

Johnstaff on Behalf of Health Infrastructure Concord Hospital Redevelopment Project – Phase 1

Detailed Site Investigation

Experience comes to life when it is powered by expertise

This page has been left intentionally blank

Concord Hospital Redevelopment Project - Phase 1

Prepared for Johnstaff on behalf of Health Infrastructure

Prepared by Coffey Services Australia Pty Ltd Level 19, Tower B, 799 Pacific Highway Chatswood NSW 2067 Australia t: +61 2 9406 1000 ABN: 55 139 460 521

Project Reference: SYDGE253211-AF

Quality information

Revision history

Revision	Description	Date	Author	Reviewer
Rev 0	Original Issue	25/01/2018	S. Hay	M. Locke

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Rev 0	1	PDF	Marc Carneiro - Johnstaff	25/01/2018

i

f:

Executive Summary

Johnstaff Projects Pty Ltd (Johnstaff) engaged Coffey Services Australia Pty Ltd (Coffey) on behalf of Health Infrastructure NSW to undertake a Detailed Site Investigation (DSI) at Concord Hospital, located at 1H Hospital Road, Concord West NSW (the site) to support future Development Application. The redevelopment works are located in three different areas of the site that were designated as Phases 1, 2 and 3:

This investigation was undertaken to facilitate Phase 1 which involves demolition of the existing structures and construction of a new multi storey building with one basement level.

Douglas Partners (DP) previously undertook a Preliminary Site Investigation (PSI) in 2016 which included a targeted investigation at the site. The PSI identified the potential for an underground storage tank (UST) to be present in the loading dock area situated within the investigation area. The PSI concluded the site was suitable for the proposed development subject to the following recommendations:

- Identify the content and capacity of the UST in the loading dock area;
- · Carry out supplementary investigations in proximity to the identified UST; and
- Prepare a supplementary contamination report on the soil condition in the vicinity of the UST and provide advice on removal of the UST(s) if required.

This DSI was undertaken to address the data gaps identified in the 2016 DP PSI.

The objectives of this DSI were:

- To assess whether a UST may be present in the investigation area and to provide an indication of whether contamination may be present in soil or groundwater as a result of leaks from the suspected UST.
- Review readily available information in relation to the investigation area to identify other potential
 areas of environmental concern (AEC),
- Assess human health and environmental risks associated with potential contamination sources identified within the investigation area.
- Provide an opinion on whether the investigation area is suitable for the proposed development as per State Environment Planning Policy No. 55 – Remediation of Land (SEPP 55).
- Outline recommendations for further investigations and/or management measures in relation to contamination encountered.

Based on the review of the Douglas Partners PSI and the preliminary site walkover, the data gaps were considered to include the following:

- Presence of a suspected UST within the investigation area;
- Fill material of unknown origin or quality; and
- Presence of an interceptor trap within the investigation area.

Concentrations of contaminants of potential concern (CoPC) in soil samples analysed during this investigation were less than the adopted criteria. Asbestos was not detected at the reporting limit of 0.1 g/kg in the soil sample analysed. Review of the DP 2016 PSI indicated that no intrusive sampling was undertaken within the investigation area.

Concentrations of CoPC within groundwater were generally less than the laboratory LOR and adopted groundwater assessment criteria, with the exception of the following:

- Concentrations of copper within sample BH102 were detected at concentrations which exceeded the adopted Groundwater Investigation Levels (GIL) for marine waters; and
- Concentrations of zinc within samples BH102 were detected at concentrations which exceeded the adopted GIL for marine waters.

While fill was identified within the investigation area, concentrations of CoPC in samples analysed were less than the adopted health criteria.

Concentrations of copper, nickel and zinc were noted within groundwater sample BH102, collected from within the investigation area, however these concentrations were consistent with groundwater samples collected from the Phase 2 and Phase 3 investigation areas. It is considered that these concentrations of heavy metals were likely indicative of background levels present within the surrounding urban environment rather than point sources within the investigation area.

In completing this investigation Coffey determined it was unlikely that a UST was present within the investigation based on the following lines of evidence:

- Service utility drawings did not identify the presence of a UST;
- Anecdotal discussions with hospital maintenance staff indicated that a UST was unlikely to be
 present and that the service utility pit covers relate to either stormwater or sewer utilities;
- The GPR survey did not identify interference consistent with a metal vessel or void that extended laterally beyond the extent of the utility pit cover;
- The site walkover did not identify infrastructure such vents, fill point or bowsers;
- The surface features of the suspected UST service lid were visually consistent with the features of an utility pit covers or interceptor trap (IT);

The investigation identified that while an IT may be present within the investigation area, it is unlikely to have leaked as soil and groundwater analytical results from samples collected from the investigation area indicated that concentrations of CoPC associated with an IT were less than the adopted criteria.

The 2016 PSI undertaken by Douglas Partners concluded that the Phase 1 development area was suitable for the proposed development subject to further investigation regarding a suspected UST. In addition to the suspected UST, Coffey identified additional data gaps including fill of an unknown origin or quality, and the presence of an interceptor trap within the investigation area.

In completing the investigation, Coffey determined the following:

- Fill is present within the investigation however is unlikely to pose a health risk;
- Evidence obtained during the investigation including documentation review, discussions with hospital maintenance staff, GPR survey and site inspection indicated that a UST is unlikely to be present in the loading dock area;
- Observations made of the suspected UST location indicate it is likely to be an interceptor trap.
 Further investigation may be required to confirm this, and consideration should be given to the IT's presence during excavation and redevelopment works.

In completing this assessment Coffey concludes that the investigation area is suitable for the proposed development.

Table of Contents

1.	Introduction	1
2.	Background	2
3.	Objectives	2
4.	Scope of Works	3
5.	Technical Framework	3
6.	Data Quality Objectives	4
7.	Investigation Area	4
8.	Previous Reports	7
9.	Data Gaps and Uncertainties	8
10.	Investigation Work to Address Data Gaps	9
	Assessment Criteria	
12.	Investigation Findings	.14
13.	Results	.16
14.	Discussion	.17
15.	Conclusion	.18

Figures

Figure 1 – Site Location Plan

Figure 2 – Phase 1 Borehole Location Plan

Appendices

Appendix A – Data Quality Objectives

Appendix B – Data Quality Indicators

Appendix C – Photographs

Appendix D – Assessment Criteria

Appendix E – Borehole and Well Construction Logs

Appendix F – Laboratory Reports

Appendix G – Quality Assurance/Control

Appendix H – Calibration Certificates

Appendix I – Utility Drawings and Development Plans

Abbreviations

μg/L	micrograms per litre
АСМ	Asbestos Containing Materials
AEC	Area of Environmental Concern
ANZECC	Australian and New Zealand Environment Conservation Council
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
вн	Borehole
втех	Benzene, Toluene, Ethylbenzene and Xylenes
COPC	Chemicals of Potential Concern
сѕм	Conceptual Site Model
DBYD	Dial Before You Dig
DO	Dissolved Oxygen
DP	Deposited Plan
DQO	Data Quality Objectives
DSI	Detailed Site Investigation
EC	Electrical Conductivity
EIL	Ecological investigation level
EPA	Environmental Protection Authority of NSW
ESL	Ecological screening level
GIL	Groundwater Investigation Level
На	Hectare
HIL	Health Investigation Level
HSL	Health Screening Level
IP	Interface Probe
LOR	Limit of Reporting

i

Abbreviations

mbgl	Metres below ground level
mbtoc	Metres Below Top of Casing
mg/kg	milligrams per kilogram
mg/L	milligrams per litre
mm	Millimetre
mS/cm	Micro-Sieverts per centimetre
NAPL	Non-Aqueous Phase Liquids
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection (Assessment of Site Contamination) Measure as revised 2013
ОСР	Organochlorine Pesticides
ОЕН	Office of Environment & Heritage of NSW
ОРР	Organophosphate Pesticides
PAH	Polycyclic Aromatic Hydrocarbon
РСВ	Polychlorinated Biphenyls
PID	Photo-ionisation Detector
ppm	Parts per million
QA	Quality Assurance
QC	Quality Control
RPD	Relative Percent Difference
SOP	Standard Operating Procedure
TCLP	Toxicity Characteristic Leaching Procedure
TRH	Total Recoverable Hydrocarbons
UST	Underground Storage Tank

Abbreviations

UPSS	Underground Petroleum Storage System
voc	Volatile Organic Compounds

1. Introduction

Johnstaff Projects Pty Ltd (Johnstaff) engaged Coffey Services Australia Pty Ltd (Coffey) on behalf of Health Infrastructure NSW to undertake a Detailed Site Investigation (DSI) at Concord Hospital, located at 1H Hospital Road, Concord West NSW (the site) to support future Development Application. The redevelopment works are located in three different areas of the site that were designated as Phases 1, 2 and 3:

- Phase 1 involves demolition of the existing structures and construction of a new multi storey
 building with one basement level, located in the red zone in Plate 1. The basement will comprise
 a loading dock constructed to RL4.0mAHD, and ground floor used as an atrium providing access
 to upper floors.
- Phase 2 covers two areas located in the blue zones in Plate 1. Details of these proposed developments are not yet confirmed.
- Phase 3 is a proposed multi storey carpark located between Hospital Road and Bray's Bay (purple zone in Plate 1). This area is currently an at-grade carpark.

Plate 1- Concord Hospital Phasing Plan

This report relates to the Phase 1 development area. The location and approximate boundaries of the investigation area are shown on Figures 1 and 2, respectively.

2. Background

The objective of the hospital redevelopment is to improve and replace outmoded facilities to meet the substantial growth in clinical service demand from across the hospital's catchment that has occurred and will continue to occur over the next ten years. The Phase 1 development will provide new Aged, Chronic Care and Rehabilitation facilities replacing the 70-year-old Ramp Wards. Phase 1 of the redevelopment is to include the demolition of the existing structures and construction of a new multistorey building.

Douglas Partners (DP) previously undertook a Preliminary Site Investigation (PSI) in 2016 (Ref: 85326.01.R.001.Rev1, 10th June 2016) (DP 2016), which included targeted investigation at the site. The PSI identified the potential for an underground storage tank (UST) to be present in the loading dock area within the investigation area. The PSI concluded the site was suitable for the proposed development subject to the following recommendations:

- Identify the content and capacity of the UST in the loading dock area;
- · Carry out supplementary investigations in proximity to the identified UST; and
- Prepare a supplementary contamination report on the soil condition in the vicinity of the UST and provide advice on removal of the UST(s) if required.

A summary of the findings of the PSI undertaken by DP is provided in Section 8.1 of this report.

3. Objectives

The objectives of this DSI were:

- To assess whether a UST may be present in the investigation area and to provide an indication of whether contamination may be present in soil or groundwater as a result of leaks from the suspected UST.
- Review readily available information in relation to the investigation area to identify other potential
 areas of environmental concern (AEC),
- Assess human health and environmental risks associated with potential contamination sources identified within the investigation area.
- Provide an opinion on whether the investigation area is suitable for the proposed development as per State Environment Planning Policy No. 55 – Remediation of Land (SEPP 55).
- Outline recommendations for further investigations and/or management measures in relation to contamination encountered.

4. Scope of Works

Coffey undertook the following scope of works to complete the DSI:

- Review of subsurface utility service drawings of the investigation area and previous environmental reports;
- Conduct a visual inspection of the investigation area;
- Conduct a Ground Penetrating Radar (GPR) survey to assess the location and orientation of the suspected UST;
- Progress two boreholes in the area surrounding the UST to a minimum depth of 6.0 metres below ground level (mBGL);
- · Conversion of two boreholes into groundwater monitoring wells;
- Conduct a groundwater monitoring event (GME) comprising gauging, purging and sampling of groundwater from the installed groundwater wells;
- Laboratory analysis of primary soil samples, and groundwater samples at a National Association
 of Testing Authorities (NATA) accredited laboratory for contaminants of potential concern (CoPC);
 and
- Interpretation of investigation findings and laboratory data and preparation of this DSI report.

5. Technical Framework

Works were undertaken in general accordance with the following:

- NSW Work Health and Safety Act 2011 (WHS Act 2011);
- NSW Work Health and Safety Regulation 2011 (WHS Regulation 2016);
- Contaminated Land Management (CLM) Act, 1997 (CLM Act 1997);
- Contaminated Land Management Amendment Act 2008;
- Protection of the Environment Operations (POEO) Act 1997 (POEO Act 1997);
- NSW Environmental Protection Agency (EPA) POEO UPSS Regulation 2014 (UPSS Regulation 2014);
- National Environment Protection Council (NEPC) Act 1994 (NEPC Act 1994);
- NEPC, National Environment Protection (Assessment of Site Contamination) Measure, 1999 (April 2013) (NEPM 2013);
- Department of Environment, Climate Change and Water NSW (DECCW), Guidelines for implementing the UPSS Regulation (2008), (DECCW 2009);
- Department of Environment and Conservation (DEC) NSW, Guidelines for the Assessment and Management of Groundwater Contamination, 2007 (DEC 2007);
- CRC Care Technical Report No. 10, Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, 2011 (CRCCARE 2011);
- NSW Office of Environment and Heritage (OEH), Guidelines for Consultants Reporting on Contaminated Sites, 2011 (OEH 2011);
- Australian Standard (AS) 4482.1, Guide to Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-volatile and Semi-volatile Compounds, 2005;
- AS 4482.2, Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances, 1999; and
- AS 1726 Geotechnical Site Investigations, 2017.

6. Data Quality Objectives

Systematic planning and verification was undertaken to assess whether the data collected was reliable and representative of ground conditions within the investigation area. A process for establishing data quality objectives (DQOs) for an investigation has been defined by the United States Environmental Protection Agency (US EPA). That process has been adopted in AS 4482.1-2005 and referenced in NEPM 2013.

The DQO process is a seven-step iterative planning approach used to plan for environmental data collection activities. It provides a systematic approach for defining the criteria that a data collection design should satisfy, including when, where and how to collect samples or measurements, determination of tolerable decision error rates and the number of samples or measurements that should be collected.

The seven-step process for this investigation and data quality indicators adopted are discussed and summarised in Appendix A.

7. Investigation Area

7.1. Location and Identification Details

The investigation area is situated within the south western portion of Concord Hospital grounds. Details describing the investigation area are summarised in Table 7.1.

Table 7.1: Identification Details - Investigation Area

Address	1H Hospital Road, Concord West, NSW
Area	The investigation area was approximately 550m² in size.
Title Identification Details	Lot 2, DP535257, Lot 1, DP455866, Lots 21 & 22, DP1139098
Current Zoning	SP2 – Infrastructure: Hospital (Under the Canada Bay Local Environmental Plan (LEP) 2013).
Current Use	The investigation area operated as a loading dock for the Multi Building.
Adjoining Site Uses	North: Thomas Walker Hospital and Brays Bay beyond.
	South: Dame Edith Walker Hospital, tennis courts and Yaralla Bay beyond.
	East: Concord Repatriation General Hospital, and Yaralla Bay beyond.
	West: Residential properties, Concord Road.

7.1.1. Description of the Investigation Area

An experienced environmental scientist from Coffey conducted a walkover of the investigation area on 1st December 2017. At this time, the investigation area comprised a hard-paved loading dock situated north-west of Building 63 and on the western side of the Multi-Building. The investigation area sloped from the north-west to the south-east towards Yaralla Bay. Curb and guttering was present to divert runoff towards stormwater drainage system.

Multiple garbage bins were stored along the perimeter of the loading dock and multiple pressurised gas cylinders were stored in a locked caged on the western side. Numerous below ground utility pits were noted in multiple locations of the loading dock driveway with multiple concrete cuts, which appeared to be associated with the utility pits. During the inspection, the Coffey scientist did not identify above ground infrastructure typically associated with underground petroleum storage systems (UPSS) such as fuel bowsers or vent pipes. Small, circular covers were present on two of the utility pit lids. These lids could not be removed during the investigation and their use is unknown.

Tennis courts were present adjacent to the south-west border of the investigation area, and there was a small construction zone observed at the southern foot of the loading dock driveway which was fenced in and had a demountable located on it. The remainder of the Phase 1 development area was characterised by a large multi-storey hospital ward, a number of smaller, older satellite buildings, hospital access roads and soft landscaped areas.

7.1.2. Geology and Hydrogeology

Published geological maps (Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney) indicate the site locality is underlain by several geological units as summarised below:

- Ashfield Shale (dark grey to black shale with laminite) capping the main peninsula ridgeline and forming the foreshores of Bray's Bay.
- Hawkesbury Sandstone (medium to coarse-grained quartz sandstone with minor shale and laminite lenses) underlying the Ashfield Shale, outcropping at lower elevations at the eastern and southern ends of the peninsula;
- Quaternary Alluvium (silty to peaty quartz sand, silt and clay) overlying the Ashfield Shale and Hawkesbury Sandstone at the south of the hospital precinct on the northern shores of Yaralla Bay.

Based on the local topography of the Phase 1 investigation area, it is anticipated that regional groundwater beneath this portion of the site would flow south and east towards Yaralla Bay and north towards Brays Bay.

7.1.3. Local Sensitive Receptors

There are no surface water features which pass through the site. The nearest surface water features are Yaralla Bay, located approximately 160 m south-east of the investigation area and Brays Bay 270 m north of the investigation area.

7.1.4. Acid Sulfate Soils

Based on information provided in the Canada Bay Local Environmental Plan (LEP) 2013 Acid sulfate soil maps, acid sulfate soils are likely to be present in estuarine alluvium present along the foreshore of the site.

In consideration of the elevation and geological setting of the investigation area, it is assessed that there is a lower likelihood that acid sulfate soils are present. The Atlas of Australian Acid Sulfate Soils (ASS) compiled by CSIRO indicated that the Phase 1 investigation area is located in an area of low probability and low confidence for acid sulfate soils to occur.

7.2. Public Register Search

7.2.1. NSW EPA Contaminated Land Registers

Coffey undertook a search of the NSW EPA online Contaminated Land: Record of Notices on the 11th December 2017 for the site. The search did not identify any notices that have been issued by the NSW EPA under the Contaminated Land Management Act (1997) for the site, or for properties immediately surrounding the site.

Coffey also undertook a search on the 11th December 2017 of the NSW EPA online List of NSW Contaminated Sites Notified to EPA. The search did not identify any notices for the site. A Caltex petrol station located at 369 Concord Road, approximately 250 m west of the site was listed on the register, however it was given the designated of Regulation under CLM Act not required, indicating the EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required. Furthermore, review of the distance and topographic profile between the site and the Caltex service station indicated that potential contamination from the service station would be unlikely to impact the site.

7.2.2. Protection of the Environment Operation Act 1997 Register

A search of the NSW EPA Protection of the Environment Operation Act public register was conducted by Coffey on 11th December 2017. The POEO public register indicated that no licensed activities under the POEO Act 1997 are currently being carried out at the site.

