Use Activity	Contaminants of Potential Concern
AEC01	Previous sampling point BH02	Uncontrolled filling	Lead
AEC02 (central portion)	Block Y1	Boat building and chemical storage / handling	Hydrocarbons and metals
AECO2	Previous sampling point BH04	Boat building and chemical storage / handling	Benzo(a)pyrene (TEQ)
AEC03 (central portion)	Block Y6	Boat building and chemical storage / handling	Hydrocarbons and metals
AEC05	Previous sampling point BH07	Uncontrolled demolition	Asbestos
AEC09 (central portion)	Former dwelling	Uncontrolled demolition	Metals and asbestos
AEC10 (southern portion)	Former greenhouse	Pesticide storage / handling	Pesticides and metals
AEC11	Previous sampling point BH16	Manufacturing and demolition	Benzo(a)pyrene (TEQ)
AEC12 (central portion)	Embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC13	Embankment	Uncontrolled filling	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos

ID	Area of Environmental Concern	Land Use Activity	Contaminants of Potential Concern
AEC14 (central portion)	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos.
AEC14 (BH22)	Previous sampling point BH22	Manufacturing and demolition	Lead
AEC15 (central portion)	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC15	Previous sampling point BH23	Manufacturing and demolition	Benzo(a)pyrene (TEQ)
AEC15	Previous sampling point BH24	Manufacturing and demolition	Lead
AEC16 (central portion)	Former industrial building	Manufacturing and demolition	Hydrocarbons, pesticides, polychlorinated biphenyl, metals, asbestos
AEC18	Previous sampling point SSO3	Uncontrolled filling	Asbestos
AEC19	Previous sampling point BH30	Uncontrolled filling	Asbestos
-	Previous sampling point SS02	Potential uncontrolled filling	Asbestos
-	Previous sampling point BH40	Potential uncontrolled filling	Asbestos
-	Previous sampling point BH41	Potential uncontrolled filling	Asbestos

5.1. Land Use Setting

AG understands that the proposed development works includes the demolition of historical site structures and construction of a combined primary-high school and associated infrastructure.

Based on the proposed development works and guidance provided in Section 2.2 of NEPC (1999a), AG considers it reasonable to adopt the 'HIL A – residential with accessible soils' land use setting, for the purpose of assessing land contamination exposure risks.

5.2. Direct Contact – Human Health

Portions of the site will be covered with building footprints and hardstand areas; however, some exposed soil areas will likely remain, in the form of playground areas, sporting fields, and general softscape. It is considered that a complete direct contact exposure pathway for may exist in these areas.

5.3. Inhalation / Vapour Intrusion - Human Health

In order for a potentially unacceptable inhalation / vapour intrusion human health exposure risk to exist, a primary vapour source (e.g. underground storage tank) or secondary vapour source (e.g. significantly contaminated soil or groundwater) is required.

The historical evidence reviewed did not indicate a potential for a primary source to be present on the site.

The same historical evidence indicated a potential land use activity to be uncontrolled filling. The excavation, transport, placement and spreading of imported (uncontrolled) fill material involves significant disturbance of soils which typically results in volatilisation of vapour producing contaminants.

A groundwater source of vapours was not identified for the site.

The potential for vapours to be present in soils on site at concentrations which might present an unacceptable exposure risk, is considered to be low to negligible, however, further assessment is considered warranted, given the sensitive nature of the proposed land use setting.

5.4. Management Limits for Petroleum Hydrocarbon Compounds

NEPC (1999a) notes that there are a number of policy considerations which reflect the nature and properties of petroleum hydrocarbons:

- formation of observable light non-aqueous phase liquids (LNAPL);
- fire and explosive hazards; and
- effects on buried infrastructure (e.g. penetration of or damage to, in-ground services by hydrocarbons).

NEPC (1999a) includes 'management limits' to avoid or minimise these potential effects. Application of the management limits requires consideration of site-specific factors such as the depth of building basements and services and depth to groundwater, to determine the maximum depth to which the limits should apply. NEPC (1999a) also notes that management limits may have less relevance at operating industrial sites which have no or limited sensitive receptors in the area of potential impact, and when management limits are exceeded, further site-specific assessment and management may enable any identified risk to be addressed.

Given the nature of the identified contaminants of potential concern at the site, further assessment against these management limits is considered warranted.

5.5. Aesthetics – Human Health

Section 3.6.3 of NEPC (1999a) advises that there are no specific numeric aesthetic guidelines, however site assessment requires a balanced consideration of the quantity, type and distribution of foreign material or odours in relation to the specific land use and its sensitivity.

Portions of the site will be covered with building footprints and hardstand areas, however, some exposed soil areas will likely remain, in the form of playground areas, sporting fields, and general softscape. It is considered that a complete aesthetics exposure pathway for may exist in these areas.

5.6. Terrestrial Ecosystems

NEPC (1999) requires a pragmatic risk-based approach should be taken in applying ecological investigation and screening levels in residential and commercial / industrial land use settings.

It is noted that vegetation on site and on adjacent properties did not display evidence of significant or widespread phytotoxic impact (i.e. plant stress or dieback).

Further assessment of unacceptable risk to terrestrial ecosystems is considered not warranted.

6. DATA QUALITY OBJECTIVES

Appendix B of NEPC (1999b) provides guidance on the development of data quality objectives (DQO) using a seven-step process.

The DQO for this project are set out in **Sections 6.1** to **6.7** of this report.

6.1. Step 1: State the problem

The first step involves summarising the contamination problem that will require new data and identifying the resources available to resolve the problem.

The key objectives of this project are to assess the data gaps and delineate the identified contamination presented in (AG, 2018b & AG, 2018c) and provide recommendations for further investigation, management and/or remediation (if warranted) in accordance with the proposed land use setting.

This project is being undertaken because:

- the site is the subject of redevelopment works; and
- historically identified areas of environmental concern on the site, have the potential to present an unacceptable human health exposure risk in the context of the proposed land use setting.

The project team identified for this project includes Alliance Geotechnical Pty Ltd, the developer and the planning consent authority.

The regulatory authorities identified for this investigation include NSW EPA and the local Council.

6.2. Step 2: Identify the decision/goal of the study

The second step involves identifying decisions that need to be made about the contamination problem and the new environmental data required to make them.

The decisions that need to be made during this investigation include:

- Is the environmental data collected for the project, suitable for assessing relevant land contamination exposure risks?
- Have the data gaps presented in (AG, 2018b) been addressed;
- Has the contamination identified in (AG2018b & AG, 2018c) been delineated;
- Do the concentrations of identified contaminants of potential concern (COPC) present an unacceptable exposure risk to identified receptors, for the proposed land use setting?
- Is the site suitable or can the site be deemed suitable for the proposed land use setting, in the context of land contamination?

6.3. Step 3: Identify the information inputs

The third step involves identifying the information needed to support decisions and whether new environmental data will be needed.

The inputs required to make the decisions set out in **Section 6.2** for this investigation, will include:

- data obtained during searches of the site's history;
- the nature and extent of sampling at the site, including both density and distribution;
- samples of relevant site media;
- the NATA accredited analysis of physical and/or chemical parameters of the relevant site media samples; and
- assessment criteria adopted for each of the media sampled.

Taking into consideration the objectives of this project, and the conceptual site model and land use setting presented in **Section** Error! Reference source not found. of this project, the assessment criteriar elevant to the proposed land use setting have been adopted for this investigation:

- Human health direct contact HILs in Table 1A (1) in NEPC (1999a) and HSLs in Table B4 of Friebel, E & Nadebaum, P (2011);
- Human health inhalation/vapour intrusion HSLs in Table 1 (A) in NEPC (1999a);
- Human health (asbestos) HSLs in Table 7 of NEPC (1999a);
- Petroleum hydrocarbon compounds (management limits) Table 1 B(7) of NEPC (1999a);
 and
- Aesthetics no highly malodorous site media (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in site media, organosulfur compounds), no hydrocarbon sheen on surface water, no discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature, no large monolithic deposits of otherwise low risk material (e.g. gypsum as powder or plasterboard, cement kiln dust), no presence of putrescible refuse including material that may generate hazardous levels of methane such as a deep-fill profile of green waste or large quantities of timber waste, and no soils containing residue from animal burial (e.g. former abattoir sites).

6.4. Step 4: Define the boundaries of the study

The fourth step involves specifying the spatial and temporal aspects of the environmental media that the data must represent to support decisions.

The spatial extent of the project will be limited to the site as defined by its boundaries.

The temporal boundaries of the project include:

- the project timeframes presented in the AG proposal for this project, and subsequent remediation contractor works program;
- unacceptable weather conditions at the time of undertaking fieldwork, including rainfall, cold and/or heat;
- access availability of the site (to be defined by the site owner/representative); and
- availability of AG field staff (typically normal daylight working hours, Monday to Friday).

The lateral extent that contamination is expected to be distributed across, based on the conceptual site model, is defined by the inferred boundaries of the areas of environmental concern (AEC).

The vertical extent that contamination is expected to be distributed across, based on the conceptual site model and the project scope, is limited to base of fill material.

The scale of the decisions required will be based on the entire site.

Constraints which may affect the carrying out of this investigation may include access limitations, presence of above and below ground infrastructure, and hazards creating health and safety risks.

6.5. Step 5: Develop the analytical approach (or decision rule)

The fifth step involves defining the parameter of interest, specifying the action level, and integrating information from Steps 1 to 4 into a single statement that gives a logical basis for choosing between alternative actions.

6.5.1. Rinsate Blanks

One rinsate blank will be collected and scheduled for analysis, for each day of sampling undertaken, if non-disposable sampling equipment was used on that day. The rinsate blank will be analysed for at least one of the analytes the sample/s collected that day are being scheduled for analysis for (with the exception of asbestos).

6.5.2. Trip Spikes and Trip Blank Samples

One trip spike and trip blank sample will be used and scheduled for analysis, for each day of sampling undertaken, if site samples being collected that day are being analysed for volatile contaminants of concern (typically BTEX and/or TRH C_6 - C_{10}).

6.5.3. Field Duplicates and Field Triplicates

Field duplicate and Field triplicates will be collected at a rate of one per twenty (5%) site samples collected. The duplicates and triplicates collected will be analysed for at least one of the analytes that the parent sample of the duplicate/triplicate is being scheduled for analysis for (with the exception of asbestos).

The relevant percent difference (RPD) of concentrations of relevant analytes, between the parent sample and the duplicate/triplicate will be calculated.

6.5.4. Laboratory Analysis Quality Assurance / Quality Control

The analytical laboratory QA/QC program will typically include laboratory method blank samples, matrix spike samples, surrogate spike samples, laboratory control samples, and laboratory duplicate samples.

6.5.5. If/Then Decision Rules

AG has adopted the following 'if/then' decision rules for this investigation:

- If the result of the assessment of field data and laboratory analytical data is considered acceptable, then that field data and laboratory analytical data is suitable for interpretation within the scope of this investigation; and
- If the field data and laboratory analytical data is within the constraints of the assessment criteria adopted for this investigation (refer **Section 6.3**), then the contamination exposure risks to identified receptors, are considered acceptable.

In the event the assessment of field data and/or laboratory analytical data results in the data being not suitable for interpretation, then AG will determine if additional data is required to allow interpretation to be undertaken.

In the event that field data and/or laboratory analytical data exceeds the assessment criteria adopted for this investigation (refer **Section 6.3**), AG will undertake an assessment of the exceedance in the

context of the project objectives to determine if additional data is required and whether management and/or remediation is required.

6.6. Step 6: Specify the performance or acceptance criteria

The sixth step involves specifying the decision maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data. When assessing contaminated land, there are generally two types of errors in decision making:

- Contamination exposure risks for a specific land use setting are acceptable, when they are not; and
- Contamination exposure risks for a specific land use setting are not acceptable, when they
 are.

AG will mitigate the risk of decision error by:

- Calculation of the 95% upper confidence limit (UCL) statistic to assess the mean concentration of relevant contaminants of potential concern;
- Assignment of fieldwork tasks to suitably experienced AG consulting staff, and suitably experienced contractors;
- Assignment of laboratory analytical tasks to reputable NATA accredited laboratories;
- Assignment of data interpretation tasks to suitably experienced AG consulting staff, and outsourcing to technical experts where required.

AG will also adopt a range of data quality indicators (DQI) to facilitate assessment of the completeness, comparability, representativeness, precision and accuracy (bias).

Completeness				
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion	
Critical locations sampled	Refer Section 6.7	Critical samples analysed according to DQO	Refer Section 6.7	
Critical samples collected	Refer Section 6.7	Analytes analysed according to DQO	Refer Section 6.7	
SOPs appropriate and complied with	100%	Appropriate laboratory analytical methods and LORs	Refer Section 6.7	
Field documentation complete	All sampling point logs, calibration logs and chain of custody forms	Sample documentation complete	All sample receipt advices, all certificates of analysis	
		Sample extraction and holding times complied with	Refer Section 6.7	
	Comparability			
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion	

Same SOPs used on each occasion	100%	Same analytical methods used by primary laboratory	Refer Section 6.7
Climatic conditions	Samples stored in insulated containers with ice, immediately after collection	Same LORs at primary laboratory	Refer Section 6.7
Same types of samples collected, and handled/preserved in same manner	All soil samples same size, all stored in insulated containers with ice	Same laboratory for primary sample analysis	All primary samples to SGS Environmental
		Same analytical measurement units	Refer Section 6.7
	Represen	tativeness	
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion
Appropriate media sampled according to SAQP	Refer Section 6.4	Samples analysed according to SAQP	Refer Section 6.7
Media identified in SAQP sampled	Refer Section 6.4		
	Prec	ision	
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion
Field duplicate / triplicate RPD	Minimum 5% duplicates and triplicates	Laboratory duplicates	No exceedances of laboratory acceptance criteria
	No limit for analytical results <10 times LOR		
	50% for analytical results 10-20 times LOR		
	30% for analytical results >20 times LOR		
SOPs appropriate and complied with	100%		
	Accura	cy (bias)	
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion
Rinsate blanks	Less than laboratory limit of reporting	Laboratory method blank	No exceedances of laboratory

Field trip spikes	Recoveries between 60% and 140%	Matrix spike recovery	No exceedances of laboratory acceptance criteria
Field trip blanks	Analyte concentration <lor< td=""><td>Surrogate spike recovery</td><td>No exceedances of laboratory acceptance criteria</td></lor<>	Surrogate spike recovery	No exceedances of laboratory acceptance criteria
		Laboratory control sample recovery	No exceedances of laboratory acceptance criteria

6.7. Step 7: Develop the plan for obtaining data

The seventh step involves identifying the most resource effective sampling and analysis design for generating the data that is required to satisfy the DQOs.

6.7.1. Sampling Point Layout Plan

Table A in NSW EPA (1995) provides guidance on minimum sampling point densities required for site characterisation, based on detecting circular hot spots by using a systematic sampling pattern. This guidance assumes the investigator has little knowledge about the probable locations of the contamination, the distribution of the contamination is expected to be random (e.g. land fill sites) or the distribution of the contamination is expected to be fairly homogenous (e.g. agricultural lands).

However, Section 3.1 of NSW EPA (1995) states that a judgemental sampling pattern can be used where there is enough information on the probable locations of contamination. Further to this, Section 6.2.1 of NEPC (1999b) states that the number and location or sampling points is based on knowledge of the site and professional judgement. Sampling should be localised to known or potentially contaminated areas identified from knowledge of the site either from site history or an earlier phase of site investigation. Judgemental sampling can be used to investigation sub-surface contamination issues in site assessment.

As this investigation has included gathering data which provides a reasonable understanding of site history (in the context of potential areas of environmental concern on the site) and taking into consideration Table 1 in WA DOH (2009), it is considered reasonable to adopt a judgemental sampling pattern, where necessary, for each AEC.

The proposed sampling point layout arrangement for this project is presented in **Table 6.7.1**. The locations of the proposed sampling points are set out in **Figure 4**.

Table 6.7.1 Validation Sampling

Area of Environmental Concern	Sampling Point ID	Validation Sampling
AEC01	BH02A-BH02D	Four step-out soil bores around sampling point BH02 to a target depth of 0.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AECO2 (central portion)	TP42-TP43	Two test-pits to a target depth of 1.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.

Area of Environmental Concern	Sampling Point ID	Validation Sampling
AEC02	TP04A-TP04D	Four step out test-pits to a target depth of 1.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC03 (central portion)	TP44	One test-pit to a target depth of 1.7m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC05	TP07A – TP07D	Four step out test-pits to a target depth of 0.6m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC09 (central portion)	TP45	One test-pit to a target depth of 0.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC10 (southern portion)	TP46	One test-pit to a target depth of 1.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC11	TP16A – TP16D	Four step out test-pits to a target depth of 2.0m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC12 (central portion)	TP47	One test-pit to a target depth of 1.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC13	TP49 – TP54	Six test-pits to a target depth of 1.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC14 (central portion)	TP55	One test-pit to a target depth of 1.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC14	TP22A-TP22D	Four step out test-pits to a target depth of 1.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC15 (central portion)	TP56	One test-pit to a target depth of 0.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC15	TP23A-TP23D	Four step out test-pits to a target depth of 0.5m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.

Area of Environmental Concern	Sampling Point ID	Validation Sampling
AEC15	TP24A-TP24D	Four step out test-pits to a target depth of 0.6m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC16 (central portion)	TP57	One test-pit to a target depth of 1.0, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC18	SS03A-SS03C	Four step out test-pits to a target depth of 1.0m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
AEC19	TP30A-TP30D	Three test-pits to a target depth of 2.0m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
-	SS02A-SS02D	Four step out test-pits to a target depth of 1.0m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
-	BH40A-BH40D	Four step out test-pits to a target depth of 2.0m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.
-	BH41A-BH41D	Four step out test-pits to a target depth of 2.0m, or 0.3m into inferred natural material, or practical refusal, whichever occurs first.

If visual or olfactory observations indicated a potential for soil contamination to be present, then collection of additional samples will be considered.

The location of each sampling point will be marked on a site plan.

6.7.2. Identification, Storage and Handling of Samples

Sample identifiers will be used for each sample collected, based on the sampling point number and the depth/interval the sample was collected from, e.g. a sample collected from test pit TP03 at a depth of 0.2m to 0.4m below ground level, would be identified as TP03/0.2-0.4.

Project samples will be stored in laboratory prepared glass jars (chemical) and zip lock bags (asbestos).

Soil samples in glass jars will be placed in insulated container/s with ice.

Samples will be transported to the relevant analytical laboratory, with chain of custody (COC) documentation that includes the following information:

AG project identification number

- Each sample identifier
- Date each sample was collected
- Sample type (e.g. soil or water)

- Container type/s for each sample collected
- Preservation method used for each sample (e.g. ice)
- Analytical requirements for each sample and turnaround times
- Date and time of dispatch and receipt of samples (including signatures)

6.7.3. Headspace Screening

Where the contaminants of potential concern include volatiles (e.g. TRH, BTEX), project soil samples will be subjected to field screening for ionisable volatile organic compounds (VOC), using a photoionisation detector (PID). The results of field screening will be recorded on sampling point log.

6.7.4. Decontamination

In the event that non-disposable sampling equipment is used, that equipment will be decontaminated before and in between sampling events, to mitigate potential for cross contamination between samples collected. The decontamination methodology to be adopted for this project will include:

- Washing relevant sampling equipment using potable water with a phosphate free detergent (i.e. Decon 90 or similar) mixed into the water;
- Rinsing the washed non-disposable sampling equipment with distilled or de-ionised water; and
- Air drying as required.

6.7.5. Laboratory Selection

The analytical laboratories used for this project will be NATA accredited for the analysis undertaken.

6.7.6. Laboratory Analytical Schedule

Project samples will be scheduled for NATA accredited laboratory analysis, using a combination of:

- Observations made in the field of the media sampled;
- Headspace screening results (where available);
- The contaminants of potential concern (COPC) identified for the area of environmental concern that the sample was collected from.

Based on site history and completed contamination assessments (AG, 2018b), AG has adopted the laboratory analytical schedule presented in **Table 6.7.6** for this project.

Table 6.7.6 Laboratory Analytical Schedule

AEC	Sampling Point ID	Analytical Schedule
AEC01	BH02A-BH02D	8 x lead
AEC02 (central portion)	TP42-TP43	4 x TRH, BTEX and metals (8)
AEC02	TP04A-TP04D	8 x PAH
AEC03 (central portion)	TP44	2 x TRH, BTEX and metals (8)
AEC05	TP07A – TP07D	4 x asbestos (ACM and 0.001%)
AEC09 (central portion)	TP45	1 x Metals (8) and Asbestos (ACM and 0.001%)

AEC	Sampling Point ID	Analytical Schedule
AEC10 (southern portion)	TP46	2 x OCP and metals (8)
AEC11	TP16A – TP16D	8 x PAH
AEC12 (central portion)	TP47	1 x TRH, BTEX, PAH, OCP, PCB, metals (8) and asbestos (ACM and 0.001%)
AEC13	TP49 – TP54	6 x TRH, BTEX, PAH, OCP, PCB, metals (8) and asbestos (ACM and 0.001%)
AEC14 (central portion)	TP55	1 x TRH, BTEX, PAH, OCP, PCB, metals (8) and asbestos (ACM and 0.001%)
AEC14	TP22A-TP22D	8 x lead
AEC15 (central portion)	TP56	1 x TRH, BTEX, PAH, OCP, PCB, metals (8) and asbestos (ACM and 0.001%)
AEC15	TP23A-TP23D	8 x PAH
AEC15	TP24A-TP24D	8 x lead
AEC16 (central portion)	TP57	1 x TRH, BTEX, PAH, OCP, PCB, metals (8) and asbestos (ACM and 0.001%)
AEC18	SS03A-SS03C	3 x asbestos (ACM and 0.001%)
AEC19	TP30A-TP30D	6 x asbestos (ACM and 0.001%)
-	SS02A-SS02D	4 x asbestos (ACM and 0.001%)
-	BH40A-BH40D	8 x asbestos (ACM and 0.001%)
-	BH41A-BH41D	8 x asbestos (ACM and 0.001%)

6.7.7. Laboratory Holding Times, Analytical Methods and Limits of Reporting

The laboratory holding times, analytical methods and limits of reporting (LOR) being used for this project, are presented in **Table 6.7.7**.

Table 6.7.7 Laboratory Holding Times, Analytical Methods and Limits of Reporting

TORIC OITTE BURGING	rig moraning mine		or neperang
Analyte	Holding Time	Analytical Method	Limit of Reporting (mg/kg)
BTEX and TRH C ₆ -C ₁₀	14 days	USEPA 5030, 8260B and 8020	0.2-0.5
TRH >C ₁₀ -C ₄₀	14 days	USEPA 8015B & C	20-100

Analyte	Holding Time	Analytical Method	Limit of Reporting (mg/kg)
PAH	14 days	USEPA 8270	0.1-0.5
VOC	14 days	USEPA 8260	0.1-0.5
Metals	14 days	USEPA 8015B & C	0.05 – 2
Asbestos	No limit	AS4964:2004	Absence / presence
Asbestos	No limit	Inhouse Method	0.001% w/w

7. FIELDWORK

7.1. Soil Sampling

Soil sampling was undertaken by AG on 18, 19 and 20 June 2019.

A total of 61 sampling points were established onsite. Sampling points were established to address data gaps or to delineate contamination identified within previous contamination reports (AG, 2018b & AG, 2018c). Sampling points (BH02A to BH02D, BH40A to BH40B and BH41A to BH41D) were advanced using a utility mounted drill rig fitted with solid flight augers, or a hand-held mechanically operated push tube where access was limited. The remaining sampling points were excavated using an excavator and operator supplied by the client.

The locations of the sampling points established onsite are presented in **Figure 4.**

Image 7.1.1 View of sampling point BH40C

Samples were collected at each sampling point and placed in laboratory supplied acid-rinsed glass jars with Teflon lined lids (where required) and laboratory supplied 500ml zip-lock asbestos sample bags (where required). The jars and bags were labelled with the project number, sample identifier and date the samples were collected on.

Each sampling point was backfilled and track rolled at the completion of the sampling task.

Each sampling point established was marked on a site plan. The locations of these sampling points are presented in **Figure 4**.

7.2. Site Geology

Observations were made of soils encountered during sampling work. These observations were recorded on borehole logs. A copy of these logs is presented in **Appendix B**.

Anthropogenic materials observed in some of the fill material encountered included asphalt, metal, wood, glass, brick and potential ACM (in the form of fibrous cement sheeting fragments).

7.3. Headspace Screening

Samples collected were subjected to headspace screening. A sub sample from each sampling point was placed in a zip lock bag, sealed and shaken. Each bag was then pierced with the probe tip of a calibrated photoionisation detector (PID) and the screening results recorded. These results are recorded on the borehole logs presented in **Appendix B**.

The results of the headspace screening indicated the potential for ionisable volatile organic compounds (VOC) to be present in the samples, was generally low.

A copy of the calibration record for the PID is presented in **Appendix C**.

7.4. Odours

Olfactory evidence of odours in the soil samples collected, was not detected.

7.5. Staining

Visual evidence of staining in the soil samples collected, was not detected.

7.6. Potential Asbestos Containing Materials

Visual evidence of potential asbestos containing materials (ACM) was observed at several sampling points, including both on the surface and within the fill soil profile (TP04B, TP07A, TP30B, TP30C, TP40C and TP42). The evidence was in the form fibrous cement sheeting fragments. Samples of these fragments were collected when observed and submitted for analysis at a NATA accredited laboratory.

8. LABORATORY ANALYSIS

The samples collected were transported to the analytical laboratory, using chain of custody (COC) protocols. A selection of these samples was scheduled for analysis, with reference to the relevant COPC identified for the AEC that the samples were collected from.

A copy of the analytical laboratory certificates of analysis, is presented in **Appendix D**.

The sample analytical results were tabulated and presented in the attached **Table 1, Table 2 and Table 3**

9. DATA QUALITY INDICATOR ASSESSMENT

9.1. Completeness

An assessment of the completeness of data collected was undertaken, and the results presented in **Table 9.1**.

Table 9.1 Completeness DQI

Field Considerations	Target	Actual	Comment
Critical locations sampled	61	61	Performance against indicator considered acceptable.
Critical samples collected	Refer Section 6.7	Refer Section 6.7	Performance against indicator considered acceptable.
SOPs appropriate and complied with	100%	100%	Performance against indicator considered acceptable.
Field documentation complete	All sampling point logs, calibration logs and chain of custody forms	All sampling point logs, calibration logs and chain of custody forms	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Critical samples analysed according to DQO	Refer Section 6.7	Refer Section 6.7	Performance against indicator considered acceptable.
Analytes analysed according to DQO	Refer Section 6.7	Refer Section 6.7	Performance against indicator considered acceptable.
Appropriate laboratory analytical methods and LORs	Refer Section 6.7	Refer Section 6.7	Performance against indicator considered acceptable.
Sample documentation complete	All sample receipt advices, all certificates of analysis	100%	Performance against indicator considered acceptable.
Sample extraction and holding times complied with	Refer Section 6.7	100%	Performance against indicator considered acceptable.

The data collected is considered to be adequately complete within the objectives and constraints of the project.

9.2. Comparability

An assessment of the comparability of data collected was undertaken, and the results presented in **Table 9.2**.

Table 9.2 Comparability DQI

Field Considerations	Target	Actual	Comment
Same SOPs used on each occasion	100%	100%	Performance against indicator considered acceptable.
Climatic conditions	Samples stored in insulated containers with ice, immediately after collection	100%	Performance against indicator considered acceptable.
Same types of samples collected, and handled/preserved in same manner	All soil samples same size, all stored in insulated containers with ice	100%	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Same analytical methods used by primary laboratory	Refer Section 6.7	100%	Performance against indicator considered acceptable.
Same LORs at primary laboratory	Refer Section 6.7	100%	Performance against indicator considered acceptable.
Same laboratory for primary sample analysis	All primary samples to Eurofins MGT	100%	Performance against indicator considered acceptable.
Same analytical measurement units	Refer Section 6.7	100%	Performance against indicator considered acceptable.

The data collected is considered to be adequately comparable.

9.3. Representativeness

An assessment of the representativeness of data collected was undertaken, and the results presented in **Table 9.3**.

Table 9.3 Representativeness DQI

Field Considerations	Target	Actual	Comment
Appropriate media sampled according to DQO	Refer Section 6.7	100%	Performance against indicator considered acceptable.

Media identified in DQO sampled	Refer Section 6.7	100%	Performance against indicator considered acceptable.					
Laboratory Considerations	Target	Actual	Comment					
Samples analysed according to DQO	Refer Section 6.7	Refer comments	Performance against indicator considered acceptable.					

The data collected is considered to be adequately complete within the objectives and constraints of the project.

9.4. Precision

An assessment of the precision of data collected was undertaken, and the results presented in **Table 9.4**.

Table 9.4 Precision DQI

Field Considerations	Target	Actual	Comment
Field duplicate / triplicate RPD	Minimum 5% duplicates and triplicates	8.3 % duplicates and 8.3 % triplicates Nil	Parent duplicate/triplicate relationships are as follows: DUP01/1A – TP054-0.0-0.2 DUP02/2A – TP30C-0.0-0.2 DUP03/3A – TP30A-0.0-0.2 DUP04/4A – TP057-0.0-0.2
	No limit for analytical results <10 times LOR		DUP05/5A – TP23D-0.1-0.4 Exceedances included:
	50% for analytical results 10-20 times LOR	Nil	zinc RPD for DUP01; andlead RPD for DUP1A.
	30% for analytical results >20 times LOR	Nil	AG considers these exceedances are likely to be attributable to heterogeneity in each of the discrete soil samples, as the parent sample could not be homogenised prior to splitting, due to the potential for volatile and semi volatile contaminants to be present. As a conservative measure, the sample reporting the higher concentration of the relevant analyte should be used when making decisions regarding contamination risks on the site. Performance against indicator considered acceptable.
			Refer to Table 4
SOPs appropriate and complied with	100%	100%	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Laboratory duplicates	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.

The data collected is considered to be adequately precise.

9.5. Accuracy

An assessment of the precision of data collected was undertaken, and the results presented in **Table 9.5**.

Table 9.5 Accuracy DQI

Field Considerations	Target	Actual	Comment
Rinsate blanks	Less than laboratory limit of reporting	Not applicable	Not applicable
Field trip spikes	Recoveries between 60% and 140%	Recoveries were between 60% and 140%	Performance against indicator considered acceptable.
Field trip blanks	Analyte concentration <lor< td=""><td>Analyte concentrations were <lor< td=""><td>Performance against indicator considered acceptable.</td></lor<></td></lor<>	Analyte concentrations were <lor< td=""><td>Performance against indicator considered acceptable.</td></lor<>	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Laboratory method blank	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Matrix spike recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Surrogate spike recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Laboratory control sample recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.

The data collected is considered to be adequately accurate.

10. DATA GAP ASSESSMENT (PREVIOUSLY INACCESSIBLE AREAS)

A discussion on comparison of laboratory analytical results and field observations carried out to assess the data gaps associated with (AG, 2018b), in the context of the assessment criteria adopted for this project, is presented in **Section 10.1** to **Section 10.3** A summary of the laboratory analytical results for the data gap assessment completed at the site is presented in **Table 1** and sampling points are shown in **Figure 4**.

10.1. Human Health - Direct Contact

10.1.1. TRH

The concentrations of TRH C_6 - C_{10} , $>C_{10}$ - C_{16} , $>C_{16}$ - C_{34} and $>C_{34}$ - C_{40} detected in the soil samples analysed, were less than the laboratory limit of reporting and/or less than the applicable adopted direct contact human health exposure criteria.

10.1.2. BTEX

The concentrations of benzene, toluene, ethyl benzene and xylenes detected in the soil samples analysed, were less than the laboratory limit of reporting and less than the applicable adopted direct contact human health exposure criteria.

10.1.3. PAH

The concentrations of naphthalene detected in the soil samples analysed, were less than the laboratory limit of reporting and less than the applicable adopted direct contact human health exposure criteria.

The concentrations of benzo(a)pyrene TEQ detected in the soil samples analysed, were less than the laboratory limit of reporting and less than the applicable adopted direct contact human health exposure criteria.

The concentration of total PAH detected in the soil samples analysed, were less than the laboratory limit of reporting and/or less than the applicable adopted direct contact human health exposure criteria.

10.1.4. OCP

The concentration of relevant OCP compounds detected in the soil samples analysed, were less than the laboratory limit of reporting and/or less than the applicable adopted direct contact human health exposure criteria or less than laboratory limits of reporting.

10.1.5. PCB

The concentration of relevant PCB compounds detected in the soil samples analysed, were less than the laboratory limit of reporting and less than the applicable adopted direct contact human health exposure criteria.

10.1.6. Metals

The concentrations of arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury detected in the soil samples analysed, were less than the applicable adopted direct contact human health exposure criteria.

10.1.7. Asbestos in Soil – Fibrous Asbestos (FA)/ Asbestos Fines (AF)

Fibrous asbestos and asbestos fines (FA and AF) were not detected in the relevant soil samples analysed, with the exception of asbestos concentrations at sampling points:

- **TP53-0.9-1.1**: (FA): chrysotile, amosite and crocidolite asbestos detected in weathered fibre cement fragments. No asbestos detected at the reporting limit of 0.001% w/w; and
- **TP57-0.0-0.2** (FA): chrysotile asbestos detected in weathered fibre cement fragments and (AF) chrysotile asbestos detected in the form of loose fibre bundles. Total estimated asbestos concentration in FA and AF was 0.0013% w/w.

10.2. Human Health – Inhalation / Vapour Intrusion (Residential)

10.2.1. TRH

The concentrations of TRH C_6 - C_{10} (minus BTEX) and $>C_{10}$ - C_{16} (minus naphthalene) detected in the soil samples analysed, were less than the applicable adopted inhalation / vapour intrusion human health exposure criteria.

10.2.2. BTEX

The concentrations of benzene, toluene, ethyl benzene and xylenes detected in the soil samples analysed, were less than the applicable adopted inhalation / vapour intrusion human health exposure criteria.

10.2.3. PAH

The concentrations of naphthalene detected in the soil samples analysed, were less than the applicable adopted inhalation / vapour intrusion human health exposure criteria.

10.3. TPH Management Limits (Residential)

The concentrations of TRH C_6 - C_{10} , $>C_{10}$ - C_{16} , $>C_{16}$ - C_{34} and $>C_{34}$ - C_{40} detected in the soil samples analysed, were less than the applicable adopted TRH management limits or less than laboratory limits of reporting.

11. CHEMICAL DELINEATION ASSESSMENT

A summary of the laboratory analytical results for the chemical delineation assessment completed at the site, is presented in **Table 2** and sampling points are shown in **Figures 5a** and **5b**.

11.1. Lead

The concentrations of lead detected in the delineation soil samples analysed, were less than the applicable adopted direct contact human health exposure criteria, with the exception of:

• **TP22D-1.1-1.3**: 460mg/kg.

The detected concentrations of lead in the original soil samples collected at sampling point BH22 in addition to the delineation soil samples collected during this investigation, were subjected to a statistical analysis using ProUCL 5.1. The maximum value of the data set was 490 mg/kg, the standard deviation of the data set was 161.2, while the 95% upper confidence limit was 298.4, which is less than the adopted direct contact human health exposure criteria for lead (300mg/kg) at the site. A copy of the lead ProUCL output is presented in **Appendix E.**

11.2. Benzo(a)pyrene

The concentrations of benzo(a)pyrene detected in the delineation soil samples analysed, were less than the applicable adopted direct contact human health exposure criteria (refer to **Figures 5a** and **5b**).

12. ASBESTOS DELINEATION ASSESSMENT

A summary of the laboratory analytical results for the asbestos delineation assessment completed at the site is presented in Table 3 and sampling points are shown in Figures 6a and 6b.

12.1. Asbestos in Soil – Fibrous Asbestos (FA)/ Asbestos Fines (AF)

Fibrous asbestos and asbestos fines (FA and AF) were not detected in the relevant soil samples analysed, with the exception of asbestos concentrations at sampling points:

- SS02D-0.0-0.3 (FA): chrysotile asbestos detected in the form of weathered fibre cement fragments. Total estimated asbestos concentration in FA asbestos was 0.0011% w/w;
- TP30A-1.7-1.9 (AF): chrysotile and crocidolite asbestos detected in the form of loose fibre bundles. No asbestos detected at the reporting limit of 0.001% w/w; and
- BH40D-0.9-1.1 (AF): chrysotile asbestos detected in the form of loose fibre bundles. No asbestos detected at the reporting limit of 0.001% w/w;

12.2. Non-friable Asbestos Containing Material (ACM)

Non-friable ACM was not detected in the delineation samples analysed, with the exception of:

- TP04B: chrysotile and amosite asbestos detected;
- **TP07A**: chrysotile asbestos detected;
- TP30B: chrysotile asbestos detected; and
- **TP30C**; chrysotile asbestos detected.

13. INDICATIVE WASTE CLASSIFICATION ASSESSMENT

Soil samples TP47_0.0-0.2, TP49_0.0-0.2, TP50_0.0-0.2, TP51_0.0-0.2, TP51_0.8-1.0, TP52_0.0-0.2, TP52_1.2-1.4, TP53_0.9-1.1, TP54_0.0-0.2, TP54_1.3-1.5, TP55-0.0-0.2, TP56-0.1-0.4 and TP57_0.0-0.2 collected during this investigation were compared to relevant contamination criteria outlined in the NSW EPA *Waste Classification Guidelines* (2014), to provide an indicative waste classification for the site.

The 6-step classification procedure in NSW EPA (2014) was followed, with the results presented in **Table 13.1**.

Table 13.1. NSW EPA Waste Classification Guidelines (2014) 6 Step Classification Procedure

Ste	p	Material Observation
1	Is the waste special waste?	Yes.
		TP53-0.9-1.1: (FA): chrysotile, amosite and crocidolite asbestos detected in weathered fibre cement fragments. No asbestos detected at the reporting limit of 0.001% w/w; and
		TP57-0.0-0.2 (FA): chrysotile asbestos detected in weathered fibre cement fragments and (AF) chrysotile asbestos detected in the form of loose fibre bundles. Total estimated asbestos concentration in FA and AF was 0.0013% w/w.
2	Is the waste liquid waste?	No.
3	Is the waste pre-classified?	No.
4	Does the waste possess hazardous characteristics	No.

Step)	Material Observation
5	Waste classification using chemical assessment.	Yes. Soil sample (TP52_0.0-0.2) returned analytical results exceeding the general solid waste contaminant threshold (CT1) criteria for lead outlined in the NSW EPA Waste Classification Guidelines (2014). As such, a toxicity characteristic leaching potential (TCLP) preparation of this soil sample (TP52_0.0-0.2) and subsequent analysis of the elutriate for lead was completed. The analytical result (0.03 mg/L) did not exceed the general solid waste TCLP1 maximum concentration (5 mg/L) outlined in the NSW EPA Waste Classification Guidelines (2014). As TCLP analysis was undertaken, a revised specific contaminant concentration (SCC1) was applicable (1,500 mg/kg). The results did not exceed the General Solid Waste TCLP1/SCC1 criteria outlined in the NSW EPA Waste Classification Guidelines (2014). The remaining laboratory analytical results did not exceed the General Solid Waste CT1 criteria outlined in the NSW EPA Waste Classification Guidelines (2014). Refer to laboratory analytical results summary Table 5.
6	Is the waste putrescible or no putrescible?	on- Non-putrescible.

Based on AG's assessment of fieldwork observations and laboratory analytical data, and as of the date of this report, the material assessed would classify as:

• General Solid Waste (Special Waste)

This conclusion must be read in conjunction with the statement of limitations presented in **Section 15.**

14. CONCLUSIONS AND RECOMMENDATIONS

Based on AG's assessment of the desktop review information, fieldwork data and laboratory analytical data, in the context of the proposed redevelopment scenario, AG makes the following conclusions:

Data Gap Assessment (previously inaccessible areas)

- the detected concentrations of identified contaminants of potential concern in the soils
 assessed are considered unlikely to present an unacceptable direct contact human health
 exposure risk;
- fibrous asbestos and asbestos fines detected in the soils assessed, may present an unacceptable human health exposure risk, at sampling points **TP53** and **TP57**;
- the detected concentrations of identified contaminants of potential concern in the soils
 assessed are considered unlikely to present an unacceptable inhalation / vapour intrusion
 human health exposure risk; and
- the detected concentrations of identified contaminants of potential concern in the soils assessed are considered unlikely to present a petroleum hydrocarbon management limit risk.

Chemical Delineation Assessment

- the extent of previously identified lead contamination at sampling points **BH02**, **BH22** and **BH24**, is considered to have been adequately delineated; and
- the extent of previously identified benzo(a)pyrene contamination at sampling points BH04,
 BH16 and BH23, is considered to have been adequately delineated.

Asbestos Delineation Assessment

- the extent of previously identified asbestos contamination at sampling points **SS02**, **SS03**, **BH30**, **BH41** and **TP53** is considered to have been adequately delineated;
- the extent of previously identified asbestos contamination at sampling point BH07, has not been adequately delineated; and
- Non-friable ACM identified at sampling point **TP04B** may present an unacceptable human health exposure risk and has not been adequately delineated.

Indicative Waste Classification

General Solid Waste (Special Waste).

Based on these conclusions, AG makes the following recommendations:

- further supplementary contamination assessments could be undertaken to further understand and delineate the nature and extent of asbestos contamination identified at sampling points TP04B, TP07A and TP57; or
- alternatively, AG (2018c) could be updated to include the recently identified contamination
 risks onsite and outline the appropriate remedial measures to adequately remove the
 contamination pathway and associated human health exposure risks. It is recommended
 that any update to AG (2018c) be undertaken by an appropriately experienced
 environmental consultant.

This report, including its conclusions and recommendations, must be read in conjunction with the limitations presented in **Section 15**.

15. STATEMENT OF LIMITATIONS

The findings presented in this report are based on specific searches of relevant, government historical databases and anecdotal information that were made available during the course of this investigation. To the best of our knowledge, these observations represent a reasonable interpretation of the general condition of the site at the time of report completion.

This report has been prepared solely for the use of the client to whom it is addressed and no other party is entitled to rely on its findings.

No warranties are made as to the information provided in this report. All conclusions and recommendations made in this report are of the professional opinions of personnel involved with the project and while normal checking of the accuracy of data has been conducted, any circumstances outside the scope of this report or which are not made known to personnel and which may impact on those opinions is not the responsibility of Alliance Geotechnical Pty Ltd. Should information become available regarding conditions at the site including previously unknown sources of contamination, AG reserves the right to review the report in the context of the additional information.

This report must be reviewed in its entirety and in conjunction with the objectives, scope and terms applicable to AG's engagement. The report must not be used for any purpose other than the purpose specified at the time AG was engaged to prepare the report.

Logs, figures, and drawings are generated for this report based on individual AG consultant interpretations of nominated data, as well as observations made at the time site walkover/s were completed.

Data and/or information presented in this report must not be redrawn for its inclusion in other reports, plans or documents, nor should that data and/or information be separated from this report in any way.

Should additional information that may impact on the findings of this report be encountered or site conditions change, AG reserves the right to review and amend this report.

