

Report on Preliminary Geotechnical Investigation

Campbelltown Hospital Stage 2 Redevelopment Therry Road, Campbelltown

> Prepared for Health Infrastructure

Project 34275.08-2 July 2018

Document History

Document details

Project No.	34275.08-2	Document No.	R.003.Rev1	•			
Document title	Report on Prelimi	Report on Preliminary Geotechnical Investigation,					
	Campbelltown Ho	Campbelltown Hospital Stage 2 Redevelopment,					
Site address	Therry Road, Car	npbelltown					
Report prepared for	Health Infrastruct	ure					
File name	34275.08-2.R.003	B.Rev1					

Document status and review

Status	Prepared by	Reviewed by	Date issued
Rev0	T Mrdjen	G W McIntosh	9 May 2018
Rev1	T Mrdjen	G W McIntosh	31 July 2018

Distribution of copies

Status	Electronic	Paper	Issued to
Rev0	1	0	Health Infrastructure, c/- Root Partnerships
Rev1	1	0	Health Infrastructure, c/- Root Partnerships

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature /	Date
Author	1. llof	31 July 2018
Reviewer	p.p. for GWM	31 July 2018

Table of Contents

				Page
1.	Introd	duction		1
2.	Back	ground I	Information	1
3.	Site [Descripti	ion and Regional Geology	2
4.			lethods	
5.	Field	Work R	esults	4
6.				
7.			esting	
٠.	7.1	•	nical Testing	
	7.2		ssivity Testing	
8.	Propo		velopment	
9.	•			
J.	9.1		al	
	9.2		uake Actions – Sub-soil Class	
	9.3	-	ation	
		9.3.1	Clinical Services Building	10
		9.3.2	Cancer Treatment Centre	11
		9.3.3	General	11
	9.4	Ground	dwater Inflow into Excavation	11
	9.5	Vibration	ons Induced by Excavation Plant	12
	9.6	Dispos	al of Excavated Materials	13
	9.7		Slopes	
	9.8	Excava	ation Support	
		9.8.1	Clinical Services Building	
		9.8.2	Cancer Treatment Centre	
	9.9		r Design	
	9.10		ing Structures	
	9.11		ations Design Parameters	
			Clinical Services Building	
			Cancer Treatment Centre	
			Link Building	
		9.11.5	Pedestrian Link	21
		9.11.6	General	22
	9.12	Ground	d Slabs	22
10.	Geot	echnical	Review	23
11.	Geot	echnical	Requirements During Construction	23
12.	Refe	rences		24
13	Limit	ations		24

Appendix A: Notes About This Report

Drawings 1 – 5 Photoplates 1 – 4

BLP Conceptual Proposed Building Cross-sections

Appendix B: Current Borehole Logs (Bores 101 – 116 and 118)

Project 34275.00 Borehole Logs (Bores 1, 3 – 5 and 38 – 40)

Project 22884-1 Borehole Logs (Bores 1 – 12 and 16)

Project 14060 Borehole Logs (Bores 3 – 5)

Table B1: Summary Table - Groundwater Levels

Appendix C: Current Laboratory Test Results

Project 34275.00 Laboratory Test Results Project 22884-1 Laboratory Test Results

Table C1: Summary Table – Laboratory Tests and Assessments

Appendix D: Ground Vibrations

Appendix E: Design of Braced Excavations

Report on Preliminary Geotechnical Investigation Campbelltown Hospital Stage 2 Redevelopment Therry Road, Campbelltown

1. Introduction

This report presents the results of a preliminary geotechnical investigation undertaken for the proposed Stage 2 Redevelopment of Campbelltown Hospital at Therry Road, Campbelltown. The investigation was initially commissioned in an email dated 25 July 2017 by Mrs Margo Kouvaris of Health Infrastructure (the Client) and was undertaken in accordance with Douglas Partners Pty Ltd's (DP) revised proposal MAC170234 Rev2 (Variations 2 and 4), dated 18 January 2018 and receipt of approval from the Client.

It is understood that the proposed development will include the construction of a new multi-storey clinical services building (CSB), an expansion of the existing cancer treatment centre (CTC) and the construction of several link structures.

The purpose of the preliminary geotechnical investigation was to assess subsurface conditions underlying the proposed development area to provide comment on the following:

- In situ and laboratory testing results;
- Site preparation and general earthworks;
- Excavation and retention;
- Footing parameters and suitable footing types;
- On-grade slabs; and
- Potential construction difficulties.

The investigation included review of existing information and drilling of boreholes followed by laboratory testing of selected samples. Details of the work undertaken and the results obtained are given within this report, together with comments relating to the above items.

As part of the investigation, a conceptual building cross-section showing nominal finished floor levels and excavation depths was provided to DP (prepared by Billard Leece Partners) and is included in Appendix A.

2. Background Information

Several previous geotechnical and environmental investigations within the Campbelltown Hospital site have been undertaken by Douglas Partners Pty Ltd (DP) since August 1990 during separate stages of redevelopment. The relevant investigations to the subject development were undertaken in August 1990, October 1998 and May 2011 as part of geotechnical investigations for the (then

proposed) psychiatric unit buildings, several additional ward structures (including a four storey building) and an acute health services building and associated on-grade parking. The results of the investigations were formalised in the following reports:

- "Report on Geotechnical Investigation, Proposed Psychiatric Units, Campbelltown Hospital, Campbelltown" (Project 14060) dated 13 August 1990;
- "Report on Geotechnical Investigation, Macarthur Strategy Project, Campbelltown Hospital" (Project 22884-1) dated 27 October 1998; and
- "Report on Geotechnical Investigation, Proposed Campbelltown Hospital Redevelopment, Therry Road, Campbelltown" (Project 34275.00) dated 10 May 2011.

The previous investigations comprised site inspections, borehole drilling, sampling, laboratory testing of selected samples, engineering analysis and reporting. Recommendations were provided for deep excavations, retention and foundation options for a range of founding conditions, with allowable base bearing pressure parameters ranging from 100 kPa for controlled filling to 3,500 kPa for foundations founded in medium strength rock.

Relevant borehole information from the previous reports have been included in Appendix B.

3. Site Description and Regional Geology

The Campbelltown Hospital site is irregular shaped and comprises two separate portions (separated by Central Road) with a total area of approximately 21.3 ha. The area of the proposed development is approximately 1.9 ha (refer Drawing 1) and currently includes access roads, car parking, landscaped areas, pathways and existing structures. Overall topographic relief ranges from approximately RL 114 within the south-eastern portion of the site to the lowest part (approximately RL 76) within the western portion of the site.

At the time of the investigation, the site was occupied mainly by numerous brick and concrete hospital buildings, on-grade car parking and roadways. The remainder of the site was grass covered with some scattered large eucalypt trees.

The area of the proposed CSB covers approximately 1 ha and will be located in the southern terraced visitors parking area and loading dock. The existing surface slopes towards the north and the terracing is formed by four batters facing north and north-west, with the northern-most batter supported at the toe by a 2 m high concrete block retaining wall. The existing area is terraced with differences in level between terraces ranging from around 2 m and up to approximately 8 m. The individual terraces are supported by batters shaped at approximately 1 in 1 to 1 in 2. The batters appear to be cut into competent rock (at least low to medium strength), however, deep mulch has been used to face most of the batters. The total vertical relief in this area is approximately 20 m.

The area of the proposed link building between Buildings A and D currently includes pavements, awning structure, a retaining wall approximately 4 m high and grassed areas. This part of the site is relatively level, with a slight fall towards the west and north-west at approximately 1 in 50. The total vertical relief in this area is estimated to be less than 5 m (or approximately 9 m in the northern corner where an existing the retaining wall is situated).

The site of the CTC expansion and proposed pedestrian link structure is between existing structures. The topography ranged from almost level to undulating and mainly comprised concrete, asphalt surfaced pavements and grass areas. The total vertical relief was estimated to be less than 4 m

Various features of the site are shown in the colour photoplates (Plates 1-4) included in Appendix A.

Reference to the 1:100 000 Wollongong – Port Hacking Geological Series Sheet (Ref 1) indicates that the site is underlain by The Ashfield Shale of the Wianamatta Group of Triassic age. Ashfield Shale typically comprises siltstone and laminite, all of which weather to form clays of high plasticity. The results of the investigation were consistent with the geological mapping, with siltstone encountered in all of the boreholes.

4. Field Work Methods

The current fieldwork included the drilling of 17 boreholes (Bores 101 – 116 and 118), eight of which were extended into the rock using NMLC diamond core drilling equipment. Bore 117 was not drilled due to underground services restrictions.

The boreholes were drilled to depths of 1.0-5.6 m with a drilling rig fitted with 110 mm diameter augers and a 'TC' bit. The boreholes were drilled through the overlying very low to low strength rock to 'TC' bit refusal (typically in rock of at least low to medium strength) at depths of 1.0-5.6 m. Core drilling for a penetration of 9-23 m into rock was carried out in Bores 101, 103, 105, 106, 110, 113, 114 and 116.

Standard penetration tests (AS 1289.6.3.1 – SPT) were carried out at a depth of 1.0 m and then at 1.5 m depth intervals in all boreholes. The standard penetration test procedure is given in the attached notes and the penetration 'N' value is shown on the borehole logs in Appendix B. The boreholes were logged by an experienced geotechnical engineer prior to backfilling. Disturbed auger samples, 'undisturbed' samples (in 50 mm diameter thin-walled tubes) and bulk samples were collected at regular depth intervals to assist in strata identification and for laboratory testing.

The current test locations were determined in consultation with the client and set out on site by DP and are shown on Drawing 1 (Appendix A). The surface levels (to Australian Height Datum, AHD) and coordinates were recorded using a differential GPS unit for which an accuracy of ±20 mm is typical (MGA94 Zone 56 coordinates).

Previous subsurface investigations (DP 1990, DP 1998 and DP 2011) have been used as part of this assessment comprised:

- Boreholes drilling using a Pengo soil sampling and drilling rig (DP Project 14060 dated August 1990, Bores 3 - 5). The boreholes were drilled using a 300 mm diameter spiral flight augers to termination depths of 3.0 – 3.5 m;
- Borehole drilling using a B40 and Bobcat soil sampling and drilling rigs (DP Project 22884-1 dated October 1998, Bores 1 12 and 16). Bores 1 6 were drilled using a 100 mm diameter spiral flight augers and rotary drilling techniques to depths in the range of 2.1 6.2 m. The boreholes were then extended into the underlying rock using NMLC (50 mm diameter core) diamond drilling equipment to termination depths of 7.0 9.2 m. Bores 7 12 and 16 were drilled using a 250 mm diameter spiral flight augers to depths in the range of 1.5 2.3 m, with refusal encountered at depths of 1.5 m in Bore 8 and 1.8 m in Bore 10.

• Borehole drilling using a Bobcat soil sampling and drilling rig and a mini-excavator (DP Project 34275.00 dated May 2011, Bores 1, 3 – 5 and 38 – 40). The Bores 1 and 3 – 5 were drilled using a 100 mm diameter spiral flight augers and rotary drilling techniques to depths in the range of 4.0 – 5.7 m. The boreholes were then extended into the underlying rock using NMLC (50 mm diameter core) diamond drilling equipment to termination depths of 8.8 – 10.0 m. Bores 38 – 40 were drilled using a 150 mm diameter spiral flight augers to depths of refusal in the range of 2.8 – 4.5 m.

The surface levels to Australian Height Datum (AHD) and coordinates to Map Grid of Australia (MGA Zone 56) shown on the DP's May 2011 borehole logs (with the exception of Bores 38 - 40) were determined using a differential GPS unit, for which an accuracy of ± 20 mm is typical. The surface levels shown on the logs for Bores 4, 38 and 39 (DP's May 2011) and DP's October 1998 borehole logs were interpolated from the survey drawings, whilst the borehole coordinates were measured from existing site features. Consequently, these levels should be considered approximate. The surface levels and coordinates shown on DP's August 1990 borehole logs were surveyed. The previous borehole locations are shown on Drawing 1 (Appendix A).

5. Field Work Results

The borehole logs are included in Appendix B, and should be read in conjunction with the accompanying standard notes defining classification methods and descriptive terms. Summary cross-sections are given on Drawings 2 – 5 (Appendix B). The succession of strata is broadly summarised as follows:

ASPHALT: 30 – 50 mm thick wearing course in Bores 101 – 105, 107, 108 and 114 – 116;

CONCRETE: 370 – 550 mm thick concrete pavement in Bores 106 – 108;

TOPSOIL: Clayey silt topsoil filling to depths of 0.1 – 0.3 m in Bores 109 – 113;

FILLING: Crushed sandstone roadbase filling to depths of 0.3 – 0.6 m in Bores 101 – 105,

108 and 114 - 116 and silty clay filling to depths of 1.8 - 1.9 m in Bores 114 and

115;

CLAY: Generally very stiff to hard silty clay encountered to depths ranging from 0.3 – 4.0 m

in Bores 108, 112, 114 and 115;

BEDROCK: Siltstone directly underlies the clays and filling at depths of 0.1 – 4.0 m, initially very

low up to low strength and grading to medium and high strength to the termination depths ranging from 1.0-23.0 m in all boreholes. 'TC' bit refusal in low to medium strength siltstone was encountered in Bores 107-109, 111, 112, 115 and 118 at depths of 1.0-5.0 m. The fracture spacings shown on the recovered core ranged from 'fragmented' to 'unbroken' (fracture spacings of 20-1000 mm). The core was characterised by a 'fractured zone' of approximately 4-5 m (but 8 m towards the north of the site) then grading towards 'slightly fractured to unbroken' (fracture spacings approximately 200 mm to 1,000 mm). The cored borehole logs indicate that the rock structure is mainly governed by horizontal to sub-horizontal ($0^{\circ}-10^{\circ}$)

bedding and moderately to steeply-inclined (30° – 90°) jointing.

The resulting rock classifications for the cored boreholes (in accordance with Ref 2) as well as estimated classifications for the non-cored boreholes, including their corresponding Reduced Levels (RL – mAHD) are summarised in Tables 1 and 2.

Table 1: Summary of Rock Class Levels - CSB and CTC Buildings

		Rock Levels (Top of Layer)								
Bore No.	No RL		Class V Shale		Class IV Shale		Class III Shale		Class II Shale	
	(mAHD)	Depth (m)	RL (m)	Depth (m)	RL (m)	Depth (m)	RL (m)	Depth (m)	RL (m)	
			Cli	nical Servi	ces Buildir	ng				
101	95.7	-	-	0.3	95.4	4.7	91.0	8.5	87.2	
102	94.7	-	-	0.3 ⁽³⁾	94.4 ⁽³⁾	-	-	-	-	
103	93.3	-	-	0.3	93.0	-	-	4.5	88.8	
104	92.0	-	-	0.4 ⁽³⁾	91.6 ⁽³⁾	-	-	-	-	
105	87.4	-	-	0.3	87.1	2.6	84.8	4.6	82.8	
106	87.5	0.4	87.1	-	-	1.2 ⁽¹⁾	86.3 ⁽¹⁾	3.7	83.8	
107	91.6	-	-	0.5 ⁽³⁾	91.1 ⁽³⁾	-	-	-	-	
108	92.8	-	-	1.5 ⁽³⁾	91.3 ⁽³⁾	-	-	-	-	
109	84.7	-	-	0.1 ⁽³⁾	84.6 ⁽³⁾	-	-	-	-	
110	85.1	-	-	0.1	85.0	3.0	82.1	4.1	81.0	
111	83.8	-	-	0.1 ⁽³⁾	83.7 ⁽³⁾	-	-	-	-	
113	83.5	-	-	0.3	83.2	2.6	80.9	3.6	79.9	
116	96.1	-	-	0.3	95.8	2.7	93.4	7.9	88.2	
118	100.9	-	-	0.4 ⁽³⁾	100.5 ⁽³⁾	-	-	-	-	
3 ⁽⁵⁾	87.5	1.2	86.3	2.2 ⁽³⁾	85.3 ⁽³⁾	-	-	-	-	
4 ⁽⁵⁾	86.5	1.3	85.2	2.1 ⁽³⁾	84.4 ⁽³⁾	-	-	-	-	
6 ⁽⁵⁾	87.0	2.8	84.2	3.9 ⁽³⁾	83.1 ⁽³⁾	-	-	-	-	
			Ca	ncer Treat	ment Cent	re				
114	81.9	-	-	4.0	77.9	-	-	10.0	71.9	
115	82.3	-	-	2.5 ⁽³⁾	79.8 ⁽³⁾	-	-	-	-	
38 ⁽⁴⁾	83.0	0.8	82.2	1.6 ⁽³⁾	81.4 ⁽³⁾	-	-	-	-	
39 ⁽⁴⁾	82.5	2.6 ⁽³⁾	79.9 ⁽³⁾	-	-	-	-	-	-	
40 ⁽⁴⁾	81.9	-	-	2.8 ⁽³⁾	79.1 ⁽³⁾	-	-	-	-	
7 ⁽⁵⁾	79.0	-	-	1.1 ⁽³⁾	77.9 ⁽³⁾	-	-	-	-	

Note

- (1) Underlain by Class V rock band;
 - (2) Underlain by Class III rock band;
 - (3) Siltstone minimum requirements: very low to low strength;
 - (4) Project 34275
 - (5) Project 22884-1
 - (6) Project 14060

Table 2: Summary of Rock Class Levels – Link Building and Pedestrian Link

	- _	Rock Levels (Top of Layer)								
Bore No.	No RL		Class V Shale		Class IV Shale		Class III Shale		Class II Shale	
	(mAHD)	Depth (m)	RL (m)	Depth (m)	RL (m)	Depth (m)	RL (m)	Depth (m)	RL (m)	
				Link B	uilding					
111	83.8	-	-	0.1 ⁽³⁾	83.7 ⁽³⁾	-	-	-	-	
112	83.6	-	-	2.0 ⁽³⁾	81.6 ⁽³⁾	-	-	-	-	
113	83.5	-	-	0.3	83.2	2.6	80.9	3.6	79.9	
1 ⁽⁴⁾	81.9	4.9	77.0	5.6	76.3	7.7	74.2	8.3	73.6	
4 ⁽⁴⁾	83.1	4.5	78.6	4.8 ⁽¹⁾	78.3 ⁽¹⁾	7.8	75.3	6.5 ⁽²⁾	76.6 ⁽²⁾	
5 ⁽⁴⁾	82.1	4.9	77.2	5.8	76.3	7.2	74.9	8.5	73.6	
5 ⁽⁵⁾	83.0	2.8	80.2	4.7 ⁽³⁾	78.3 ⁽³⁾	-	-	-	-	
6 ⁽⁵⁾	87.0	2.8	84.2	3.9 ⁽³⁾	83.1 ⁽³⁾	-	-	-	-	
10 ⁽⁵⁾	80.5	0.8	79.7	1.8 ⁽³⁾	78.7 ⁽³⁾	-	-	-	-	
3 ⁽⁶⁾	77.9	1.3	76.6	2.2 ⁽³⁾	75.7 ⁽³⁾	-	-	-	-	
4 ⁽⁶⁾	80.3	0.9	79.4	1.6 ⁽³⁾	78.7 ⁽³⁾	-	-	-	-	
5 ⁽⁶⁾	79.3	0.6	78.7	1.7 ⁽³⁾	77.6 ⁽³⁾	-	-	-	-	
				Pedestr	ian Link					
103	93.3	-	-	0.3	93.0	-	-	4.5	88.8	
104	92.0	-	-	0.4 ⁽³⁾	91.6 ⁽³⁾	-	-	-	-	
105	87.4	-	-	0.3	87.1	2.6	84.8	4.6	82.8	
114	81.9	-	-	4.0	77.9	-	-	10.0	71.9	
115	82.3	-	-	2.5 ⁽³⁾	79.8 ⁽³⁾	-	-	-	-	
38 ⁽⁴⁾	83.0	0.8	82.2	1.6 ⁽³⁾	81.4 ⁽³⁾	-	-	-	-	
39 ⁽⁴⁾	82.5	2.6 ⁽³⁾	79.9 ⁽³⁾	-	-	-	-	-	-	
40 ⁽⁴⁾	81.9	-	-	2.8 ⁽³⁾	79.1 ⁽³⁾	-	-	-	-	
1 ⁽⁵⁾	83.0			8.4 ⁽³⁾	74.6 ⁽³⁾					
2 ⁽⁵⁾	86.9	4.0	82.9	5.7 ⁽³⁾	81.2 ⁽³⁾					
3 ⁽⁵⁾	87.5	1.2	86.3	2.2 ⁽³⁾	85.3 ⁽³⁾					

Note

- Underlain by Class V rock band; (1)
- Underlain by Class III rock band; (2)
- Siltstone minimum requirements: very low to low strength; (3)
- (4)
- Project 34275 Project 22884-1 (5)
- Project 14060 (6)

6. Groundwater

No free groundwater was observed in the current or previous boreholes during augering or for the short time that they were left open. The introduction of water into the cored boreholes during rotary coring and the immediate backfilling of the boreholes precluded further monitoring of any groundwater levels that might be present.

During DP's May 2011 investigation, piezometers were installed in Bores 1 and 3. Groundwater depth measurements were taken approximately 4 days after installation (22 March 2011) and measured 6.8 m (RL 75.1) in Bore 1 and 3.6 m (RL 76.1) in Bore 3. No measurements have been made since March 2011.

During DP's August 1998 investigation, piezometers were installed in Bores 1, 3, 5 and 6. Groundwater depth measurements were taken during the period of 8-21 September 1998 and measured 4.1-5.2 m (RL 77.8-78.9) in Bore 1, 5.7-6.8 m (RL 80.7-81.8) in Bore 3, 6.6-6.7 m (RL 76.3-76.4) in Bore 5 and 3.2-6.6 m (RL 80.9-84.3) in Bore 6.

Groundwater levels are transient and subject to seasonal variations, soil permeability and preceding climatic conditions. The results of groundwater level monitoring are given in Appendix B (Table B1: Summary Table – Groundwater Levels).

7. Laboratory Testing

7.1 Mechanical Testing

Selected samples from the boreholes were tested in the laboratory for measurement of field moisture content, Atterberg limits, shrink-swell, California bearing ratio (CBR) and point load strength index testing. The detailed test report sheets are given in Appendix C and summarised below.

Table 3: Summary of Test Results - Atterberg Limits

Bore No.	Depth (m)	W _F (%)	W ∟ (%)	W _P (%)	PI (%)	LS (%)	I _{ss} (%/ΔpF)	Material
114	1.00 – 1.45	13.0	40	19	21	11.0	-	Clayey fill
115	1.00 – 1.45	14.4	39	20	19	9.0	-	Silty clay
16 ⁽¹⁾	0.6 – 0.9	23.8	-	-	-	-	1.4	Silty clay

 $Where \qquad W_F \quad = \quad Field \ moisture \ content$

 W_P = Plastic limit

Linear shrinkage

LS

 W_L = Liquid limit

 I_{ss}

PI = Plasticity Index
Notes: (1) Project 22884-1

The results indicate that the natural silty clay and clayey fill samples tested are of intermediate plasticity and would be susceptible to shrinkage and swelling movements resulting from changes in soil moisture content.

Shrink-swell index

The CBR samples were compacted to nominally 100% dry density ratio relative to Standard compaction at approximately optimum moisture content and then soaked for four days under surcharge loadings of 4.5 kg. The results of the field moisture content tests listed in Table 4 indicate the proposed subgrade soils at the time of the sampling ranged between approximately 1.2% dry to 2.4% wet of standard optimum moisture content.

Table 4: Summary of Test Results - California Bearing Ratio (CBR)

Bore No	Depth (m)	W _F (%)	OMC (%)	MDD (t/m3)	Swell (%)	CBR (%)	Material
109	0.3 – 0.5	6.8	8.0	1.88	2.5	3.0	Siltstone
7 ⁽¹⁾	0.5 – 1.0	22.3	19.9	1.68	-	3.5	Clay
8 ⁽¹⁾	0.5 – 1.0	23.2	21.1	1.62	-	5	Clayey Fill
9 ⁽¹⁾	0.5 – 1.0	18.9	18.7	1.74	-	6	Clay
10 ⁽¹⁾	0.5 – 1.0	11.6	12.0	1.90	-	2.0	Clay and Shale
11 ⁽¹⁾	0.5 – 1.0	22.3	21.6	1.67	-	8	Silty Clay
12 ⁽¹⁾	0.5 – 1.0	13.0	13.3	1.92	-	6	Silty Clay Fill
16 ⁽¹⁾	0.5 – 1.0	15.8	15.8	1.79	-	9	Silty Clay

Where

= = Field moisture content

OMC = Optimum moisture content

MDD = Maximum dry density CBR = California bearing ratio

Notes: (1) Project 22884-1 (October 1998)

Point load index ($Is_{[50]}$) tests were carried out on selected samples of the rock core and the results of these tests are given on the borehole logs. The results indicate rock strength ranging from very low strength to high strength with inferred unconfined compressive strengths (UCS) in the range 1-48 MPa using a UCS: $Is_{[50]}$ correlation factor of 20.

7.2 Aggressivity Testing

Selected samples from the boreholes were tested in the laboratory for measurement of pH, sulphates, chlorides and electrical conductivity. The detailed test report sheets and aggressivity table (Table C1) are given in Appendix C summarised below.

Twenty-seven samples were tested with pH results in the range 5.1 - 9.7 (average 8.3) and electrical conductivity in the range $74 - 370 \,\mu\text{S/cm}$ (average $128 \,\mu\text{S/cm}$). Seven samples were tested with chloride results in the range $10 - 420 \,\text{mg/kg}$ (average $121 \,\text{mg/kg}$) and nine samples were tested with sulphate results in the range $10 - 61 \,\text{mg/kg}$ (average $24 \,\text{mg/kg}$).

The exposure classification for concrete and steel piles was determined in accordance with AS 2159 – 1996 (Ref 3) which indicates the soils tested would be classified as "mildly aggressive" to concrete and "non-aggressive" to steel.

8. Proposed Development

The comments provided herein are based on the nominal foundation and excavation depths shown on the conceptual building cross-sections prepared by Billard Leece Partners (refer Appendix A) and the preliminary column loads as advised by Enstruct, consulting engineers. As such, the advice given within must be considered as preliminary and will need to be reassessed once the design progresses.

Based on the conceptual design drawings provided the proposed development comprises the construction of a multi-storey clinical service building (CSB), expansion of the existing cancer treatment centre (CTC) and construction of several link structures. Although structural design is in the early stages, DP was advised that the CSB is expected to have 15 MN working column loads. Although no information was available for the CTC or link buildings, it is expected that column loads of the order of 1,000 - 2,000 kN would be likely for these structures. It is expected that excavation for the CSB and CTC will necessitate cuts of up to approximately 14 m and 5 - 6 m, respectively, to achieve the finished floor level (FFL) of each structure (RLs 82.3 m AHD and 78.0 m AHD).