7.2.3. Registered Groundwater Bore Search

A search of groundwater bore licenses was undertaken on the 11th December 2017 using the NSW Department of Primary Industries, Office of Water website (http://allwaterdata.water.nsw.gov.au/water.stm). The search did not identify any registered groundwater bores within a 500m radius of the site.

7.2.4. NSW State Heritage Search

A search of the NSW Office of Environment and Heritage register for aboriginal places and state heritage listed sites (http://www.environment.nsw.gov.au/heritageapp/heritagesearch.aspx) was undertaken on 11th December 2017. The site was not identified on the register as having items listed under the NSW Heritage Act. However, items present on the site were identified as items listed by local government and state agencies and included the following:

- Concord Repatriation Hospital main building; and
- Concord Repatriation Hospital grounds and layout;

In addition, Thomas Walker Convalescent Hospital located 260 m north of the site was listed on under the NSW Heritage Act due to its national heritage significance as a rare major institution which has survived along the foreshores of the Parramatta River from the 19th century. The property was also identified as having items listed by local government and state agencies which included the following items:

- The former children's hospital;
- A former cottage;
- The entry gate/gatehouse;
- The grounds and public gardens;
- The main building;
- The former stables;
- The store/garage; and
- The Watergate (dock/wharf building).

7.2.5. NSW EPA Former Gasworks Register

A search of NSW EPA List of Former Gasworks was undertaken on the 11th December 2017. The search identified did not identify any former gasworks within 500 m of the site.

8. Previous Reports

Coffey has reviewed the following reports pertaining to the site:

- Douglas Partners, 2016. Preliminary Site Contamination Investigation with Limited Soil Sampling Proposed Concord Repatriation General Hospital Redevelopment Hospital Road, Concord West, NSW (Ref: 85326.01.R.001.Rev1, 10th June 2016) (DP 2016);
- Jacobs, 2017. Schematic Design Report. Concord Repatriation General Hospital Redevelopment
 Phase 1 (Ref: 170130 CRGH SD Report V03, 30th January 2017)

8.1. Douglas Partners Preliminary Site Contamination Investigation

Douglas Partners was engaged to undertake a Preliminary Site Contamination Investigation (PSI) in June 2016 which included limited soil sampling at the site. The PSI included a review of available historical records including aerials and council records. Investigation works included drilling seven boreholes using a truck-mounted drill rig to a minimum of 0.5 m into natural material or refusal. DP submitted a total of 12 samples for laboratory analysis for a selection of contaminants of potential concern (CoPC).

A historical aerial photograph review was undertaken for 1930, 1943, 1952, 1970, 1982, 2002, and 2016 with the following noted:

- The hospital was established in 1940, prior to which the hospital area was undeveloped with partially vacant land. A number of buildings were added during the intervening period including Buildings 60, 61 and 63 (1950's), and several buildings altered including Buildings 62 and 64
- The main car park (presumed to mean the main (northern) hospital car park) was established between the 1950's and 1970's;
- Construction of new hospital buildings was noted to have occurred between 2002 and 2009 in the north-eastern portion of the hospital, towards the end of the peninsula.

The report review of City of Canada Bay Council information provided documents which indicated the following:

- A former incinerator was present at the site, adjacent to Building 62;
- In 1979, Council suspected Concord Hospital of dumping ash (sourced from the boiler house) in the hospital car park (presumed to mean the main (northern) hospital car park);
- Concord Hospital received numerous complaints from local residents in the late 1970's and early 1980's regarding fallout of soot on their properties reportedly originating from the hospital incinerator;
- The hospital's reported response was to use extreme care in order to reduce emissions to a minimum:
- The burning of medical waste reportedly ceased in the late 1990's. Contaminated waste including infected clinical waste and cytotoxic waste was collected by a licensed contractor and disposed off site

The analytical results from samples collected as part of the investigation indicated concentrations of CoPC including benzene, toluene, ethylbenzene, and xylene (BTEX), polychlorinated byphenyls (PCB), organochlorinated pesticides (OCP), phenols and asbestos were less than the laboratory practical quantification limits (PQL). However, the investigation identified concentrations of benzo(a)pyrene (BaP) and total recoverable hydrocarbons (TRH) C₁₆ -C₃₄ which exceeded the adopted site assessment criteria within a near surface sample which DP attributed to being reflective of the chemical components in the asphaltic pavement material overlying the material from which the sample was collected and concluded that further investigation and/or remediation was not required.

8.2. Jacobs Schematic Design Report

Jacobs was engaged to provide a schematic design report to document the progression of the development from the concept design phase through to the conclusion of schematic design (planning phase) for the Concord Repatriation General Hospital (CRGH) redevelopment.

The report listed the centre-piece of the redevelopment as the Rusty Priest Centre for Rehabilitation and Aged Care that is to be delivered in Phase 1A of the development. The proposed building is to rehouse and expand the Aged Health and Rehabilitation services, Veteran's Physical and Mental Health Treatment, and Rehabilitation services. Phase 1B will accommodate Cancer Care services as well as inpatient services in new purpose-built facilities.

9. Data Gaps and Uncertainties

Based on the review of the Douglas Partners PSI and the preliminary site walkover, the data gaps were considered to include the following:

- Presence of a suspected UST within the investigation area;
- Fill material of unknown origin or quality; and
- Presence of an interceptor trap within the investigation area.

10. Investigation Work to Address Data Gaps

10.1. Preliminary Conceptual Site Model

Based on the information reviewed and visual observations, potential areas of environmental concern (AEC) and exposure scenarios considered for assessment are summarised in Table 10.1. The likelihood of potential contamination and associated CoPC are also outlined in the table.

Table 10.1: Preliminary conceptual site model – Phase 1 Investigation Area

AEC	Potential contamination description	Likelihood of potential Contamination	CoPC	Potential Receptors & Exposure pathways
AEC1: Fill within the investigation area	Fill material including ash and clinker associated with incinerator, or fill associated with poor demolition practices	Medium	TRH, BTEX, PAH, metals and asbestos	Construction workers and future maintenance workers from direct contact, and inhalation of dust, asbestos fibres and vapours Future site users from direct contact, ingestion and inhalation of dust and asbestos fibres
AEC2: Suspected underground storage tank in the loading dock area	Potential leaks or spills of suspected UST(s).	Low – Medium	TRH, PAH and Lead (BTEX if UST stored petrol)	Construction workers, future maintenance workers and future site users from direct contact, and inhalation of dust and vapours
AEC3: Potential interceptor trap (IT) in the loading dock area	Potentially leaks associated with an interceptor trap	Low – Medium	TRH, PAH, BTEX	Construction workers and future maintenance workers from direct contact, and inhalation of vapours

TRH: Total recoverable hydrocarbons

BTEX: Benzene, toluene, ethylbenzene and xylene compounds

PAH: Polycyclic aromatic hydrocarbons

10.2. Scope of Investigation Works

Phase 1 investigation works were undertaken by Coffey between 23 November and 14 December 2017. Groundwater sampling was carried out on 21st December 2017.

In summary, field works comprised the following:

- Location and clearance of underground services, and set out of proposed soil bores at cleared locations;
- Drilling of 2 boreholes using a track mounted drill rig (ie. BH101 and BH102) to depths ranging between 5.97 mBGL and 8.00 mBGL;
- Soil samples were collected from each borehole location with two primary samples from each borehole location submitted for chemical analysis;
- Both boreholes were converted to monitoring wells to facilitate groundwater sampling; and
- Quality control sampling was undertaken as per the schedules provided in Appendix G.

10.3. Sampling Rationale

The sample locations were targeted to address the data gaps identified by the 2016 Douglas Partners PSI and in the preliminary site walkover of the investigation area.

Following review of the 2016 PSI, the preliminary site walkover undertaken by Coffey identified the location of the suspected UST (AEC2), as identified by DP however on inspection, the visual appearance of the feature was consistent with a subsurface utility pit commonly used to cover sewer/stormwater manholes, or interceptor trap (IT) (AEC3).

The locations of boreholes BH101 and BH102 were selected to target AEC2 and AEC3 while at the same time collecting samples of fill from the investigation area (AEC1) to supplement data collected from the previous investigation completed by DP. BH101 was located up gradient and BH102 located downgradient of the suspected UST/IT location. These boreholes were positioned in areas to avoid damage to subsurface infrastructure.

Following sampling, the soil bores were converted to groundwater monitoring wells and sampled to assess for the presence of CoPC associated with either a UST/IT in the groundwater.

10.4. Investigation and Soil Sampling Methodology

In general, the investigation and soil sampling methodology is outlined in Table 10.2.

Table 10.2: Summary of Investigation and Soil Sampling Methodology

Activity	Detail / Comments
Below Ground Service Clearance	A DBYD Underground Services Check was carried out prior to commencement of works. Investigation locations were also scanned by an underground service clearance subcontractor to check for the presence of below ground services. Drilling locations were set up in areas cleared for below ground services.
	Following service clearance, a GPR survey was undertaken within the investigation area to check for the presence and assess the extent of UST or IT.
Borehole Drilling	Where present, asphalt surfacing was cored using a large diameter circular cutting bit and removed.
	Boreholes were drilled using a tracked mounted rig equipped with solid flight augers with

Activity	Detail / Comments
	samples collected from the auger bit. Once rock was encountered, the boreholes were cored using NMLC methods to target depth. Drilling locations were recorded using a hand-held GPS unit by the Coffey engineer supervising the drilling works.
Soil Logging	Soil logging was undertaken by suitably qualified and experienced Coffey engineer/scientists in accordance with Coffey's Standard Operating Practices (SOP), which is consistent with AS 1726-2017, Geotechnical Site Investigations and AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil.
Soil Sampling	All drilling works were directed by the engineer supervising the works. All borehole logging, field screening sampling works were carried out by the Coffey engineer/scientist. In general, soil samples were collected to target different horizons within fill materials and then at approximately each one metre intervals thereafter or at changes in soil horizon or where indications of potential contamination were noted. Soil samples collected from the split tube or auger bit were placed as quickly as practicable
	into sample jars. Sample jars were filled to the top to minimise headspace. Visual, olfactory, and field screening data were recorded (refer Borehole Logs; Appendix E). Separate samples of fill (approximately 50g mass) was collected for asbestos analysis and placed in double zip lock bags.
Soil Splitting	Duplicate samples were collected by dividing soils collected from the hand auger/split tube and placed into two separate laboratory jars. Blind duplicate samples were denoted 'DUP' (e.g. DUP1, DUP2 etc.).
Soil Screening	Field headspace screening using a Photo-ionisation Detector (PID) with a 10.6eV lamp was undertaken where possible to assess the potential presence of VOC to guide scheduling of chemical testing. Soil headspace screening was undertaken on soils at discrete depths at each borehole location by placing a small quantity of soil inside a zip-locked plastic bag and sealed. The sample was agitated and then the plastic bag was pierced using the tip of the PID. The readings on the PID were observed and the maximum reading recorded on the field log sheet. The PID readings are presented in each borehole log. PID calibration records are provided within Appendix H.
Sample Handling and Transportation	Sample collection, storage and transport were conducted in general accordance with the relevant Coffey SOP. Soil samples were immediately placed into laboratory supplied glass jars, with Teflon lined seals to limit possible volatile loss and placed into an ice chilled cooler. The samples were dispatched to the laboratories under chain of custody control.
Decontamination of sampling equipment	Sampling equipment was decontaminated by scrubbing with Decon 90 solution and rinsed with potable water between samples. Rinsate blank samples were collected by pouring laboratory distilled water over non-disposable sampling equipment following decontamination to assess the efficiency of field decontamination procedures and assess the potential for cross contamination to occur between sampling positions. One rinsate blank sample was collected off the solid flight auger during the soil sampling programme following decontamination.
Disposal of soil cuttings	In general, boreholes were backfilled with drill cuttings and the top 200mm (approximate) was plugged with concrete.

10.5. Groundwater Well Installation and Sampling Methodology

The methodology to install, develop and sample groundwater monitoring wells on the site is outlined in Table 10.3.

Table 10.3: Groundwater Well Installation, Development and Sampling Methods

Activity	Detail / Comments
Well Installation	Both boreholes, BH101 and BH102, were converted to groundwater monitoring wells. The monitoring wells installed within the investigation area were positioned to assess the status of groundwater in the vicinity of where the UST was suspected to be located and to determine whether the need for further investigation was required.
	Each well was constructed with lengths of 50mm diameter screw threaded casing. A length of machine slotted casing was positioned to intercept groundwater, with lengths of solid casing extended to the surface. The well annulus was backfilled with fine gravel to the top of the screened interval. A 0.5m thick bentonite seal placed over the gravel pack. The remaining well void was backfilled with selected cuttings from the drilling. Bolted steel flush-fitting covers were used to complete each well at surface.
	In addition to the groundwater wells installed in the investigation area, five additional groundwater wells were installed in the Phase 2 (BH205 and BH211) and Phase 3 (BH302, BH307 and BH310) development areas.
	Well installation details are presented in the borehole logs included in Appendix E.
Well development	Well development was undertaken shortly after well installation the wells were developed to remove fine sediment and to maximise the hydraulic connectivity between the wells and the groundwater aquifer in preparation for subsequent sampling. Development was undertaken using dedicated disposable high density polyethylene (HDPE) bailers. A minimum of four well volumes were removed from each well, or wells were purged dry. Following well development hydro-sleeves were installed in each well and left for a minimum of seven days to stabilise.
Groundwater Level & NAPL Measurements	Groundwater levels and the presence of Non-Aqueous Phase Liquids (NAPL) were recorded using an oil/water interface probe (IP).
Sampling Method Water Quality parameters	During remobilisation to undertake groundwater sampling, it was determined that well BH101 had not recharged with groundwater and therefore a groundwater sample could not be recovered for laboratory analysis.
	Groundwater sample from BH102 was recovered from each of the monitoring wells using a disposable hydro-sleeve in accordance with Coffey SOP. Groundwater sampling results are provided in Table T4 in the Tables section and the laboratory results supplied in Appendix F.
Water Quality parameters	Following retrieval of the hydro-sleeve water quality parameters were documented for pH, Temperature, Dissolved Oxygen, Electrical Conductivity and Redox Potential.
Sample Splitting	Duplicate samples were collected by filling up two additional sample containers simultaneously during collection of the primary sample.
Decontamination Procedure	The IP and water quality meter was decontaminated by scrubbing with Decon 90 solution and rinsed with potable water between wells.

	As disposable hydro-sleeves were used for sampling, no decontamination of sampling equipment was required.
Sample Preservation	Samples were placed in laboratory supplied bottles containing appropriate preservatives with minimal headspace. Samples collected for metals were filtered in the field using 0.45µm disposable Waterra filter packs. Sample containers were immediately capped and placed in an insulated container filled ice. The samples were dispatched to NATA accredited laboratories under chain of custody control.

10.6. Quality Assurance / Quality Control

A quality assurance/quality control plan was designed to achieve predetermined data quality objectives (DQOs) and to demonstrate accuracy, precision, comparability, representativeness and completeness of the data generated and the procedures for assessing the DQOs are met.

The field and laboratory QA/QC procedures adopted and summary of QA/QC results for this DSI are provided in Appendix G. In summary, the data is considered to be adequately complete, comparable, representative, precise, accurate and usable for the objective of the works.

10.7. Laboratory Details

Analysis was carried out by the following laboratories who hold NATA accredited analytical methods:

- Primary Laboratory Eurofins MGT, Lane Cove NSW
- Secondary Laboratory ALS Laboratory, Smithfield NSW

11. Assessment Criteria

To assess the significance of contaminant concentrations in soil, reference was primarily made to NEPM 2013, specifically 'Schedule B1 Guideline on Investigation Levels for Soil and Groundwater' (Schedule B1). Schedule B1 provides a framework for the use of investigation and screening levels based on human health and ecological risks.

Schedule B1 states that 'the selection and use of investigation levels should be considered in the context of the iterative development of a Conceptual Site Model. Based on information describing the proposed development, Coffey considers the proposed redevelopment of the investigation area will introduce a number of different receptor groups, including:

- Construction workers during site development, and workers conducting future subsurface maintenance works.
- Adult workers within the medical facility once developed including medical staff, and other employees involved with the administration and support functions.
- Persons attending the medical facility, including sensitive populations (i.e. children and the
 elderly). It is anticipated that the duration of attendance of these receptors may vary from day visits
 to extended periods of time, within the upper floors of the development.

• Site visitors attending the site periodically for short durations to visit persons attending the medical facility, including basement.

Whilst Schedule B7 of the ASC NEPM (NEPC, 2013) states that the Health Investigation Levels (HIL) developed for the commercial/industrial land use scenario are not applicable to a site used frequently by more sensitive groups such as children and the elderly (i.e. hospitals and hospices), Coffey has adopted HIL D criteria based on the following considerations:

- Sensitive populations would occupy the upper floors of the development, and only pass through
 the ground floor atrium area intermittently. It is considered unlikely that sensitive populations would
 access the loading dock in the basement.
- · Opportunities for direct access to soil on site will be minimal.

Soil health investigation levels (HILs), soil health screening levels (HSLs) and petroleum hydrocarbon management limits were adopted from Schedule B1 of NEPM 2013 while Direct Contact criteria for petroleum hydrocarbons were adopted from CRC CARE 2011. Table T1 in Appendix F of this report details the soil criteria which was adopted for the assessment.

Ecological investigation levels (EILs), and ecological screening levels (ESLs) were not considered as they were not deemed to be applicable for this investigation.

The nature of the proposed development will restrict human exposure to groundwater via direct pathways (e.g. incidental ingestion, dermal contact). Coffey understands that groundwater abstraction for beneficial uses on site is not proposed as part of the development.

Schedule B1 presents groundwater Health Screening Levels (HSL) for vapour intrusion pathway. The field investigations recorded standing water levels in BH102 at 4.18mbgs (i.e. approx. RL 4.1mAHD). Given that the development will construct a basement with a formation level of 4.0mAHD, which is broadly consistent with the standing water levels within the investigation area, the HSL presented within Schedule B1 are not considered appropriate.

For the purposes of this assessment, the Limit of Reporting (LOR) has been adopted as the HSL for volatile compounds within groundwater.

Table T4 in Appendix F of this report details the groundwater criteria which was adopted for the assessment. The adopted groundwater investigation levels (GILs) were based on the investigation levels outlined in NEPM 2013. The GILs are based on the Australian and New Zealand Environment Conservation Council (ANZECC) (2000) Guidelines for marine water quality.

12. Investigation Findings

12.1. Documentation Review and GPR Survey

Review of utility drawings provided by the Sydney Local Health District for the loading dock area did not identify the presence of a UST within the investigation area. LTS Drawing 43291DT; Sheet 2 of 12 dated 16 May 2016 (refer Appendix I) shows the location of stormwater and sewer drainage services. These records show the utility pit covers suspected by DP to be UST to be associated with sewer drainage services or an IT. This correlates with the understanding of hospital maintenance staff based on site.