16. REFERENCES

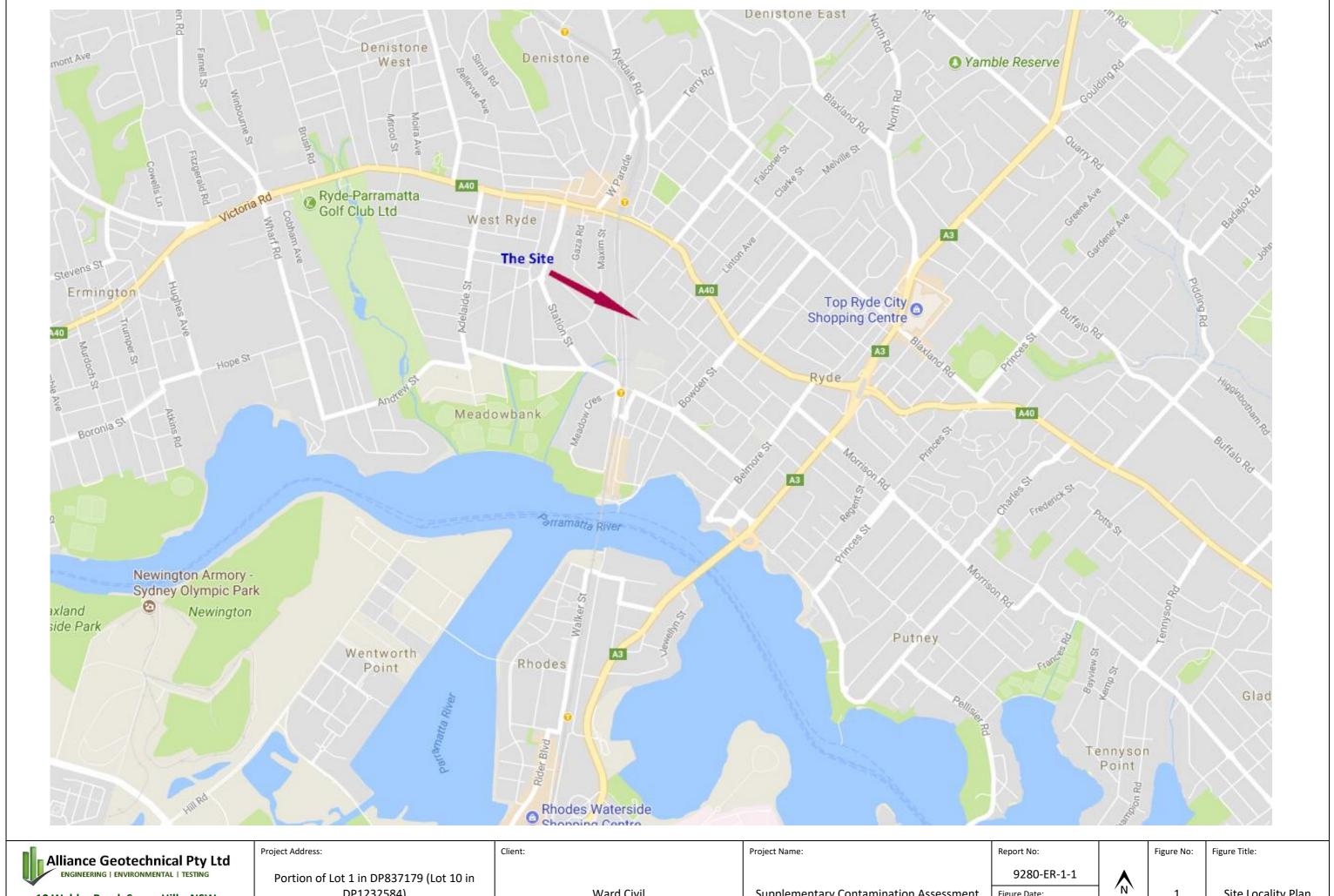
AG 2018a, 'Stage 1 Preliminary Site Investigation, Portion of Lot 1 in DP837179 (Lot 10 in DP1232584), Meadowbank Education and Employment Precinct Schools Project, 2 Rhodes Street, Meadowbank, NSW', dated June 2019, ref: 6179-ER-1-1 REV5;

AG 2018b, 'Stage 2 Detailed Site Investigation, Portion of Lot 1 in DP837179 (Lot 10 in DP1232584), Meadowbank Education and Employment Precinct Schools Project, 2 Rhodes Street, Meadowbank, NSW', dated June 2019, ref: 6179-ER-1-2 REV6;

AG 2018c, 'Remedial Action Plan, Portion of Lot 1 in DP837179 (Lot 10 in DP1232584), Meadowbank Education and Employment Precinct Schools Project, 2 Rhodes Street, Meadowbank, NSW', dated 12 June 2019, ref: 6179-ER-1-3 REV5.

National Environment Protection Council (NEPC) 1999a, 'Schedule B (1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.

National Environment Protection Council (NEPC) 1999b, 'Schedule B (2) Guideline on Site Characterisation, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.


NSW DEC 2006, 'Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition)'.

NSW EPA 1995, 'Contaminated Sites: Sampling Design Guidelines'.

NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites'.

WA DOH 2009, 'Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia' dated May 2009.

SITE FIGURES

10 Welder Road, Seven Hills, NSW

T: 1800 288 188: enviro@allgeo.com.au

DP1232584) See Street, Meadowbank, NSW Ward Civil

Supplementary Contamination Assessment

Figure Date: 27 June 2019 1

Site Locality Plan

Alliance Geotechnical Pty Ltd

ENGINEERING | ENVIRONMENTAL | TESTING

0m

50

10 Welder Road, Seven Hills, NSW T: 1800 288 188: enviro@allgeo.com.au Project Address:

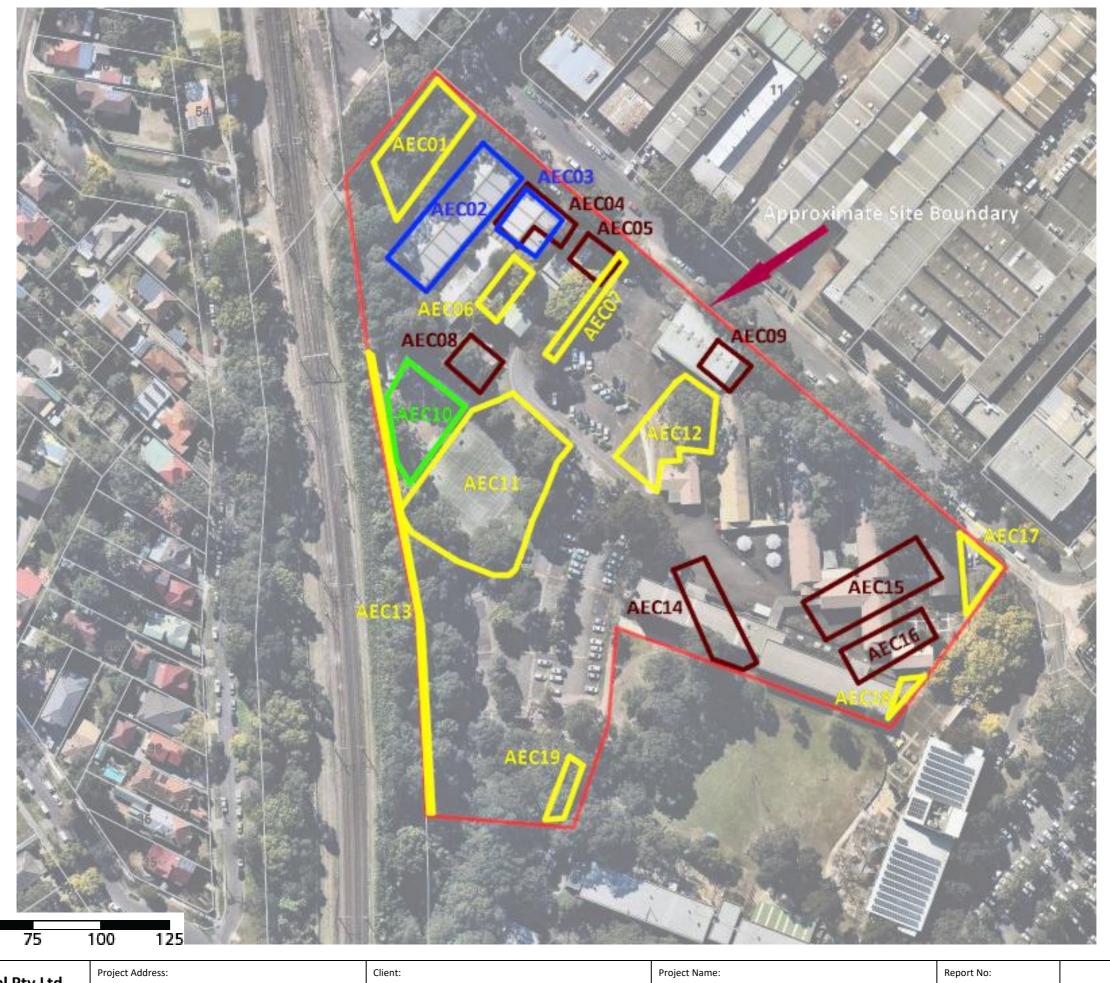
Portion of Lot 1 in DP837179 (Lot 10 in DP1232584) See Street, Meadowbank, NSW

Ward Civil

Project Name:

Supplementary Contamination Assessment

Report No:


9280-ER-1-1 Figure Date:

27 June 2019

 \bigvee

Figure Title: Figure No:

Site Layout Plan

Alliance Geotechnical Pty Ltd
ENGINEERING | ENVIRONMENTAL | TESTING

25

0m

50

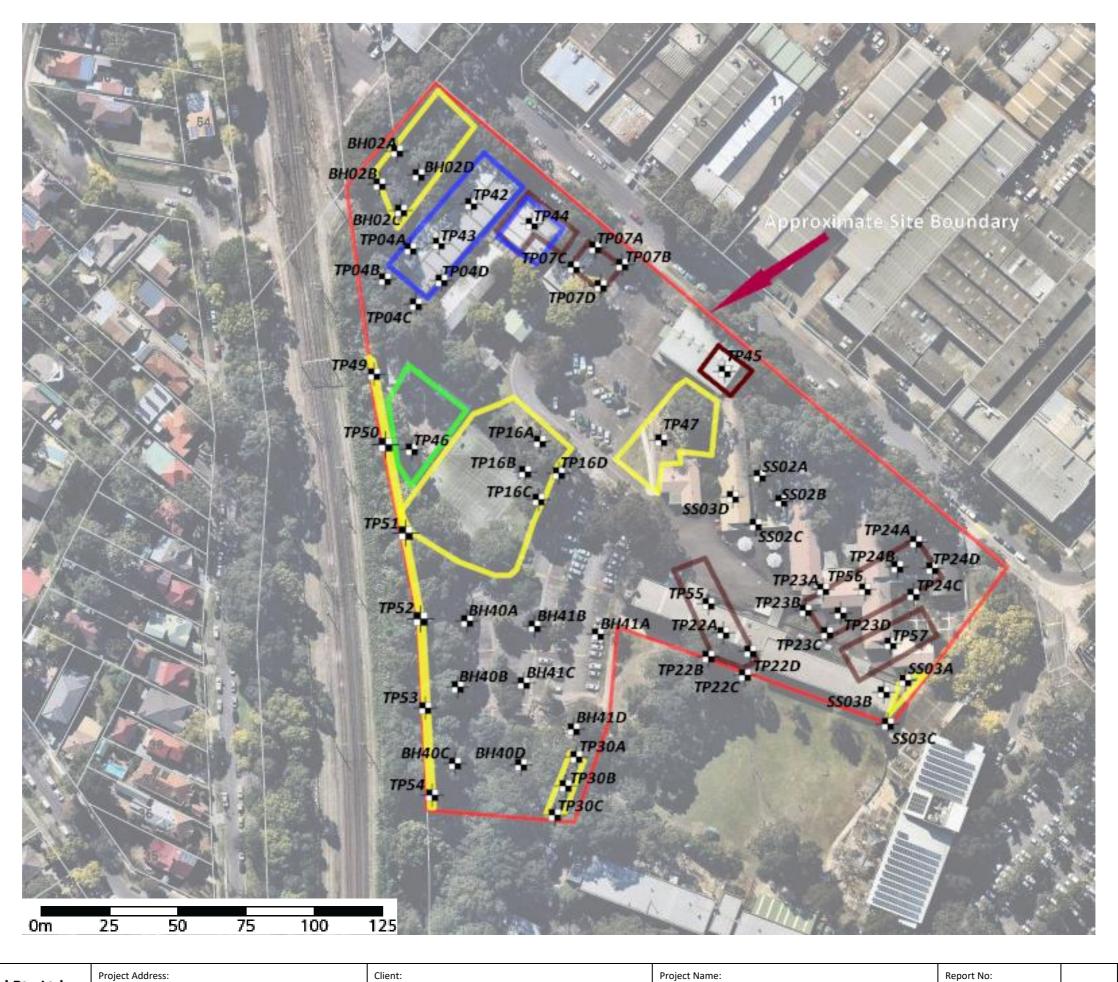
10 Welder Road, Seven Hills, NSW T: 1800 288 188: enviro@allgeo.com.au Portion of Lot 1 in DP837179 (Lot 10 in DP1232584)
See Street, Meadowbank, NSW

Ward Civil

Supplementary Contamination Assessment

9280-ER-1-1

27 June 2019


9280-ER-1-1
Figure Date:

 \bigvee

Figure No: Figure Title:

3

Areas of Environmental Concern

10 Welder Road, Seven Hills, NSW T: 1800 288 188: enviro@allgeo.com.au Project Address:

Portion of Lot 1 in DP837179 (Lot 10 in DP1232584) See Street, Meadowbank, NSW

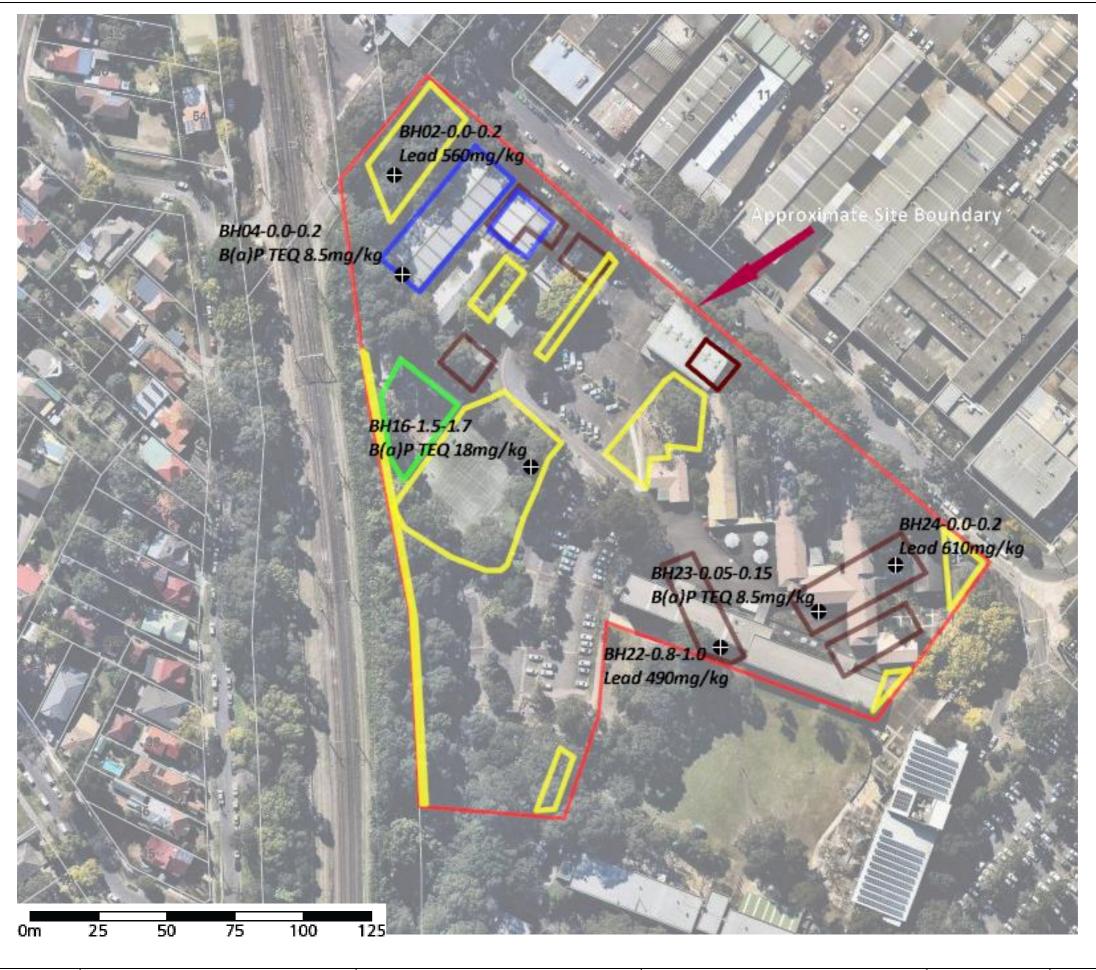
Client:

Ward Civil

Report No:

9280-ER-1-1 Figure Date:

Figure No:


Figure Title:

Sampling Point

Layout Plan

Supplementary Contamination Assessment 27 June 2019

 \bigvee

10 Welder Road, Seven Hills, NSW T: 1800 288 188: enviro@allgeo.com.au Project Address:

Portion of Lot 1 in DP837179 (Lot 10 in DP1232584)
See Street, Meadowbank, NSW

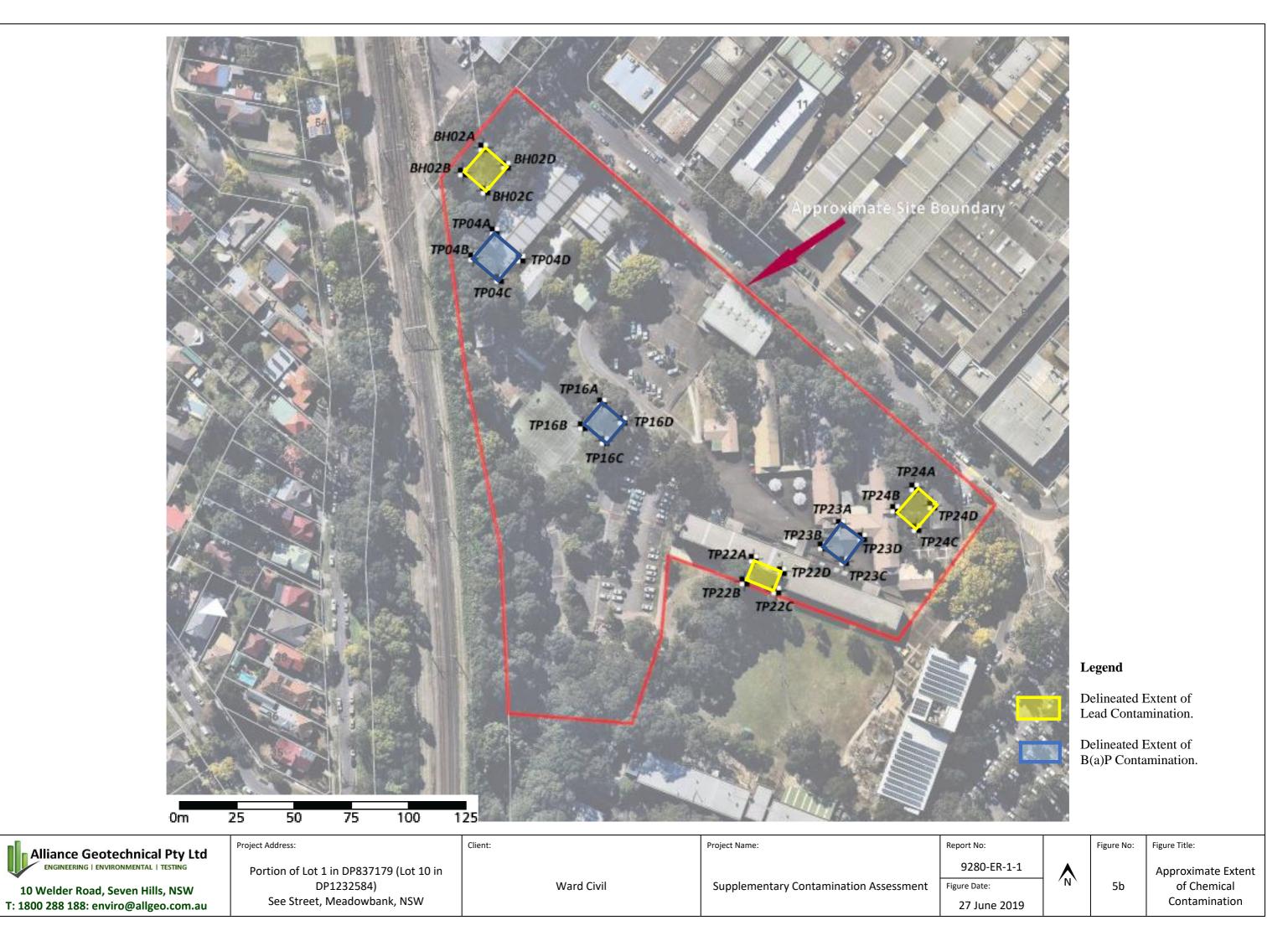
Client:

Ward Civil

Project Name:

 ${\bf Supplementary\ Contamination\ Assessment}$

Report No:


9280-ER-1-1
Figure Date:

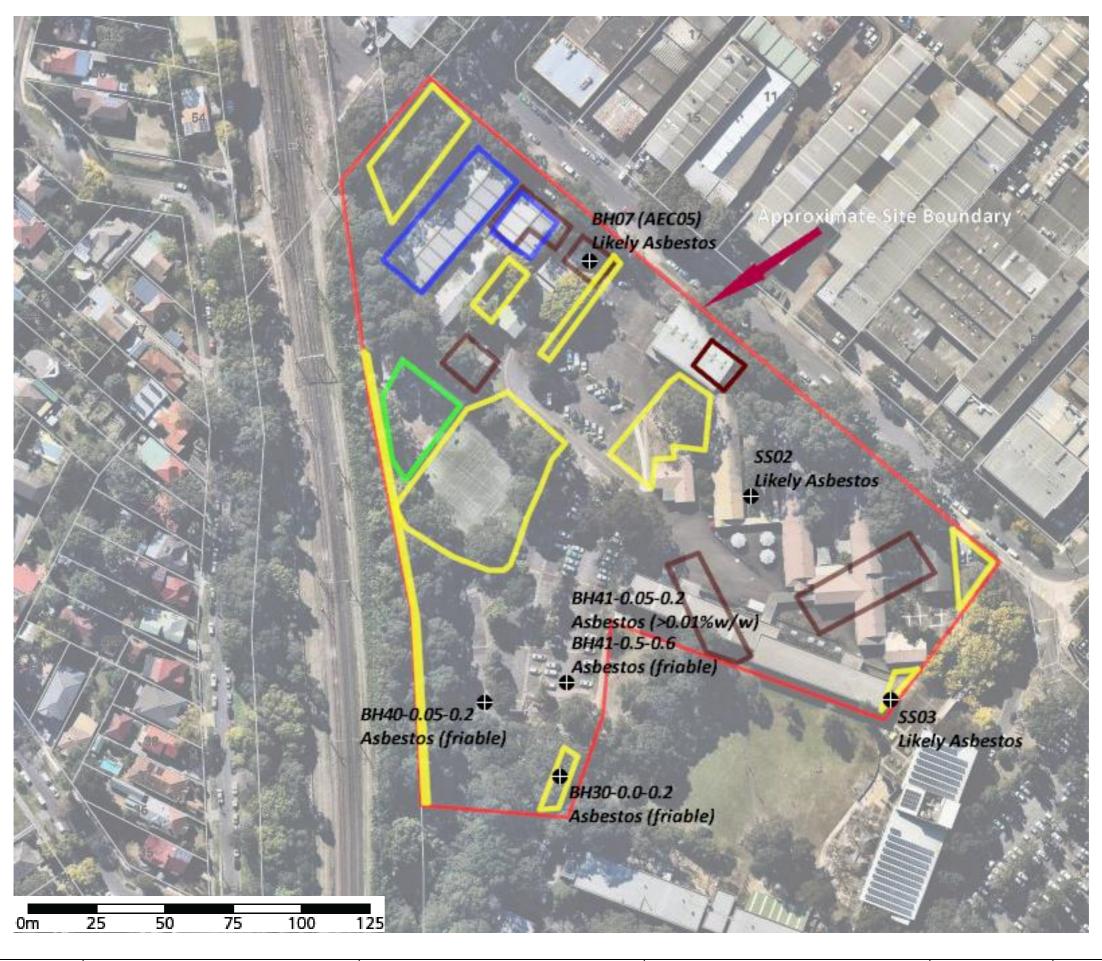

27 June 2019

Figure No:

Figure Title:

Previously Identified
Chemical
Contamination

10 Welder Road, Seven Hills, NSW T: 1800 288 188: enviro@allgeo.com.au Project Address:

Portion of Lot 1 in DP837179 (Lot 10 in DP1232584)
See Street, Meadowbank, NSW

Client:

Report No:

9280-ER-1-1
Figure Date:

Figure No:

 \bigvee

Previously Identified
Asbestos
Contamination

Figure Title:

Ward Civil Supplementary Contamination Assessment

Project Name:

Figure Date: 27 June 2019

6a

 \bigvee

Legend

Alliance Geotechnical Pty Ltd

ENGINEERING | ENVIRONMENTAL | TESTING

10 Welder Road, Seven Hills, NSW T: 1800 288 188: enviro@allgeo.com.au Project Address:

Portion of Lot 1 in DP837179 (Lot 10 in DP1232584) See Street, Meadowbank, NSW

Client:

Ward Civil

Supplementary Contamination Assessment

Report No:

9280-ER-1-1

Figure Date: 27 June 2019 Figure No:

Approximate Extent of Asbestos Contamination

Figure Title:

DATA SUMMARY TABLES

	reet, Meadowbank, NSW & Adopted Site Criteria										Sample ID Reference Date Sampled Sample Matrix		TP42-0.0-0.2 S19-Jn21928 19/6/2019 Soil	TP42-0.4-0.6 S19-Jn21929 19/6/2019 Soil	TP43-0.0-0.2 S19-Jn21930 19/6/2019 Soil	TP43-0.5-0.1 S19-Jn21931 19/6/2019 Soil	TP44-0.0-0.2 S19-Jn21932 19/6/2019 Soil	TP44-0.8-1.0 S19-Jn21933 19/6/2019 Soil	TP45-0.1-0.4 S19-Jn21934 19/6/2019 Soil	TP46_0.0-0.3 S19-Jn20053 18/6/2019 Soil
200-ER-1-1				Asbestos Health Screening Level (w/w) - NEPC 2013	Screening Levels for Direct Contact (mg/kg) - CRC Care 2011	Intrusion H	n / Vapour 6Ls (mg/kg) - 13 (SAND)	_	r TPH Fractions F1 - F4 in) - NEPC 2013	Health Investigation Levels for Soil Contaminants - NEPC 2013	Sample Wattix		3011	3011	3011	3011	3011	3011	3011	3011
Group	Analyte	Units	PQL	Residential A	HSL - A Residential (Low Density)		B - Low - High lesidential	Residential, Parkland	and Public Open Space	Residential A	Data Set Minimum	Data Set Maximum								
						0 m to <1 m	1 m to <2 m	Coarse Soil Texture	Fine Soil Texture											
	Arsenic, As Cadmium, Cd	mg/kg mg/kg	0.4	-	-	-	-	-	-	100 20	0	12 0	< 2 < 0.4	4.3 < 0.4	3.8 < 0.4	7.1 < 0.4	< 2 < 0.4	4.3 < 0.4	4 < 0.4	2.2 < 0.4
	Chromium, Cr	mg/kg	5.0	-	-	-	-	-	-	100	5	31	6.5	31	11	13	7.6	23	26	7.3
Metals	Copper, Cu	mg/kg	5.0	-	-	-	-	-	-	6,000	8	36	< 5	< 5	< 5	< 5	< 5	< 5	25	16
	Lead, Pb Mercury (inorganic)	mg/kg mg/kg	5 0.10	-	-	-	-	-	-	300 40	6 0	110 3	< 5 < 0.1	7.6 < 0.1	13 < 0.1	< 5 < 0.1	< 5 < 0.1	11 < 0.1	74 0.2	21 < 0.1
	Nickel, Ni	mg/kg	5.0		-	-	-	-	-	400	5	30	< 5	< 5	< 5	< 5	< 5	< 5	30	15
	Zinc, Zn	mg/kg	5.0	-	-	-	-	-	-	7,400	6	170	14	< 5	40	< 5	9.7	7.8	95	36
	Acenaphthene	mg/kg	0.5	-	-	-	-	-	-	-	0	0								
	Acenaphthylene Anthracene	mg/kg mg/kg	0.5 0.5	-	-	-	-	-	-	-	0	0								
	Benzo(a)anthracene	mg/kg	0.5	-	-	-	-	-	-	-	1	1								
	Benzo(a)pyrene	mg/kg	0.5	-	-	-	-	-	-	-	1	1								
	Carcinogenic PAHs, BaP TEQ <lor=0 <lor="LOR</td" bap="" carcinogenic="" pahs,="" teq=""><td>TEQ (mg/kg)</td><td>0.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor=0>	TEQ (mg/kg)	0.5	-	-	-	-	-	-	-	1	1								
	Carcinogenic PAHs, BaP TEQ <lor=lor <lor="LOR/2</td" bap="" carcinogenic="" pahs,="" teq=""><td>TEQ (mg/kg) TEQ (mg/kg)</td><td>0.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor=lor>	TEQ (mg/kg) TEQ (mg/kg)	0.5	-	-	-	-	-	-	-	1	1								
	Benzo(b&j)fluoranthene	mg/kg	0.5	-	-	-	-	-	-	-	1	1								
PAH	Benzo(ghi)perylene	mg/kg	0.5	-	-	-	-	-	-	-	0	0								
	Benzo(k)fluoranthene	mg/kg	0.5	-	-	-	-	-	-	-	0	0								
	Chrysene Dibenzo(ah)anthracene	mg/kg mg/kg	0.5 0.5	-	-	-	-	-	-	-	0	0								
	Fluoranthene	mg/kg	0.5	-	-	-	-	-	-	-	1	2								
	Fluorene	mg/kg	0.5	-	-	-	-	-	-	-	0	0								
	Indeno(1,2,3-cd)pyrene	mg/kg	0.5	-	-	-	-	-	-	-	0	0								
	Naphthalene Phenanthrene	mg/kg mg/kg	0.5 0.5	-	1,400 -	3 -	NL -	-	-	-	0 1	0 1								
	Pyrene	mg/kg	0.5	-	-	-	-	-	-	-	1	2								
	Total PAH (18)	mg/kg	0.5	-	-	-	-	-	-	-	2	7								
	TRH C10-C36 Total TRH C10-C14	mg/kg mg/kg	50 20		-	-	-	-	-		60 31	215 31	< 50 < 20	< 50 < 20	< 50 31	< 50 < 20	< 50 < 20	< 50 < 20		
	TRH C15-C28	mg/kg	50	-	-	-	-	-	-	-	52	85	< 50	< 50	< 50	< 50	< 50	< 50		
	TRH C29-C36	mg/kg	50	-	-	-	-	-	-	-	65	130	< 50	< 50	< 50	< 50	< 50	< 50		
	TRH C6-C9	mg/kg	20	-	-	-	-	-	-	-	0	0	< 20	< 20	< 20	< 20	< 20	< 20		
TRH	Naphthalene TRH >C10-C16 (F2)	mg/kg mg/kg	0.5 50	-	1,400 3,300	3	NL -	1,000	1,000	-	0	0	< 0.5 < 50							
IMI	TRH >C10-C16 (F2) - Naphthalene	mg/kg	50	-	-	110	240	-	-	-	0	0	< 50	< 50	< 50	< 50	< 50	< 50		
	TRH C10-C40 Total (F bands)	mg/kg	100		-	-	-	-	-	-	100	290	< 100	< 100	< 100	< 100	< 100	< 100		
	TRH >C16-C34 (F3)	mg/kg	100	-	4,500	-	-	2,500	3,500	-	100	170	< 100	< 100	< 100	< 100	< 100	< 100		
	TRH >C34-C40 (F4) TRH C6-C10	mg/kg mg/kg	100 20	-	6,300 4,400	-	-	10,000 700	10,000 800	-	120 0	120 0	< 100 < 20							
	TRH C6-C10 minus BTEX (F1)	mg/kg	20	-	-	45	70	-	-	-	0	0	< 20	< 20	< 20	< 20	< 20	< 20		
	Benzene	mg/kg	0.1	-	100	0.5	0.5	-	-	-	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	Ethylbenzene m/n.xvlene	mg/kg mg/kg	0.1	-	4,500 -	55	NL -	-	-	-	2 1	1	< 0.1 < 0.2	< 0.1 < 0.2	1.7 0.9	1.6 0.7	< 0.1 < 0.2	< 0.1 < 0.2		
BTEX	m/p-xylene o-xylene	mg/kg mg/kg	0.2		-	-	-	-	-	-	0	0	< 0.2	< 0.2	0.9	0.7	< 0.2	< 0.2		
	Toluene	mg/kg	0.1		14,000	160	220	-	-	-	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		
	Total Xylenes	mg/kg	0.3	-	12,000	40	60	-	-	-	1	1	< 0.3	< 0.3	1.2	1.1	< 0.3	< 0.3		
	4.4 - DDD 4.4 - DDE	mg/kg mg/kg	0.05	-	-	-	-	-	-	-	0	0								< 0.05 < 0.05
	4.4 - DDT	mg/kg	0.05	-	-	-	-	-	-	-	0	0		†						< 0.05
	а - ВНС	mg/kg	0.05		-	-	-	-	-	-	0	0								< 0.05
	Aldrin	mg/kg	0.05	-	-	-	-	-	-	-	0	0								< 0.05
	Aldrin + Dieldrin (total) b - BHC	mg/kg mg/kg	0.05	-	-	-	-	-	-	-	0	0		+						< 0.05 < 0.05
	Chlordanes (total)	mg/kg	0.05	-	-	-	-	-	-	50	0	0		1						< 0.03
	d - BHC	mg/kg	0.05	-	-	-	-	-	-	-	0	0								< 0.05
	DDT + DDE + DDD (total)	mg/kg	0.05	-	-	-	-	-	-	240	0	0		1						< 0.05
	Dieldrin Endosulfan 1	mg/kg mg/kg	0.05		-	-	-	-	-		0	0		+						< 0.05 < 0.05
ОСР	Endosulfan 2	mg/kg	0.05	-	-	-	-	-	-	-	0	0		1						< 0.05
	Endosulfan sulphate	mg/kg	0.05		-	-	-	-	-	-	0	0								< 0.05
	Endrin	mg/kg	0.05	-	-	-	-	-	-	10	0	0								< 0.05
	Endrin Aldehyde Endrin Ketone	mg/kg mg/kg	0.05	-	-	-	-	-	-		0	0		-						< 0.05 < 0.05
	g-BHC (Lindane)	mg/kg	0.05	-	-	-	-	-	-	-	0	0								< 0.05
	- · · · · · · · · · · · · · · · · · · ·	J,0									-				1	1		1	1	0.00

ii .			1								r	1		T T	
	Heptachlor	mg/kg	0.05	-	-	-	-	-	-	6	0	0			< 0.05
	Heptachlor epoxide	mg/kg	0.05	-	-	-	-	-	-	-	0	0			< 0.05
	Hexachlorobenzene	mg/kg	0.05	-	-	-	-		-	10	0	0			< 0.05
	Methoxychlor	mg/kg	0.05	-	-	-	-		-	300	0	0			< 0.2
	Toxaphene	mg/kg	1.0	-	-	-	-		-	-	0	0			< 1
	Vic EPA IWRG 621 OCP 9total)	mg/kg	0.1	-	-	-	-		-	-	0	0			< 0.2
	Vic EPA IWRG 621 Other OCP (total)	mg/kg	0.1	-	-	-	-	-	-	-	0	0			< 0.2
	Aroclor-1016	mg/kg	0.1	-	-	-	-	-	-	-	0	0			
	Aroclor-1221	mg/kg	0.1	-	-	-	-	-	-	-	0	0			
	Aroclor-1232	mg/kg	0.1	-	-	-	-		-	-	0	0			
	Aroclor-1242	mg/kg	0.1	-	-	-	-		-	-	0	0			
PCB	Aroclor-1248	mg/kg	0.1	-	-	-	-		-	-	0	0			
	Aroclor-1254	mg/kg	0.1	-	-	-	-		-	-	0	0			
	Aroclor-1260	mg/kg	0.1	-	-	-	-		-	-	0	0			
	Total PCB*	mg/kg	0.1	-	-	-	-	-	-	1	0	0			
	Asbestos Detected Insoil	No Unit	Detection	Detected	-	-	-	-	-	-	-	-			Not Detected
Asbestos	Estimated Fibres	% w/w	0.001	0.001		-		-	-	-	-	-			<0.01
	Non-friable ACM	No Unit	Туре	Detected	-	-	-	-	-	-	-	-			N.A.

Highlighted concentration exceeds the adopted site criteria - Screening Levels for Direct Contact (mg/kg) - CRC Care 2011
Highlighted concentration exceeds the adopted site criteria - Inhalation / Vapour Intrusion HSLs (mg/kg) - NEPC 2013 (SAND)
Highlighted concentration exceeds the adopted site criteria - Management Limits for TPH Fractions F1 - F4 in soil (mg/kg) - NEPC 2013
Highlighted concentration exceeds the adopted site criteria - Health Investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criteria - Asbestos Health Screening Level (w/w) - NEPC 2013

- No published criteria or sample not analysed

NL Not Limiting

able 1											Sample ID		TP46 0.5-0.7	TP47-0.0-0.2	TP49 0.0-0.2	TP50 0.0-0.2	TP51 0.0-0.2	TP51 0.8-1.0	TP52 0.0-0.2	TP52 1.2
	reet, Meadowbank, NSW										Reference		S19-Jn20054	S19-Jn21935	S19-Jn20055	S19-Jn20056	S19-Jn20057	S19-Jn20058	S19-Jn20059	S19-Jn20
	esults & Adopted Site Criteria												18/6/2019	19/6/2019	18/6/2019	18/6/2019	18/6/2019	18/6/2019	18/6/2019	18/6/20
280-ER-1-1	•										Sample Matrix		Soil	Soil						
				Asbestos Health Screening Level (w/w) - NEPC 2013	Screening Levels for Direct Contact (mg/kg) - CRC Care 2011	Intrusion H	on / Vapour ISLs (mg/kg) - 013 (SAND)	=	or TPH Fractions F1 - F4 in ;) - NEPC 2013	Health Investigation Levels for Soil Contaminants - NEPC 2013										
Group	Analyte	Units	PQL	Residential A	HSL - A Residential (Low Density)	density I	Residential		and Public Open Space	Residential A	Data Set Minimum	Data Set Maximum								
						0 m to <1 m	1 m to <2 m	Coarse Soil Texture	Fine Soil Texture											
	Arsenic, As Cadmium, Cd	mg/kg	0.4	-	-	-	-	-	-	100 20	0	12 0	3.3 < 0.4	< 2 < 0.4	3 < 0.4	12 < 0.4	8.5 < 0.4	5.2 < 0.4	7.5 < 0.4	11 < 0.4
	Chromium, Cr	mg/kg mg/kg	5.0	-	-	-	-	-	-	100	5	31	14	5.5	16	25	17	10	14	29
	Copper, Cu	mg/kg	5.0	-	-	-	-	-	-	6,000	8	36	< 5	19	< 5	16	14	33	27	8.2
Metals	Lead, Pb	mg/kg	5	-	-	-	-	-	-	300	6	110	6	55	< 5	47	68	40	110	21
	Mercury (inorganic)	mg/kg	0.10	-	-	-	-	-	-	40	0	3	< 0.1	3.1	< 0.1	0.1	0.2	< 0.1	0.1	< 0.1
	Nickel, Ni	mg/kg	5.0	-	-	-	-	-	-	400	5	30	< 5	< 5	< 5	< 5	5.2	< 5	5.5	< 5
	Zinc, Zn	mg/kg	5.0	-	-	-	-		-	7,400	6	170	< 5	150	< 5	64	100	74	150	5.9
	Acenaphthene	mg/kg	0.5	-	-	-	-	-	-	-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthylene	mg/kg	0.5	-	-	-	-	•	-	-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Anthracene Benzo(a)anthracene	mg/kg mg/kg	0.5 0.5	-	-	-	-	-	-	-	0 1	1		< 0.5 < 0.5	< 0.5 0.7	< 0.5 < 0.5				
	Benzo(a)pyrene	mg/kg mg/kg	0.5		-	-	-	-	-	-	1	1		< 0.5	< 0.5	< 0.5	0.5	< 0.5	0.7	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1</td><td>1</td><td></td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>0.5</td><td>< 0.5</td><td>0.8</td><td>< 0.5</td></lor=0<>	TEQ (mg/kg)	0.5	-	-	-	-	-	-	-	1	1		< 0.5	< 0.5	< 0.5	0.5	< 0.5	0.8	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>3</td><td>1</td><td>1</td><td></td><td>0.6</td><td>0.6</td><td>0.6</td><td>0.9</td><td>0.6</td><td>1.1</td><td>0.6</td></lor=lor<>	TEQ (mg/kg)	0.5	-	-	-	-	-	-	3	1	1		0.6	0.6	0.6	0.9	0.6	1.1	0.6
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1</td><td>1</td><td></td><td>1.2</td><td>1.2</td><td>1.2</td><td>1.2</td><td>1.2</td><td>1.4</td><td>1.2</td></lor=lor>	TEQ (mg/kg)	0.5	-	-	-	-	-	-	-	1	1		1.2	1.2	1.2	1.2	1.2	1.4	1.2
	Benzo(b&j)fluoranthene	mg/kg	0.5	-	-	-	-	-	-	-	1	1		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5
PAH	Benzo(ghi)perylene	mg/kg	0.5	-	-	-	-	-	-	-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(k)fluoranthene	mg/kg	0.5	-	-	-	-	-	-	-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Chrysene	mg/kg	0.5	-	-	-	-	-	-	-	1	1		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.
	Dibenzo(ah)anthracene	mg/kg	0.5	-	-	-	-	-	-	-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5	-	-	-	-	-	-	-	0	0		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	1.2 < 0.5	< 0.5 < 0.5	1.9 < 0.5	< 0.5
	Fluorene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.5 0.5	-	-	-	-	-	-	-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.
	Naphthalene	mg/kg	0.5	-	1,400	3	NL	-	-	-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5	-	-	-	-	-	-	-	1	1		< 0.5	< 0.5	< 0.5	0.7	< 0.5	1	< 0.5
	Pyrene	mg/kg	0.5	-	-	-	-	-	-	-	1	2		< 0.5	< 0.5	< 0.5	1.1	< 0.5	1.5	< 0.5
	Total PAH (18)	mg/kg	0.5	-	-	-	-	-	-	-	2	7		< 0.5	< 0.5	< 0.5	3.5	< 0.5	7	< 0.!
	TRH C10-C36 Total	mg/kg	50	-	-	-	-	-	-	-	60	215		< 50	< 50	60	< 50	< 50	< 50	< 50
	TRH C10-C14	mg/kg	20	-	-	-	-	-	-	-	31	31		< 20	< 20	< 20	< 20	< 20	< 20	< 20
	TRH C15-C28	mg/kg	50	-	-	-	-	-	-	-	52	85		< 50	< 50	60	< 50	< 50	< 50	< 50
	TRH C29-C36	mg/kg	50	-	-	-	-	-	-	-	65	130		< 50	< 50	< 50	< 50	< 50	< 50	< 50
	TRH C6-C9 Naphthalene	mg/kg mg/kg	20 0.5	-	1,400	3	- NL	-	-	-	0	0		< 20 < 0.5	< 20					
TRH	TRH >C10-C16 (F2)	mg/kg	50	-	3,300	-	-	1,000	1,000	-	0	0		< 50	< 50	< 50	< 50	< 50	< 50	< 50.5
	TRH >C10-C16 (F2) - Naphthalene	mg/kg	50	-	-	110	240	-	-	-	0	0		< 50	< 50	< 50	< 50	< 50	< 50	< 50
	TRH C10-C40 Total (F bands)	mg/kg	100	-	-	-	-	-	-	-	100	290		< 100	< 100	< 100	< 100	< 100	< 100	< 10
	TRH >C16-C34 (F3)	mg/kg	100	-	4,500	-	-	2,500	3,500	-	100	170		< 100	< 100	< 100	< 100	< 100	< 100	< 10
	TRH >C34-C40 (F4)	mg/kg	100	-	6,300	-	-	10,000	10,000	-	120	120		< 100	< 100	< 100	< 100	< 100	< 100	< 10
	TRH C6-C10	mg/kg	20	-	4,400	-	-	700	800	-	0	0		< 20	< 20	< 20	< 20	< 20	< 20	< 20
	TRH C6-C10 minus BTEX (F1)	mg/kg	20	-	-	45	70	-	-	-	0	0		< 20 < 0.1	< 20	< 20	< 20	< 20	< 20	< 2
	Benzene Ethylbenzene	mg/kg mg/kg	0.1	-	100 4,500	0.5 55	0.5 NL	-	-	-	2	2		< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0. < 0.
	m/p-xylene	mg/kg mg/kg	0.1	-	-	-	- NL	-	-	-	1	1		< 0.1	< 0.2	< 0.2	< 0.2	< 0.1	< 0.2	< 0.
BTEX	o-xylene	mg/kg	0.1	-	-	-	-	-	-	-	0	0		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
	Toluene	mg/kg	0.1	-	14,000	160	220	-	-	-	0	0		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
	Total Xylenes	mg/kg	0.3	-	12,000	40	60	-	-	-	1	1		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.
	4.4 - DDD	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
	4.4 - DDE	mg/kg	0.05	-							0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
	4.4 - DDT a - BHC	mg/kg	0.05 0.05	-	-	-	-	•	-	-	0	0	< 0.05 < 0.05	< 0.0						
	a - BHC Aldrin	mg/kg mg/kg	0.05		-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.0
	Aldrin + Dieldrin (total)	mg/kg	0.05	-	-	-	-	-	-	6	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.
	b - BHC	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.
	Chlordanes (total)	mg/kg	0.05	-	-	-	-	-	-	50	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
	d - BHC	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
	DDT + DDE + DDD (total)	mg/kg	0.05	-	-	-	-	-	-	240	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.
	Dieldrin	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.
	Endosulfan 1	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.
	Endosulfan 2	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
	Endosulfan sulphate	mg/kg	0.05	-	-	-	-	•	-	- 10	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
	Endrin	mg/kg mg/kg	0.05 0.05	-	-	-	-	-	-	10	0	0	< 0.05 < 0.05	< 0.0						
		• ms/kg	1 0.05	-		-				-			< U.U5	< U.U5	< 0.05	< 0.05	< U.U5	\ U.U5	< U.U5	< U.U
	Endrin Aldehyde Endrin Ketone	mg/kg	0.05		_	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0

П			1									ſ								
	Heptachlor	mg/kg	0.05	-	-	-	-	-	-	6	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Heptachlor epoxide	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Hexachlorobenzene	mg/kg	0.05	-	-	-	-	-	-	10	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Methoxychlor	mg/kg	0.05	-	-	-	-		-	300	0	0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Toxaphene	mg/kg	1.0	-	-	-	-			-	0	0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Vic EPA IWRG 621 OCP 9total)	mg/kg	0.1	-	-	-	-			-	0	0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Vic EPA IWRG 621 Other OCP (total)	mg/kg	0.1	-	-	-	-			-	0	0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Aroclor-1016	mg/kg	0.1	-	-	-	-		-	-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Aroclor-1221	mg/kg	0.1	-	-	-	-			-	0	0		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aroclor-1232	mg/kg	0.1	-	-	-	-			-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
РСВ	Aroclor-1242	mg/kg	0.1	-	-	-	-			-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PCB	Aroclor-1248	mg/kg	0.1	-	-	-	-			-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Aroclor-1254	mg/kg	0.1	-	-	-	-			-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Aroclor-1260	mg/kg	0.1	-	-	-	-			-	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Total PCB*	mg/kg	0.1	-	-	-	-		-	1	0	0		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Asbestos Detected Insoil	No Unit	Detection	Detected	-	-	-	-	-	-	-	-		Not Detected						
Asbestos	Estimated Fibres	% w/w	0.001	0.001	-	-	-	-	-	-	-	-		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Non-friable ACM	No Unit	Туре	Detected	-	-	-	-	-	-	-	-		N.A.						