Demolition of the existing buildings and pavements within the footprint of the proposed buildings will be undertaken as part of site preparation works. The extent of works is shown in Figure 1 with sections and elevations included in Appendix A.

Figure 1 shows the extent of the proposed demolition and construction of new hospital facilities, shown in purple, whilst the yellow area will form the proposed pedestrian transport corridor.

Figure 1: Location of site structures to be demolished and rebuilt (purple) or renovated (orange)

9. Comments

9.1 General

The following comments are based on the results of previous and current investigations to assist in the preliminary design of foundations, excavations and retention. As detailed design of the proposed redevelopment works has not been undertaken, the comments given must also be considered as being preliminary. Once further details are available, they should be forwarded to DP for review to assess the appropriateness or otherwise of comments given within.

9.2 Earthquake Actions – Sub-soil Class

The overall site stratigraphy comprises pavements, filling or topsoil underlain by stiff to hard silty clays, overlying bedrock at depths less than 10 m.

The proposed CSB and CTC structures will be founded on the bedrock based on the proposed bulk excavation levels. The sub-soil class for these structures, when assessed in accordance with AS 1170.4 - 2007 (Ref 4), is considered a rock site and a classification of Class B_e is suggested.

As the link structures don't have defined bulk excavation levels as yet, and the link building located between Buildings A and D will have a bulk excavation level at close to current levels over filling and soils to depths of approximately $4-5\,\text{m}$. Therefore, the sub-soil class for these areas, when assessed in accordance with AS 1170.4 – 2007 (Ref 4), is considered a shallow soil site and a classification of Class C_e is suggested.

9.3 Excavation

Excavation for the proposed CSB basement will necessitate cuts of up to approximately 14 m to achieve a basement floor level at RL 82.3. Excavation for the proposed CTC basement will necessitate cuts of up to approximately 6 m to achieve a basement floor level at RL 78.0. The link building (between Buildings A and D) will have a FFL of approximately RL 83.7 (at about current ground level) and, as such, is likely to require cuts of less than 1 m. No preliminary information was available regarding the FFL of the pedestrian link and, as such, it is assumed that this area is approximately at current levels with no excavation required.

9.3.1 Clinical Services Building

Within the 14 m depth of excavation, a wide range of materials will be encountered (refer Drawings 2-5 in Appendix A) and will initially comprise AC wearing course, concrete pavements (to depths of 0.4-0.6 m in the vicinity of Bores 106-108), and filling (to depths of 0.1-0.3 m in the vicinity of Bores 101-111, 113, 116 and 118), overlying very stiff to hard clay (to depths of 1.5 m and 2.0 m in the vicinity of Bores 108 and 112 respectively).

The methods used in the drilling of the bores provide an indication and guide to the excavatability of the materials to be removed in bulk. Following demolition of concrete pavements, topsoil, existing asphalt, filling, natural soils and bedrock up to very low to low strength should be readily removed using a conventional medium sized dozer or excavator fitted with a toothed bucket possibly with some light ripping in the weathered bedrock. These conditions were generally encountered to depths

ranging between $0.5 \, \mathrm{m}$ (in the vicinity of Bore 105) to $4.5 \, \mathrm{m}$ (in the vicinity of Bore 103). Below these depths though, bulk excavation will be in low and medium strength siltstone to depths ranging between $1.2 \, \mathrm{m}$ (in the vicinity of Bore 113) to $12.1 \, \mathrm{m}$ (in the vicinity of Bore 116) and will likely require medium to heavy ripping (D8 – D9 or equivalent), rock sawing, rock grinding and/or rock breaking equipment to assist in bulk removal, with potential for low production rates. The underlying medium to high strength siltstone will likely require heavy ripping (D10 – D11, or alternatively $45 - 80 \, \mathrm{tonne}$ excavators using 5 or 8 tonne hammers), rock sawing and/or rock grinding to assist in bulk removal, with potential for very low production rates. These conditions are expected to be encountered in the vicinity of Bores 101, 103, 106 and 116.

9.3.2 Cancer Treatment Centre

Within the 6 m depth of excavation, a wide range of materials will be encountered comprising filling (to depths of 1.9 - 2.6 m), overlying very stiff to hard clay (to depths of 2.8 - 4.0 m) then low strength shale.

The methods used in the drilling of the bores provide an indication and guide to the excavatability of the materials to be removed in bulk. Topsoil, existing asphalt, filling, natural soils and bedrock up to very low to low strength should be readily removed using a conventional medium sized dozer or excavator fitted with a toothed bucket possibly with some light ripping in the weathered bedrock. These conditions were generally encountered to depths ranging between 2.6 m (in the vicinity of Bore 39) and 5.6 m (in the vicinity of Bore 114). Bulk excavation to depths ranging between 3.9 m (in the vicinity of Bore 40) and 4.5 m (in the vicinity of Bore 39) will encounter low strength siltstone which is likely require light to medium ripping (D7 – D8 or equivalent), rock sawing, rock grinding and/or rock breaking equipment to assist in bulk removal.

9.3.3 General

The presence of the existing structures in the immediate vicinity of the excavation areas will need to be considered in assessing suitable excavation equipment, as the noise and ground vibration resulting from the excavation may cause damage to sensitive medical equipment, the underground services or other infrastructure. An assessment of vibration must be undertaken before work begins in selecting appropriate equipment. As the work will be undertaken within 20 m of what are likely vibration-sensitive structures, vibration trials must be undertaken prior to construction. If the monitoring indicates unacceptable levels of vibration, then the use of non-percussive (i.e. rock sawing and ripping) excavation methods will be required. This requirement, however, will need to be determined once the details of the bulk earthworks and proposed excavation equipment are known. Further information regarding excavation induced vibrations is provided in Section 9.5. Notwithstanding the above, vibration monitoring will also be required during construction.

Assessment of excavation difficulties however, is best determined by intending contractors based on inspection of core samples, consideration of the equipment they have at their disposal and the experience of the operators.

9.4 Groundwater Inflow into Excavation

There is potential for groundwater inflow into the excavation through open bedding planes or joints in the bedrock or along the residual soil/bedrock interface as indicated by standing water levels at around RL 76.3 - 84.3 (Bores 3, 5 and 6 during the period 8 - 21 September 1998) in the vicinity of the CSB which will have a bulk excavation level of RL 82.3 and RL 77.4 - 78.9 (Bore 1 during the period

8 – 21 September 1998) in the vicinity of the CTC which will have a bulk excavation level of RL 78.0. It is noted that groundwater levels can fluctuate with seasonal climatic changes and variability in the permeability of the subsurface strata.

Whilst the extent of groundwater inflow would be dependent on prior weather conditions, short-term inflow rates through the rock would be expected to be controlled from sumps within the excavation. In the longer-term, however, given the depth of the basement, the requirements for drainage behind perimeter walls (including any shotcrete walls) and under-floor drainage will need to be included. These could include discharge via a permanent pump system to stormwater or sewer, subject to confirmation of inflow rates and approval by the regulator or tanking of the basement. It is suggested however that the final design also takes into account observations of inflow during excavation.

9.5 Vibrations Induced by Excavation Plant

The proposed excavation areas of the CSB and CTC structures (refer Drawing 1) will adjoin existing hospital structures at several locations. Vibration and noise associated with rock excavation, particularly the use of rock hammers, may be unacceptable to patients, staff, vibration-sensitive equipment or other structures and operating restrictions are likely to be required. It is recommended that dilapidation (condition) surveys be carried out on adjoining structures and other nearby structures that potentially may be susceptible to vibration damage.

During excavation, it will be necessary to use methods and equipment to keep ground vibrations at adjacent buildings within acceptable limits. There are three aspects of vibrations which need to be assessed; effects on structures; effects of architectural finishes; and effects on humans.

From current information it is considered that the structures adjacent to the site can withstand vibration levels higher than those required to maintain the comfort of their occupants. A human comfort criterion is therefore indicated and the vector sum peak particle velocity (VSPPV) is proposed as the control parameter. It is recommended that a Provisional Allowed Vibration Limit of 8.0 mm/sec (VSPPV) be set during normal working hours, at foundation level of the potentially affected building/s. It is noted that if vibration-sensitive equipment are located immediately adjacent the excavation, then a reduced limit of 5.0 mm/sec may be appropriate. Additional guidelines considered appropriate for management of ground vibrations generated by the proposed works are given in Appendix D.

DP maintains a database of vibration trial results (generally VSPPV versus distance) which can provide guidance for the selection of plant. Trial data is dependent on site conditions and equipment, hence actual vibration levels may differ from predictions and a specific trial is recommended at the commencement of rock excavation. The database suggests buffer distance ranges, such as those shown for selected plant in Table 5 which should be maintained between excavation plant and adjacent buildings. These estimates should be examined in relation to the distances between adjacent buildings and the proposed excavation footprint, in order to select suitable plant.

Table 5: Approximate Buffer Distances for Selected Plant (Provisional Allowed Limit 8 mm/s)

Excavation Plant	Distance from plant by which vibration would attenuate to the Provisional Allowed Limit			
	From DP trial maxima 1	From DP trial averages		
Rock Saw on Excavator ²	1 m	0.6 m		
Ripper on 6 – 36 t Excavators	3 m	1.2 m		
Rock Hammer <500 kg operating weight	7 m	3.0 m		
Rock Hammer 501 – 1000 kg operating weight	8 m	3.3 m		
Rock Hammer 1001 – 2000 kg operating weight	13 m	5.2 m		
Rock Hammer > 2000 kg operating weight	7 m	4.9 m		

Note: (1) Smaller distances can generally be determined from individual trials, as indicated by those from trial averages;

- (2) Buffer distances for rock hammers may be reduced by prior saw cutting along, or parallel to, excavation boundaries;
- (3) Loading effects from adjacent buildings may reduce vibration levels, to enable boundary saw cuts with few exceedances.

It is noted that people may find vibration levels above about 3-5 mm/s as being strongly perceptible to disturbing, even though they may not cause structural damage to structures. Hence, complaints from neighbours are possible and some reassurance, possibly by vibration monitoring, is likely to be necessary. Consequently, the excavation process should include:

- Notification of neighbouring occupiers of the proposed timing of the excavation so that any vibration sensitive items can be secured;
- Excavation of loose or rippable blocks by bucket or single tyne attachments prior to commencement of rock hammering;
- Progressive breakage from open excavated faces;
- Use of rock hammers in short bursts to prevent generation of resonant frequencies;
- The movement of large blocks away from the structures prior to breaking up for transport from site;
- Commencement of excavation as far away from other structures as possible and monitor vibration whilst working towards these buildings;
- The use of rock sawing or grinding equipment adjacent to the site boundaries, noting that this
 equipment also reduces impact damage, overbreak and loosening of the rock mass, typically
 resulting in reduced requirement for rock support measures.

Given the possible vibration sensitivity of parts of the site, further work is needed prior to work starting to determine appropriate excavation equipment and methodology. This would involve trials of different equipment types, excavation methods and the allowable proximity to the neighbouring structures these options can be utilised.

9.6 Disposal of Excavated Materials

Under the Protection of the Environment Operation Act (1997), the burden of proof that materials received by a landfill or fill site meet the environmental criteria for proposed land use rests on the waste/fill receiving site. This includes Virgin Excavated Natural Materials (VENM), such as will be removed below the filling from this site. Accordingly, environmental testing may need to be carried out

to classify the spoil. The type and extent of testing undertaken would depend on final use or destination of the spoil and requirements of the receiving site. As a minimum, allowance should be made during bulk excavation to stockpile fill materials separately from the underlying residential soils, to enable the best possible waste classification of the natural soils/rock to be achieved. Reference must be made to DP's Detailed Site Investigation (Project 34275.09) for further details relating to disposal of excavated materials.

9.7 Batter Slopes

Conceptual design drawings indicate the excavation for the proposed CSB building would be battered along the upper $7-8\,\mathrm{m}$ of its southern edge (based on conceptual elevation drawings) where space permits within the bulk excavation area. As such, the batters could be constructed to the slopes suggested in Table 6.

Table 6: Suggested Batter Slopes

Material	Temporary	Permanent
Stiff to hard clay, extremely weathered shale and compacted filling	1H:1V	2H:1V
Very low to low strength rock	0.75H:1V	1H:1V*
Medium or greater strength rock	Vertical*	0.25H:1V*

These batter slope angles are subject to inspection by a qualified geotechnical engineer or engineering geologist.

Where batters greater than 4 m in height are required, the inclusion of a 3 m wide intermediate bench every 4 m in height is recommended to reduce the effects of scour and erosion. The indicative batter slopes in rock in Table 6 are largely dependent on joint orientation and would be subject to verification after an inspection by a qualified engineering geologist during the excavation process.

As shale cut faces are likely to fret and have blocks loosen over time when exposed to weathering, maintenance of long-term batters will include periodic cleaning of debris which may block any toe drains. As such, this will require the acceptance of periodic maintenance by the site owner and operator. Alternatively, a 50 mm thick shotcrete lining could be applied to minimise the need for any long term maintenance.

Where the slopes are to be vegetated to prevent erosion, a maximum final batter slope of 3(H):1(V) is recommended.

9.8 Excavation Support

9.8.1 Clinical Services Building

The proposed CSB basement footprint will be located within the existing on-grade southern carpark adjacent the southern edge of Building B. This northern edge of the proposed CSB basement will require up to approximately 5.0 - 7.5 m and will be constructed directly adjacent Building B, whilst the southern edge of the CSB basement will require excavations in the order of 14 m. Given the proximity

to Building B the northern edge of the CSB will require full-depth vertical cuts, however, the southern edge of the CSB basement is to be supported by 6-7 m of vertical cuts, with the upper 7-8 m of cut being battered where space permits.

Figure 2 shows the conceptual western elevation of the CTC link structure and CSB

Figure 2: Conceptual western elevation (CTC at northern end and CSB at southern end)

The design of shoring will need to take account of the lateral loads due to adjacent structures. Where adjacent structures are within the zone of influence of the excavation (which will be the case along the northern boundary), it will be necessary to establish the nature and founding levels of the footings to the adjacent buildings to determine underpinning requirements (if any) and to ensure that an appropriate construction methodology is established. Feasible options would include either anchored soldier piles (drilled at maximum 2.4 m spacings) with close shuttering/shotcrete infill panels or anchored contiguous piling. In the absence of details of adjacent footings being available, contiguous piling must be allowed for adjacent to neighbouring buildings.

Excavation of panels for shotcreting should be staged to allow a hit and miss alternate approach with the first panel extending no more than 1.0 m below the base of the adjacent building foundation, including the reinforcement overlap. The next row of panels should not exceed 1.5 m with subsequent panels not exceeding 2 m in height. Drainage behind all permanent linings will be required to ensure long-term dissipation of groundwater pressures and could include vertical drainage strips at maximum 2 m horizontal spacing's. The sprayed concrete wall should provide adequate structural support, however installation of a false wall (single brickwork or block work) could be considered for aesthetic purposes and to avoid dampness.

Care should be exercised in construction to ensure that anchors are installed progressively with excavation (and stressed up) and that the shotcreting is carried out at regular intervals to limit the exposed sections. The first row of anchors should be installed as high as possible and stressed up to 80% of its working load prior to excavation of the next row of panels.

Where piers have been included within the retaining wall design and are to provide support to adjacent boundaries and structures, anchoring will be required as a cantilever system may not prove to be sufficiently rigid to avoid surface (lateral) deflections. A high torque piling rig will be required to penetrate the medium and high strength rock. Where piers refuse in the medium or high strength rock above the excavation levels (possibly RL 84.9 – 88.8 in the vicinity of Bores 101, 103, 105, 106, 110 and 116) additional anchors will need to be installed in the toe of each pier to provide lateral toe support.

As a result of predominantly moderately to steeply-inclined jointing and potential for 'wedge-type' failures within the batters, allowance will also need to be made for the support of the fractured rock where contiguous walling is not installed. As the support requirements will depend on a number of factors including extent of disturbance during excavation, orientation (bearing), persistence (lateral continuity) and spacing (horizontal separation) of jointing, clay infilling of open jointing and groundwater, detailed design can only be undertaken following inspection of the excavated faces at every 1 m to 2 m of drop in the excavation level.

As a guide, in addition to the soldier piles, preliminary design of infilled panel sections should allow for the application of a steel mesh-reinforced shotcrete layer with a minimum nominal thickness of 150 mm where permanent support is required or 75 mm for temporary support. The installation of a grid of rock bolts of nominal 1.5 m spacing (vertically and horizontally) will also be a likely requirement as the 'fractured zone' is expected to extend depths of 3-5 m along the northern boundary and 1-2 m along the southern boundary.

Due to the slightly fractured nature of the remaining rock stratum, the installation of a rock bolts will likely take the form of spot bolting based on inspections carried out by an engineering geologist. The final required bolt lengths can only be determined following assessment of fracture characteristics observed in the face. The fractured, medium and high strength siltstone may also be self-supporting provided that all inclined jointing is tight and free of clay infilling.

Where a 'wet-wall' is proposed within the underlying massive siltstone (i.e.: no lining), allowance will need to be made for the inclusion of a toe-drain to collect and discharge seepage to the sump and pump system. Furthermore, as on-going fretting of the face will occur, the requirement for periodic maintenance of the face and clearing out of loose debris from the toe drains must be accepted. Allowance must be made in the design detail to the provision of shotcrete facing in conjunction with drainage to protect the face from ongoing erosion will be required. It is noted however, that the feasibility of a 'wet-wall' is best determined on site during inspection of the cut face by an experienced engineering geologist.

9.8.2 Cancer Treatment Centre

Within the excavation, a wide range of materials will be encountered comprising filling (to depths of 1.9 - 2.6 m), overlying very stiff to hard clay (to depths of 2.8 - 4.0 m) then low strength shale. The soils exposed in cut to depths ranging from approximately 5 - 6 m will not be able to stand vertically without support over extended periods of time.

As excavation is expected to extend to the existing structures to the south, east and west (precluding batters) either temporary shoring or the progressive construction of permanent walls designed to shore up the boundaries will be necessary. There is also potential for progressive collapse of the filling and clay, and therefore no excavation is to be left unsupported.

The design of shoring will need to take account of the lateral loads due to adjacent structures. Where adjacent structures are within the zone of influence of the excavation (which is likely the case along all but the northern boundary), it will be necessary to establish the nature and founding levels of the footings to the adjacent buildings to determine underpinning requirements (if any) and to ensure that an appropriate construction methodology is established. Feasible options would include either anchored soldier piles (drilled at maximum 2.4 m spacing's) with close shuttering/shotcrete infill panels or contiguous piling. In the absence of details of adjacent footings being available, contiguous piling must be allowed for adjacent to neighbouring buildings.

Excavation of panels for shotcreting should be staged to allow a hit and miss approach with the first panel extending no more than 1 m below the base of the adjacent building foundation, including the reinforcement overlap. The next row of panels should not exceed 1.5 m with subsequent panels not exceeding 2 m in height. Drainage behind all permanent linings will be required to ensure long-term dissipation of groundwater pressures and could include vertical drainage strips at maximum 2 m horizontal spacing's. The sprayed concrete wall should provide adequate structural support, however installation of a false wall (single brickwork or block work) could be considered for aesthetic purposes and to avoid dampness.

Care should be exercised in construction to ensure that anchors are installed progressively with excavation (and stressed up) and that the shotcreting is carried out at regular intervals to limit the exposed sections. The first row of anchors should be installed as high as possible and stressed up to 80% of its working load prior to excavation of the next row of panels.

Where piers have been included within the retaining wall design and are to provide support to adjacent boundaries and structures, anchoring will be required as a cantilever system may not prove to be sufficiently rigid to avoid surface (lateral) deflections.

As a result of predominantly moderately to steeply-inclined jointing and potential for 'wedge-type' failures within the batters, allowance will also need to be made for the support of the fractured rock where contiguous walling is not installed. As the support requirements will depend on a number of factors including extent of disturbance during excavation, orientation (bearing), persistence (lateral continuity) and spacing (horizontal separation) of jointing, clay infilling of open jointing and groundwater, detailed design can only be undertaken following inspection of the excavated faces at every 1 m to 2 m of drop in the excavation level.

As a guide, in addition to the soldier piles, preliminary design of infilled panel sections should allow for the application of a steel mesh-reinforced shotcrete layer with a minimum nominal thickness of 150 mm where permanent support is required or 75 mm for temporary support. The installation of a grid of rock bolts of nominal 1.5 m spacing (vertically and horizontally) will also be a likely requirement as the 'fractured zone' is expected to extend the full depth (5-6 m) of excavation below the overlying soils. If soldier piers refuse in the medium or high strength rock above the excavation levels additional anchors will need to be installed in the toe of each pier to provide lateral toe support.

9.9 Anchor Design

The anchoring of soldier or contiguous piles may be achieved by pre-stressed type anchors. It is suggested that these be inclined as steeply as possible, but not exceeding 30°, to allow anchoring in the stronger rock. The design of temporary anchors for support of piled wall systems be carried out on the basis of the ultimate bond stresses given in Table 7.

Table 7: Bond Stresses for Anchor Design

Material	Rock Class	Maximum Ultimate Average Bond Stress ^(1,2) (τ _{ult} , kPa)
Very stiff clay	-	50
Very low strength siltstone	V	100
Low strength siltstone	IV	300
Medium strength siltstone	III	1,000
High strength siltstone	II	3,000

Notes: (1) Values are for straight shaft boreholes;

(2) Ultimate values with no reduction factor.

Reference should be made to Table 1 with respect to the depths and reduced levels of the various grades of rock in the individual boreholes.

Ground anchors should be designed to have a free length at least equal to their height above the base of the excavation and provide a minimum 3 m bond length beyond the line of a possible 45° dipping joint paralleling the face to be anchored. Where anchor inclination must be increased to provide appropriate bond conditions, the anchor capacity should be increased as shown in Table 8.

Table 8: Increased Capacity Requirements for Steeper Anchors

Angle of Installation (below horizontal)	Required Percentage Increase in Capacity
10°	0%
15°	5%
20°	14%
25°	22%

Ultimately, it is the contractor's responsibility to ensure that appropriate design values (specific to the anchor system and method of installation) are used and that the anchor holes are cleaned out prior to grouting. After anchors have been installed, it is recommended that they be tested to 125% of nominal working load and then locked off at between 60% and 80% of their working loads and 100% of the working load for 'at rest' pressure conditions. Checks should be carried out, however, to ensure that the load is maintained in the anchors throughout the construction period and is not lost due to creep effects or to other causes.

The parameters given above can only be safely adopted on the condition that anchor holes are clean and adequately flushed, with grouting and other installation procedures carried out carefully in accordance with normal, good anchoring practice.

In normal circumstances, the building will restrain the basement excavation over the long-term and therefore ground anchors are expected to be temporary only. The use of permanent anchors would generally require careful attention to corrosion protection. Further advice on design and specification should be sought from the geotechnical engineer if permanent anchors are to be employed at this site.

9.10 Retaining Structures

Earth pressures acting on multi-anchored shoring structures and retaining walls can be estimated on the basis of a trapezoidal pressure distribution (i.e. triangular to 0.25 H, uniform from 0.25 H to 0.75 H and triangular decreasing to zero from 0.75 H to H) with depth using appropriate values of unit weight and active (K_a) or 'at rest' (K_0) earth pressure coefficients as set out in Table 9. Further guidance on earth pressure estimation is given in Appendix E.

Table 9: Suggested Lateral Earth Pressure Design Parameters – Retaining Structures

Retained Material	Bulk	K ₀ ⁽¹⁾	K _p ⁽¹⁾	K _a ⁽¹⁾	
	Density (kN/m³)			Short Term	Long Term
Filling, clay and extremely weathered rock	20	0.6	2	0.25	0.3
Very low strength siltstone	22	0.4	400 kPa	0.2	0.25
Medium strength siltstone	22	-	4,000 kPa	10 kPa ⁽²⁾	10 kPa ⁽²⁾

Notes:

'At rest' pressure coefficients are appropriate where movement intolerant services or adjacent structures are present. Note that surcharge lateral pressure due to the adjacent building footings will also need to be taken into account where these footings found on low strength or weaker rock and where unfavourably orientated jointing underlies the footings of the adjacent buildings.

Where appropriate, lateral restraint may also be developed by embedding piles below the base of the excavation developing passive pressure. Suggested ultimate passive resistance values given in Table 9 may be adopted below one pile diameter beneath the bulk excavation level and should incorporate a factor of safety to limit wall movement.

Where soldier piles terminate above the bulk excavation level or found on rock benches, allowance must be made for an end bearing pressure reduction factor of 0.5. It is noted however, that stability will be governed primarily by rock jointing (spacing and orientation) and as such, detailed inspection must be undertaken by an engineering geologist or geotechnical engineer during excavation to assess the additional requirement for anchor/support measures in weathered or fractured zones below the pile.

If a drainage medium is not provided behind retaining walls, then full hydrostatic pressures must be incorporated within the design with soil parameters reduced to their buoyant values.

⁽¹⁾ Ultimate values with no reduction factor.

⁽²⁾ A uniform pressure of 10 kPa should be adopted for the support of the medium to high strength sandstone to account for possible defects, but subject to inspection during the early stages of excavation to confirm bedding/jointing and revision of lateral restraint, if appropriate.

9.11 Foundations

9.11.1 Design Parameters

Based on the results of the field investigation and laboratory testing, building footings and retaining wall footings could be proportioned using the maximum design parameters presented in Table 10. The footing recommendations and design parameters for any given strata will need to be confirmed following the completion of design stage when the final excavation depth and design loads are known, however, Sections 9.11.2 to 9.11.5 provide preliminary comment on likely foundation conditions at each of the proposed structures.

Table 10: Estimated Design Parameters

Material	Ultimate Base Bearing Pressures (kPa) ⁽¹⁾	Ultimate Shaft Adhesion Pressures (kPa) (2)	Allowable Base Bearing Pressures (kPa) (3)	Allowable Shaft Adhesion Pressures (kPa)	Allowable Lateral Resistance (kPa)
Class V Shale	3,000	100	700	70	200
Class IV Shale	6,000	150	1,000	100	300
Class III Shale	20,000	750	3,500	350	1,000
Class II Shale	70,000	1,000	6,000	600	1,500

Notes (1) The values are in accordance with Pells et al- 1998 (Ref 3);

- (2) Ultimate values occur at large settlements (generally >5% of the minimum footing width);
- (3) Values can only be adopted for clean sockets of roughness category R2 or better. Values may need to be reduced to account for smear;
- (4) Value for rock based on settlements of <1% of minimum footing width.

Base bearing and shaft adhesion values have also been provided for Limit State design. A geotechnical strength reduction factor (Φ g) of 0.45 must be applied in accordance with AS 2159 – 2009, Table 4.3.2 based on the available information. Pile testing will be required in accordance with AS 2159 – 2009 where adopting values of Φ g>0.45.