The GPR survey undertaken by Geotrace also did not identify anomalies in the vicinity of the utility pit that were consistent with a UST. That is, interference consistent with a metal vessel or void that extended laterally beyond the extent of the utility pit cover was not reported.

12.2. Subsurface Profile

At the time of the fieldwork, surface coverage in the loading dock area was characterised by bitumen hardstand.

Fill material was encountered within both borehole locations in the investigation area and generally consisted of fine to medium grained, yellow to dark brown gravelly sand and silty sand which was underlain by dark grey gravelly clay with medium to high plasticity. Natural soil was identified at depths ranging from 0.9 mBGL to 1.1 mBGL and consisted of dark brown clay with high medium to high plasticity and yellow to brown silty clay with low plasticity that was underlain by yellow to brown shale. No staining or odours associated with hydrocarbons were noted nor were suspected asbestoscontaining materials (ACM) identified at any of the boreholes located within the investigation area.

Field indicators of potential acid sulfate soils comprising presence of shells, jarositic horizons or sulfidic odours were not noted during sampling.

12.3. Soil Headspace Screening Results

Soil samples were screened for the potential presence of VOCs using a PID. The PID readings ranged from 0.8 ppm to 4.1 ppm, indicating that VOCs were unlikely to be present at significant concentrations.

Individual PID readings are reported on the borehole logs presented in Appendix D.

12.4. Groundwater Conditions

Standing water levels were measured using an electronic dual phase interface probe, which are presented within Table 12.1. Standing water levels reported in monitoring wells installed within Phases 2 and 3 are included in Table 12.1 to provide an overview of groundwater conditions across the site.

		Table	12.1: Gauging Ir	nformation	
Monitoring Well	Date	SWL (m) below TOC*	Depth to base of well (m BTOC)	LNAPL Identified	Investigation Phase
BH101	14/12/2017	-	5.97	None	Phase 1
BH102	14/12/2017	4.18	8.0	None	Phase 1
BH205	24/11/2017	3.27	9.38	None	Phase 2
BH211	21/11/2017	0.815	3.345	None	Phase 2
BH302	27/11/2017	2.94	8.82	None	Phase 3
BH307	29/11/2017	3.28	9.78	None	Phase 3
BH310	01/12/2017	1.43	8.925	None	Phase 3

^{*} TOC: top of casing, SWL: standing water level, RWL: reduced water level, LNAPL: Light non-aqueous phase liquid Groundwater was encountered within shale at a depth of approximately 4.18 mBGL, and was likely perched water within the geological unit.

Given the local topography and proximity to Yaralla Bay, groundwater within the investigation area was inferred to flow south and east towards Yaralla Bay.

Hydrocarbon odours, sheen or visual indicators of contamination were not identified in the groundwater sampled from BH102, nor were these indicators identified in the wells located outside the investigation area.

Results of the water quality parameters (after stabilisation) collected prior to sampling are summarised in Table 12.2.

	7	Table 12.2:	Water Quality Par	ameters		
Monitoring Well	рН	Redox (mV)	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)	Investigation Phase
BH101	-	-	-	-	-	Phase 1
BH102	7.39	42	1743	1.47	21.3	Phase 1
BH205	6.28	24	1303	2.71	20.7	Phase 2
BH211	7.06	-29	9900	1.18	22.6	Phase 2
BH302	5.68	62	7160	1.88	21.0	Phase 3
BH307	6.25	41	6660	1.87	22.6	Phase 3
BH310	6.47	81	7380	1.77	23.5	Phase 3

13. Results

13.1. Soil Analytical Results

While concentrations of some metals, PAHs and TRH exceeded the LOR, all concentrations were less than the adopted health criteria. Asbestos was not detected at the reporting limit of 0.1 g/kg in the soil sample analysed.

Review of the DP 2016 PSI indicated that no intrusive sampling was undertaken within the investigation area, however limited sampling was conducted down gradient of the loading dock. Review of analytical results from samples collected from these locations (DP boreholes: BH12, BH14, BH15 and BH17) indicated that with the exception of TRH $C_{16}-C_{34}$ concentrations of CoPC were less than the commercial/industrial criteria adopted by DP.

The following samples collected in the DP 2016 PSI exceeded the adopted criteria:

 Concentrations of TRH C₁₆ – C₃₄ (3,600 mg/kg) in DP sample BH12-0.1 marginally exceeded the TRH management limits for that fraction (3,500 mg/kg).

Laboratory results for samples collected from the investigation area are provided in Appendix F. These results have been collated with results from previous investigations and presented within Table T1 in the 'Tables' section of this report.

13.2. Groundwater Analytical Results

Concentration of CoPC within groundwater were generally less than the laboratory LOR and adopted groundwater assessment criteria, with the exception of the following:

Phase 1 Investigation Area

- Concentrations of copper within sample BH102 were detected at concentrations which exceeded the adopted Groundwater Investigation Levels (GIL) for marine waters; and
- Concentrations of zinc within samples BH102 were detected at concentrations which exceeded the adopted GIL for marine waters.

Phase 2 and 3 Investigation Areas

- Concentrations of copper within samples BH205 and DUP2_21_12_17 were detected at concentrations which exceeded the ANZECC Marine Water 95% guidelines;
- Concentrations of nickel within samples BH302 and BH307 were detected at concentrations which exceeded the ANZECC Marine Water 95% guidelines;
- Concentrations of nickel within samples BH205, , BH310, Dup1_21_12_17 and DUP2_21_12_17 were detected at concentrations which exceeded the adopted GIL for marine waters; and
- Concentrations of zinc within samples BH205, BH302, BH307, BH310 and DUP2_21_12_17 were
 detected at concentrations which exceeded the ANZECC Marine Water 95% guidelines.

Laboratory results are provided in Appendix F and are summarised in Table T4 in the 'Tables' section of this report.

14. Discussion

The following sections presents a discussion of the investigation findings with regard to the data gaps identified in Section 9:

14.1. AEC 1: Fill Material of Unknown Origin or Quality

While fill was identified within the investigation area, concentrations of CoPC in samples analysed were less than the adopted health criteria.

Concentrations of copper, nickel and zinc were noted within groundwater sample BH102, collected from within the investigation area. The concentrations were consistent with groundwater samples collected from the Phase 2 and Phase 3 investigation areas. It is considered that these concentrations of heavy metals were likely indicative of background levels present within the surrounding urban environment rather than point sources within the investigation area.

Interrogation of the DP 2016 PSI indicated that no intrusive soil sampling was conducted in the loading dock area to provide supplementary analytical data for the investigation area. Soil data from samples collected from the surrounding areas indicated that with the exception of TRH C_{16} – C_{34} in DP sample BH12/0.1, concentrations of CoPC were less than the adopted criteria. DP 2016 PSI concluded the exceedances identified at BH12 were likely to be associated with overlying the bitumen pavement.

14.2. AEC2/AEC3: Suspected Underground Storage Tank or Interceptor Trap in the Loading Dock Area

Coffey determined it was unlikely that a UST was present within the investigation based on the following lines of evidence:

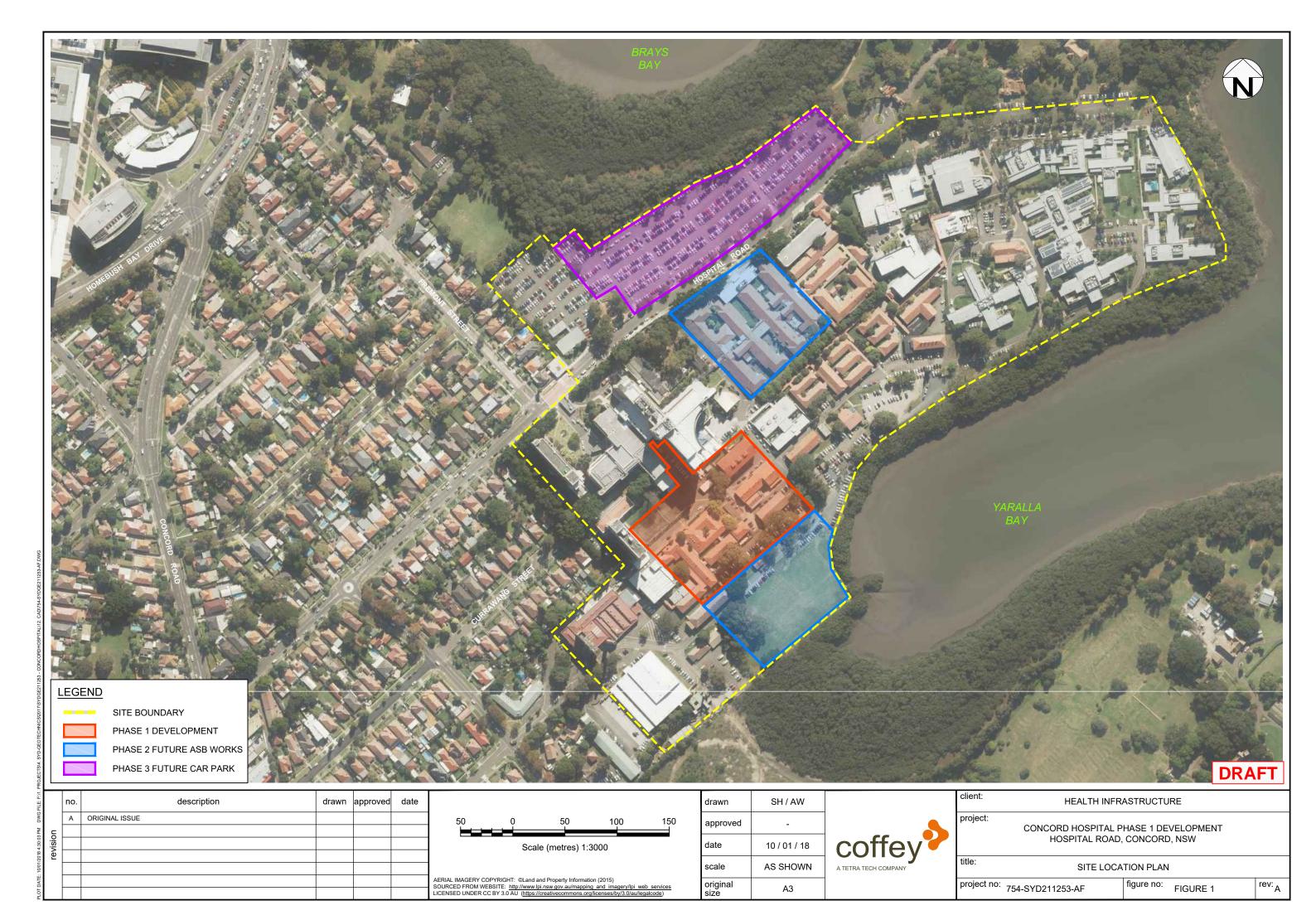
- Service utility drawings did not identify the presence of a UST;
- Anecdotal discussions with hospital maintenance staff indicated that a UST was unlikely to be
 present and that the service utility pit covers relate to either stormwater or sewer utilities;
- The GPR survey did not identify interference consistent with a metal vessel or void that extended laterally beyond the extent of the utility pit cover;
- The site walkover did not identify infrastructure such vents, fill point or bowsers;
- The surface features of the suspected UST service lid were visually consistent with the features of an utility pit covers or interceptor trap (IT);

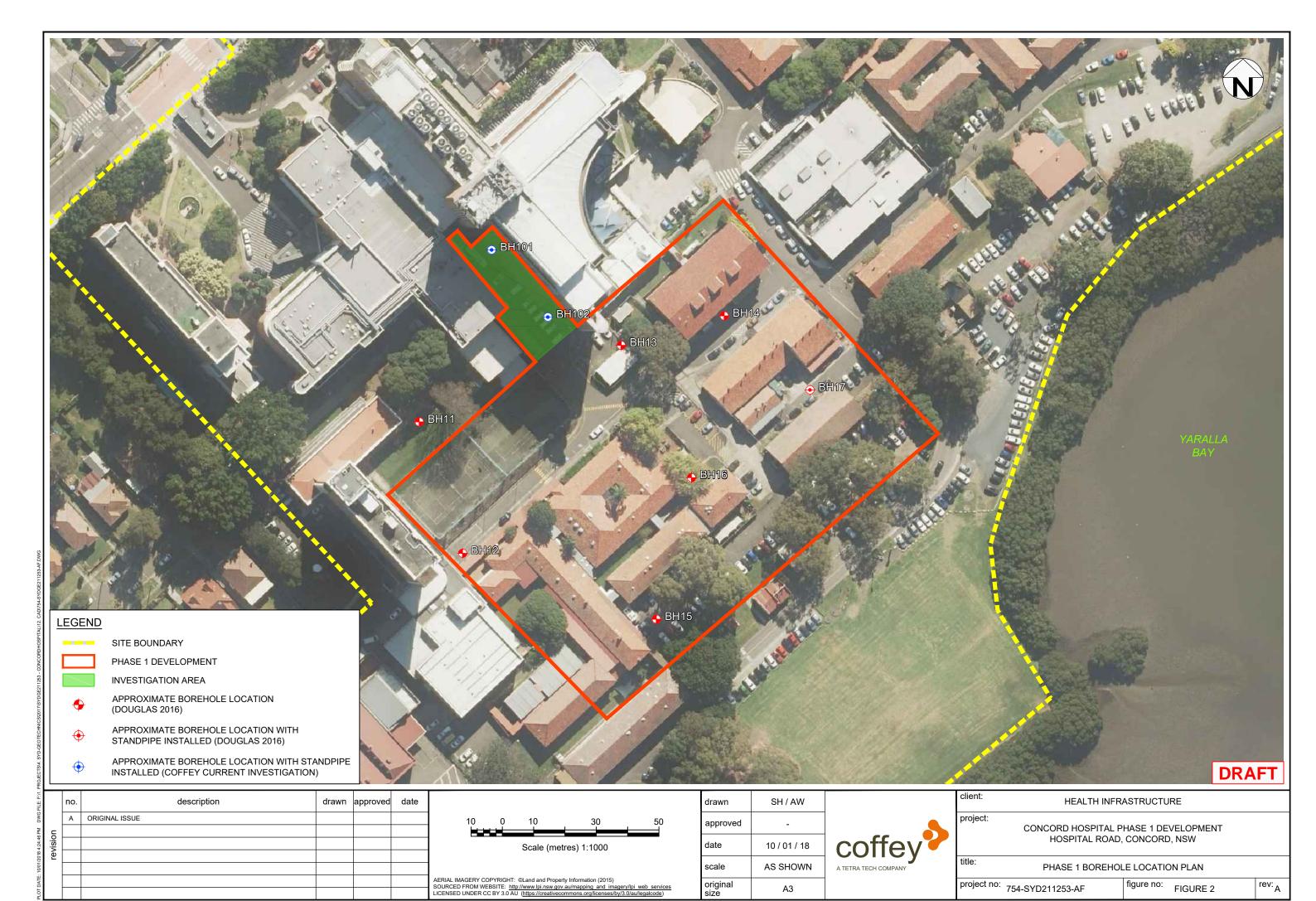
The investigation identified that while an IT may be present within the investigation area, it is unlikely to have leaked do to the following:

- Review of soil analytical results from samples collected from the investigation area indicated that concentrations of CoPC associated with an IT were less than the adopted criteria.
 - ➤ While concentrations of TRH in the C₁₆-C₃₄ and C₃₄-C₄₀ fractions were identified in sample BH102/0.05-0.2, TRH detections were limited to the near surface material indicating it was unlikely for a leak to have occurred.
 - > Taking into consideration the ratio between PAH and TRH concentrations in those samples, the detections were likely to be associated with bitumen present in the fill.
- Groundwater was not encountered at BH101, however hydrocarbon odours and staining were not noted in the soil during sample collection or during well installation.
- Groundwater well BH102 was positioned downgradient from the suspected IT location. Analytical
 results from groundwater sample BH102 indicated that concentrations of PAH, BTEX and TRH
 were below the laboratory limit of reporting.

15. Conclusion

The 2016 PSI undertaken by Douglas Partners concluded that the Phase 1 development area was suitable for the proposed development subject to further investigation regarding a suspected UST. In addition to the suspected UST, Coffey identified additional data gaps including fill of an unknown origin or quality, and the presence of an interceptor trap within the investigation area.


In completing the investigation, Coffey determined the following:


- Fill is present within the investigation however is unlikely to pose a health risk;
- Evidence obtained during the investigation including documentation review, discussions with hospital maintenance staff, GPR survey and site inspection indicated that a UST is unlikely to be present in the loading dock area;
- Observations made of the suspected UST location indicate it is likely to be an interceptor trap.
 Further investigation may be required to confirm this, and consideration should be given to the IT's presence during excavation and redevelopment works.

In completing this assessment Coffey concludes that the investigation area is suitable for the proposed development.