Highlighted concentration exceeds the adopted site criteria - Screening Levels for Direct Contact (mg/kg) - CRC Care 2011

Highlighted concentration exceeds the adopted site criteria - Inhalation / Vapour Intrusion HSLs (mg/kg) - NEPC 2013 (SAND)

Highlighted concentration exceeds the adopted site criteria - Management Limits for TPH Fractions F1 - F4 in soil (mg/kg) - NEPC 2013

Highlighted concentration exceeds the adopted site criteria - Health Investigation Levels for Soil Contaminants - NEPC 2013

Highlighted concentration exceeds the adopted site criteria - Asbestos Health Screening Level (w/w) - NEPC 2013

No published criteria or sample not analysed

NL Not Limiting

Table 1
Tafe - See Street, Meadowbank, NSW
Soil Results & Adopted Site Criteria

	eet, Meadowbank, NSW										Reference Date Sampled		S19-Jn20061	S19-Jn20062	S19-Jn20063	S19-Jn21936	S19-Jn21937	S19-Jn20064
	oil Results & Adopted Site Criteria 280-ER-1-1												18/6/2019	18/6/2019	18/6/2019	19/6/2019	19/6/2019	18/6/2019
28U-EK-1-1			T								Sample Matrix		Soil	Soil	Soil	Soil	Soil	Soil
				Asbestos Health Screening Level (w/w) - NEPC 2013	Screening Levels for Direct Contact (mg/kg) - CRC Care 2011	Intrusion H	n / Vapour SLs (mg/kg) - 13 (SAND)	_	r TPH Fractions F1 - F4 in - NEPC 2013	Health Investigation Levels for Soil Contaminants - NEPC 2013								
Group	Analyte	Units	PQL	Residential A	HSL - A Residential (Low Density)	HSL A & HSL B - Low - High density Residential		Residential, Parkland and Public Open Space		Residential A	Data Set Minimum	Data Set Maximum						
						0 m to <1 m	1 m to <2 m	Coarse Soil Texture	Fine Soil Texture									
	Arsenic, As	mg/kg	2	-	-	-	-	-	-	100	2	12	9	3.6	6.1	2.3	3.1	3.9
	Cadmium, Cd	mg/kg	0.4	-	-	-	-	-	-	20	0	0	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
	Chromium, Cr Copper, Cu	mg/kg mg/kg	5.0	-	-	-	-	-	-	100 6,000	5 8	31 36	16 35	15 36	17 14	24 18	5.1 13	14 < 5
Metals	Lead, Pb	mg/kg	5	-	-	-	-		-	300	6	110	91	67	28	48	94	18
	Mercury (inorganic)	mg/kg	0.10	-	-	-	-	-	-	40	0	3	0.2	< 0.1	< 0.1	2.1	0.1	< 0.1
	Nickel, Ni	mg/kg	5.0	-	-	-	-	-	-	400	5	30	12	8.7	9.9	15	< 5	< 5
	Zinc, Zn	mg/kg	5.0	-	-	-	-	-	-	7,400	6	170	150	170	28	110	110	29
	Acenaphthene Acenaphthylene	mg/kg mg/kg	0.5	•	-	-	-		-	•	0	0	< 0.5 < 0.5	< 0.5				
	Anthracene	mg/kg mg/kg	0.5	-	-	-	-	-	-	-	0	0	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	Benzo(a)anthracene	mg/kg	0.5	-	-	-	-	-	-	-	1	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5	-	-	-	-	-	-	-	1	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=0< th=""><td>TEQ (mg/kg)</td><td>0.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1</td><td>1</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5</td></lor=0<>	TEQ (mg/kg)	0.5	-	-	-	-	-	-	-	1	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=lor <lor="LOR/2</th" bap="" carcinogenic="" pahs,="" teq=""><td>TEQ (mg/kg) TEQ (mg/kg)</td><td>0.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>3</td><td>1</td><td>1</td><td>0.6 1.2</td><td>0.6 1.2</td><td>0.6 1.2</td><td>0.6 1.2</td><td>0.6 1.2</td><td>0.6 1.2</td></lor=lor>	TEQ (mg/kg) TEQ (mg/kg)	0.5	-	-	-	-	-	-	3	1	1	0.6 1.2	0.6 1.2	0.6 1.2	0.6 1.2	0.6 1.2	0.6 1.2
	Benzo(b&j)fluoranthene	mg/kg	0.5	-	-	-	-	-	-	-	1	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(ghi)perylene	mg/kg	0.5	-	-	-	-	-	-	-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PAH	Benzo(k)fluoranthene	mg/kg	0.5	-	-	-	-	-	-	-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Chrysene	mg/kg	0.5	-	-	-	-	-	-	-	1	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dibenzo(ah)anthracene	mg/kg	0.5	-	-	-	-	•	-	-	0 1	0	< 0.5 0.8	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5
	Fluoranthene Fluorene	mg/kg mg/kg	0.5	-	-	-	-	-	-	-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3
	Indeno(1,2,3-cd)pyrene	mg/kg	0.5	-	-	-	-	-	-	-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5	-	1,400	3	NL	-	-	-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5	-	-	-	-	-	-	-	1	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5
	Pyrene Total PAH (18)	mg/kg	0.5	-	-	-	-	-	-	-	2	7	0.8 1.6	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	2.8
	TRH C10-C36 Total	mg/kg mg/kg	0.5 50	-	-	-	-	-	-	-	60	215	< 50	215	130	< 50	121	119
	TRH C10-C14	mg/kg	20	-	-	-	-	-	-	-	31	31	< 20	< 20	< 20	< 20	< 20	< 20
	TRH C15-C28	mg/kg	50	-	-	-	-	-	-	-	52	85	< 50	85	52	< 50	54	54
	TRH C29-C36	mg/kg	50	-	-	-	-	-	-	-	65	130	< 50	130	78	< 50	67	65
	TRH C6-C9 Naphthalene	mg/kg mg/kg	20 0.5	-	1,400	3	- NL	-	-	-	0	0	< 20 < 0.5					
TRH	TRH >C10-C16 (F2)	mg/kg	50	-	3,300	-	-	1,000	1,000	-	0	0	< 50	< 50	< 50	< 50	< 50	< 50
	TRH >C10-C16 (F2) - Naphthalene	mg/kg	50	-	-	110	240	-	-	-	0	0	< 50	< 50	< 50	< 50	< 50	< 50
	TRH C10-C40 Total (F bands)	mg/kg	100	-	-	-	-	-	-	-	100	290	< 100	290	110	< 100	100	< 100
	TRH >C16-C34 (F3)	mg/kg	100	-	4,500	-	-	2,500	3,500	-	100	170	< 100	170	110	< 100	100	< 100
	TRH >C34-C40 (F4) TRH C6-C10	mg/kg mg/kg	100 20	-	6,300 4,400	-	-	10,000 700	10,000 800	-	120 0	120 0	< 100 < 20	120 < 20	< 100 < 20	< 100 < 20	< 100 < 20	< 100 < 20
	TRH C6-C10 minus BTEX (F1)	mg/kg	20	-	-	45	70	-	-	-	0	0	< 20	< 20	< 20	< 20	< 20	< 20
	Benzene	mg/kg	0.1	-	100	0.5	0.5	-	-	-	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Ethylbenzene	mg/kg	0.1	-	4,500	55	NL	•	-	-	2	2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BTEX	m/p-xylene	mg/kg	0.2	-	-	-	-	-	-	-	1	1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	o-xylene Toluene	mg/kg mg/kg	0.1	-	14,000	160	220	-	-	-	0	0	< 0.1 < 0.1					
	Total Xylenes	mg/kg	0.3	-	12,000	40	60	-	-	-	1	1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
	4.4 - DDD	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	4.4 - DDE	mg/kg	0.05	-							0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	4.4 - DDT	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	a - BHC Aldrin	mg/kg mg/kg	0.05 0.05		-	-	-	-	-	-	0	0	< 0.05 < 0.05					
	Aldrin + Dieldrin (total)	mg/kg	0.05	-	-	-	-	-	-	6	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	b - BHC	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Chlordanes (total)	mg/kg	0.05	-	-	-	-	-	-	50	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	d - BHC DDT + DDE + DDD (total)	mg/kg mg/kg	0.05 0.05	-	-	-	-	•	-	- 240	0	0	< 0.05 < 0.05					
	Dieldrin	mg/kg mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Endosulfan 1	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
ОСР	Endosulfan 2	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Endosulfan sulphate	mg/kg	0.05	-	-	-	-	-	-		0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Endrin Endrin Aldehyde	mg/kg mg/kg	0.05 0.05	-	-	-	-	•	-	10 -	0	0	< 0.05 < 0.05					
	Endrin Aldenyde Endrin Ketone	mg/kg mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	g-BHC (Lindane)	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	-																	

 TP53_0.9-1.1
 TP54_0.0-0.2
 TP54_1.3-1.5
 TP55-0.0-0.2
 TP56-0.1-0.4
 TP57_0.0-0.2

 S19-Jn20061
 S19-Jn20062
 S19-Jn20063
 S19-Jn21936
 S19-Jn21937
 S19-Jn20064

			1							_	_	_	0.05	0.05	2.25	2.05	0.05	0.05
	Heptachlor	mg/kg	0.05	-	-	-	-	-	-	6	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Heptachlor epoxide	mg/kg	0.05	-	-	-	-	-	-	-	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Hexachlorobenzene	mg/kg	0.05	-	-	-	-	-	-	10	0	0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Methoxychlor	mg/kg	0.05	-	-	-	-	-	-	300	0	0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Toxaphene	mg/kg	1.0	-	-	-	-	-	-	-	0	0	< 1	< 1	< 1	< 1	< 1	< 1
	Vic EPA IWRG 621 OCP 9total)	mg/kg	0.1	-	-	-	-	•	-	•	0	0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Vic EPA IWRG 621 Other OCP (total)	mg/kg	0.1	-	-	-		-	-	-	0	0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Aroclor-1016	mg/kg	0.1	-	-	-	-	-	•	-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Aroclor-1221	mg/kg	0.1	-	-	-	-	•	-	•	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Aroclor-1232	mg/kg	0.1	-	-	-	-	-		-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
РСВ	Aroclor-1242	mg/kg	0.1	-	-	-	-	-		-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PCB	Aroclor-1248	mg/kg	0.1	-	-	-	-	-		-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Aroclor-1254	mg/kg	0.1	-	-	-	-	-		-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Aroclor-1260	mg/kg	0.1	-	-	-	-	-		-	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Total PCB*	mg/kg	0.1	-	-	-	-	-		1	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Asbestos Detected Insoil	No Unit	Detection	Detected	-	-	-	-	•	-	-	-	Detected	Not Detected	Not Detected	Not Detected	Not Detected	Detected
													Chrysotile,					
													Amosite and					Chrysotile
Asbestos	Estimated Fibres	% w/w	0.001	0.001	-	-	-	-		-	-	-	Crocidolite					Asbestos
													Asbestos					Detected
													Detected	<0.01	<0.01	<0.01	<0.01	
	Non-friable ACM	No Unit	Туре	Detected	-	-	-	-		-	-	-	<0.001	N.A.	N.A.	N.A.	N.A.	0.0013

Highlighted concentration exceeds the adopted site criteria - Screening Levels for Direct Contact (mg/kg) - CRC Care 2011
Highlighted concentration exceeds the adopted site criteria - Inhalation / Vapour Intrusion HSLs (mg/kg) - NEPC 2013 (SAND)
Highlighted concentration exceeds the adopted site criteria - Management Limits for TPH Fractions F1 - F4 in soil (mg/kg) - NEPC 2013
Highlighted concentration exceeds the adopted site criteria - Health Investigation Levels for Soil Contaminants - NEPC 2013
Highlighted concentration exceeds the adopted site criteria - Asbestos Health Screening Level (w/w) - NEPC 2013

- No published criteria or sample not analysed

NL Not Limiting

9280-ER-1-1
Chemical Delineation Results & Adopted Site Criteria
Tafe - See Street, Meadowbank, NSW
Table 2

· · · · · ·								Sample ID		SE174488.002	S19-Jn21896	S19-Jn21897	S19-Jn21898	S19-Jn21899	SE174488.004	S19-Jn21904	S19-Jn21905	S19-Jn21906	S19-Jn21907	S19-Jn21908
Tafe - See Sti	afe - See Street, Meadowbank, NSW									BH02-0.0-0.2	BH02A-0.0-0.3	BH02B-0.0-0.3	BH02C-0.0-0.3	BH02D-0.0-0.3	BH04-0.0-0.2	TP04A-0.0-0.2	TP04A-0.9-1.1	TP04B-0.0-0.2	TP04C-0.0-0.2	TP04C-0.8-1.0
Chemical Del	ineation Results & Adopted Site Criteria							Date Sampled		13/1/2018	19/6/2019	19/6/2019	19/6/2019	19/6/2019	13/1/2018	19/6/2019	19/6/2019	19/6/2019	19/6/2019	19/6/2019
9280-ER-1-1	•			Sample Matrix		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
				Screening Levels for Direct Contact (mg/kg) - CRC Care 2011	Inhalation Intrusion HSI NEPC 201	.s (mg/kg) -	Health Investigation Levels for Soil Contaminants - NEPC 2013													
Group	Analyte	Units	PQL	HSL - A Residential	HSL A & HSL B density Re		Residential A	Data Set Minimum	Data Set Maximum											
				(Low Density)	0 m to <1 m	1 m to <2 m														
	Lead, Pb	mg/kg	5	-	-	-	300	4	610	560	5.9	8.2	110	85						
	Acenaphthene	mg/kg	0.5	-	-	-	-	0	1						0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthylene	mg/kg	0.5	-	-	-	-	0	8						0.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Anthracene	mg/kg	0.5	-	-	-	-	2	15						1.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)anthracene	mg/kg	0.5	-	-	-	-	1	14						5.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5	-	-	-	-	1	13						6.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=0< th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>-</th><th>1</th><th>18</th><th></th><th></th><th></th><th></th><th></th><th>8.5</th><th>< 0.5</th><th>< 0.5</th><th>< 0.5</th><th>< 0.5</th><th>< 0.5</th></lor=0<>	TEQ (mg/kg)	0.5	-	-	-	-	1	18						8.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=lor< th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>3</th><th>1</th><th>18</th><th></th><th></th><th></th><th></th><th></th><th>8.5</th><th>0.6</th><th>0.6</th><th>0.6</th><th>0.6</th><th>0.6</th></lor=lor<>	TEQ (mg/kg)	0.5	-	-	-	3	1	18						8.5	0.6	0.6	0.6	0.6	0.6
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>-</th><th>1</th><th>18</th><th></th><th></th><th></th><th></th><th></th><th>8.5</th><th>1.2</th><th>1.2</th><th>1.2</th><th>1.2</th><th>1.2</th></lor=lor>	TEQ (mg/kg)	0.5	-	-	-	-	1	18						8.5	1.2	1.2	1.2	1.2	1.2
	Benzo(b&j)fluoranthene	mg/kg	0.5	-	-	-	-	1	14						8.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PAH	Benzo(ghi)perylene	mg/kg	0.5	-	-	-	-	1	5						3.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(k)fluoranthene	mg/kg	0.5	-	-	-	-	1	6						1.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Chrysene	mg/kg	0.5	-	-	-	-	1	12						4.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dibenzo(ah)anthracene	mg/kg	0.5	-	-	-	-	1	1						0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5	-	-	-	-	1	55						11	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluorene	mg/kg	0.5	-	-	-	-	0	7						0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Indeno(1,2,3-cd)pyrene	mg/kg	0.5	-	-	-	-	4	6						4.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5	1,400	3	NL	-	0	4.2						0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5	-	-	-	-	1	73						4.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Pyrene	mg/kg	0.5	-	-	-	-	1	51						8.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Total PAH (18)	mg/kg	0.5	-	-	-	-	1	290						60	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Highlighted concentration exceeds the adopted site criteria - Screening Levels for Direct Contact (mg/kg) - CRC Care 2011

Highlighted concentration exceeds the adopted site criteria - Inhalation / Vapour Intrusion HSLs (mg/kg) - NEPC 2013 (SAND) Highlighted concentration exceeds the adopted site criteria - Health Investigation Levels for Soil Contaminants - NEPC 2013

Not Limiting

No published criteria or sample not analysed

Table 2

Table 2							l	Sample ID	S19-Jn21909	S19-Jn21910	S19-Jn21911	SE174689.017	S19-Jn20030	S19-Jn20031	S19-Jn20032	S19-Jn20033	S19-Jn20034	S19-Jn20035	S19-Jn20036	S19-Jn20037
	eet, Meadowbank, NSW							Reference	TP04D-0.0-0.2	TP04D-0.9-1.1	TP04D-1.5-1.7	BH16-1.5-1.7	TP16A 0.0-0.2	TP16A 1.6-1.7	TP16B 0.0-0.2		TP16C 0.9-1.1	TP16C 1.8-2.0		TP16D 0.7-0.9
	ineation Results & Adopted Site Criteria							Date Sampled	19/6/2019	19/6/2019	19/6/2019	13/1/2018	18/6/2019	18/6/2019	18/6/2019	18/6/2019	18/6/2019	18/6/2019	18/6/2019	18/6/2019
9280-ER-1-1	medion results a Adopted Site Citeria							Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
3280-LK-1-1								Sample Watrix	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011
				Screening Levels for Direct Contact (mg/kg) - CRC Care 2011	Intrusion HS	n / Vapour iLs (mg/kg) - 13 (SAND)	Health Investigation Levels for Soil Contaminants - NEPC 2013													
Group	Analyte	Units	PQL	HSL - A Residential (Low Density)	HSL A & HSL I density R	B - Low - High esidential	Residential A	Data Set Minimum												
					0 m to <1 m	1 m to <2 m														
	Lead, Pb	mg/kg	5	-	-	-	300	4												
	Acenaphthene	mg/kg	0.5	-	-	-	-	0	< 0.5	< 0.5	< 0.5	1.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthylene	mg/kg	0.5	-	-	-	-	0	< 0.5	< 0.5	< 0.5	8.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Anthracene	mg/kg	0.5	-	-	-	-	2	< 0.5	< 0.5	< 0.5	15	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)anthracene	mg/kg	0.5	-	-	-	•	1	< 0.5	< 0.5	< 0.5	14	0.8	< 0.5	< 0.5	< 0.5	0.7	0.7	< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5	13	0.8	< 0.5	< 0.5	< 0.5	0.8	0.7	< 0.5	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=0< th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>-</th><th>1</th><th>< 0.5</th><th>< 0.5</th><th>< 0.5</th><th>18</th><th>1</th><th>< 0.5</th><th>< 0.5</th><th>< 0.5</th><th>1</th><th>0.8</th><th>< 0.5</th><th>< 0.5</th></lor=0<>	TEQ (mg/kg)	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5	18	1	< 0.5	< 0.5	< 0.5	1	0.8	< 0.5	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=lor< th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>3</th><th>1</th><th>0.6</th><th>0.6</th><th>0.6</th><th>18</th><th>1.3</th><th>0.6</th><th>0.6</th><th>0.6</th><th>1.3</th><th>1.1</th><th>0.6</th><th>0.6</th></lor=lor<>	TEQ (mg/kg)	0.5	-	-	-	3	1	0.6	0.6	0.6	18	1.3	0.6	0.6	0.6	1.3	1.1	0.6	0.6
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>-</th><th>1</th><th>1.2</th><th>1.2</th><th>1.2</th><th>18</th><th>1.6</th><th>1.2</th><th>1.2</th><th>1.2</th><th>1.5</th><th>1.4</th><th>1.2</th><th>1.2</th></lor=lor>	TEQ (mg/kg)	0.5	-	-	-	-	1	1.2	1.2	1.2	18	1.6	1.2	1.2	1.2	1.5	1.4	1.2	1.2
	Benzo(b&j)fluoranthene	mg/kg	0.5	-	-	-	•	1	< 0.5	< 0.5	< 0.5	14	0.6	< 0.5	< 0.5	< 0.5	0.6	0.5	< 0.5	< 0.5
PAH	Benzo(ghi)perylene	mg/kg	0.5	-	-	-	•	1	< 0.5	< 0.5	< 0.5	5.3	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(k)fluoranthene	mg/kg	0.5	-	-	-	•	1	< 0.5	< 0.5	< 0.5	6.4	0.6	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5
	Chrysene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5	12	0.8	< 0.5	< 0.5	< 0.5	0.7	0.7	< 0.5	< 0.5
	Dibenzo(ah)anthracene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5	-	-	-	•	1	< 0.5	< 0.5	< 0.5	55	1.6	< 0.5	< 0.5	0.7	1.4	1.6	< 0.5	< 0.5
	Fluorene	mg/kg	0.5	-	-	-	•	0	< 0.5	< 0.5	< 0.5	7.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Indeno(1,2,3-cd)pyrene	mg/kg	0.5	-	-	-	-	4	< 0.5	< 0.5	< 0.5	5.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5	1,400	3	NL	•	0	< 0.5	< 0.5	< 0.5	4.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5	73	0.6	< 0.5	< 0.5	< 0.5	0.6	0.6	< 0.5	< 0.5
	Pyrene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5	51	1.4	< 0.5	< 0.5	0.6	1.4	1.4	< 0.5	< 0.5
	Total PAH (18)	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5	290	7.7	< 0.5	< 0.5	1.3	6.7	6.2	< 0.5	< 0.5

Highlighted concentration exceeds the adopted site criteria - Screening Levels for Direct Contact (mg/kg) - CRC Care 2011

Highlighted concentration exceeds the adopted site criteria - Inhalation / Vapour Intrusion HSLs (mg/kg) - NEPC 2013 (SAND) Highlighted concentration exceeds the adopted site criteria - Health Investigation Levels for Soil Contaminants - NEPC 2013

Not Limiting

No published criteria or sample not analysed

9280-ER-1-1
Chemical Delineation Results & Adopted Site Criteria
Tafe - See Street, Meadowbank, NSW
Table 2

Table 2								Sample ID	SE174689.027	S19-Jn32732	S19-Jn32733	S19-Jn32734	S19-Jn32735	S19-Jn21920	S19-Jn21921	S19-Jn21922	S19-Jn21923	SE174488.028	S19-Jn21924
	eet, Meadowbank, NSW							Reference	BH22-0.8-1.0	TP22A-0.0-0.2	TP22A-1.0-1.2	TP22B-0.0-0.2	TP22B-0.9-1.1	TP22C-0.0-0.3	TP22C1.1-1.3	TP22D-0.0-0.2	TP22D-1.1-1.3	BH23-0.05-0.15	TP23A-0.1-0.4
	ineation Results & Adopted Site Criteria							Date Sampled	14/1/2018	19/6/2019	19/6/2019	19/6/2019	19/6/2019	19/6/2019	19/6/2019	19/6/2019	19/6/2019	14/1/2018	19/6/2019
9280-ER-1-1								Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Screening Levels for Direct Contact (mg/kg) - CRC Care 2011	Inhalation Intrusion HSI NEPC 201	Ls (mg/kg) -	Health Investigation Levels for Soil Contaminants - NEPC 2013												
Group	Analyte	Units	PQL	HSL - A Residential (Low Density)	HSL A & HSL B density Re	esidential	Residential A	Data Set Minimum —											
	Lead, Pb	mg/kg	5	-	-	•	300	4	490	43	7.3	290	150	160	170	130	460		
	Acenaphthene	mg/kg	0.5	-	-	•	-	0										0.2	< 0.5
	Acenaphthylene	mg/kg	0.5	-	-	-	-	0										1.6	< 0.5
	Anthracene	mg/kg	0.5	-	-	-	-	2										1.8	< 0.5
	Benzo(a)anthracene	mg/kg	0.5	-	-	-	-	1										5.4	< 0.5
	Benzo(a)pyrene	mg/kg	0.5	-	-	-	-	1										6.2	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=0< th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>-</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>8.4</th><th>< 0.5</th></lor=0<>	TEQ (mg/kg)	0.5	-	-	-	-	1										8.4	< 0.5
	Carcinogenic PAHs, BaP TEQ <lor=lor< th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>3</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>8.4</th><th>0.6</th></lor=lor<>	TEQ (mg/kg)	0.5	-	-	-	3	1										8.4	0.6
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>-</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>8.4</th><th>1.2</th></lor=lor>	TEQ (mg/kg)	0.5	-	-	-	-	1										8.4	1.2
	Benzo(b&j)fluoranthene	mg/kg	0.5	-	-	-	-	1										6.0	< 0.5
РАН	Benzo(ghi)perylene	mg/kg	0.5	-	-	-	-	1										3.2	< 0.5
	Benzo(k)fluoranthene	mg/kg	0.5	-	-	-	-	1										2.8	< 0.5
	Chrysene	mg/kg	0.5	-	-	-	-	1										4.9	< 0.5
	Dibenzo(ah)anthracene	mg/kg	0.5	-	-	-	-	1										0.5	< 0.5
	Fluoranthene	mg/kg	0.5	-	-	-	-	1										7.9	< 0.5
	Fluorene	mg/kg	0.5	-	-	-	-	0										1.0	< 0.5
	Indeno(1,2,3-cd)pyrene	mg/kg	0.5	-	-	-	-	4										3.9	< 0.5
	Naphthalene	mg/kg	0.5	1,400	3	NL	-	0										1.0	< 0.5
	Phenanthrene	mg/kg	0.5	-	-	-	-	1										7.8	< 0.5
	Pyrene	mg/kg	0.5	-	-	-	-	1										7.9	< 0.5
	Total PAH (18)	mg/kg	0.5	-	-	-	-	1										62	< 0.5

Highlighted concentration exceeds the adopted site criteria - Screening Levels for Direct Contact (mg/kg) - CRC Care 2011

Highlighted concentration exceeds the adopted site criteria - Inhalation / Vapour Intrusion HSLs (mg/kg) - NEPC 2013 (SAND) Highlighted concentration exceeds the adopted site criteria - Health Investigation Levels for Soil Contaminants - NEPC 2013

Not Limiting

No published criteria or sample not analysed

Table 2

Tafe - See Str	eet, Meadowbank, NSW							Reference	TP23B-0.1-0.4	TP23C-0.1-0.4	TP23D-0.1-0.4	BH24-0.0-0.2	BH24-0.2-0.4	TP24A_0.1-0.4	TP24B_0.0-0.2	TP24B_0.3-0.5	TP24C_0.1-0.4	TP24D_0.1-0.4
Chemical Del	ineation Results & Adopted Site Criteria							Date Sampled	19/6/2019	19/6/2019	19/6/2019	14/1/2018	14/1/2018	18/6/2019	18/6/2019	18/6/2019	18/6/2019	18/6/2019
9280-ER-1-1								Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Screening Levels for Direct Contact (mg/kg) - CRC Care 2011	Inhalation Intrusion HS NEPC 20:		Health Investigation Levels for Soil Contaminants - NEPC 2013											
Group	Analyte	Units	PQL	HSL - A Residential (Low Density)		3 - Low - High esidential	Residential A	Data Set Minimum										
				(con ochory)	0 m to <1 m	1 m to <2 m												
	Lead, Pb	mg/kg	5	-	-	-	300	4				610	4	25	84	10	58	< 5
	Acenaphthene	mg/kg	0.5	-	-	-	-	0	< 0.5	< 0.5	< 0.5							
	Acenaphthylene	mg/kg	0.5	-	-	-	-	0	< 0.5	< 0.5	< 0.5							
	Anthracene	mg/kg	0.5	-	-	-	-	2	< 0.5	< 0.5	< 0.5							
	Benzo(a)anthracene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5							
	Benzo(a)pyrene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5							
	Carcinogenic PAHs, BaP TEQ <lor=0< th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th></th><th>1</th><th>< 0.5</th><th>< 0.5</th><th>< 0.5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lor=0<>	TEQ (mg/kg)	0.5	-	-	-		1	< 0.5	< 0.5	< 0.5							
	Carcinogenic PAHs, BaP TEQ <lor=lor< th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th>3</th><th>1</th><th>0.6</th><th>0.6</th><th>0.6</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lor=lor<>	TEQ (mg/kg)	0.5	-	-	-	3	1	0.6	0.6	0.6							
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>TEQ (mg/kg)</th><th>0.5</th><th>-</th><th>-</th><th>-</th><th></th><th>1</th><th>1.2</th><th>1.2</th><th>1.2</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lor=lor>	TEQ (mg/kg)	0.5	-	-	-		1	1.2	1.2	1.2							
	Benzo(b&j)fluoranthene	mg/kg	0.5	-	-	-		1	< 0.5	< 0.5	< 0.5							
PAH	Benzo(ghi)perylene	mg/kg	0.5	-	-	-		1	< 0.5	< 0.5	< 0.5							
РАП	Benzo(k)fluoranthene	mg/kg	0.5	-	-	-		1	< 0.5	< 0.5	< 0.5							
	Chrysene	mg/kg	0.5	-	-	-		1	< 0.5	< 0.5	< 0.5							
	Dibenzo(ah)anthracene	mg/kg	0.5	-	-	-		1	< 0.5	< 0.5	< 0.5							
	Fluoranthene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5							
	Fluorene	mg/kg	0.5	-	-	-	-	0	< 0.5	< 0.5	< 0.5							
	Indeno(1,2,3-cd)pyrene	mg/kg	0.5	-	-	-	-	4	< 0.5	< 0.5	< 0.5							
	Naphthalene	mg/kg	0.5	1,400	3	NL	-	0	< 0.5	< 0.5	< 0.5							
	Phenanthrene	mg/kg	0.5	-	-	-	-	1	< 0.5	< 0.5	< 0.5							
	Pyrene	mg/kg	0.5	-	•	-	-	1	< 0.5	< 0.5	< 0.5							
	Total PAH (18)	mg/kg	0.5	-	•	-	-	1	< 0.5	< 0.5	< 0.5							

\$19-Jn21925 \$19-Jn21926 \$19-Jn21927

 SE174488.029
 SE174689.029
 S19-Jn20038
 S19-Jn20039
 S19-Jn20040
 S19-Jn20041
 S19-Jn20042

Highlighted concentration exceeds the adopted site criteria - Screening Levels for Direct Contact (mg/kg) - CRC Care 2011

Highlighted concentration exceeds the adopted site criteria - Inhalation / Vapour Intrusion HSLs (mg/kg) - NEPC 2013 (SAND)

Highlighted concentration exceeds the adopted site criteria - Health Investigation Levels for Soil Contaminants - NEPC 2013

Not Limiting

No published criteria or sample not analysed

Table 3					Sample ID		19-Jn21939	SE174488.007	SE174689.007	S19-Jn21912	S19-Jn21913	S19-Jn21914	S19-Jn21915	SE174488.038	SE174689.037	SE174689.038	SE174488.039	S19-Jn20044
Tafe - See St	reet, Meadowbank, NSW				Reference		FCS-TP04B	BH07-0.0-0.2	BH07-0.3-0.5	TP07A-0.1-0.4	TP07B-0.1-0.4	TP07C-0.1-0.4	TP07D-0.1-0.4	BH30-0.0-0.2	BH30-0.5-0.6	BH30-0.9-1.0	BH30-1.4-1.5	TP30A_1.7-1.9
Asbestos De	lineation Results & Adopted Site Criteria				Date Sampled		19/06/2019	13/1/2018	13/1/2018	19/6/2019	19/6/2019	19/6/2019	19/6/2019	13/1/2018	13/1/2018	13/1/2018	13/1/2018	18/6/2019
9280-ER-1-1					Sample Matrix		Fragment	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Asbestos Health Screening Level (w/w) NEPC 2013														
Group	Analyte	Units	PQL	Residential A	Data Set Minimum	Data Set Mavimum												
				Residential A	Satu Set William	Satu Set Maximum												
	Asbestos Detected Insoil	No Unit	Detection	Detected	0	0	N.A.	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Detected	Not Detected	Not Detected	N.A.	Detected
	Estimated Fibres	% w/w	0.001	0.001	0	0	N.A.	<0.01	N.A.	<0.001	<0.001	<0.001	<0.001	<0.01	N.A.	N.A.	N.A.	<0.001
Asbestos	Non-friable ACM	No Unit	Туре	Detected			Chrysotile and Amosite Asbestos Detected	N.A.	N.A.	Chrysotile Asbestos Detected	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

- No published criteria or sample not analysed

Table 3					Sample ID	S19-Jn20045	S19-Jn20046	S19-Jn20047	S19-Jn20048	SE174488.053	SE174689.049	SE174488.054	S19-Jn24200	S19-Jn24201	S19-Jn24202	S19-Jn24203	S19-Jn20049	S19-Jn20050	S19-Jn20051
Tafe - See St	eet, Meadowbank, NSW				Reference	TP30B_0.0-0.2	TP30B_0.9-1.1	TP30C_0.9-1.1	TP30C_1.7-1.9	BH40-0.05-0.2	BH40-0.5-0.6	BH40-0.9-1.0	BH40A-0.1-0.3	BH40A-0.8-1.0	BH40B-0.1-0.3	BH40B-0.8-1.0	BH40C_0.1-0.3	BH40C_1.7-1.9	BH40D_0.0-0.2
Asbestos Del	ineation Results & Adopted Site Criteria				Date Sampled	18/6/2019	18/6/2019	18/6/2019	18/6/2019	13/1/2018	13/1/2018	13/1/2018	20/6/2019	20/6/2019	20/6/2019	20/6/2019	18/6/2019	18/6/2019	18/6/2019
9280-ER-1-1					Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Asbestos Health Screening Level (w/w) NEPC 2013															
Group	Analyte	Units	PQL	Residential A	Data Set Minimum														
				Residential A	Data Set William														
	Asbestos Detected Insoil	No Unit	Detection	Detected	0	Not Detected	Not Detected	Not Detected	Not Detected	Detected	Not Detected	N.A.	Not Detected						
	Estimated Fibres	% w/w	0.001	0.001	0	<0.001	<0.001	<0.001	<0.001	<0.01	N.A.	N.A.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos	Non-friable ACM	No Unit	Туре	Detected		Chrysotile Asbestos Detected	Chrysotile Asbestos Detected	Chrysotile Asbestos Detected	Chrysotile Asbestos Detected	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

- No published criteria or sample not analysed

Table 3					Sample ID	S19-Jn20052	SE174488.055	SE174689.050	SE174689.051	S19-Jn24204	S19-Jn24205	S19-Jn24206	S19-Jn24207	S19-Jn24208	S19-Jn24209	S19-Jn24210	S19-Jn24211	S19-Jn24212	S19-Jn24213
Tafe - See St	reet, Meadowbank, NSW				Reference	BH40D_0.9-1.1	BH41-0.05-0.2	BH41-0.5-0.6	BH41-0.9-1.0	BH41A-0.1-0.3	BH41A-0.9-1.1	BH41B-0.0-0.2	BH41B-0.8-1.0	BH41C-0.1-0.3	BH41C-0.9-1.1	BH41D-0.0-0.2	BH41D-0.9-1.1	BH40A-1.2-1.4	BH40B-1.4-1.6
Asbestos De	lineation Results & Adopted Site Criteria				Date Sampled	18/6/2019	13/1/2018	13/1/2018	13/1/2018	20/6/2019	20/6/2019	20/6/2019	20/6/2019	20/6/2019	20/6/2019	20/6/2019	20/6/2019	20/6/2019	20/6/2019
9280-ER-1-1					Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Asbestos Health Screening Level (w/w) NEPC 2013															
Group	Analyte	Units	PQL	Residential A	Data Set Minimum														
				Nesidential A	Data Set Williamum														
	Asbestos Detected Insoil	No Unit	Detection	Detected	0	Detected	Detected	Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
	Estimated Fibres	% w/w	0.001	0.001	0	<0.001	>0.01	N.A.	N.A.	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos	Non-friable ACM	No Unit	Type	Detected		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

- No published criteria or sample not analysed

Table 3					Sample ID	S19-Jn24214	S19-Jn24215	S19-Jn24216	S19-Jn24217	SE174689.053	S19-Jn21900	S19-Jn21901	S19-Jn21902	S19-Jn21903	SE174689.054	S19-Jn20075	S19-Jn20076	S19-Jn20077
Tafe - See St	eet, Meadowbank, NSW				Reference	BH41A-1.8-2.0	BH41B-1.4-1.6	BH41C-1.8-2.0	BH41D-1.8-2.0	SS02	SS02A-0.0-0.3	SS02B-0.0-0.3	SS02C-0.0-0.3	SS02D-0.0-0.3	SS03	SS03A_0.5-0.7	SS03B_0.8-1.0	SS03C_0.0-0.2
Asbestos Del	neation Results & Adopted Site Criteria				Date Sampled	20/6/2019	20/6/2019	20/6/2019	20/6/2019	14/1/2018	19/6/2019	19/6/2019	19/6/2019	19/6/2019	14/1/2018	18/6/2019	18/6/2019	18/6/2019
9280-ER-1-1					Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Asbestos Health Screening Level (w/w) NEPC 2013														
Group	Analyte	Units	PQL	Residential A	Data Set Minimum													
				Kesachua A	Satu Set William													
	Asbestos Detected Insoil	No Unit	Detection	Detected	0	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Detected	Not Detected	Not Detected	Not Detected	
	Estimated Fibres	% w/w	0.001	0.001	0	<0.001	<0.001	<0.001	<0.001	N.A.	<0.001	<0.001	<0.001	0.0011	N.A.	<0.001	<0.001	<0.001
Asbestos	Non-friable ACM	No Unit	Туре	Detected		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

No published criteria or sample not analysed

Table 4			Sample ID	TP54_0.0-0.2	DUP01		TP54_0.0-0.2	DUP-01A	•	TP30C_0.0-0.2	DUP02		TP30C_0.0-0.2
Tafe - See Stre	et, Meadowbank, NSW		Reference	S19-Jn20062	S19-Jn20066		S19-Jn20062	ES1918836-001		S19-Jn20083	S19-Jn20067		S19-Jn20083
Relative Perce	nt Difference		Date Sampled	18/6/2019	18/6/2019		18/6/2019	18/6/2019		18/6/2019	18/6/2019		18/6/2019
9280-ER-1-1			Sample Matrix	Soil	Soil		Soil	Soil		Soil	Soil		Soil
Group	Analyte	Units	LOR			RPD (%)			RPD (%)			RPD (%)	
	Arsenic	mg/kg	2	4	3	25	4	<5	-	6	3	64	6
	Cadmium	mg/kg	0.4	< 0.4	< 0.4	-	< 0.4	<1	-	< 0.4	< 0.4	-	< 0.4
	Chromium	mg/kg	5	15	14	7	15	48	105	17	13	27	17
Metals	Copper	mg/kg	5	36	27	29	36	36	0	27	28	4	27
ivietais	Lead	mg/kg	5	67	53	23	67	183	93	63	43	38	63
	Mercury	mg/kg	0.1	< 0.1	< 0.1	1	< 0.1	<0.1	-	0	< 0.1	-	0
	Nickel	mg/kg	5	9	11	23	9	8	8	16	22	32	16
	Zinc	mg/kg	5	170	120	34	170	190	11	110	89	21	110