If the higher design values are required for construction, daily site inspections will be required (as a minimum) for Class III rock, whilst coring or spoon testing will be required in the base of 50% of footings should Class II rock be required.

9.11.2 Clinical Services Building

Following excavation to RL 82.3, and based on the results of the subsurface investigations, the base is likely to expose Class II/III (eastern two-thirds) and Class IV rock (western third). As such, construction will likely comprise a footing system consisting of either high-level pad/strip footings and/or piled footings should higher strength rock result in a more economic footing design.

- Allowable base bearing pressure (ABBP) for a mixed pad/strip and shallow piled footing system founded in Class II/III bedrock (at levels below RL 79.9 – 82.3)
 3,500 kPa
- Allowable shaft adhesion in Class II/III rock
 350 kPa

Localised areas of Class IV rock can adopt an ABBP of 1,000 kPa for design.

Settlements adopting the above parameters are not expected to exceed a few millimetres.

Reference should be made to Table 1 with respect to the depths and reduced levels of the various grades of rock in the individual boreholes.

9.11.3 Cancer Treatment Centre

Following excavation to RL 78.0, and based on the results of the subsurface investigations, the base is likely to expose Class IV rock. As such, construction will likely comprise a footing system consisting of either high-level pad/strip footings and/or shallow piled footings.

Footings could be proportioned using the parameters nominated below:

- Allowable base bearing pressure for pad/strip footings founded in Class IV bedrock (at levels below RL 77.9 – 78.0)
 1,000 kPa
- Allowable shaft adhesion in Class IV rock
 100 kPa

Settlements adopting the above parameters are not expected to exceed a few millimetres.

Reference should be made to Table 1 with respect to the depths and reduced levels of the various grades of rock in the individual boreholes.

9.11.4 Link Building

Survey data indicates that the Link Building is approximately at current ground level RL 83.7. As such, based on the results of the subsurface investigations variable sub-surface conditions exists ranging from uncontrolled filling (north-west corner) to near-surface Class IV rock (south-east end). As such, construction will likely comprise a mixed footing system consisting of high-level pad/strip footings and piled footings founded on rock.

Footings could be proportioned using the parameters nominated below:

- Allowable base bearing pressure on Class IV bedrock (at levels below RL 75.7 – 83.7)
 1,000 kPa
- Allowable shaft adhesion in Class IV rock
 100 kPa

Settlements adopting the above parameters are not expected to exceed a few millimetres.

Reference should be made to Table 1 with respect to the depths and reduced levels of the various grades of rock in the individual boreholes.

9.11.5 Pedestrian Link

Design details on the pedestrian link structure were not determined. Based on the results of the subsurface investigations construction will likely comprise a footing system consisting of high-level pad/strip footings (e.g. towards the south) and/or piled footings (e.g. towards the north).

Footings could be proportioned using the parameters nominated below:

 Allowable base bearing pressure for a mixed pad/strip and piled footing system founded in Class IV bedrock (at levels below RL 74.6 – 93.0)

1.000 kPa

Allowable shaft adhesion in Class IV rock

100 kPa

Settlements adopting the above parameters are not expected to exceed a few millimetres.

Reference should be made to Table 1 with respect to the depths and reduced levels of the various grades of rock in the individual boreholes.

9.11.6 General

The use of bored piers is considered feasible for this site. Alternatively, auger grouted piles are also considered suitable for the site, provided installation is undertaken by an experienced contractor. It is noted that in order to achieve sockets into medium to high strength rock, it would be necessary to employ a high torque boring rig for pier construction or alternatively, install pile groups at closely spaced centres with pile caps. The choice between the alternative pile systems will be dependent on relative costs and on suitability in relation to proposed construction.

Where footing systems are proposed adjacent to services, batters or located near retaining walls, local deepening of the footings or alternatively the inclusion of piles will most likely be required. Founding levels are to be below the zone of influence of the service trenches, batters and any retaining walls, with the zone of influence defined as an imaginary line extending from the base of the trench to the ground surface inclined at 45° (i.e.: 1 horizontal:1 vertical).

9.12 Ground Slabs

Following preparation to design levels, the prepared subgrade could be expected to provide adequate support for the floor slabs, provided allowance is made for differential movement between the slab-on-grade and walls. Based on field observation, floor slab design could be based on the following subgrade conditions:

- CBR of 3.0% for the clayey and controlled filling (If encountered) likely for the north-western portion of the proposed link structure, proposed structure between Buildings A and D and the southern end of the pedestrian link;
- CBR of 7% for rock of at least very low strength (If encountered) likely for the south-western portion of the proposed link structure, CSB and CTC.

Subfloor drainage should be provided and possibly connected to a pump system. Allowance will need to be made for water-proofing the basement and uplift due to water pressure with design on a fully tanked basement if drainage cannot be provided.

10. Geotechnical Review

Once more detailed design has been carried out, it is recommended the plans be reviewed by Douglas Partners for compliance with recommendations given in this report. This is considered necessary given the number of assumptions that have been made in preparing this report, it will be necessary to review the extent of the geotechnical investigation and, if required, to get some supplementary information in order to confirm the advice given in this report.

If high bearing pressures (i.e. 3,500 kPa) are required, additional investigations should be undertaken to prove the rock quality. Supplementary investigations would comprise:

- Coring to depths of at least 4 times the width of footings below proposed footing founding levels at 50% of footing locations for Class II shale; or
- Coring to depths of at least 4 times the width of footings below proposed footing founding levels in a 10 m x10 m grid, or at all footing locations for Class I shale.

As the site is highly sensitive to vibrations, vibration trials should be undertaken well in advance of work starting in order for the excavation contractor to determine appropriate excavation equipment, methodologies and safe working distances.

11. Geotechnical Requirements During Construction

Geotechnical and environmental inputs that are discussed in this report and will require input during construction are summarised as follows:

- Dilapidation surveys of adjacent properties be undertaken to provide a base line condition of structures;
- Vibration monitoring of field trials and during excavation including foundation construction.
- Inspection during anchor installation by a geotechnical engineer to provide validation of the shaft adhesion and site conditions encountered are consistent with the anchor design.
- Inspection and environmental testing of excavated materials (i.e. waste classification) prior to disposal.
- Inspection of excavations within slightly fractured rock (i.e. where piles terminate on medium to high strength slightly fractured rock above basement level) to be made by an experienced engineering geologist or geotechnical engineer during the course of bulk excavation work at maximum depth intervals of 2 m.
- Inspection during foundation construction by a geotechnical consultant to provide validation of the bearing pressures and site conditions encountered are consistent with the foundation design.
- Working platform assessments for mobile crane lifts.

Notwithstanding the above mentioned items, the client and the building contractor should also be aware of any conditions in the development consent that require professional input during design and construction.

12. References

- Geology of 1:100 000 Wollongong Port Hacking Geological Series Sheet No 9029 9129, Dept. of Mines, (1985).
- 2. Foundations on Shales and Sandstones in the Sydney Region, Pells *et al*, Australian Geomechanics Journal (1998).
- 3. Australian Standard AS 2159 2009 "Piling Design and Installation".
- 4. AS 1170.4 2007, "Structural Design Actions Part 4: Earthquake Actions in Australia".

13. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for the proposed Campbelltown Hospital Stage 2 Redevelopment at Therry Road, Campbelltown in accordance with DP's proposal MAC170234 Rev2 (Variations 2 and 4) and acceptance received from Mrs Margo Kouvaris of Health Infrastructure. The work was carried out under DP's conditions of engagement. This report is provided for the exclusive use of Health Infrastructure for this project only and for the purposes as described in the report. It should not be used for other projects or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or subsurface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the geotechnical and groundwater components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

 $\begin{array}{c} \text{Notes About This Report} \\ \text{Drawings 1} - 5 \\ \text{BLP Conceptual Proposed Building Cross-sections} \end{array}$

About this Report Douglas Partners O

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners The sample of the samp

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

Α	Auger sample
В	Bulk sample
D	Disturbed sample
Е	Environmental sample

 U_{50} Undisturbed tube sample (50mm)

W Water sample

pp pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

	71-
В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam

F Fault
J Joint
Lam lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h	horizontal
٧	vertical
sh	sub-horizontal
sv	sub-vertical

Coating or Infilling Term

cln	clean
СО	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

General **Sedimentary Rocks** Asphalt Boulder conglomerate Road base Conglomerate Conglomeratic sandstone Concrete Filling Sandstone Siltstone Soils Topsoil Laminite Peat Mudstone, claystone, shale Coal Clay Limestone Silty clay Sandy clay **Metamorphic Rocks** Slate, phyllite, schist Gravelly clay Shaly clay Gneiss Silt Quartzite Clayey silt **Igneous Rocks** Sandy silt Granite Sand Dolerite, basalt, andesite Clayey sand Dacite, epidote Silty sand Tuff, breccia Gravel Porphyry Sandy gravel Cobbles, boulders

Soil Descriptions Douglas Partners O

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)		
Very loose	vl	<4	<2		
Loose	1	4 - 10	2 -5		
Medium dense	md	10 - 30	5 - 15		
Dense	d	30 - 50	15 - 25		
Very dense	vd	>50	>25		

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*			
Extremely low	EL	<0.03	<0.6			
Very low	VL	0.03 - 0.1	0.6 - 2			
Low	L	0.1 - 0.3	2 - 6			
Medium	M	0.3 - 1.0	6 - 20			
High	Н	1 - 3	20 - 60			
Very high	VH	3 - 10	60 - 200			
Extremely high	EH	>10	>200			

^{*} Assumes a ratio of 20:1 for UCS to Is(50)

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description				
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.				
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable				
Moderately weathered	MW	Staining and discolouration of rock substance has taken place				
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock				
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects				
Fresh	Fr	No signs of decomposition or staining				

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Appendix B

Current Borehole Logs (Bores 101 – 116 and 118)
Project 34275.00 Borehole Logs (Bores 1, 3 – 5 and 38 – 40)
Project 22884-1 Borehole Logs (Bores 1 – 12 and 16)
Project 14060 Borehole Logs (Bores 3 – 5)
Photoplates 1 – 4

Table B1: Summary Table – Groundwater Levels

Campbelltown Hospital Stage 2 Redevelopment, Campbelltown Hospital

BORE: 101 DEPTH: 2.55 m – 20.80 m PROJECT: 34275.08-2 March 2017

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297663

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 95.7 mAHD

BORE No: 101 **PROJECT No:** 34275.08

NORTHING: 6226977 **DATE**: 2/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 3

Ţ		Description	Degree of Weathering	Si	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
귚	Depth (m)	of		Graphic Log	Strength Nedium Nedium High High High Ex High Strength Nedium Nedium Nedium High High High Nedium Ne	Spacing (m)	B - Bedding J - Joint	Туре	ore	RQD %	Test Results &
	()	Strata	EW HW EW SW SW FR	O	EX Lo	0.050	S - Shear F - Fault	≥	2 %	R ~	Comments
	0.05 - - 0.3	ASPHALTIC CONCRETE FILLING - grey crushed sandstone (roadbase), moist SILTSTONE - low strength,		<u></u>				U			
94 95	- -1 -1 - -	moderately weathered, grey siltstone					Unless otherwise stated,	S			14,20/90mm refusal
93	-2 - - - - -	- becoming extremely low strength, extremely weathered below 2.5m	 	· — · — · — · — · — · — · — · — · — · —			rock is fractured along smooth to rough planar bedding dipping at 0°-10°				PL(A) = 0.3
92	-3 -3 3 	- becoming medium strength, moderately weathered below 2.6m - 150mm thick low strength, highly weathered band at 3.5m - 30mm thick extremely low strength,					2.9m: J, 65°, sv, pl, ro, cln 20mm long 2.92m: J, 65°, sv, pl, ro, cln 20mm long 2.94m: J, 65°, sv, pl, ro, fe stn 30mm long 3.23m: J, 30°, sh, pl, ro, fe stn 20mm long 3.27m: J, v, cu, fe stn 90mm long	С	100	30	PL(A) = 0.29
90		extremely weathered band at 4.1m becoming fresh below 4.4m - 40mm thick extremely low strength, extremely weathered band at 4.71m					3.41m: J, v, pl, he, fe stn 30mm 3.45m: J, 60°, sv, sm, fe stn 30mm 3.66m: J, 30°, sh, pl, he, fe stn 10mm 3.68m: J, 30°, sh, pl, he, fe stn 10mm 3.72m: J, 30°, sh, pl, he, fe stn 10mm 3.75m: J, 30°, sh, pl, he, fe stn 10mm 3.81m: J, 30°, sh, pl, he,	С	100	62	PL(A) = 0.36 PL(A) = 0.36
88	-	- becoming low strength below 6.5m					fe stn 10mm 13.87m: J, 30°, sh, pl, he, fe stn 10mm 13.92m: J, 70°, sv, pl, sm, fe stn 20mm long 14.6m: J, 70°, sv, pl, ro, cln 20mm long				PL(A) = 0.20
88	-7 	- becoming fresh below 7.78m					4.62m: J, 70°, sv, pl, ro, cln 120mm long -5.1m: J, 70°, sv, pl, sm, cln 20mm long -5.52m: J, 60°, sv, pl, sm, cly co 150mm long -5.75m: fg zone 90mm thick	С	100	86	PL(A) = 0.19
87	- 8 	- becoming medium strength below 8.5m					5.84m: J, v, cu, pl, he 70mm long 6.16m: J, 65°, sv, pl, ro, fe stn 40mm long 6.25m: J, 75°, sv, pl, cln 20mm long 6.4m: J, v, cu, pl, fe stn				PL(A) = 0.46
98	-9 - - - - - -						110mm long -6.57m: J, 70°, sv, pl, cly co 30mm long -6.64m: J, v, un, sm, fe stn 70mm long, B, h, pl, ro, fe stn -6.71m: J, 70°, sv, pl, sm,	С	100	99	PL(A) = 0.3

RIG: Commacchio Geo 205 **DRILLER:** Terratest LOGGED: IKA CASING: HWT to 2.5m

TYPE OF BORING: 110mm diameter auger to 2.5m, NMLC coring to 20.8m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Health Infrastructure

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297663 PROJECT:

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 95.7 mAHD

BORE No: 101 **PROJECT No:** 34275.08

NORTHING: 6226977 **DATE**: 2/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 2 OF 3

	Darith	Description	Degree of Weathering	jic I	Rock Strength	Fracture Spacing	Discontinuities	Sa	ampli	ng & I	n Situ Testing
RL	Depth (m)	of		irapt Log	Strength Nater Water Water	(m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
			EW HW SW RE	9	Kery Kery Kery Kery Kery Kery Kery Kery	0.10	S - Shear F - Fault	F	ΩÃ	8	Comments
84 85	-11	SILTSTONE - medium strength, fresh, grey siltstone (continued) - becoming high strength below 11.5m					cln 70mm long 6.8m: J, v, st, ro, fe stn 60mm long, B, h, pl, ro, fe stn 7.17m: J, 65°, sv, pl, sm, cln 30mm long 7.32m: J, 60°, sv, pl, sm, cly co 20mm long 7.43m: J, 20°, sh, pl, sm, cln 20mm long 7.61m: J, v, st, sm, cln 30mm, B, h, pl, ro, cln 7.67m: J, v, cu, sm, cln 40mm long	С	100		PL(A) = 0.59 PL(A) = 2.01
83	-12 	- becoming medium strength below 12.7m		!!!!!!!!!!!			7.75m: fg zone 30mm thick 9.21m: J, 15°, sh, pl, sm, cln 9.47m: fg zone 50mm thick 10.31m: Cs 10mm thick 12.1m: J, 30°, sh, pl, sm, cln 120mm long 12.87m: J, 70°, sv, pl, sm, cln 40mm thick	С	100	100	PL(A) = 1.1
81	-14						13.46m: J, 65°, sv, pl, ro, cln 170mm thick		100	100	PL(A) = 0.99 PL(A) = 0.99
980	-15			!!!!!!!!!!!			15.44m: fg zone 30mm thick	С	100	98	PL(A) = 0.55 PL(A) = 0.63
78 79	- - - - - - - - - - - - - - - - - - -						16.6m: J, 65°, sv, pl, sm, cln 80mm long				PL(A) = 0.75
77	-18						17.85m: J, 65°, sv, un, sm, cln 70mm long 17.9m: J, v, cu, pl, sm, cln 40mm long 18.49m: J, 30°, sh, pl, sm, cln 29mm long 18.51m: J, 70°, sv, pl, sm, cln 40mm long	С	100	99	PL(A) = 0.66
9/	-										PL(A) = 0.94

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 2.5m

TYPE OF BORING: 110mm diameter auger to 2.5m, NMLC coring to 20.8m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297663

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 95.7 mAHD

PROJECT No: 34275.08

NORTHING: 6226977

DATE: 2/3/2018 **DIP/AZIMUTH**: 90°/--SHEET 3 OF 3

BORE No: 101

		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities				n Situ Testing
씸	Depth (m)	of		raph Log	Strength Nedium	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
		Strata	W H W W R E		Medi Medi Low Very Very Very Very Very Very Very Very	0.10	S - Shear F - Fault	É.	ပည္	٣ -	Comments
75	-	SILTSTONE - medium strength, fresh, grey siltstone (continued)						С	100	99	PL(A) = 0.73
-	- 20.8 - -21	Bore discontinued at 20.8m	 		 						
	- 21	- limit of investigation									
44	-										
-	- -22 -										
<u></u>											
73	-										
-	- 23 - -										
-											
72											
-	-24										
-	-										
71	-										
Ė	- - - 25										
-											
ŀ	-										
1,0	-										
ŀ	- 26					 					
ŀ	-					 					
69						 					
E	_ -27										
[-										
	-					i ii ii					
- 68											
-	- 28 - -										
F											
67											
Ė	- -29										
Ė	- -										
99	-										
_	-										

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 2.5m

TYPE OF BORING: 110mm diameter auger to 2.5m, NMLC coring to 20.8m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT: Campbelltown Hospital Stage 2 Redevelopment **EASTING:** 297637

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 94.7 mAHD

NORTHING: 6226970

mAHD BORE No: 102

PROJECT No: 34275.08

DATE: 5/3/2018 **SHEET** 1 OF 1

CAII	ON: Therry Road, Campbellown					d226970 d: 90°/		SHEET 1 OF 1
	Description	. <u>C</u>		San	pling 8	In Situ Testing	L	VWP
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
0.05	ASPHALTIC CONCRETE				0,			-
	FILLING - grey crushed sandstone (roadbase), dry							
	SILTSTONE - very low to low strength, moderately to slightly weathered, grey siltstone	ິ · — · ·	-					
	slightly weathered, grey siltstone		I					
1				1.0		20/140mm		-1
			S	1.14		20/140mm,-,- refusal		
			1					
	- with medium strength bands below 1.5m		1					
			1					
2								-2
			-					
2.5	5		S	2.5 2.61		20.110mm,-,- refusal		-
	Bore discontinued at 2.5m - limit of investigation			2.61		refusal		
.3	in it of investigation							-3
3								
4								-4
-5								-5
								-
-6								-6
Ü								
7								-7
0								
-8								-8
								<u> </u>
9								-9
								ļ .
								ļ .
			1	1	1		1	t I

RIG: Commacchio Geo 205 DRILLER: Terratest LOGGED: IKA CASING: N/A

TYPE OF BORING: 110mm diameter auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 D IESTINC
G Gsa sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

Campbelltown Hospital Stage 2 Redevelopment, Campbelltown Hospital

BORE: 103 DEPTH: 4.50 m - 18.80 m PROJECT: 34275.08-2 March 2017

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297613

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 93.3 mAHD

BORE No: 103 **PROJECT No:** 34275.08

NORTHING: 6226967 **DATE:** 5/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 2

П			Degree of		Rock	Frant	Discout' W		!!		- Otto T - C
	Depth	Description	Degree of Weathering	hic P	Rock Strength	Fracture Spacing	Discontinuities				n Situ Testing
R	(m)	of		, rap	Ex Low Very Low Medium High Ex High Ex High Ex High O001	(m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
		Strata	EW SW FS FR	0	Kery Very Very Very Very Very Very Very V	0.05 0.10 1.00	S - Shear F - Fault	ŕ	S &	ر تع	Comments
П		ASPHALTIC CONCRETE		\times							
93	0.3	FILLING - grey crushed sandstone (roadbase), moist		\cong	 						
<u> </u>	.	SILTSTONE - very low to low		l : —							
	:	strength, moderately to slightly		· —							
	-1	weathered, grey siltstone	iiiii		i i i i i i	ii ii					20/110mm,-,-
	-			— ·				<u>_S</u> _	1		refusal
-8	.			-							
F	-					11 11					
F	-			l : —							
[]	-2				i	ii ii l					
[-											
Ŀ	-			<u> </u>							20/50mm,-,-
	.							S	1		refusal
	·										
	-3			:_	i						
-6	·			·-							
F	-										
-	-		iiiii	 -	i i i i i i	ii ii	Unless otherwise stated,				
[-4						rock is fractured along				
[]	-						smooth to rough planar bedding dipping at				
-88	.			· —			0°-10°				
	.	- becoming medium strength, fresh		-	╎╏┖┪ ╎┤┤┤┤						
	:	below 4.5m	iiiii		i i i i i i i	ii ii	4.64m: J, 70°, sv, pl, fe, fe stn 60mm long				PL(A) = 0.34
	- -5			 -			ie sur committiong				. ,
1	:							С	100	90	
-8	-										DI (A) = 0.71
[]				· —							PL(A) = 0.71
[liiiii	· —	i i i i i i i	ii i <u>i</u>					
} }	-6										
- 48	.			— ·							
	·			-							PL(A) = 0.39
	·					 					
	·			:-	i i i i i i i	ii lil					
[]	-			·-							
86	:							С	100	99	DI (A)
<u> </u>	.										PL(A) = 0.57
<u> </u>	.			<u> - </u>							
	- 8				i i i i i i i						
<u> </u>	·										
85	.			·-							
	.					<u> </u>					PL(A) = 0.47
[
[]	-9			-							
[4											
-8							9.31m: J, v, un, sm, clay co 100mm long, B, h, pl,	С	100	95	
<u> </u>	.			. —	i i i i i i i		sm. cly co				PL(A) = 0.34
}	.						9.42m: J, v, un, sm, cly co 70mm long				FL(A) - 0.34
ш							55 / Offilit long		I		

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 4.2m

TYPE OF BORING: 110mm diameter auger to 4.2m, NMLC coring to 18.8m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample

Core drilling
Disturbed sample
Environmental sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Health Infrastructure

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297613 PROJECT:

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 93.3 mAHD

BORE No: 103 **PROJECT No:** 34275.08

NORTHING: 6226967 **DATE:** 5/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 2 OF 2

		Description	Degree of	<u>.</u>	Rock Strength 5	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
묍	Depth (m)	of	Degree of Weathering A PROPERTY SET OF THE P	Log Log	Mat Nat	Spacing (m)	B - Bedding J - Joint	Туре	ore c. %	RQD %	Test Results &
Н		Strata SILTSTONE - medium strength,	M M M M M M M M M M M M M M M M M M M	S S S S S S S S S S S S S S S S S S S	Med High	0.00	S - Shear F - Fault	É.	O &	α .	Comments
82 83	-11	fresh, grey siltstone (continued) = becoming high strength below 10.2m					10.85m: J, 80°, sv, pl, sm, cln 170mm long 11.56m: J, v, pl, sm, cln	С	100		PL(A) = 1.3 PL(A) = 1.42
81	-12						60mm long				PL(A) = 1.16
80	-13 - - - - - - -						13.43m: J, v, cu, sm, cln 300mm long	С	100	100	PL(A) = 0.93
. 62	-14 										PL(A) = 1.33
							15.67m: J, 75°, sv, pl, sm, cln 40mm long		100		PL(A) = 1.03
77 92	- - - - - - - 17						16.75m: J, 65°, sv, pl, sm, cln 20mm long 16.86m: fg zone 40mm thick 16.93m: J, 60°, sv, pl,	С	100	98	PL(A) = 1.4
75	- 18 18 1						sm, cly inf 5mm thick 17m: J, 75°, sv, pl, sm, cln 70mm long 17.45m: J, 75°, sv, pl, sm, cln 60mm long	С	100	100	PL(A) = 1.46 PL(A) = 0.81
74	- 18.8 - 19 - 19 	Bore discontinued at 18.8m - limit of investigation									

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 4.2m

TYPE OF BORING: 110mm diameter auger to 4.2m, NMLC coring to 18.8m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

		SAMPLING	& IN SITU	TESTING	LEGE	ND
Α	Auger sample	G	Gas sample		PID	

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Health Infrastructure

Campbelltown Hospital Stage 2 Redevelopment EASTING: 297589 PROJECT:

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 92.0 mAHD

BORE No: 104 **PROJECT No:** 34275.08

NORTHING: 6226956

DATE: 5/3/2018 **DIP/AZIMUTH**: 90°/--SHEET 1 OF 1

			Description	. <u>ಲ</u>		Sam	pling 8	& In Situ Testing		VWP
Ζ	De (r	pth n)	of	Graphic Log	Туре	Depth	Sample	Results &	Water	Construction
			Strata	Ō	<u>></u>	Det	Sam	Results & Comments	>	Details
- 65		0.05	ASPHALTIC CONCRETE	$\times\!\!\times\!\!\!>$						
ŀ	ŀ	0.4	FILLING - grey crushed sandstone (roadbase), moist	\bowtie						
ŧ	ŀ		SILTSTONE - very low to low strength, moderately to slightly weathered, grey siltstone							-
F	F		slightly weathered, grey slitstone							-
-2	-1		- with medium strength bands below 1.0m		s_	1.0 1.11		20/110mm,-,- refusal		<u>-</u> 1
ţ	ļ		warmoadin sasiigar baras bolow nom	:-		1.11		reiusai		-
ŧ	Ē				<u> </u>					
ŀ	ŀ]					<u> </u>
-8	-2	2.0		. —	İ					- 2
	-3		Bore discontinued at 2.0m - limit of investigation							-3
- 88	-4									-4
	-5									-5 -5
	6									6
- 82	-7 - - - -									7
	-8									-8
	-									

LOGGED: IKA CASING: HWT to 4.2m RIG: Commacchio Geo 205 **DRILLER:** Terratest

TYPE OF BORING: 110mm diameter auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

Campbelltown Hospital Stage 2 Redevelopment, Campbelltown Hospital

BORE: 105 DEPTH: 2.55 m – 12.18 m PROJECT: 34275.08-2 March 2017

CLIENT: Health Infrastructure

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297564 PROJECT:

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 87.4 mAHD

BORE No: 105 **PROJECT No:** 34275.08

NORTHING: 6226992 **DATE:** 9/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 2