Concord Hospital Redevelopment Project – Phase 1 Detailed Site Investigation

Figures

Concord Hospital Redevelopment Project – Phase 1 Detailed Site Investigation

Tables

				Inorganics Asbestos BTEX									Me	etals										PAI	Hs				
				morganics	Assestes			JILK			1		1410	Lais															
	QL			Moisture	Asbestos	Benzene	Ethylbenzene	Toluene	Xylene Total	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzo(b+j)fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Half)	Benzo(a)pyrene TEQ calc (Zero)	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene
PO!				%	g/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg				mg/kg I		mg/kg	mg/kg 0.5					mg/kg				mg/kg		
PQL	site Comme (In al (course)				0.1	0.1	0.1	0.1	0.3	2	0.4	5	5	5	0.1	5	5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	nits - Comm/Ind (course)									3000	900	3600	240,000	1500	730	6000	400,000							40					
NEPM (2013) HIL - D (NEPM (2013) HSL - D						3	NL	NL	230	3000	900	3000	240,000	1500	730	6000	400,000							40					
· , ,	ealth - Direct Contact HSL-D						27,000	99,000	81,000	-																	$\overline{}$		
	Maintenance Worker 0 to <2 m Va	nour Intrusion (Shallow Tren	och - Sand)			77	NL	99,000 NL	NL																				
	for Soil Direct Contact Intrusive	· · ·	ich - Sanu)				85,000	120,000																					
Cite care (2011) 11323	Tor son Breet contact merasive i	Widinterialiee Worker				1100	03,000	120,000	130,000																			<u> </u>	
Coffey ID	Sample_Depth	Sample_Date	Matrix																										
BH101_0.5-0.65	0.5-0.65	23-11-17	Soil	11	NAD	<0.1	<0.1	<0.1	<0.3	2.5	<0.4	<5	11	16	0.2	<5	30	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5
BH101_1.0-1.11	1.0-1.11	23-11-17	Soil	6.9	-	<0.1	<0.1	<0.1	<0.3	8	<0.4	9.4	30	30	<0.1	31	120	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.6	<0.5	<0.5	<0.5	<0.5
BH102/0.05-0.2	0.05-0.2	14-Dec-17	Soil	10	-	<0.1	<0.1	<0.1	<0.3	6	<0.4	8.9	40	22	<0.1	11	230	5.1	0.9	<0.5	1.5	4.7	4.2	6.2	6.2	6.2	3.2	1.7	4.1
BH102/1.1-1.3	1.1-1.3	14-Dec-17	Soil	7.7	-	<0.1	<0.1	<0.1	<0.3	6.1	<0.4	9.2	33	21	<0.1	8.2	74	1.4	<0.5	<0.5	<0.5	1.5	1.3	1.8	2	2.3	1	0.6	1.3
DUP1_14.12.17	0.05-0.2	14-Dec-17	Soil	7	-	<0.1	<0.1	<0.1	<0.3	3.7	<0.4	12	72	21	<0.1	11	590	11	2.7	<0.5	4.5	11	9.9	15	15	15	7	4.6	10
DUP2_14.12.17	0.05-0.2	14-Dec-17	Soil	6.9	-	<0.2	<0.5	<0.5	<0.5	<5	<1	19	42	17	<0.1	15	376	21.7	3.9	0.8	6.1	1.6	17.6	25	25	25	9.9	9.5	15.9
Douglas Partners ID																													
BH12	0.1	23-02-16	Soil	3.4	NAD	<0.2	<0.5	<1	<3	<4	<0.4	28	29	5	<0.1	39	22	41	8.9	0.7	12	33	24	34	34	34	7.3	41	29
BH12	0.5	23-02-16	Soil	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH12	1	23-02-16	Soil	14	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	
BH14	0.1	29-02-16	Soil	2.7	NAD	<0.2	<0.5	<1	<3	<4	<0.4	25	54	3	<0.1	58	33	<0.2	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.1	<0.2	<0.1
BH15	0.5	01-03-16	Soil	8.4	NAD	<0.2	<0.5	<1	<3	14	<0.4	16	31	21	<0.1	11	30	<0.2	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.1	<0.2	<0.1
BH17	0.5	26-02-16	Soil	17	NAD	<0.2	<0.5	<1	<3	10	<0.4	22	28	96	<0.1	6	200	<0.2	<0.1	<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	<0.1	<0.2	<0.1

NAD - No Asbestos Detected

												TRH		
	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	PAHs (Sum of total)	F1: C6-C10 less BTEX	F2: C10-C16 less NAPHTHALENE	C6-C10	C10-C16	C16-C34	C34-C40
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	20	50	20	50	100	100
TRH Management Limits - Comm/Ind (course)											700	1000	3500	10,000
NEPM (2013) HIL - D (Comm/Ind)								4000						
NEPM (2013) HSL - D (Sand) 0 to <1m									260	NL				
CRC Care - Human Health - Direct Contact HSL-D					11,000						26,000	20,000	27,000	38,000
CRC Care - Intrusive Maintenance Worker 0 to <2 m Vapour Intrusion (Shallow Trench - Sand)					NL				NL	NL				
CRC Care (2011) HSLs for Soil Direct Contact Intrusive Maintenance Worker					29,000						82,000	62,000	85,000	120,000

Coffey ID	Sample_Depth	Sample_Date	Matrix														
BH101_0.5-0.65	0.5-0.65	23-11-17	Soil	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<50	<20	<50	<100	<100
BH101_1.0-1.11	1.0-1.11	23-11-17	Soil	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<50	<20	<50	<100	<100
BH102/0.05-0.2	0.05-0.2	14-Dec-17	Soil	0.5	11	<0.5	2.5	<0.5	3.5	11	53.9	<20	<50	<20	<50	510	100
BH102/1.1-1.3	1.1-1.3	14-Dec-17	Soil	<0.5	3.7	<0.5	0.8	<0.5	1	3.8	16.4	<20	<50	<20	<50	<100	<100
DUP1_14.12.17	0.05-0.2	14-Dec-17	Soil	1.3	32	1.3	5.6	<0.5	9.6	33	143.5	<20	<50	<20	<50	1800	460
DUP2_14.12.17	0.05-0.2	14-Dec-17	Soil	1.6	37.7	1.9	7.8	<0.5	1.9	39.7	204	<10	<50	<10	<50	1470	590

Douglas Partners ID

Douglas I al tilels il	•																
BH12	0.1	23-02-16	Soil	1.6	78	2.6	9.7	1	40	74	360	<25	<50	<25	150	3600	1100
BH12	0.5	23-02-16	Soil	-	-	-	-	-	-	-	-	-	-	<25	<50	310	<100
BH12	1	23-02-16	Soil	-	-	-	-	-	-	-	-	-	-	<25	<50	<100	<100
BH14	0.1	29-02-16	Soil	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	Nil+ve	<25	<50	<25	<50	340	550
BH15	0.5	01-03-16	Soil	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	Nil+ve	<25	<50	<25	<50	<100	<100
BH17	0.5	26-02-16	Soil	< 0.1	<0.1	<0.1	<0.1	<1	<0.1	<0.1	Nil+ve	<25	<50	<25	<50	<100	<100

NAD - No Asbestos Detected

			Lab Report Number	577580	577580		577580	Interlab_D	
			Field ID		DUP1_14.12.17	RPD			RPD
			Sampled Date/Time	14-12-17	14-12-17		14-12-17	14-12-17	
Chem_Gro	ChemName	Units	EQL						
BTEX	Benzene	mg/kg	0.1 (Primary): 0.2 (Interlab)	<0.1	<0.1	0	<0.1	<0.2	0
	Ethylbenzene	mg/kg	0.1 (Primary): 0.5 (Interlab)	<0.1	<0.1	0	<0.1	<0.5	0
	Toluene	mg/kg	0.1 (Primary): 0.5 (Interlab)	<0.1	<0.1	0	<0.1	<0.5	0
	Xylene (m & p	mg/kg	0.2 (Primary): 0.5 (Interlab)	<0.2	<0.2	0	<0.2	<0.5	0
	Xylene (o)	mg/kg	0.1 (Primary): 0.5 (Interlab)	<0.1	<0.1	0	<0.1	<0.5	0
	Xylene Total	mg/kg	0.3	<0.3	<0.3	0	<0.3		
	C6-C10 less E	mg/kg	20 (Primary): 10 (Interlab)	<20.0	<20.0	0	<20.0	<10.0	0
Metals	Arsenic		2 (Primary): 5 (Interlab)	6.0	3.7	47	6.0	<5.0	18
	Cadmium		0.4 (Primary): 1 (Interlab)	<0.4	<0.4	0	<0.4	<1.0	0
	Chromium	_	5 (Primary): 2 (Interlab)	8.9	12.0	30	8.9	19.0	72
	Copper	mg/kg		40.0	72.0	57	40.0	42.0	5
	Lead	mg/kg	5	22.0	21.0	5	22.0	17.0	26
	Mercury	mg/kg		<0.1	<0.1	0	<0.1	<0.1	0
	Nickel		5 (Primary): 2 (Interlab)	11.0	11.0	0	11.0	15.0	31
	Zinc	mg/kg	5	230.0	590.0	88	230.0	376.0	48
PAH	Acenaphthene	mg/kg	0.5	0.9	2.7	100	0.9	3.9	125
	Acenaphthyler	mg/kg	0.5	<0.5	<0.5	0	<0.5	0.8	46
	Anthracene	mg/kg	0.5	1.5	4.5	100	1.5	6.1	121
	Benzo(a)anthr	mg/kg	0.5	4.7	11.0	80	4.7	17.0	113
	Benzo(a)pyrer	mg/kg	0.5	4.2	9.9	81	4.2	17.6	123
	Benzo(a)pyrer		0.5	6.2	15.0	83	6.2	25.0	121
	Benzo(a)pyrer		0.5	6.2	15.0	83	6.2	25.0	121
	Benzo(a)pyrer		0.5	6.2	15.0	83	6.2	25.0	121
	Benzo(g,h,i)pe			3.2	7.0	75	3.2	9.9	102
	Benzo(k)fluora		0.5	1.7	4.6	92	1.7	9.5	139
	Chrysene	mg/kg	0.5	4.1	10.0	84	4.1	15.9	118
	Benzo[b+j]fluo		0.5	5.1	11.0	73	5.1	21.7	124
	Dibenz(a,h)an		0.5	0.5	1.3	89	0.5	1.6	105
	Fluoranthene		0.5	11.0	32.0	98	11.0	37.7	110
	Fluorene	mg/kg	0.5	<0.5	1.3	89	<0.5	1.9	117
	Indeno(1,2,3-c		0.5	2.5	5.6	77	2.5	7.8	103
		mg/kg	0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<0.5	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<0.5	0
	Phenanthrene			3.5	9.6	93	3.5	12.4	112
	Pyrene Total PAHs	mg/kg mg/kg	0.5 0.5	11.0 53.9	33.0 143.5	100 91	11.0 53.9	39.7	113
TRH	F2-NAPHTHA			<50.0	<50.0	0	<50.0	<50.0	0
	C6 - C9		20 (Primary): 10 (Interlab)	<20.0	<20.0	0	<20.0	<10.0	0
	C10 - C14		20 (Primary): 50 (Interlab)	<20.0	<20.0	0	<20.0	<50.0	0
	C15 - C28		50 (Primary): 100 (Interlab)	330.0	1100.0	108	330.0	900.0	93
	C29 - C36	mg/kg	50 (Primary): 100 (Interlab)	210.0	740.0	112	210.0	780.0	115
	C10 - C36 (Su		50	540.0	1840.0	109	540.0	1680.0	103
	C10-C16	mg/kg		<50.0	<50.0	0	<50.0	<50.0	0
	C16-C34	mg/kg	100	510.0	1800.0	112	510.0	1470.0	97
	C34-C40	mg/kg		100.0	460.0	129	100.0	590.0	142
			20 (Primary): 10 (Interlab)	<20.0	<20.0	0	<20.0	<10.0	0

C6 - C10 <20.0 *RPDs have only been considered where a concentration is greater than 0 times the EQL.

^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 2000 (0-10 x EQL); 50 (10-20 x EQL); 30 (> 20 x EQL))
***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those use

SDG	14-Dec-17
Field ID	R1_14.12.17
Sampled_Date/Time	14-12-17
Sample Type	Rinsate

Chem_Group	ChemName	Units	PQL	
BTEX	Benzene	μg/l	1	<1
	Ethylbenzene	μg/l	1	<1
	Toluene	μg/l	1	<1
	Xylene (m & p)	μg/l	2	<2
	Xylene (o)	μg/l	1	<1
	Xylene Total	μg/l	3	<3
	C6-C10 less BTEX (F1)	mg/l	0.02	<0.02
	,	J.		
Metals	Arsenic	mg/l	0.001	<0.001
	Cadmium	mg/l	0.0002	<0.0002
	Chromium	mg/l	0.001	<0.001
	Copper	mg/l	0.001	<0.001
	Lead	mg/l	0.001	<0.001
	Mercury	mg/l	0.0001	<0.0001
	Nickel	mg/l	0.001	<0.001
	Zinc	mg/l	0.005	0.006
	2.110	ilig/i	0.000	0.000
PAH	Acenaphthene	μg/l	1	<1
7 11	Acenaphthylene	μg/l	1	<1
	Anthracene	μg/l	1	<1
	Benzo(a)anthracene	μg/l	1	<1
	Benzo(a)pyrene	μg/l	1	<1
	Benzo(g,h,i)perylene	μg/l	1	<1
	Benzo(k)fluoranthene	μg/l	1	<1
	Chrysene	μg/l	1	<1
	Benzo[b+j]fluoranthene	mg/l	0.001	<0.001
	Dibenz(a,h)anthracene	μg/l	1	<1
	Fluoranthene	μg/l	1	<1
	Fluorene	μg/l	1	<1
	Indeno(1,2,3-c,d)pyrene	μg/l	1	<1
	Naphthalene	μg/l	1	<10
	Phenanthrene	μg/l	1	<1
	Pyrene	μg/l	1	<1
	Total PAHs	μg/l	1	<1
	10(4) 17 (1)	<u> </u>	•	
TPH	F2-NAPHTHALENE	mg/l	0.05	<0.05
<u> </u>	C6 - C9	μg/l	20	<20
	C10 - C14	μg/l	50	<50
	C15 - C28	μg/l	100	<100
	C29 - C36	μg/l	100	<100
				<100
	. ,			<0.05
				<0.1
				<0.1
				<0.02
	C10 - C36 (Sum of total) C10-C16 C16-C34 C34-C40 C6 - C10	μg/l mg/l mg/l mg/l mg/l	100 0.05 0.1 0.1 0.02	< <

															DAU.																		
						ВТЕ	х					Met	als												PAH								
				Benzene	Ethylbenzene	Toluene	Xylene (m & p)	Xylene	Arsenic (Filtered)	Cadmium (Filtered)	Chromium (Filtered)	Copper (Filtered)	Lead (Filtered)	Mercury (Filtered)	Nickel (Filtered)	Zinc (Filtered)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Benzo[b+j]fluoranthene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs
					μg/L			/L μg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L		μg/L	μg/L	μg/L	μg/L
PQL				_	1	1	2 1	. 3	0.001		0.001	0.001	0.001	0.0001	_		0.05	0.05	0.05	0.05	0.01	0.05	0.05	0.05	0.00005	0.05	0.05	0.05	0.05		0.05	0.05	0.05
ANZECC 2000 Marine wa				700					_	0.0055		0.0013	0.0044	0.0004	0.07	0.015														70			
ANZECC 2000-Low Relial	, 00																		0.4		0.2						1.4			70	2		
NEPM 2013 Commercial		HSL D Vapour Intrusion	ion, 2m to <4m, Sand	5000																													
NEPM 2013 GILs, Marine	e Waters(A)			500						0.0007		0.0013	0.0044	0.0001	0.007	0.015														50			
Field_ID	LocCode	Sampled_Date-Tim																															
BH102_GME	BH102	21-Dec-17	M17-De32014	_	<1	<1		l <3	0.002		<0.001		<0.001	<0.0001	_		_			<0.05					<0.00005		<0.05			-	<0.05		
BH205_GME	BH205	21-Dec-17	M17-De32015		<1	<1	<2 <	_	0.002	<0.0002	<0.001	0.003	<0.001	<0.0001		0.096	<0.05				<0.01	_		<0.05	<0.00005	<0.05		<0.05	<0.05				<0.05
BH211_GME	BH211	21-Dec-17	M17-De32016	_	<1	<1		l <3	0.003	<0.0002	<0.001	<0.001	<0.001	<0.0001		<0.005	_		<0.05			_		<0.05	<0.00005		<0.05			<0.05			<0.05
BH302_GME	BH302	21-Dec-17	M17-De32017	_	<1	<1	<2 <	_	0.003	0.0005	<0.001	<0.001	<0.001	<0.0001	0.16	0.62	<0.05		<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.00005	<0.05		<0.05	<0.05	<0.05	_		<0.05
BH307_GME	BH307	21-Dec-17	M17-De32018	<1		14	<2 <	_	0.007	<0.0002	<0.001	<0.001	<0.001	<0.0001	0.12		<0.05			<0.05	<0.01			<0.05	<0.00005	<0.05		<0.05	_		<0.05		<0.05
BH310_GME	BH310	21-Dec-17	M17-De32019		<1	<1	<2 <	_	<0.001	<0.0002	<0.001	<0.001	<0.001	<0.0001	0.009	0.018	<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.00005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DUP1_21_12_17_GME	BH211_GME		M17-De32021		<1	<1	<2 <		0.004	<0.0002	<0.001	<0.001	<0.001	<0.0001	0.007	0.006	-	-	-	-	-	-	-	-	-	-	<u> -</u> -		-	<10	<u> </u>		-
DUP2_21_12_17_GME	BH211_GME	21-Dec-17	M17-De32021	<1	<2	<2	<2 <	2 <2	0.004	<0.0001	0.004	0.007	0.009	<0.0001	0.011	0.029	-	-	-	-	-	-	-	-	-	-	-	-	-	<5	-	-	-
Statistical Summary																																	
Number of Results				8	-	8		8	8	8	8	8	8	8	8	8	6	6	6	6	6	6	6	6	6	6	6	6	6	8	6	6	6
Number of Detects				0	0	1		0	7	1	1	3	1	0	8	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<u> </u>			<1	_	<1		1 <2	<0.001		<0.001	<0.001	<0.001	<0.0001	_	<0.005	_			<0.05		_		<0.05	<0.00005	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05
Minimum Detect				_	ND	14	ND N		0.002	0.0005	0.004	0.002	0.009	ND	0.006		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	ı			<1	_	14		2 <3	0.007	0.0005	0.004	0.007	0.009	<0.0001	0.16	0.62	<0.05				<0.01			<0.05	<0.00005	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
Maximum Detect				ND	_	14	ND N	_	0.007	0.0005	0.004	0.007	0.009	ND	0.16	0.62	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration				_	0.56	2.3		6 1.4			0.00094	0.0018			_	_	0.025		0.025		0.005				0.000025				0.025		0.025		0.025
Median Concentration				0.5	0.5	0.5	1 0.		0.003	0.0001	0.0005	0.0005	0.0005	0.00005	_	0.0285	0.025	0.025	0.025	0.025	0.005	0.025	0.025	0.025	0.000025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Standard Deviation				0	0.18	4.8	0 0.:	8 0.18	0.0019	0.00015	0.0012	0.0023	0.003	0	0.061	0.21	0	0	0	0	0	0	0	0	0	0	0	0	0	1.8	0	0	0
Number of Guideline Exc				0	0	0	0 0		0	0	0	3	1	0	7	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exc	ceedances(Dete	cts Only)		0	0	0	0 0	0	0	0	0	3	1	0	7	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

					TR	Н					
	C6-C10 less BTEX (F1)	F2-NAPHTHALENE	C6 - C10	C10-C16	C16-C34	C34-C40	67 - 93	C10 - C14	C15 - C28	C29 - C36	C10 - C36 (Sum of total)
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/l
PQL	0.02	0.05	0.02	0.05	0.1	0.1	20	50	100	100	100
ANZECC 2000 Marine water 95%											
ANZECC 2000-Low Reliability Trigger Values for PAH in Marine 95%											
NEPM 2013 Commercial/industrial GW HSL D Vapour Intrusion, 2m to <4m, Sand	LOR										
EPM 2013 GILs, Marine Waters(A)											