RPD exceeding criteria

Primary, Duplicate or Triplicate less than LOR and/or not analysed

Table 4			Sample ID	DUP-02A		TP30A_0.0-0.2	DUP03		TP30A_0.0-0.2	DUP-03A		TP57_0.0-0.2	DUP04	
Tafe - See Stree	et, Meadowbank, NSW		Reference	ES1918836-002		S19-Jn20043	S19-Jn20068		S19-Jn20043	ES1918836-003		S19-Jn20064	S19-Jn20069	
Relative Percer	nt Difference		Date Sampled	18/6/2019		18/6/2019	18/6/2019		18/6/2019	18/6/2019		18/6/2019	18/6/2019	
9280-ER-1-1			Sample Matrix	Soil		Soil	Soil		Soil	Soil		Soil	Soil	
Group	Analyte	Units	LOR		RPD (%)			RPD (%)			RPD (%)			RPD (%)
	Arsenic	mg/kg	2	5	21	4	5	20	4	20	138	4	4	0
	Cadmium	mg/kg	0.4	<1	-	< 0.4	< 0.4	-	< 0.4	<1	-	< 0.4	< 0.4	-
	Chromium	mg/kg	5	15	13	7	10	35	7	14	67	14	17	19
Metals	Copper	mg/kg	5	30	11	11	29	90	11	34	102	< 5	24	-
ivietais	Lead	mg/kg	5	62	2	33	78	81	33	118	113	18	49	93
	Mercury	mg/kg	0.1	< 0.1	-	< 0.1	< 0.1	-	< 0.1	< 0.1	-	< 0.1	0	-
	Nickel	mg/kg	5	17	6	< 5	6	-	< 5	7	-	< 5	10	-
	Zinc	mg/kg	5	128	15	18	78	125	18	93	135	29	130	127

RPD exceeding criteria

Primary, Duplicate or Triplicate less than LOR and/or not analysed

Table 4			Sample ID	TP57_0.0-0.2	DUP-04A		TP23D-0.1-0.4	DUP-05		TP23D-0.1-0.4	DUP-5A	
Tafe - See Stree	et, Meadowbank, NSW		Reference	S19-Jn20064	ES1918836-004		S19-Jn21927	S19-Jn21938		S19-Jn21927	ES1919077-001	
Relative Percer	nt Difference		Date Sampled	18/6/2019	18/6/2019		19/6/2019	19/6/2019		19/6/2019	19/6/2019	
9280-ER-1-1			Sample Matrix	Soil	Soil		Soil	Soil		Soil	Soil	
Group	Analyte	Units	LOR			RPD (%)			RPD (%)			RPD (%)
	Arsenic	mg/kg	2	4	<5	-	< 2	< 2	-	< 2	9	-
	Cadmium	mg/kg	0.4	< 0.4	<1	-	< 0.4	< 0.4	-	< 0.4	<1	-
	Chromium	mg/kg	5	14	14	0	< 5	8	-	< 5	10	-
Metals	Copper	mg/kg	5	< 5	29	-	7	15	73	7	29	122
ivietais	Lead	mg/kg	5	18	71	119	15	72	131	15	54	113
	Mercury	mg/kg	0.1	< 0.1	< 0.1	-	< 0.1	< 0.1	-	< 0.1	< 0.1	-
	Nickel	mg/kg	5	< 5	8	-	< 5	9	-	< 5	20	-
	Zinc	mg/kg	5	29	221	154	16	67	123	16	58	114

RPD exceeding criteria

- Primary, Duplicate or Triplicate less than LOR and/or not analysed

Table 1
Tafe - See Street, Meadowbank, NSW
Soil Results & Waste Assessment Criteria

Soil Resul	lts & Waste Assessment Criteria									Sample ID	TP47-0.0-0.2	TP49_0.0-0.2	TP50_0.0-0.2	TP51_0.0-0.2	TP51_0.8-1.0	TP52_0.0-0.2
9 280 -ER-1	1-1									Reference	S19-Jn21935	S19-Jn20055	S19-Jn20056	S19-Jn20057	S19-Jn20058	S19-Jn20059
Group	Analyte	Units	PQL	GSW Criteria CT1	RSW Criteria		GSW Criteria SCC1 (mg/kg)	DATASET AVERAGE	DATASET MINIMUM	DATASET MAXIMUM						
	Arsenic	mg/kg	2	100	400	*	500	6.2666667	2.3	12	< 2	3	12	8.5	5.2	7.5
	Cadmium	mg/kg	0.4	20	80	*	100	#DIV/0!	0	0	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
	Chromium	mg/kg	5	100	400	*	1,900	15.9692308	5.1	29	5.5	16	25	17	10	14
	Copper	mg/kg	5	*	*	*	*	21.2	8.2	36	19	< 5	16	14	33	27
Metals	Lead	mg/kg	5	100	400	*	1,500	57.25	18	110	55	< 5	47	68	40	110
	Lead (leachate)	mg/L	0.02	*	*	5	*	0.03	0.03	0.03	1	-	-	-	-	0.03
	Mercury	mg/kg	0.1	4	16	*	50	0.84285714	0.1	3.1	3.1	< 0.1	0.1	0.2	< 0.1	0.1
	Nickel	mg/kg	5	40	160	*	1,050	9.38333333	5.2	15	< 5	< 5	< 5	5.2	< 5	5.5
	Zinc	mg/kg	5	*	*	*	*	95.075	5.9	170	150	< 5	64	100	74	150
	Acenaphthylene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Anthracene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benz(a)anthracene	mg/kg	0.5	*	*	*	*	0.7	0.7	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7
	Benzo(a)pyrene	mg/kg	0.5	0.8	3.2	*	10	0.6	0.5	0.7	< 0.5	< 0.5	< 0.5	0.5	< 0.5	0.7
	Benzo(a)pyrene TEQ (lower bound) *	mg/kg	0.5	*	*	*	*	0.65	0.5	0.8	< 0.5	< 0.5	< 0.5	0.5	< 0.5	0.8
	Benzo(a)pyrene TEQ (medium bound) *	mg/kg	0.5	*	*	*	*	0.66153846	0.6	1.1	0.6	0.6	0.6	0.9	0.6	1.1
	Benzo(a)pyrene TEQ (upper bound) *	mg/kg	0.5	*	*	*	*	1.21538462	1.2	1.4	1.2	1.2	1.2	1.2	1.2	1.4
	Benzo(b&j)fluoranthene	mg/kg	0.5	*	*	*	*	0.5	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5
PAHS	Benzo(g.h.i)perylene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
РАПЭ	Benzo(k)fluoranthene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Chrysene	mg/kg	0.5	*	*	*	*	0.7	0.7	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7
	Dibenz(a.h)anthracene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5	*	*	*	*	1.3	0.8	1.9	< 0.5	< 0.5	< 0.5	1.2	< 0.5	1.9
	Fluorene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5	*	*	*	*	0.73333333	0.5	1	< 0.5	< 0.5	< 0.5	0.7	< 0.5	1
	Pyrene	mg/kg	0.5	*	*	*	*	1.1	0.8	1.5	< 0.5	< 0.5	< 0.5	1.1	< 0.5	1.5
	Total PAH*	mg/kg	0.5	200	800	N/A	200	3.725	1.6	7	< 0.5	< 0.5	< 0.5	3.5	< 0.5	7
	TRH C ₆ - C ₉	mg/kg	20	650	2,600	N/A	650	#DIV/0!	0	0	< 20	< 20	< 20	< 20	< 20	< 20
	TRH C ₁₀ -C ₃₆	mg/kg	50	10,000	40,000	N/A	10,000	129	60	215	< 50	< 50	60	< 50	< 50	< 50
	Benzene	mg/kg	0.1	10	40	*	18	#DIV/0!	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOU (DTEV	Ethylbenzene	mg/kg	0.1	600	2,400	*	1,080	#DIV/0!	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TRH/BTEX	m&p-Xylenes	mg/kg	0.2	*	*	*	*	#DIV/0!	0	0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	o-Xylene	mg/kg	0.1	*	*	*	*	#DIV/0!	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Toluene	mg/kg	0.1	288	1,152	*	518	#DIV/0!	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Xylenes - Total	mg/kg	0.3	1,000	4,000	*	1,800	#DIV/0!	0	0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Asbestos	Asbestos ID			Detection	Detection	*	Detection				Not Detected					

Concentration exceeding General Solid Waste Criteria CT1 (NSW EPA Waste Classification Guidelines)

Concentration exceeding Restricted Solid Waste Criteria CT2 (NSW EPA Waste Classification Guidelines)

Concentration exceeding General Solid Waste Criteria TCLP1 (mg/L) (NSW EPA Waste Classification Guidelines)

Concentration exceeding General Solid Waste Criteria SCC1 (mg/kg) (NSW EPA Waste Classification Guidelines)

* = No currently available criterion

- = No sample analysed

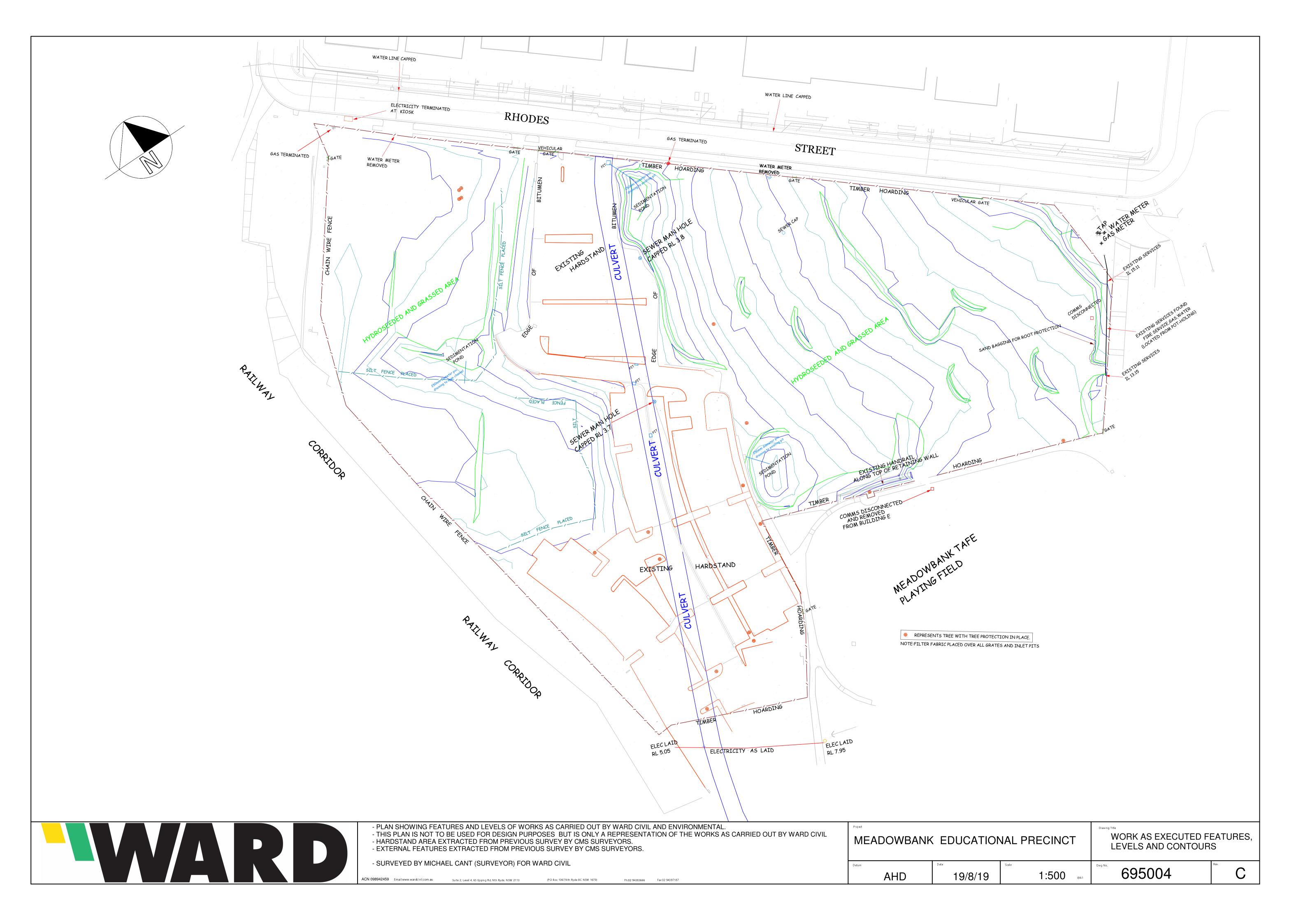
Table 1
Tafe - See Street, Meadowbank, NSW
Soil Results & Waste Assessment Criteria

	Its & Waste Assessment Criteria									Sample ID	TP52 1.2-1.4	TP53 0.9-1.1	TP54 0.0-0.2	TP54 1.3-1.5	TP55-0.0-0.2	TP56-0.1-0.4	TP57 0.0-0.2
9280-ER-										Reference	S19-Jn20060	S19-Jn20061	S19-Jn20062	S19-Jn20063	S19-Jn21936	S19-Jn21937	S19-Jn20064
<u> </u>					T			<u> </u>			313 31120000	313 31120001	313 31120002	313 31120003	313 31121330	313 31121337	313 31120004
Group	Analyte	Units	PQL	GSW Criteria CT1	RSW Criteria CT2	GSW Criteria TCLP1 (mg/L)	GSW Criteria SCC1 (mg/kg)	DATASET AVERAGE	DATASET MINIMUM	DATASET MAXIMUM							
Metals	Arsenic	mg/kg	2	100	400	*	500	6.26666667	2.3	12	11	9	3.6	6.1	2.3	3.1	3.9
	Cadmium	mg/kg	0.4	20	80	*	100	#DIV/0!	0	0	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
	Chromium	mg/kg	5	100	400	*	1,900	15.9692308	5.1	29	29	16	15	17	24	5.1	14
	Copper	mg/kg	5	*	*	*	*	21.2	8.2	36	8.2	35	36	14	18	13	< 5
	Lead	mg/kg	5	100	400	*	1,500	57.25	18	110	21	91	67	28	48	94	18
	Lead (leachate)	mg/L	0.02	*	*	5	*	0.03	0.03	0.03	-	-	-	-	-	-	-
	Mercury	mg/kg	0.1	4	16	*	50	0.84285714	0.1	3.1	< 0.1	0.2	< 0.1	< 0.1	2.1	0.1	< 0.1
	Nickel	mg/kg	5	40	160	*	1,050	9.38333333	5.2	15	< 5	12	8.7	9.9	15	< 5	< 5
	Zinc	mg/kg	5	*	*	*	*	95.075	5.9	170	5.9	150	170	28	110	110	29
PAHS	Acenaphthylene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Anthracene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benz(a)anthracene	mg/kg	0.5	*	*	*	*	0.7	0.7	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5	0.8	3.2	*	10	0.6	0.5	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene TEQ (lower bound) st	mg/kg	0.5	*	*	*	*	0.65	0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene TEQ (medium bound) *	mg/kg	0.5	*	*	*	*	0.66153846	0.6	1.1	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	Benzo(a)pyrene TEQ (upper bound) *	mg/kg	0.5	*	*	*	*	1.21538462	1.2	1.4	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	Benzo(b&j)fluoranthene	mg/kg	0.5	*	*	*	*	0.5	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(g.h.i)perylene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(k)fluoranthene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Chrysene	mg/kg	0.5	*	*	*	*	0.7	0.7	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dibenz(a.h)anthracene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5	*	*	*	*	1.3	0.8	1.9	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	1.3
	Fluorene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5	*	*	*	*	#DIV/0!	0	0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5	*	*	*	*	0.73333333	0.5	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5
	Pyrene	mg/kg	0.5	*	*	*	*	1.1	0.8	1.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	1
	Total PAH*	mg/kg	0.5	200	800	N/A	200	3.725	1.6	7	< 0.5	1.6	< 0.5	< 0.5	< 0.5	< 0.5	2.8
ткн/втех	TRH C ₆ - C ₉	mg/kg	20	650	2,600	N/A	650	#DIV/0!	0	0	< 20	< 20	< 20	< 20	< 20	< 20	< 20
	TRH C ₁₀ -C ₃₆	mg/kg	50	10,000	40,000	N/A	10,000	129	60	215	< 50	< 50	215	130	< 50	121	119
	Benzene	mg/kg	0.1	10	40	*	18	#DIV/0!	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Ethylbenzene	mg/kg	0.1	600	2,400	*	1,080	#DIV/0!	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	m&p-Xylenes	mg/kg	0.2	*	*	*	*	#DIV/0!	0	0	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	o-Xylene	mg/kg	0.1	*	*	*	*	#DIV/0!	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Toluene	mg/kg	0.1	288	1,152	*	518	#DIV/0!	0	0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Xylenes - Total	mg/kg	0.3	1,000	4,000	*	1,800	#DIV/0!	0	0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Asbestos	Asbestos ID			Detection	Detection	*	Detection				Not Detected	Chrysotile, Amosite and Crocidolite Asbestos	Not Detected	Not Detected	Not Detected	Not Detected	Chrysotile Asbestos Detected
												Detected					

Concentration exceeding General Solid Waste Criteria CT1 (NSW EPA Waste Classification Guidelines)

Concentration exceeding Restricted Solid Waste Criteria CT2 (NSW EPA Waste Classification Guidelines)

Concentration exceeding General Solid Waste Criteria TCLP1 (mg/L) (NSW EPA Waste Classification Guidelines)


Concentration exceeding General Solid Waste Criteria SCC1 (mg/kg) (NSW EPA Waste Classification Guidelines)

= No currently available criterion

- = No sample analysed

APPENDIX A

SITE SURVEY

APPENDIX B BOREHOLE LOGS

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH02A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Mechanical Pushtube Hole Location: Refer to figure 4 Driller: Sam Scully Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Graphic Log Samples Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND, brown, medium grained, loose, moist. No potential ACM, odours or PT BH02A -0.0-0.3m (PID = 2.3) Borehole BH02A terminated at 0.5m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH02B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Mechanical Pushtube Hole Location: Refer to figure 4 Driller: Sam Scully Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Graphic Log Samples Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND, brown, medium grained, loose, moist. No potential ACM, odours or PT BH02B -0.0-0.3m (PID = 1.8) Borehole BH02B terminated at 0.5m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH02C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Mechanical Pushtube Hole Location: Refer to figure 4 Driller: Sam Scully Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Graphic Log Samples Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND, brown, medium grained, loose, moist. No potential ACM, odours or PT BH02C -0.0-0.3m (PID = 2.1) Borehole BH02C terminated at 0.5m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH02D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Mechanical Pushtube Hole Location: Refer to figure 4 Driller: Sam Scully Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Graphic Log Samples Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND, brown, medium grained, loose, moist. No potential ACM, odours or PT BH02D -0.0-0.3m (PID = 2.0) Borehole BH02D terminated at 0.5m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH40A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 20/6/19 Finished: 20/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Truck Mounted SFA Hole Location: Refer to figure 4 Driller: AG Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist. М No potential ACM, odours or staining noted. BH40A -0.1-0.3m FILL: CLAY, pale grey, friable, dry with concrete boulders. D BH40A -0.8-1.0m 1.0 No potential ACM, odours or staining noted. CLAY w/ trace gravels, brown, soft, moist. М BH40A -1.2-1.4m 1.5 Borehole BH40A terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH40B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 20/6/19 Finished: 20/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Truck Mounted SFA Hole Location: Refer to figure 4 Driller: AG Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist. No potential ACM, odours or staining noted. BH40B -0.1-0.3m BH40B -0.8-1.0m No potential ACM, odours or staining noted. М CLAY w/ trace gravels, brown, soft, moist. BH40B -1.5 1.4-1.6m Borehole BH40B terminated at 1.6m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH40C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Truck Mounted SFA Driller: AG Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) ASPHALT / ROADBASE FILL: Gravelly CLAY w/ some sand, red/grey, soft, moist with concrete and bitumen gravels, with further boulders and bricks at depth. М Potential ACM observed. No odours or staining noted. BH40C -0.1-0.3m BH40C -1.<u>5</u> BH40C -1.7-1.9m Borehole BH40C terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH40D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Project: Supplementary Contamination Assessment Finished: 18/6/19 Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Truck Mounted SFA Driller: AG Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, brown, medium grained, loost, moist, with concrete and aggregate No potential ACM, odours or gravels to cobbles, sandstones gravels to boulders, wood and steel bar. staining noted. BH40D -0.0-0.2m 0.5 FILL: Sandy CLAY, brown, soft, moist, with concrete and aggregate gravels to cobbles, sandstones gravels to boulders, wood and steel bar. No potential ACM, odours or staining noted. М BH40D -1.0 1.<u>5</u> BH40D -1.7-1.9m Borehole BH40D terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH41A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 20/6/19 Finished: 20/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Truck Mounted SFA Hole Location: Refer to figure 4 Driller: AG Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) М FILL: CLAY w/ trace gravels, red/grey/brown, soft, moist. No potential ACM, odours or staining noted. BH41A -0.1-0.3m BH41A -1.<u>5</u> BH41A -1.8-2.0m Borehole BH41A terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH41B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 20/6/19 Finished: 20/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Truck Mounted SFA Hole Location: Refer to figure 4 Driller: AG Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Silty CLAY, brown, soft, dry with trace concrete and brick gravels. Refusal at 1.6m (unknown). No potential ACM, odours or staining noted. BH41B -0.0-0.2m BH41B -0.8-1.0m BH41B -1.<u>5</u> 1.4-1.6m Borehole BH41B terminated at 1.6m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH41C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 20/6/19 Finished: 20/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Truck Mounted SFA Hole Location: Refer to figure 4 Driller: AG Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: CLAY w/ trace gravels, red/grey, soft, dry. D No potential ACM, odours or staining noted. BH41C -0.1-0.3m FILL: Brown. D BH41C -1.0 1.<u>5</u> FILL: Red/grey. D BH41C -1.8-2.0m Borehole BH41C terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: BH41D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 20/6/19 Finished: 20/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Truck Mounted SFA Driller: AG Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Silty CLAY, brown, soft, dry with trace concrete and brick gravels. No potential ACM, odours or staining noted. BH41D -0.0-0.2m 0.5 No potential ACM, odours or staining noted. Weathered SANDSTONE, red/grey, fine to medium grained, medium dense, dry. D BH41D -1.0 1<u>.5</u> BH41D -1.8-2.0m 2.0 Borehole BH41D terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: SS02A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly SAND, dark brown/grey, medium grained, loose, moist with brick, No potential ACM, odours or concrete and sandstone gravels. SS02A -0.0-0.3m SS02A -0.7-1.0m Borehole SS02A terminated at 1m 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: SS02B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, brown, fine to medium grained, loose, moist with sandstone Refusal at 0.7m (sandstone). No potential ACM, odours or staining noted. SS02B -0.0-0.3m Borehole SS02B terminated at 0.7m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: SS02C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, brown, fine to medium grained, loose, moist with concrete Refusal at 0.6m (sandstone). No potential ACM, odours or staining noted. and sandstone gravels to boulders. SS02C -0.0-0.3m Borehole SS02C terminated at 0.6m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: SS02D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly SAND, dark brown/grey, medium grained, loose, moist with brick, No potential ACM, odours or concrete and sandstone gravels. SS02D -0.0-0.3m SS02D -0.7-1.0m Borehole SS02D terminated at 1m 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: SS03A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, brown, medium grained, soft, moist with brick, concrete and No potential ACM, odours or sandstone gravels and boulders. SS03A - 0.0-0.2m FILL: COALWASH / ASH gravels, black, moist with sandstone gravels and boulders. No potential ACM, odours or staining noted. SS03A -0.5-0.7m Borehole SS03A terminated at 1m 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: SS03B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil 18/6/19 Started: Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Graphic Log Samples Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, dark brown, soft, moist with aggregate and concrete gravels to No potential ACM, odours or boulders, ceramics, glass fragments and ash. SS03B -0.0-0.2m SS03B -0.8-1.0m Borehole SS03B terminated at 1m 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: SS03C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Hole Location: Refer to figure 4 Rig Type: Excavator Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, brown, medium grained, soft, moist with brick, concrete and No potential ACM, odours or sandstone gravels and cobbles. SS03C - 0.0-0.2m FILL: COALWASH / ASH gravels, black, moist. No potential ACM, odours or staining noted. SS03C -0.5-0.7m Borehole SS03C terminated at 1.1m 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP04A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist with sandstone and concrete gravels, to No potential ACM, odours or TP04A -0.0-0.2m (PID = 0.9) No potential ACM, odours or staining noted. SW-SC SAND w/ trace clay, grey/yellow, medium dense, medium grained, moist. М TP04A -0.9-1.1m (PID = 1.1) 1.0 Borehole TP04A terminated at 1.3m 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP04B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist with sandstone and concrete gravels, to Refusal at 0.7m (sandstone). Potential ACM observed in-situ. No odours or staining boulders, and brick. TP04B -0.0-0.2m (PID = 0.1) Borehole TP04B terminated at 0.7m 1.0 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP04C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist with sandstone and concrete gravels, to Refusal at 1.0m (sandstone). No potential ACM, odours or staining noted. TP04C -0.0-0.2m (PID = 0.5) TP04C -0.8-1.0m (PID = 0.8) Borehole TP04C terminated at 1m 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP04D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY w/ some sand, brown/orange/grey, soft, moist with sandstone and No potential ACM, odours or concrete gravels to boulders. TP04D -0.0-0.2m (PID = 2.3) TP04D -0.7-1.1m (PID = 1.8) 1.0 TP04D -1.5-1.7m (PID = 1.9) Borehole TP04D terminated at 1.7m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP07A

Sheet: 1 of 1 Job No: 9280

Borehole Log

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist with concrete and sandstone gravels to Potential ACM observed on site surface. No odours or staining noted. TP07A -0.1-0.4m Borehole TP07A terminated at 0.6m 1.0 BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP07B

Sheet: 1 of 1 Job No: 9280

Borehole Log

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist with concrete and sandstone gravels to No potential ACM, odours or TP07B -0.1-0.4m Borehole TP07B terminated at 0.6m 1<u>.0</u> BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP07C

Sheet: 1 of 1 Job No: 9280

Borehole Log

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist with concrete and sandstone gravels to No potential ACM, odours or TP07C -0.1-0.4m Borehole TP07C terminated at 0.6m 1.0 BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP07D

Sheet: 1 of 1 Job No: 9280

Borehole Log

Client: Ward Civil 19/6/19 Started: Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY, brown, soft, moist with concrete and sandstone gravels to No potential ACM, odours or TP07D -0.1-0.4m Borehole TP07D terminated at 0.6m 1.0 BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP16A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Silty SAND w/ clay, brown, medium grained, loose, dry with sandstone gravels, No potential ACM, odours or TP16A -0.0-0.2m (PID = 1.6) 0.5 М No potential ACM, odours or SAND, brown/orange, medium grained, medium density, moist. staining noted. TP16A -0.7-0.9m (PID = 2.1) 1.0 1.5 TP16A -.6-1.8m (PID = 2.0 Borehole TP16A terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP16B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, brown, loose, soft, medium grained, with sandstone gravels to No potential ACM, odours or boulders, concrete boulders, tiles, glass and steel. TP16B -0.0-0.2m (PID = 0.9) TP16B -0.9-1.1m (PID = 0.9) 1.<u>5</u> TP16B -1.8-2.0m (PID = Borehole TP16B terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP16C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, brown, loose, soft, medium grained, with sandstone gravels to No potential ACM, odours or boulders, concrete boulders, tiles, glass and steel. TP16B -0.0-0.2m (PID = 2.5) TP16B -0.9-1.1m (PID = 0.4) 1.<u>5</u> TP16B -1.8-2.0m (PID = Borehole TP16C terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP16D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Silty SAND w/ clay, brown, medium grained, loose, dry with sandstone and No potential ACM, odours or bitumen gravels, concrete and brick. TP16D -0.0-0.2m (PID = 1.0) М No potential ACM, odours or SAND, orange, medium grained, medium density, moist. staining noted. TP16D -0.7-0.9m (PID = 1.6) 1.0 Borehole TP16D terminated at 1.2m 1<u>.5</u> 2.0

Alliance Geotechnical Pty Ltd

T: 1800 288 188 F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP22A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, brown, fine to medium grained, loose, moise with sandstone No potential ACM, odours or and concrete gravels to cobbles. TP22A -0.0-0.2m (PID = 0.8) SAND w/ trace clay, red/grey, medium grained, medium dense, moist. No potential ACM, odours or staining noted. Potentially reworked natural. TP22A -1.0-1.2m (PID = 0.5) 1.5 Borehole TP22A terminated at 1.5m 2.0

Alliance Geotechnical Pty Ltd

T: 1800 288 188 F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP22B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Project: Supplementary Contamination Assessment Finished: 19/6/19 Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, brown, fine to medium grained, loose, moise with sandstone No potential ACM, odours or and concrete gravels to cobbles. staining noted. TP22B -0.0-0.2m (PID = 0.9) No potential ACM, odours or staining noted. SAND w/ trace clay, red/grey, medium grained, medium dense, moist with aggregate М gravels. TP22B -0.9-1.1m (PID = 0.6) 1.0 1.5 Borehole TP22B terminated at 1.5m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP22C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, brown, fine to medium grained, loose, moise with sandstone No potential ACM, odours or and concrete gravels to cobbles. TP22C -0.0-0.2m (PID = 0.2) TP22C -1.1-1.3m (PID = 1.5 Borehole TP22C terminated at 1.5m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP22D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, brown, fine to medium grained, loose, moise with sandstone No potential ACM, odours or and concrete gravels to cobbles. TP22D -0.0-0.2m (PID = 1.2) TP22D -1.1-1.3m (PID = 1.5 Borehole TP22D terminated at 1.5m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP23A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, dark brown, medium dense, medium grained, moist with No potential ACM, odours or brick, sandstone, concrete and aggregate gravels to cobbles. TP23A -0.1-0.4m (PID = 0.7) Borehole TP23A terminated at 0.5m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP23B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, dark brown, medium dense, medium grained, moist with No potential ACM, odours or brick, sandstone, concrete and aggregate gravels to cobbles. TP23B -0.1-0.4m (PID = 1.3) Borehole TP23B terminated at 0.5m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP23C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, dark brown, medium dense, medium grained, moist with No potential ACM, odours or brick, sandstone, concrete and aggregate gravels to cobbles. TP23C -0.1-0.4m (PID = 1.2) Borehole TP23C terminated at 0.5m 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP23D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Hole Location: Refer to figure 4 Rig Type: Excavator Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, dark brown, medium dense, medium grained, moist with No potential ACM, odours or brick, sandstone, concrete and aggregate gravels to cobbles. TP23D -0.1-0.4m (PID = 0.8) / DUP05 / DUP05A Borehole TP23D terminated at 0.5m 1.0 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP24A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, orange/dark brown, medium grained, loose, soft, moist with No potential ACM, odours or aggregate gravels, brick and reworked red/grey clay, with ash/coalwash. TP24A -0.1-0.4m (PID = 2.1) Borehole TP24A terminated at 0.6m 1.0 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP24B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Sandy CLAY, dark brown, loose, medium grained, soft, moist with lots of ash and No potential ACM, odours or TP24B -0.1-0.4m (PID = 1.7) No potential ACM, odours or staining noted. CLAY, orange/grey, firm, moist. TP24B -0.3-0.5m (PID = 1.8) Borehole TP24B terminated at 0.6m 1.0 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP24C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, orange/dark brown, medium grained, loose, soft, moist with No potential ACM, odours or aggregate gravels, brick and reworked red/grey clay, with ash/coalwash. TP24C -0.1-0.4m (PID = 1.9) Borehole TP24C terminated at 0.6m 1.0 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP24D

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, orange/dark brown, medium grained, loose, soft, moist with No potential ACM, odours or aggregate gravels, brick and reworked red/grey clay, with ash/coalwash. TP24D -0.1-0.4m (PID = 1.9) Borehole TP24D terminated at 0.6m 1.0 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP30A

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: CLAY w/ some sand, brown, soft, moist with plastic, wood and sandstone gravels No potential ACM, odours or TP30A -0.0-0.2m / DUP03 / DUP03A 0.5 FILL: Gravelly CLAY, red/brown, firm, moist with aggregate and concrete gravels. No potential ACM, odours or М staining noted. TP30A -0.7-0.9m 1.0 1.5 No potential ACM, odours or FILL: SAND, yellow/grey, fine grained, very loose, moist. М TP30A -1.7-1.9m Borehole TP30A terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP30B

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, brown, fine to medium grained, very loose, moist with bricks, Potential ACM observed concrete gravels and boulders and steel bar. in-situ. No odours or staining TP30B - 0.0-0.2m TP30B -1.0 1.<u>5</u> FILL: SAND, yellow/grey, fine grained, very loose, moist. No potential ACM, odours or staining noted. TP30B -1.6-1.8m Borehole TP30B terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP30C

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Sandy CLAY, brown, soft, moist with sandstone gravels to boulders, concrete and Potential ACM observed aggregate gravels, bitumen, bricks and fibrous cement sheeting fragments. in-situ. No odours or staining TP30C -0.0-0.2m / DUP02 / DUP02A 0.5 TP30C -1.0 1.<u>5</u> No potential ACM, odours or FILL: SAND, yellow/grey, fine grained, very loose, moist. М TP30C -1.7-1.9m Borehole TP30C terminated at 2m

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP42

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Sandy CLAY, red/grey, soft, moist with concrete gravels. Potential ACM observed on surface. No odours or staining TP42 - 0.0-0.2m (PID = 0.4) SP-SC SAND w/ trace clay, ref w/ grey mottle, medium grained, medium dense, moist. М No potential ACM, odours or staining noted. 0.5 TP42 - 0.4-0.6m (PID = 0.9)Borehole TP42 terminated at 0.8m 1.0 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP43

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Hole Location: Refer to figure 4 Rig Type: Excavator Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Sandy CLAY, red/grey, soft, moist with concrete gravels. No potential ACM, odours or TP43 - 0.0-0.2m (PID = 1.2) SP-SC SAND w/ trace clay, ref w/ grey mottle, medium grained, medium dense, moist. No potential ACM, odours or staining noted. TP43 - 0.5-0.7m (PID = 0.9) Borehole TP43 terminated at 0.9m 1<u>.0</u> 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP44

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, red/grey, mefium grained, medium dense, moise with some No potential ACM, odours or staining noted. Potentially reworked natural material. sandstone gravels to cobbles. TP44 - 0.0-0.2m (PID = 1.8) 0.5 TP44 - 0.8-1.0m (PID = 1.1) 1.0 TP44 - 1.5-1.7m (PID = 2.1) Borehole TP44 terminated at 1.7m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP45

Sheet: 1 of 1 Job No: 9280

Borehole Log

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY w/ some sand, brown, soft, moist with sandstone and concrete No potential ACM, odours or gravels to cobbles and brick. TP45 - 0.1-0.4m (PID = 1.0) Borehole TP45 terminated at 0.5m 1.0 BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP46

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly SAND w/ trace clay, dark brown, medium grained, loose, moist with No potential ACM, odours or aggregate gravels and wood. TP46 - 0.0-0.2m (PID = 0.4) SP-SC SAND w/ trace clay, red/yellow, medium grained, loose, moist. No potential ACM, odours or staining noted. TP46 - 0.5-0.7m (PID = 0.9) Borehole TP46 terminated at 0.9m 1<u>.0</u> 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP47

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, brown, medium grained, loose, moist with gravels. No potential ACM, odours or TP47 - 0.0-0.2m (PID = 1.6) SP-SC SAND w/ trace clay, red/yellow, medium grained, loose, moist. М No potential ACM, odours or staining noted. 0.5 TP47 - 0.4-0.6m (PID = 2.1)Borehole TP47 terminated at 0.9m 1<u>.0</u> 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP49

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil 18/6/19 Started: Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) SP-SC | SAND w/ trace clay, red/yellow, medium grained, loose, moist. No potential ACM, odours or TP49 - 0.0-0.2m (PID = 0.8) Borehole TP49 terminated at 0.4m 0<u>.5</u> 1.0 1<u>.5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP50

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Silty CLAY, brown, soft, moist with concrete gravels. No potential ACM, odours or staining noted. TP50 - 0.0-0.2m (PID = 1.5) No potential ACM, odours or staining noted. SP-SC SAND w/ trace clay, red/yellow, medium grained, loose, moist. М TP50 - 0.2-0.4m (PID = 1.8) Borehole TP50 terminated at 0.6m 1.0 1.<u>5</u> 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP51

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly SAND w/ trace clay, brown/grey, medium grained, soft, moist with No potential ACM, odours or sandstone and concrete gravels to cobbles and brick. TP51 - 0.0-0.2m (PID = 1.1) TP51 - 0.8-1.0m (PID = 1.3) 1.0 SAND, yellow/pale brown, fine to medium grained, very loose, moist. No potential ACM, odours or staining noted. TP51 - 1.3-1.5m (PID = 0.8) 1.5 Borehole TP51 terminated at 1.5m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP52

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Sandy CLAY, brown, soft, moist with glass, brick, concrete gravels and boulders No potential ACM, odours or TP52 - 0.0-0.2m (PID = 0.5) TP52 - 0.9-1.1m 1.0 No potential ACM, odours or staining noted. М CLAY, red/grey, firm, moist. TP52 - 1.2-1.4m (PID = 0.8) 1.5 Borehole TP52 terminated at 1.5m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP53

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Gravelly CLAY w/ sand, brown/grey, soft, moist with sandstone gravels to No potential ACM, odours or cobbles and brick. TP53 - 0.0-0.2m (PID = 0.5) TP53 - 0.9-1.1m 1.0 No potential ACM, odours or staining noted. М FILL: CLAY w/ gravels, red/brown, firm, moist. TP53 - 1.2-1.4m (PID = 0.1) 1.5 Borehole TP53 terminated at 1.5m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP54

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Project: Supplementary Contamination Assessment Finished: 18/6/19 Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SILT, pale brown, very loose, soft, moist with sandstone cobbles and boulders No potential ACM, odours or staining noted. TP54 - 0.0-0.2m (PID = 0.7) / DUP01 / DUP01A 0.5 FILL: Gravelly CLAY, grey/brown, soft, moist with concrete and aggregate gravel, bitumen cobbles to boulders and sandstone cobbles to boulders. No potential ACM, odours or TP54 - 0.6-0.8m (PID = 0.4)1.0 TP54 - 1.3-1.5m (PID = 0.2)1.5 Borehole TP54 terminated at 1.5m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP55

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Clayey SAND, brown, medium grained, medium dense, moist with sandstone No potential ACM, odours or and concrete gravels to cobbles. TP55 - 0.0-0.2m (PID = 0.3) No potential ACM, odours or staining noted. FILL: SAND $w\prime$ trace clay, grey/orange, medium grained, medium dense, moist with trace aggregrate gravels and bricks. М TP55 - 0.8-1.0m (PID = 0.1) 1.0 1.5 Borehole TP55 terminated at 1.5m 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP56

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 19/6/19 Finished: 19/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Hole Location: Refer to figure 4 Driller: Ken Coles Logged: RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: SAND w/ trace clay, dark brown, medium grained, medium dense, moist with No potential ACM, odours or brick, sandstone, concrete and aggregate gravels to cobbles. TP56 - 0.1-0.4m (PID = 1.9) Borehole TP56 terminated at 0.5m 1.0 1.5 2.0

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au Sample Point No: TP57

Sheet: 1 of 1 Job No: 9280

Borehole Log

BOREHOLE / TEST PIT 9280-ER-1-1-LOGS.GPJ GINT STD AUSTRALIA.GDT 2/7/19

Client: Ward Civil Started: 18/6/19 Finished: 18/6/19 Project: Supplementary Contamination Assessment Location: Meadowbank Schools Project, See Street, Meadowbank NSW **Borehole Size:** Rig Type: Excavator Driller: Ken Coles Logged: Hole Location: Refer to figure 4 RL Surface: Contractor: Bearing: ---Checked: AR Classification Symbol Samples Graphic Log Material Description Tests Additional Observations Method Remarks Depth (m) FILL: Sandy CLAY, orange/dark brown, medium grained, loose, soft, moist with brick, No potential ACM, odours or sandstone, concrete and aggregate gravels. TP57 - 0.0-0.2m (PID = 1.1) / DUP01 / DUP01A TP57 - 0.8-1.0m (PID = 1.5) Borehole TP57 terminated at 1m 1.5 2.0

APPENDIX C CALIBRATION CERTIFICATES

Calibration & Service Report Gas Monitor

Company: Active Environmental Solutions Hire Manufacturer: RAE Systems Serial #: 592-914571

Contact: Aleks Todorovic Instrument: MiniRAE 3000 Asset #:

Address: 2 Merchant Avenue Model: PGM 7320 Part #:

Thomastown Vic 3074 Configuration: VOC Sold: -

 Phone:
 03 9464 2300 | Fax: 03 9464 3421
 Wireless: Last Cal:

 Email:
 Hire@aesolutions.com.au
 Network ID: Job #:

 Unit ID: Cal Spec: Std
 Std

ltem	Test	Pass/Fail	Comments
Battery	Li Ion	✓	
Charger	Charger, Power supply	✓	
	Cradle	✓	
Pump	Flow	✓	>500 mL/min
Filter	Filter, fitting, etc	✓	
Alarms	Audible, visual, vibration	✓	
Display	Operation	✓	
PCB	Operation	✓	
Connectors	Condition	✓	
Firmware	Version	✓	2.16
Datalogger	Operation	✓	
Monitor Housing	Condition	✓	
Case	Condition/Type	✓	
Sensors			
Oxygen		-	
LEL		-	
PID	10.6eV	✓	
Toxic 1		-	
Toxic 2		-	
Toxic 3		-	
Toxic 4		-	
Toxic 5		-	

Engineer's Report

Setup, service and calibration for hire

Calibration Certificate

Sensor	Type	Serial No:	Span	Concentration	Traceability	CF	Read	ding
			Gas		Lot#		Zero	Span
0								
Oxygen								
LEL								
PID	10.6eV	2R000773	Isobutylene	100 PPM	2440-3-1	1	0	100 PPM
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5								

Calibrated/Repaired by: Milenko Sisic

Date: 04/06/2019

Next due: 04/12/2019

Head Office - Melbourne

2 Merchant Avenue Thomastown VIC 3074 Australia T: +61 3 9464 2300 NSW Office - Ashfield

Level 2, Suite 14, 6 - 8 Holden Street Ashfield NSW 2131 Australia T: +61 2 9716 5966 WA Office - Malaga

Unit 6, 41 Holder Way Malaga WA 6090 Australia T: +61 8 9249 5663 QLD Office - Banyo

Unit 17, 23 Ashtan Place Banyo QLD 4014 Australia T: +61 7 3267 1433

sales@aesolutions.com.au

www.aesolutions.com.au

APPENDIX D

NATA ACCREDITED LABORATORY DOCUMENTATION

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: ALL SRAS/RESULTS/INVOICES

Report 662967-S

Project name ADDITIONAL - MEADOWBANK

Project ID 9280

Received Date Jun 27, 2019

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP22A-0.0-0.2 Soil S19-Jn32732 Jun 19, 2019	TP22A-1.0-1.2 Soil S19-Jn32733 Jun 19, 2019	TP22B-0.0-0.2 Soil S19-Jn32734 Jun 19, 2019	TP22B-0.9-1.1 Soil S19-Jn32735 Jun 19, 2019
Test/Reference	LOR	Unit			0 10, 2010	0 10, 2010
Heavy Metals						
Lead	5	mg/kg	43	7.3	290	150
% Moisture	1	%	12	11	14	11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Jun 27, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jun 27, 2019	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 662967-S

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Unit F3, Building F

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 27, 2019 11:30 AM

 10 Welder Road
 Report #:
 662967
 Due:
 Jun 28, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 Overnight

NSW 2147 Fax: 02 9675 1888 Contact Name: ALL SRAS/RESULTS/INVOICES

Project Name: ADDITIONAL - MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

Sample Detail									
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271					
	ney Laboratory					Х	Х		
	oane Laboratory								
	<u>n Laboratory - N</u> rnal Laboratory		30						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	TP22A-0.0-0.2	Jun 19, 2019		Soil	S19-Jn32732	Х	Х		
2 TP22A-1.0-1.2 Jun 19, 2019 Soil S19-Jn32733									
3 TP22B-0.0-0.2 Jun 19, 2019 Soil S19-Jn32734									
4 TP22B-0.9-1.1 Jun 19, 2019 Soil S19-Jn32735									
Test	Test Counts								

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 3 of 6

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 4 of 6
ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 662967-S

Quality Control Results

Test				Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead			mg/kg	< 5			5	Pass	
LCS - % Recovery									
Heavy Metals									
Lead			%	102			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	S19-Jn25951	NCP	%	127			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S19-Jn25950	NCP	mg/kg	19	16	20	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-Jn32591	NCP	%	11	11	4.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Andrew Black Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgl be liable for consequential clause, and the initiated to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported used except in full and relates only to the tiens tested. Unless indicated otherwises, the tests were performed on the samples as received.