		Description	Degree of	ပ္	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
R	Depth (m)	of	Weathering ≥ ≥ ≥ ∞ ∞	raph	Strength Low Medium Medium High Very High Kx H	Spacing (m)	B - Bedding J - Joint	Туре	e %.	RQD %	Test Results
	(,	Strata	EW HW SW SW FR	Ō	Ex Loy Low Mediu Mediu Low Very L	' '	S - Shear F - Fault	2	ပြည်	RO %	& Comments
87	0.05	ASPHALTIC CONCRETE FILLING - grey crushed sandstone (roadbase), moist		<u>×</u>							
86	-1	SILTSTONE - very low to low strength, moderately to slightly weathered, grey siltstone with medium strength bands becoming low strength, slightly weathered with medium strength bands below 0.85m						S			20/130mm,-,- refusal
85	-2 -						Unless otherwise stated, rock is fractured along smooth to rough planar bedding dipping at 0°-10°				
	-	- becoming medium strength below					2.55m: J, 60°, sv, pl, sm,				PL(A) = 0.42
84	-3 -3 -	2.55m				#	cly co 50mm long 3.56m: J, 65°, sv, pl, he,	С	100	82	PL(A) = 0.42
		becoming fresh stained below 3.7m		·			\ cly co 30mm long \ 3.7m: J, 60°, sv, pl, sm,				
	-4	V 111					cly co 20mm long, B, h,				
83	-	- becoming fresh below 4.35m					4.14m: J, 75°, sv, pl, ro, fe stn 80mm long				PL(A) = 0.67
91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								С	100	87	PL(A) = 0.61 PL(A) = 0.69
98	-8	- becoming medium to high strength below 7.35m									PL(A) = 1.2
79	- - - 9						8.47m: Bedded zone, aug 0.15mm spacing, B, h, pl, sm, cly co 180mm thick	С	100	89	PL(A) = 1.04
82	-			· —		┆ ┆ ╻ ╧┾┚ ┆	9.72m: J, 70°, sv, pl, ro, cln 50mm long				PL(A) = 0.96

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 4.2m

TYPE OF BORING: 110mm diameter auger to 2.55m, NMLC coring to 12.18m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297564

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 87.4 mAHD

NORTHING: 6226992 **DIP/AZIMUTH:** 90°/--

PROJECT No: 34275.08 **DATE:** 9/3/2018

BORE No: 105

SHEET 2 OF 2

		Description	Degree of Weathering	Ö	Rock Strength	<u></u>	Fracture	Discontinuities	Sampling & Some Section &			n Situ Testing
귐	Depth (m)	of		rapt Log	Strength Low Nedium High Very High Ex High Ex High	Wate	Spacing (m)	B - Bedding J - Joint	be	ore %:	g %	Test Results &
Ш		Strata	F S S M E E	0	E Kely High A L		0.00	S - Shear F - Fault	F	ΩÃ	œ °	Comments
74		SILTSTONE - medium to high strength, fresh, grey siltstone (continued)							С	100		PL(A) = 1.33
76	-11 								С	100	100	DL(A) = 0.07
	-12											PL(A) = 0.97
-	12.18	Bore discontinued at 12.18m	 	<u> </u>			 					PL(A) = 0.92
75	-13	- limit of investigation										
[- - 14						 					
72 73	-15											
71	-16 -16											
70	-17 -17											
69	- 18 - 18 											
89	-19											

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 4.2m

TYPE OF BORING: 110mm diameter auger to 2.55m, NMLC coring to 12.18m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

Campbelltown Hospital Stage 2 Redevelopment, Campbelltown Hospital

BORE: 106 DEPTH: 1.00 m – 13.60 m PROJECT: 34275.08-2 March 2017

CLIENT: Health Infrastructure

PROJECT: Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297613

LOCATION: Therry Road, Campbelltown **SURFACE LEVEL:** 87.5 mAHD

NORTHING: 6227005

PROJECT No: 34275.08 **DATE:** 20/3/2018

BORE No: 106

DIP/AZIMUTH: 90°/--SHEET 1 OF 2

		Description	Degree of Weathering	<u> </u>	Rock Strength 5	Fracture	Discontinuities				n Situ Testing
R	Depth (m)	of		iraph Log	Strength Low Medium High Wery High Ex High Water	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	å %D %D	Test Results &
Н		Strata CONCRETE	1 1 1 1 1 1	• . • •	E Kelyel	0.00	S - Shear F - Fault	-	0 %	<u>~</u>	Comments
	0.37	SILTSTONE - very low strength,		<u> </u>			Unless otherwise stated, rock is fractured along				
	-	highly weathered, grey siltstone		· —			smooth to rough planar bedding dipping at 0°-10°				
	-1 -	- becoming medium strength, slightly weathered below 1.0m					1m: fg zone 140mm thick				
- 98	-	onghay weathered below them		· —			1.28m: J, 60°, sv, pl, ro, fe stn 40mm long				PL(A) = 0.45
	- - - 2			<u> </u>		5		С	100	57	
	-			· —			2.09m: J, 70°, sv, pl, ro, fe stn 100mm long				
- 85	-						2.39m: fg zone 170mm thick				PL(A) = 0.34
	2.91 -3 3.0			<u>=</u>			2.91m: CORE LOSS: 90mm 3.06m: J, 30°, sh, pl, ro,				
- 84	3.3						fe stn 30mm long 3.1m: J, 30°, sh, pl, ro, fe stn 30mm long				
	3.66 - - -4	- becoming fresh below 3.72m					3.26m: CORE LOSS: 40mm 3.59m: CORE LOSS:				PL(A) = 0.66
	-			· —			70mm	С	99	87	
- 8	- - -										PL(A) = 0.92
	- -5 -			· —							
- 88	-										PL(A) = 0.64
	- - - 6					 					
		- becoming high strength below		· —							PL(A) = 1.34
- 8	- - -	6.3m									
	- - 7 -			· —			7.05m: J, 75°, sv, pl, sm,	С	100	100	
- 08	- - -			<u> </u>			7.05m: J, 75°, sv, pl, sm, cln 50mm long 7.31m: J, 85°, sv, pl, sm, cln 290mm long				PL(A) = 2.41
-	-8			· —							
	-			<u> </u>		i ii i i ! !! ! !					DI (A) 0.00
62	-										PL(A) = 2.06
	- - 9 -			<u> </u>							
78								С	100	100	PL(A) = 1.63
	- - -										(, 1.00

RIG: Hanjin DB8 **DRILLER:** Terratest LOGGED: IKA/EMG CASING: HWT to 1.0m

TYPE OF BORING: 200mm concrete core to 0.37m, 110mm diameter auger to 1.00m, NMLC coring to 13.60m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297613

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 87.5 mAHD

NORTHING: 6227005 DIP/AZIMUTH: 90°/-- **PROJECT No:** 34275.08 **DATE:** 20/3/2018 **SHEET** 2 OF 2

BORE No: 106

Г		Description	Degree of Weathering	ē	Rock Strength 5	Fracture	Discontinuities				n Situ Testing
R	Depth (m)	of Strata	Degree of Weathering	Grapt	Strength Needium Needi	Spacing (m) 09:01	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. %	RQD %	Test Results & Comments
	-11	SILTSTONE - high strength, fresh, grey siltstone (continued)					10.47m: J, 70°, sv, pl, sm, cln 40mm long 11m: J, v, pl, sm, cln 100mm long 11.33m: J, v, pl, sm, cln 70mm long	С		100	PL(A) = 1.76 PL(A) = 1.7
75	-12 -13 13						11.6m: J, v, pl, sm cln 150mm long	С	100	100	PL(A) = 1.75
74	- - 13.6	Bore discontinued at 13.6m		. —							PL(A) = 2.25
73	- 14 - 1- - 1- 	- limit of investigation									
72	-15										
	- 16 - 16 										
02	- 17 - - - - - - - - - - - - - - - - - - -										
69	- 18 - - - - - - 19										
- 89	-										

RIG: Hanjin DB8 DRILLER: Terratest LOGGED: IKA/EMG CASING: HWT to 1.0m

TYPE OF BORING: 200mm concrete core to 0.37m, 110mm diameter auger to 1.00m, NMLC coring to 13.60m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND
mole G Gas sample PID Phot

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 D IESTINC
G Gsa sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297620

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 91.6 mAHD

BORE No: 107 **PROJECT No:** 34275.08

NORTHING: 6226987 **DIP/AZIMUTH**: 90°/--

DATE: 5/3/2018

SHEET 1 OF 1

Depth of Sustals Construction Sustals S		Double	Description	je _		San		& In Situ Testing	_ h	VWP
CONCRETE	R	(m)		Grapl	Гуре)epth	ample	Results & Comments	Wate	Construction
SLITSTONE - very low to low strength, highly to	-	0.03			·		Ο̈́			- Details
SLITSTONE - very low to low strength, highly to	F	0.48				0.40				
1 1.0 Bore discontinued at 1.0 m	-6	- 0.40	SILTSTONE - very low to low strength, highly to moderately weathered, grey siltstone		D					
- refusal on low to medium strength siltstone - 2 - 2 - 2 - 3 - 3 - 3 - 5 - 5 - 5 - 5 - 7 - 7 - 7 - 7 - 7	[-1 1.0			S	-1.0-		20/150mm,-,-		[1
2	E	-				1.15		refusal		
□ 3	-6	-								
□ 3	ŧ	- - -2								
□ 3	ŀ	- ⁻								
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-68	-								
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F									
	E	-								
	- 8	-								
		- -								
	ŧ	-4 -								-4
	Ė,									
-6 -6 -7 -7 -8	- 80	-								
	-	-5								-5
	ŀ	- -								
	-88	-								
	ŧ	- -6 -								-6
	ŀ	-								
	-88									
	ŀ	- - 7								-7
	Ė	- -								
	-8	-								
	Ė	- - -8								-8
	ŀ	-								
	83									
	ŀ	- - -9								- - -9
	ŧ	-								
	-88									
	•									

LOGGED: IKA CASING: N/A RIG: Commacchio Geo 205 **DRILLER:** Terratest

TYPE OF BORING: 110mm diameter auger to 1.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**:

LOCATION: Therry Road, Campbelltown SURFACE LEVEL: 92.8 mAHD

BORE No: 108 297655 **PROJECT No:** 34275.08

NORTHING: 6227010 DIP/AZIMUTH: 90°/--

DATE: 21/3/2018 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log **VWP** Description Depth 屋 Sample Construction of Depth (m) Type Strata Details 0.04 ASPHALTIC CONCRETE CONCRETE 4.4 0.55 0.55 SILTY CLAY - very stiff to hard, grey mottled red and D brown silty clay, MC~PL 1.0 pp = 150-300 s 9,17,17 N = 34 1.45 SILTSTONE - very low to low strength, highly to moderately weathered, grey siltstone -2 2 10/20mm,-,-2.5 2.51 S refusal -8 -3 . 3 3.1 Bore discontinued at 3.1m - refusal on low to medium strength siltstone -8 5 -5

RIG: Hanjin DB8 **DRILLER:** Terratest LOGGED: IKA/EMG CASING: N/A

TYPE OF BORING: 110mm diameter auger to 3.1m

8

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

LEGENU
PilD Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)

-8

- 9

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297519

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 84.7 mAHD

STING: 297519 **PROJECT No**: 34275.08

NORTHING: 6226957 **DIP/AZIMUTH:** 90°/--

DATE: 6/3/2018 **SHEET** 1 OF 1

BORE No: 109

	Description	<u>.</u> 2		Sam	npling &	& In Situ Testing	Ι.	VWP
Depth (m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Construction
,	Strata		Ţ	Dep	Sarr	Results & Comments	_	Details
0.1	FILLING - brown clayey silt with a trace of rootlets, dry (topsoil) SILTSTONE - very low to low strength, moderately to slightly weathered, grey siltstone		В	0.3				
5 - - - 1 -			S	1.0 1.06		20/60mm,-,- refusal		-1 -1
3-								
-2 - 2.5	- with medium strength bands below 2.0m	· — · ·						-2
-3	Bore discontinued at 2.5m - refusal on low to medium strength siltstone							-3
-								
-4								4
5								- - - -5
-								
- -6								6
- - - - 7								-7
- 8 -								- 8 - 1
-								
-9 - - -								-9
: -								

RIG: Commacchio Geo 205 DRILLER: Terratest LOGGED: IKA CASING: N/A

TYPE OF BORING: 110mm diameter auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

Campbelltown Hospital Stage 2 Redevelopment, Campbelltown Hospital

BORE: 110 DEPTH: 2.55 m – 10.10 m PROJECT: 34275.08-2 March 2017

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297506

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 85.1 mAHD

PROJECT No: 34275.08

BORE No: 110

NORTHING: 6226943 **DATE:** 6/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 2

П		Description	Degree of	<u>.0</u>	Rock Strength	Fracture	Discontinuities				n Situ Testing
꿉	Depth (m)	of	Weathering	aph Log	Strength Control of the Control of t	Spacing (m)	B - Bedding J - Joint	e S	e %.	RQD %	Test Results
	(111)	Strata	EW HW SW W R FR FS	<u>ნ</u>	Ex Low Very Low Medium Medium Wery High Ex High		S - Shear F - Fault	Type	2 %	RO %	& Comments
88	0.1	FILLING - brown clayey silt with a trace of rootlets, dry (topsoil) SILTSTONE - very low to low strength, moderately to slightly weathered, grey siltstone									
84	-1 -1 			. —				S	-		20/141mm,-,- refusal
83	- - - 2 -	- with medium strength bands below 2.0m					Unless otherwise stated, rock is fractured along smooth to rough planar bedding dipping at 0°-10°				
		- becoming medium strength below		-		4 11					PL(A) = 0.36
82	-3 -3	2.55m					2.8m: J, v, pl, sm, cly vn 40mm long, B, h, pl, sm, cly co 2.98m: Cs 30mm thick 3.14m: B, h, pl, sm, cly h int 10mm thick	С	100	64	
81	-4 	 becoming slightly weathered below 3.53m becoming fresh stained below 4.09m 					3.15m: J, 60°, sv, pl, sm, fe stn 30mm long 3.53m: J, 30°, sh, pl, sm, cly co 20mm long 3.91m: J, 30°, sh, pl,				PL(A) = 0.45
80	-5						sm, cly co 20mm long				PL(A) = 0.66
	- - - - - - - -	- becoming high strength, fresh below 5.3m						С	100	100	PL(A) = 1.42
78 79	-7										PL(A) = 1.37
	- - - - - -8						7.57m: J, v, pl, ro, cln 600mm long B, h, pl, sm, cln				PL(A) = 1.22
44							8.21m: J, v, pl, ro, cln 120m long, B, h, pl, ro, cln	С	100	97	PL(A) = 1.09
192	-9 	- becoming medium strength below 8.86m					8.86m: J, v, st, ro, cln 240mm long, B, h, pl, ro, cln				PL(A) = 0.92
				· —							

RIG: Commacchio Geo 205 **DRILLER:** Terratest LOGGED: IKA CASING: HWT to 2.5m

TYPE OF BORING: 110mm diameter auger to 2.55m, NMLC coring to 10.10m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297506

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 85.1 mAHD

NORTHING: 6226943 **DIP/AZIMUTH:** 90°/-- **BORE No:** 110

PROJECT No: 34275.08

DATE: 6/3/2018 SHEET 2 OF 2

		Description			Degree of Weathering				Rock Strength					Fracture ই Spacing		:	Discor	Sa	ampli	ng &	n Situ Testing	
묍	Depth (m)	of		J. 10	9	Taph Log	≥ 1	<u>کا</u>	151	٠ <u>٠.ر</u> اوا	15	Vate	S	paci (m	ing)		B - Bedding	J - Joint	96	Core Rec. %	۵.,	Test Results
	(11)	Strata	≥ ¥	≧ %	တ္ထ	\ <u>0</u>	۱۳۱ ۱و۱۰	ole Selej	일 일 :	힘	ĮĘ,	>	- u	36	0.50	3	S - Shear	F - Fault	Туре	ပြည်	S. %	& Comments
75	10.1	SILTSTONE - medium strength,		Z ()	ij	-			Í			T.			Ť							
	-	fresh stained, grey siltstone (continued)							 				 									
		Bore discontinued at 10.1m					ľ	i		i												
	:	- limit of investigation											 	 								
44	-11 - -		i i				ļ	į	ij	į	į				ij							
-	.						H						 	 								
Ė							Ì															
-	.						i			i												
2	- 12												 									
	·						į	į	ij	į	i		i	ij	ij							
ŧ	.			[1			 	 								
															H							
-27	-13						ľ	i	Н	i												
	:		j				ļ	į	İ	į	į											
[·				 				1 				 	 	11							
-1-	- 14																					
[i				H							
	:												 	 								
ŧ	:		j				į	į	ij	į	į		i		ij							
	- 15			[
[:																					
[
	·								 				 	 								
-8	- - 16		j				į	į	ij	į	į				ij							
F°	:				 				 				 	 								
	:																					
	·							į		į	i				ij							
- 89	- - 17				 				 	1			 	 								
9	·											1 1										
	:												 	 								
									 			1 1		 								
ţ,	- -18						Ì	İ	Ιİ	İ	i		İ									
67													 	 								
	:						-								$ \cdot $							
E	:											1 1	 									
	- - 19								 			1 1	 									
- 99	-														İİ							
[
	:		i i				Ιį	İ	İΪ	İ	Ĺ			İ	İİ	ĺ						
	-										L		 	 								

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 2.5m

TYPE OF BORING: 110mm diameter auger to 2.55m, NMLC coring to 10.10m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297504

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 83.8 mAHD

BORE No: 111 **PROJECT No:** 34275.08

NORTHING: 6226977 DIP/AZIMUTH: 90°/--

DATE:	7/3	3/201	18
SHEET	1	OF	1

	Donth	Description	nic J		Sam		& In Situ Testing	- h	VWP		
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
83	0.1	FILLING - brown clayey silt with a trace of rootlets, dry (topsoil) SILTSTONE - very low to low strength, highly to moderately weathered, grey siltstone - becoming slightly weathered with medium strength bands below 0.5m		S	1.0 1.11		20/110mm,-,- refusal		-1		
- 8	-2 2.0	Bore discontinued at 2.0m - refusal on low to medium strength siltstone							-3		
08	- - - - - - - -								-4		
6/	- -5 - - -								-5 -5 		
	- - - - - - -								- 6 - 6 		
94	- 7 - 7 								7		
	-8 								-8 		
74	-										

LOGGED: IKA CASING: N/A RIG: Commacchio Geo 205 **DRILLER:** Terratest

TYPE OF BORING: 110mm diameter auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297475

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 83.6 mAHD

BORE No: 112 **PROJECT No:** 34275.08

NORTHING: 6227022 **DATE:** 7/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

Depth (m)	- 6					& In Situ Testing		VWP		
	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details		
	FILLING - brown clayey silt with a trace of rootlets, moist			_	S					
0.3										
	with a trace of indistrine graver, two vi E	1 1		4.0						
1			s	1.0		pp >600 8,11,13				
				1.45		N = 24		-		
2 2.0								-2		
	SILTSTONE - very low to low strength, highly to moderately weathered, grey siltstone									
		. —	s	2.5		9,16,20/130mm				
3		. —		2.95		refusal		-3		
		· — · ·								
	- becoming moderately to slightly weathered with medium strength bands below 3.5m									
4 4.0	Bore discontinued at 4.0m	. —						4		
	- refusal on low to medium strength siltstone									
5								-5 -		
6								-6		
0								-		
7								-7		
8								8		
9								9		
	1 2 2.0 3 3	SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC <pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 1.0="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SiLTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl 1.0="" pp="">6000 8.11.13 N = 24 SiLTSTONE - very low to low strength, highly to moderately weathered, grey siltstone 2.5 S</pl></td><td>Sil.TY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" 9,16,20130mm="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" s="" sil.tstone="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""></pl></td></pl></td></pl></td></pl></td></pl></td></pl>	SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC <pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 1.0="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SiLTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl 1.0="" pp="">6000 8.11.13 N = 24 SiLTSTONE - very low to low strength, highly to moderately weathered, grey siltstone 2.5 S</pl></td><td>Sil.TY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" 9,16,20130mm="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" s="" sil.tstone="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""></pl></td></pl></td></pl></td></pl></td></pl>	SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC <pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 1.0="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SiLTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl 1.0="" pp="">6000 8.11.13 N = 24 SiLTSTONE - very low to low strength, highly to moderately weathered, grey siltstone 2.5 S</pl></td><td>Sil.TY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" 9,16,20130mm="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" s="" sil.tstone="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""></pl></td></pl></td></pl></td></pl>	SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC <pl -="" 1.0="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SiLTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl 1.0="" pp="">6000 8.11.13 N = 24 SiLTSTONE - very low to low strength, highly to moderately weathered, grey siltstone 2.5 S</pl></td><td>Sil.TY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" 9,16,20130mm="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" s="" sil.tstone="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""></pl></td></pl></td></pl>	SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC <pl -="" 3.5m="" 4.0m="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""><td>SiLTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl 1.0="" pp="">6000 8.11.13 N = 24 SiLTSTONE - very low to low strength, highly to moderately weathered, grey siltstone 2.5 S</pl></td><td>Sil.TY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC<pl -="" 3.5m="" 4.0m="" 9,16,20130mm="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" s="" sil.tstone="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""></pl></td></pl>	SiLTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC <pl 1.0="" pp="">6000 8.11.13 N = 24 SiLTSTONE - very low to low strength, highly to moderately weathered, grey siltstone 2.5 S</pl>	Sil.TY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC <pl -="" 3.5m="" 4.0m="" 9,16,20130mm="" at="" bands="" becoming="" below="" bore="" discontinued="" grey="" highly="" low="" medium="" moderately="" on="" refusal="" s="" sil.tstone="" siltstone="" siltstone<="" slightly="" strength="" strength,="" td="" to="" very="" weathered="" weathered,="" with=""></pl>		

LOGGED: IKA CASING: N/A RIG: Commacchio Geo 205 **DRILLER:** Terratest

TYPE OF BORING: 110mm diameter auger to 4.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

Campbelltown Hospital Stage 2 Redevelopment, Campbelltown Hospital

BORE: 113 DEPTH: 2.60 m – 9.00 m PROJECT: 34275.08-2 March 2017

CLIENT: Health Infrastructure

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297488 PROJECT:

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 83.5 mAHD

BORE No: 113 **PROJECT No:** 34275.08

NORTHING: 6227003 **DATE:** 7/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

		Description	Degree of Weathering	. <u>o</u>	Rock Strength	Fracture	Discontinuities				In Situ Testing
R	Depth (m)	of	Degree of Weathering	Log	Ex Low Very Low Low Medium High Very High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Туре	ore	RQD %	Test Results &
			M M M M M M M M M M M M M M M M M M M	Ö	Ex Low High Very Very Very Very Very Very Very Very	0.01 0.10 0.50 1.00	S - Shear F - Fault	Ļ	ပိမ္ထ	Z °	Comments
82 83	0.3-	FILLING - brown clayey silt, dry (topsoil) SILTSTONE - very low to low strength, highly to moderately weathered, grey siltstone						S			20/130mm,-,- refusal
81	-2 -2 -						Unless otherwise stated, rock is fractured along smooth to rough planar bedding dipping at 0°-10°		_		20/70mm,-,-
	.	- becoming low strength, slightly weathered below 2.6m		-	1			S			refusal PL(A) = 0.3
98	-3	- becoming medium strength, fresh stained below 3.6m					3.13m: J, 70°, sv, pl, ro, fe stn 150mm long 3.22m: J, 75°, sv, pl, ro, cln 50mm long 3.35m: J, 70°, sv, pl, sm, cln 30mm long 3.85m: J, 70°, sv, pl, sm, cln 50mm long	С	100		PL(A) = 0.48
67 87	-5 -5 5 							С	100	94	PL(A) = 0.45 PL(A) = 0.48
77 77	7	- becoming fresh below 6.5m									PL(A) = 0.63 PL(A) = 1.36
75	-8						8.39m: J, 60°, sv, st, ro, cln 20mm long	С	100	100	PL(A) = 0.99
74	-9 9.0 -	Bore discontinued at 9.0m - limit of investigation				1 1 1 1 1 1 1 1 1 1					

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 2.6m

TYPE OF BORING: 110mm diameter auger to 2.60m, NMLC coring to 9.00m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample

Core drilling
Disturbed sample
Environmental sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

Douglas Partners Pty Ltd

Campbelltown Hospital Stage 2 Redevelopment, Campbelltown Hospital

BORE: 114 DEPTH: 5.60 m – 11.85 m PROJECT: 34275.08-2 March 2017

CLIENT: Health Infrastructure

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297509 **PROJECT:**

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 81.9 mAHD

BORE No: 114 **PROJECT No:** 34275.08

NORTHING: 6227139 **DATE:** 8/3/2018 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 2

П		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
씸	Depth (m)	of	Weathering ≥ ≥ ≥ ∞ ∞	raph Log	<u> </u>	Spacing (m)	B - Bedding J - Joint	Туре	Core Rec. %	م ہ	Test Results &
	. ,	Strata	EW HW SW FE	9	Ex Low Low Medium High Very High Ex High	0.05	S - Shear F - Fault	Ļ	S &	R(Comments
	0.05	\ASPHALTIC CONCRETE \FILLING - grey crushed sandstone (roadbase), dry	- 								
81	- - - - - -1	FILLING - brown and red silty clay with some siltstone cobbles, MC~PL						S			5,7,7 N = 14
	- - -	- with medium strength bands below 1.5m		\bigotimes				E	-		
80	1.8 2 	SILTY CLAY - very stiff to hard, red mottled light brown and grey silty clay with some ironstone gravel, MC <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>							-		
62	- - -3 -							S	-		pp >600 9,13,16 N = 29
78	- - - -4 4.0	SILTSTONE - very low to low						s	-		7,20,20/130mm refusal
77	- - - -5 -	strength, highly to moderately weathered, grey siltstone with extremely low strength, extremely weathered bands - becoming very low to low strength, moderately weathered with medium strength, slightly					Unless otherwise stated, rock is fractured along smooth to rough planar bedding dipping at 0°-10°		-		
76	- - -	weathered bands below 5.0m - becoming low strength, moderately to slightly weathered below 5.6m		· —			5.63m: J, 30°, sh, pl, ro, fe stn 20mm long	_S_			20/110mmm,-,- refusal PL(A) = 0.18
75	-6 - - - - - - - - -	- 200mm thick extremely low strength, extremely weathered					5.78m: Cs 20mm thick 5.82m: J, 70°, sv, pl, sm, cly inf 2mm thick 40mm long 5.86m: B, h, pl, ro, fe stn 5.96m: B, h, pl, sm, cly co 6m: J, 65°, sv, pl, ro, fe stn 30mm long	С	100	46	PL(A) = 0.16
74	- - - - - - - - 8	band at 6.76m becoming medium strength, slightly weathered below 6.96m 50mm thick extremely low strength, extremely weathered band at 7.04m becoming fresh stained below					16.56m: Cs 15mm thick 6.88m: fg zone, 50mm thick 7.13m: J, 60°, sv, pl, ro, fe stn 30mm long 17.63m: J, 15°, sh, pl, sm, cln 20mm long				PL(A) = 0.42
73	- - - - - - - - - 9	8.0m					-7.81m: fg zone 130mm thick -8m: fg zone, 130mm thick -8.16m: J, 80°, sv, pl, sm, cln 60mm long -8.23m: J, 60°, sv, pl, sm,	С	100	40	PL(A) = 0.51
72							cln 60mm long 8.56m: J, 60°, sv, pl, sm, cly co 30mm long *8.59m: J, 60°, sv, pl, ro, fe stn 20mm long 8.73m: fg zone, 140mm thick	С	100	80	PL(A) = 0.32