Field_ID	LocCode	Sampled_Date-Time	SampleCode											
BH102_GME	BH102	21-Dec-17	M17-De32014	<0.02	<0.05	<0.02	<0.05	<0.1	<0.1	<20	<50	<100	<100	<100
BH205_GME	BH205	21-Dec-17	M17-De32015	<0.02	<0.05	<0.02	<0.05	<0.1	<0.1	<20	<50	<100	<100	<100
BH211_GME	BH211	21-Dec-17	M17-De32016	<0.02	<0.05	<0.02	<0.05	<0.1	<0.1	<20	<50	<100	<100	<100
BH302_GME	BH302	21-Dec-17	M17-De32017	<0.02	<0.05	<0.02	<0.05	<0.1	<0.1	<20	<50	<100	<100	<100
BH307_GME	BH307	21-Dec-17	M17-De32018	<0.02	<0.05	0.03	<0.05	<0.1	<0.1	30	<50	<100	<100	<100
BH310_GME	BH310	21-Dec-17	M17-De32019	<0.02	<0.05	<0.02	<0.05	<0.1	<0.1	<20	<50	<100	<100	<100
DUP1_21_12_17_GME	BH211_GME	21-Dec-17	M17-De32021	<0.02	-	<0.02	-	-	-	<20	-	-	-	-
DUP2_21_12_17_GME	BH211_GME	21-Dec-17	M17-De32021	<0.02	-	<0.02	-	-	-	<20	-	-	-	-

Statistical Summary											
Number of Results	8	6	8	6	6	6	8	6	6	6	6
Number of Detects	0	0	1	0	0	0	1	0	0	0	0
Minimum Concentration	<0.02	<0.05	<0.02	<0.05	<0.1	<0.1	<20	<50	<100	<100	<100
Minimum Detect	ND	ND	0.03	ND	ND	ND	30	ND	ND	ND	ND
Maximum Concentration	<0.02	<0.05	0.03	<0.05	<0.1	<0.1	30	<50	<100	<100	<100
Maximum Detect	ND	ND	0.03	ND	ND	ND	30	ND	ND	ND	ND
Average Concentration	0.01	0.025	0.013	0.025	0.05	0.05	13	25	50	50	50
Median Concentration	0.01	0.025	0.01	0.025	0.05	0.05	10	25	50	50	50
Standard Deviation	0	0	0.0071	0	0	0	7.1	0	0	0	0
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0

Concord Hospital Table T5 - Groundwater QA/QC Results

Lab Report Number	578955	578955		578955	Interlab_D	
Field ID	BH211_GME	DUP1_21_12_17_GME	RPD	BH211_GME	Dup2_21_12_17_GME	RPD
Sampled Date/Time	21-12-17	21-12-17		21-12-17	21-12-17	

Chem_G	rd ChemNam Units	PQL						
BTEX	Benzene µg/l	1	<1.0	<1.0	0	<1.0	<1.0	0
	Ethylbenze µg/l	1 (Primary): 2 (Interlab)	<1.0	<1.0	0	<1.0	<2.0	0
	Toluene µg/l	1 (Primary): 2 (Interlab)	<1.0	<1.0	0	<1.0	<2.0	0
	Xylene (m µg/l	2	<2.0	<2.0	0	<2.0	<2.0	0
	Xylene (o) µg/l	1 (Primary): 2 (Interlab)	<1.0	<1.0	0	<1.0	<2.0	0
	Xylene Tot µg/l	3	<3.0	<3.0	0	<3.0		
	C6-C10 les mg/l	0.02	<0.02	<0.02	0	<0.02	<0.02	0
Metals	Arsenic (Fi mg/l	0.001	0.003	0.004	29	0.003	0.004	29
	Cadmium (mg/l	0.0002 (Primary): 0.0001	<0.0002	<0.0002	0	<0.0002	<0.0001	0
	Chromium mg/l	0.001	<0.001	<0.001	0	<0.001	0.004	120
	Copper (Filmg/I	0.001	<0.001	<0.001	0	<0.001	0.007	150
	Lead (Filte mg/l	0.001	<0.001	<0.001	0	<0.001	0.009	160
	Mercury (F mg/l	0.0001	<0.0001	<0.0001	0	<0.0001	<0.0001	0
	Nickel (Filtemg/I	0.001	0.007	0.007	0	0.007	0.011	44
	Zinc (Filter mg/l	0.005	<0.005	0.006	18	<0.005	0.029	141
PAH	Naphthaler µg/l	10 (Primary): 5 (Interlab)	<10.0			<10.0	<5.0	0
	Naphthaler µg/l	0.05 (Primary): 5 (Interla	<0.05			<0.05	<5.0	0
TPH	C6 - C9 µg/l	20	<20.0	<20.0	0	<20.0	<20.0	0
	C6 - C10 mg/l	0.02	<0.02	<0.02	0	<0.02	<0.02	0

^{*}RPDs have only been considered where a concentration is greater than 0 times the pQL.

^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 2000 (0-10 x PQL); 50 (10-20 x PQL); 30 (> 20 x PQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those use

			Lab Report Number Field ID Sampled_Date/Time Sample Type	578955 R1_21_12_17_GME 21-12-17 Rinsate	578955 TB1_21_12_17_GME 21-12-17 Trip_B	578955 TS1_21_12_17_GME 21-12-17 Trip_S
					'-	'-
Chem_Group	ChemName	Units	EQL			
BTEX	Benzene	μg/L	1	<1	<1	96%
	Ethylbenzene	μg/L	1	<1	<1	87%
	Toluene	μg/L	1	<1	<1	90%
	Total BTEX	mg/l	0.001			000/
	Xylene (m & p)	μg/l	2	<2	<2	86%
	Xylene (o) Xylene Total	μg/l	3	<1 <3	<1	88%
	C6-C10 less BTEX (F1)	μg/l mg/l	0.02	<0.02	<3	87%
	CO-C TO less BTEX (I T)	IIIg/I	0.02	\0.02		
Metals	Arsenic	mg/l	0.001	<0.001		
IVICIAIS	Arsenic (Filtered)	mg/l	0.001	VO.001		
	Cadmium	mg/l	0.0002	<0.0002		
	Cadmium (Filtered)	mg/l	0.0001	10.0002		
	Chromium	mg/l	0.001	<0.001		
	Chromium (Filtered)	mg/l	0.001	3.001		
	Copper	mg/l	0.001	<0.001		
	Copper (Filtered)	mg/l	0.001	2.00.		
	Lead	mg/l	0.001	<0.001		İ
	Lead (Filtered)	mg/l	0.001			
	Mercury	mg/l	0.0001	<0.0001		
	Mercury (Filtered)	mg/l	0.0001			
	Nickel	mg/l	0.001	<0.001		
	Nickel (Filtered)	mg/l	0.001			
	Zinc	mg/l	0.005	< 0.005		
	Zinc (Filtered)	mg/l	0.005			
PAH	Acenaphthene	μg/l	0.05			
IAII	Acenaphthylene	μg/l	0.05			
	Anthracene	μg/l	0.05			
	Benzo(a)anthracene	μg/l	0.05			
	Benzo(a)pyrene	μg/l	0.01			
	Benzo(g,h,i)perylene	μg/l	0.05			
	Benzo(k)fluoranthene	μg/l	0.05			
	Chrysene	μg/l	0.05			
	Benzo[b+j]fluoranthene	mg/l	0.00005			
	Dibenz(a,h)anthracene	μg/l	0.05			
	Fluoranthene	μg/l	0.05			
	Fluorene	μg/l	0.05	İ		İ
	Indeno(1,2,3-c,d)pyrene	μg/l	0.05			
	Naphthalene	μg/l	0.05	<10		
	Phenanthrene	μg/l	0.05	1		
	Pyrene	μg/l	0.05	ĺ		
	Total PAHs	μg/l	0.05			
TRH	F2-NAPHTHALENE	ma/l	0.05			
11311	C6 - C9	µg/l	20	<20	<20	110%
	C10 - C14	μg/l	50	-20	-20	1 10 /0
	C15 - C28	μg/l	100	+		
	C29 - C36	μg/l	100	1		
	C10 - C36 (Sum of total)	μg/l	100			
	C10-C16	mg/l	0.05	1		
	C16-C34	mg/l	0.1	1		
	C34-C40	mg/l	0.1	+		
	C6 - C10	mg/l	0.02	<0.02		
		Ť				
TRH Volatiles/BTE	X Total Xylenes	μg/L	2			

Data Quality Objectives

Step 1 - State the Problem

Concord Hospital is proposing redevelop portions of the site which will comprise the demolition of older structures located within the Phase 1 investigation area, and construction of new hospital buildings.

DP undertook a PSI and targeted sampling assessment in 2016 (DP 2016) which concluded that there was a potential for contamination to exist at the site associated with a suspected UST situated in the loading dock area.

Step 2 - Identify the Decisions

The decisions to be made based on the results of the investigation were as follows:

- What are the CoPC associated with potential soil contamination?
- Are CoPC present within soil, and if so, do they present an unacceptable risk to human health or the environment for the proposed redevelopment of the site?
- If soil contamination is present, does the site require remediation works and/or a management plan prior to the commencement of the construction phase of works?

Step 3 - Identify Inputs in the Decision

The inputs required to make the above decisions were as follows:

- Site setting and available background information;
- Selection of appropriate Tier 1 soil assessment criteria;
- Visual observations: and
- Field and laboratory analytical results.

Step 4 - Define Boundaries of the Study

The boundaries of the investigation were identified as follows:

- The geographical limits appropriate for the data collection and decision making in this
 investigation comprised the boundary of the Phase 1 work area as shown on Figure 2 in the
 'Figures' section of this report.
- Temporal boundaries: The current status of the sampling points at the time of the investigation.
- Constraints within the study boundary: Constraints to the investigation are outlined in Section 10
 of this report.

Step 5 - Develop a Decision Rule

The purpose of this step was to define the parameter of interest, specify the action level and combine the outputs of the previous DQO steps into an 'if/then' decision rule that defines the conditions that would cause the decision maker to choose alternative actions.

If the levels of contaminants of potential concern in soil were below the adopted soil assessment criteria, the risk to human health and the environment could be considered to be low for that land use. If concentrations of contaminants in soil exceed the adopted soil assessment criteria, consideration for statistical analysis of the dataset should be undertaken to support the need or otherwise for further assessment, remediation or site management. These decision rules include the 95% upper confidence limit (UCL) of the mean contaminant concentration being less than the adopted site assessment criteria, the standard deviation being less than 50% and no individual concentration being in excess of 250% of the site assessment criteria (for similar soil types).

The spatial extent of data should be considered to assess whether additional data gaps require investigation.

If the quality control (QC) results meet the data quality indicators (DQI), then the analytical data is considered suitable and reliable for the purpose of this contamination investigation.

Step 6 - Specify Limits on Decision Errors

There are two types of decision errors:

- Sampling errors, which occur when the samples collected are not representative of the conditions within the investigation area; and
- Measurement errors, which occur during sample collection, handling, preparation, analysis and data reduction.

The null hypothesis, which is an assumption assumed to be true in the absence of contrary evidence, for this study is 'The site is contaminated and thus not suitable for use'.

These errors may lead to the following decision errors:

- Type I error Rejecting the hypothesis as false when it is really true: Deciding that contamination is not present when the reverse is true; and
- Type II error Accepting the hypothesis as true when it is really false: Deciding that contamination is present when the reverse is true.

An assessment will be made as to the likelihood of a decision error being made based on the results of a QA/QC assessment and the closeness of the data to assessment criteria. Additionally, statistical methods such as 95% Upper Confidence Limit (UCL) calculations may be utilised, where applicable.

The acceptable limits on decision errors applied during this investigation and the manner of addressing possible decision errors were developed based on the data quality indicators (DQIs) of:

- Accuracy: a quantitative measure of the closeness of reported data to the true value;
- Comparability: a qualitative parameter expressing the confidence with which one (1) data set can be compared with another;
- Completeness: a measure of the amount of useable data (expressed as %) from a data collection activity;

Step 7 - Optimise the Design

The purpose of this step was to identify a resource-effective data collection design for generating data that satisfies the DQOs.

This assessment was designed considering the information provided during the request for proposal.

A proposal was prepared for the DSI which outlined a proposed scope. The methodology within the proposal was reviewed at critical times during the project and amended where necessary based on site conditions, unexpected finds, professional judgement and liaison with Johnstaff. The methodology adopted to satisfy the DQOs is described in detail in Section 10.

To ensure the design satisfied the DQOs, DQIs (for accuracy, comparability, completeness, precision and reproducibility) were established to set acceptance limits on field methodologies and laboratory data collected.

Table B1: Data Quality Indicators (DQIs)

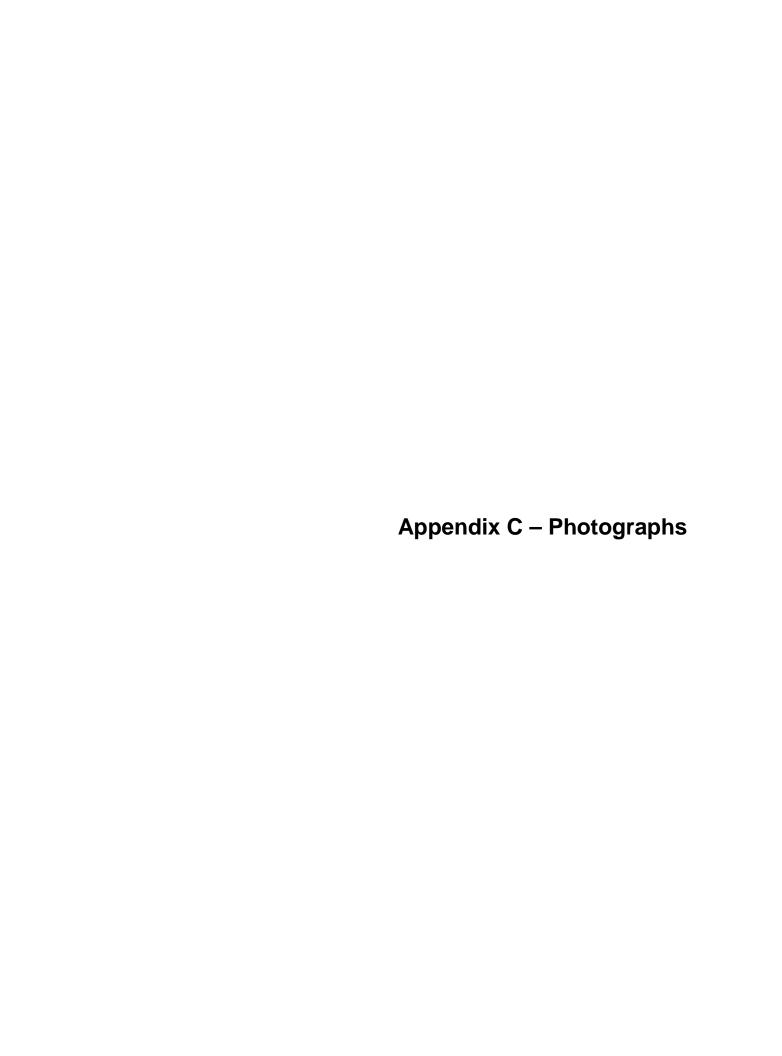

	c B1: Bata Quanty maloutors	(5 4.5)
Field Considerations	Laboratory Considerations	Comments
	Accuracy (bias)	
Work instructions (WI) are	Analysis of:	Bias introduced:
appropriate and have been complied with.	• Trip blanks;	 By chemicals during handling or transport;
	Rinsate blanks;	 From contaminated equipment;
	 Reagent blanks; 	 From contaminated reagent;
	 Method blanks; 	 During laboratory analysis;
	Matrix spikes;	 During laboratory preparation and analysis (may be high or low);
	 Surrogate spikes; 	 During laboratory preparation and analysis (may be high or low);
	Reference material;	 Precision of preparation of analytical method;
	 Laboratory control samples; and 	 Precision of preparation of analytical method; and
	 Laboratory-prepared spikes. 	 During collection/transport (may be high or low).
	Comparability	
Same WIs used on each occasion. Experienced sampler.	Sample analytical methods used (including clean-up).	Same approach to sampling (WIs, holding times).
Climatic conditions (temperature, rainfall, wind).	Laboratory practical quantification limits (PQLs) (justify /quantify if	Quantify influence from climatic or physical conditions.
Same types of samples collected (filtered, size fractions).	different). Same laboratories (justify /quantify if	Samples collected, preserved, handled in same manner (filtered, same
,	different).	containers).
	Same units (justify /quantify if different).	

Table B1: Data Quality Indicators (DQIs)

Field Considerations	Laboratory Considerations	Comments
Tield Considerations		Commencs
	Completeness	
Critical locations sampled. WIs appropriate and complied with.	Critical samples analysed in accordance with the tender response. Analytes sampled in accordance with	The required percentage completeness should be specified in the scope of works.
Experienced sampler. Documentation correct.	scope of works. Appropriate methods and PQLs. Sample documentation correct.	Required data must be obtained from critical samples and CoPC. Incompleteness is influenced by:
	Sample holding times complied with.	 Field performance problems (access problems, difficulties on site, damage); Laboratory performance problems (Matrix interference, invalid holding times); and Matrix problems.
	Representativeness	
Appropriate media sampled according to the scope of works.	Samples analysed according to the tender response.	Samples must be collected to reflect characteristics of each medium.
Media in the scope of works sampled.		Sample analysis must reflect properties of field samples.
		Homogeneity of the samples.
		Appropriate collection, handling, storage and preservation.
		Detection of laboratory artefacts, e.g. contamination blanks.
	Precision	
WIs appropriate and	Analysis of:	
complied with.	 Laboratory and interlaboratory duplicates; Laboratory prepared trip spikes; and 	Measured by the coefficient of variance or standard deviation of the mean or Relative Percentage.
	 Field duplicates. 	Field duplicates measure field and laboratory precision Difference (RPD) calculations.
		Variation in RPDs can be expected to be higher for organics, low concentrations (<5 x laboratory PQL) or non-homogenous samples.

Table B2: Acceptable Limits of Data Quality Indicators

Item	Acceptable Limit
Analysis of blind (intra- laboratory) duplicates and split (inter-laboratory) duplicates	Rate of 1:20 primary samples for the same analysis of primary samples; Calculation of relative percentage differences between primary and duplicate samples, the results of which to be less than: 80% (where the average concentration was 1-10 x laboratory PQL); 50% (where the average concentration was 10-30 x laboratory PQL); and 30% (where the average concentration was > 30 x laboratory PQL).
Analysis of rinsate blanks	Rate of one (1) sample per batch; and Results less than the laboratory PQL.
Analysis of trip blanks	Rate of one (1) sample per batch; and Results less than the laboratory PQL.
Analysis of trip spikes	Rate of one (1) sample per batch; and Results between 70%-130%.
Analysis of laboratory blanks, spikes, surrogates, reference and control samples	Laboratory specific
Laboratories and methods used	National Association of Testing Authorities accredited.
Sample PQLs	Results less than the adopted assessment criteria; justify/quantify if different.