Report Number: 662967-S

Enviro Sample NSW

To: Andrew Black

Subject: RE: OVERNIGHT TAT ADDITIONAL ANALYSIS: FW: Eurofins | mgt Test Results,

Invoice - Report 661620 : Site MEADOWBANK (9280)

From: enviro [mailto:enviro@allgeo.com.au]
Sent: Thursday, 27 June 2019 11:30 AM

To: Andrew Black

Subject: RE: Eurofins | mgt Test Results, Invoice - Report 661620 : Site MEADOWBANK (9280)

EXTERNAL EMAIL*

Thanks,

Could we please request lead analysis on soil samples:

- TP221-0.0-0.2;
- TP22A-1.0-1.2;
- TP22B-0.0-0.2;
- TP22B-0.9-1.1.

Please place analysis on fastest possible TAT.

Please do not hesitate to contact me if you have any queries or questions,

Kind Regards,

Sam Scully

Environmental Consultant - 0400 339 745 | Email: sam@allgeo.com.au

Office Email: admin@allgeo.com.au - Website: allgeo.com.au - Office Phone: 1800 288 188

Postal Address: PO Box 275, Seven Hills NSW 1730 / Office & Laboratory Address: 10 Welder Road, Seven Hills NSW 2147

From: <u>AndrewBlack@eurofins.com</u> < <u>AndrewBlack@eurofins.com</u>>

Sent: Wednesday, 26 June 2019 6:37 PM **To:** Aidan Rooney <<u>aidan@allgeo.com.au</u>>

Cc: enviro <enviro@allgeo.com.au>; admin@allgeo.com.au>

Subject: Eurofins | mgt Test Results, Invoice - Report 661620 : Site MEADOWBANK (9280)

Regards

Andrew Black

Analytical Services Manager

Eurofins | mgt

Unit 7 7 Friesian Close SANDGATE NSW 2304 AUSTRALIA

Phone: +61 299 008 490 Mobile: +61 410 220 750

Email: <u>AndrewBlack@eurofins.com</u>
Website: <u>environment.eurofins.com.au</u>
<u>EnviroNote 1079 - PFAS Fingerprinting</u>

EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

Click <u>here</u> to report this email as spam.

Scanned By Websense For Euro fins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Certificate of Analysis

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attention: Aidan Rooney
Report 661908-AID
Project Name MEADOWBANK

Project ID 9280

Received Date Jun 20, 2019 **Date Reported** Jun 27, 2019

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Report Number: 661908-AID

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name MEADOWBANK

Project ID 9280

Date Reported: Jun 27, 2019

Date Sampled Jun 20, 2019 Report 661908-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH40A-0.1-0.3	19-Jn24200	Jun 20, 2019	Approximate Sample 641g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH40A-0.8-1.0	19-Jn24201	Jun 20, 2019	Approximate Sample 583g Sample consisted of: Grey fine-grained sandy soil and sandstone	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH40B-0.1-0.3	19-Jn24202	Jun 20, 2019	Approximate Sample 622g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH40B-0.8-1.0	19-Jn24203	Jun 20, 2019	Approximate Sample 562g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH41A-0.1-0.3	19-Jn24204	Jun 20, 2019	Approximate Sample 609g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH41A-0.9-1.1	19-Jn24205	Jun 20, 2019	Approximate Sample 556g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH41B-0.0-0.2	19-Jn24206	Jun 20, 2019	Approximate Sample 467g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH41B-0.8-1.0	19-Jn24207	Jun 20, 2019	Approximate Sample 465g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Page 2 of 8 Report Number: 661908-AID ABN: 50 005 085 521 Telephone: +61 2 9900 8400

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
BH41C-0.1-0.3	19-Jn24208	Jun 20, 2019	Approximate Sample 533g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH41C-0.9-1.1	19-Jn24209	Jun 20, 2019	Approximate Sample 554g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH41D-0.0-0.2	19-Jn24210	Jun 20, 2019	Approximate Sample 490g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH41D-0.9-1.1	19-Jn24211	Jun 20, 2019	Approximate Sample 696g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Page 3 of 8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJun 20, 2019Indefinite

Report Number: 661908-AID

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 20, 2019 5:10 PM

Jun 27, 2019

Aidan Rooney

5 Day

Company Name:

Alliance Geotechnical

10 Welder Road

Seven Hills NSW 2147

Project Name: Project ID:

Address:

MEADOWBANK

9280

Order No.:

Report #:

661908

Phone: 1800 288 188 Fax: 02 9675 1888

Eurofins | mgt Analytical Services Manager : Andrew Black

Sample Detail											
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271							
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х				
Brisl	pane Laboratory	y - NATA Site #	20794								
Perti	n Laboratory - N	IATA Site # 237	36								
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	BH40A-0.1-0.3	Jun 20, 2019		Soil	S19-Jn24200	Х					
2	BH40A-0.8-1.0	Jun 20, 2019		Soil	S19-Jn24201	Х					
3	BH40B-0.1-0.3	Jun 20, 2019		Soil	S19-Jn24202	Х					
4	BH40B-0.8-1.0	Jun 20, 2019		Soil	S19-Jn24203	Х					
5	BH41A-0.1-0.3	Jun 20, 2019		Soil	S19-Jn24204	Х					
6	BH41A-0.9-1.1	Jun 20, 2019		Soil	S19-Jn24205	Х					
7	BH41B-0.0-0.2	Jun 20, 2019		Soil	S19-Jn24206	Х					
8	BH41B-0.8-1.0	Jun 20, 2019		Soil	S19-Jn24207	Х					
9	BH41C-0.1-0.3	Jun 20, 2019		Soil	S19-Jn24208	Х					

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Alliance Geotechnical

10 \

10 Welder Road

Seven Hills NSW 2147

Project Name: Project ID:

Address:

MEADOWBANK

9280

Order No.:

Report #:

661908

Phone: 1800 288 188 **Fax:** 02 9675 1888

Received: Due: Jun 20, 2019 5:10 PM Jun 27, 2019

Priority: 5 Day

Contact Name: Aidan Rooney

Eurofins | mgt Analytical Services Manager : Andrew Black

Sample Detail									
	ourne Laborato	•		271					
	ney Laboratory					Х	Х		
	bane Laboratory								
	h Laboratory - N		36	0-1	040 1-04000				
10	BH41C-0.9-1.1	,		Soil	S19-Jn24209	X			
11	BH41D-0.0-0.2	,		Soil	S19-Jn24210				
12	BH41D-0.9-1.1			Soil	S19-Jn24211	Х	· ·		
13	BH40A-1.2-1.4			Soil	S19-Jn24212		X		
14	BH40B-1.4-1.6			Soil	S19-Jn24213		Х		
15	BH41A-1.8-2.0			Soil	S19-Jn24214		Х		
16	BH41B-1.4-1.6	Jun 20, 2019		Soil	S19-Jn24215		Х		
17	BH41C-1.8-2.0	·		Soil	S19-Jn24216		Χ		
18	BH41D-1.8-2.0	Jun 20, 2019		Soil	S19-Jn24217		Х		
Test	Counts					12	6		

Page 6 of 8

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight basis grams per kilogram Filter loading: fibres/100 graticule areas

fibres/mL Reported Concentration: L/min

Terms

ΑF

Sample is dried by heating prior to analysis Drv

LOR Limit of Reporting COC Chain of Custody SRA Sample Receipt Advice

International Standards Organisation ISO

AS Australian Standards

Date Reported: Jun 27, 2019

WA DOH Reference document for the NEPM, Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve. Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable" FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 7 of 8

Report Number: 661908-AID

Comments

S19-Jn24206, S19-Jn24207, S19-Jn24210: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

Date Reported: Jun 27, 2019

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the identities storied, to the fetter steated. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 661908-AID

⁻ Indicates Not Requested

 $^{^{\}star}$ Indicates NATA accreditation does not cover the performance of this service

CHAIN OF CUSTODY RECORD

Sydney Laboratory
 List P3 Pist P 15 Mark Rd Lame Core West INSW 2056
 02 9900 3400 Emers Sergink SWQ excelles core

Brisbane Laboratory
Unit 1, 21 (Ameliased Pt. Massinia, CLD 4172
UZ SACC 4500 - Emint Sample 24 Differentias or

Perth Laboratory
 Unit 2.11 Leach Highway Assesse; WA 61co.
 38 9251 SetV. Enterollamolat/Agrerolles com.

Melbourne Laboratory 2 Kingson Town Disse, Goldingh, ViG.3196 08 8644 6000. Enconsumple vio Ensortina con

XHH 53 GIS CEP SH	02'9900 340	0 EmerSon	witSNg-o	zofiba cem			07 3900 450	1101111113	roledi. Diğesinle	na com GR-9251 SeX Emerchana	HOUSE STREET, SALES	9666 D2	500). EnviroNameda	wedgestalins can
Company ALLIANCE GEOTECHNICAL PI	roject Ne			92	280				Manager	Aiden Rooney	Sampler(s)		Sam Scull	
Address 10 WELDER ROAD, SEVEN HILLS NSW	oject Name			Meado	owbank			(ESdat	ormat EQuIS tom)		Handed over by			
ADDIESS TO WELDER ROAD, SEVER HILLS ROW											Email for Invaice	ad	min@allgeo	com.au
ontact Name Sam Scully	7				38						Email for Results	S	am@allgeo.d	com.au
Phone No. 400339745	SAME DAY	Ren of									Cont	ainers	Turnare Requirement	ound Time (TAT) 5 Debut #E to 1 day for the C
Vialyan		,		S	10			SIS	Asbestos (0.001%)				* Overnight	
cial Directions	lead	BTEX	PAH	8 Metals	VOCs	OCP	PCB	Phenois	stos ((_ # #	* 1 Day*	* 2 Day*
rchase Order									Asbe		1L Plante 350ml, Plusific 125ml, Plassio ml, Anther Gil	PFAS Bo	* 3 Day*	5 Day
Quote ID No Sampled											250 1254 2007 1	40ml 500ml Jar (Gla	* Other ()
Sampled Citerif Sample ID Citerif Sample ID Gid/mm/yy (S) Water (V hh.mm)	elid (N))								13					nments I Dangerous Hezard Warning
A STATE OF THE PARTY OF THE PAR									×					
BH40A-0.1-0.3 20-649 Sol				ST SE					X					
BH40A-0.8-1.0 BH40A-1.2-1.4														
			2000				1000		×					
BH408-0.1-0.3						224								
BH40B-0.8-1.0						2			X					PET SECUL
BH40B-14-1.6									×					
BH41A-0.1-6.3								li con					13700	
BH41A-09-11							i is,		X					
BH41A-1.8-20	a de la constante de la consta					80			×					
BH41B-0.0-0.2									X					
BH41B-0.8-1.0														
BH41B-1.4-1.6									~					
BH41C-0.1-0.3									×					
BH41C-6.9-1-1									*					
3H41C-1.8-2.0 V									~					
BH4ID-0.0-0,2									X					
BH41D-0.9-1.1 V V									×					
BH41D-1-8-2.0 V														
	16/1/2													
													No. of Concession, Name of Street, or other Designation, Name of Street, or other Designation, Name of Street,	
Total Counts		* Pos	ata)				Carrie	Coulby		Signature 11 15	Data 21) /06/2019	Time	
Method of			1651 0	Na	me		Sam	Scully	1000		Date	100/2019	111119	
Method of Courier (#) · Hand Delive Shipment Received By Grace Turkvet		PHILE I MEL	2010	DE NTL	I DRW	Sign	ends	AL	unen			510	Temperatur	0 18 7

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Aidan Rooney

Report 661620-W
Project name MEADOWBANK

Project ID 9280

Received Date Jun 19, 2019

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TRIP SPIKE Water S19-Jn21942 Jun 19, 2019	TRIP BLANK Water S19-Jn21943 Jun 19, 2019
Test/Reference	LOR	Unit		
BTEX				
Benzene	0.001	mg/L	83	< 0.001
Toluene	0.001	mg/L	80	< 0.001
Ethylbenzene	0.001	mg/L	78	< 0.001
m&p-Xylenes	0.002	mg/L	74	< 0.002
o-Xylene	0.001	mg/L	76	< 0.001
Xylenes - Total	0.003	mg/L	75	< 0.003
4-Bromofluorobenzene (surr.)	1	%	113	130

Report Number: 661620-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeBTEXSydneyJun 19, 201914 Days

- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices

Report Number: 661620-W

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical

Address:

10 Welder Road

Seven Hills

NSW 2147

Project Name:

MEADOWBANK

Project ID: 9280 Order No.: Report #:

661620

Phone: 1800 288 188 Fax:

02 9675 1888

Received: Jun 19, 2019 3:20 PM Due: Jun 26, 2019

Priority: 5 Day

Contact Name: Aidan Rooney

Eurofins | mgt Analytical Services Manager : Andrew Black

Molk	ourne Laborato		mple Detail	-74		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
				:71		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X
	ney Laboratory					^	^		^	^		^		^	^	\vdash
	n Laboratory - N															
	rnal Laboratory		30													
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID											
	Cumpio 12	Gampio Bato	Sampling Time	Maarix	2,42,12											
1	BH02A-0.0-0.3	Jun 19, 2019		Soil	S19-Jn21896				Х						Х	
2	BH02B-0.0-0.3	Not Provided		Soil	S19-Jn21897				Х						Х	
3	BH02C-0.0-0.3	Not Provided		Soil	S19-Jn21898				Х						Х	
4	BH02D-0.0-0.3	Not Provided		Soil	S19-Jn21899				Х						Х	
5	SS02A-0.0-0.3	Not Provided		Soil	S19-Jn21900	Х										
6	SS02B-0.0-0.3	Not Provided		Soil	S19-Jn21901	Х										
7	SS02C-0.0-0.3	Not Provided		Soil	S19-Jn21902	Х										
8	SS02D-0.0-0.3	Not Provided		Soil	S19-Jn21903	Х										
9	TP04A-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21904					Х					Х	

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 3 of 11

Date Reported:Jun 26, 2019

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 19, 2019 3:20 PM

Address: 10 Welder Road Report #: 661620 Due: Jun 26, 2019

Seven Hills Phone: 1800 288 188 Priority: 5 Day NSW 2147 Fax: 02 9675 1888 **Contact Name:** Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

	Sai	mple Detail		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	oourne Laboratory - NATA Site	# 1254 & 14271												
	ney Laboratory - NATA Site # 18			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
_	bane Laboratory - NATA Site #													
	h Laboratory - NATA Site # 237													
10	TP04A-0.9-1.1 Jun 19, 2019	Soil	S19-Jn21905					Х					Х	
11	TP04B-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21906					Х					Х	
12	TP04C-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21907					Х					Х	
13	TP04C-0.8-1.0 Jun 19, 2019	Soil	S19-Jn21908					Х					Х	
14	TP04D-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21909					Х					Х	
15	TP04D-0.9-1.1 Jun 19, 2019	Soil	S19-Jn21910					Х					Х	
16	TP04D-1.5-1.7 Jun 19, 2019	Soil	S19-Jn21911					Х					Х	
17	TP07A-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21912	Х										
18	TP07B-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21913	Х										
19	TP07C-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21914	Х										
20	TP07D-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21915	Х										
21	TP22A-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21916									Х	Х	

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

3175 16 Mars Road 00 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 19, 2019 3:20 PM

10 Welder Road **Report #:** 661620 **Due:** Jun 26, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

			mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato			71												
	ney Laboratory -					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory															
	h Laboratory - N		36	ı												
22	TP22A-1.0-1.2	,		Soil	S19-Jn21917									Х	Х	
23	TP22B-0.0-0.2	-		Soil	S19-Jn21918									Х	Х	
24		Jun 19, 2019		Soil	S19-Jn21919									Х	Χ	
25	TP22C-0.0-0.3	Jun 19, 2019		Soil	S19-Jn21920				Х						Χ	
26	TP22C1.1-1.3	Jun 19, 2019		Soil	S19-Jn21921				Х						Χ	
27	TP22D-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21922				Х						Χ	
28	TP22D-1.1-1.3	Jun 19, 2019		Soil	S19-Jn21923				Х						Χ	
29	TP23A-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21924					Х					Χ	
30	TP23B-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21925					Х					Χ	
31	TP23C-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21926					Х					Χ	
32	TP23D-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21927					Х			Х		Х	
33	TP42-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21928								Х	Х	Х	Х

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 19, 2019 3:20 PM

Jun 26, 2019

5 Day

Company Name: Alliance Geotechnical

Address:

10 Welder Road

Seven Hills

NSW 2147

Project Name:

MEADOWBANK

Project ID: 9280 Order No.: Report #:

661620

Phone: Fax:

1800 288 188 02 9675 1888

Due: Priority:

Received:

Contact Name: Aidan Rooney

Eurofins | mgt Analytical Services Manager : Andrew Black

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence / Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	oourne Laborate	ory - NATA Site	# 1254 & 142	271												
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - I	NATA Site # 237	36													
34	TP42-0.4-0.6	Jun 19, 2019		Soil	S19-Jn21929								Х	Х	Х	Х
35	TP43-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21930								Х	Х	Χ	Х
36	TP43-0.5-0.1	Jun 19, 2019		Soil	S19-Jn21931								Х	Х	Х	Х
37	TP44-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21932								Х	Х	Х	Х
38	TP44-0.8-1.0	Jun 19, 2019		Soil	S19-Jn21933								Х	Х	Χ	Х
39	TP45-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21934	Х							Х		Х	
40	TP47-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21935	Х				Х	Х	Х	Х	Х	Х	Х
41	TP55-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21936	Х				Х	Х	Х	Х	Х	Х	Х
42	TP56-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21937	Х				Х	Х	Х	Х	Х	Х	Х
43	DUP-05	Jun 19, 2019		Soil	S19-Jn21938								Х		Х	
44	FCS-TP04B	Jun 19, 2019		Building Materials	S19-Jn21939		Х									

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 19, 2019 3:20 PM

10 Welder Road **Report #**: 661620 **Due:** Jun 26, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

			mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	oourne Laborato			271		Х	X	X	X	X	X	X	X	Х	Х	Х
	ney Laboratory · bane Laboratory					^	^		^		^	^				
	h Laboratory - N															
45	FCS-TP07A	Jun 19, 2019	30	Building Materials	S19-Jn21940		Х									
46	FCS-TP042	Jun 19, 2019		Building Materials	S19-Jn21941		Х									
47	TRIP SPIKE	Jun 19, 2019		Water	S19-Jn21942									Х		
48	TRIP BLANK	Jun 19, 2019		Water	S19-Jn21943									Х		
49	SS02A-0.7-1.0	Jun 19, 2019		Soil	S19-Jn21944			Х								
50	SS02D-0.7-1.0	Jun 19, 2019		Soil	S19-Jn21945			Х						<u> </u>		
51	TP44-1.5-1.7	Jun 19, 2019		Soil	S19-Jn21946			Х						<u> </u>		
52	TP47-0.4-0.6	Jun 19, 2019		Soil	S19-Jn21947			Х								
53	TP55-0.8-1.0	Jun 19, 2019		Soil	S19-Jn21948			Х								
54	FCS-TP44	Jun 19, 2019		Building Materials	S19-Jn22224		х									

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 19, 2019 3:20 PM

Address: 10 Welder Road Report #: 661620 Due: Jun 26, 2019

Seven Hills Phone: 1800 288 188 Priority: 5 Day **Contact Name:** NSW 2147 Fax: 02 9675 1888 Aidan Rooney

Project Name: **MEADOWBANK**

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

Sample Detail	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melbourne Laboratory - NATA Site # 1254 & 14271											
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Brisbane Laboratory - NATA Site # 20794											
Perth Laboratory - NATA Site # 23736											
Test Counts	12	4	5	8	15	3	3	12	15	35	9

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.

10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

	Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
BTEX									
Benzene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Xylenes - Total			mg/L	< 0.003			0.003	Pass	
LCS - % Recovery									
BTEX									
Benzene			%	76			70-130	Pass	
Toluene			%	76			70-130	Pass	
Ethylbenzene			%	77			70-130	Pass	
m&p-Xylenes			%	75			70-130	Pass	
o-Xylene			%	78			70-130	Pass	
Xylenes - Total			%	76			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
BTEX				Result 1					
Benzene	S19-Jn13611	NCP	%	100			70-130	Pass	
Toluene	S19-Jn13611	NCP	%	102			70-130	Pass	
Ethylbenzene	S19-Jn13611	NCP	%	100			70-130	Pass	
m&p-Xylenes	S19-Jn13611	NCP	%	98			70-130	Pass	
o-Xylene	S19-Jn13611	NCP	%	101			70-130	Pass	
Xylenes - Total	S19-Jn13611	NCP	%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				_					
BTEX		, ,		Result 1	Result 2	RPD			
Benzene	S19-Jn23494	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S19-Jn23494	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S19-Jn23494	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S19-Jn23494	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S19-Jn23494	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S19-Jn23494	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Andrew Black Analytical Services Manager

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 661620-W

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147 lac-mra

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Aidan Rooney

Report 661620-S
Project name MEADOWBANK

Project ID 9280

Received Date Jun 19, 2019

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	BH02A-0.0-0.3 Soil S19-Jn21896 Jun 19, 2019	BH02B-0.0-0.3 Soil S19-Jn21897 Not Provided	BH02C-0.0-0.3 Soil S19-Jn21898 Not Provided	BH02D-0.0-0.3 Soil S19-Jn21899 Not Provided
Heavy Metals						
Lead	5	mg/kg	5.9	8.2	110	85
% Moisture	1	%	7.3	12	13	18

Client Sample ID			TP04A-0.0-0.2	TP04A-0.9-1.1	TP04B-0.0-0.2	TP04C-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn21904	S19-Jn21905	S19-Jn21906	S19-Jn21907
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019	Jun 19, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	89	105	104	113
p-Terphenyl-d14 (surr.)	1	%	83	105	104	112
% Moisture	1	%	14	20	8.5	9.8

Client Sample ID			TP04C-0.8-1.0	TP04D-0.0-0.2	TP04D-0.9-1.1	TP04D-1.5-1.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn21908	S19-Jn21909	S19-Jn21910	S19-Jn21911
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019	Jun 19, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	109	111	109	102
p-Terphenyl-d14 (surr.)	1	%	109	112	112	105

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP22A-0.0-0.2 Soil S19-Jn21916 Jun 19, 2019	TP22A-1.0-1.2 Soil S19-Jn21917 Jun 19, 2019	TP22B-0.0-0.2 Soil S19-Jn21918 Jun 19, 2019	TP22B-0.9-1.1 Soil S19-Jn21919 Jun 19, 2019
Test/Reference	LOR	Unit				
ВТЕХ						
Benzene	0.1	0.1 mg/kg		< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	116	121	115	116
% Moisture	1	%	9.5	10	14	11

%

8.3

14

8.4

11

1

% Moisture

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP22C-0.0-0.3 Soil S19-Jn21920 Jun 19, 2019	TP22C1.1-1.3 Soil S19-Jn21921 Jun 19, 2019	TP22D-0.0-0.2 Soil S19-Jn21922 Jun 19, 2019	TP22D-1.1-1.3 Soil S19-Jn21923 Jun 19, 2019
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	160	170	130	460
% Moisture	1	%	10	7.5	10	8.7

Client Sample ID			TP23A-0.1-0.4	TP23B-0.1-0.4	TP23C-0.1-0.4	TP23D-0.1-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn21924	S19-Jn21925	S19-Jn21926	S19-Jn21927
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019	Jun 19, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	, <u> </u>	-				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	115	110	110	106
p-Terphenyl-d14 (surr.)	1	%	112	110	109	104
Heavy Metals	<u>.</u>	•				
Arsenic	2	mg/kg	-	-	-	< 2
Cadmium	0.4	mg/kg	-	-	-	< 0.4
Chromium	5	mg/kg	-	-	-	< 5
Copper	5	mg/kg	-	-	-	7.0
Lead	5	mg/kg	-	-	-	15
Mercury	0.1	mg/kg	-	-	-	< 0.1
Nickel	5	mg/kg	-	-	-	< 5
Zinc	5	mg/kg	-	-	-	16
		1				
% Moisture	1	%	7.3	9.5	8.5	11

Client Sample ID			TP42-0.0-0.2	TP42-0.4-0.6	TP43-0.0-0.2	TP43-0.5-0.1	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S19-Jn21928	S19-Jn21929	S19-Jn21930	S19-Jn21931	
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019	Jun 19, 2019	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	31	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50	
ВТЕХ	·						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	1.7	1.6	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	0.9	0.7	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	0.4	0.4	
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	1.2	1.1	
4-Bromofluorobenzene (surr.)	1	%	108	118	102	113	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100	
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100	
Heavy Metals							
Arsenic	2	mg/kg	< 2	4.3	3.8	7.1	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	6.5	31	11	13	
Copper	5	mg/kg	< 5	< 5	< 5	< 5	
Lead	5	mg/kg	< 5	7.6	13	< 5	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	< 5	< 5	< 5	< 5	
Zinc	5	mg/kg	14	< 5	40	< 5	
% Moisture	1	%	9.6	12	13	13	

Client Sample ID Sample Matrix			TP44-0.0-0.2 Soil	TP44-0.8-1.0 Soil	TP45-0.1-0.4 Soil	TP47-0.0-0.2 Soil
Eurofins mgt Sample No.			S19-Jn21932	S19-Jn21933	S19-Jn21934	S19-Jn21935
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019	Jun 19, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	< 50

Client Sample ID			TP44-0.0-0.2	TP44-0.8-1.0	TP45-0.1-0.4	TP47-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn21932	S19-Jn21933	S19-Jn21934	S19-Jn21935
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019	Jun 19, 2019
Test/Reference	LOR	Unit	July 13, 2013	ouii 13, 2013	Juli 13, 2013	ouii 13, 2013
BTEX	LOR	Unit				
	0.1	m a/l.a	.01	- 0.1	_	-01
Benzene Toluene	0.1	mg/kg	< 0.1 < 0.1	< 0.1 < 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.1	mg/kg	< 0.1	< 0.1		< 0.1
o-Xylene	0.2	mg/kg mg/kg	< 0.2	< 0.2		< 0.2
Xylenes - Total	0.3	mg/kg	< 0.1	< 0.1		< 0.3
4-Bromofluorobenzene (surr.)	1	%	121	103	_	106
Total Recoverable Hydrocarbons - 2013 NEPM		/0	121	103		100
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH C6-C10	20		< 20	< 20		< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg mg/kg	< 20	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	_	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	_	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	_	< 100
Polycyclic Aromatic Hydrocarbons	100	mg/kg	100	V 100		V 100
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	_	_	< 0.5
Benzo(a)pyrene TEQ (nedium bound) *	0.5	mg/kg	-	_	-	0.6
Benzo(a)pyrene TEQ (inediam bound) *	0.5	mg/kg	-	_	-	1.2
Acenaphthene	0.5	mg/kg	-	_	_	< 0.5
Acenaphthylene	0.5	mg/kg	-	_	_	< 0.5
Anthracene	0.5	mg/kg	-	_	_	< 0.5
Benz(a)anthracene	0.5	mg/kg	_	_	_	< 0.5
Benzo(a)pyrene	0.5	mg/kg	_	_	_	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	_	_	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	_	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	_	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	111
p-Terphenyl-d14 (surr.)	1	%	-	-	-	109
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
a-BHC	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg		-		< 0.05

Client Sample ID			TP44-0.0-0.2	TP44-0.8-1.0	TP45-0.1-0.4	TP47-0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn21932	S19-Jn21933	S19-Jn21934	S19-Jn21935
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019	Jun 19, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides	·	•				
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	-	< 0.2
Toxaphene	1	mg/kg	-	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	133
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	120
Polychlorinated Biphenyls		-				
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1221	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB*	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	133
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	120
Heavy Metals	·	•				
Arsenic	2	mg/kg	< 2	4.3	4.0	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	7.6	23	26	5.5
Copper	5	mg/kg	< 5	< 5	25	19
Lead	5	mg/kg	< 5	11	74	55
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.2	3.1
Nickel	5	mg/kg	< 5	< 5	30	< 5
Zinc	5	mg/kg	9.7	7.8	95	150
% Moisture	1	%	11	16	15	14

⊢ mg ʻ	t				
			1		
Client Sample ID			TP55-0.0-0.2	TP56-0.1-0.4	DUP-05
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn21936	S19-Jn21937	S19-Jn21938
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	·			
TRH C6-C9	20	mg/kg	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	54	-
TRH C29-C36	50	mg/kg	< 50	67	-
TRH C10-36 (Total)	50	mg/kg	< 50	121	-
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	117	114	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	_			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	100	-
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

mg/kg

%

%

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

114

114

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

102

97

Benz(a)anthracene

Benzo(g.h.i)perylene

Benzo(k)fluoranthene

Dibenz(a.h)anthracene

Indeno(1.2.3-cd)pyrene

2-Fluorobiphenyl (surr.)

p-Terphenyl-d14 (surr.)

Benzo(b&j)fluorantheneN07

Benzo(a)pyrene

Chrysene

Fluorene

Pyrene

Total PAH*

Fluoranthene

Naphthalene

Phenanthrene

Client Sample ID Sample Matrix			TP55-0.0-0.2 Soil	TP56-0.1-0.4 Soil	DUP-05 Soil
Eurofins mgt Sample No.			S19-Jn21936	S19-Jn21937	S19-Jn21938
Date Sampled			Jun 19, 2019	Jun 19, 2019	Jun 19, 2019
Test/Reference	LOR	Unit	0411 13, 2013	0411 10, 2010	ouii 10, 2010
	LOR	Unit			
Organochlorine Pesticides	0.4		0.4	0.4	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-
4.4'-DDD 4.4'-DDE	0.05 0.05	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg mg/kg	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	_
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	_
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	_
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-
Toxaphene	1	mg/kg	< 1	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-
Dibutylchlorendate (surr.)	1	%	108	89	-
Tetrachloro-m-xylene (surr.)	1	%	100	88	-
Polychlorinated Biphenyls	1				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	-
Dibutylchlorendate (surr.)	1	%	108	89	-
Tetrachloro-m-xylene (surr.)	1	%	100	88	-
Heavy Metals					
Arsenic	2	mg/kg	2.3	3.1	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	24	5.1	7.8
Copper	5	mg/kg	18	13	15
Lead	5	mg/kg	48	94	72
Mercury	0.1	mg/kg	2.1	0.1	< 0.1
Nickel	5	mg/kg	15	< 5	8.7
Zinc	5	mg/kg	110	110	67
	, -				
% Moisture	1	%	10	7.8	8.3

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Testing Site Sydney	Extracted Jun 25, 2019	Holding Time 14 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Sydney	Jun 25, 2019	14 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Sydney	Jun 25, 2019	
BTEX - Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices	Sydney	Jun 25, 2019	14 Days
Polycyclic Aromatic Hydrocarbons - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water	Sydney	Jun 25, 2019	14 Days
Organochlorine Pesticides - Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Sydney	Jun 25, 2019	14 Days
Polychlorinated Biphenyls - Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Sydney	Jun 25, 2019	28 Days
Metals M8 - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Sydney	Jun 25, 2019	180 Days
Heavy Metals	Sydney	Jun 25, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS % Moisture	Sydney	Jun 19, 2019	14 Days

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

MEADOWBANK

Project ID: 9280

Order No.:

Report #:

Fax:

661620

Phone:

1800 288 188 02 9675 1888 Received: Due: Jun 19, 2019 3:20 PM Jun 26, 2019

Priority: 5 Day

Contact Name: Aidan Rooney

Melt	oourne Laborato		mple Detail	271		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
				-7 1		Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х
	ourne Laboratory - NATA Site # 1254 & 14271 ney Laboratory - NATA Site # 18217 nane Laboratory - NATA Site # 20794 n Laboratory - NATA Site # 23736															
	rnal Laboratory															
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH02A-0.0-0.3	Jun 19, 2019		Soil	S19-Jn21896				Х						Х	
2	BH02B-0.0-0.3	Not Provided		Soil	S19-Jn21897				Х						Х	
3	BH02C-0.0-0.3	Not Provided		Soil	S19-Jn21898				Х						Х	
4	BH02D-0.0-0.3	Not Provided		Soil	S19-Jn21899				Х						Х	
5	SS02A-0.0-0.3	Not Provided		Soil	S19-Jn21900	Х										
6	SS02B-0.0-0.3			Soil	S19-Jn21901	Х										
7	SS02C-0.0-0.3	Not Provided		Soil	S19-Jn21902	Х										
8	SS02D-0.0-0.3	Not Provided		Soil	S19-Jn21903	Х										
9	TP04A-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21904					Х					Х	

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road

661620

1800 288 188

02 9675 1888

Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F

16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 19, 2019 3:20 PM

Jun 26, 2019

Aidan Rooney

5 Day

Company Name:

Alliance Geotechnical

10 Welder Road

Seven Hills

NSW 2147

Project Name:

Address:

MEADOWBANK

Project ID: 9280

		nple Detail		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laboratory - NATA Site													
	ney Laboratory - NATA Site # 18			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory - NATA Site #													
	h Laboratory - NATA Site # 237													
10	TP04A-0.9-1.1 Jun 19, 2019	Soil	S19-Jn21905					Х					Х	
11	TP04B-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21906					Х					Х	
12	TP04C-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21907					Х					Х	
13	TP04C-0.8-1.0 Jun 19, 2019	Soil	S19-Jn21908					Х					Х	
14	TP04D-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21909					Х					Х	
15	TP04D-0.9-1.1 Jun 19, 2019	Soil	S19-Jn21910					Х					Х	
16	TP04D-1.5-1.7 Jun 19, 2019	Soil	S19-Jn21911					Х					Χ	
17	TP07A-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21912	Х										
18	TP07B-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21913	Х										
19	TP07C-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21914	Х										
20	TP07D-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21915	Х										
21	TP22A-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21916									Х	Х	

MEADOWBANK

Address:

Project Name:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane

16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 19, 2019 3:20 PM

> 10 Welder Road Report #: 661620 Due: Jun 26, 2019 Seven Hills Phone: 1800 288 188 Priority: 5 Day

> NSW 2147 Fax: 02 9675 1888 **Contact Name:** Aidan Rooney

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

		Sa	ımple Detail			Asbestos - WA guidelines	Asbestos Absence / Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	bourne Laborato	ory - NATA Site	# 1254 & 142	71												
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Bris	bane Laborator	y - NATA Site #	20794													
Pert	<u>h Laboratory - N</u>	ATA Site # 237	736													
22	TP22A-1.0-1.2	Jun 19, 2019		Soil	S19-Jn21917									Х	Х	
23	TP22B-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21918									Х	Х	
24	TP22B-0.9-1.1	Jun 19, 2019		Soil	S19-Jn21919									Х	Х	
25	TP22C-0.0-0.3	Jun 19, 2019		Soil	S19-Jn21920				Х						Х	
26	TP22C1.1-1.3	Jun 19, 2019		Soil	S19-Jn21921				Х						Х	
27	TP22D-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21922				Х						Х	
28	TP22D-1.1-1.3	Jun 19, 2019		Soil	S19-Jn21923				Х						Х	
29	TP23A-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21924					Х					Х	
30	TP23B-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21925					Х					Х	
31	TP23C-0.1-0.4	· · · · · · · · · · · · · · · · · · ·		Soil	S19-Jn21926					Х					Х	
32	TP23D-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21927					Х			Х		Х	
33	TP42-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21928								Х	Χ	Х	Х

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

661620

1800 288 188

02 9675 1888

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 19, 2019 3:20 PM

Jun 26, 2019

Aidan Rooney

5 Day

Company Name:

Alliance Geotechnical

Address:

10 Welder Road

Seven Hills

NSW 2147

Project Name:

MEADOWBANK

Project ID: 9280

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	НОГД	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
		ory - NATA Site		271												
		- NATA Site # 1				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site #														
		NATA Site # 237	36													
34	TP42-0.4-0.6	Jun 19, 2019		Soil	S19-Jn21929								Х	Х	Х	Х
35	TP43-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21930								Х	Х	Х	Х
36	TP43-0.5-0.1	Jun 19, 2019		Soil	S19-Jn21931								Х	Х	Χ	Х
37	TP44-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21932								Х	Х	Χ	Х
38	TP44-0.8-1.0	Jun 19, 2019		Soil	S19-Jn21933								Х	Х	Χ	Х
39	TP45-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21934	Х							Х		Х	
40	TP47-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21935	Χ				Х	Х	Х	Х	Χ	Χ	Χ
41	TP55-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21936	Х				Х	Х	Х	Х	Х	Х	Х
42	TP56-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21937	Х				Х	Х	Х	Х	Х	Х	Χ
43	DUP-05	Jun 19, 2019		Soil	S19-Jn21938								Х		Х	
44	FCS-TP04B	Jun 19, 2019		Building Materials	S19-Jn21939		Х									

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

661620

1800 288 188

02 9675 1888

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Sydney Unit F3, Building F Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 19, 2019 3:20 PM

Jun 26, 2019

Aidan Rooney

5 Day

Company Name: Alliance Geotechnical

Address:

10 Welder Road

Seven Hills

NSW 2147

Project Name:

Project ID: 9280

MEADOWBANK

			mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato	•		271												
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory															
Pert	h Laboratory - N	IATA Site # 237	36	T	1											
45	FCS-TP07A	Jun 19, 2019		Building Materials	S19-Jn21940		Х									
46	FCS-TP042	Jun 19, 2019		Building Materials	S19-Jn21941		x									
47	TRIP SPIKE	Jun 19, 2019		Water	S19-Jn21942									Х		
48	TRIP BLANK	Jun 19, 2019		Water	S19-Jn21943									Х		
49	SS02A-0.7-1.0	Jun 19, 2019		Soil	S19-Jn21944			Х								
50	SS02D-0.7-1.0	Jun 19, 2019		Soil	S19-Jn21945			Х								
51	TP44-1.5-1.7	Jun 19, 2019		Soil	S19-Jn21946			Х								
52	TP47-0.4-0.6	Jun 19, 2019		Soil	S19-Jn21947			Х								
53	TP55-0.8-1.0	Jun 19, 2019		Soil	S19-Jn21948			Х								
54	FCS-TP44	Jun 19, 2019		Building Materials	S19-Jn22224		Х									

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 19, 2019 3:20 PM

Company Name:

Alliance Geotechnical

Address:

10 Welder Road

Seven Hills

NSW 2147

Project Name: Project ID: **MEADOWBANK**

ID: 9280

Order No.: Report #:

661620

Phone: Fax: 1800 288 188

02 9675 1888

Received: Due:

Due: Jun 26, 2019 **Priority:** 5 Day

Contact Name: Aidan Rooney

Sample Detail	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	
Melbourne Laboratory - NATA Site # 1254 & 14271												l
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	ı
Brisbane Laboratory - NATA Site # 20794												ı
Perth Laboratory - NATA Site # 23736												ı
Test Counts	12	4	5	8	15	3	3	12	15	35	9	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 661620-S

Quality Control Results

Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
mg/kg	< 20	20	Pass	
mg/kg	< 20	20	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.2	0.2	Pass	
	< 0.1	0.1	Pass	
	< 0.3	0.3	Pass	
1 3 3			•	
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
199	1.00			
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	t		_	
	1			
	1			
IIIg/kg	Z 0.5	0.5	Fass	
ma/ka	< 0.1	0.1	Page	
mg/kg	< 0.05	0.05	Pass	
	mg/kg	mg/kg < 20	mg/kg	mg/kg < 20 20 Pass mg/kg < 20