LOGGED: IKA RIG: Commacchio Geo 205 **DRILLER:** Terratest CASING: HWT to 5.5m

TYPE OF BORING: 110mm diameter auger to 5.60m, NMLC coring to 11.85m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

		SAMPLING	& IN SITU	TESTING LEG	SEND
Α	Auger sample	G	Gas sample	PIC) Photo

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297509

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 81.9 mAHD

STING: 297509 **PROJECT No**: 34275.08

BORE No: 114

NORTHING: 6227139 **DATE:** 8/3/2018 **DIP/AZIMUTH:** 90°/-- **SHEET** 2 OF 2

Г		Description	Degree of Weathering	υ υ	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth	of	vveathering	aphi og g	Strength High High High High High High High Hig	Spacing (m)	B - Bedding J - Joint				Test Results
Γ	(m)	Strata	MW MW FS W	ق ح	Ex Low Very Low CLow High Ex High Ex High Ex High Out	0.050 (111)	S - Shear F - Fault	Type	ဇွ် ဝွ	RQD %	& Comments
-	-	\- becoming fresh below 10.0m SILTSTONE - medium strength, fresh, grey siltstone (continued)					8.87m: J, v, pl, sm, cln 70mm thick 8.94m: J, v, pl, sm, cln 60mm long 9.22m: fg zone, 50mm				PL(A) = 0.56
7	-11						thick 9.79m: J, 35°, sh, pl, sm, fe stn 30mm long	С	100	80	PL(A) = 0.68
. 02	- 11.85 - 12 -	Bore discontinued at 11.85m - limit of investigation		<u>· –</u>							
- 69	- - - 13										
- 89	- - - - 14 -										
	-15 -										
- 99	-16 16										
	- - - - - - -										
64	- - - 18 -										
63	- - - - - - - - - - - - - - - - - - -										

RIG: Commacchio Geo 205 DRILLER: Terratest LOGGED: IKA CASING: HWT to 5.5m

TYPE OF BORING: 110mm diameter auger to 5.60m, NMLC coring to 11.85m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 D IESTINC
G Gsa sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297511

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 82.3 mAHD

BORE No: 115 **PROJECT No:** 34275.08

NORTHING: 6227121 **DIP/AZIMUTH**: 90°/--

DATE: 8/3/2018 SHEET 1 OF 1

			Description	ije		San		& In Situ Testing		VWP
RL	Depth (m)	h	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
	,		Strata	Q	Ţ	Del	San	Comments	_	Details
Е	0.0	05	ASPHALTIC CONCRETE /	\bowtie						
-8	- 0).3	FILLING - grey crushed sandstone (roadbase), dry	\bigotimes						
	-		FILLING - brown and red silty clay with a trace of siltstone			0.5				
+	-		gravel, MC~PL		E					
	-1			\bowtie		1.0				-1
- 18	-				s			6,9,14 N = 23		
+	-			\bowtie		1.45				
[-			\otimes						
-	- 1 -2	.9	SILTY CLAY - very stiff to hard, red mottled grey silty clay							-2
	-		SILTY CLAY - very stiff to hard, red mottled grey silty clay with a trace of ironstone gravel, MC~PL	1/1/						
8	- - 2	2.5	- becoming grey with extremely low strength, extremely	1//		2.5				
	. -		weathered bands below 2.3m		s	2.0		11,16,20/140mm		
+	-		SILTSTONE - very low to low strength, highly to moderately weathered, grey siltstone with extremely low strength, extremely weathered bands			2.94		refusal		
[-3 - -		strength, extremely weathered bands							-3
79	-									
+	-									
[-		- becoming very low to low strength, highly to moderately							
	-4		weathered with medium strength bands below 3.8m		S	4.0 4.11		20/110mm,-,- refusal		-4
-8/	-									
E	-									
	-									
Ė	- -5 5	5.0	Bore discontinued at 5.0m	1. — .						5
			- refusal on low to medium strength siltstone							
-	-									
-	-									
-	- -6									-6
. 9/	-									
_	-									
-	-									
ŀ	- - - 7									
	- /									['
75	-									
-										
[_									
	-8									-8
44										
-	-									
[]	- -9									-9
⁵										
-	-									
E										[

LOGGED: IKA CASING: N/A RIG: Commacchio Geo 205 **DRILLER:** Terratest

TYPE OF BORING: 110mm diameter auger to 5.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

Douglas Partners Pty Ltd

Campbelltown Hospital Stage 2 Redevelopment, Campbelltown Hospital

BORE: 116 DEPTH: 2.55 m – 20.80 m PROJECT: 34275.08-2 March 2017

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297577

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 96.1 mAHD

PROJECT No: 34275.08 **NORTHING**: 6226927 **DATE:** 14/3/2018 **DIP/AZIMUTH:** 90°/--

SHEET 1 OF 3

BORE No: 116

			Degree of		Rock	T	Fracture	Discontinuities	0,	amali	20 0 1	n Situ Testing
	Depth	Description	Weathering	ohic p	Strength	<u> </u>	Spacing		30	ampii	ly & I	Test Results
R	(m)		Degree of Weathering À ₹ ₹ % £ £	Gra	Strength Low Nedium High Very High Ex High Ex High	001	0.10 1.00 1.00 (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. %	RQD %	& Comments
96 96	0.05 - 0.3	TASPHALTIC CONCRETE FILLING - grey crushed sandstone (roadbase), moist SILTSTONE - very low to low strength, highly weathered to moderately weathered, grey siltstone						Unless otherwise stated,	S			20/130mm,-,- refusal
-26	-2 - - -							rock is fractured along smooth to rough planar bedding dipping at 0°-10°	S			20/130mm,-,- refusal
93	-3 -3 3 	- becoming very low strength and highly weathered below 2.63m becoming low strength and slightly weathered below 2.72m						3.06m: Cs 20mm thick 3.23m: J, 70°, sv, pl, fe fe stn 40mm long 3.27m: J, 70°, sv, pl, ro, fe stn 40mm long 3.62m: B, h, pl, sm, cly				PL(A) = 0.06 PL(A) = 0.25
91 92	-4 	- highly weathered band (200mm thick) at 4.25m						inf 5mm thick 3.63m: J, 65°, sv, pl, sm, cly co 40mm long 4.84m: J, 65°, sv, pl, sm, cly co 40mm long 4.85m: J, 70°, sv, pl, sm,	С	100	75	PL(A) = 0.17 PL(A) = 0.43
	- - - - - - -6							cly co 40mm long 5.08m: J, 65°, sv, cu, he, fe stn 30mm long				PL(A) = 0.3
89	- - - - - - - -							6.14m: B, h, pl, sm, cly inf 5mm thick 6.36m: J, v, cu, ro, fe stn 690mm long	С	100	99	PL(A) = 0.21
88	-8 8	becoming medium strength and fresh stained below 7.29m becoming fresh below 7.70m				 		7.41m: J, 30°, sh, pl, he, fe stn 20mm long 7.46m: J, 30°, sh, pl, he, fe st 20mm long				PL(A) = 0.94
87	- - - - 9 -								С	100	99	PL(A) = 0.41
	- - - -			- - - - - -								PL(A) = 0.54

RIG: Hanjin DB8 **DRILLER:** Terratest LOGGED: IKA CASING: HWT to 2.7m

TYPE OF BORING: 110mm diameter auger to 2.63m, NMLC coring to 22.95m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT: Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297577

LOCATION:

SURFACE LEVEL: 96.1 mAHD

PROJECT No: 34275.08 **DATE:** 14/3/2018

SHEET 2 OF 3

BORE No: 116

Therry Road, Campbelltown **NORTHING**: 6226927 **DIP/AZIMUTH**: 90°/--

Γ			Description	Degree of Weathering	ပ္	Rock Strength อั	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
ā] اِدِ	Depth (m)	of		Graphic Log	Nat la la la la la la la la la la la la la	Spacing (m)	B - Bedding J - Joint	Туре	ore c. %	RQD %	Test Results &
L			Strata	M H M W M H M	O	Medi K	0.05	S - Shear F - Fault	F	QÃ	œ °	Comments
30	-	11	SILTSTONE - medium strength, fresh, grey siltstone (continued)					10.56m: J, 30°, sh, pl, sm, cln 20mm long	С	100	99	PL(A) = 0.49
	-1	12										PL(A) = 0.85
	-1	13	- with high strength bands below 12.50m					12.7m: J, 30°, sh, pl, sm, cln 20mm long 12.98m: J, 30°, sh, pl,	С	100	100	PL(A) = 0.75
-								sm, cln 20mm long				PL(A) = 1.06 PL(A) = 0.55
-	78	14										
- 2	-1	15	SILTSTONE - medium strength, fresh, grey siltstone (continued)					14.88m: Cs 20mm thick				PL(A) = 1.09
-8	-1	16						16.29m: J, 70°, sv, pl, sm, cln 90mm long	С	100	100	PL(A) = 0.77
	-1	17			. . .							
-	-1	18										PL(A) = 0.81 PL(A) = 0.7
	-1	19							С	100	97	
												PL(A) = 0.57

LOGGED: IKA CASING: HWT to 2.7m RIG: Hanjin DB8 **DRILLER:** Terratest

TYPE OF BORING: 110mm diameter auger to 2.63m, NMLC coring to 22.95m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297577

LOCATION:

SURFACE LEVEL: 96.1 mAHD

DATE: 14/3/2018 SHEET 3 OF 3

BORE No: 116

PROJECT No: 34275.08

Therry Road, Campbelltown

NORTHING: 6226927 **DIP/AZIMUTH:** 90°/--

		Description	Degree of Weathering	ည	Rock Strength	Fracture	Discontinuities	Sa			n Situ Testing
RL	Depth (m)	of Strata		Log	Rock Strength High Cow High Key High Ke	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. %	70D %	Test Results &
9/	- - - -	SILTSTONE - medium strength, fresh, grey siltstone (continued)		· —	Ex LC Very Very Very Very Very Very Very Very	0.00	20.42m: J, 30°, sh, pl,	С	100	97	Comments
75	- - - - 21						sm, un, cln 20mm long				PL(A) = 1.02
	-			- · · - ·				С	100	95	PL(A) = 1.17
74	- 22						22.38m: J, 70°, sv, pl, sm, cly co 60mm long 22.47m: B, h, pl, sm, cly				PL(A) = 0.86
73	23 22.95	Bore discontinued at 22.95m - limit of investigation					inf 10mm thick				PL(A) = 2.06
72	- - -24										
71	- 25										
0/2	- -26 -										
69	-27										
, , , , , , , , , , , , , , , , , , , ,	- - -28 -										
67	- - - - - - - -										
[- -										

RIG: Hanjin DB8 **DRILLER:** Terratest LOGGED: IKA CASING: HWT to 2.7m

TYPE OF BORING: 110mm diameter auger to 2.63m, NMLC coring to 22.95m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Stage 2 Redevelopment **EASTING**: 297648

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 100.9 mAHD BORE No: 118

EASTING: 297648 **PROJECT No:** 34275.08 **NORTHING:** 6226948 **DATE:** 13/3/2018

DIP/AZIMUTH: 90°/-- **SHEET** 1 OF 1

			Description	0		Sam	nplina a	& In Situ Testing		\/\/D
R	De	pth	Description of	Graphic Log	a)				Water	VWP Construction
"	1)	n)	Strata	Gra	Туре	Depth	Sample	Results & Comments	Š	Details
H		0.05	\ASPHALTIC CONCRETE /				ű			Details
E				\otimes						
ŀ		0.4	FILLING - brown, crushed sandstone (roadbase), moist	$\times \times \times$						
ŀ	-		SILTSTONE - very low to low strength, highly weathered to moderately weathered grey siltstone	· — · ·						
9	-			· — · ·						
ŧ,	- 1 -				S	1.0		12,20/50,- refusal		-1 r
ŀ						1.2		reiusai		
[
ŀ										
-86	- -2									-2
ŀ	_		 becoming low strength and moderately weathered to slightly weathered, with medium strength bands below 	· — · ·						-
ŀ	-		2.0m	. —						-
ŀ					S	2.5		18,20/50,- refusal		
F.,		2.7	Bore discontinued at 2.7m			-2.7-		i ciusai.		
-86	-3		- refusal on low to medium strength siltstone							3
ŀ	_									
ŀ	-									
ŀ										-
-6	-									
F	-4									T4
F	-									
ŀ										
[
-8	- -5									- -5
ŀ	-									
ŀ	-									
ŀ										
Ė,										
- 95	-6									-6
[[
[-									[
ŀ	-									
94	-									
ţ"	-7 -									
ŀ	ļ									
F										
F	-									
-88	- -8									_
E	-									-8
ŀ										
ŀ	ŀ									
-	-									
-8	- -9									- -9
ŧ	ļ									
F	-									
F	-									
[_	[[
-9										

RIG: Hanjin DB8 DRILLER: Terratest LOGGED: IKA/EMG CASING: N/A

TYPE OF BORING: 110mm diameter auger to 2.63m, NMLC coring to 2.70m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. MC = moisture content; PL = plastic limit

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 D IESTINC
G Gsa sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Health Infrastructure

PROJECT:

Campbelltown Hospital Redevelopment

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 81.9 mAHD

EASTING: 297401 **NORTHING**: 6227040 **DIP/AZIMUTH**: 90°/--

PROJECT No: 34275.00 **DATE:** 17 - 18/3/2011

SHEET 1 OF 1

BORE No: 1

		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
묍	Depth (m)	of		Log Job Job Job Job Job Job Job Job Job Job	Strength Nater Nat	Spacing (m)	B - Bedding J - Joint) e	Core Rec. %	۾ ۾	Test Results
	(11)	Strata	EW HW SW FS FR	ტ_	Ex Low Very Low Low Medium High Kery High Ex High		S - Shear F - Fault	Туре	ပြည်	S %	& Comments
		FILLING - grey brown mottled orange brown clayey fine to coarse grained siltstone gravel filling with some gravelly clay bands, dry						A			
80 81	1							S	-		9,10,8 N = 18
79	3							S	-		3,5,3 N = 8
	3.7 - 4 4.3 - 5	SILTY CLAY - hard, grey brown silty clay with trace fine grained ironstone gravel and ash, mc>pl SILTY CLAY - hard, red brown mottled grey silty clay with trace fine grained ironstone gravel and rootlets, mc>pl					Unless otherwise stated, rock is fractured along smooth to rough planar bedding dipping at	S S	-		3,9,8 N = 17 pp = 430->600
	5.3	SHALE - extremely low strength, extremely weathered, grey shale coring started at 5.3m					0°-10° 5.3m: CORE LOSS: 260mm				
92	5.56	SILTSTONE - medium strength, fresh stained, highly fractured, dark grey siltstone					5.9m: Cs, sh, pl, 13mm.t 6.04m: Ds, h, pl, 4mm.t 6.14m: 2xJ, 65°, un, st 6.28m: J, sv, un, sm	С	80	80	PL(A) = 0.41
74 75	7						6.73m: Cs, 0-35°, 36mm.t 6.8m: J, sv, un, ro 6.95m: J, 45°, pl, ro, cly vn 7m: J, 55°m pl, ro 7.05m: Cs, 0-55°, 36mm.t 7.14m: J, 60°, pl, ro, st 7.23m: Ds, sh, pl, 4mm.t 7.25m: Cs, sh, pl,	С	100	20	PL(A) = 0.58
73	9 8.95 -	- becoming slightly fractured below 8.26m SILTSTONE - medium strength,		. . .			12mm.t -7.28m: B, 20°, pl, sm, cly inf 3mm.t -7.42m: B, 15°, pl, sm, cly inf 3mm.t -7.6m: J, 60°, p, ro, clay	С	100	100	PL(A) = 0.7
		fresh stained, slightly fractured, dark grey siltstone with some light gray laminae bedding at 0-10°					7.64m: J, 80°, pl, sm 7.71m: J, 40°, pl, sm 7.79m: J. 70°, pl, sm				PL(A) = 0.58
72	9.7	Bore discontinued at 9.7m		. —			8.26m: J, 30°, pl, sm 8.42m: J, 25°, pl, sm 9.35m: J, 70-80°, un, ro				PL(A) = 0.41

RIG: Bobcat DRILLER: SY LOGGED: TOM CASING: HW to 4.0m

TYPE OF BORING: NMLC

WATER OBSERVATIONS: No free groundwater observed whilst augering, 95% return, Groundwater observed at 6.85m on 22/3/11

REMARKS: Location coordinates are in MGA94 Zone 56. Screen 6.7 - 9.7m, casing 0 - 6.7m, sand 5.7 - 9.7m, bentonite 4.5 - 5.7m, backfilled and finished with concrete and gatic

			correr ete arra gatie											
	SAMPLING & IN SITU TESTING LEGEND													
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)									
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa									
С	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)									
D	Disturbed sample	⊳	Water seep	S	Standard penetration test									
E	Environmental sample	Ī	Water level	V	Shear vane (kPa)									

CLIENT: Health Infrastructure

PROJECT: Campbelltown Hospital Redevelopment

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 79.7 mAHD

BORE No: 3 **PROJECT No:** 34275.00 **EASTING**: 297438

NORTHING: 6227140 **DATE:** 18/3/2011 **DIP/AZIMUTH**: 90°/--SHEET 1 OF 1

			Description	Deg	ree of	<u>.</u> 2	R Str	Rock ength	١	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
R	Depth (m)	1	of Strata	× × ×	ree of thering	Graph	Ex Low Very Low Low	ength	Wate	Spacing (m) 00:00:00:00:00:00:00:00:00:00:00:00:00:	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results &
62,	-1-12	grained shale some gravell	own silty fine to coarse egravel filling with y clay bands, dry		8 H			호(로 () () () () () () () () () () () () ()	c	50		A A S	LE .		Comments 6,17,18 N = 35
	-3	clay with trac mc~pl	- hard, red brown silty e coarse grained sand,								Unless otherwise stated, rock is fractured along smooth to rough planar bedding dipping at 0°-10°	S			10,13,19 N = 32 pp > 600
75	+	extremely we shale with so SILTSTONE	remely low strength, eathered, light grey me siltstone bands - medium strength, , fractured, dark grey					1			4m: CORE LOSS: 200mm 4.2m: Ds, h, 40mm 4.45m: J, 30°, pl, sm, fe stn 4.53m: J, 20°, pl, sm, fe stn 4.8m: J, 20°, pl, sm, fe stn 5m: J, 25°, pl, sm, fe stn	С	86	17	PL(A) = 0.43
73 74 74 74 74 74 74 74 74 74 74 74 74 74	- - - 6										5.08m: Cs, sh, pl, 3mm.t 5.1m: J, 30°, un, sm, fe stn 5.2m: J, 50°, pl, st, fe stn 5.27m: J, 25°, pl, sm, st 5.35m: 2xJ, 15-35°, pl, sm, st 5.39m: Cs, h, pl, 8mm.t 5.51m: J, 50°, pl, sm, fe	С	100	83	PL(A) = 0.43
72	-7 -7 	- becoming s 6.71m	lightly fractured below								stn 5.63m: J, 15°, pl, ro 5.81m: J, 30°, pl, ro, fe stn 5.84m: J, 60°, pl, sm, fe stn 5.92m: Cs, h, pl, 36mm.t 5.96m: 3xJ, sv, pl, sm, fe stn 6.07m: J, 30°, pl, ro 6.09m: J, sv, pl, sm,	С	100	80	PL(A) = 0.32
71.	- - - - 9	1	inbroken below 8.3m								partially he 6.96m: Cs, sh, 17mm.t 7.64m: 2xJ, 30°, pl, sm 7.72m: J, 70°, pl, sm 8.22m: J, 40°, pl, sm 8.3m: J, 40°, pl, sm	С	100	100	PL(A) = 0.64 PL(A) = 0.74
. 02	-	Dore discorti	inded at 5. IIII												

DRILLER: SY LOGGED: TOM CASING: HW to 2.5m RIG: Bobcat

TYPE OF BORING: NMLC

WATER OBSERVATIONS: No free groundwater observed whilst augering, 95% return, Groundwater observed at 3.60m on 22/3/11

REMARKS: Location coordinates are in MGA94 Zone 56. Screen 6.1 - 9.1m, casing 0 - 6.1m, gravel 5.5 - 9.1m, bentonite 4.0 - 5.5m, backfilled and

	misned	ı willi (concrete and gatte		
	SAN	IPLING	& IN SITU TESTING	LEGE	ND
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	WÎ	Water sample	pp ·	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

CLIENT: Health Infrastructure

PROJECT: Campbelltown Hospital Redevelopment

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 83.1 mAHD BORE No: 4

EASTING: 297445

NORTHING: 6227088 **DIP/AZIMUTH:** 90°/--

PROJECT No: 34275.00

DATE: 21/3/2011 SHEET 1 OF 1

	5 "	Description	Degree of Weathering	E	Rock Strength	<u>.</u>	Fracture	Discontinuities				In Situ Testing
묍	Depth (m)	of		rapl Log	Strength Very Low Medium High Very High Ex High	Wate	Spacing (m)	B - Bedding J - Joint	Туре	ore %	RQD %	Test Results &
		Strata	E S S E	O .	Ex Lov Very Medi High Very Ex H	_	0.00	S - Shear F - Fault	r	Q §	8 .	Comments
83	0.4	FILLING - brown silty fine to coarse grained sandy fine to coarse grained igneous gravel filling, moist FILLING - brown fine to coarse grained igneous and siltstone gravelly clay filling with trace steel, brick and concrete fragments, mc~pl							A			
82	- 1 - - -	blick and concrete flagments, mo-pr							S			6,5,7 N = 12
81	-2 -								А			
	- - -3								s			8,13,14 N = 27
80	3.8	SILTY CLAY - hard, red brown						Unless otherwise stated, rock is fractured along				
79	4.5	mottled light grey silty clay with trace rootlets, mc>pl		1/1	11111			smooth to rough planar bedding dipping at 0°-10°	S			4,8,12 N = 20 PL(A) = 1.64
77 78	4.85	SHALE - extremely low strength extremely weathered, light grey shale with some iron indurated bands SILTSTONE - medium strength, highly weathered, fractured, dark grey siltstone with some iron indurated bands						4.92m: J, 40°, pl, sm, cln 5.04m: Cs, h, 50mm.t 5.12m: J, 55°, pl, sm, cly co 5.25m: Ds, h, pl, 5mm.t 5.45m: Ds, h, pl, 16mm.t 5.5m: J, 45°, pl, sm, cly inf 8mm.t	С	82	48	
9/	6.2	SILTSTONE - medium strength, slightly weathered, fractured, dark grey siltstone with some iron indurated bands - becoming slightly fractured below 6.44m				•		15.6m: Cs, h, p, 70mm.t 15.7m: Ds, h, 190mm.t 15.9m: CORE LOSS: 300mm 16.26m: Cs, h, pl, 60mm.t 16.32m: Cs, h, pl, 20mm.t 16.34m: Cs, h, pl, 20mm.t 16.36m: B, 20°, pl, sm, fe stn 16.37m: B, 20°, pl, sm, fe stn	С	100	82	PL(A) = 0.61
6/	-8	- becoming fractured below 7.86m						6.38m: Cs, 20°, pl, 8mm.t 6.44m: Cs, h, pl, 40mm.t 7.59m: Cs, 0-20°, pl, sm, cly inf 1-6mm.t 7.86m: Ds, 0-15°, 70mm.t 7-795m: J, h-v, cu, sm, fe				PL(A) = 0.61
74	8.78 -9 -	Bore discontinued at 8.78m				-		8m: Ds, h, pl, 12mm.t 8m: Ds, 0, 0-20°, un, 12mm.t 8.25m: J, 70°, pl, sm, fe stn 8.41m: J, 80°, pl, sm, fe stn 8.62m: Cs, h, pl, 15mm.t				

LOGGED: TOM RIG: Bobcat DRILLER: SY CASING: HW to 2.5m

TYPE OF BORING: NMLC

WATER OBSERVATIONS: No free groundwater observed whilst augering, 90% return at 4.5m, 70% at 5.5m

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Health Infrastructure

Campbelltown Hospital Redevelopment PROJECT:

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 82.1 mAHD

EASTING: 297420

NORTHING: 6227112 **DIP/AZIMUTH:** 90°/-- **PROJECT No:** 34275.00

BORE No: 5

DATE: 22/3/2011

SHEET 1 OF 2

		Description	Degree of Weathering	Rock Strength ਨ	Fracture	Discontinuities	Sá	amplir	ng & I	n Situ Testing
꿉	Depth (m)	of	Weathering	Strength Cow Medium Medium Medium Fx High Cow Very High Water Water	Spacing (m)	B - Bedding J - Joint	Туре	Core Rec. %	ص %	Test Results &
		Strata	EW HW MW SW FS	Gra Ex Low Low Low High Very High Ex High	0.05 0.10 0.50 1.00	S - Shear F - Fault	Тy	S S	RC %	Comments
81 82	-1	FILLING - brown fine to coarse grained shale and igneous gravelly clay filling with some grey bands, mc>pl - becoming mc <pl 0.4m<="" below="" td=""><td></td><td></td><td></td><td></td><td>A A S</td><td>,</td><td></td><td>5,5,7 N = 12</td></pl>					A A S	,		5,5,7 N = 12
	-2						S S	<i>,</i>		11,11,14 N = 25
74	-4 -4 5 5	SHALE - extremely low strength, extremely weathered, light grey shale with grey very low strength bands				Unless otherwise stated, rock is fractured along smooth to rough planar bedding dipping at 0°-10°	S			13,13,17 N = 30
75 76 77	5.65 5.73′ -6	SILTSTONE - very low to low strength, moderately weathered, fractured, dark grey siltstone				5.65m: CORE LOSS: 80mm 5.73m: J, sv, pl, sm 5.89m: J, 65°, pl, sm 6.02m: Cs, h, pl, 3mm,t 6.07m: Cs, h, pl, 40mm.t 6.14m: Cs, h, pl, 10mm.t 6.21m: Cs, h, pl, 10mm.t 6.27m: J, sv, pl, sm 6.35m: Cs, h, pl, 56mm.t 6.42m: Cs, h, pl, 4mm.t	С	97	50	
74 74	7.24 -	SILTSTONE - medium strength, fresh stained, fractured, dark grey siltstone - becoming slightly fractured below				6.45m: Ds, h, pl, 8mm.t 6.61m: Ds, sh, pl, 18mm.t 6.67m: J, 35°, pl, sm 6.71m: Ds, sh, un, 25mm.t 6.73m: J, h-v, cu, sm 6.74m: J, h-v, cu, sm 6.81m: Ds, h, pl, 40mm.t 6.85m: Cs, sh, pl,		31	- 50	PL(A) = 0.4
73	-9	8.54m Bore discontinued at 10.0m				6.96m: J, 30°, pl, sm 7m: J, sv, un, sm 7.08m: J, 2v, ir, sm 7.18m: Ds, sh, pl, 26mm.t 7.21m: J, 45°, un, sm 7.56m: J, 30°, pl, sm 7.62m: J, 45°, un, sm 7.65m: J, 45°, un, sm 7.66m: J, 75°, un, sm	С	100	100	PL(A) = 0.43 PL(A) = 0.36