Photo 1. Service locator using GPR conducting survey to identify suspected underground storage tank.

Photo 2. Looking south across loading dock with concrete cuts noted running parallel with loading dock access road.

Photo 3. Loading dock area, looking south at suspected interceptor trap or grease trap.

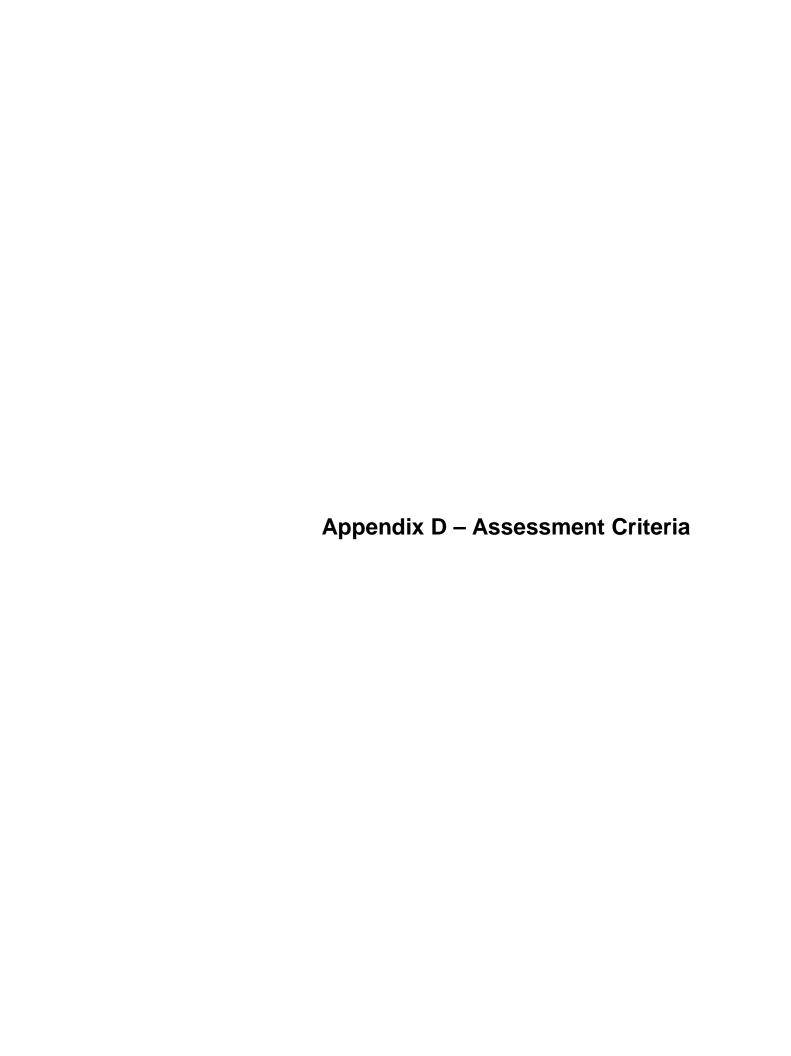

Photo 4. Looking south-west across Phase 1 investigation area towards the tennis courts with construction area noted on left side of photo.

Photo 5. Looking north-west across the southern extent of the Phase 1 investigation area.

Photo 6. Looking north-east across Phase 1 investigation area.

Soil Health Investigation Levels (HILs)

HILs relevant to commercial/industrial land use were adopted from ASC NEPM 2013.

HILs are deemed applicable for assessing human health risk via all relevant exposure pathways of exposure for metals and organic substances. HILs are concentrations below which contaminants in soils are not considered to adversely affect human health. The adopted HILs for assessment of soil are presented in Table T1.

Soil Health Screening Levels (HSLs)

Soil HSLs are provided in ASC NEPM 2013 for selected petroleum compounds and fractions and are considered applicable to assessing human health risk via vapour intrusion and inhalation. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types, and depths below surface to >4m bgl.

Soil HSLs were also adopted from CRCCARE 2011 to assess the exposure pathway of:

- Direct contact (oral ingestion, dermal contact and dust inhalation) for commercial / industrial workers and intrusive maintenance workers; and
- Vapour intrusion for intrusive maintenance workers (maximum trench depth of 1.0 m).

As a conservative approach, a sandy soil type and depth of 0 - 1 m was adopted. Workers working in deeper excavations are anticipated to have their own management plan as part of the work, health and safety procedures.

The soil HSLs adopted are presented in Table T1.

Petroleum Hydrocarbon Management Limits

Petroleum hydrocarbon management limits provided in ASC NEPM 2013 were considered applicable for assessing petroleum hydrocarbons in soil to avoid or minimise the following potential effects of petroleum hydrocarbon contamination:

- Formation of observable light non-aqueous phase liquid (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure (i.e. penetration of, or damage to, in-ground services by hydrocarbons); and
- Aesthetics.

Management limits for a commercial/industrial land use with coarse soil texture were adopted for this assessment are presented in Table T1.

Groundwater Investigation Levels (GILs)

Groundwater investigation levels (GILs) for protection of marine aquatic ecosystems (95% protection level) have been adopted from ASC NEPM 2013 as they are considered applicable for assessing ecological risks to aquatic ecosystems from direct uptake with CoPC in groundwater.

GILs for marine aquatic ecosystems are defined as the concentrations of a contaminant in groundwater above which further investigation or a response should be undertaken and are based on AWQG 2000 (ANZECC 2000). The GILs define acceptable water quality for various contaminants at the point of use.

The adopted GILs for assessment of marine aquatic ecosystems are presented in Table T4.

Low Reliability Trigger Values

Where GILs are not provided in ASC NEPM 2013, low reliability trigger values were adopted from ANZECC 2000 for protection of marine ecosystems as interim working levels. The low reliability trigger values adopted are presented in Table T4.

Groundwater Health Screening Levels (HSLs)

Groundwater HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the vapour intrusion pathway. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types, and depths below 2 m to 4 mBGL. Based on site conditions encountered during drilling, a sandy soil type was adopted for assessment purposes. Based on depth to groundwater and taking into account seasonal fluctuations, a depth of 2 m to 4 mBGL was adopted.

The adopted groundwater HSLs for vapour intrusion are presented in Table T4.

project:

Engineering Log - Borehole

Concord Hospital Phase 1 Redevelopment

BH101 1 of 2 sheet:

SYDGE211253

TW/JJ

Borehole ID.

project no.

logged by:

Health Infrastructure client: date started: 23 Nov 2017

principal: date completed: 23 Nov 2017

Hospital Road, Concord, NSW DS checked by: location:

_			spital F							CHEC	ked by:	DS
Ι'			41.05; N: 6			MGA94	1)	surface elevation: 8.60 m (AHD)	_		orizontal	
\vdash			DB8, Trac	k mou	nted			drilling fluid:	hole	diamete	er : 125 n	nm
dril	ling info	mati	on	1	1	mate		estance				
method & support	1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro meter (kPa)	o- additional observations
AD/T—AD/T——		Not Encountered	SPT 23, 5 HB N*=R	- -8	- - - -			ASPHALT: 50mm. FILL: Gravelly SAND: fine to medium grained, dark brown, gravel fine to medium grained, sub-angular to sub-rounded. FILL: Gravelly CLAY: medium to high plasticity dark grey, fine grained gravel, sub-rounded to rounded, with trace of sand.	D			FILL E Sample PID = 1.4ppm E Sample PID = 1.5ppm No staining or odour
				-7 -	- - - 2.0 — -			Borehole BH101 continued as cored hole				
				- -5	3.0							
				-4 -	4.0 —							
				-3 -	6.0							
				-2 -	7.0 —							
met	 			-1	port -			samples & field tests		ation sym		i
AD AS HA W HA * e.g.	AS auger screwing* IA hand auger W washbore IA hand auger bit shown by suffix B blank bit C cas penetr water				etration or color er 10- leve wat	ı	I ater shown	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	base		ed	VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

project:

Engineering Log - Cored Borehole

Concord Hospital Phase 1 Redevelopment

Borehole ID. **BH101**

SYDGE211253

TW/JJ

2 of 2 sheet:

project no.

logged by:

Health Infrastructure 23 Nov 2017 client: date started:

23 Nov 2017 principal: date completed:

Hospital Road, Concord, NSW DS location:

checked by: angle from horizontal: 90° position: E: 323,541.05; N: 6,254,221.55 (MGA94) surface elevation: 8.60 m (AHD) drill model: Hanjin DB8, Track mounted drilling fluid: hole diameter : 125 mm vane id.: drilling information material substance rock mass defects defect material description estimated additional observations and strength & Is50 defect descriptions
(type, inclination, planarity, roughness, coating, thickness, other) field tests ROCK TYPE: grain characterisics, & Is(50) (MPa) core run & RQD support graphic colour, structure, minor components Ξ depth (water 30 300 300 3000 R . > T 5 III I I I I I1111 1111118 +11111start coring at 1.00m E Sample PID = 3.0ppm SHALE: dark grey, brown, iron stained along SW bedding at 0° MM NO CORE: 0.11 m a=0.68 d=0.61 Highly fractured zone SHALE: dark grey, brown, iron stained along bedding at 0° MW -SW NO CORE: 0.05 m SW 2.0 SHALE: dark grey, brown, iron stained along bedding at 0° 0% a=1.21 d=0.90 PT, 30°, PL, RO, CN
SM, 0°, PL, RO, Clay, 10 mm, XW
PT, IR, RO, CN -6 FR PL, RO, CN, described 2.69 m: becoming less iron stained 3.0 Not Encountered a=1.55 d=0.95 are: PT, 0°, F __ JT. 60 - 90°. IR. RO. SN - Fe NMLC Defects are unless of 4.0 a=1.55 d=0.11 PT, 0°, CU, RO, CN 90% JT, 30°, PL, RO, CN 5.0 a=1.21 d=0.19 -3 Borehole BH101 terminated at 5.97 m +11111-2 +111117.0 1111111111 IIIIIweathering & alteration defect type planarity method & support water graphic log / core recovery parting joint shear zone PL planar CU curved UN undulating residual soil
vextremely weathered
thighly weathered
distinctly weathered
moderately weathered
slightly weathered
slightly weathered
fresh
replaced with A for alteration
ength
very low
low
medium
high residual soil auger screwing auger drilling claw or blade bit 10/10/12, water level on date shown core recovered shear surface stepped Irregular SS washbore water inflow CO contact NMLCNMLC core (51.9 mm) NQ wireline core (47.6mm) HQ wireline core (63.5mm) CS SM crushed seam seam complete drilling fluid loss no core recovered partial drilling fluid loss core run & RQD wireline core (85.0mm) roughness SL slickensided POL polished SO smooth coating CN clean SN stain VN venee standard penetration VL barrel withdrawn test hand auger water pressure test result (lugeons) for depth POL SO RO RQD = Rock Quality Designation (%) veneer hiah interval shown CO coating very high rouah

Piezometer Installation Log

client: Health Infrastructure project no. SYDGE211253

Hole ID.

sheet:

BH101

1 of 1

principal: date completed: 23 Nov 2017

project: Concord Hospital Phase 1 Redevelopment logged by: TW/JJ

location: Hospital Road, Concord, NSW checked by: DS

loca	itio	n:	Н	ospii	tai Ro	aa, Co	ncord,	NSW						С	hecked	by:	DS		
							(MGA94)			ation: 8.60	m (AHD)				m horizor				
_						ack moun		dri	illing fluid:					hole diar	neter : 12	5 mm			
drilli	ng i	nfo	rmati	ion	materia	l substan	се			piezomete	r construction	details							
method & support	. 40	water	RL (m)	depth (m)	graphic log		material r	ame					BH101		drilling o	nstruction lic company: permit no.:	ense:		
Log COF PIEZOMETER ONE PAGE SUMMARY 754-SYDGE211253.GPJ << DrawingFile>> 15/01/2018 09:05 A - AD/T - P IT A - CASING - S	, land	DAI DIVON	8 7 6 4	2	×××ו	SPHALT				1.50 m 2.00 m			8		Grout				
CDF_0_9_06_LIBRARY.GLB rev.AU Log COF		-	2	6— - - - 7—						5.97 m									
met	e e	& sı	uppor eering	rt g log for	details	graphic	c log / core re		ID		type	installa date	ation e	stickup (m)	tip depth (m)	water level (m)	F	Relative Le (AHD) tip	evels water level
	,	evel wate comp parti	on da r inflo plete o al drill	drilling fl ing fluid	uid loss loss		core recove (graphic symb indicate mater no core rec	ial)	BH101	st	andpipe piezo.				5.97 m			2.63	
25	(lu	geor		ire test i depth vn	result														

project:

Engineering Log - Borehole

Concord Hospital Phase 1 Redevelopment

Borehole ID. BH102 1 of 2 sheet:

AM

SYDGE211253

project no.

logged by:

Health Infrastructure client: date started: 14 Dec 2017

14 Dec 2017 principal: date completed:

loc	ati	on:	Но	spital R	Road	, Co	ncor	d, NS	SW			check	ed by:	DS
pos	sitio	n: E:	323,5	59.02; N: 6	,254,2	00.12 (MGA94	l)	surface elevation: 8.30 m (AHD)		angle	from ho	orizontal: 9	0°
dril	l mo	odel: H	anjin	DB8, Trac	k mou	nted			drilling fluid:		hole	diamete	: 125 mm	
dr	illir	ng info	rmati	ion	_		mate	rial sub	estance					
method &	support	1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components			consistency / relative density	hand penetro- meter (kPa)	structure and additional observations
	SASING —				-8 -	-			ASPHALT: 50mm. FILL: Sandy SILT: fine to coarse grained, low liquid limit, yellow-brown, trace of gravel.		D			ASPHALT FILL E Sample PID = 4.1ppm No odours or staining
M——AD/T	Ĭ			SPT 16, 18 HB N*=R		1.0-		CL_	Silty CLAY: low plasticity, pale yellow-brown. SHALE: yellow-brown, dark red, extremely weathered, very low strength. Borehole BH102 continued as cored hole	· ·	<wp< td=""><td>VSt - H</td><td></td><td>RESIDUAL SOIL E Sample PID = 0.8ppm</td></wp<>	VSt - H		RESIDUAL SOIL E Sample PID = 0.8ppm
08:50					_ _6	2.0 —								<u>-</u> - -
awingFile>> 15/01/2018					_ -5	3.0								- - - - - - -
COF BOREHOLE: NON CORED 754-SYDGE211283.GPJ << DrawingFile>> 15/01/2018 08:50					-4	4.0—								- - - - - -
OREHOLE: NON CORED 7					-3	5.0								<u>-</u> - - - - -
					-2	6.0 —								
CDF_0_9_06_LIBRARY.GLB rev.AU Log					-1 -	7.0-								
ma AE AS HA W HA * e.Q	A A	auger auger hand a washb hand a bit sho AD/T blank t	screwi uger ore uger wn by	ng*	M in C of pen	etration		g to iter	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal	mois D M W	soil de based Classific		n d	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

client:

principal:

Engineering Log - Cored Borehole

Health Infrastructure

Borehole ID. **BH102**

sheet: 2 of 2

project no. **SYDGE211253**

date started: 14 Dec 2017

date completed: 14 Dec 2017

project: Concord Hospital Phase 1 Redevelopment logged by: AM

ocation: Hospital Road, Concord, NSW checked by: DS

oca	atio	n: <i>I</i>	losp	ital F	Road, Concord, NSW						checked	d by: DS	
oosit	tion:	: E: 32	3,559.0	02; N: 6	,254,200.12 (MGA94) su	rface elevation: 8.	30 m (A	HD)		angl	e from horiz	ontal: 90°	
drill r	mod	del: Hai	njin DB	8, Trac	k mounted dri	illing fluid:				hole	diameter : 1	125 mm	vane id.:
drill	ling	inforn	nation	mate	rial substance					rock	mass defe	cts	
method & support	water	RL (m)	depth (m)	graphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor cor	cterisics,	weathering & alteration	estimated strength & Is50 X = axial; O = diametral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	defect of (type, inclination, plan	oservations and descriptions arity, roughness, coating ess, other)
4		-8 - -7	1.0 —		start coring at 1.50m NO CORE : 0.30 m								
		-6	2.0		SHALE: dark grey, with orange-t staining, laminated at 5°-10°, wit seams parallel to bedding.	prown iron h frequent clay	MW - SW		a=0.40 d=0.47	9%		PT, 5 - 10°, PL, RC JT, 10°, IR, RO, CN SM, Clay, closed JT, 25°, CU, RO, C PT, 10°, IR, RO, Ch Drilling Break, 10°, SM, Clay, closed	N N CU - PL, RO
		-5	3.0 -						a=0.44 d=0.10 a=0.41 d=0.18			□ Drilling Break, 5°, F JT, 10°, PL, RO, CI Drilling Break, 5°, F	N
	21/12/17		4.0 —				SW		a=0.73 d=0.24	36%	 	JT, 35°, PL, RO, CI JT, 15°, PL, RO, CI JT, 10°, PL, RO, CI	N
- NMLC		-3	5.0 —		SHALE: dark grey, thickly bedde	d.	FR		a=1.34 d=0.49			JT, 10°, CU, RO, C PT, 5 - 10°, PL, RO	N , CN
		-	6.0						a=1.01 d=0.96			JT, 40°, PL, RO, CI	N
		-2 -	7.0						d=0.65 a=0.76 d=0.70	90%		JT, 35°, PL, RO, CI JT, 35°, PL, RO, CI	N N
		-1 -	-		Porcholo PH102 terminated at 2.2	0 m			a=0.61 d=0.45			Drilling Break, 30°, JT, 35°, PL, RO, Cf	
AS AD CB W	au cl w ILCN W W W W T st te	ireline d ireline d ireline d	rewing Illing lade bit e ore (51.9 ore (47. ore (63. ore (85. penetra	mm) 6mm) 5mm) 0mm)	water 10/10/12, water	graphic log / core rec core rec (graphic syr no core core run & RQD	covered mbols indicate recovere vithdrawn	material)	weathering RS residu XW extren HW highly DW distinc MW model SW slightly FR fresh VL very lov L low M mediur H high VH very high	al soil nely wea weathe ttly weat rately weath vith A for a	athered red thered eathered ered	defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam roughness SL slickensided POL polished SO smooth RO rough VR very rough	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stain VN veneer CO coating

client:

Piezometer Installation Log

sheet: 1 of 1
project no. **SYDGE211253**

BH102

Hole ID.