Test	Units	Result 1	Acceptance	Pass	Qualifying
			Limits	Limits	Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	<1	1	Pass	
Method Blank		T T			
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	83	70-130	Pass	
TRH C10-C14	%	98	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	102	70-130	Pass	
Toluene	%	108	70-130	Pass	
Ethylbenzene	%	110	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
o-Xylene	%	107	70-130	Pass	
Xylenes - Total	%	106	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	119	70-130	Pass	
TRH C6-C10	%	79	70-130	Pass	
TRH >C10-C16	%	101	70-130	Pass	
LCS - % Recovery	, , ,				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	128	70-130	Pass	
Acenaphthylene	%	129	70-130	Pass	
Anthracene	%	128	70-130	Pass	
,	/0	1	70-100	. 433	
Benz(a)anthracene	%	123	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene			%	117		70-130	Pass	
Benzo(g.h.i)perylene			%	123		70-130	Pass	
Benzo(k)fluoranthene			%	126		70-130	Pass	
Chrysene			%	127		70-130	Pass	
Dibenz(a.h)anthracene			%	118		70-130	Pass	
Fluoranthene			%	126		70-130	Pass	
Fluorene			%	126		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	123		70-130	Pass	
Naphthalene			%	121		70-130	Pass	
Phenanthrene			%	126		70-130	Pass	
Pyrene			%	126		70-130	Pass	
LCS - % Recovery				•				
Organochlorine Pesticides								
4.4'-DDD			%	130		70-130	Pass	
4.4'-DDE			%	119		70-130	Pass	
4.4'-DDT			%	120		70-130	Pass	
a-BHC			%	120		70-130	Pass	
Aldrin			%	117		70-130	Pass	
b-BHC			%	109		70-130	Pass	
d-BHC			%	123		70-130	Pass	
Dieldrin			%	119		70-130	Pass	
Endosulfan I			%	118		70-130	Pass	
Endosulfan II			%	127		70-130	Pass	
			%				Pass	
Endosulfan sulphate Endrin			%	124		70-130	Pass	
			%	116		70-130		
Endrin aldehyde				124		70-130	Pass	
Endrin ketone			%	118		70-130	Pass	
g-BHC (Lindane)			%	119		70-130	Pass	
Heptachlor			%	118		70-130	Pass	
Heptachlor epoxide			%	119		70-130	Pass	
Hexachlorobenzene			%	112		70-130	Pass	
Methoxychlor			%	116		70-130	Pass	
LCS - % Recovery				T	Г	I	Г	
Polychlorinated Biphenyls							_	
Aroclor-1260			%	85		70-130	Pass	
LCS - % Recovery				1	l I	l		
Heavy Metals							_	
Arsenic			%	102		70-130	Pass	
Cadmium			%	103		70-130	Pass	
Chromium			%	102		70-130	Pass	
Copper			%	103		70-130	Pass	
Lead			%	104		70-130	Pass	
Mercury			%	100		70-130	Pass	
Nickel			%	103		70-130	Pass	
Zinc		1	%	102		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S19-Jn21897	CP	%	118		70-130	Pass	
Cadmium	S19-Jn21897	CP	%	118		70-130	Pass	
Chromium	S19-Jn21897	CP	%	120		70-130	Pass	
Copper	S19-Jn21897	CP	%	125		70-130	Pass	
Lead	S19-Jn21897	СР	%	127		70-130	Pass	
Mercury	S19-Jn21897	СР	%	123		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Nickel	S19-Jn21897	CP	%	116	70-130	Pass	
Zinc	S19-Jn21897	CP	%	122	70-130	Pass	
Spike - % Recovery						ı	
Polycyclic Aromatic Hydrocarbo	ns			Result 1			
Acenaphthene	S19-Jn21905	CP	%	95	70-130	Pass	
Acenaphthylene	S19-Jn21905	CP	%	95	70-130	Pass	
Anthracene	S19-Jn21905	CP	%	98	70-130	Pass	
Benz(a)anthracene	S19-Jn21905	CP	%	89	70-130	Pass	
Benzo(a)pyrene	S19-Jn21905	CP	%	92	70-130	Pass	
Benzo(b&j)fluoranthene	S19-Jn21905	CP	%	88	70-130	Pass	
Benzo(g.h.i)perylene	S19-Jn21905	CP	%	91	70-130	Pass	
Benzo(k)fluoranthene	S19-Jn21905	CP	%	98	70-130	Pass	
Chrysene	S19-Jn21905	CP	%	93	70-130	Pass	
Dibenz(a.h)anthracene	S19-Jn21905	CP	%	85	70-130	Pass	
Fluoranthene	S19-Jn21905	CP	%	92	70-130	Pass	
Fluorene	S19-Jn21905	CP	%	97	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Jn21905	CP	%	88	70-130	Pass	
Naphthalene	S19-Jn21905	CP	%	91	70-130	Pass	
Phenanthrene	S19-Jn21905	CP	%	97	70-130	Pass	
Pyrene	S19-Jn21905	CP	%	92	70-130	Pass	
Spike - % Recovery				1		Γ	
Total Recoverable Hydrocarbons				Result 1			
TRH C6-C9	S19-Jn21917	CP	%	85	70-130	Pass	
Spike - % Recovery				I I			
BTEX	T			Result 1		_	
Benzene	S19-Jn21917	CP	%	98	70-130	Pass	
Toluene	S19-Jn21917	CP	%	104	70-130	Pass	
Ethylbenzene	S19-Jn21917	CP	%	105	70-130	Pass	
m&p-Xylenes	S19-Jn21917	CP	%	102	70-130	Pass	
o-Xylene	S19-Jn21917	CP	%	102	70-130	Pass	
Xylenes - Total	S19-Jn21917	CP	%	102	70-130	Pass	
Spike - % Recovery				T 5 11 1	T	Г	
Total Recoverable Hydrocarbons				Result 1		_	
Naphthalene	S19-Jn21917	CP	%	116	70-130	Pass	
TRH C6-C10	S19-Jn21917	CP	%	83	70-130	Pass	
Spike - % Recovery				D		Ι	
Heavy Metals	040 1 04040	NOD		Result 1	70.400	_	
Arsenic	S19-Jn21842	NCP	%	106	70-130	Pass	
Cadmium	S19-Jn24355	NCP	%	126	70-130	Pass	
Chromium	S19-Jn24355	NCP	%	127	70-130	Pass	
Copper	S19-Jn24344	NCP	%	128	70-130	Pass	
Mercury	S19-Jn24355	NCP	%	125	70-130	Pass	
Nickel	S19-Jn24355	NCP	%	127	70-130	Pass	
Spike - % Recovery	4000 NEDM Frank			Decult 4			
Total Recoverable Hydrocarbons			0/	Result 1	70.400	Dess	
TRH C6-C9	S19-Jn12556	NCP	%	84	70-130	Pass	
TRH C10-C14	S19-Jn21441	NCP	%	96	70-130	Pass	
Spike - % Recovery	2012 NEDM Frank	liono		Popult 1			
Total December 1 business of the	:	แบทธ		Result 1	70.400	_	
Total Recoverable Hydrocarbons		NCD	0/	1 02 1			
Naphthalene	S19-Jn12556	NCP	%	93	70-130	Pass	
Naphthalene TRH C6-C10	S19-Jn12556 S19-Jn12556	NCP	%	76	70-130	Pass	
Naphthalene	S19-Jn12556	t					

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDD	S19-Jn20054	NCP	%	126			70-130	Pass	
Spike - % Recovery									
Organochlorine Pesticides				Result 1					
4.4'-DDE	S19-Jn21936	CP	%	123			70-130	Pass	
4.4'-DDT	S19-Jn21936	CP	%	117			70-130	Pass	
a-BHC	S19-Jn21936	CP	%	125			70-130	Pass	
Aldrin	S19-Jn21936	CP	%	123			70-130	Pass	
b-BHC	S19-Jn21936	CP	%	111			70-130	Pass	
d-BHC	S19-Jn21936	CP	%	127			70-130	Pass	
Dieldrin	S19-Jn21936	CP	%	126			70-130	Pass	
Endosulfan I	S19-Jn21936	CP	%	121			70-130	Pass	
Endosulfan II	S19-Jn21936	CP	%	127			70-130	Pass	
Endosulfan sulphate	S19-Jn21936	CP	%	121			70-130	Pass	
Endrin	S19-Jn21936	CP	%	117			70-130	Pass	
Endrin aldehyde	S19-Jn21936	CP	%	122			70-130	Pass	
Endrin ketone	S19-Jn21936	CP	%	119			70-130	Pass	
g-BHC (Lindane)	S19-Jn21936	CP	%	115			70-130	Pass	
Heptachlor	S19-Jn21936	CP	%	125			70-130	Pass	
Heptachlor epoxide	S19-Jn21936	CP	%	123			70-130	Pass	
Hexachlorobenzene	S19-Jn21936	CP	%	119			70-130	Pass	
Methoxychlor	S19-Jn21936	CP	%	114			70-130	Pass	
Spike - % Recovery				1	1		T		
Polychlorinated Biphenyls	<u> </u>			Result 1					
Aroclor-1260	S19-Jn21936	CP	%	78			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					ı				
Heavy Metals				Result 1	Result 2	RPD		_	
Arsenic	S19-Jn21896	СР	mg/kg	3.5	6.8	<1	30%	Pass	
Arsenic Cadmium	S19-Jn21896	СР	mg/kg	3.5 < 0.4	6.8 < 0.4	<1 <1	30%	Pass	
Arsenic Cadmium Chromium	S19-Jn21896 S19-Jn21896	CP CP	mg/kg mg/kg	3.5 < 0.4 7.7	6.8 < 0.4 7.4	<1 <1 4.0	30% 30%	Pass Pass	
Arsenic Cadmium Chromium Copper	S19-Jn21896 S19-Jn21896 S19-Jn21896	CP CP	mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3	6.8 < 0.4 7.4 10	<1 <1 4.0 <1	30% 30% 30%	Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead	S19-Jn21896 S19-Jn21896 S19-Jn21896 S19-Jn21896	CP CP CP	mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9	6.8 < 0.4 7.4 10	<1 <1 4.0 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1	6.8 < 0.4 7.4 10 10 < 0.1	<1 <1 4.0 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5	6.8 < 0.4 7.4 10 10 < 0.1 < 5	<1 <1 4.0 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1	6.8 < 0.4 7.4 10 10 < 0.1	<1 <1 4.0 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28	<1 <1 4.0 <1 <1 <1 <1 <1 12	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2	<1 <1 4.0 <1 <1 <1 <1 <1 <1 12 RPD	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28	<1 <1 4.0 <1 <1 <1 <1 <1 12	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5	<1 <1 4.0 <1 <1 <1 <1 12 RPD 4.0	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5	<1 <1 4.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5	<1 <1 4.0 <1 <1 <1 <1 12 RPD 4.0 RPD <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896	CP CP CP CP CP CP CP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5	<1 <1 4.0 <1 <1 <1 <1 12 RPD 4.0 RPD <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP CP CP CP CP CP CP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP CP CP CP CP CP CP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP C	mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP NCP NCP	mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b,i)perylene Benzo(k)fluoranthene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP NCP NCP NC	mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP C	mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP C	mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP C	mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Duplicate % Moisture Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	\$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21896 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107 \$19-Jn21107	CP C	mg/kg	3.5 < 0.4 7.7 5.3 5.9 < 0.1 < 5 25 Result 1 7.3 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6.8 < 0.4 7.4 10 10 < 0.1 < 5 28 Result 2 7.5 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons	s			Result 1	Result 2	RPD			
Phenanthrene	S19-Jn21107	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S19-Jn21107	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate		•		•			<u>'</u>		
				Result 1	Result 2	RPD			
% Moisture	S19-Jn21910	СР	%	8.4	8.7	4.0	30%	Pass	
Duplicate	1 0 10 0 11 2 10 10	<u> </u>	,,,	J	J 0		3373	1 430	
Total Recoverable Hydrocarbons -	. 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Jn21916	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	010 01121010	01	i ilig/kg	1 20	\ 20		0070	1 400	
BTEX				Result 1	Result 2	RPD			
Benzene	S19-Jn21916	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Jn21916	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	1								
Ethylbenzene	S19-Jn21916	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Jn21916	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Jn21916	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-Jn21916	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				T _	1				
Total Recoverable Hydrocarbons -	· 2013 NEPM Fract	ions		Result 1	Result 2	RPD		1 1	
Naphthalene	S19-Jn21916	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Jn21916	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-Jn21924	CP	%	7.3	7.6	4.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Jn24354	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S19-Jn24354	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Jn24354	NCP	mg/kg	7.4	7.2	3.0	30%	Pass	
Copper	S19-Jn24354	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S19-Jn24354	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-Jn24354	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S19-Jn24354	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate	010 0112 100 1	1101	1119/119	10	_ ``	- 11	0070	1 400	
Total Recoverable Hydrocarbons -	. 1000 NEDM Fract	ione		Result 1	Result 2	RPD			
TRH C6-C9	B19-Jn23955	NCP	ma/ka	< 20	< 20		30%	Pass	
TRH C0-C9	S19-Jn23955	NCP	mg/kg	< 20	< 20	<1 <1	30%	Pass	
			mg/kg						
TRH C15-C28	S19-Jn21439	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-Jn21439	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	0040 NEDIA E	•		D 11.4	D	DDD			
Total Recoverable Hydrocarbons -	1		,,	Result 1	Result 2	RPD	225	+_+	
Naphthalene	B19-Jn23955	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	B19-Jn23955	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S19-Jn21439	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-Jn21439	NCP	mg/kg	< 100		40	30%	Fail	
TRH >C34-C40		NCP	mg/kg	< 100		22	30%	Pass	
	S19-Jn21439	INCF							
Duplicate	S19-Jn21439	NOF		1			I		
Duplicate	S19-Jn21439	INCF		Result 1	Result 2	RPD			
Duplicate % Moisture	S19-Jn21439 S19-Jn21934	СР	%	Result 1	Result 2	RPD 11	30%	Pass	
		ı	%				30%	Pass	
% Moisture		ı	%				30%	Pass	
% Moisture Duplicate		ı	% mg/kg	15	14	11	30%	Pass Pass	
% Moisture Duplicate Organochlorine Pesticides	S19-Jn21934	СР	mg/kg	15 Result 1	14 Result 2	11 RPD			
% Moisture Duplicate Organochlorine Pesticides Chlordanes - Total	S19-Jn21934 S19-Jn21935	CP CP	T	15 Result 1 < 0.1	14 Result 2 < 0.1	11 RPD <1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
a-BHC	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S19-Jn21935	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S19-Jn21935	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S19-Jn21935	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S19-Jn21935	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S19-Jn21935	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S19-Jn21935	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S19-Jn21935	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S19-Jn21935	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S19-Jn21935	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S19-Jn21935	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S19-Jn21935	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Report Number: 661620-S

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 661620-S

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attention: Aidan Rooney
Report 661620-AID
Project Name MEADOWBANK

Project ID 9280

Received Date Jun 19, 2019 **Date Reported** Jun 26, 2019

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE. Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 2 of 12

Project Name MEADOWBANK

Project ID 9280

Date Reported: Jun 26, 2019

Date Sampled Jun 19, 2019 Report 661620-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS02A-0.0-0.3	19-Jn21900	not provided	Approximate Sample 783g Sample consisted of: Brown fine-grained soil, fragments of brick, corroded metal, glass and debris, and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS02B-0.0-0.3	19-Jn21901	not provided	Approximate Sample 886g Sample consisted of: Brown fine-grained soil, fragments of corroded metal and glass, and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS02C-0.0-0.3	19-Jn21902	not provided Approximate Sample 783g Sample consisted of: Brown fine-grained soil, fragments of brick, corroded metal, glass and debris, and rocks No respirable fibres detected. Approximate Sample 886g Sample consisted of: Brown fine-grained soil, fragments of corroded metal and glass, and rocks Approximate Sample 886g Sample consisted of: Brown fine-grained soil, fragments of corroded metal and glass, and rocks Approximate Sample 684g Sample consisted of: Brown fine-grained soil, fragments of corroded metal and cement, and rocks Approximate Sample 684g Sample consisted of: Brown fine-grained soil, fragments of corroded metal and cement, and rocks FA:		
SS02D-0.0-0.3	19-Jn21903	not provided	Sample consisted of: Brown fine-grained soil, fragments of glass, and	Chrysotile asbestos detected in weathered fibre cement fragments. Approximate raw weight of FA = 0.012g Estimated asbestos content in FA = 0.0070g* Total estimated asbestos concentration in FA = 0.0011% w/w* Organic fibre detected.
TP07A-0.1-0.4	19-Jn21912	Jun 19, 2019	Approximate Sample 684g Sample consisted of: Brown coarse-grained soil and rocks	Organic fibre detected.

Report Number: 661620-AID

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
TP07B-0.1-0.4	19-Jn21913	Jun 19, 2019	Approximate Sample 601g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Synthetic mineral fibre detected. Organic fibre detected.
				No respirable fibres detected.
TP07C-0.1-0.4	19-Jn21914	Jun 19, 2019	Approximate Sample 700g Sample consisted of: Brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.
			·	No respirable fibres detected.
TP07D-0.1-0.4	19-Jn21915	Jun 19, 2019	Approximate Sample 619g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.
			Campio concided on Brown coarse granted con and rocks	No respirable fibres detected.
TP45-0.1-0.4	19-Jn21934	Jun 19, 2019	Approximate Sample 732g Sample consisted of: Brown fine-grained soil, fragments of cement	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.
			and bricks, and rocks	No respirable fibres detected.
TP47-0.0-0.2	19-Jn21935	Jun 19, 2019	Approximate Sample 670g Sample consisted of: Brown fine-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.
			Sample consisted of Brown line-grained soil and rocks	No respirable fibres detected.
TP55-0.0-0.2	19-Jn21936	Jun 19, 2019	Approximate Sample 701g Sample consisted of: Brown coarse-grained soil, fragments of brick	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.
			and bitumen, and rocks	No respirable fibres detected.
TP56-0.1-0.4	19-Jn21937	Jun 19, 2019	Approximate Sample 635g Sample consisted of: Brown coarse-grained soil, fragments of brick	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.
			and bitumen, and rocks	No respirable fibres detected.
FCS-TP04B	19-Jn21939	Jun 19, 2019	Approximate Sample 47g / 95x55x5mm Sample consisted of: (a) Grey compressed fibre cement material (b) Green paint	Chrysotile and amosite asbestos detected (a).
FCS-TP07A	19-Jn21940	Jun 19, 2019	Approximate Sample 30g / 65x40x5mm Sample consisted of: (a) Grey compressed fibre cement material (b) White paint	Chrysotile asbestos detected (a).
			Approximate Comple 16a / 60v20v5	No asbestos detected.
FCS-TP042	19-Jn21941	Jun 19, 2019	Approximate Sample 16g / 60x30x5mm Sample consisted of: Grey compressed fibre cement material and white paint	Organic fibre detected. No respirable fibres detected.
			A	No asbestos detected.
FCS-TP44	19-Jn22224	Jun 19, 2019	Approximate Sample 66g / 110x90x5mm Sample consisted of: Grey compressed fibre cement material and white paint	Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Asbestos - LTM-ASB-8020	Sydney	Jun 26, 2019	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Jun 26, 2019	Indefinite

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road

6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 SydneyBrisbaneUnit F3, Building F1/21 Small16 Mars RoadMurarrie C

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 19, 2019 3:20 PM

 Address:
 10 Welder Road
 Report #:
 661620
 Due:
 Jun 26, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

			mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	НОГД	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271												
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
	bane Laboratory															
Perti	h Laboratory - N	IATA Site # 237	'36													
Exte	rnal Laboratory	, I		1												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	BH02A-0.0-0.3	Jun 19, 2019		Soil	S19-Jn21896				Х						Х	
2	BH02B-0.0-0.3	Not Provided		Soil	S19-Jn21897				Х						Х	
3	BH02C-0.0-0.3	Not Provided		Soil	S19-Jn21898				Х						Х	
4	BH02D-0.0-0.3	Not Provided		Soil	S19-Jn21899				Х						Х	
5	SS02A-0.0-0.3	Not Provided		Soil	S19-Jn21900	Х										
6	SS02B-0.0-0.3	Not Provided		Soil	S19-Jn21901	Х										
7	SS02C-0.0-0.3	Not Provided		Soil	S19-Jn21902	Х										
8	SS02D-0.0-0.3	Not Provided		Soil	S19-Jn21903	Х										
9	TP04A-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21904					Х					Х	

Page 5 of 12

Company Name:

Project Name:

Address:

mgt

Alliance Geotechnical

MEADOWBANK

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane

1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105

Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Order No.: Received: Jun 19, 2019 3:20 PM

10 Welder Road Report #: 661620 Due: Jun 26, 2019 Seven Hills Phone: 1800 288 188 Priority: 5 Day

NSW 2147 Fax: 02 9675 1888 **Contact Name:** Aidan Rooney

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

	·	e Detail		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	oourne Laboratory - NATA Site # 12			V	X		V	V	X	X	V	V	V	X
	ney Laboratory - NATA Site # 18217			Х		X	Х	Х	^	_ ^	Х	Х	Х	
	bane Laboratory - NATA Site # 2079 h Laboratory - NATA Site # 23736	94												
10	TP04A-0.9-1.1 Jun 19, 2019	Soil	S19-Jn21905					X					Х	
11	TP04B-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21906					X					X	
12	TP04C-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21907					X					X	
13	TP04C-0.8-1.0 Jun 19, 2019	Soil	S19-Jn21908					Х					Х	
14	TP04D-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21909					Х					Х	
15	TP04D-0.9-1.1 Jun 19, 2019	Soil	S19-Jn21910					Х					Х	
16	TP04D-1.5-1.7 Jun 19, 2019	Soil	S19-Jn21911					Х					Х	
17	TP07A-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21912	Х										
18	TP07B-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21913	Х										
19	TP07C-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21914	Х										
20	TP07D-0.1-0.4 Jun 19, 2019	Soil	S19-Jn21915	Х										
21	TP22A-0.0-0.2 Jun 19, 2019	Soil	S19-Jn21916									Х	Х	

Page 6 of 12

MEADOWBANK

Project Name:

mgt

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 19, 2019 3:20 PM

 Address:
 10 Welder Road
 Report #:
 661620
 Due:
 Jun 26, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

NSW 2147 Fax: 02 9675 1888 Contact Name: Aidan Rooney

NSW 2147 Fax. 02 9073 1000 Contact Name. Attail Roonley

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

			mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato			71				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	<u>bane Laboratory</u> h Laboratory - N															-
22	TP22A-1.0-1.2		30	Soil	S19-Jn21917									Х	Х	
23	TP22B-0.0-0.2			Soil	S19-Jn21918									X	X	
24	TP22B-0.9-1.1	·		Soil	S19-Jn21919									Х	X	
25	TP22C-0.0-0.3			Soil	S19-Jn21920				Х						Х	
26				Soil	S19-Jn21921				Х						Х	
27	TP22D-0.0-0.2	· '		Soil	S19-Jn21922				Х						Х	
28				Soil	S19-Jn21923				Х						Х	
29	TP23A-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21924					Х					Х	
30	TP23B-0.1-0.4			Soil	S19-Jn21925					Х					Х	
31	TP23C-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21926					Х					Х	
32	TP23D-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21927					Х			Х		Х	
33	TP42-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21928								Х	Х	Х	Х

MEADOWBANK

Address:

Project Name:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane

1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway

Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 19, 2019 3:20 PM

10 Welder Road Report #: 661620 Due: Jun 26, 2019

Seven Hills Phone: 1800 288 188 Priority: 5 Day

NSW 2147 Fax: 02 9675 1888 **Contact Name:** Aidan Rooney

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

			mple Detail	774		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
		ory - NATA Site		271			.,	.,	.,	.,	.,	.,	.,	.,	.,	
		- NATA Site # 1				Х	Х	Х	Х	X	Х	Х	X	Х	Х	Х
		y - NATA Site #														
		NATA Site # 237	36	I	Ta									.,		
34	TP42-0.4-0.6	Jun 19, 2019		Soil	S19-Jn21929								X	Х	Х	X
35	TP43-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21930								Х	Х	Х	Х
36	TP43-0.5-0.1	Jun 19, 2019		Soil	S19-Jn21931								X	Х	Х	Х
37	TP44-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21932								X	Х	Х	Х
38	TP44-0.8-1.0	Jun 19, 2019		Soil	S19-Jn21933								Х	Х	Χ	Х
39	TP45-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21934	Х							Х		Χ	
40	TP47-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21935	Х				Х	Х	Х	Х	Х	Χ	Х
41	TP55-0.0-0.2	Jun 19, 2019		Soil	S19-Jn21936	Х				Х	Х	Х	Х	Х	Х	Х
42	TP56-0.1-0.4	Jun 19, 2019		Soil	S19-Jn21937	Х				Х	Х	Х	Х	Х	Х	Х
43	DUP-05	Jun 19, 2019		Soil	S19-Jn21938								Х		Χ	
44	FCS-TP04B	Jun 19, 2019		Building Materials	S19-Jn21939		Х									

Page 8 of 12

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Received:

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 19, 2019 3:20 PM

Company Name: Alliance Geotechnical Order No.:

Address: 10 Welder Road Report #: 661620 Due: Jun 26, 2019

Seven Hills Phone: 1800 288 188 Priority: 5 Day NSW 2147 Fax: 02 9675 1888 **Contact Name:** Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

			mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	271												
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794													
Pert	h Laboratory - N	IATA Site # 237	36													
45	FCS-TP07A	Jun 19, 2019		Building Materials	S19-Jn21940		Х									
46	FCS-TP042	Jun 19, 2019		Building Materials	S19-Jn21941		x									
47	TRIP SPIKE	Jun 19, 2019		Water	S19-Jn21942									Х		
48	TRIP BLANK	Jun 19, 2019		Water	S19-Jn21943									Х		
49	SS02A-0.7-1.0	Jun 19, 2019		Soil	S19-Jn21944			Х								
50	SS02D-0.7-1.0	Jun 19, 2019		Soil	S19-Jn21945			Х								
51	TP44-1.5-1.7	Jun 19, 2019		Soil	S19-Jn21946			Х								
52	TP47-0.4-0.6	Jun 19, 2019		Soil	S19-Jn21947			Х								
53	TP55-0.8-1.0	Jun 19, 2019		Soil	S19-Jn21948			Х								
54	FCS-TP44	Jun 19, 2019		Building Materials	S19-Jn22224		Х									

Page 9 of 12

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

661620

1800 288 188

02 9675 1888

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 19, 2019 3:20 PM

Jun 26, 2019

Aidan Rooney

5 Day

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

Project ID: 9280

MEADOWBANK

Sample Detail	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melbourne Laboratory - NATA Site # 1254 & 14271											
Sydney Laboratory - NATA Site # 18217	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794											
Perth Laboratory - NATA Site # 23736											
Test Counts	12	4	5	8	15	3	3	12	15	35	9

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advices

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

Date Reported: Jun 26, 2019

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Page 11 of 12

Report Number: 661620-AID

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Jun 26, 2019

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 12 of 12

Report Number: 661620-AID

CHAIN OF CUSTODY RECORD

• Sydney Laboratory
Liet F5 Brig. 19 Mars Rig. Lane Cone West, NSW 2009

	(12 9900 340		1000		10		NAME OF		mpleGLP@eur		Aiden Rooney		Sample	-10)			Sam Scull	ArcQestolles co	
	oject Ne			928 Meadov				Project I EDD F (ESdat. Cus	Manager Format		Aluen Rooney		Sample Handed o				Sam Scull		
10 WELDER ROAD, SEVEN HILLS NSW	ect Name			Meadov	wbank			(ESGRE Cus	tom)							- desta	0-11		
st Name Sam Scully										9			Email for				n@allgeo @allgeo		
ne № 400339745	SUTE pricing													Contai	ners		Turnar	ound Time (
sockjerty	Control of the Contro		W. 1	<u>s</u>				<u>s</u>	Asbestos (0.001%)	5							° Overnigh		
Directions	lead	ВТЕХ	PAH	8 Metals	VOCs	OCP	PCB	Phenois	stos (0					see	_ # £	PE) A Surdeline	" 1 Day"	* 21	Day*
se Order									Asbe	told			L Plastic mL Plastic	mL Plastic Amber Gl	L VOA VIA PFAS Bo	ass of HD AS4964, W.	3 Day*	Surch	Day harges apply
a ID No Sampled										9-1			7 280	125 200mL	500ml	Jar (G	Other (mments / Do	angero is
Client Sample ID DatefTime Matrix (Sol (dd/mm/yy (S) Water (V hh:mm)																	Goods	mments / Da Hazard War	rning
3402A-0,0-0,319-649Sa1	X						54		100										
BH02B-0.0-0.3 1	X																		
BHO2C-0.0-0,3	X																		
34020-0,0-0,3	X																		
5502A-0,0-0,3							1000		X										
SOJA-0.7-1.0										X									
SQ18-0,0-0.3									×										
SOX-6.0-0.3									X										
SOQD-0.0-0.3									X										
55020-0.7-1.0			0							X									
7804A-0.0-0.2			X																
204A-0.9-1.1			X																
PO4B-0.0-0.2			X																
POLC-0.0-0.2			X																
PO4C-0.8-1.0			X																
904D-0.0-0.2			X															1000	
PO40-0.9-1.1			X																
Parb-1.5-1.7			X																
9079-0.1-0.4	161								X										
P078-0.1-0.4									XXX										
P07C-0.1-a4									X										
-P07D-0.1-0.4									X										
P22A-0.0-0.2		X																	
0229-1-0-12		X																	
9228-0.0-0.2	/	X																	
P22B-0.9-1.1 V		X										0							
Total Counts	orod .	» Pos	etal		ame		00-	n Scully		Signature	Al	10	Da	ite 10	/06/2	019	Time	3:3	20-
thod of Courier (#) • Hand Delin	NAMES OF STREET) BNE MEL		-	DE STUDIO DE SE		nature	Journy			Date	1, ,	Tir	MANUFACTURE OF THE PARTY OF THE			Temperat		

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard | erms as Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

CHAIN OF CUSTODY RECORD Sam Scully ALLIANCE GEOTECHNICAL 10 WELDER ROAD, SEVEN HILLS NSW admin@allgeo.com.au sam@allgeo.com.au Sam Scully Asbestos (0.001%) 8 Metals 3TEX VOCs OCP PCB lead PAH 7822-0.0-0.2-19-6-19 Soll X 1992C-1.1-1.3 RO20-0.0-02 18224-1.1-1.3 TP33A-0.1-6.4 TP23B-0.1-0.4 TP236-0.1-0.4 TP23D-0.1-04 X tP42-0.0-0.2 TP42-0.4-6.6 1943-0.0-0.2 tP43-0.5-0.7 TP44-0.0-0.2 TP44-0.8-1.0 tp44-1.5-1.7 TP45-0.1-0.4 TP47-0.0.0,2 TP47-0.4-0.6 TP55-0.0-0.2 tpss-0.8-1.0 TPS6-0.1-0.4 DUP-05 Please forward to DUP-SA

Date 19 /06/2019

Time 5:30

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

Frag

SYD | BNE | MEL | PER | ADL | NTL | DRW

FCS-TPO4B

FCS-TPOTA FCS-TP42

CHAIN OF CUSTODY RECORD

any	ALLIANCE GEO	TECHNICAL	ESSENCE	ect No			92	80			Project N	pistă D@euceli lanager		Aiden	Rooney			Sam	pler(s)				Sar	n Scully		
	40 WELDED DO 12	EVEN IN LO VOIC	Projec	ct Name			Meado	wbank			EDD Fo (ESdat, Cust	ormat EQuIS,						Hande	d over	by						
55	10 WELDER ROAD, S	EVEN HILLS NSW	or i suite															Email fo	or invo	ice		adı	min@a	llgeo.c	om.au	ū
Name	Sam Sc	ully	Total or Fellen															Email fo				sa		geo.co		100
N2	400339	745	alyses rieade apocity:									(%100								ontaine	ers		Name of Street	Turnarou rements vernight (NAME OF TAXABLE PARTY.	e (124) e 145)e
ections			An sera (aquected) obs miss be upo	lead	BTEX	PAH	8 Metais	VOCs	OCP	PCB	Phenois	Asbestos (0.001%)								São)E)	• 11			2 Day
Order			ofo. Where media									Asbe						11. Plastic Oml. Plastic	125mL Plastic	200mL Amber Gla	500ml, PFAS Bo	lar (Glass or HDPE)	° 31	Day*	San	5 Day Ircharg
	ent Sample ID	Sampled Date/Time (dd/mm/yy hh:mm)	######################################																71	200m 40i	500m	Jar (Asheele		ple Com Goods H	ments / E	Dang
		(dd/mm/yy hh:mm)	(S) Water (W)		^												- 2					c		Goods H	azard W	arnir
RIP	SPIKE BLAN	19-6-19	Water		X																					
KIF	DCAN	NV	V		- \																					
	1. 在节																									
																	100									
	Courier (#	Total Coun			- P	noted.		ame		0	Scully		Signature		1	la			Date	19	3 me	2019		Time	3 : 5	0.
of						ustai	N	віпе	1	Sam	CCUIIV															CAL

Enviro Sample NSW

To: Sam Scully RE: Eurofins | mgt Sample Receipt Advice - Report 661620 : Site MEADOWBANK Subject: (9280)----Original Message----From: Sam Scully [mailto:sam@allgeo.com.au] Sent: Wednesday, 19 June 2019 6:46 PM To: Enviro Sample NSW Subject: Re: Eurofins | mgt Sample Receipt Advice - Report 661620 : Site MEADOWBANK (9280) Thanks, Please analyse the extra bag (FCS-TP44) for asbestos ID. Kinda regards, Sam Sent from my iPhone > On 19 Jun 2019, at 6:35 pm, "EnviroSampleNSW@eurofins.com" <EnviroSampleNSW@eurofins.com> wrote: > Dear Valued Client, > DUP-5A Sent to ALS, Extra bag received FCS-TP44 placed on hold. > Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed. > > > Regards > Luca Dominici > Sample Receipt > Eurofins | mgt > Unit F3, Parkview Building > 16 Mars Road > LANE COVE WEST NSW 2066 > AUSTRALIA > Phone: +61 29900 8421 > Email: > EnviroSampleNSW@eurofins.comhttp://elvis.eurofins.com.au/MGT/admin/ma > iltoEnviroSampleNSW@eurofins.com> Website:environment.eurofins.com.au > <http:///> > EnviroNote 1079 - PFAS > Fingerprinting<https://www.eurofins.com.au/environmental-testing/compa

- > ny/news/environote-1079-pfas-fingerprinting/>
- > EnviroNote 1080 Total Organofluorine Analysis & PFAS
- > Investigationshttps://www.eurofins.com.au/environmental-testing/compa
- > ny/news/environote-1080-total-organofluorine-analysis-pfas-investigati
- > ons/>
- > <661620_COC.pdf>
- > <661620_sample_receipt_coc.pdf>
- > <661620_summary.pdf>

S canned By Websense For Eurofins

Enviro Sample NSW

From: Sam Scully <sam@allgeo.com.au>
Sent: Thursday, 20 June 2019 1:00 PM

To: Enviro Sample NSW

Subject: RE: Eurofins | mgt Sample Receipt Advice - Report 661620 : Site MEADOWBANK

(9280)

Follow Up Flag: Follow up **Flag Status:** Flagged

Thanks,

Could we please get soil sample TP23D-0.1-0.4 analysed for metals on 5 day TAT.

Please do not hesitate to contact me if you have any queries or questions,

Kind Regards,

Sam Scully

Environmental Consultant - 0400 339 745 | Email: sam@allgeo.com.au

Office Email: admin@allgeo.com.au - Website: allgeo.com.au - Office Phone: 1800 288 188

Postal Address: PO Box 275, Seven Hills NSW 1730 / Office & Laboratory Address: 10 Welder Road, Seven Hills NSW 2147

From: EnviroSampleNSW@eurofins.com <EnviroSampleNSW@eurofins.com>

Sent: Thursday, 20 June 2019 12:13 PM **To:** Aidan Rooney <aidan@allgeo.com.au>

Cc: enviro <enviro@allgeo.com.au>; Sam Scully <sam@allgeo.com.au>

Subject: Eurofins | mgt Sample Receipt Advice - Report 661620 : Site MEADOWBANK (9280)

Dear Valued Client.

DUP-5A Sent to ALS.

Please find attached an amended Sample Receipt Advice (SRA), an amended Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Luca Dominici

Eurofins | mgt

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 29900 8421

Email: <u>EnviroSampleNSW@eurofins.com</u> Website: <u>environment.eurofins.com.au</u>

EnviroNote 1079 - PFAS Fingerprinting

EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

Click here to report this email as spam.

Scanned By Websense For Euro fins

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Aidan Rooney

Report 661368-W
Project name MEADOWBANK

Project ID 9280

Received Date Jun 18, 2019

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TRIP SPIKE Water S19-Jn20073 Jun 18, 2019	TRIP BLANK Water S19-Jn20074 Jun 18, 2019
Test/Reference	LOR	Unit		
BTEX				
Benzene	0.001	mg/L	88	< 0.001
Toluene	0.001	mg/L	87	< 0.001
Ethylbenzene	0.001	mg/L	85	< 0.001
m&p-Xylenes	0.002	mg/L	84	< 0.002
o-Xylene	0.001	mg/L	87	< 0.001
Xylenes - Total	0.003	mg/L	85	< 0.003
4-Bromofluorobenzene (surr.)	1	%	120	129

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeBTEXSydneyJun 18, 201914 Days

- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

10 Welder Road **Report #:** 661368 **Due:** Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

			mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	ВТЕХ	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato			271		Х	Х		Х	Х	Х	Х	Х		Х	X
	ney Laboratory · bane Laboratory					^	^	Х	^	^	^	^	^	Х	^	
	h Laboratory - N															
	rnal Laboratory		30													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	SS03A_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20027	Х										
2	SS03B_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20028	Х										
3	SS03C_0.5- 0.7	Jun 18, 2019		Soil	S19-Jn20029	Х										
4	TP16A_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20030					Х					Х	
5	TP16A_1.6-1.7	Jun 18, 2019		Soil	S19-Jn20031					Х					Х	
6	TP16B_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20032					Х					Х	
7	TP16B_0.9-1.1	Jun 18, 2019		Soil	S19-Jn20033					Х					Х	

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Page 3 of 13
Report Number: 661368-W

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 18, 2019 4:21 PM

Jun 25, 2019

Aidan Rooney

5 Day

Company Name: Alliance Geotechnical

Address:

10 Welder Road

Seven Hills NSW 2147

Project Name: Project ID:

MEADOWBANK

9280

Order No.: Report #:

661368

Phone: 1800 288 188 Fax:

02 9675 1888

Melk	oourne Laborato		mple Detail # 1254 & 142	271		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Sydi	ney Laboratory	NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	/ - NATA Site #	20794													
Pert	h Laboratory - N	ATA Site # 237	36													
8	TP16C_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20034					х					Х	
9	TP16C_1.8- 2.0	Jun 18, 2019		Soil	S19-Jn20035					Х					х	
10	TP16D_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20036					Х					х	
11	TP16D_0.7- 0.9	Jun 18, 2019		Soil	S19-Jn20037					х					х	
12	TP24A_0.1-0.4	Jun 18, 2019		Soil	S19-Jn20038				Х						Х	
13	TP24B_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20039				Х						Х	
14	TP24B_0.3-0.5	Jun 18, 2019		Soil	S19-Jn20040				Х						Х	
15	TP24C_0.1- 0.4	Jun 18, 2019		Soil	S19-Jn20041				Х						Х	
16	TP24D_0.1-	Jun 18, 2019		Soil	S19-Jn20042				Х						Х	

MEADOWBANK

Company Name:

Project Name:

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

175 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

 10 Welder Road
 Report #:
 661368
 Due:
 Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

NSW 2147 Fax. 02 9073 1000 Contact Name. Attail Roonley

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

						Ą	Ą	Į	<u>ا</u>	Р	O	Ъ	Σ	В	Ζ	T.
		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	НОГД	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	271												
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794													
Pert	h Laboratory - N	ATA Site # 237	736													
	0.4															
17	TP30A_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20043	Х							Х		Х	
18	TP30A_1.7-1.9	Jun 18, 2019		Soil	S19-Jn20044	Х										
19	TP30B_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20045	Х										
20	TP30B_0.9-1.1	Jun 18, 2019		Soil	S19-Jn20046	Х										
21	TP30C_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20047	х										
22	TP30C_1.7- 1.9	Jun 18, 2019		Soil	S19-Jn20048	Х										
23	BH40C_0.1- 0.3	Jun 18, 2019		Soil	S19-Jn20049	х										
24	BH40C_1.7- 1.9	Jun 18, 2019		Soil	S19-Jn20050	х										

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

 10 Welder Road
 Report #:
 661368
 Due:
 Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

NSW 2147 Fax: 02 9675 1888 Contact Name: Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

	0.2 BH40D_0.9- 1.1 Jun 18, 2019 Soil S19-Jn2005 TP46_0.0-0.2 Jun 18, 2019 Soil S19-Jn2005 TP46_0.5-0.7 Jun 18, 2019 Soil S19-Jn2005 TP49_0.0-0.2 Jun 18, 2019 Soil S19-Jn2005 S19-Jn2005 S19-Jn2005 S19-Jn2005						Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	# 1254 & 1427	71												
						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Pert	h Laboratory - N	NATA Site # 237			T											
25		Jun 18, 2019	:	Soil	S19-Jn20051	Х										
26	BH40D_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20052	х										
27	TP46_0.0-0.2	Jun 18, 2019	;	Soil	S19-Jn20053						Х		Х		Х	
28	TP46_0.5-0.7	Jun 18, 2019	;	Soil	S19-Jn20054						Х		Х		Х	
29	TP49_0.0-0.2	Jun 18, 2019	;	Soil	S19-Jn20055	Х				Х	Х	Х	Х	Х	Χ	Х
30	TP50_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20056	Х				Х	Х	Х	Х	Х	Х	Х
31	TP51_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20057	Х				Х	Х	Х	Х	Х	Х	Х
32	TP51_0.8-1.0	Jun 18, 2019		Soil	S19-Jn20058	Х				Х	Х	Х	Х	Х	Х	Х
33	TP52_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20059	Х				Х	Х	Х	Х	Х	Х	Х
34	TP52_1.2-1.4	Jun 18, 2019	:	Soil	S19-Jn20060	Х				Х	Х	Х	Х	Х	Х	Х
35	TP53_0.9-1.1	Jun 18, 2019	(Soil	S19-Jn20061	Х				Х	Х	Х	Х	Χ	Х	Х

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Brisbane
Unit F3, Building F 1/21 Small
16 Mars Road Murarrie C
Lane Cove West NSW 2066 Phone : +6

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Alliance Geotechnical

Address:

10 Welder Road

Seven Hills NSW 2147

Project Name:

MEADOWBANK

Project ID:

9280

Order No.: Report #:

66

661368 1800 288 188

Phone: Fax:

02 9675 1888

Received: Due: Jun 18, 2019 4:21 PM Jun 25, 2019

Priority: 5 Day

Contact Name: Aidan Rooney

			nple Detail			Asbestos - WA guidelines	Asbestos Absence / Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
		ory - NATA Site														
		- NATA Site # 18				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site #														
		NATA Site # 237														
36	TP54_0.0-0.2	Jun 18, 2019	Soil		S19-Jn20062	Х				Х	Х	Х	X	X	Х	X
37	TP54_1.3-1.5	Jun 18, 2019	Soil		S19-Jn20063	Х				Х	Х	Х	Х	Х	Х	Х
38	TP57_0.0-0.2	Jun 18, 2019	Soil		S19-Jn20064	Х				Х	Х	Х	Х	Х	Х	Х
39	TP57_0.8-1.0	Jun 18, 2019	Soil		S19-Jn20065	Х										
40	DUP01	Jun 18, 2019	Soil		S19-Jn20066								Χ		Χ	
41	DUP02	Jun 18, 2019	Soil		S19-Jn20067								Х		Х	
42	DUP03	Jun 18, 2019	Soil		S19-Jn20068								Х		Х	
43	DUP04	Jun 18, 2019	Soil		S19-Jn20069								Х		Х	
44	FCS_TP30B	Jun 18, 2019	Buildi Mater		S19-Jn20070		Х									
45	FCS_TP30C	Jun 18, 2019	Buildi Mater	ing rials	S19-Jn20071		Х									
46	FCS_TP40C	Jun 18, 2019	Buildi	ing	S19-Jn20072		Х									

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F **Brisbane**1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

 Address:
 10 Welder Road
 Report #:
 661368
 Due:
 Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	oourne Laborato			271												
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory															
Pert	h Laboratory - N	IATA Site # 237	736	1												
				Materials												
47	TRIP SPIKE	Jun 18, 2019		Water	S19-Jn20073									Х		
48	TRIP BLANK	Jun 18, 2019		Water	S19-Jn20074									Х		
49	SS03A_0.5- 0.7	Jun 18, 2019		Soil	S19-Jn20075			х								
50	SS03B_0.8- 1.0	Jun 18, 2019		Soil	S19-Jn20076			X								
51	SS03C_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20077			Х								
52	TP16A_0.7-0.9	Jun 18, 2019		Soil	S19-Jn20078			Х								
53	TP16B_1.8-2.0	Jun 18, 2019	_	Soil	S19-Jn20079			Х								
54	TP16C_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20080			Х								

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received:

Address: 10 Welder Road

Seven Hills NSW 2147

MEADOWBANK

Project ID: 92

Project Name:

9280

Received: Jun 18, 2019 4:21 PM

 Report #:
 661368
 Due:
 Jun 25, 2019

 Phone:
 1800 288 188
 Priority:
 5 Day

Fax: 02 9675 1888 Contact Name: Aidan Rooney

Mall			mple Detail	174		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	oourne Laboratoney Laboratory			2/1		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory													_^	^	$\overline{}$
	h Laboratory - N															
55	TP30A_0.7-0.9		30	Soil	S19-Jn20081			Х								
56	TP30B_1.6-1.8	1		Soil	S19-Jn20082			Х								
57	TP30C_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20083								х		Х	
58	BH40C_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20084			Х								
59	BH40D_1.7- 1.9	Jun 18, 2019		Soil	S19-Jn20085			Х								
60	TP50_0.2-0.4	Jun 18, 2019		Soil	S19-Jn20086			Х								
61	TP51_1.3-1.5	Jun 18, 2019		Soil	S19-Jn20087			Х								
62	TP52_0.9-1.1	Jun 18, 2019		Soil	S19-Jn20088			Х								
63	TP53_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20089			Х								
64	TP53_1.2-1.4	Jun 18, 2019		Soil	S19-Jn20090			Х								