Bore discontinued at 10.0m

LOGGED: TOM RIG: Bobcat DRILLER: SY CASING: HW to 2.5m

TYPE OF BORING: NMLC

WATER OBSERVATIONS: No free groundwater observed whilst augering, 70% return at 5.65m

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING	i & IN SITU	TESTING	LEGE	END
G	Gas sample		PID	Pho

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Health Infrastructure

PROJECT: Campbelltown Hospital Redevelopment

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 82.1 mAHD

EASTING: 297420

NORTHING: 6227112 DIP/AZIMUTH: 90°/-- **BORE No:** 5

PROJECT No: 34275.00

DATE: 22/3/2011 **SHEET** 2 OF 2

		Description	Degree of	<u>.</u> 0	Rock Strength High Medium High Weav High Weav High Weav High Weav High Weav High Weav High Water Water	Fracture	Discontinuities	S	ampling &	n Situ Testing
씸	Depth (m)	of		Log	/ate	Spacing (m)	B - Bedding J - Joint	96	Core Rec. %	Test Results
	(11)	Strata	HW HW SW FS N	<u>ن</u>	Ex Loy Low High Very H	0.05	S - Shear F - Fault	Type	S 58 S %	& Comments
71 72	-11					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.7m: Ds, h pl, 4mm.t 7.98m: J, 20°, pl, sm 8.32m: Cs, sh, pl, 12mm.t 8.47m: Cs, sh, pl, 16mm.t 8.54m: J, sv, pl, ro 9.68m: Cs, sh, pl, 10mm.t			PL(A) = 0.17
2	-12						[10mm.t			
69	-13									
89	-14									
	-15									
. 99	-16									
	-17 -17									
64	- 18 									
69										

RIG: Bobcat DRILLER: SY LOGGED: TOM CASING: HW to 2.5m

TYPE OF BORING: NMLC

WATER OBSERVATIONS: No free groundwater observed whilst augering, 70% return at 5.65m

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Health Infrastructure

PROJECT: Campbelltown Hospital Redevelopment

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 83 mAHD

EASTING: 297544 **PROJECT No:** 34275.00

NORTHING: 6227093 **DATE:** 30/3/2011 **DIP/AZIMUTH:** 90°/-- **SHEET** 1 OF 1

BORE No: 38

П		\neg				Sam	nlina	& In Situ Testing		
	Depth	n	Description	Graphic Log				& In Situ Testing	ter	Dynamic Penetrometer Test
묍	(m)		of	3rap Lo	Туре	Depth	Sample	Results & Comments	Water	(blows per 150mm)
83	0.0	03-	Strata		_		Sa	00		5 10 15 20
F	. 0.0	0.1/	ASPHALTIC CONCRETE - 30mm thick	 						
	•		FILLING - green grey silty, fine to coarse grained sandy fine to medium grained igneous gravel (roadbase) filling, moist	-/-/- -/-/-	Α	0.5		pp = 160-180		5
82		0.8	FILLING - light brown silty, fine to coarse grained sandy fine to coarse grained sandstone gravel (crushed sandstone) filling, moist		Α	1.0				1
	•		SHALY CLAY - stiff, light grey mottled orange brown shaly clay, mc>pl							
81	- -2 -	\	SHALE - extremely low strength, extremely weathered, light grey shale with dark grey low strength bands - becoming low strength, slightly weathered, with some light grey extremely low strength shale below 1.6m		Α	2.0				-2
-	· · ·									
-8	- 3	2.9	Bore discontinued at 2.9m		Α	3.0				-3
	- - - - -		- TC-bit refusal on low strength shale							
62	-4 -4									-4
78										
7										-5 - - -
	-6									-6
	• • •									
. 92	-7									-7
-	•									
75	- 8 -									-8
	· · ·									
74	-9 -9									-9 -
	•									
Ш										-

RIG: Kubota KX41-3V DRILLER: JB LOGGED: TOM CASING: N/A

TYPE OF BORING: 150mm diameter SFA

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Health Infrastructure

Campbelltown Hospital Redevelopment PROJECT:

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 82.5 mAHD

BORE No: 39 **PROJECT No:** 34275.00 **EASTING**: 297507

NORTHING: 6227094 **DATE:** 30/3/2011 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

	Donth	Description	je P		Sam		& In Situ Testing	_ h	Dynamic Penetrometer Test
묍	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
82	- - - - - - - 1	FILLING - brown grey clayey, fine to coarse grained shale gravel filling with some fine to coarse grained sand, moist		Α	0.5	0,			-1
- 84	- - - - -			Α	1.5				
	- - 2 -			Α	2.0				-2
- -8	2.6	Bore discontinued at 2.6m		—A—	-2.6-				
-	- -3 -	- TC-bit refusal on suspected shale bedrock							-3
. 62	- - - -								
	- -4 - -								-4
78	- - - -								
	- 5 - -								-5
77	· ·								
. 9/	-6 - - -								-6 -
	- - - -7								-7
75	- - -								
	- - - - 8								-8
74	- - -								
-	- - - - 9								-9
73	• • • •								
	- - -								

LOGGED: TOM CASING: N/A RIG: Kubota KX41-3V DRILLER: JB

TYPE OF BORING: 150mm diameter SFA

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: Health Infrastructure

PROJECT: Campbelltown Hospital Redevelopment

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 81.9 mAHD

BORE No: 40 **PROJECT No:** 34275.00 **EASTING**: 297508

NORTHING: 6227131 **DATE:** 30/3/2011 **DIP/AZIMUTH:** 90°/--SHEET 1 OF 1

П		Description	U		San	npling &	& In Situ Testing		
씸	Depth (m)	of	Graphic Log	Φ	£	<u>pe</u>	Populto 9	Water	Dynamic Penetrometer Test (blows per 150mm)
	(111)	Strata	9 J	Туре	Depth	Sample	Results & Comments	>	5 10 15 20
П	0.04	ASPHALT - 40mm thick asphalt				٠			L
		FILLING - brown fine to coarse grained shale gravelly clay filling with some fine to coarse grained sand, mc>pl		А	0.5				
-8	-1			А	1.0				
				А	1.5				
-8	-2 2.0	SILTY CLAY - very stiff, red brown grading to light grey silty clay, mc>pl		А	2.0		pp = 210-320		-2
	2.8	- becoming light grey, mc~pl below 2.5m							
62	-3	SHALE - low strength, highly weathered, grey shale with extremely low strength bands		А	3.0				-3
78	-4								-4
ŀ	4.5				—4.5—				
74	-5	Bore discontinued at 4.5m - TC-bit refusal on low strength shale							-5 -5
2	7								-7
74	-8								-8
73	-9								9
-22									

LOGGED: TOM CASING: N/A RIG: Kubota KX41-3V DRILLER: JB

TYPE OF BORING: 150mm diameter SFA

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

South Western Sydney Area Health Service **CLIENT:** Macarthur Project - Campbelltown Hospital PROJECT:

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 83.0 mAHD

EASTING: 297554 **NORTHING**: 6227133

DIP/AZIMUTH: 90°/--

BORE No: 1

PROJECT No: 22884-1

DATE: 3/9/1998 SHEET 1 OF 1

	Б ;;	Description	Degree of Weathering	je _	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
R	Depth (m)	of		3rapt Log	Strength Nedium	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	Sore %.%	RQD %	Test Results &
8			M M M M M M M M M M M M M M M M M M M		EX Wed W	0.00	5 - Sileai F - Fauit	-	0 %	Ľ.	Comments
82	- - - - - - -	FILLING - red brown to grey clay and crushed shale filling									
81	-							S	-		2,3,3 N = 6
-	- 2.3 - 2.3 	SILTY CLAY - stiff to very stiff, light yellow brown silty clay						S	_		3,5,7 N = 12
80	-3 - - - -							S	_		5,7,9 N = 16
79	-4 -4 	- traces of peat below 4.0m						S	-		4,6,7 N = 13
77	5.1 - - - 5.5	CLAY - very stiff, red brown mottled grey clay with ironstone gravel CLAY - very stiff to hard, grey brown clay with ironstone bands						S			4,8,12 N = 20
76	- 6.8 - 7 	CLAY - hard, grey mottled yellow brown clay with low strength ironstone bands (extremely weathered shale)					6.2m: CORE LOSS: 600mm				pp >400 pp >400 pp >400 pp >400
74 75	8.4	SHALE - low and medium strength, highly weathered, fragmented to highly fractured, dark grey shale with very low strength band						С	80	0	pp >400 pp >400 pp >400
-	9.2	Bore discontinued at 9.2m - limit of investigation									

RIG: B40 **DRILLER:** Chittleburgh LOGGED: Parmar CASING: GL to 6.0m

TYPE OF BORING: SFA to 5.5m, rotary to 6.2m, NMLC coring to 9.2m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: South Western Sydney Area Health Service PROJECT: Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown SURFACE LEVEL: 86.9 mAHD

EASTING: 297547 **NORTHING**: 6227074 90°/--

DIP/AZIMUTH:

DATE: 2/9/1998 SHEET 1 OF 1

PROJECT No: 22884-1

BORE No: 2

Degree of Weathering Rock Fracture Discontinuities Sampling & In Situ Testing Description Strength Depth Spacing Core Rec. % RQD % IE Test Results 굺 of B - Bedding J - Joint (m) S - Shear F - Fault Strata 99 Comments TOPSOIL - dark brown loamy soil FILLING - roadbase filling FILLING - dark grey black crushed shale and ash filling 12,17,16 S N = 33-82 17.16.11 S N = 27- 3 3,6,13 N = 19 S SHALY CLAY - very stiff to hard, grey shaly clay 4.0 SHALE - extremely low to very low 14,20,25 strength, extremely to highly S N = 45weathered, light brown grey shale, slightly ironstained 82 - 5 16,25/50mm,-S refusal 5.4m: CORE LOSS: 100mm 5 68 SHALE - low and medium strength, moderately and slightly weathered, PL(A) = 0.7fractured, dark grey black shale with very low strength bands along bedding planes (Note: fractures along bedding planes at 0-10° and PL(A) = 0.5joints at 30-50°) PL(A) = 0.396 0 -6 8 Bore discontinued at 8.2m - limit of investigation . 9

RIG: B40 **DRILLER:** Chittleburgh LOGGED: Parmar CASING: GL to 6.0m

TYPE OF BORING: SFA to 5.4m, NMLC coring to 8.2m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LEGENU
PilD Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

South Western Sydney Area Health Service **CLIENT:** Macarthur Project - Campbelltown Hospital PROJECT:

LOCATION: Therry Road, Campbelltown SURFACE LEVEL: 87.5 mAHD

EASTING: 297546 **NORTHING**: 6227019 **PROJECT No: 22884-1**

BORE No: 3

DATE: 3/9/1998 **DIP/AZIMUTH**: 90°/--SHEET 1 OF 1

		Description	Degree of Weathering	je je	Rock Strength	Fracture	Discontinuities				n Situ Testing
꿉	Depth (m)	of		Grapt Log	Strength Needium Needi	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. %	αD %	Test Results &
	0.4	Strata TOPSOIL - black topsoil	W W W W W W	<u>У</u>	Ex Low Very Very Very Very Very Very Very Very	0.00	S - Snear F - Fault	-	O &	α	Comments
	0.1	FILLING - sand and gravel filling									
-	0.8 0.95 1.15	FILING - coal and shale filling SILTY CLAY - very stiff to hard, light \grey brown silty clay		1/1				s			3,13,22
-8	- - - - -	SHALE - extremely low strength, extremely weathered, brown grey shale									N = 35
ŧ	-2 - 2.2						2.1m: CORE LOSS:				
	-3	SHALE - very low and low strength, highly weathered, fragmented to fractured, light brown grey shale with extremely low strength seams					100mm				
84	- 3.29 - - -	SHALE - low and medium strength moderately and slightly weathered, fractured, dark grey black shale with extremely low and very low strength						С	97	0	
	-4	bands along bedding planes (Note: fractures along bedding planes at 0-10° and joints at 30-50°)									PL(A) = 0.8
-88	- - - -										PL(A) = 0.6
2	-5 -5 -										PL(A) = 0.4
-	- - - -6							С	100	21	PL(A) = 0.8
- 18	- - - - -										PL(A) = 0.8
-	-7 7.0 - - -	Bore discontinued at 7.0m - limit of investigation									
08	- - - - -8										
79	- - - -										
	- - - 9					 					
. 82	- - - -										

CASING: GL to 2.5m **RIG**: B40 **DRILLER:** Chittleburgh LOGGED: Parmar

TYPE OF BORING: SFA to 2.1m, NMLC coring to 7.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LEGENU
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S standard penetration test
V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

South Western Sydney Area Health Service **CLIENT:** Macarthur Project - Campbelltown Hospital PROJECT:

Therry Road, Campbelltown LOCATION:

SURFACE LEVEL: 86.5 mAHD

EASTING: 297523 **NORTHING**: 6227022 **DIP/AZIMUTH:** 90°/--

PROJECT No: 22884-1 DATE: 2/9/1998

BORE No: 4

SHEET 1 OF 1

		Description	Degree of	ပ	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
z	Depth (m)	of	Degree of Weathering	Sraphi Log	Strength Nadelium Nater	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	ore c. %	RQD %	Test Results &
4	0.05		W W W W W W	_	Low Med Very Very Very Very Very Very Very Very	0.10	5 - Sileai F - Fauit	-	0 %	<u> </u>	Comments
Ė	0.03	BITUMEN FILLING - roadbase filling	1								
- 8		FILLING - crushed sandstone filling		\mathbb{X}		 					
1	0.6	FILLING - sand and brown clay	11111	\bigotimes							
Ē	1	filling		\bigotimes		 					
ŀ				\bowtie				s			5,6,14
- 82	1.3	SHALE - extremely low strength, extremely weathered, light grey	 								N = 20
~		shale				 					
Ė	2										
F	2.1	SHALE - medium strength, slightly		==	┖┤┤┤ ╎┎╪═ ┛┤┤╎						
24		weathered, fractured, dark grey black shale with very low strength									PL(A) = 0.5
"[bands (Note: fractures along bedding planes at 0-10° and joints									()
ŧ	3	at 30-60°)		==		 					
F	3										PL(A) = 0.6
83											
2						 		С	100	15	PL(A) = 0.4
ŀ	3.9	SHALE - medium and medium high	. i i i l i i								
F	4	strength, slightly weathered.				 					
_		fractured to slightly fractured, dark grey black shale with a high strength			 						PL(A) = 0.6
- 8		band									
ŀ	_				╽╎╎╏╬╗╎╎│	 					PL(A) = 1.7
F	5										
_											
8						 					PL(A) = 1
ļ	_										
F	6							С	100	87	
_											
8-											PL(A) = 0.8
ŀ	_					 					
Ē	7 7.0	Bore discontinued at 7.0m	1 1 1 1 1		1111111						
_		- limit of investigation									
2						 					
ŀ											
ŧ	8										
_											
8											
F						 					
F	9										
F						i ii ii					
4						 					
Ē											

RIG: B40 **DRILLER:** Chittleburgh LOGGED: Parmar CASING: GL to 2.5m

TYPE OF BORING: SFA to 2.1m, NMLC coring to 7.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa) Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 83.0 mAHD

EASTING: 297474 **NORTHING**: 6227050 **DIP/AZIMUTH**: 90°/--

PROJECT No: 22884-1 **DATE:** 4/9/1998 **SHEET** 1 OF 1

BORE No: 5

		Description	Degree of Weathering	Rock Strength 5	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
몹	Depth (m)	of	TV odd lolling	Graphic Coaphi	Spacing (m)	B - Bedding J - Joint	Туре	ore c. %	RQD %	Test Results &
8	0.05		M M M M M M M M M M M M M M M M M M M	Medin Medin	0.05	S - Shear F - Fault	ŕ	Q &	Ŋ,	Comments
2	0.05 - 0.15/ - 0.3	FILLING - roadbase filling FILLING - crushed sandstone filling FILLING - red brown and grey clay, ash and shale filling								
-	-						S	-		5,7,13 N = 20
81	2.15	SILTY CLAY - stiff, light yellow and red brown silty clay					s	-		4,6,7 N = 13
- 08	2.8	SHALE - extremely low to very low strength, extremely to highly weathered, light brown grey shale					S			13,25/150mm,-
-	-	weathered, light brown grey shale with ironstone bands					3	_		refusal
22	4.65 6	SHALE - low and medium strength, highly and moderately weathered, fractured, dark grey black shale with very low strength bands (Note: fractures along bedding planes at 0-10° and jin6ts at 30-50°)					С	100	0	PL(A) = 0.4 PL(A) = 0.5 PL(A) = 0.3
52		Bore discontinued at 7.0m - limit of investigation								

RIG: B40 DRILLER: Chittleburgh LOGGED: Parmar CASING: GL to 4.5m

TYPE OF BORING: SFA to 4.0m, NMLC coring to 7.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G Gas sample PLD Photo ionisation detector (ppm)

B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)

BLK Block sample U T Tube sample (x mm dia.)

C Core drilling W Water sample PD Disturbed sample P Water seep S S Standard penetration test

E Environmental sample W Water level V Shear vane (kPa)

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 87.0 mAHD

EASTING: 297496 **NORTHING**: 6226992 **DIP/AZIMUTH**: 90°/--

PROJECT No: 22884-1 **DATE:** 4/9/1998 **SHEET** 1 OF 1

BORE No: 6

	Description	Degree of Weathering	္ပ	Rock Strength	_	Fracture	Discon	tinuities				In Situ Testing
Depth (m)	of	Degree of Weathering	Log	Strength Very Low High Kery High Ker	Nate	Spacing (m)	B - Bedding		Туре	ore c. %	RQD %	Test Result &
		EW HW HW	0	Kery Kery Kery Kery Kery Kery Kery Kery	00	0.10 0.50 1.00	S - Shear	F - Fault	1	Q &	ğ ,	Comments
-	TOPSOIL - brown silty clay		\mathcal{Y}		\prod_{i}							
0.3	FILLING - dark grey crushed shale filling	 			Hi							
-	iiiiig		\boxtimes		i	ii ii						
-1			\bigotimes									
-			\boxtimes			-			s			9,15,17
-			\bowtie		¦				Ľ			N = 32
-			\bowtie									
- -2			\bowtie		l li							
-			\bigotimes						s			6,7,7
- 2.3 -	SILTY CLAY - stiff, light red brown silty clay	 	7							-		N = 14
-	Sitty Glay		// /									
2.8 - -3	SHALE - extremely low to very low strength, extremely to highly] 										42.05/400
	weathered, light grey shale								S			13,25/100mi refusal
· ·												
3.85 -4	SHALE - low and very low strength, highly and moderately weathered,				H							PL(A) = 0.
	fragmented to highly fractured, dark											PL(A) = 0.
	grey black shale								С	100	0	
					¦							
- -5												
5.25	SHALE - low to medium strength,	-										PL(A) = 0.
-	highly and moderately weathered, fractured, dark grey black shale			┆╬╇╎╎┆	¦							
-	(Note: fractures along bedding											PL(A) = 0.
-6	planes at 0-10° and joints at 30-45°)				Hi				С	100	30	
6.25	SHALE - medium to high then high	┨┆┡┪┆┆								100	30	PL(A) = 1
-	strength, slightly weathered, fractured to slightly fractured, dark				¦							
	grey black shale											PL(A) = 1.
-7 7.0 -	Bore discontinued at 7.0m	 			1 1	- 						
	- limit of investigation				¦							
-8					¦	ii ii						
- - -9												
– ਭ - -												
-												
					¦							

RIG: B40 DRILLER: Chittleburgh LOGGED: Parmar CASING: GL to 4.5m

TYPE OF BORING: SFA to 3.85m, NMLC coring to 7.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

A Auger sample
B Bulk sample
C C core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
P Piston sample
P Piston sample
D U_x
Tube sample (x mm dia.)
V Water sample
V Water sample
V Water seep
S Standard penetroint est
V Shear vane (kPa)
V Shear vane (kPa)

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 79.0 mAHD

EASTING: 297470 **NORTHING**: 6227139 **DIP/AZIMUTH**: 90°/--

BORE No: 7

PROJECT No: 22884-1 **DATE:** 31/8/1998 **SHEET** 1 OF 1

	_		Description	- jc	Sampling & In Situ Testing					Well	
귐	De (r	pth n)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction	
_o			Strata	Θ	T	Ğ	Sar	Comments	<u> </u>	Details	
[]		0.25	TOPSOIL - dark brown silty clay topsoil			0.2		pp = 280		-	
		0.20	CLAY - hard, red brown clay		Α,	0.4 0.5		pp = 430 PID=5			
		0.7	OLAY	1//	В	0.5				-	
-8	- 1		CLAY - very stiff, grey mottled orange brown clay with some shale			0.9 1.0		pp = 375 PID=6		[-1	
Ė		1.1	SHALE - very low to low strength, dark grey shale		Α	1.0					
					Α	1.5		PID=4			
Ė		1.7	SHALE - low strength, dark grey shale	===							
- 4-	-2		STIPLE - TOW Strength, dark grey strate		Α	2.0		PID=4		-2	
		2.1	Bore discontinued at 2.1m								
			- limit of investigation							-	
[
-92	-3									-3	
										-	
75	-4									-4	
-										-	
Ė											
74	-5									-5	
										-	
										[
73	-6									-6 [
Ė											
+										_	
72	-7 -									-7	
[_										- -8	
- 7-	-8										
[[
-02	- 9									-9	
<u> </u>											
E										-	

RIG: Bobcat DRILLER: Ellis LOGGED: Long CASING: N/A

TYPE OF BORING: 250mm diamieter spiral flight auger

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 D IESTINC
G Gsa sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 78.9 mAHD

EASTING: 297532 **NORTHING**: 6227165 **DIP/AZIMUTH**: 90°/--

PROJECT No: 22884-1

BORE No: 8

DATE: 31/8/1998 **SHEET** 1 OF 1

		Description	٥.		Sam	ıpling 8	& In Situ Testing	Τ.	Well
ם נַ	epth (m)	of	Graphic Log	Туре	oth	eldu	Results &	Water	Construction
	()	Strata	Ō	Туі	Depth	Sample	Results & Comments	^	Details
	0.2	FILLING - dark brown silty clay with some gravel and plastic noted		Α	0.2				
-	0.6	FILLING - hard, red brown clay with some basalt gravel and metal pieces		A/	0.4 0.5		pp = 410 pp = 250 PID=3		-
•		FILLING - very stiff, brown clay with some shale gravel		В	1.0				
-1				A	1.0		PID=4		-1
ŀ	1.5	Bore discontinued at 1.5m	\otimes	—A—	-1.5-		PID=3-	+	
-		- refusal on sandstone rubble in filling							-
-2									-2
-									
-									
-3									3
ŀ									
Ė									
-4									4
ļ									
F									
[-5									[-5
-									
Ė									
- -6									-6
-									
Ė									
E									
ļ '									
Ė									
Ė									
-8									-8
ļ									
ţ									
-9									-9
F									
Ē									
3									

RIG: Bobcat DRILLER: Ellis LOGGED: Long CASING: N/A

TYPE OF BORING: 250mm diamieter spiral flight auger

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 80.9 mAHD

EASTING: 297557 **NORTHING**: 6227181 **DIP/AZIMUTH**: 90°/-- **PROJECT No:** 22884-1 **DATE:** 31/8/1998

SHEET 1 OF 1

BORE No: 9

_		-		_						OHEET TOT T		
	_		Description	.e _		Sam		& In Situ Testing	Well Well			
R	De (r	epth m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction		
\vdash		_	Strata	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Se			Details		
			TOPSOIL - dark brown silty clay topsoil	K/V		0.1		pp = 310		-		
-		0.35	CLAY - very stiff to hard, orange brown clay			0.3 0.5		pp = 420 PID=3		F		
					A/	0.5		PID=3		-		
-8					В							
- "	-1			Y//	${A}$	1.0		PID=5		-1		
								nn = 290		ţ l		
					Α	1.4 1.5		pp = 380 PID=4		‡		
						1.0				‡		
-62				V//						<u> </u>		
	-2	2.1	Describerational at 0.4m	V/Z	Α	2.0		PID=3		-2		
-			Bore discontinued at 2.1m - limit of investigation							-		
-			mint of investigation							-		
[]										[
78	-3									-3		
										ţ		
										<u> </u>		
										-		
	-4									-4		
										ļ		
										ļ .		
-										F		
 										F		
76	-5									-5		
<u> </u>										<u> </u>		
										ţ		
75										‡		
	-6									-6		
										‡		
										ţ		
										ļ		
-4										<u> </u>		
	-7									[
-										F		
[]										[
[]										[
2	-8									[-8		
										<u> </u>		
										<u> </u>		
										<u> </u>		
										<u> </u>		
-27	-9									-9		
										ļ		
										ļ		
										F		
[_]										[

RIG: Bobcat DRILLER: Ellis LOGGED: Long CASING: N/A

TYPE OF BORING: 250mm diamieter spiral flight auger

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 80.5 mAHD

EASTING: 297472 **NORTHING**: 6227107 **DIP/AZIMUTH**: 90°/--

BORE No: 10 PROJECT No: 2

PROJECT No: 22884-1 **DATE:** 31/8/1998 **SHEET** 1 OF 1

	Darette	Description	ji _		Sam		& In Situ Testing	_ h	Well
집	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
H		TOPSOIL - brown silty clay topsoil	XX			Ö			- Details
. 08	0.25	CLAY - hard, red brown mottled grey clay		A/	0.2 0.3 0.5		pp = 320 pp = 420 PID=4		
	0.75	SHALE - extremely low to very low strength, dark grey shale with some clay	<u> </u>	В	10		DID-E		
	-1	SHALE - very low strength, dark grey shale		A	1.0		PID=5		
- 62				A	1.5		PID=4		
	1.8 - - 2 	Bore discontinued at 1.8m - refusal on low stregth dark grey shale		—A—	—1.8—		PID=4		-2
78	· ·								
-	- -3								-3
	· ·								
	-4								-4
9/	·								
	-5								-5 -5
75									
	-6								-6 -6
74									
	- - -7								-7
3									
-									
	-8								-8 - -
72									
	-9								-9
77	· ·								
-									