Health Infrastructure date started: 14 Dec 2017

principal: date completed: 14 Dec 2017

project: Concord Hospital Phase 1 Redevelopment logged by: AM location: Hospital Road, Concord, NSW checked by: DS

position: E: 323,559.02; N: equipment type: Hanjin DB8 drilling information ma		elevation: 8.30 m (AHD)	angle from	n horizontal: 90°	
	8 Track mounted drilling t				
drilling information ma				eter : 125 mm	
 	aterial substance	piezometer construction detail	ils		
method & support water RL (m) depth (m) arabhic log	material name		BH102	bore construction lice drilling company: driller: driller's permit no.:	nse:
10g COF PIEZOMETER ONE PAGE SUMMARY 754-SYDGEZ17253.GPJ «CDrawing-Hies» 15/01/2018 09:05 NMLC ADTI ADTI ADDITION BROWN	RESIDUAL SOIL WEATHERED BEDROCK	3.50 m		Grout	
method & support see engineering log for deta water 10-Oct-12, water level on date shown water inflow complete drilling fluid loss water pressure test resul (lugeons) for depth	core recovered (graphic symbols indicate material) no core recovered		date (m)	p depth water level (m) (m)	Relative Levels (AHD) stickup tip water level 0.30

3 Juny - 576600 1360C 8/12/17 11:43 Am

	SYNEZINS3
for units	
1	
- Ind	Ted 39/11/12 -
BHIDL COS O 1 23/11/17 BHIDL COS O 1 23/11/17 BHIDL COS O 1 23/11/17 BHIDL COS O 1 23/11/17 BHIDL COS O 1 23/11/17 BHIDL COS O 1 24/11/17 BHIDL COS O 1 45 24/11/17 BHIDLE O 8 BY 11/17 BHIDLE O 8 BY 11/17 BHIDLE O 9 BY 11/17 BHIDLE O 9 BY 11/17 BHIDLE O 9 BY 11/17 BHIDLE O 9 BY 11/17 BHIDLE O 9 BY 11/17 BHIDLE O 9 BY 11/17 BHIDLE O 9 BY 11/17 BHIDLE O 9 D 9 BY 11/17 BHIDLE O 9	1 Suff 85
Transfer is	Districted when the second sec
	BHIOL COS C-1 23/11/17 BHIOL COS C-1 23/11/17 BHIOL COS C-1 12/11/17 BHIOL COS C-1 11/11/17 BHIOL

Ja-yls 811101-10-1-11 on 3 DAY TAT

Remeining Samples on standard TAT

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Planse Bornes 1 + AC Issue Date: 24/08/2012 @coffey.com @coffey.com Sydney Work Order Reference Work S1732034 Environmental Division NOTES 57750 elephone: +61-2-8784 8555 H. Hhen. ball Cimen, hay Sample Receipt Advice: (Lab Use Only) All Samples Recieved in Good Condition All Documentation is in Proper Order Samples Received Properly Chilled Lab. Ref/Batch No. **Analysis Request Section** Email: Email: ON TO MILE SOLD A Contraction of the Contraction Property of Mobile: 0424 703 009 Container Type & Preservation Codes: P - Plastic, G-Glass Bottle, J - Glass Jar, V-Vial, Z - Ziplock Bag, N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, でるほ 200 Date: Date: Phone: RECEIVED BY ろうちょう (specify) T-A-T Report Results to: May Locke / Sirman Hay Container Type & Preservative* Consigning Office: Coffey Characas S - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative, OP - Other Preservative 4 AN OPEN Company: Change Mary SPECIALISTS IN ENVIRONMENTAL. SOCIAL AND SAFETY PERFORMANCE INVOICES to: Della Sarchia. (Soil...etc) Matrix Company: Project Manager: Delta Sechie Name: Name: Laboratory: Mal - Exchis Time P.12.17 Sample Date H.12.17 Task No: Flaldwar Date: 14.12.17 Lime: T. O. 'environments RELINQUISHED BY 8H102/0.05 - 0.2 BH102/11/1 - 1.3 RHIOZ 10.5 -0.7 Time: Date: Po 2 - M. 12 . 17 Sampler's Name: Aiden Mckerzie TST - 14, 12, 17 RI-14,12,17 Sample ID Project No: SYDGE 211253 Project Name: Concord Vame: Jimes H offey Environments coffev Special Instructions: company: lame: Lab No. GOWANS PRINTING (02) 9756 3545

Version: 4

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: Coffey Environments Pty Ltd NSW

Contact name: Matthew Locke Project name: SOIL ANALYSIS Project ID: SYDGE211253 COC number: Not provided

Turn around time: 3 Day

Dec 8, 2017 11:43 AM Date/Time received:

Eurofins | mgt reference: 576600

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 13.6 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

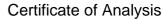
Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Matthew Locke - Matthew.Locke@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: **Matthew Locke**

576600-S Report Project name SOIL ANALYSIS Project ID SYDGE211253 Received Date Dec 08, 2017

Client Sample ID			BH101_0.5- 0.65	BH101_1.0- 1.11
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S17-De12290	S17-De12291
Date Sampled			Nov 23, 2017	Nov 23, 2017
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	82	78
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID			BH101_0.5- 0.65	BH101_1.0- 1.11
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S17-De12290	S17-De12291
Date Sampled			Nov 23, 2017	Nov 23, 2017
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	INT	INT
p-Terphenyl-d14 (surr.)	1	%	96	54
Heavy Metals				<u> </u>
Arsenic	2	mg/kg	2.5	8.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	9.4
Copper	5	mg/kg	11	30
Lead	5	mg/kg	16	30
Mercury	0.1	mg/kg	0.2	< 0.1
Nickel	5	mg/kg	< 5	31
Zinc	5	mg/kg	18	120
% Moisture	1	%	11	6.9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 11, 2017	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Dec 11, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 11, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 11, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 11, 2017	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS			
Metals M8	Sydney	Dec 11, 2017	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS $$			
% Moisture	Sydney	Dec 08, 2017	14 Day

⁻ Method: LTM-GEN-7080 Moisture

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

> Chatswood NSW 2067

Project Name: SOIL ANALYSIS Project ID: SYDGE211253

Order No.: Received: Dec 8, 2017 11:43 AM Report #: 576600

Due: Dec 13, 2017

Priority: 3 Day **Contact Name:** Matthew Locke

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - AS4964	Metals M8	Moisture Set	Eurofins mgt Suite B4
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71					
Sydr	ney Laboratory	- NATA Site # 1	8217			Χ	Χ	Χ	Χ
Brisl	bane Laboratory	y - NATA Site #	20794						
Perti	h Laboratory - N	IATA Site # 237	36						
Exte	rnal Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH101_0.5- 0.65	Nov 23, 2017		Soil	S17-De12290	Х	Х	Х	Х
2	BH101_1.0- 1.11	Nov 23, 2017		Soil	S17-De12291		Х	Х	Х
Test	Counts					1	2	2	2

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 4 of 10 Report Number: 576600-S

Date Reported:Dec 14, 2017

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ua/L: micrograms per litre ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Limit of Reporting LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

A second piece of analysis from the same sample and reported in the same units as the result to show comparison. Duplicate

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 576600-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	1 0 0			•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		1.00	100		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene		< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg			Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank		T T		T	
Heavy Metals	no =://-=	1.2		Desa	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	-
Copper	mg/kg	< 5	5	Pass	-
Lead	mg/kg	< 5	5	Pass	-
Mercury	mg/kg	< 0.1	0.1	Pass	-
Nickel	mg/kg	< 5	5	Pass	-
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				1	<u> </u>
TRH C6-C9	%	89	70-130	Pass	

Tes	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	77		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	78		70-130	Pass	
Toluene			%	81		70-130	Pass	
Ethylbenzene			%	83		70-130	Pass	
m&p-Xylenes			%	86		70-130	Pass	
o-Xylene			%	88		70-130	Pass	
Xylenes - Total			%	87		70-130	Pass	
LCS - % Recovery				T				
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	ions	1					
Naphthalene			%	86		70-130	Pass	
TRH C6-C10			%	87		70-130	Pass	
TRH >C10-C16			%	81		70-130	Pass	
LCS - % Recovery				T	T T			
Polycyclic Aromatic Hydrocarb	ons	1						
Acenaphthene			%	73		70-130	Pass	
Acenaphthylene			%	77		70-130	Pass	
Anthracene			%	84		70-130	Pass	
Benz(a)anthracene			%	84		70-130	Pass	
Benzo(a)pyrene			%	75		70-130	Pass	
Benzo(b&j)fluoranthene			%	95		70-130	Pass	
Benzo(g.h.i)perylene			%	100		70-130	Pass	
Benzo(k)fluoranthene			%	72		70-130	Pass	
Chrysene			%	79		70-130	Pass	
Dibenz(a.h)anthracene			%	115		70-130	Pass	
Fluoranthene Fluorene			% %	80		70-130	Pass Pass	
Indeno(1.2.3-cd)pyrene			%	78 86		70-130 70-130	Pass	
Naphthalene			%	72		70-130	Pass	
Phenanthrene			%	83		70-130	Pass	
Pyrene			%	82		70-130	Pass	
LCS - % Recovery			/0	02		70-130	1 033	
Heavy Metals								
Arsenic			%	86		70-130	Pass	
Cadmium			%	88		70-130	Pass	
Chromium			%	105		70-130	Pass	
Copper			%	103		70-130	Pass	
Lead			%	99		70-130	Pass	
Mercury			%	97		70-130	Pass	
Nickel			%	95		70-130	Pass	
Zinc			%	99		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbor	ns - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S17-De14365	NCP	%	83		70-130	Pass	
TRH C10-C14	S17-De11176	NCP	%	83		70-130	Pass	
Spike - % Recovery								
ВТЕХ		1		Result 1				
Benzene	S17-De14365	NCP	%	74		70-130	Pass	
Toluene	S17-De14365	NCP	%	73		70-130	Pass	
Ethylbenzene	S17-De14365	NCP	%	73		70-130	Pass	
m&p-Xylenes	S17-De14365	NCP	%	76		70-130	Pass	
o-Xylene	S17-De14365	NCP	%	78		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total	S17-De14365	NCP	%	77			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1					
Naphthalene	S17-De14365	NCP	%	72			70-130	Pass	
TRH C6-C10	S17-De14365	NCP	%	85			70-130	Pass	
TRH >C10-C16	S17-De11176	NCP	%	85			70-130	Pass	
Spike - % Recovery					1				
Polycyclic Aromatic Hydroca	rbons			Result 1					
Acenaphthene	S17-De07917	NCP	%	72			70-130	Pass	
Acenaphthylene	S17-De16130	NCP	%	92			70-130	Pass	
Anthracene	S17-De16130	NCP	%	91			70-130	Pass	
Benz(a)anthracene	S17-De07917	NCP	%	94			70-130	Pass	
Benzo(a)pyrene	S17-De07917	NCP	%	87			70-130	Pass	
Benzo(b&j)fluoranthene	S17-De07917	NCP	%	105			70-130	Pass	
Benzo(g.h.i)perylene	S17-De07917	NCP	%	75			70-130	Pass	
Benzo(k)fluoranthene	S17-De07917	NCP	%	88			70-130	Pass	
Chrysene	S17-De07917	NCP	%	88			70-130	Pass	
Dibenz(a.h)anthracene	S17-De07917	NCP	%	80			70-130	Pass	
Fluoranthene	S17-De07917	NCP	%	90			70-130	Pass	
Fluorene	S17-De16130	NCP	%	99			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S17-De07917	NCP	%	72			70-130	Pass	
Naphthalene	S17-De16130	NCP	%	89			70-130	Pass	
Phenanthrene	S17-De16130	NCP	%	90			70-130	Pass	
Pyrene	S17-De07917	NCP	%	90			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S17-De12142	NCP	%	107			70-130	Pass	
Cadmium	S17-De12142	NCP	%	112			70-130	Pass	
Chromium	S17-De12142	NCP	%	108			70-130	Pass	
Copper	S17-De12142	NCP	%	101			70-130	Pass	
Lead	S17-De12142	NCP	%	122			70-130	Pass	
Mercury	S17-De12142	NCP	%	119			70-130	Pass	
Nickel	S17-De12142	NCP	%	97			70-130	Pass	
Zinc	S17-De12142	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		-		l _		_			
Total Recoverable Hydrocarb				Result 1	Result 2	RPD			
TRH C6-C9	S17-De14364	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S17-De14364	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S17-De14364	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S17-De14364	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate							1		
BTEX		, ,		Result 1	Result 2	RPD			
Benzene	S17-De14364	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-De14364	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S17-De14364	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S17-De14364	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S17-De14364	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S17-De14364	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S17-De14364	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S17-De14364	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S17-De14364	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S17-De14364	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S17-De14364	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocar	bons		_	Result 1	Result 2	RPD			
Acenaphthene	S17-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S17-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S17-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S17-De16171	NCP	mg/kg	1.0	1.1	12	30%	Pass	
Benzo(a)pyrene	S17-De16171	NCP	mg/kg	1.0	1.1	15	30%	Pass	
Benzo(b&j)fluoranthene	S17-De16171	NCP	mg/kg	1.3	1.6	17	30%	Pass	
Benzo(g.h.i)perylene	S17-De16171	NCP	mg/kg	0.7	0.8	18	30%	Pass	
Benzo(k)fluoranthene	S17-De16171	NCP	mg/kg	< 0.5	0.6	34	30%	Fail	Q15
Chrysene	S17-De16171	NCP	mg/kg	0.7	0.9	20	30%	Pass	
Dibenz(a.h)anthracene	S17-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S17-De16171	NCP	mg/kg	1.2	1.4	18	30%	Pass	
Fluorene	S17-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S17-De16171	NCP	mg/kg	0.7	0.8	13	30%	Pass	
Naphthalene	S17-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S17-De16171	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S17-De16171	NCP	mg/kg	1.2	1.5	23	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S17-De12141	NCP	mg/kg	6.9	7.1	3.0	30%	Pass	
Cadmium	S17-De12141	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S17-De12141	NCP	mg/kg	39	42	9.0	30%	Pass	
Copper	S17-De12141	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S17-De12141	NCP	mg/kg	12	13	11	30%	Pass	
Mercury	S17-De12141	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S17-De12141	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S17-De12141	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S17-De12291	CP	%	6.9	7.1	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Comments

Qualifier Codes/Comments		
	Code	Description
	N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
	N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
	N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
	N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
	Q15	The RPD reported passes Eurofins mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya Analytical Services Manager Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential claims, but not limited to, lost profits, damages for indiative to meet decidines and lost production arising from this report. This document shall be reported everypit in full and relates only to the tiens indicated otherwise, the tests were performed not he samples as receiving the samples as received in full and relates only to the tiens tested. Unlikes indicated otherwise, the tests were performed not he samples as received in full and relates only to the tiens tested. Unlikes indicated otherwise, the tests were performed not he samples as received.

ooff	environments SPECIALISTS IN ENVIRONMENTAL SOCIAL AND SAFETY PERFORMAN SYDGE 211 253 Task No:	Consignin	ng Office:	Coffee	Chatsarond e /Simon Hu												0 "
COII	SPECIALISTS IN ENVIRONMENTAL	Report Re	esults to:	Matt Lock	e /Simon H	1	Mob	ile: O4	24 70	3_0	09		mail:			Matthew . bute	@coffey.co
	SOCIAL AND SAFETY PERFORMAN	NCE Invoices t	io: Delfi	Jarchia	Delfa Serati	-lacothy.von	Phor	ie:	_	-	A I	_	mail:	0 - 41		Matthew . bute	@coffey.co
Project No:	37) QE 211 253 Task No:	Fieldwark	L				-			16	Analy	sis Red	quest :	Section	on	1111	//
Project Nan	ne: Contack Laborato								1	20	0/	//	//	/	//	/////	/
Sampler's N		Manager: Delf	a Sara	Su					R	/4	187	0/	//	/	//	/////	
Special Inst	ructions:							1	6ª/	/9	3	//	//	//	//	1///5	77580
Lab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	4			27	200	//	//	//	//	// No	OTES
	8H102/0.05 - 0.2	14-12-17		soil	Jor	Shedul	1	1									
	BH102/0.5 -0.7	n).03	J-	"				1	/						
	BH102/1.1 - 1.3	W		1.08	3-	- "	V	V									
	R1-14/12.17	14.12.13		acter	samper (une)	ikulul	1	1									
	Dop1-14.12.17	٠.		1:08	j~	ship-d	1	1					_				
	Dog 2 - 14.12,17	*		14	e.		1	V		_						Messe form	ry y bri
-	Dop 2 - 14.12,17 TS1 - 14,12,17	*		inde	viel	should				_	-						
					<u> </u>		_		1		_						
									44	_ -	_		_	-	_		
	RELINQUISHED BY				RE	CEIVED BY		_	-			Sampl	e Rece	ipt Ad	vice: ((Lab Use Only)	
Name: 🐍 Coffey Envi	Date: 14.12 .17 ronments Time: 4:00	+		Mosy iny: Efma	ot		Date Time	: (* :: (*	7:00	17						ood Condition roper Order 115	
Name:	Date:	-)	Name:				Date	11				Sampl	es Rec	eived f	Properl	ly Chilled	
Company:	Time:		Compa	iny:			Time	e:				Lab. R	ef/Bato	ch No.		-5	
	Type & Preservation Codes: P - Plastic, G- Glass					reserved, C -	Hydro	chloric	Acid Pre	served						577580	

Melbourne MelDourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: Coffey Environments Pty Ltd NSW

Contact name: Matthew Locke CONCORD Project name: Project ID: SYDGE211253 COC number: Not provided

Turn around time: 5 Day

Dec 14, 2017 5:00 PM Date/Time received:

Eurofins | mgt reference: 577580

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 11.5 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- V Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Notes^{N/A} Custody Seals intact (if used).