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

16 Mars Road

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

Company Name: Address: 10 Welder Road Report #: 661368 Due: Jun 25, 2019

Seven Hills Phone: 1800 288 188 Priority: 5 Day **Contact Name:** NSW 2147 Fax: 02 9675 1888 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

San	Sample Detail Sample Detail		Asbestos - WA guidelines	Asbestos Absence / Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons	
Melbourne Laboratory - NATA Site #	‡ 1254 & 1427	71												
Sydney Laboratory - NATA Site # 18	217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Brisbane Laboratory - NATA Site # 2	20794													
Perth Laboratory - NATA Site # 2373	36													
65 TP54_0.6-0.8 Jun 18, 2019		Soil	S19-Jn20091			Х								
Test Counts				24	3	16	5	18	12	10	18	12	31	10

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

	Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
BTEX									
Benzene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Xylenes - Total			mg/L	< 0.003			0.003	Pass	
LCS - % Recovery									
BTEX									
Benzene			%	90			70-130	Pass	
Toluene			%	89			70-130	Pass	
Ethylbenzene			%	88			70-130	Pass	
m&p-Xylenes			%	89			70-130	Pass	
o-Xylene			%	90			70-130	Pass	
Xylenes - Total			%	89			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
BTEX				Result 1					
Benzene	S19-Jn13611	NCP	%	100			70-130	Pass	
Toluene	S19-Jn13611	NCP	%	102			70-130	Pass	
Ethylbenzene	S19-Jn13611	NCP	%	100			70-130	Pass	
m&p-Xylenes	S19-Jn13611	NCP	%	98			70-130	Pass	
o-Xylene	S19-Jn13611	NCP	%	101			70-130	Pass	
Xylenes - Total	S19-Jn13611	NCP	%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S19-Jn23910	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S19-Jn23910	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S19-Jn23910	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S19-Jn23910	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S19-Jn23910	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S19-Jn23910	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 No

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

Andrew Black Analytical Services Manager

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147 lac-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Aidan Rooney

Report 661368-S

Project name MEADOWBANK

Project ID 9280

Received Date Jun 18, 2019

Client Sample ID			TP16A_0.0-0.2	TP16A_1.6-1.7	TP16B_0.0-0.2	TP16B_0.9-1.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn20030	S19-Jn20031	S19-Jn20032	S19-Jn20033
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.0	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.3	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.6	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	1.6	< 0.5	< 0.5	0.7
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	1.4	< 0.5	< 0.5	0.6
Total PAH*	0.5	mg/kg	7.7	< 0.5	< 0.5	1.3
2-Fluorobiphenyl (surr.)	1	%	95	120	112	112
p-Terphenyl-d14 (surr.)	1	%	112	124	136	117
% Moisture	1	%	7.2	6.7	9.5	10

Client Sample ID			TP16C_0.9-1.1	TP16C_1.8-2.0	TP16D_0.0-0.2	TP16D_0.7-0.9	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S19-Jn20034 S19-Jn20035		S19-Jn20036	S19-Jn20037	
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.0	0.8	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.3	1.1	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.5	1.4	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	0.7	0.7	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	0.8	0.7	< 0.5	< 0.5	
Benzo(b&j)fluorantheneN07	0.5	mg/kg	0.6	0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	0.7	0.7	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	1.4	1.6	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	0.6	0.6	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	1.4	1.4	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	6.7	6.2	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	130	128	127	126	
p-Terphenyl-d14 (surr.)	1	%	133	150	129	149	
% Moisture	1	%	8.6	8.1	8.4	6.7	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP24A_0.1-0.4 Soil S19-Jn20038 Jun 18, 2019	TP24B_0.0-0.2 Soil S19-Jn20039 Jun 18, 2019	TP24B_0.3-0.5 Soil S19-Jn20040 Jun 18, 2019	TP24C_0.1-0.4 Soil S19-Jn20041 Jun 18, 2019
Heavy Metals	<u> </u>	1				
Lead	5	mg/kg	25	84	10	58
% Moisture	1	%	17	24	13	14

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP24D_0.1-0.4 Soil S19-Jn20042 Jun 18, 2019	TP30A_0.0-0.2 Soil S19-Jn20043 Jun 18, 2019	TP46_0.0-0.2 Soil S19-Jn20053 Jun 18, 2019	TP46_0.5-0.7 Soil S19-Jn20054 Jun 18, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	< 0.05
a-BHC	0.05	mg/kg	-	-	< 0.05	< 0.05

Client Sample ID			TP24D_0.1-0.4	TP30A_0.0-0.2	TP46_0.0-0.2	TP46_0.5-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn20042	S19-Jn20043	S19-Jn20053	S19-Jn20054
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Aldrin	0.05	mg/kg	-	-	< 0.05	< 0.05
b-BHC	0.05	mg/kg	-	-	< 0.05	< 0.05
d-BHC	0.05	mg/kg	-	-	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	-	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	-	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	-	-	< 0.2	< 0.2
Toxaphene	1	mg/kg	-	-	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	< 1	102
Tetrachloro-m-xylene (surr.)	1	%	-	-	< 1	91
Heavy Metals						
Arsenic	2	mg/kg	-	3.7	2.2	3.3
Cadmium	0.4	mg/kg	-	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	7.0	7.3	14
Copper	5	mg/kg	-	11	16	< 5
Lead	5	mg/kg	< 5	33	21	6.0
Mercury	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	-	< 5	15	< 5
Zinc	5	mg/kg	-	18	36	< 5
% Moisture	1	%	13	11	15	10

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP49_0.0-0.2 Soil S19-Jn20055 Jun 18, 2019	TP50_0.0-0.2 Soil S19-Jn20056 Jun 18, 2019	TP51_0.0-0.2 Soil S19-Jn20057 Jun 18, 2019	TP51_0.8-1.0 Soil S19-Jn20058 Jun 18, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	60	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	60	< 50	< 50

Client Sample ID			TP49 0.0-0.2	TP50_0.0-0.2	TP51 0.0-0.2	TP51 0.8-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S19-Jn20055	S19-Jn20056	S19-Jn20057	S19-Jn20058
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.) Total Recoverable Hydrocarbons - 2013 NEPM	1 Erections	%	112	107	104	106
-			.0.5	.0.5	.0.5	.0.5
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10 loss BTEV (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04} TRH >C10-C16	20 50	mg/kg	< 20	< 20	< 20	< 20 < 50
TRH >C10-C16 TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg mg/kg	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50
	100			< 100	< 100	< 100
TRH >C16-C34 TRH >C34-C40	100	mg/kg	< 100 < 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
` '	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons	0.5		.0.5	.0.5	0.5	.0.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) * Benzo(a)pyrene TEQ (upper bound) *	0.5 0.5	mg/kg	0.6 1.2	0.6 1.2	1.2	0.6 1.2
Acenaphthene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	1.2	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	1.1	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	3.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	123	128	118	147
p-Terphenyl-d14 (surr.)	1	%	136	132	121	142
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
а-ВНС	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			TP49_0.0-0.2	TP50_0.0-0.2	TP51_0.0-0.2	TP51_0.8-1.0	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S19-Jn20055	S19-Jn20056	S19-Jn20057	S19-Jn20058	
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	
Test/Reference	LOR	Unit					
Organochlorine Pesticides	<u>'</u>						
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1	
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
Dibutylchlorendate (surr.)	1	%	104	112	107	96	
Tetrachloro-m-xylene (surr.)	1	%	95	87	88	81	
Polychlorinated Biphenyls		1					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PCB* Dibutylchlorendate (surr.)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Tetrachloro-m-xylene (surr.)	1	%	104 95	112 87	107 88	96 81	
Heavy Metals		70	95	07	00	01	
•			2.0	10	0.5	F 0	
Arsenic	2	mg/kg	3.0	12	8.5	5.2	
Chromium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Copper	5	mg/kg	16	25	17	10	
Copper Lead	5 5	mg/kg	< 5 < 5	16 47	14 68	33 40	
Mercury	0.1	mg/kg		0.1	0.2	< 0.1	
Nickel	5	mg/kg	< 0.1 < 5	< 5	5.2	< 5	
Zinc	5	mg/kg	< 5 < 5	64	100	74	
ZIIIU	j	mg/kg	< 5	04	100	/4	
% Moisture	1	%	10	12	12	5.0	
/0 IVIOISTUIE	I	70	1 10	12	12	5.0	

Client Sample ID			TP52_0.0-0.2	TP52 1.2-1.4	TP53 0.9-1.1	TP54 0.0-0.2	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S19-Jn20059	S19-Jn20060	S19-Jn20061	S19-Jn20062	
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	
•	1.00	1.121	Juli 10, 2019	Juli 16, 2019	Juli 18, 2019	Juli 18, 2019	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM		T					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	85	
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	130	
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	215	
BTEX	<u> </u>	1					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	100	100	102	98	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50 < 50		< 50	< 50	
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	170	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	120	
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	290	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.1	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.4	1.2	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluorantheneN07	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	1.9	< 0.5	0.8	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	1.0	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	1.5	< 0.5	0.8	< 0.5	
Total PAH*	0.5	mg/kg	7	< 0.5	1.6	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	117	123	111	130	
p-Terphenyl-d14 (surr.)	1	%	135	128	133	139	

Client Sample ID Sample Matrix			TP52_0.0-0.2 Soil	TP52_1.2-1.4 Soil	TP53_0.9-1.1 Soil	TP54_0.0-0.2 Soil
•						
Eurofins mgt Sample No.			S19-Jn20059	S19-Jn20060	S19-Jn20061	S19-Jn20062
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides	<u> </u>					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	101	95	113	114
Tetrachloro-m-xylene (surr.)	1	%	87	93	103	93
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcelor 1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Arcelor 1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Arcelor 1251	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Arcelor 1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260 Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	1	%	101	95	113	114
Tetrachloro-m-xylene (surr.) Heavy Metals	1	%	87	93	103	93
•			7.5	44	0.0	2.0
Arsenic	2	mg/kg	7.5	11	9.0	3.6
Chromium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Coppor	5	mg/kg	14	29	16	15
Copper Lead	5 5	mg/kg	27 110	8.2 21	35 91	36 67
	0.1	mg/kg	0.1	< 0.1	0.2	< 0.1
Mercury Nickel	5	mg/kg	5.5	< 0.1	12	8.7
Zinc	5	mg/kg mg/kg	150	5.9	150	170
LIIIU	<u> </u>	i ilig/kg	130	5.5	150	170
% Moisture	1	%	11	16	15	23

Date Sampled LOR Unit Jun 18, 2019	9						
Sample Matrix Soil Soil Soil Soil Soil Soil S19-Jn20064 S19-Jn20066 S19-Jn20066							
Sample Matrix Soil Soil Soil Soil Soil Soil S19-Jn20064 S19-Jn20066 S19-Jn20066							
Eurofins mgt Sample No. S19-Jn20063 S19-Jn20064 S19-Jn20066 Jun 18, 2019 Jun 18, 2019 </td <td>Client Sample ID</td> <td></td> <td></td> <td>TP54_1.3-1.5</td> <td>TP57_0.0-0.2</td> <td>DUP01</td> <td>DUP02</td>	Client Sample ID			TP54_1.3-1.5	TP57_0.0-0.2	DUP01	DUP02
Date Sampled LOR Unit Jun 18, 2019	Sample Matrix			Soil	Soil	Soil	Soil
Test/Reference LOR Unit Total Recoverable Hydrocarbons - 1999 NEPM Fractions Benzene LOR Unit TRH C6-C9 20 mg/kg < 20 - TRH C10-C14 20 mg/kg < 20 < 20 - - TRH C15-C28 50 mg/kg 52 54 - - - TRH C29-C36 50 mg/kg 78 65 -	Eurofins mgt Sample No.			S19-Jn20063	S19-Jn20064	S19-Jn20066	S19-Jn20067
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 20 mg/kg < 20 - - - TRH C10-C14 20 mg/kg < 20 < 20 - - - TRH C15-C28 50 mg/kg 52 54 - - - TRH C29-C36 50 mg/kg 78 65 -	Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019
TRH C6-C9 20 mg/kg < 20 -	Test/Reference	LOR	Unit				
TRH C10-C14 20 mg/kg < 20	Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions					
TRH C15-C28 50 mg/kg 52 54 - - TRH C29-C36 50 mg/kg 78 65 - - TRH C10-36 (Total) 50 mg/kg 130 119 - - BETEX Benzene 0.1 mg/kg < 0.1	TRH C6-C9	20	mg/kg	< 20	< 20	-	-
TRH C29-C36 50 mg/kg 78 65 - - TRH C10-36 (Total) 50 mg/kg 130 119 - - BTEX Benzene 0.1 mg/kg < 0.1	TRH C10-C14	20	mg/kg	< 20	< 20	-	-
TRH C10-36 (Total) 50 mg/kg 130 119 - - BTEX Benzene 0.1 mg/kg < 0.1	TRH C15-C28	50	mg/kg	52	54	-	-
BTEX Benzene 0.1 mg/kg < 0.1 < 0.1	TRH C29-C36	50	mg/kg	78	65	-	-
Benzene 0.1 mg/kg < 0.1 - - Toluene 0.1 mg/kg < 0.1	TRH C10-36 (Total)	50	mg/kg	130	119	-	-
Toluene 0.1 mg/kg < 0.1 - - Ethylbenzene 0.1 mg/kg < 0.1	BTEX						
Ethylbenzene 0.1 mg/kg < 0.1 - - m&p-Xylenes 0.2 mg/kg < 0.2	Benzene	0.1	mg/kg	< 0.1	< 0.1	-	-
m&p-Xylenes 0.2 mg/kg < 0.2	Toluene	0.1	mg/kg	< 0.1	< 0.1	-	-
	Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	-
o-Xylene 0.1 mg/kg < 0.1 < 0.1	m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	-
,	o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	-
Xylenes - Total 0.3 mg/kg < 0.3 - -	Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	-
4-Bromofluorobenzene (surr.) 1 % 103 99	4-Bromofluorobenzene (surr.)	1	%	103	99	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions					
Naphthalene ^{N02} 0.5 mg/kg < 0.5	Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	-
TRH C6-C10 20 mg/kg < 20	TRH C6-C10	20	mg/kg	< 20	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04} 20 mg/kg < 20	TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	-
TRH >C10-C16 50 mg/kg < 50	TRH >C10-C16	50	mg/kg	< 50	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01} 50 mg/kg < 50	TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	-
TRH >C16-C34 100 mg/kg 110 < 100	TRH >C16-C34	100	mg/kg	110	< 100	-	-
TRH >C34-C40	TRH >C34-C40	100	mg/kg	< 100	< 100	-	-
TRH >C10-C40 (total)* 100 mg/kg 110 < 100	TRH >C10-C40 (total)*	100	mg/kg	110	< 100	-	-
Polycyclic Aromatic Hydrocarbons	Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) * 0.5 mg/kg < 0.5	Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) * 0.5 mg/kg 0.6 - -	Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) * 0.5 mg/kg 1.2 1.2 -	Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-

Acenaphthene

Anthracene

Chrysene

Fluorene

Pyrene

Total PAH*

Fluoranthene

Naphthalene

Phenanthrene

Acenaphthylene

Benzo(a)pyrene

Benz(a)anthracene

Benzo(g.h.i)perylene

Benzo(k)fluoranthene

Dibenz(a.h)anthracene

Indeno(1.2.3-cd)pyrene

2-Fluorobiphenyl (surr.)

p-Terphenyl-d14 (surr.)

Benzo(b&j)fluorantheneN07

Client Sample ID			TP54_1.3-1.5	TP57_0.0-0.2	DUP01	DUP02	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			S19-Jn20063	S19-Jn20064	S19-Jn20066	S19-Jn20067	
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	Jun 18, 2019	
Test/Reference	LOR	Unit	Juli 10, 2010	Juli 10, 2015	Juli 10, 2013	0411 10, 2013	
Organochlorine Pesticides	LOR	Offic					
Chlordanes - Total	0.1		.0.4	.0.1			
4.4'-DDD	0.1	mg/kg	< 0.1 < 0.05	< 0.1 < 0.05	-	-	
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	=	
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-		
a-BHC	0.05	mg/kg mg/kg	< 0.05	< 0.05	-	-	
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-	
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-	
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	_	
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	_	_	
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	_	-	
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	_	-	
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	_	_	
Endrin	0.05	mg/kg	< 0.05	< 0.05	_	_	
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	_	_	
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	_	_	
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	_	_	
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	_	-	
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	_	_	
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-	
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	-	
Toxaphene	1	mg/kg	< 1	< 1	-	-	
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-	
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-	
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	-	
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	-	
Dibutylchlorendate (surr.)	1	%	95	85	-	-	
Tetrachloro-m-xylene (surr.)	1	%	87	85	-	-	
Polychlorinated Biphenyls		-					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	-	
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-	-	
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-	-	
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	-	-	
Dibutylchlorendate (surr.)	1	%	95	85	-	-	
Tetrachloro-m-xylene (surr.)	1	%	87	85	-	-	
Heavy Metals							
Arsenic	2	mg/kg	6.1	3.9	2.8	3.2	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	17	14	14	13	
Copper	5	mg/kg	14	< 5	27	28	
Lead	5	mg/kg	28	18	53	43	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	9.9	< 5	11	22	
Zinc	5	mg/kg	28	29	120	89	

Client Sample ID Sample Matrix			DUP03 Soil	DUP04 Soil	TP30C_0.0-0.2 Soil
Eurofins mgt Sample No.			S19-Jn20068	S19-Jn20069	S19-Jn20083
Date Sampled			Jun 18, 2019	Jun 18, 2019	Jun 18, 2019
Test/Reference	LOR	Unit			
Heavy Metals	•	•			
Arsenic	2	mg/kg	4.5	3.9	6.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	10	17	17
Copper	5	mg/kg	29	24	27
Lead	5	mg/kg	78	49	63
Mercury	0.1	mg/kg	< 0.1	0.1	0.2
Nickel	5	mg/kg	5.9	9.6	16
Zinc	5	mg/kg	78	130	110
% Moisture	1	%	9.8	13	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 23, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 23, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 23, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jun 23, 2019	14 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 23, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Jun 23, 2019	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Jun 23, 2019	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Jun 23, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Sydney	Jun 23, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jun 20, 2019	14 Days

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

10 Welder Road **Report #**: 661368 **Due**: Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
				271		Х	Х		Х	Х	Х	Х	Х		Х	X
	ney Laboratory · bane Laboratory					^	^	Х	^	^	^	^	^	Х	^	
	h Laboratory - N															
	rnal Laboratory		50													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	SS03A_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20027	Х										
2	SS03B_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20028	Х										
3	SS03C_0.5- 0.7	Jun 18, 2019		Soil	S19-Jn20029	Х										
4	TP16A_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20030					Х					Х	
5	TP16A_1.6-1.7	Jun 18, 2019		Soil	S19-Jn20031					Х					Х	
6	TP16B_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20032					Х					Х	
7	TP16B_0.9-1.1	Jun 18, 2019		Soil	S19-Jn20033					Х					Х	

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN : 50 005 085 521 Telephone: +61 2 9900 8400

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

10 Welder Road **Report #:** 661368 **Due:** Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

Sample Detail						Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato			271												
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory															
	h Laboratory - N		36													
8	TP16C_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20034					Х					Х	
9	TP16C_1.8- 2.0	Jun 18, 2019		Soil	S19-Jn20035					х					х	
10	TP16D_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20036					Х					Х	
11	TP16D_0.7- 0.9	Jun 18, 2019		Soil	S19-Jn20037					Х					Х	
12	TP24A_0.1-0.4	Jun 18, 2019		Soil	S19-Jn20038				Х						Х	
13	TP24B_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20039				Х						Х	
14	TP24B_0.3-0.5	Jun 18, 2019		Soil	S19-Jn20040				Х						Х	
15	TP24C_0.1- 0.4	Jun 18, 2019		Soil	S19-Jn20041				Х						Х	
16	TP24D_0.1-	Jun 18, 2019		Soil	S19-Jn20042				Х						Х	

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM Address:

10 Welder Road Report #: 661368 Due: Jun 25, 2019

Seven Hills Phone: 1800 288 188 Priority: 5 Day **Contact Name:** NSW 2147 Fax: 02 9675 1888 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

	Sample Detail						Asbestos Absence / Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato			<u>'1</u>												
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory															
Pert	h Laboratory - N 0.4	IATA Site # 237	36													
17	TP30A_0.0-0.2	lun 18 2019		Soil	S19-Jn20043	X							Х		Х	
18	TP30A_0.0 0.2			Soil	S19-Jn20044	X										
19	TP30B_0.0-0.2		- t	Soil	S19-Jn20045	X										
20	TP30B_0.9-1.1			Soil	S19-Jn20046	Х										
21	TP30C_0.9-	Jun 18, 2019		Soil	S19-Jn20047	Х										
22	TP30C_1.7- 1.9	Jun 18, 2019		Soil	S19-Jn20048	Х										
23	BH40C_0.1- 0.3	Jun 18, 2019		Soil	S19-Jn20049	Х										
24	BH40C_1.7- 1.9	Jun 18, 2019	!	Soil	S19-Jn20050	Х										

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Alliance Geotechnical

Address:

10 Welder Road

Seven Hills NSW 2147

Project Name:

MEADOWBANK

Project ID: 9280 Order No.: Report #:

661368

Phone: Fax:

1800 288 188

02 9675 1888

Received: Due:

Jun 18, 2019 4:21 PM

Jun 25, 2019 Priority: 5 Day

Contact Name: Aidan Rooney

	Sample Detail						Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	71												
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator															
Pert	h Laboratory - N	NATA Site # 237	36	ı												
25	BH40D_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20051	Х										
26	BH40D_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20052	х										
27	TP46_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20053						Х		Х		Х	
28	TP46_0.5-0.7	Jun 18, 2019		Soil	S19-Jn20054						Х		Χ		Χ	
29	TP49_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20055	Х				Х	Х	Х	Х	Х	Х	Х
30	TP50_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20056	Х				Х	Х	Х	Х	Х	Х	Х
31	TP51_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20057	Х				Х	Х	Х	Х	Х	Х	Х
32	TP51_0.8-1.0	Jun 18, 2019		Soil	S19-Jn20058	Х				Х	Х	Х	Х	Х	Х	Х
33	TP52_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20059	Х				Х	Х	Х	Х	Х	Х	Х
34	TP52_1.2-1.4	Jun 18, 2019		Soil	S19-Jn20060	Х				Х	Х	Х	Х	Х	Х	Х
35	TP53_0.9-1.1	Jun 18, 2019		Soil	S19-Jn20061	Х				Х	Х	Х	Х	Х	Χ	Χ

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

661368

1800 288 188

02 9675 1888

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 18, 2019 4:21 PM

Jun 25, 2019

Aidan Rooney

5 Day

Company Name:

Address:

Alliance Geotechnical

10 Welder Road

Seven Hills NSW 2147

Project Name:

Project ID: 9280

MEADOWBANK

		Sar	nple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	1254 & 1427 + 1	71												
Syd	ney Laboratory	- NATA Site # 18	3217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site # :														
Pert	h Laboratory - N	NATA Site # 237														
36	TP54_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20062	Х				Х	Х	Х	Х	Х	Х	Х
37	TP54_1.3-1.5	Jun 18, 2019		Soil	S19-Jn20063	Х				Х	Х	Х	Х	Х	Х	Х
38	TP57_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20064	Х				Х	Х	Х	Х	Х	Х	Х
39	TP57_0.8-1.0	Jun 18, 2019		Soil	S19-Jn20065	Х										
40	DUP01	Jun 18, 2019		Soil	S19-Jn20066								Х		Х	
41	DUP02	Jun 18, 2019		Soil	S19-Jn20067								Х		Х	
42	DUP03	Jun 18, 2019		Soil	S19-Jn20068								Х		Х	
43	DUP04	Jun 18, 2019		Soil	S19-Jn20069								Х		Х	
44	FCS_TP30B	Jun 18, 2019		Building Materials	S19-Jn20070		Х									
45	FCS_TP30C	Jun 18, 2019		Building Materials	S19-Jn20071		Х									
46	FCS_TP40C	Jun 18, 2019		Building	S19-Jn20072		Х									

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Alliance Geotechnical

Address:

10 Welder Road

Seven Hills

NSW 2147

Project Name:

MEADOWBANK

Project ID: 9280

Order No.: Report #:

661368

Phone: Fax: 1800 288 188 02 9675 1888 Priority:

Received:

Due:

Jun 25, 2019 5 Day Aidan Rooney

Jun 18, 2019 4:21 PM

Contact Name: Aidan R

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ney Laboratory					Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х
	bane Laboratory h Laboratory - N															
I CIL	Laboratory	ATA Site # 237		aterials												
47	TRIP SPIKE	Jun 18, 2019		ater	S19-Jn20073									Х		
48	TRIP BLANK	Jun 18, 2019	Wa	ater	S19-Jn20074									Х		
49	SS03A_0.5- 0.7	Jun 18, 2019	So	il	S19-Jn20075			Х								
50	SS03B_0.8- 1.0	Jun 18, 2019	So	il	S19-Jn20076			Х								
51	SS03C_0.0- 0.2	Jun 18, 2019	So	il	S19-Jn20077			Х								
52	TP16A_0.7-0.9	Jun 18, 2019	So	il	S19-Jn20078			Х								
53	TP16B_1.8-2.0	Jun 18, 2019	So	il	S19-Jn20079			Х								
54	TP16C_0.0- 0.2	Jun 18, 2019	So	il	S19-Jn20080			Х								

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

10 Welder Road **Report #**: 661368 **Due**: Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

Project Name: MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

	Sample Detail							Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	oourne Laborato														
	ney Laboratory				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator														
	h Laboratory - N			040 1 00004			· ·								
55	TP30A_0.7-0.9		Soil	S19-Jn20081			X								
56	TP30B_1.6-1.8		Soil	S19-Jn20082			Х								-
57	TP30C_0.0- 0.2	Jun 18, 2019	Soil	S19-Jn20083								Х		Х	
58	BH40C_0.9- 1.1	Jun 18, 2019	Soil	S19-Jn20084			Х								
59	BH40D_1.7- 1.9	Jun 18, 2019	Soil	S19-Jn20085			Х								
60	TP50_0.2-0.4	Jun 18, 2019	Soil	S19-Jn20086			Х								
61	TP51_1.3-1.5	Jun 18, 2019	Soil	S19-Jn20087			Х								
62	TP52_0.9-1.1	Jun 18, 2019	Soil	S19-Jn20088			Х								
63	TP53_0.0-0.2	Jun 18, 2019	Soil	S19-Jn20089			Х								
64	TP53_1.2-1.4	Jun 18, 2019	Soil	S19-Jn20090			Х								

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney Unit F3, Building F

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM Address:

10 Welder Road Report #: 661368 Due: Jun 25, 2019

Seven Hills Phone: 1800 288 188 Priority: 5 Day **Contact Name:** NSW 2147 Fax: 02 9675 1888 Aidan Rooney

Project Name: **MEADOWBANK**

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

Sa	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons		
Melbourne Laboratory - NATA Site	# 1254 & 14271												
Sydney Laboratory - NATA Site # 1	8217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site #	20794												
Perth Laboratory - NATA Site # 237	736												
65 TP54_0.6-0.8 Jun 18, 2019	Soil	S19-Jn20091			Х								
Test Counts			24	3	16	5	18	12	10	18	12	31	10

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure, April 2011 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.2 2018
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.2 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
mg/kg	< 20	20	Pass	
mg/kg	< 20	20	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.2	0.2	Pass	
	< 0.1	0.1	Pass	
	< 0.3	0.3	Pass	
1 3 3			•	
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
199	1.00			
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	t		_	
	1			
	1			
IIIg/kg	Z 0.5	0.5	Fass	
ma/ka	< 0.1	0.1	Page	
mg/kg	< 0.05	0.05	Pass	
	mg/kg	mg/kg < 20	mg/kg	mg/kg < 20 20 Pass mg/kg < 20

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	<1	1	Pass	
Method Blank	ı ıııg/ı.g			1 400	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.5	Pass	
Arcelor 1242	mg/kg	< 0.5	0.5	Pass	
Arcelor 1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank		1	T		
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ons				
TRH C6-C9	%	90	70-130	Pass	
TRH C10-C14	%	90	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	94	70-130	Pass	
Toluene	%	98	70-130	Pass	
Ethylbenzene	%	101	70-130	Pass	
m&p-Xylenes	%	102	70-130	Pass	
o-Xylene	%	102	70-130	Pass	
Xylenes - Total	%	102	70-130	Pass	
LCS - % Recovery		<u> </u>	T		
Total Recoverable Hydrocarbons - 2013 NEPM Fracti		101			
Naphthalene	%	121	70-130	Pass	
TRH C6-C10	%	87	70-130	Pass	
TRH >C10-C16	%	97	70-130	Pass	
LCS - % Recovery		1			
Polycyclic Aromatic Hydrocarbons	T				
Acenaphthene	%	109	70-130	Pass	
Acenaphthylene	%	112	70-130	Pass	
Anthracene	%	112	70-130	Pass	
Benz(a)anthracene	%	113	70-130	Pass	
Benzo(a)pyrene	%	111	70-130	Pass	

Test			Units	Result 1		Acceptance	Pass	Qualifying
						Limits	Limits	Code
Benzo(b&j)fluoranthene			%	121		70-130	Pass	
Benzo(g.h.i)perylene			%	110		70-130	Pass	
Benzo(k)fluoranthene			%	92		70-130	Pass	
Chrysene			%	115		70-130	Pass	
Dibenz(a.h)anthracene			%	109		70-130	Pass	
Fluoranthene			%	128		70-130	Pass	
Fluorene			%	108		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	109		70-130	Pass	
Naphthalene			%	107		70-130	Pass	
Phenanthrene			%	105		70-130	Pass	
Pyrene			%	121		70-130	Pass	
Crganochlorine Pesticides				1	Т	T	Ι	
Chlordanes - Total			0/	105		70 120	Door	
4.4'-DDD			% %	105 121		70-130 70-130	Pass Pass	
4.4'-DDE			%			70-130	Pass	
4.4'-DDE			%	114 112		70-130	Pass	
a-BHC			%	118		70-130	Pass	
Aldrin			%	113		70-130	Pass	
b-BHC			%	107		70-130	Pass	
d-BHC			%	119		70-130	Pass	
						70-130		
Dieldrin			%	113			Pass	
Endosulfan I			% %	109 109		70-130 70-130	Pass Pass	
Endosulfan II								
Endosulfan sulphate			%	117		70-130	Pass	
Endrin			%	112		70-130	Pass	
Endrin aldehyde			%	101		70-130	Pass	
Endrin ketone			%	112		70-130 70-130	Pass Pass	
g-BHC (Lindane)			%	116 114		70-130	Pass	
Heptachlor anavida			%	114				
Heptachlor epoxide Hexachlorobenzene			%	110		70-130	Pass	
			%			70-130	Pass	
Methoxychlor			%	116 98		70-130 70-130	Pass	
Toxaphene LCS - % Recovery			%	96		70-130	Pass	
				l	Ι	T	Ι	
Polychlorinated Biphenyls Aroclor-1260			%	83		70-130	Pass	
LCS - % Recovery			70	63		70-130	Pass	
				1	Т	T	l	
Heavy Metals Arsenic			%	89		70-130	Pass	
Cadmium			%	90		70-130	Pass	
Chromium			%	88		70-130	Pass	
			%	90		70-130	Pass	
Copper			%	93		70-130	Pass	
Lead Mercury			%	87		70-130	Pass	
Nickel			%	92		70-130	Pass	
Zinc			%	87		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	•	Source				Limits	Limits	Coue
Polycyclic Aromatic Hydrocarbons				Result 1				
Acenaphthene	S19-Jn20031	СР	%	121		70-130	Pass	
Acenaphthylene	S19-Jn20031	CP	%	122		70-130	Pass	
Anthracene	S19-Jn20031	CP	%	123		70-130	Pass	
Benz(a)anthracene	S19-J1120031	CP	%	117		70-130	Pass	
שטובעמןמווווומטפוופ	010-01120001	LOP	/0	111/		10-130	1 000	l

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene	S19-Jn20031	CP	%	123	70-130	Pass	
Benzo(b&j)fluoranthene	S19-Jn20031	CP	%	113	70-130	Pass	
Benzo(g.h.i)perylene	S19-Jn20031	CP	%	121	70-130	Pass	
Benzo(k)fluoranthene	S19-Jn20031	CP	%	118	70-130	Pass	
Chrysene	S19-Jn20031	CP	%	125	70-130	Pass	
Dibenz(a.h)anthracene	S19-Jn20031	CP	%	122	70-130	Pass	
Fluoranthene	S19-Jn20031	CP	%	126	70-130	Pass	
Fluorene	S19-Jn20031	CP	%	119	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Jn20031	CP	%	121	70-130	Pass	
Naphthalene	S19-Jn20031	CP	%	105	70-130	Pass	
Phenanthrene	S19-Jn20031	CP	%	116	70-130	Pass	
Pyrene	S19-Jn20031	CP	%	120	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Zinc	S19-Jn19869	NCP	%	83	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S19-Jn16014	NCP	%	117	70-130	Pass	
Toxaphene	S19-Jn15708	NCP	%	122	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	S19-Jn20054	СР	%	126	70-130	Pass	
4.4'-DDE	S19-Jn20054	СР	%	116	70-130	Pass	
4.4'-DDT	S19-Jn20054	СР	%	118	70-130	Pass	
a-BHC	S19-Jn20054	СР	%	112	70-130	Pass	
Aldrin	S19-Jn20054	CP	%	112	70-130	Pass	
b-BHC	S19-Jn20054	CP	%	103	70-130	Pass	
d-BHC	S19-Jn20054	CP	%	116	70-130	Pass	
Dieldrin	S19-Jn20054	CP	%	115	70-130	Pass	
Endosulfan I	S19-Jn20054	CP	%	115	70-130	Pass	
Endosulfan II	S19-Jn20054	CP	%	122	70-130	Pass	
Endosulfan sulphate	S19-Jn20054	CP	%	120	70-130	Pass	
Endrin	S19-Jn20054	CP	%	112	70-130	Pass	
Endrin aldehyde	S19-Jn20054	CP	%	112	70-130	Pass	
Endrin ketone	S19-Jn20054	CP	%	114	70-130	Pass	
g-BHC (Lindane)	S19-Jn20054	CP	%	111	70-130	Pass	
Heptachlor	S19-Jn20054	CP	%	112	70-130	Pass	
Heptachlor epoxide	S19-Jn20054	CP	%	114	70-130	Pass	
Hexachlorobenzene	S19-Jn20054	CP	%	107	70-130	Pass	
Methoxychlor	S19-Jn20054	CP	%	117	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbor	s - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S19-Jn20056	CP	%	93	70-130	Pass	
TRH C10-C14	S19-Jn20056	CP	%	91	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	S19-Jn20056	CP	%	93	70-130	Pass	
Toluene	S19-Jn20056	CP	%	93	70-130	Pass	
Ethylbenzene	S19-Jn20056	CP	%	96	70-130	Pass	
m&p-Xylenes	S19-Jn20056	CP	%	97	70-130	Pass	
o-Xylene	S19-Jn20056	CP	%	97	70-130	Pass	
Xylenes - Total	S19-Jn20056	СР	%	97	70-130	Pass	
71/101100 10101							4

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene	S19-Jn20056	CP	%	86			70-130	Pass	
TRH C6-C10	S19-Jn20056	CP	%	92			70-130	Pass	
TRH >C10-C16	S19-Jn20056	CP	%	94			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S19-Jn20056	CP	%	95			70-130	Pass	
Spike - % Recovery									
Heavy Metals	_			Result 1					
Arsenic	S19-Jn20069	CP	%	95			70-130	Pass	
Cadmium	S19-Jn20069	CP	%	88			70-130	Pass	
Chromium	S19-Jn20069	CP	%	88			70-130	Pass	
Copper	S19-Jn20069	СР	%	110			70-130	Pass	
Lead	S19-Jn20069	СР	%	102			70-130	Pass	
Mercury	S19-Jn20069	СР	%	89			70-130	Pass	
Nickel	S19-Jn20069	СР	%	89			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbor	ıs			Result 1	Result 2	RPD			
Acenaphthene	S19-Jn14157	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S19-Jn14157	NCP	mg/kg	0.7	0.5	29	30%	Pass	
Anthracene	S19-Jn14157	NCP	mg/kg	1.4	1.1	19	30%	Pass	
Benz(a)anthracene	S19-Jn14157	NCP	mg/kg	5.5	4.5	21	30%	Pass	
Benzo(a)pyrene	S19-Jn14157	NCP	mg/kg	7.7	5.9	27	30%	Pass	
Benzo(b&j)fluoranthene	S19-Jn14157	NCP	mg/kg	5.2	4.2	22	30%	Pass	
Benzo(g.h.i)perylene	S19-Jn14157	NCP	mg/kg	5.9	4.5	26	30%	Pass	
Benzo(k)fluoranthene	S19-Jn14157	NCP	mg/kg	5.0	4.0	22	30%	Pass	
Chrysene	S19-Jn14157	NCP	mg/kg	6.2	4.9	24	30%	Pass	
Dibenz(a.h)anthracene	S19-Jn14157	NCP	mg/kg	1.5	1.2	23	30%	Pass	
Fluoranthene	S19-Jn14157	NCP	mg/kg	18	14	22	30%	Pass	
Fluorene	S19-Jn14157	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S19-Jn14157	NCP	mg/kg	4.7	3.6	25	30%	Pass	
Naphthalene	S19-Jn14157	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S19-Jn14157	NCP	mg/kg	6.5	5.3	20	30%	Pass	
Pyrene	S19-Jn14157	NCP	mg/kg	15	12	23	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-Jn20030	СР	%	7.2	7.1	2.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-Jn20040	СР	%	13	14	10	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S19-Jn20053	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S19-Jn20053	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	1 010 01120000	i	mg/ivg	\ 0.00	\ 0.00	<u> </u>	JU /0	1 433	
Endosulfan II	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endrin	S19-Jn20053	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S19-Jn20053	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S19-Jn20053	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Toxaphene	S19-Jn20053	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate	319-31120033	l Ci	l Hig/kg				3070	1 033	
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ione		Result 1	Result 2	RPD			
TRH C6-C9	S19-Jn20055	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-Jn10312	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-JI110312	NCP		< 50	< 50	<u><1</u>	30%	Pass	
			mg/kg			<u> </u>			
TRH C29-C36	S19-Jn10312	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate BTEX				Popult 4	Result 2	DDD			
	S10 In20055	CD	mc/lin	Result 1		RPD	200/	Bess	
Benzene	S19-Jn20055	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Jn20055	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Jn20055	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Jn20055	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Jn20055	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-Jn20055	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate Table 1 Inches	0040 NEDM F	•		Doort 4	D 11 0	DDD	I	1	
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	000/	+	
Naphthalene	S19-Jn20055	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Jn20055	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S19-Jn10312	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-Jn10312	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S19-Jn10312	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				I					
Polychlorinated Biphenyls	T 010 1 10010			Result 1	Result 2	RPD	2001	+	
Aroclor-1016	S19-Jn10312	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S19-Jn10312	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S19-Jn10312	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S19-Jn10312	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S19-Jn10312	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S19-Jn10312	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S19-Jn10312	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
0/ 14 : .	046 1 6	T ==		Result 1	Result 2	RPD	225	+	
% Moisture	S19-Jn20059	CP	%	11	12	5.0	30%	Pass	
Duplicate				I _	_		I		
Heavy Metals		1	I	Result 1	Result 2	RPD			
Arsenic	S19-Jn20068	CP	mg/kg	4.5	5.6	<1	30%	Pass	
Cadmium	S19-Jn20068	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Jn20068	CP	mg/kg	10	11	6.0	30%	Pass	
Copper	S19-Jn20068	CP	mg/kg	29	32	9.0	30%	Pass	
Lead	S19-Jn20068	CP	mg/kg	78	86	10	30%	Pass	
Mercury	S19-Jn20068	CP	mg/kg	< 0.1	0.1	16	30%	Pass	
Nickel	S19-Jn20068	CP	mg/kg	5.9	6.3	6.0	30%	Pass	
Zinc	S19-Jn20068	CP	mg/kg	78	78	<1	30%	Pass	
Duplicate					,				
		1	T	Result 1	Result 2	RPD			
% Moisture	S19-Jn20083	CP	%	16	15	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attention: Aidan Rooney
Report 661368-AID
Project Name MEADOWBANK

Project ID 9280

Received Date Jun 18, 2019
Date Reported Jun 25, 2019

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name MEADOWBANK

Project ID 9280

Date SampledJun 18, 2019Report661368-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS03A_0.0-0.2	19-Jn20027	Jun 18, 2019	Approximate Sample 700g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS03B_0.0-0.2	19-Jn20028	Jun 18, 2019	Approximate Sample 684g Sample consisted of: Brown coarse-grained soil, rocks and fragments of bitumen	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS03C_0.5-0.7	19-Jn20029	Jun 18, 2019	Approximate Sample 526g Sample consisted of: Brown coarse-grained soil, rocks and coal-like material	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP30A_0.0-0.2	19-Jn20043	Jun 18, 2019	Approximate Sample 598g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP30A_1.7-1.9	19-Jn20044	Jun 18, 2019	Approximate Sample 803g Sample consisted of: Brown coarse-grained soil and rocks	AF: Chrysotile and crocidolite asbestos detected in the form of loose fibre bundles. Approximate raw weight of AF = 0.0034g* Estimated asbestos content in AF = 0.0034g* Total estimated asbestos concentration in AF = 0.00042% w/w* No asbestos detected at the reporting limit of 0.001% w/w.* Synthetic mineral fibre detected. Organic fibre detected. No respirable fibres detected.
TP30B_0.0-0.2	19-Jn20045	Jun 18, 2019	Approximate Sample 576g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Synthetic mineral fibre detected. Organic fibre detected. No respirable fibres detected.