RIG: Bobcat DRILLER: Ellis LOGGED: Long CASING: N/A

TYPE OF BORING: 250mm diamieter spiral flight auger

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 81.8 mAHD

EASTING: 297531 **NORTHING**: 6227136 **DIP/AZIMUTH**: 90°/--

BORE No: 11

PROJECT No: 22884-1 **DATE:** 31/8/1998 **SHEET** 1 OF 1

П			Description	Description U Sampling & In Situ Testing						
RL	De	pth	Description of	Graphic Log					Water	Well
18	(n	n)	or Strata	Gra	Type	Depth	Sample	Results & Comments	Š	Construction Details
Н			FILLING - very stiff, brown silty clay	XXX	<u> </u>		ιχ			_ Details
-	-	0.2	FILLING - very stiff, orange brown clay with shale gravel			0.2		pp = 220		-
Ė	-	0.6		\otimes	_A_	0.4 0.5		pp = 280 PID=3		
81		0.0	SILTY CLAY - very stiff, brown silty clay	1/1/	В					-
-	- - 1	1.0	CLAY - very stiff, orange brown clay	1//	_ _A _	1.0		PID=4		-1
[^`					
-			- becoming red brown at approximately 1.3m		A	1.5		PID=3		-
80						1.8		pp = 420		
- 1	- -2				A	2.0		PID=2		-2
Ė		2.3								-
-		2.3	Bore discontinued at 2.3m							-
79			- limit of investigation							
-	-3									[-3
-										-
[
+										
-	- - - 4									-4
E										
-										-
-										-
[-5 -									-5 [
-										
Ė	- -									
76	-									-
E	-6 -									-6 [
[
	-									
75										
	- 7 -									-7
E										
-										<u> </u>
74										<u> </u>
	8									-8
-										
73										-
-	- -9									9
- 2										
-	-									-

RIG: Bobcat DRILLER: Ellis LOGGED: Long CASING: N/A

TYPE OF BORING: 250mm diamieter spiral flight auger

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 D IESTINC
G Gsa sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 82.2 mAHD

EASTING: 297578 **NORTHING**: 6227155 **DIP/AZIMUTH**: 90°/--

BORE No: 12 **PROJECT No:** 22884-1 **DATE:** 31/8/1998

SHEET 1 OF 1

	Donth	Description	Jic B		Sam		& In Situ Testing	<u></u>	Well
R	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
82	-	FILLING - very stiff, brown silty clay with some basalt gravel and shale			0.2	0)	pp = 260		-
-				Α	0.5 0.6		PID=5		
-	- - - -1			U ₅₀	0.9 1.0		pp = 420 PID=4		-1
-81	- ' - -			^					
	-			Α	1.4 1.5		pp >450 PID=2		
-	- 1.8 - -2 - 2.1	CLAY - hard, orange brown clay with minor fragments of shale (possibly filling)		Α	2.0		PID=2		-2
-8	- 2 '	Bore discontinued at 2.1m - limit of investigation							-
- 6	- -3 -								-3
-	-								
-									-
- 82	-4 - -								-4
-	-								
-	- - -5								-5
-									
	- -6 -								6
-	- -								-
Ē									
75	-7 - -								-7
-									
-	-8								-8
42									
-									
	- -9 -								- -9 -
-									
-									
Ш								1	1

RIG: Bobcat DRILLER: Ellis LOGGED: Long CASING: N/A

TYPE OF BORING: 250mm diamieter spiral flight auger

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: South Western Sydney Area Health Service **PROJECT:** Macarthur Project - Campbelltown Hospital

LOCATION: Therry Road, Campbelltown

SURFACE LEVEL: 91.8 mAHD

EASTING: 297537 **NORTHING**: 6226933 **DIP/AZIMUTH**: 90°/-- **PROJECT No:** 22884-1 **DATE:** 31/8/1998

SHEET 1 OF 1

BORE No: 16

	D-		Description	je _	Sampling & In Situ Testing				<u>_</u> _	Well
R	De (n	n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
			FILLING - very stiff, brown silty clay filling		-		S			-
					Α	0.25		pp = 350 PID=6		
91					U ₅₀	0.5 0.6				-
	-1	0.9	FILLING - very low strength, dark grey shale with some clay filling		_A_	0.95 1.0		PID=4		-1
					Α	1.5		PID=3		
- 06		1.8			, ,	1.8		pp = 320		
- F F	-2	2.1	CLAY - very stiff, red brown clay		Α	2.0		PID=3		-2
			Bore discontinued at 2.1m - limit of investigation							
68										
	-3									-3 -3
88										
	-4									- -4 -
										-
87										
. "	-5									- -5
- 8	-6									- -6
- 8	7									-7
										-
84	-8									-8
83	9									- - -9
E										
82										-

RIG: Bobcat DRILLER: Ellis LOGGED: Long CASING: N/A

TYPE OF BORING: 250mm diamieter spiral flight auger

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. Level has been interpolated from survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Taylor Lauder Consultants Campbelltown Hospital PROJECT:

Campbelltown LOCATION:

SURFACE LEVEL: 77.9 mAHD

EASTING: 297414 **NORTHING**: 6227089 **DIP/AZIMUTH**: 90°/--

BORE No: 3

PROJECT No: 14060 **DATE:** 26/7/1990 SHEET 1 OF 1

	D	epth	Description	hic		Sam		& In Situ Testing		Dynamic Penetrometer Test
R	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
F			TOPSOIL - dark brown fine grained silty sand	M			- 0,			
ŧ	Ė	0.25	CLAY - very stiff to hard, clay		Α	0.5				' L
ŀ	-				^	0.5				F 6
-	-1	1.0		1//	Α	1.0				[-1
ŧ	-	1.3	CLAY - very stiff to hard, light grey and brown clay		Α	1.2				<u> </u>
ŧ			SHALE - extremely low strength, light grey and brown shale with some low to medium strength bands		Α	1.5				
- 92	-									
F	-2				Α	2.0				-2
F	Ē	2.2	SHALE - low to medium strength, dark grey shale							[
ŧ	Ė				Α	2.5				
75	-3				Α	3.0				-3 : : : : : : : : : : : : : : : : : : :
ŧ	-					0.0				
ŀ	Ė	3.5	Bore discontinued at 3.5m							
+	-		- limit of investigation							
74	-4									-4
ŧ	-									
ŧ	Ė									
73	- - -5									-5
ŧ	-									
ŧ	Ė									
72	-									
-	-6									-6
F	Ē									
F	Ē									
-	-7									-7
ŧ	-									
ŧ	-									
-8	Ė									
[-8									-8
F	F									
F	E									[
-8	- -9									-9 : : : : : : : : : : : : : : : : : : :
ŧ	Ė									
ŧ	Ė									
£	Ė									[
-88	Ĺ									

LOGGED: CASING: N/A RIG: Pengo **DRILLER:** Austin

TYPE OF BORING: 300mm diameter auger

WATER OBSERVATIONS: No free groundwater observed after 3 hours

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3

CLIENT: Taylor Lauder Consultants Campbelltown Hospital PROJECT:

LOCATION: Campbelltown

SURFACE LEVEL: 80.3 mAHD BORE No: 4

EASTING: 297449 **NORTHING**: 6227056 **DIP/AZIMUTH:** 90°/--

PROJECT No: 14060 **DATE:** 26/7/1990 SHEET 1 OF 1

	D-		Description	jic T		Sam		& In Situ Testing		Dynamic Penetrometer Test
R	ре (r	pth n)	of Charles	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
\mathbb{H}			Strata TOPSOIL - dark brown fine grained silty sand	XX			Š			5 10 15 20
-8		0.2	CLAY - hard, red brown clay with some light grey mottling							"
					Α	0.5 0.6				
					U ₅₀					;
	-1	0.9	SHALE - extremely low strength, light grey and brown shale with some low to medium strength bands	===	_A_	0.95 1.0				<u> </u>
20			Shale with some low to medium shength bands							
		1.6			Α	1.5				
Ė			SHALE - low to medium strength, dark grey shale with some extremely low strength layers to 2.6m							
	-2		, , ,		Α	2.0				-2
-82			- 100mm high strength sideritic shale nodule at 2.2m							
					Α	2.5				
Ė										
	-3	3.0	Bore discontinued at 3.0m		—A—	-3.0-				3
-			- limit of investigation							
Ė	-4									-4
92										
Ė										<u> </u>
Ė	-5									-5
75										
	-6									-6 -
74										
ŀ	-7									
73										
<u> </u>	- 8									-8
										ļ
72										
	-9									-9 : : : : : : : : : : : : : : : : : : :
[_										
[^										
										<u> </u>

LOGGED: CASING: N/A RIG: Pengo **DRILLER:** Austin

TYPE OF BORING: 300mm diameter auger

WATER OBSERVATIONS: No free groundwater observed after 1 hour

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

Gas sample
Piston sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

CLIENT: Taylor Lauder Consultants **PROJECT:** Campbelltown Hospital

LOCATION: Campbelltown

SURFACE LEVEL: 79.3 mAHD

EASTING: 297462 **NORTHING:** 6227116 **DIP/AZIMUTH:** 90°/--

BORE No: 5

PROJECT No: 14060 **DATE:** 26/7/1990 **SHEET** 1 OF 1

Depth (m) Description of Strata Description	ometer rest
TOPSOIL - dark brown fine grained silty sand CLAY - hard, red brown clay with some light grey mottling 0.6 SHALE - extremely low strength, light grey and brown shale with some low to medium strength bands 1.7 SHALE - low to medium strength, dark grey shale 3 3.0 Bore discontinued at 3.0m	
CLAY - hard, red brown clay with some light grey mottling O.5 SHALE - extremely low strength, light grey and brown shale with some low to medium strength bands A 1.5 SHALE - low to medium strength, dark grey shale A 2.0 Bore discontinued at 3.0m	15 20 : :
SHALE - extremely low strength, light grey and brown shale with some low to medium strength bands A 1.0 A 1.5 SHALE - low to medium strength, dark grey shale A 2.0 Bore discontinued at 3.0m A 3.0 Bore discontinued at 3.0m	
SHALE - extremely low strength, light grey and brown shale with some low to medium strength bands 1.7 SHALE - low to medium strength, dark grey shale 2 A 2.0	
1.7 SHALE - low to medium strength, dark grey shale 2 A 2.0	
1.7 SHALE - low to medium strength, dark grey shale -2 A 2.0 -3 3.0 Bore discontinued at 3.0m	
1.7 SHALE - low to medium strength, dark grey shale -2 A 2.0 -3 3.0 Bore discontinued at 3.0m	
SHALE - low to medium strength, dark grey shale 2 A 2.0 -2 A 2.5 -3 3.0 Bore discontinued at 3.0m	
3 3.0 Bore discontinued at 3.0m	
3 3.0 Bore discontinued at 3.0m	
3 3.0 Bore discontinued at 3.0m	
F Bore discontinued at 3.0m	
F Bore discontinued at 3.0m	
- limit of investigation	
[[8	

RIG: Pengo DRILLER: Austin LOGGED: CASING: N/A

TYPE OF BORING: 300mm diameter auger

WATER OBSERVATIONS: No free groundwater observed after 3½ hours

REMARKS: Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D D isturbed sample
E Environmental sample
W Water sample
Water sample
Water seep
Water level

Photo 1 - Looking west across southern-most terrace of car park (southern edge of proposed CSB)

Photo 2 - Looking est across loading dock (northern edge of proposed CSB)

	Site Photographs	PROJECT:	34275.08-2
Douglas Partners	Stage 2 Redevelopment	PLATE No:	1
Geotechnics Environment Graundwater	Campbelltown Hospital	REV:	0
	CLIENT: Health Infrastructure	DATE:	1-May-18

Photo 3 - Looking south-east across western edge of the proposed CSB site

Photo 4 - Looking south across western edge of the proposed CSB site

	Site Photographs	PROJECT:	34275.08-2
Douglas Partners	Stage 2 Redevelopment	PLATE No:	2
Geotechnics Environment Groundwater	Campbelltown Hospital	REV:	0
	CLIENT: Health Infrastructure	DATE:	1-May-18

Photo 5 - Looking south-east across proposed link structure site (northern end)

Photo 6 - Looking south-east across proposed link structure site (southern end)

Douglas Partners Geotechnics Environment Groundwater	Site Photographs	PROJECT: 34275.08-2	
	Stage 2 Redevelopment	PLATE No:	3
	Campbelltown Hospital	REV:	0
	CLIENT: Health Infrastructure	DATE:	1-May-18

Photo 7 - Looking north-east across proposed link builing site (between Buildings A and D)

Photo 8 - Looking east at existing CTC (western side)

Table B1: Summary Table - Groundwater Levels

Bore	lary Table - Groundwa	Reduced Level	GW Elevation	GW Depth
No.	Fieldwork Date	(mAHD)	(mAHD)	(m)
34275.00-1	22-Mar-11	81.9	75.1	6.8
34275.00-3	22-Mar-11	79.7	76.1	3.6
	8-Sep-98	83.0	78.9	4.1
	10-Sep-98	83.0	78.7	4.3
	11-Sep-98	83.0	77.4	5.6
22004 1	14-Sep-98	83.0	78.0	5.0
22884-1	15-Sep-98	83.0	78.0	5.0
	16-Sep-98	83.0	78.0	5.0
	18-Sep-98	83.0	77.9	5.1
	21-Sep-98	83.0	77.8	5.2
	8-Sep-98	87.5	81.8	5.7
	10-Sep-98	87.5	81.7	5.8
	11-Sep-98	87.5	80.6	6.9
22884-3	14-Sep-98	87.5	80.7	6.8
	15-Sep-98	87.5	80.7	6.8
	16-Sep-98	87.5	80.7	6.8
	18-Sep-98	87.5	80.6	6.9
	21-Sep-98	87.5	80.7	6.8
	8-Sep-98	83.0	76.3	6.7
	10-Sep-98	83.0	76.4	6.6
	11-Sep-98	83.0	76.3	6.7
22884-5	14-Sep-98	83.0	76.3	6.7
22004-3	15-Sep-98	83.0	76.3	6.7
	16-Sep-98	83.0	76.3	6.7
	18-Sep-98	83.0	76.3	6.7
	21-Sep-98	83.0	76.3	6.7
	8-Sep-98	87.5	84.3	3.2
	10-Sep-98	87.5	83.9	3.6
	11-Sep-98	87.5	81.0	6.5
22884-6	14-Sep-98	87.5	81.2	6.3
ZZ00 4 -U	15-Sep-98	87.5	81.0	6.5
	16-Sep-98	87.5	81.0	6.5
	18-Sep-98	87.5	80.9	6.6
1	21-Sep-98	87.5	80.9	6.6

Appendix C

Laboratory Test Results
Project 34275.00 Laboratory Test Results
Project 22884-1 Laboratory Test Results
Table C1: Summary Table – Laboratory Tests and Assessments

Material Test Report

34275.08-3 **Report Number:**

Issue Number:

Date Issued: 27/04/2018

Client: Health Infrastructure (ABN 89600377397)

PO Box 1060, North Sydney NSW 2059

Contact: Margo Kouvaris

Project Number: 34275.08

Project Name: Stage 2 Redevelopment Campbelltown Hospital

Campbelltown Hospital, Campbelltown **Project Location:**

Work Request: 320 Sample Number: 18-320A 06/03/2018 Date Sampled:

Sampling Method: Sampled by Engineering Department

Sample Location: BH 109 (0.3m - 0.5m) Material: SILTSTONE - grey siltstone

California Bearing Ratio (AS 1289 6.1.1	& 2.1.1)	Min M	lax
CBR taken at	5 mm		
CBR %	3.0		
Method of Compactive Effort	Standa	ard	
Method used to Determine MDD	AS1289.	5.1.1	
Method used to Determine Plasticity	Visual Asse	essment	
Maximum Dry Density (t/m ³)	1.88		
Optimum Moisture Content (%)	8.0		
Laboratory Density Ratio (%)	100.5		
Laboratory Moisture Ratio (%)	101.0		
Dry Density after Soaking (t/m³)	1.85		
Field Moisture Content (%)	6.8		
Moisture Content at Placement (%)	8.3		
Moisture Content Top 30mm (%)	14.7		
Moisture Content Rest of Sample (%)	16.0		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	4		
Curing Hours	48.0		
Swell (%)	2.5		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Macarthur Laboratory

18 Waler Crescent Smeaton Grange NSW 2567

Phone: (02) 4647 0075

Fax: (02) 4646 1886

Email: tim.white@douglaspartners.com.au

Approved Signatory: Lab manager

NATA Accredited Laboratory Number: 828

California Bearing Ratio

Report Number: 34275.08-3 Page 1 of 3

Material Test Report

Report Number: 34275.08-3

Issue Number:

Date Issued: 27/04/2018

Client: Health Infrastructure (ABN 89600377397)

PO Box 1060, North Sydney NSW 2059

Contact: Margo Kouvaris

Project Number: 34275.08

Project Name: Stage 2 Redevelopment Campbelltown Hospital

Project Location: Campbelltown Hospital, Campbelltown

 Work Request:
 320

 Sample Number:
 18-320B

 Date Sampled:
 06/03/2018

Sampling Method: Sampled by Engineering Department **Remarks:** Field moisture content = 13.0%

Sample Location: BH 114 (1.00m - 1.45m)

Material: FILLING - brown red silty clay filling

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max	
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	40		
Plastic Limit (%)	19		
Plasticity Index (%)	21		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	11.0		
Cracking Crumbling Curling	None		

Douglas Partners Pty Ltd Macarthur Laboratory

18 Waler Crescent Smeaton Grange NSW 2567

Phone: (02) 4647 0075

Fax: (02) 4646 1886

Email: tim.white@douglaspartners.com.au

ACCORDING ATTA ACCORDING TO ACCORDING ATTA ACCORDING TO A

Approved Signatory: Tim White

Lab manager NATA Accredited Laboratory Number: 828

NATA

Report Number: 34275.08-3 Page 2 of 3

Material Test Report

34275.08-3 **Report Number:**

Issue Number:

Date Issued: 27/04/2018

Client: Health Infrastructure (ABN 89600377397)

PO Box 1060, North Sydney NSW 2059

Contact: Margo Kouvaris

Project Number: 34275.08

Project Name: Stage 2 Redevelopment Campbelltown Hospital

Campbelltown Hospital, Campbelltown **Project Location:**

Work Request: 320 Sample Number: 18-320C 06/03/2018 Date Sampled:

Sampling Method: Sampled by Engineering Department Remarks: Field moisture content = 14.4%

Sample Location: BH 115 (1.00m - 1.45m)

Material: SILTY CLAY - red mottled grey silty clay

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max	
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	39		
Plastic Limit (%)	20		
Plasticity Index (%)	19		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	9.0		
Cracking Crumbling Curling	None		

Macarthur Laboratory

18 Waler Crescent Smeaton Grange NSW 2567

Phone: (02) 4647 0075

Fax: (02) 4646 1886

Email: tim.white@douglaspartners.com.au

Approved Signatory: Lab manager

NATA Accredited Laboratory Number: 828

Report Number: 34275.08-3 Page 3 of 3

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 188800

Client Details	
Client	Douglas Partners Pty Ltd Smeaton Grange
Attention	Tom Mrdjen
Address	18 Waler Crescent, Smeaton Grange, NSW, 2567

Sample Details	
Your Reference	34275.08, Campbelltown
Number of Samples	24 soil
Date samples received	05/04/2018
Date completed instructions received	05/04/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	12/04/2018	
Date of Issue	12/04/2018	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISC	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Priya Samarawickrama, Senior Chemist

Authorised By

Jacinta Hurst, Laboratory Manager

Misc Inorg - Soil						
Our Reference		188800-1	188800-2	188800-3	188800-4	188800-5
Your Reference	UNITS	BH101	BH101	BH101	BH101	BH110
Depth		3.5	8.5	16.5	20.5	3.5
Date Sampled		02/03/2018	02/03/2018	02/03/2018	02/03/2018	06/03/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018
Date analysed	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018
pH 1:5 soil:water	pH Units	7.4	7.7	9.4	9.5	7.5
Electrical Conductivity 1:5 soil:water	μS/cm	87	88	110	130	98
Chloride, Cl 1:5 soil:water	mg/kg	50	[NA]	[NA]	<10	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	10	[NA]	[NA]	<10	[NA]

Misc Inorg - Soil						
Our Reference		188800-6	188800-7	188800-8	188800-9	188800-10
Your Reference	UNITS	BH110	BH110	BH113	BH113	BH113
Depth		5.5	10.0	3.5	5.5	9.0
Date Sampled		06/03/2018	06/03/2018	07/03/2018	07/03/2018	07/03/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018
Date analysed	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018
pH 1:5 soil:water	pH Units	8.3	8.0	9.5	9.5	6.2
Electrical Conductivity 1:5 soil:water	μS/cm	170	83	110	120	370
Chloride, Cl 1:5 soil:water	mg/kg		[NA]	<10		420
Sulphate, SO4 1:5 soil:water	mg/kg		[NA]	<10		34

Misc Inorg - Soil						
Our Reference		188800-11	188800-12	188800-13	188800-14	188800-15
Your Reference	UNITS	BH105	BH105	BH105	BH116	BH116
Depth		3.5	5.5	10.0	3.5	8.5
Date Sampled		09/03/2018	09/03/2018	09/03/2018	14/03/2018	14/03/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018
Date analysed	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018
pH 1:5 soil:water	pH Units	9.4	9.4	9.2	8.3	9.4
Electrical Conductivity 1:5 soil:water	μS/cm	140	120	87	120	120

Misc Inorg - Soil						
Our Reference		188800-16	188800-17	188800-18	188800-19	188800-20
Your Reference	UNITS	BH116	BH116	BH103	BH103	BH103
Depth		16.5	20.5	5.0	10.0	15.0
Date Sampled		14/03/2018	14/03/2018	05/03/2018	05/03/2018	05/03/2018
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018
Date analysed	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018	10/04/2018
pH 1:5 soil:water	pH Units	9.3	9.3	9.5	9.7	9.3
Electrical Conductivity 1:5 soil:water	μS/cm	92	85	140	200	98

Misc Inorg - Soil					
Our Reference		188800-21	188800-22	188800-23	188800-24
Your Reference	UNITS	BH103	BH114	BH114	BH114
Depth		18.5	3.5	6.0	10.0
Date Sampled		05/03/2018	08/03/2018	08/03/2018	08/03/2018
Type of sample		soil	soil	soil	soil
Date prepared	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018
Date analysed	-	10/04/2018	10/04/2018	10/04/2018	10/04/2018
pH 1:5 soil:water	pH Units	9.3	6.0	7.2	9.0
Electrical Conductivity 1:5 soil:water	μS/cm	74	170	150	110
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	230		29
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	22	[NA]	10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.