 Date Reported: Jun 25, 2019
 Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066
 Page 2 of 16

 Date Reported: Jun 25, 2019
 ABN : 50 005 085 521 Telephone: +61 2 9900 8400
 Report Number: 661368-AID

Date Reported: Jun 25, 2019

mgt

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
TP30B_0.9-1.1	19-Jn20046	Jun 18, 2019	Approximate Sample 663g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP30C_0.9-1.1	19-Jn20047	Jun 18, 2019	Approximate Sample 762g Sample consisted of: Brown coarse-grained soil, rocks and fragments of bitumen	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP30C_1.7-1.9	19-Jn20048	Jun 18, 2019	Approximate Sample 830g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH40C_0.1-0.3	19-Jn20049	Jun 18, 2019	Approximate Sample 705g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH40C_1.7-1.9	19-Jn20050	Jun 18, 2019	Approximate Sample 839g Sample consisted of: Brown coarse-grained soil, rocks and fragments of bitumen	No asbestos detected at the reporting limit of 0.001% w/w.* Synthetic mineral fibre detected. Organic fibre detected. No respirable fibres detected.
BH40D_0.0-0.2	19-Jn20051	Jun 18, 2019	Approximate Sample 768g Sample consisted of: Brown coarse-grained soil, rocks and fragments of bitumen	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
BH40D_0.9-1.1	19-Jn20052	Jun 18, 2019	Approximate Sample 726g Sample consisted of: Brown coarse-grained soil and rocks	AF: Chrysotile asbestos detected in the form of loose fibre bundles. Approximate raw weight of AF = 0.0019g* Estimated asbestos content in AF = 0.0019g* Total estimated asbestos concentration in AF = 0.00026% w/w* No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected.
TP49_0.0-0.2	19-Jn20055	Jun 18, 2019	Approximate Sample 593g Sample consisted of: Tan coarse-grained soil and rocks	No respirable fibres detected. No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP50_0.0-0.2	19-Jn20056	Jun 18, 2019	Approximate Sample 670g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP51_0.0-0.2	19-Jn20057	Jun 18, 2019	Approximate Sample 673g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP51_0.8-1.0	19-Jn20058	Jun 18, 2019	Approximate Sample 808g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
TP52_0.0-0.2	19-Jn20059	Jun 18, 2019	Approximate Sample 711g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP52_1.2-1.4	19-Jn20060	Jun 18, 2019	Approximate Sample 515g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP53_0.9-1.1	19-Jn20061	Jun 18, 2019	Approximate Sample 506g Sample consisted of: Brown coarse-grained soil and rocks	FA: Chrysotile, amosite and crocidolite asbestos detected in weathered fibre cement fragments. Approximate raw weight of FA = 0.0026g Estimated asbestos content in FA = 0.0018g* Total estimated asbestos concentration in FA = 0.00036% w/w* No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP54_0.0-0.2	19-Jn20062	Jun 18, 2019	Approximate Sample 491g Sample consisted of: Brown coarse-grained soil, rocks and fragments of bitumen	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP54_1.3-1.5	19-Jn20063	Jun 18, 2019	Approximate Sample 633g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
TP57_0.0-0.2	19-Jn20064	Jun 18, 2019	Approximate Sample 679g Sample consisted of: Brown coarse-grained soil and rocks	FA: Chrysotile asbestos detected in weathered fibre cement fragments. Approximate Raw weight of FA = 0.012g Estimated asbestos content in FA = 0.0074g* AF: Chrysotile asbestos detected in the form of loose fibre bundles. Approximate raw weight of AF = 0.0014g* Estimated asbestos content in AF = 0.0014g* Total estimated asbestos content in FA and AF = 0.0088g* Total estimated asbestos concentration in FA and AF = 0.0013% W/w*
				Organic fibre detected. No respirable fibres detected.
TP57_0.8-1.0	19-Jn20065	Jun 18, 2019	Approximate Sample 720g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
FCS_TP30B	19-Jn20070	Jun 18, 2019	Approximate Sample 15g / 54x45x4mm Sample consisted of: Grey fibre cement material	Chrysotile asbestos detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
FCS_TP30C	19-Jn20071	Jun 18, 2019	Approximate Sample 49g / 113x47x4mm Sample consisted of: Grey fibre cement material	Chrysotile asbestos detected.
FCS_TP40C	19-Jn20072	Jun 18, 2019	Approximate Sample 16g / 9/x34x4mm	No asbestos detected. Synthetic mineral fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Asbestos - LTM-ASB-8020	Sydney	Jun 18, 2019	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Jun 18, 2019	Indefinite

Report Number: 661368-AID

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 18, 2019 4:21 PM

Jun 25, 2019

Aidan Rooney

5 Day

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

MEADOWBANK

Project ID: 9280

Order No.:

Report #: 661368

Phone: 1800 288 188 **Fax:** 02 9675 1888

Eurofins | mgt Analytical Services Manager : Andrew Black

Molli			mple Detail	174		Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato				Х	Х	Х	Х	Х	Х	Х	Х	V	Х	X	
	ney Laboratory					^						^		Х	^	^
	bane Laboratory h Laboratory - N															
	rnal Laboratory		30													
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID											
	•	-	Time													
1	SS03A_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20027	Х										
2	SS03B_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20028	х										
3	SS03C_0.5- 0.7	Jun 18, 2019		Soil	S19-Jn20029	х										
4	TP16A_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20030					Х					Х	
5	TP16A_1.6-1.7	Jun 18, 2019		Soil	S19-Jn20031					Х					Х	
6	TP16B_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20032					Х					Х	
7	TP16B_0.9-1.1	Jun 18, 2019		Soil	S19-Jn20033					Х					Х	

Page 7 of 16

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

661368

1800 288 188

02 9675 1888

Sydney Unit F3, Building F 16 Mars Road

Priority:

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

MEADOWBANK

Project ID:

9280

Received: Jun 18, 2019 4:21 PM

Due: Jun 25, 2019

Contact Name: Aidan Rooney

Eurofins | mgt Analytical Services Manager : Andrew Black

5 Day

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	oourne Laborato			271												
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х
	bane Laboratory															
Pert	h Laboratory - N	IATA Site # 237	36	1												
8	TP16C_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20034					Х					Х	
9	TP16C_1.8- 2.0	Jun 18, 2019		Soil	S19-Jn20035					х					Х	
10	TP16D_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20036					х					Х	
11	TP16D_0.7- 0.9	Jun 18, 2019		Soil	S19-Jn20037					х					Х	
12	TP24A_0.1-0.4	Jun 18, 2019		Soil	S19-Jn20038				Х						Х	
13	TP24B_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20039				Х						Х	
14	TP24B_0.3-0.5	Jun 18, 2019		Soil	S19-Jn20040				Х						Х	
15	TP24C_0.1- 0.4	Jun 18, 2019		Soil	S19-Jn20041				Х						Х	
16	TP24D_0.1-	Jun 18, 2019		Soil	S19-Jn20042				Х						Х	

Project Name:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

 Address:
 10 Welder Road
 Report #:
 661368
 Due:
 Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

1 ax. 02 9073 1000 Contact Name. Adam Nooney

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

		Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	oourne Laborato															
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory															
Pert	h Laboratory - N	IATA Site # 237	36													
17	0.4	lum 10, 2010		Soil	S19-Jn20043	Х							Х		Х	
18	TP30A_0.0-0.2 TP30A_1.7-1.9			Soil	S19-Jn20043	X									^	
19	TP30A_1.7-1.9			Soil	S19-Jn20044	X										
20	TP30B_0.0-0.2			Soil	S19-Jn20046	X										
21	TP30C_0.9-	Jun 18, 2019		Soil	S19-Jn20047	Х										
22	TP30C_1.7- 1.9	Jun 18, 2019		Soil	S19-Jn20048	Х										
23	BH40C_0.1- 0.3	Jun 18, 2019		Soil	S19-Jn20049	Х										
24	BH40C_1.7- 1.9	Jun 18, 2019		Soil	S19-Jn20050	Х										

Page 9 of 16

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

MEADOWBANK

Project ID: 9280

Order No.: Report #:

Fax:

661368

Phone:

1800 288 188 02 9675 1888 Received:

Jun 18, 2019 4:21 PM Jun 25, 2019

Due: Jun 25, 20 Priority: 5 Day

Contact Name: Aidan Rooney

Eurofins | mgt Analytical Services Manager : Andrew Black

			Asbestos - WA guidelines	Asbestos Absence / Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons			
Mell	ourne Laborate	ory - NATA Site	# 1254 & 1427	71												
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - N	NATA Site # 237														
25	BH40D_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20051	Х										
26	BH40D_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20052	х										
27	TP46_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20053						Х		Χ		Х	
28	TP46_0.5-0.7	Jun 18, 2019		Soil	S19-Jn20054						Х		Х		Х	
29	TP49_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20055	Х				Х	Х	Х	Χ	Х	Х	Х
30	TP50_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20056	Х				Х	Х	Х	Х	Х	Х	Х
31	TP51_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20057	Х				Х	Х	Х	Х	Х	Х	Х
32	TP51_0.8-1.0	Jun 18, 2019		Soil	S19-Jn20058	Х				Х	Х	Х	Х	Х	Х	Х
33	TP52_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20059	Х				Х	Х	Х	Х	Х	Х	Х
34	TP52_1.2-1.4	Jun 18, 2019		Soil	S19-Jn20060	Х				Х	Х	Х	Х	Х	Х	Х
35	TP53_0.9-1.1	Jun 18, 2019		Soil	S19-Jn20061	Х				Х	Х	Х	Χ	Х	Х	Χ

Address:

Project Name:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road

Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

10 Welder Road **Report #**: 661368 **Due**: Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

NSW 2147 Fax. 02 9073 1000 Contact Name. Attail Roonley

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

Metals M8 Polychlorinated Biphenyls Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons Lead HOLD Asbestos Absence /Presence Asbestos - WA guidelines Sample Detail		
Melbourne Laboratory - NATA Site # 1254 & 14271		
Sydney Laboratory - NATA Site # 18217 X X X X X X X X X X X X X X X X X X X	Х	X
Brisbane Laboratory - NATA Site # 20794		
Perth Laboratory - NATA Site # 23736		
36 TP54_0.0-0.2 Jun 18, 2019 Soil S19-Jn20062 X X X X X X	Х	X
37 TP54_1.3-1.5 Jun 18, 2019 Soil S19-Jn20063 X X X X X X	Х	X
38 TP57_0.0-0.2 Jun 18, 2019 Soil S19-Jn20064 X X X X X X	Х	X
39 TP57_0.8-1.0 Jun 18, 2019 Soil S19-Jn20065 X		
40 DUP01 Jun 18, 2019 Soil S19-Jn20066 X	Х	
41 DUP02 Jun 18, 2019 Soil S19-Jn20067 X	Х	
42 DUP03 Jun 18, 2019 Soil S19-Jn20068 X	Х	
43 DUP04 Jun 18, 2019 Soil S19-Jn20069 X	Х	
44 FCS_TP30B Jun 18, 2019 Building S19-Jn20070 X		
45 FCS_TP30C Jun 18, 2019 Building Materials S19-Jn20071 X		
46 FCS_TP40C Jun 18, 2019 Building S19-Jn20072 X		

Address:

Project Name:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road

Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Brisbane
Unit F3, Building F 1/21 Small

16 Mars Road

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

10 Welder Road **Report #:** 661368 **Due:** Jun 25, 2019

 Seven Hills
 Phone:
 1800 288 188
 Priority:
 5 Day

 NSW 2147
 Fax:
 02 9675 1888
 Contact Name:
 Aidan Rooney

NSW 2147 Fax. 02 9073 1000 Contact Name. Addit Nobiles

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

			mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato					· ·	· ·	V		V			V	V	· ·	
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory h Laboratory - N															
reit	Laboratory - N	IATA Site # 237		aterials	Τ											
47	TRIP SPIKE	Jun 18, 2019		ater	S19-Jn20073									Х		
48	TRIP BLANK	Jun 18, 2019		ater	S19-Jn20074									Х		
49	SS03A_0.5- 0.7	Jun 18, 2019	Sc	oil	S19-Jn20075			Х								
50	SS03B_0.8- 1.0	Jun 18, 2019	Sc	oil	S19-Jn20076			Х								
51	SS03C_0.0- 0.2	Jun 18, 2019	Sc	oil	S19-Jn20077			х								
52	TP16A_0.7-0.9	Jun 18, 2019	Sc	oil	S19-Jn20078			Х								
53	TP16B_1.8-2.0	Jun 18, 2019	Sc	oil	S19-Jn20079			Х								
54	TP16C_0.0- 0.2	Jun 18, 2019	So	oil	S19-Jn20080			Х								

Page 12 of 16

Company Name:

Project Name:

Address:

mgt

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 16 Mars Road

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Alliance Geotechnical Order No.: Received: Jun 18, 2019 4:21 PM

10 Welder Road Report #: 661368 Due: Jun 25, 2019

Seven Hills Phone: 1800 288 188 Priority: 5 Day NSW 2147 Fax: 02 9675 1888 **Contact Name:** Aidan Rooney

Project ID: 9280 **Eurofins | mgt Analytical Services Manager : Andrew Black**

			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons			
	ourne Laborato			71												
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794													
Pert	h Laboratory - N		36	T												
55	TP30A_0.7-0.9	1		Soil	S19-Jn20081			Х								
56	TP30B_1.6-1.8	Jun 18, 2019		Soil	S19-Jn20082			Х								
57	TP30C_0.0- 0.2	Jun 18, 2019		Soil	S19-Jn20083								Х		Х	
58	BH40C_0.9- 1.1	Jun 18, 2019		Soil	S19-Jn20084			х								
59	BH40D_1.7- 1.9	Jun 18, 2019		Soil	S19-Jn20085			Х								
60	TP50_0.2-0.4	Jun 18, 2019		Soil	S19-Jn20086			Х								
61	TP51_1.3-1.5	Jun 18, 2019		Soil	S19-Jn20087			Х								
62	TP52_0.9-1.1	Jun 18, 2019		Soil	S19-Jn20088			Х								
63	TP53_0.0-0.2	Jun 18, 2019		Soil	S19-Jn20089			Х								
64	TP53_1.2-1.4	Jun 18, 2019		Soil	S19-Jn20090			Х								

Page 13 of 16

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne

661368

1800 288 188

02 9675 1888

6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Jun 18, 2019 4:21 PM

Jun 25, 2019 5 Day

Aidan Rooney

Company Name:

Alliance Geotechnical

10 Welder Road Seven Hills

NSW 2147

Project Name:

Address:

MEADOWBANK

Project ID: 9280

Eurofins | mgt Analytical Services Manager : Andrew Black

	Sa	mple Detail			Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	Lead	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melbourne Laboratory -	NATA Site	# 1254 & 142	71												
Sydney Laboratory - NA	ATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - N	NATA Site #	20794													
Perth Laboratory - NAT	A Site # 237	36													
65 TP54_0.6-0.8 Jur	n 18, 2019		Soil	S19-Jn20091			Х								
Test Counts					24	3	16	5	18	12	10	18	12	31	10

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight basis grams per kilogram Filter loading: fibres/100 graticule areas

fibres/mL Reported Concentration: L/min

Terms

ΑF

Sample is dried by heating prior to analysis Drv

LOR Limit of Reporting COC Chain of Custody SRA Sample Receipt Advice

International Standards Organisation ISO

AS Australian Standards

Date Reported: Jun 25, 2019

WA DOH Reference document for the NEPM, Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve. Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable" FA Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 15 of 16

Report Number: 661368-AID

Comments

S19-Jn20062: Sample received was less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

Date Reported: Jun 25, 2019

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins, Impd shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential clamps including, but not limited to, loss profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reproduced evecypt in full and relates only to the tiens tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 661368-AID

⁻ Indicates Not Requested

 $^{^{\}star}$ Indicates NATA accreditation does not cover the performance of this service

	CHAIN OF CUSTODY Eurofins mgt ABN 50 005 085			Laboratory 8ld.F 16 Mars Road Lane 0 8400 EnviroSampleNS\	Cove West NSW 2066 Unit	bane Laboratory 1 21 Smallwood Place Murarri 902 4600 EnviroSampleQLI		Perth Laboratory Unit 2 91 Leach Hig 08 9251 9600 En	, Ihway Kewdal		om			6 Monterey I	Laboratory Road Dandenong South V D EnviroSampleVic@eu		
Company	Alliance Ce	ofe chaici	Project Na	92	80	Project Manager	Piden	Rooney		Contract of	npler(s)	Q	ya M	Sel	ly .	
Address			Project Name	Meno	doubank	EDD Format ESdat. EQuIS etc				Hand	ed over	by					
			Ja.	-						Email	for Inv	oice					
Contact Name	· Sam Sall	ly	Total or Fittered							Email	for Res	ults					
Phone №	0400 339	745	ses se specify 'o attract SI							Cha	nge conta	Contain ainer type 8	ers L size if ned	essary.	Required Turna Default will be 5	around Time (TAT 5 days if not ticked.)
Special Direction	ons		Analys											ines)	Overnight (rep	◆Surcharge will apply orling by 9am)◆	
Purchase Orde			is are regu	I						5 5	2	Slass	ottle	DPE) VA Guide	☐ Same day◆ ☐ 2 days◆	☐ 1 day♦ ☐ 3 days◆	
Quote ID Nº			Xi) Where metals are re SUTE code of	D 10						500mL Plastic 250ml Plastic	125mL Plastic	200mL Amber Glass	500mL PFAS Bottle	Jar (Glass or HDPE) Other (Asbestos AS4964, WA Guidelines)	5 days (Standa	-	
		Sampled	Matrix	10 9						250	125	200mL	500mL	Jar (Gi	Other(PARTE I)
Nº	Client Sample ID	Date/Time dil/mm/yy hh:mm	Solid (S) Water (W)											Other (Sample (/ Dangerous Goo	Comments ds Hazard Warnir	ng
1 550	J3A-0.01-0.1	18-6-19	Sil X														
	039-05-0.7	d'a	3011	×				-									
	3B-0.0-0.2		X														
	3B-0,8-1.0			×													
	3C-0.0-0,2			×													
	36-0.5-0.7		X														
TOI	6A-0.0-0.2			X													
8 6 01				\ \ \													+
171	6A-0.7-0.9			~													4
	6A-1.6-18										Ш						
17916	B-0.0-0.2		V	X													
lethod of Shipm	neint Courier (#	Total C	Hand Delivered	□ Rostol	Name 53 A	2- 114	O'rest a	17 /0				12	Щ	9			
Eurofins) r				Postal BNE MEL PER A	Name S A Signature	Scul	Signature	Date 12	06	E-72 18)ate / 'ime		11°0	1 Pn	Time 4	10.7	
Laboratory Us	e Only Received By	lupan		BNE MEL PER A				Date	00		īme		1,2	111	Report №	-66120	2
rofins Environme	nt Testing Australia Pty Ltd trading as Eurofins r	mgt			Submission of sa	amples to the laboratory will be	deemed as acceptance of	Eurofins mgt Standard Term	s and Condition	ons unless a	greed oth	erwise, A c	opy of Euro	fins mgt Sta	Indard Terms and Condition	ons is available on requ	Jest.

	CHAIN OF CUSTODY Eurofins mgt ABN 50 005 08		_	Sydney Laborate Unit F3 Bld.F 16 Mi 02 9900 8400 Er	ars Road Lane Co	eve West NSW 2066 @eurofins.com		e Laboratory Smallwood Place Murarrie 4600 EnviroSampleQLD(Unit 2 91 Leach Highway Kew 08 9251 9600 EnviroSample					- 6	Monterey I	: Laboratory Road Dandenong South VIC 00 EnviroSampleVi	
Company	Allance	Geo	Projec	ot Nº	929	30		Project Manager	Aiden	Rooney	200	Sampl	er(s)		Sa	m	Souly	
Address	6 10 PD X	2	Project	Name /	lego	lowba	nk	EDD Format EStat. EquilS atc			Н	anded (over by					
Mulicaa	Welder K		illered"								Er	nail for	Invoice					
Contact Name	Sam S	ally	Total" or "F								Er	nail for	Results					
Phone №		l.	se rpecty of								8	Change		ntainer type & s	's ize if neocs	sary.	Required Turnare Default will be 5 o	
Special Direction Purchase Orde		T.	Analys Where metals are indressled, pleas	PH FAD	16/4						500mL Plastic	250mL Plastic	125mL Plastic 200mL Amber Glass	40mL VOA vial	500mL PFAS Bottle	= 65	Civemight (report Same day) Same day) 2 days days (Standar Other)	☐ 1 day• ☐ 3 days•
N <u>e</u>	Client Sample ID	Sampled Date/Time dd/mm/yy hh-mm	Matrix Solid (S) Waler (W)	a-									8			Other (Asb	Sample C / Dangerous Good	
1 TPIC	B-09-1.1	18-6-19	Soil	\times														
	B-1.8-2.0	T			\times													
3 TPIE	C-0,0-0,2				\rightarrow													
17916	6C-0.9-1.1			X														
5 TP16	6-1.8-2.0			X														
6 TP1(6D-0.0-0.2			X														
	D-0.7-09			×														
B TPS	49-0.1-0.4	,		Ø×														
	48-00-0.2			×														
	148-03-65		V	\rightarrow														
			Counts					27		22			1	T				12 30 32 4
Method of Shipm	ent Courier (#) 7	Hand Delivered		Postal	Name Sq	1 Sa	M	Signature	29		Dat	e /8	_	-19		//	on
Eurofins n		upen				DL NTL DRW	Signature			Date 18/06	5	Tim		Ч	:2	181	1 Temperature	18-7
Tanoratory 03	Received By			SYD BNE F	MEL PER A	DL NTL DRW	Signature			Date	AFTE	Tim	9	4			Report №	

Perth Laboratory

Melbourne Laboratory

Sydney Laboratory

	CHAIN OF CUSTOD			d.F 16 Mars Ro	oad Lane Cove West NSW 2066 ampleNSW@eurofins.com	Unit 1 21	ne Laboratory Smallwood Płace Muram 4600 EnviroSampleQL		Perth Laboratory Unit 2 91 Leach Highway 08 9251 9600 EnviroSa				[6 Mon	nterey Roa	aboratory ad Dandenong South VIC 3175 EnviroSampleVi eurofins.com
Company	Allrance Co	cofechical	Project №	(7280		Project Manager	Adn	Rooney		Sampler	(s)		Sn	1	Sully
Address	welder A	1	Project Name	p	readout	mak	EDD Format ESHat, EQuiS etc			На	ınded ov	er by				ľ
Addies	werell 1			0						En	ail for In	voice				
Contact Name	Sam Sa	lly	Total or T	8						En	nail for Re	esults				
Phone №		1	se specty.	VE						12.4	Change co		ainers be & si≥e if :	necessary.		Required Turnaround Time (TAT) Default will be 5 days if not side d
Special Direction	าธ		Analy ested plea													◆Surcharge will apply Cvernight (reporting by 9am) ◆
Purchase Order			ills are riequ	376						stic	stic	Glass	vial	HDPE)	¥ I	☐ Same day♦ ☐ 1 day♦ ☐ 2 days♦ ☐ 3 days♦
Quote ID Na			White me	3. Be	5					500mL Plastic	250mi. Plastic	200mL Amber Glass	40mL VOA vial	Jar (Glass or HDPE)		days (Standard)
		Sampled	Matrix 1	K.	19					22	5 25	200m	40	Jar ((r (Asbesto	Sample Comments
N≘	Client Sample ID	Date/Time 5 dd/mm/yy ho rom W	Solid (5) Inter (W)												Othe	/ Dangerous Goods Hazard Warning
1700	46-0.1-0.4	18-6-19 5	Xlie	, 1												
2 7826	+D-0,1-0.4		1 X													
Name and Address of the Owner, when the Owner, which t	OA-00-0.2			\times												
1783	5A-6.7-0.9				\times											
	SA-17-19			×												
	B-0.0-0.2			λ												
25 HA	OB-0.9-1.1			X												
THE REAL PROPERTY.	OB-1.6-1.8				7											
	0-0-0-0		9		7											
	00-0.9-1.1			X												
		Total Coun	ts				1		7							
Method of Shipme) Hand		☐ Post		Sam	Suly	Signature	110		Date	18	-6-	TOTAL STREET	-23	Time Hom
Eurofins m Laboratory Use	gt Received By Only Received By	Lupen			PER ADL NTL DRW	Signature Signature		W	Date 18 C	06	Time		4:	21	PM	Temperature C
Eurofins Environment	t Testing Australia Pty Ltd trading as Eurofin	s mgt	KEN KEN		7.22 7.33	The state of the s	oles to the laboratory will b	e deemed as acceptance o		d Conditions unli		otherwise	A copy of	Eurofins r	mgt Stand	dard Terms and Conditions is available on request.

	CHAIN OF CUST		ORD	U		F 16 Mars R	toad Lane Co SampleNSW			Ur		boratory Ilwood Place M EnviroSamp				Laboratory 1 Leach Highway I 9600 EnviroSa						Montere		g South VIC 3175 olever eurofins.com	
Company	Alliance	Geor	lech	Project	N2		728				P	roject Mana	ger	Adla	R	eorly		Samp	ler(s)		San	7	See	lly	
Address				Project N	lame	M	ear	la	691	nR		EDD Forma EStal, EQUIS					100	landed	over b	у				· ·	
		r/		Fillered".	2												Ē	mail for	Invoid	e					
Contact Nan	10 Sam	Sally	7	Total or	EFM													mail for				F 10 F 20	g.	d Tumaround Tim	- TAT
Phone №		Į/		Ses Ses specify to allized 8	\gtrsim													Change		ontaine er type & s	ize if nebe	stary.		ill will be 5 days if not tic	bird
Special Directi	ions			Analy Jested, pher Int be used																		dalines		Surcharge vight (reporting by 9a	am) •
Purchase Or	dec			als are requ	800	Q	5										žĮ.	stic	stic	r Glass	Bottle	HDPE)	2 days	• 🔲 3 da	-
Quote ID N				Shee ma	868.48	8	Metal	ュ	立		9	2					500ml Plastic	250mL Plastic	125mL Plastic	200mt. Amber Glass 40mt. VOA vial	500mL PFAS Bottle	Jar (Glass or HDPE)	days	(Standard))
				Matrix	452	E	5	K	37	8	a .	19/9					100	. 2	÷	200n 4	500	Jar (Other (Ashest)		Sample Comments	
No.	Client Sample ID		effime lyybhann 7	Solid (S) Mater (W)		*)														ŧ	/ Dangero	ous Goods Hazard	
1 18:	30C-1.7-1	9 18-6	6-19 8	6.	X																				
	HOC-6,1-0				\times																				
3 BI-	140c-0.9_	1.1										X													
4 BH	140C-1.7-	19			X																				
5 BH	40D-0.0-0	.2			\times																				
1	40D-0.9-1.				X																				
	(OD - 1-7-1.	- //										X													
	16-0.0-0.					4	7																		
	46-6.5-0			1,1		X	X																		
10 Ta	19-00-6,				7	V	X	\searrow	7	7	7														
			Total Cour	nts								97				0							1 30		200
Method ar Ship	ment Courier (#)	Ĵ Han	d Delivered		☐ Pos			ne Sa	·	Se	elly		Signature		16		Da	ite /8		-/	-	Time	4pm	
Eurofins Laboratory U	lee Only	phype	in		~		PER A			Signati					Date	180	6	Tin	400		4.2	16	Tempera Report		
te de	Received By	es Eurofins mgt			oin I B	nic MCL	PER A	ויינ אונ		Signate Submission		the laboratory	r will be dee	emed as acceptance of	Date Eurofins mgt S	landard Terms an	d Conditions	100		rwise. A \propto	ppy of Euro	fins mgt		AT 12 MICE	ele on request.

Perth Laboratory

Melbourne Laboratory

Sydney Laboratory

	CHAIN OF CUSTODY Eurofins mgt ABN 50 006 08			I,F 16 Mars Road	Lane Cove West N		Unit 1 21	e Laboratory Smallwood Place Murarria 4600 EnviroSampleQLD	QLD 4172	Perth Laboratory Unit 2 91 Leach Highway Kewda 08 9251 9600 EnviroSampleW.		com				Laboratory Road Dandenong South VIC EnviroSampleVice enro	
Company	Alliane C	resternia	Project №	9	280			Project Manager	Ardn	Roonly	Sai	mpler(s)	<	Sa ~	Sally	ej
			Project Name	M	ende	x ba	nk	EDD Format ESdøl EQuiS elg			Hand	led ove	· by				
Address	10		polite								Email	for Inv	oice				
Contact Name	Sam Sa	My	ET SUITE prices								Email	for Res	uits				
Phone №	715		State of Transport								Cha	angu con:	Contain		cestary.	Required Turnard Default will be 5 d	
Special Directio	ากร		Analyse ed please e u ed to												nes)	Overnight (repo	•Surcharge will apply orling by 9am) ●
			odo must										پ دی دی –	_ #		☐ Same day◆	☐ 1 day◆
Purchase Orde	er		SUITE o		S	+.	4 .				500mL Plastic	125mL Plastic	OmL Amber Gla	FAS Bo	s or HD	☐ 2 days◆ 5 days (Standar	☐ 3 days◆ rd)
Quote ID Ne			Where	3	10th	M .	T (1)	2			500ml	125ml	200mL Amber Glass	40mL VOA VIAI 500mL PFAS Bottle	Jar (Glass or HDPE) sbestos AS4964, WA Gu	Other()
Ne	Client Sample ID	Date/Time Sol	etrix	0 5	F	4	生る	. P					2		Jar (Glass or HDPE) Other (Asbestos AS4964, WA Guidel	Sample C	omments is Hazard Warning
			er (W)														
17850	0-0.0-6.2	18-6-19 8	X	7 >	< \	77	7										
2 TP6	50-0.2-0.4							×									
3 TPS	1-0.0-0.2		X	X>	< ×	\times	x >										
4 TPS	1-0.8-1.0		X	×	XX	\times	× >	-									
100	1-1.3-1.5							\times									
	2-0.0-0.2		×	1	1	1	X										
7 TPS	2-09-1.1				1 -1			7									
1000			1	\ .	× \												
100	52-1-2-1-4		X	1		× -	7	N.									
100 A	3-00-0.2							X									
10 TP 3	53-0.9-1.1		X	> >	$<$ \times	1	\times \times										CV, V, V No.
	Cl Courier ##	Total Counts		□ p-4:	LI.				Cinnatus	7		Dat-	10		(A)	Ties C	7367
Method or Shipm) Hand C		Postal	ER ADL NT	me Je	Signature	sculy	Signatuse	Date PI-C	1	Time	8			Time 7	pm
Eurofins r Laboratory Us	ngt /	upern			ER ADL NTL		Signature			Date POG	-	Time		42	2181	Report No	
Eurofins Environme	\ nt Testing Australia Pty Ltd trading as Eurofins	mgt				Sul	omission of samp	sies to the laboratory will be	deemed as acceptance of Euro	ofins mgt Standard Terms and Cond	litions unless	agreed of	herwise. A	copy of Eu	rofins mgt St	andard Terms and Condition	ns is available on request.

	CHAIN OF CUST		D L		boratory - 16 Mars Road Li 0 EnviroSample					iboratory allwood Place Murarri EnviroSampleQLD			ratory ch Highway Kewd) EnviroSample\					61	Nonterey F	Laboratory Road Dandenong South O EnviroSampleVic@		
Company	Alliance	Geoles	no Proj	ect No		280			F	roject Manager	Adn	Room	1ay	1	Sampler	(s)		S	2	n So	elly	
Address			Projec	ot Name	Mea	don	ba	nk		EDD Format ESdat EQuiS etc	·			Ha	nded ov	er by					-	
			F198											Em	ail for In	voice						
Contact Name	Sam	Scully	Total Services						Z					Em	ail for Re							
Phone №			ses sespecify to all ad S						出						Change co		iners e & size	# necess	ay.		raround Time (T 5 days if not ticked	
Special Direction	ns		Analy et in, plea	200					2										lines)	Overnight (r	Surcharge will a porting by 9am)	
Purchase Orde	4		upa are recu						\sim					3	i ti	Glass	rial	3ottle	WA Guide	Same day•	☐ 1 day• ☐ 3 days•	,
Quote ID No			Where meta	5	-+ 1	1 -	_	0	3	2				500mL Plastic	250mL Plastic	200mL Amber Glass	40mL VOA vial	500mL PFAS Bottle	AS4964,	Ovemight (n Same day Same day 2 days 5 days (Slar Other(dard)	١
		Sampled	l Matrix	Meta	187 C	4	J	V	8	70				30	25	200ml	40	500m	Other (Asbestor			
N≘	Client Sample ID	Date/Tim- od/mm/yy hh r	e Solid (S)	5	+ a	30	0		4										Other	/ Dangerous Go	Comments ods Hazard Wa	ming
TO	3-1.2-1.4	t 18-6-1	9 Soil							X												
Section 1	4-0.0-0.		1	>	X X	->	1	X	X													
_	54-0.6-0			-			- 7			>												
100	4-1,3-1.			7	$\times \times$	- ×	>	7	1													
	7-0.0-0				V \		1	$\stackrel{\frown}{\times}$														
The second second	57-0.8-1.			X			1		1													
100	2-01 2-01A			X										a)		1 /		1
	7-02			1										174	299	R	10	erci	at	d to	A	>
10 DU	-07		- V														0			1 1		
Po	P- 21+	V	Total Counts	X					-					+4	293	.6	6	a	200	1 te	Hes	>_
Method of Shipmi	ent Courier (#	The same of the sa	Total Counts Hand Delivere	d	☐ Postal	Na	me	7		5 //	Signature	1	6		Date	18-	6	-/0	,	Time	Can	-
Eurofins n	Pereived Ry	Jan non			NE MEL PEI			Signat	2000	O or 114	(Date	8/06		Time		u	121	81	Temperature		
Laboratory Use		Varpet		SYD BN	NE MEL PEI	R ADL NTL	DRW	Signat	ure			Date	٦		Time		7			Report №		
Eurofins Environmen	nt Testing Australia Pty Ltd trading as	Eurofins mgt						Submission	of samples to	the laboratory will be	deemed as acceptance of	of Eurofins mgt Standar	d Terms and Con	ditions unle	ss agreed	otherwise	А сору	of Eurofin	s mgt Sta	andard Terms and Cond	itions is available on	request.

Perth Laboratory

Melbourne Laboratory

Sydney Laboratory

	CHAIN OF CUST Eurofins mgt ABN			tory Mars Road Lane Cove West NSW 2066 EnviroSampleNSW@eurofins.com		Place Murarrie QLD 4172 roSampleQLD@eurofins.com	Unit 2.91 Leach Highway Kewo 08 9251 9600 EnviroSample			erey Road Dandenong South VIC 3175 4 5000 EnviroSampleVic@eurofins.com		
Company	Allianae	acokchia	Project No	9280	Project	Manager Ad	en Recordy	Sampler(s)	Sam	Sally		
Address			Project Name	Meadout	SAR EDD	Format FoulSets		Handed over by				
								Email for Invoice				
Contact Name	SAM	Soully	Total or TE pilch	9				Email for Results			od mrs — o Arra ms	
Phone №			to addract S					The first of the second of the	almers pe & size il necessary	Required Turnaroun Default will be 5 days	if not ticked	
Special Direction			Arally are inquested their State and made used the soul of the sou	bestos TEX	i de la companya de l			500mL Plastic 250mL Plastic 125mL Plastic 200mL Amber Glass	40mL VOA vial 500mL PFAS Bottle Jar (Glass or HDPE) bostos AS4964, WA Guidelines)	☐ Overnight (reporting ☐ Same day◆ ☐ ☐ 2 days◆ ☐] 1 day∳] 3 days∳	
Quote ID No No	Client Sample ID	Sampled Date/Time oo/min/yy filiimm	Matrix Solid (S) Water (W)	12 E				500m 250m 125m 200mL A	40mL 500mL F Jar (Glas	5 days (Standard) Cither(Sample Com I Dangerous Goods H	iments	
1 Due	-03	18-6-19 5										
2 Duc	7-3A		X					Please	formers	to AL	-5	
3 Dy	- 04		X									
1 Det	-40		X					PLEOFE	Foranco	to AL	S	
5 FCS	- TP30B	F	RPG >	<								
6 FCS	s- TP30c	F	RPG X									
	,- TP40C		X									
	P SPIK		CTER	×								
	P BLANK	~	भारत	X								
10	0,000											
Taran		Total Cou	ints			17	4			2/		
Method of Shipm	ont Courier (#) Har	nd Delivered	The second secon	Sam S	Signature Signature		Date 8	-6-19	Time 4	m	
Eurofins r	e Only	hipem	SYD) BNE	MEL PER ADL NTL DRW	Signature	1 60	Pate (8)06	Time	4 m	Temperature Popert No.		
ESTE UNITED	Received By nt Testing Australia Pty Ltd trading as		SID BME	MEL PER ADL NTL DRW	Submission of samples to the la	boratory will be deemed as acceptan	Date Lice of Eurofins mgt Standard Terms and Cor	Time Inditions unless agreed otherwise	e. A copy of Eurofins mgt S	Report № Standard Terms and Conditions is	s available on request.	

Perth Laboratory

Melbourne Laboratory

Sydney Laboratory

Enviro Sample NSW

From: Sam Scully <sam@allgeo.com.au>
Sent: Thursday, 20 June 2019 1:04 PM

To: Enviro Sample NSW

Subject: RE: Eurofins | mgt Sample Receipt Advice - Report 661368 : Site MEADOWBANK

(9280)

Follow Up Flag: Follow up Flag Status: Flagged

Thanks,

Could we please get the following soil samples analysed for metals on a 5 day TAT:

- 1. TP30A-0.0-0.2; and
- 2. TP30C-0.0-0.2.

Please do not hesitate to contact me if you have any queries or questions,

Kind Regards,

Sam Scully

Environmental Consultant - 0400 339 745 | Email: sam@allgeo.com.au

Office Email: admin@allgeo.com.au - Website: allgeo.com.au - Office Phone: 1800 288 188

Postal Address: PO Box 275, Seven Hills NSW 1730 / Office & Laboratory Address: 10 Welder Road, Seven Hills NSW 2147

From: EnviroSampleNSW@eurofins.com <EnviroSampleNSW@eurofins.com>

Sent: Wednesday, 19 June 2019 5:03 PM
To: Aidan Rooney <a idan@allgeo.com.au>
Cc: Sam Scully <sam@allgeo.com.au>

Subject: Eurofins | mgt Sample Receipt Advice - Report 661368 : Site MEADOWBANK (9280)

Dear Valued Client,

DUP01A, DUP02A, DUP03A AND DUP04A SENT TO ALSI

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Elvis Dsouza

Sample Receipt

 $Eurofins \mid mgt$

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 29900 8421

Email: <u>EnviroSampleNSW@eurofins.com</u> Website: <u>environment.eurofins.com.au</u>

EnviroNote 1079 - PFAS Fingerprinting

EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

Click here to report this email as spam.

Scanned By Websense For Euro fins

APPENDIX E

ProUCL CALCULATIONS – LEAD SAMPLES

1	A B C	D E UCL Statis	F stics for Unc	G ensored Full Data	H a Sets	I	J	K	L
2									
3	User Selected Options	3							
4	Date/Time of Computation	ProUCL 5.11/07/2019 12	::27:38 PM						
5	From File	WorkSheet.xls							
6	Full Precision	OFF							
7	Confidence Coefficient	95%							
8	Number of Bootstrap Operations	2000							
9									
10									
11	Lead - ProUCL								
12									
13			General	Statistics					
14	Total	Number of Observations	10			Number	of Distinct	Observations	9
15						Number	of Missing	Observations	0
16		Minimum	7.3					Mean	205
17		Maximum	490					Median	155
18		SD	161.2				Std. I	Error of Mean	50.96
19		Coefficient of Variation	0.786					Skewness	0.911
20									
21			Normal C	GOF Test					
22	S	Shapiro Wilk Test Statistic	0.872		Sh	apiro Wi	k GOF Tes	t	
23	5% S	hapiro Wilk Critical Value	0.842	Da	ata appear l	Normal a	5% Signific	cance Level	
24		Lilliefors Test Statistic	0.286		ı	Lilliefors	GOF Test		
25	5	i% Lilliefors Critical Value	0.262	1	Data Not No	ormal at 5	% Significa	nce Level	
26		Data appear Appi	roximate No	rmal at 5% Signif	ficance Lev	el			
27									
28		As	suming Norr	mal Distribution					
29	95% No	ormal UCL			95% UC	Ls (Adju	sted for Sk	ewness)	
30		95% Student's-t UCL	298.4		95%	6 Adjuste	d-CLT UCL	(Chen-1995)	304.5
31					959	% Modifie	ed-t UCL (Jo	hnson-1978)	300.9
32									
33			Gamma (GOF Test					
34		A-D Test Statistic	0.453		Anderson	-Darling	Gamma G	OF Test	
35		5% A-D Critical Value	0.743	Detected dat	ta appear G	amma Di	stributed at	5% Significan	ce Level
36		K-S Test Statistic	0.232		Kolmogoro	v-Smirno	v Gamma (GOF Test	
37		5% K-S Critical Value	0.272	Detected dat	ta appear G	amma Di	stributed at	5% Significan	ce Level
38		Detected data appear	Gamma Dis	stributed at 5% S	Significance	Level			
39									
40			Gamma	Statistics					
41		k hat (MLE)	1.281			k s	star (bias co	rrected MLE)	0.963
42		Theta hat (MLE)	160.1			Theta	star (bias co	rrected MLE)	212.9
43		nu hat (MLE)	25.61				nu star (bi	as corrected)	19.26
44	М	LE Mean (bias corrected)	205				MLE Sd (bi	as corrected)	208.9
45		-			Арр	roximate	Chi Square	Value (0.05)	10.31
46	Adjus	sted Level of Significance	0.0267			Ac	ljusted Chi	Square Value	9.192
47								-	
48			suming Gam	ıma Distribution					
49	95% Approximate Gamma	a UCL (use when n>=50))	383.1		95% Adjust	ed Gamn	na UCL (use	e when n<50)	429.7
50									
51			Lognormal	GOF Test					
52	S	Shapiro Wilk Test Statistic	0.838		Shapiro	Wilk Log	normal GO	F Test	
									-

	Α	В	С	D	Е	F	G	Н	I	J	K	L
53			5% SI	napiro Wilk C	ritical Value	0.842			_ognormal at			
54				Lilliefors T	est Statistic				iefors Logno			
55			5	% Lilliefors C	ritical Value	0.262		Data Not I	_ognormal at	5% Significa	ance Level	
56					Data Not L	.ognormal at	5% Significa	ance Level				
57												
58						Lognorma	Statistics					
59			ļ	Minimum of L	ogged Data	1.988				Mean of	logged Data	4.884
60			٨	laximum of L	ogged Data	6.194				SD of	logged Data	1.232
61											•	
62					Assı	uming Logno	rmal Distribu	ution				
63					95% H-UCL	1240			90% (Chebyshev (I	MVUE) UCL	563.9
64			95% (Chebyshev (I	MVUE) UCL	705			97.5% (Chebyshev (I	MVUE) UCL	900.9
65			99% (Chebyshev (I	MVUE) UCL	1286						
66												
67					•	etric Distribu						
68				Data appea	r to follow a	Discernible I	Distribution a	at 5% Signifi	cance Level			
69												
70						rametric Dist	ribution Free	UCLs				
71				95	% CLT UCL	288.9				95% Ja	ckknife UCL	298.4
72			95%	Standard Bo	otstrap UCL	285.6				95% Boo	tstrap-t UCL	348.3
73			9	5% Hall's Bo	otstrap UCL	401.6			95% F	Percentile Bo	otstrap UCL	293.3
74			(95% BCA Bo	otstrap UCL	294.3						
75			90% Ch	ebyshev(Me	an, Sd) UCL	357.9			95% Ch	ebyshev(Me	an, Sd) UCL	427.2
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	523.3			99% Ch	ebyshev(Me	an, Sd) UCL	712.1
77												
78						Suggested	UCL to Use					
79				95% Stud	dent's-t UCL	298.4						
80												
81				lata set follov			•		_			
82		When app	licable, it is s	uggested to	use a UCL b	ased upon a	distribution (e.g., gamma) passing bot	th GOF tests	in ProUCL	
83												
84	1	Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pro	ovided to help	p the user to	select the m	ost appropria	ate 95% UCL	
85			F	Recommenda	tions are bas	sed upon dat	a size, data d	distribution, a	and skewnes	S		
86		These recor	mmendations	are based u	pon the resu	lts of the sim	ulation studie	es summariz	ed in Singh,	Maichle, and	I Lee (2006).	
87	Но	wever, simu	lations result	s will not cov	er all Real W	orld data se	s; for additio	nal insight th	ie user may v	vant to consi	ult a statistici	an.
88												
· '												