Envirolab Reference: 188800 Page | 4 of 7

QUALITY	CONTROL:	Misc Ino	rg - Soil		Duplicate Spike Recovery Spike Recov					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	188800-4
Date prepared	-			10/04/2018	1	10/04/2018	10/04/2018		10/04/2018	10/04/2018
Date analysed	-			10/04/2018	1	10/04/2018	10/04/2018		10/04/2018	10/04/2018
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	1	7.4	7.3	1	102	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	1	87	88	1	95	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	50	56	11	88	93
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	10	20	67	99	94

QUALITY	CONTROL:	Misc Ino	rg - Soil		Duplicate Spike Recove					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	11	10/04/2018	10/04/2018		10/04/2018	
Date analysed	-			[NT]	11	10/04/2018	10/04/2018		10/04/2018	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	11	9.4	9.5	1	102	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	11	140	130	7	95	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	[NT]		[NT]	[NT]	90	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	[NT]		[NT]	[NT]	102	

QUALITY	CONTROL	Misc Ino		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	10/04/2018	10/04/2018			[NT]
Date analysed	-			[NT]	21	10/04/2018	10/04/2018			[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	21	9.3	9.3	0		[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	21	74	75	1		[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for
samples.
Duplicate This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix s is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample) This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortune with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds what are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 188800 Page | 7 of 7

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 34275.08						Suburb: Campbelltown					To: Envirolab Services					
	Project Name:		2 Redevelopme	ent Campbell	town Hospital	Order N	lumber			1		12 <i>F</i>	Ashley Stre	eet, Chats	swood NSW 2067	
	Project Manage					Sample	er:	IKA		-	Attn:		ia Notaras			
ļ	Emails:		mrdjen@do								Phone		9910 620		Fax: (02) 9910 6201	
ļ	Date Required:		day 🗆	24 hours		ours 🗆	72 hou		Standard		Email				vices.com.au	
ŀ	Prior Storage:	☐ Esk	y □ Frid <u>q</u>	ge ⊵′S h		Do samp	oles contai	n 'potentia	al' HBM?	Yes 🗆	No <u></u> €	(If YES, the	en handle, tr	ansport and	store in accordance with FPM HAZID	1)
			pəldı	Sample Type	Container Type		-	1	1 -	Analytes		Ţ	1			
	Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Нq	EC	Choride	Sulphate						Notes/preservation	
. [BH101/3.5	Ì	02/03/18	S	P	x	х	х	х							
•	BH101/8.5	2	02/03/18	\$	P	x	х							(೯೯ 'ಎ'೧ರಿ ಶಿಕ್ಷಗಳಂಡಾ	
•	BH101/16.5	3	02/03/18	2	P	х	×							en(viRot	3 2 Asiday 81 JRSW 2067	
۱,	BH101/20.5	4	02/03/18	S	P	х	x	×	x				_	. 	1 3 8 00 1 3 8 00	
	BH110/3.5	5	06/03/18	2	P	х	x								5.4.18	
	BH110/5.5	6	06/03/18	S	P	Х	x							Date to Time Re		
L	BH110/10.0	7	06/03/18	S	ρ	х	x							Receive:	I by. JE 26°C	
۱.	BH113/3.5	8	07/03/18	S	P	х	x	х	x _					Conling	Ice/Icepack Ice/Icepack	
	BH113/5.5	9	07/03/18	S	b	Х	x							Security	((Charles to the ch	
] د	BH113/9.0	10	07/03/18	2	P	х	x	х	x							
	BH105/3.5	//	09/03/18	S	P	×	x									
	BH105/5.5	12	09/03/18	5	P	Х	х							_		
, [BH105/10.0	13	09/03/18	S	9	X	x									
	BH116/3.5	14	14/03/18	2	6	х	x									
•	BH116/8.5	15	14/03/18	S	P	x	х					<u> </u>				
L	PQL (S) mg/kg					Х	X		L			<u> </u>	ANZEC	C PQLs r	eq'd for all water analytes 🗆]
ŀ	PQL = practical					to Labora	atory Met	hod Dete	ction Limit	<u> </u>	Lab F	Report/Ref	erence N	o:		
ŀ	Metals to Analys Total number of				re: 12 Relir	auichod	bye	IKA	Trancno	rted to la		•				
H	Send Results to		ouglas Part			-			eaton Gra			y uy.	Phone:	(02)464	70075 Fax: (02)4646188	in
H	Signed: J. A.		ougido i dit	1.0.0 1 ty E	Received b		7 <u>6</u>		oaton Ora	gc <u>2</u> 001	11011	Date & T		<u> </u>	14:25	<u>~</u>
_							<u>_</u>							,		_

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	3427	5.08			Suburi		Campb	elltown		To: Envirolab Services
Project Name:		2 Redevelopm	ent Campbel	Itown Hospital		Number				12 Ashley Street, Chatswood NSW 2067
Project Manage					Sample	er:	IKA			Attn: Tania Notaras
Emails:				ers.com.au						Phone: (02) 9910 6200 Fax: (02) 9910 6201
Date Required:		day 🗆	24 hours		urs 🗆	72 hou	rs 🛛	Standard	1 🗓	Email: tnotaras@envirolabservices.com.au
Prior Storage:	IJ Esk	y 🗆 Fride			Do sam	ples contai	in 'potentia	il' HBM?	Yes 🗇	No 🛘 (If YES, then handle, transport and store in accordance with FPM HAZI
		Date	Sample Type	Container Type		1	-		Analytes	
Sample ID	Lab ID	Sampling Date	S - śoil W - water	G - glass P - plastic	Hd	E D	Choride	Sulphate		Notes/preservation
BH116/16.5	16	14/03/18	S	9	x	Х				
BH116/20.5	17	14/03/18	5	9	х	×				
BH103/5.0	18	05/03/18	S	P	х	×				
BH103/10.0	19	05/03/18	S	5	х	х				
BH103/15.00	20	05/03/18	ذ	9	Х	x				
BH103/18.5	21	05/03/18	S	P	Х	х				
BH114/3.5	n	08/03/18		Ÿ	х	×	х	х		
BH114/6.0	23	08/03/18	S	9	<u> </u>	×				
BH114/10.0	24	08/03/18	5	6	X	х	_ х	x		
		_		·						
					-					
ļ										
					_					
PQL (S) mg/kg							<u> </u>			
PQL = practical	gyantit	ation limit	If none a	ivon dofevit	.		I D - I -	41 . 1 . 1	L	ANZECC PQLs req'd for all water analytes
Metals to Analys					to Labora	atory wetr	ion Detec	Suon Limit	·	Lab Report/Reference No: /88800
Total number of	sample	es in conta	iner:	Relin	quished					poratory by:
Send Results to	: <u>D</u>	ouglas Partr	ners Pty Lt	d Addre	ess 18 V	/aler Cres	sent, Sme	eaton Gra	nge 2567	NSW Phone: (02)46470075 Fax: (02)4646188

Rec: ELS JE 5/4

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

53964

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Tom Mrdjen

Sample log in details:

Your Reference: 34275, Campbelltown Hospital

No. of samples: 3 soils

Date samples received / completed instructions received 07/04/11 / 07/04/11

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 14/04/11 / 14/04/11

Date of Preliminary Report: Not issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Inorganics Supervisor

Envirolab Reference: 53964 Revision No: R 00

Miscellaneous Inorg - soil				
Our Reference:	UNITS	53964-1	53964-2	53964-3
Your Reference		13/0.5	38/0.5	41/1.5
Date Sampled		23/03/2011	30/03/2011	30/03/2011
Type of sample		Soil	Soil	Soil
Date prepared	-	14/4/2011	14/4/2011	14/4/2011
Date analysed	-	14/4/2011	14/4/2011	14/4/2011
pH 1:5 soil:water	pH Units	5.3	5.1	5.2
Chloride, Cl 1:5 soil:water	mg/kg	4	94	1,300

Envirolab Reference: 53964 Page 2 of 5

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 21st ED, 4500-H+.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 21st ED, 4110-B.

Envirolab Reference: 53964 Page 3 of 5

	Cheft Reference. 34275, Campbelltown Hospital									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
Miscellaneous Inorg - soil						Base II Duplicate II %RPD				
Date prepared	-			14/4/20 11	[NT]	[NT]	LCS-1	14/4/2011		
Date analysed	-			14/4/20 11	[NT]	[NT]	LCS-1	14/4/2011		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-1	100%		
Chloride, Cl 1:5 soil:water	mg/kg	2	Inorg-081	-2	[NT]	[NT]	LCS-1	98%		
Sulphate, SO41:5 soil:water	mg/kg	2	Inorg-081	2	[NT]	[NT]	LCS-1	102%		

Envirolab Reference: 53964 Page 4 of 5

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Reference: 53964 Page 5 of 5

CHAIN OF CUSTODY

Project Name: Campbelltown Hospital Redevelopment	To: Envirolab Services
Project No: #34275 Sampler: T	
	ne: 0447 447 404 Attn: Tania Notaras
Email: tom.mrdjen@douglaspartners.com.au	Phone: (02) 9910 6200 Fax: (02) 9910 6201
Date Required: Standard	Email: tnotaras@envirolabservices.com.au

		a)	Sample	Container		•	1		Analytes					
Sample ID	Lab ID	Sampling Date	S - soil St. W - water do	G – glass Ka	Sulphates	Chlorides	. 품							Notes/preservation
13 / 0.5		23/3	s	Р	Х	Х	Х							
38 / 0.5		30/3	s	Р	X	Х	Х						<u> </u>	
41 / 1.5		30/3	s	Р	X	X	X	<u> </u>			ļ			
								ļ. <u></u>						·
						_				<u> </u>				
			<u> </u>										Snvirolat	
										ļ ——	un un	rirolady c	hatswood i	SW 2067 910 6200
								ļ			Jo	b No:	5396	
								·			 	e recelved	- / ·	7300
						<u></u>					Pie-	ceived by:	mblent	
									_	<u> </u>	- to	aling: leaf ourly/Inti	mblent respack ct/Proken/N	one
				<u> </u>					1		1			
Lab Report Send Resu	No:_	Douglas	s Partners	PL Ad	dress: 5	5/50 Top	ham R	oad Sm	eaton G	range		(02) 46	647 007	Fax: (02) 4646 18
Relinquishesigned:	ed by:	TOM		Date & Time		,		Transp	oorted to red By:	labora	atory by:	, ,		

23

CLIENT

SOUTH WESTERN SYDNEY AREA

HEALTH SERVICE

DATE

15/09/1998

PROJECT

MACARTHUR STRATEGY PROJECT - CAMPBELLTOWN HOSPITAL

PROJECT No.

22884

LOCATION

THERRY ROAD, CAMPBELLTOWN

TEST LOC. DEPTH

BH 7 0.5 - 1.0

DESCRIPTION

CLAY - red-brown and grey mottled orange brown clay with

some shale

PREPARATION

Remoulded to approximatly 100% of Standard maximum dry density and Optimum moisture content, then soaked for four

days prior to testing

LEVEL OF COMPACTION 100 % Standard

SURCHARGE

4.5 kg

SWELL 2.0 %

CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At Compaction	21.6	1.67
After Soaking	24.7	1.64
After Test Top 30mm	28.7	-
- Remainder	23.7	_
Field Values	22.3	_
Standard Compaction	19.9	1.68

Type	Penetration	CBR (%)
Тор	- 2.5 mm	3.5
	- 5.0 mm	3.5

TEST METHOD AS 1289.F1.1

DC TESTED

MMK CHECKED

LABORATORY Campbelltown 10715 REPORT No C98062A

SIGNED

M. M. KHAN

CLIENT

SOUTH WESTERN SYDNEY AREA

DATE

15/09/1998

PROJECT

HEALTH SERVICE MACARTHUR STRATEGY PROJECT

PROJECT No.

22884

LOCATION

- CAMPBELLTOWN HOSPITAL THERRY ROAD, CAMPBELLTOWN

TEST LOC. DEPTH

BH 8 0.5 - 1.0

DESCRIPTION

FILLING - red-brown and brown clay with some shale, gravel

and rubble particles

PREPARATION

Remoulded to approximatly 100% of Standard maximum dry density and Optimum moisture content, then soaked for four

days prior to testing

LEVEL OF COMPACTION 101 % Standard

SURCHARGE

4.5 kg

SWELL	0.8	1 %

CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At Compaction	20.6	1.64
After Soaking	23.3	1.63
After Test Top 30mm	25.6	_
- Remainder	22.5	-
Field Values	23.2	-
Standard Compaction	21.1	1.62

RESULTS Penetration CBR (%) Type Top $-2.5 \, \text{mm}$ 5 5 - 5.0 mm

IS

TEST METHOD AS 1289.F1.1

TESTED CHECKED

MMK

SIGNED

M. M. KHAN

LABORATORY Campbelltown 10715 REPORT No C98062B

CLIENT

PROJECT

LOCATION

SOUTH WESTERN SYDNEY AREA

HEALTH SERVICE

MACARTHUR STRATEGY PROJECT - CAMPBELLTOWN HOSPITAL

THERRY ROAD, CAMPBELLTOWN

DATE

15/09/1998

PROJECT No.

22884

TEST LOC.

BH 9 0.5 - 1.0

DESCRIPTION

CLAY - orange-brown clay

PREPARATION

Remoulded to approximatly 100% of Standard maximum dry density and Optimum moisture content, then soaked for four days prior to testing

LEVEL OF COMPACTION 102 % Standard

SURCHARGE

4.5 kg

1.0 % SWELL

301131111132				
CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m3	Туре	RESULTS Penetration
At Compaction	18.7	1.76	Тор	- 2.5 mm
After Soaking	20.4	1.75		- 5.0 mm
After Test Top 30mm	21.8	riii		
- Remainder	19.7	=		
Field Values	18.9	18 -1 0		
Standard Compaction	18.7	1.74		

TEST METHOD AS 1289.F1.1

TESTED IS MMK CHECKED

SIGNED

M. M. KHAN

CBR (%) 6 6

LABORATORY Campbelltown 10715 REPORT No C98062C

CLIENT

SOUTH WESTERN SYDNEY AREA

HEALTH SERVICE

PROJECT

MACARTHUR STRATEGY PROJECT

- CAMPBELLTOWN HOSPITAL

LOCATION

THERRY ROAD, CAMPBELLTOWN

DATE

15/09/1998

PROJECT No.

22884

TEST LOC.

BH 10 0.5 - 1.0

DESCRIPTION

CLAY & SHALE - red-brown mottled grey clay and very low to

low strength dark grey shale

PREPARATION

Remoulded to approximatly 100% of Standard maximum dry density and Optimum moisture content, then soaked for four

days prior to testing

LEVEL OF COMPACTION 100 % Standard

SURCHARGE

4.5 kg

According to the	3.	-	D/
SWELL		n	70

Type

Top

CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At Compaction	11.5	1.90
After Soaking	18.0	1.83
After Test Top 30mm	19.1	-
– Remainder	16.9	-
Field Values	11.6	955
Standard Compaction	12.0	1.90

TESTED

DC MMK

SIGNED

CHECKED

RESULTS

-2.5 mm

- 5.0 mm

Penetration CBR (%)

M. M. KHAN

2.0

2.0

TEST METHOD AS 1289.F1.1

LABORATORY Campbelltown 10715 REPORT No C98062D

CLIENT

SOUTH WESTERN SYDNEY AREA

HEALTH SERVICE

PROJECT

MACARTHUR STRATEGY PROJECT

- CAMPBELLTOWN HOSPITAL

LOCATION

THERRY ROAD, CAMPBELLTOWN

DATE

15/09/1998

PROJECT No.

22884

TEST LOC.

BH 11

DESCRIPTION

SILTY CLAY - brown silty clay

PREPARATION

Remoulded to approximatly 100% of Standard maximum dry density and Optimum moisture content, then soaked for four days prior to testing

LEVEL OF COMPACTION

At Compaction

After Soaking

Field Values

CONDITION

After Test Top 30mm

Standard Compaction

100 % Standard

MOISTURE

CONTENT %

22.1

24.2

25.1

23.9

22.3

21.6

SURCHARGE

4.5 kg

1.6 % SWELL

RESULTS Penetration CBR	(%)
- 2.5 mm	8
- 5.0 mm	8
	Penetration CBR

TEST METHOD AS 1289.F1.1

- Remainder

TESTED CHECKED

DC MMK

SIGNED

M. M. KHAN

LABORATORY Campbelltown 10715 REPORT No C98062E

DRY DENSITY

 t/m^3

1.67

1.64

1.67

CLIENT

SOUTH WESTERN SYDNEY AREA

HEALTH SERVICE

DATE

15/09/1998

PROJECT

MACARTHUR STRATEGY PROJECT - CAMPBELLTOWN HOSPITAL

PROJECT No.

22884

LOCATION

THERRY ROAD, CAMPBELLTOWN

TEST LOC. DEPTH BH 12 0.5 - 1.0

DESCRIPTION

FILLING - brown silty clay with some shale and gravel

PREPARATION

Remoulded to approximatly 100% of Standard maximum dry density and Optimum moisture content, then soaked for four days prior to testing

LEVEL OF COMPACTION

100 % Standard

SURCHARGE 4.5 kg

SWELL 1.2 %

CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m3
At Compaction	13.6	1.92
After Soaking	15.6	1.90
After Test Top 30mm	17.4	_
– Remainder	19.6	-
Field Values	13.0	===
Standard Compaction	13.3	1.92

	RESULTS	
Туре	Penetration CBR	(%)
Тор	- 2.5 mm	6
	- 5.0 mm	6

TEST METHOD AS 1289.F1.1

TESTED IS CHECKED MMK

CHECKED

LABORATORY Campbelltown 10715 REPORT No C98062F

SIGNED

CLIENT

SOUTH WESTERN SYDNEY AREA

DATE

15/09/1998

PROJECT

HEALTH SERVICE
MACARTHUR STRATEGY PROJECT

PROJECT No.

22884

LOCATION

- CAMPBELLTOWN HOSPITAL THERRY ROAD, CAMPBELLTOWN

TEST LOC.

BH 16

DESCRIPTION

SILTY CLAY - brown silty clay

PREPARATION

Remoulded to approximatly 100% of Standard maximum dry density and Optimum moisture content, then soaked for four days prior to testing

LEVEL OF COMPACTION

102 % Standard

SURCHARGE

4.5 kg

SWELL 1.2 %

CONDITION	MOISTURE CONTENT %	DRY DENSITY
At Compaction	15.9	1.83
After Soaking	18.3	1.80
After Test Top 30mm	20.6	-
- Remainder	17.0	_
Field Values	15.8	-
Standard Compaction	15.8	1.79

Top - 2.5 mm 9 - 5.0 mm 8
- 5.0 mm 8
· ·

TEST METHOD AS 1289.F1.1

TESTED IS CHECKED MMK

LABORATORY Campbelltown 10715 REPORT No C98062J

SIGNED

M. M. KHAN

RESULTS OF INSTABILITY INDEX DETERMINATION

CLIENT:

SOUTH WESTERN SYDNEY HEALTH SERVICE

DATE: 08/09/1998

PROJECT:

MACARTHUR STRATEGY PR.-CAMP. HOSP.

PROJECT No:

22884

LOCATION: THERRY ROAD, CAMPBELLTOWN

LOC No:

BH 16

DEPTH:

0.6-0.9m

Description: SILTY CLAY - Brown, red brown silty clay

CORE SHRINKAGE TEST

SWELL TEST

Shrinkage - air dried	2.4 %	Pocket penetrometer reading	
Shrinkage - oven dried	2.6 %	at initial moisture content	>400 kPa
Significant inert inclusions	- %	Pocket penetrometer reading	
Extent of cracking	- %	at final moisture content	>400 kPa
Extent of soil crumbling	- %	Initial Moisture Content	23.8 %
Moisture content of core	22.4 %	Final moisture content	25.5 %
		Swell under 25kPa	-0.4 %

SHRINK-SWELL INDEX I_{ss} 1.4 % per△ pF

Remarks:

The swell specimen consolidated

Test Method:

AS1289 7.1.1-1998

TESTED BY: KG

DATE: 04/09/1998

CHECKED BY: NW

DATE:

08/09/1998

LABORATORY: SYDNEY-828

REPORT NO: S98-245b

This Laboratory is registered by the National Association of Testing Authorites, Australia. The test(s) reported herein have been per-formed in accordance with its terms of registration. This document shall not be reproduced except in full.

24 September 1998

Douglas Minto 6/9 Swaffham Rd Minto NSW 2566

Your Reference:

22884 Campbelltown

Report Number:

9378

Attention:

Daniel Bliss

Dear Daniel

The following samples were received from you on the date indicated.

Samples:

Qty.

2 Soils

Date of Registration

18/09/98

Date of Receipt of Samples:

18/9/98

Date of Receipt of Instructions:

18/9/98

These samples were analysed in accordance with your written instructions. A copy of the instructions is attached with the analytical report.

The results and associated quality control are contained in the following pages of this report. Unless otherwise stated, solid samples are expressed on a dry weight basis and liquid samples as received.

Should you have any queries regarding this report please contact the undersigned.

Yours faithfully

AUSTRALIAN ENVIRONMENTAL LABORATORIES

Anthony Connaughton

Manager Sydney

David Springer Manager Operatio

NATA National Association of Testing

Authorities, Australia
NATA Endorsed Test Report
This document may not be
reproduced except in full.

PROJECT: 22884 Campbelltown

Blank procedure			
Our Reference:	SLINO	9378-1	9378-2
Your Reference		B1/3.0	B3/1.0
pH 1:5 soil:water	pH Units	7.1	5.3
Sulphate, SO4 1:5 soil:water	mg/kg	28	61

PROJECT: 22884 Campbelltown

QUALITY CONTROL Blank procedure	UNITS	POL	МЕТНОБ	Blank	Duplicate Sm#	Duplicate Base Sample:Duplicate	Spike Sm#	Matrix Spike Duplicate + RPD
pH 1:5 soil:water	pH Units	-	SEI-001	EN]	9378-1	Nil Replicate	Water	Nil Spike
Sulphate, SO4 1:5 soil:water	mg/kg	2	SEI-038	<2.0	9378-1	28 25	Water	06

Result Codes

[INS] [NT] [NA] [HBG]

Insufficient Sample for this test

Not Requested

Not tested

Sample Not Assigned test

Results not Reported due to High Background Interference

Not part of NATA Registration

Results Comments

Table C1: Summary Table - Laboratory Tests and Assessments

					Resistivity			Sar	nple Aggressivity C	Class		EC _{1:5}
Bore No.	Sample Depth	рН	Chloride Concentration	Sulphate Concentration	By inversion of EC1:5	Soil Condition	Aggr. to Concrete - from sample pH	Aggr. to Concrete - from Sulphate conc.	Aggr. to Steel - from sample pH	Aggr. to Steel - from Chloride conc.	Aggr. to Steel - from sample Resistivity	[Lab.]
	(m bgl)	(pH units)	(mg/kg)	(mg/kg)	Ω.cm	[AS2159-2009]			[AS2159-2009]			(microS/cm)
BH101	3.5	7.3	56	20	11364	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	88
BH101	8.5	7.7			11364	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	88
BH101	16.5	9.4			9091	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	110
BH101	20.5	9.5	10	10	7692	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	130
BH103	5.0	9.5			7143	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	140
BH103	10.0	9.7			5000	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	200
BH103	15.0	9.3			10204	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	98
BH103	18.5	9.3			13514	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	74
BH105	3.5	9.4			7143	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	140
BH105	5.5	9.4			8333	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	120
BH105	10.0	9.2			11494	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	87
BH110	3.5	7.5			10204	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	98
BH110	5.5	8.3			5882	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	170
BH110	10.0	8.0			12048	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	83
BH113	3.5	9.5	10	10	9091	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	110
BH113	5.5	9.5			8333	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	120
BH113	9.0	6.2	420	34	2703	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	370
BH114	3.5	6.0	230	22	5882	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	170
BH114	6.0	7.2			6667	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	150
BH114	10.0	9.0	29	10	9091	В	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	110
BH116	3.5	8.3			8333	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	120
BH116	8.5	9.4			8333	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	120
BH116	16.5	9.3			10870	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	92
BH116	20.5	9.3			11765	В	Non-Aggressive		Non-Aggressive		Non-Aggressive	85
1*	3.0	7.1		28		В	Non-Aggressive	Non-Aggressive	Non-Aggressive			
3*	1.0	5.3		61		В	Mild	Non-Aggressive	Non-Aggressive			
38^	0.5	5.1	94	22		В	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive		

Note:

* Project 22884-1 ^ Project 34275.00

Appendix D Ground Vibrations

APPENDIX D - GROUND VIBRATIONS

Ground vibrations can be described by measurement of the acceleration, velocity or displacement of the ground particles at one or more locations. Triaxial geophone sensors for example can measure the peak velocities of radial, transverse or vertical particle motion (designated PPVr, PPVt and PPVz respectively and PPVi for any directional component) within selected sample periods and peak velocities can also be determined in the resultant direction of particle motion, from calculations of instantaneous vector sums throughout the sample period. Vector sum velocities are designated VSPPV, or in many cases simply PPV.

There are three aspects of vibrations which need to be assessed:

- 1. Effects on structures
- 2. Effects on architectural finishes
- 3. Effects on humans

Numerous standards and guidelines exist worldwide which provide a basis for these assessments. Their focus varies from structural damage to human comfort and from transient to intermittent to continuous vibrations. Most provide guideline vibration limits for protection against damage or human discomfort, however these limits are not always consistent and application of a particular standard or guideline should be based on the expected types of vibrations, the types and conditions of the potentially affected buildings and the potential for discomfort of their occupants.

Both the guideline and the vibration limits should be determined on a case by case basis and the adopted limits (damage and human comfort or the lower of the two) may vary from guideline values, according to the experience of the vibration consultant, due to the sensitivity of the building or the activities of its occupants. Some applicable guidelines are summarised in the graph below.

Depending on site conditions, proposed works, results of building condition surveys and on-site vibration trials (indicating vibration attenuation rates and dominant vibration frequencies of excavation plant), the standards, guidelines and limits discussed below are considered appropriate for management of ground vibrations generated during rock excavation.

Effects on Structures

The German Standard DIN 4150-3 (1999) "Structural vibration – effects of vibrations on structures", recommends that ground vibrations at foundation level of residential buildings, in good condition bearing on sound rock foundations, be limited to 5-15-20 mm/s PPVi (at vibration frequencies of 10-50-100 Hz typical of excavation plant), in order to reduce the potential for structural damage. Higher limits (20-40-50 mm/s PPVi) and lower limits (3-8-10 mm/s PPVi) are recommended for commercial/industrial and sensitive buildings respectively. From DP experience where buildings are bearing on loose sand, maximum vibration levels should be significantly reduced to the order of 5 mm/s to 7 mm/s VSPPV to reduce the risk of vibration-induced sand densification and settlement.

Effects on Architectural Finishes

It has been found from experience that even with buildings bearing on rock, vibration levels as low as 10 mm/s VSPPV may cause minor defects such as cracks through rendering, cornices and skirtings. Management of vibrations may require a lowering of structural damage criteria to this architectural damage criterion, or negotiations with owners of affected buildings.

Effects on Humans

Ground vibration can be strongly perceptible to humans at levels above 2.5 mm/s VSPPV and can be disturbing at levels above 5 mm/s VSPPV. Complaints from residents and building occupants are

sometimes received when levels are as low as 1 mm/s VSPPV. Australian Standard AS 2670.2-1990 "Evaluation of human exposure to whole-body vibrations – continuous and shock induced vibrations in buildings (1-80 Hz)" indicates an acceptable day time limit of 8 mm/s PPVz for human comfort. Management of vibrations may require a lowering of damage criteria to this human comfort criterion, or negotiations with occupants of affected buildings.

Vibration Dosage

A vibration limit based on a particle velocity allows real time control of excavation using warning systems (e.g. flashing lights) attached to vibration monitors. Occasional exceedances (vibration levels exceeding the allowed limit) are not damaging or disturbing and can be allowed but frequent exceedances should be avoided by changes in excavation methods. The difference between occasional and frequent is difficult to gauge on site but can be assessed using recorded vibration data, on the basis of experience or by application of a vibration dosage criterion.

A vibration dosage value (VDV) can be used to assess the effect of intermittent vibrations (e.g. from bursts of rock hammering) on humans over a defined period. Acceptable dosages (generally VDVz for vertical vibrations found most disturbing by humans) have been defined for occupants of residential, commercial and industrial buildings ("Assessing Vibration: a technical guideline", Department of Environment and Conservation, 2006). Estimates of VDV (eVDV) can be calculated from recorded vibration data and can be compared with recommended maxima of 0.4, 0.8 and 1.6 m/s for residential, commercial and industrial locations respectively, to assess the need to change excavation methods to restore human comfort.

The vibration dosage guideline does not relate VDV to structural damage however it is considered that if the VDV is acceptable from a human comfort viewpoint, vibrations leading to that VDV would be unlikely to cause damage to the corresponding residential, commercial or industrial structure. Management of vibrations may require addition of these vibration dosage criteria to other human comfort or damage criteria, if the frequency of vibration exceedances becomes difficult to assess on site or by experienced-based data review.

Appendix E

Design of Braced Excavations

Design of braced excavations

Bracing generally consists of vertical sheet piling supported by a series of struts and waylings. The construction sequence is usually

- (a) steel sheet piles are driven into the ground
- (b) ground is excavated from inside the area enclosed by the piles
- (c) walings and struts are installed and tightened as excavation proceeds.

Because of the method of construction and the rigid support given by the struts, pressures on the sheet piling cannot be predicted by traditional earth pressure theories. The usual design procedure follows the method proposed by Terzaghi, using rules similar to those given below:

Terzaghi's rules for pressure distributions on braced excavations. FIGURE 11-25-1

In sand, pressure $p_s = 0.8K_{a\gamma}$.Hcos& where K_a is the active pressure determined from Data Sheet 11-2 is the average soil density

H is the depth of excavation is the angle of wall

friction, from Data Sheet 6-5.

In clay, pressure $p_c = \gamma H - 4c_u$ where cu is the undrained shear strength.

In stiff fissured clays $p_c^1 = 0.4\gamma H$. If movement can be reduced to a minimum and construction time is short, this can be reduced to

$$p_C' = 0.2\gamma H$$

The submerged density is used below the water table and pore water pressures are added to the calculated earth pressures.

In clays, creep effects cause a redistribution of stresses with time. From model tests carried out by Kirkdam, it was concluded that, for long-term design in clays, classical earth pressure theories should be used, based on effective stress parameters.