TS1 14.12.17 water trip spike not received. Two soil trip spike labs received instead. Logged on HOLDI DUP2 14.12.17 forwarded to ALS

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Matthew Locke - Matthew.Locke@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

 Report
 577580-S

 Project name
 CONCORD

 Project ID
 SYDGE211253

 Received Date
 Dec 14, 2017

Client Sample ID			BH102/0.05-0.2	BH102/1.1-1.3	DUP1_14.12.17
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S17-De19816	S17-De19818	S17-De19820
Date Sampled			Dec 14, 2017	Dec 14, 2017	Dec 14, 2017
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	330	< 50	1100
TRH C29-C36	50	mg/kg	210	< 50	740
TRH C10-36 (Total)	50	mg/kg	540	< 50	1840
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	52	85	84
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	510	< 100	1800
TRH >C34-C40	100	mg/kg	100	< 100	460
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	6.2	1.8	15
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	6.2	2.0	15
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	6.2	2.3	15
Acenaphthene	0.5	mg/kg	0.9	< 0.5	2.7
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	1.5	< 0.5	4.5
Benz(a)anthracene	0.5	mg/kg	4.7	1.5	11
Benzo(a)pyrene	0.5	mg/kg	4.2	1.3	9.9
Benzo(b&j)fluorantheneN07	0.5	mg/kg	5.1	1.4	11
Benzo(g.h.i)perylene	0.5	mg/kg	3.2	1.0	7.0
Benzo(k)fluoranthene	0.5	mg/kg	1.7	0.6	4.6
Chrysene	0.5	mg/kg	4.1	1.3	10
Dibenz(a.h)anthracene	0.5	mg/kg	0.5	< 0.5	1.3

Client Sample ID			BH102/0.05-0.2 Soil	BH102/1.1-1.3 Soil	DUP1_14.12.17 Soil
Sample Matrix					
Eurofins mgt Sample No.			S17-De19816	S17-De19818	S17-De19820
Date Sampled			Dec 14, 2017	Dec 14, 2017	Dec 14, 2017
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Fluoranthene	0.5	mg/kg	11	3.7	32
Fluorene	0.5	mg/kg	< 0.5	< 0.5	1.3
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	2.5	0.8	5.6
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	3.5	1.0	9.6
Pyrene	0.5	mg/kg	11	3.8	33
Total PAH*	0.5	mg/kg	53.9	16.4	143.5
2-Fluorobiphenyl (surr.)	1	%	97	98	93
p-Terphenyl-d14 (surr.)	1	%	99	106	91
Heavy Metals					
Arsenic	2	mg/kg	6.0	6.1	3.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.9	9.2	12
Copper	5	mg/kg	40	33	72
Lead	5	mg/kg	22	21	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	11	8.2	11
Zinc	5	mg/kg	230	74	590
<u> </u>					
% Moisture	1	%	10.0	7.7	7.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 19, 2017	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Dec 19, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 19, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 19, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 19, 2017	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS			
Metals M8	Sydney	Dec 19, 2017	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS		_	_
% Moisture	Sydney	Dec 14, 2017	14 Day

⁻ Method: LTM-GEN-7080 Moisture

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: CONCORD
Project ID: SYDGE211253

Order No.:

Report #: 577580 **Phone:** +61 2 9406 1000

Fax: +61 2 9406 1004

Received: Dec 14, 2017 5:00 PM **Due:** Dec 21, 2017

Priority: 5 Day
Contact Name: Matthew Locke

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		HOLD	Metals M8	Moisture Set	Eurofins mgt Suite B4				
Melb	ourne Laborato								
Sydr	ney Laboratory	Х	Х	Х	Х				
Brisl	bane Laborator	y - NATA Site #	20794						
Pertl	h Laboratory - N	IATA Site # 237	36						
Exte	rnal Laboratory	,							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH102/0.05- 0.2	Dec 14, 2017		Soil	S17-De19816		Х	Х	х
2	BH102/0.5-0.7	Dec 14, 2017		Soil	S17-De19817	Х			
3	BH102/1.1-1.3	Dec 14, 2017		Soil	S17-De19818		Х	Х	Х
4	R1_14.12.17	Dec 14, 2017		Water	S17-De19819		Х		Х
5	DUP1_14.12.1 7		Х	х	х				
6	TRIP SPIKE LAB	Х							
Test	Counts	2	4	3	4				

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 4 of 10

Date Reported:Dec 21, 2017

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ua/L: micrograms per litre ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Limit of Reporting LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

A second piece of analysis from the same sample and reported in the same units as the result to show comparison. Duplicate

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected

QC Data General Comments

Date Reported: Dec 21, 2017

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 5 of 10 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 577580-S

Quality Control Results

Tethod Blank Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Tethod Blank TEX Benzene Toluene Ethylbenzene m&p-Xylenes 2-Xylene Xylenes - Total Tethod Blank Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 20 < 50 < 50 < 50 < 0.1 < 0.1 < 0.1 < 0.2	20 20 50 50 50	Pass Pass Pass Pass	
TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Iethod Blank STEX Benzene Toluene Ethylbenzene m&p-Xylenes b-Xylenes Xylenes - Total Iethod Blank Stetal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 < 50 < 0.1 < 0.1 < 0.1	20 50 50	Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Iethod Blank ETEX Benzene Toluene Ethylbenzene m&p-Xylenes b-Xylenes Xylenes - Total Iethod Blank Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 < 50 < 0.1 < 0.1 < 0.1	20 50 50	Pass Pass	
TRH C15-C28 TRH C29-C36 Iethod Blank STEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Iethod Blank Sotal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 50 < 50 < 0.1 < 0.1 < 0.1	50 50	Pass	
TRH C29-C36 Ilethod Blank STEX Benzene Toluene Ethylbenzene m&p-Xylenes c-Xylene Xylenes - Total Ilethod Blank Sotal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.1 < 0.1 < 0.1	50		
Rethod Blank Benzene Toluene Ethylbenzene m&p-Xylenes D-Xylene Xylenes - Total Rethod Blank Sotal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.1 < 0.1		Pass	
Benzene Toluene Ethylbenzene m&p-Xylenes D-Xylene Xylenes - Total Bethod Blank Otal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.1	0.1		
Benzene Toluene Ethylbenzene m&p-Xylenes D-Xylene Xylenes - Total Iethod Blank Otal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.1	0.1		
Toluene Ethylbenzene m&p-Xylenes p-Xylene Xylenes - Total Iethod Blank Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.1	0.1	1	
Ethylbenzene m&p-Xylenes c-Xylene Xylenes - Total Method Blank Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg	< 0.1	- I	Pass	
m&p-Xylenes c-Xylene Xylenes - Total Iethod Blank Iotal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg mg/kg		0.1	Pass	
o-Xylene Xylenes - Total Iethod Blank otal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg mg/kg	z 0 2	0.1	Pass	
o-Xylene Xylenes - Total Iethod Blank otal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.2	Pass	
Xylenes - Total Iethod Blank Otal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34		< 0.1	0.1	Pass	
Naphthalene TRH >C10-C16 TRH >C16-C34	1 9 9	< 0.3	0.3	Pass	
otal Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34			, , , , , ,		
Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34			T		
TRH C6-C10 TRH >C10-C16 TRH >C16-C34	mg/kg	< 0.5	0.5	Pass	
TRH >C10-C16 TRH >C16-C34	mg/kg	< 20	20	Pass	
TRH >C16-C34	mg/kg	< 50	50	Pass	
	mg/kg	< 100	100	Pass	
11117001010	mg/kg	< 100	100	Pass	
lethod Blank	, mg/ng	1 100	100	1 400	
olycyclic Aromatic Hydrocarbons			<u> </u>		
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
ndeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
lethod Blank	Hig/kg	V 0.5	0.5	Fass	
leavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium			5	Pass	
	mg/kg	< 5	5	Pass	
Copper Lead	mg/kg	< 5	5	Pass	
	mg/kg	< 5			
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
CS - % Recovery					1
otal Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9		1			

Tes	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	85		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	82		70-130	Pass	
Toluene			%	88		70-130	Pass	
Ethylbenzene			%	91		70-130	Pass	
m&p-Xylenes			%	96		70-130	Pass	
o-Xylene			%	97		70-130	Pass	
Xylenes - Total			%	96		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions						
Naphthalene			%	121		70-130	Pass	
TRH C6-C10			%	92		70-130	Pass	
TRH >C10-C16			%	84		70-130	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarb	ons							
Acenaphthene			%	98		70-130	Pass	
Acenaphthylene			%	102		70-130	Pass	
Anthracene			%	109		70-130	Pass	
Benz(a)anthracene			%	105		70-130	Pass	
Benzo(a)pyrene			%	109		70-130	Pass	
Benzo(b&j)fluoranthene			%	103		70-130	Pass	
Benzo(g.h.i)perylene			%	107		70-130	Pass	
Benzo(k)fluoranthene			%	101		70-130	Pass	
Chrysene			%	102		70-130	Pass	
Dibenz(a.h)anthracene			%	108		70-130	Pass	
Fluoranthene			%	94		70-130	Pass	
Fluorene			%	104		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	109		70-130	Pass	
Naphthalene			%	94		70-130	Pass	
Phenanthrene			%	97		70-130	Pass	
Pyrene			%	94		70-130	Pass	
LCS - % Recovery				T	T T	T		
Heavy Metals			0/	0.5		70.400		
Arsenic			%	95		70-130	Pass	
Cadmium			%	97		70-130	Pass	
Chromium			%	96		70-130	Pass	
Copper			% %	95		70-130	Pass	
Lead			%	95		70-130	Pass	
Mercury Nickel			%	99 96		70-130 70-130	Pass Pass	
Zinc			%	98		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S17-De26293	NCP	%	80		70-130	Pass	
TRH C10-C14	S17-De27608	NCP	%	83		70-130	Pass	
Spike - % Recovery								
ВТЕХ				Result 1				
Benzene	S17-De26293	NCP	%	81		70-130	Pass	
Toluene	S17-De26293	NCP	%	86		70-130	Pass	
Ethylbenzene	S17-De26293	NCP	%	98		70-130	Pass	
m&p-Xylenes	S17-De26293	NCP	%	105		70-130	Pass	
o-Xylene	S17-De26293	NCP	%	111		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total	S17-De26293	NCP	%	107			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1					
Naphthalene	S17-De26293	NCP	%	80			70-130	Pass	
TRH C6-C10	S17-De26293	NCP	%	87			70-130	Pass	
TRH >C10-C16	S17-De27608	NCP	%	84			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydroca	rbons			Result 1					
Acenaphthene	S17-De23093	NCP	%	99			70-130	Pass	
Acenaphthylene	S17-De23093	NCP	%	107			70-130	Pass	
Anthracene	S17-De23093	NCP	%	111			70-130	Pass	
Benz(a)anthracene	S17-De23093	NCP	%	112			70-130	Pass	
Benzo(a)pyrene	S17-De23093	NCP	%	97			70-130	Pass	
Benzo(b&j)fluoranthene	S17-De23093	NCP	%	94			70-130	Pass	
Benzo(g.h.i)perylene	S17-De23093	NCP	%	111			70-130	Pass	
Benzo(k)fluoranthene	S17-De23093	NCP	%	93			70-130	Pass	
Chrysene	S17-De23093	NCP	%	99			70-130	Pass	
Dibenz(a.h)anthracene	S17-De23093	NCP	%	102			70-130	Pass	
Fluoranthene	S17-De27263	NCP	%	120			70-130	Pass	
Fluorene	S17-De23093	NCP	%	107			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S17-De23093	NCP	%	100			70-130	Pass	
Naphthalene	S17-De23093	NCP	%	104			70-130	Pass	
Phenanthrene	S17-De23093	NCP	%	109			70-130	Pass	
Pyrene	S17-De23093	NCP	%	121			70-130	Pass	
Spike - % Recovery	311-De21203	INCI	/0	121			70-130	1 033	
Heavy Metals				Result 1					
Arsenic	S17-De24070	NCP	%	94			70-130	Pass	
Cadmium	S17-De24070	NCP	%	95			70-130	Pass	
Chromium	S17-De24070	NCP	%	80			70-130	Pass	
Copper	S17-De24070	NCP	<u> </u>	96			70-130	Pass	
Lead	S17-De24070	NCP	<u> </u>	83			70-130	Pass	
	S17-De24070	NCP	%	72			70-130	Pass	
Mercury Nickel		NCP	%	95			70-130		
Zinc	S17-De24070	NCP	% %					Pass	
ZITIC	S17-De24070		70	119			70-130	Pass Pass	Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-De23080	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S17-De27266	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S17-De27266	NCP	mg/kg	85	88	4.0	30%	Pass	
TRH C29-C36	S17-De27266	NCP	mg/kg	71	95	29	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S17-De23080	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-De23080	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S17-De23080	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S17-De23080	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S17-De23080	NCP	mg/kg	< 0.2	< 0.1	<1	30%	Pass	
Xylenes - Total	S17-De23080	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S17-De23080	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S17-De23080	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S17-De27266	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S17-De27266	NCP	mg/kg	160	190	18	30%	Pass	
TRH >C34-C40	S17-De27266	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocark	oons			Result 1	Result 2	RPD			
Acenaphthene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S17-De27315	NCP	mg/kg	9.5	9.4	1.0	30%	Pass	
Fluorene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S17-De25924	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S17-De27315	NCP	mg/kg	7.8	7.8	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S17-De23080	NCP	mg/kg	14	15	8.0	30%	Pass	
Cadmium	S17-De23080	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S17-De23080	NCP	mg/kg	39	41	7.0	30%	Pass	
Copper	S17-De23080	NCP	mg/kg	11	12	7.0	30%	Pass	
Lead	S17-De23080	NCP	mg/kg	28	30	8.0	30%	Pass	
Mercury	S17-De23080	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S17-De23080	NCP	mg/kg	9.0	9.5	6.0	30%	Pass	
Zinc	S17-De23080	NCP	mg/kg	26	27	4.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S17-De19825	NCP	%	< 1	< 1	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Comments

N02

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Nibha Vaidva Analytical Services Manager

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential clamps including, but not limited to, lost profits, damages for infallure to meet deadlines and lost production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were, the full are retrietations, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: **Matthew Locke**

577580-W Report Project name CONCORD Project ID SYDGE211253 Received Date Dec 14, 2017

Client Sample ID			R1_14.12.17
Sample Matrix			Water
Eurofins mgt Sample No.			S17-De19819
Date Sampled			Dec 14, 2017
Test/Reference	LOR	Unit	,
Total Recoverable Hydrocarbons - 1999 NEPM		Orne	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1
BTEX		19/ =	1011
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	88
Total Recoverable Hydrocarbons - 2013 NEPM		7.0	
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons		g/ =	1011
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled				R1_14.12.17 Water S17-De19819 Dec 14, 2017
Test/Reference		LOR	Unit	
Polycyclic Aromatic Hydrocarbons	'		•	
Naphthalene		0.001	mg/L	< 0.001
Phenanthrene		0.001	mg/L	< 0.001
Pyrene		0.001	mg/L	< 0.001
Total PAH*		0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)		1	%	71
p-Terphenyl-d14 (surr.)		1	%	87
Heavy Metals				
Arsenic		0.001	mg/L	< 0.001
Cadmium		0.0002	mg/L	< 0.0002
Chromium		0.001	mg/L	< 0.001
Copper		0.001	mg/L	< 0.001
Lead		0.001	mg/L	< 0.001
Mercury		0.0001	mg/L	< 0.0001
Nickel		0.001	mg/L	< 0.001
Zinc		0.005	mg/L	0.006

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 14, 2017	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Dec 14, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 14, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 14, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 14, 2017	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS			
Metals M8	Sydney	Dec 14, 2017	28 Day

⁻ Method: LTM-MET-3040 Metals in Waters by ICP-MS

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Mo

Eur

Phone:

Fax:

H_O

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

577580

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: CONCORD Project ID: SYDGE211253 **Received:** Dec 14, 2017 5:00 PM

 Due:
 Dec 21, 2017

 Priority:
 5 Day

Contact Name: Matthew Locke

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		אבס	etals M8	isture Set	rofins mgt Suite B4				
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271					
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х
Brisl	bane Laboratory	y - NATA Site #	20794						
Pertl	h Laboratory - N	IATA Site # 237	36						
Exte	rnal Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH102/0.05- 0.2	Dec 14, 2017		Soil	S17-De19816		х	Х	х
2	BH102/0.5-0.7	Dec 14, 2017		Soil	S17-De19817	Х			
3	BH102/1.1-1.3	Dec 14, 2017		Soil	S17-De19818		Х	Х	Х
4	R1_14.12.17	Dec 14, 2017		Water	S17-De19819		Х		Χ
5	DUP1_14.12.1 7	Dec 14, 2017		Soil	S17-De19820		Х	Х	х
6	TRIP SPIKE LAB	Dec 14, 2017	·	Soil	S17-De19821	Х			
Test	Counts					2	4	3	4

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Report Number: 577580-W

Page 4 of 9

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - OC was performed on samples pertaining to this

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 5 of 9

ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 577580-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	,			•	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		1 0.00 .	1 0.00	1 400	
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.001	Pass	
LCS - % Recovery	1 1119/L		0.000	1 433	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	91	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	113	70-130	Pass	
LCS - % Recovery							
ВТЕХ							
Benzene			%	97	70-130	Pass	
Toluene			%	102	70-130	Pass	
Ethylbenzene			%	103	70-130	Pass	
m&p-Xylenes			%	104	70-130	Pass	
o-Xylene			%	103	70-130	Pass	
Xylenes - Total			%	104	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions					
Naphthalene			%	103	70-130	Pass	
TRH C6-C10			%	97	70-130	Pass	
TRH >C10-C16			%	123	70-130	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbon	ns						
Acenaphthene			%	82	70-130	Pass	
Acenaphthylene			%	92	70-130	Pass	
Anthracene			%	94	70-130	Pass	
Benz(a)anthracene			%	88	70-130	Pass	
Benzo(a)pyrene			%	89	70-130	Pass	
Benzo(b&j)fluoranthene			%	91	70-130	Pass	
Benzo(g.h.i)perylene			%	86	70-130	Pass	
Benzo(k)fluoranthene			%	85	70-130	Pass	
Chrysene			%	90	70-130	Pass	
Dibenz(a.h)anthracene			%	78	70-130	Pass	
Fluoranthene			%	90	70-130	Pass	
Fluorene			%	92	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	78	70-130	Pass	
Naphthalene			%	80	70-130	Pass	
Phenanthrene			%	91	70-130	Pass	
Pyrene			%	90	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	101	70-130	Pass	
Cadmium			%	99	70-130	Pass	
Chromium			%	103	70-130	Pass	
Copper			%	99	70-130	Pass	
Lead			%	104	70-130	Pass	
Mercury			%	108	70-130	Pass	
Nickel			%	101	70-130	Pass	
Zinc			%	101	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S17-De21001	NCP	%	110	70-130	Pass	
Cadmium	S17-De21001	NCP	%	95	70-130	Pass	
Chromium	S17-De21001	NCP	%	90	70-130	Pass	
Copper	S17-De21001	NCP	%	80	70-130	Pass	
Lead	S17-De21001	NCP	%	86	70-130	Pass	
Mercury	S17-De21001	NCP	%	89	70-130	Pass	
Nickel	S17-De21001	NCP	%	82	70-130	Pass	
Zinc	S17-De21001	NCP	%	80	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Frac	tions		Result 1	Result 2	RPD			
TRH C6-C9	S17-De19819	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S17-De19819	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S17-De19819	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Frac	ions		Result 1	Result 2	RPD			
Naphthalene	S17-De19819	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S17-De19819	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S17-De19819	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S17-De19819	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S17-De19819	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S17-De19819	CP	mg/L	0.006	0.005	16	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Comments

N02

N07

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidva Analytical Services Manager

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential clamps including, but not limited to, lost profits, damages for infallure to meet deadlines and lost production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were, the full are retrietations, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise, the tests were indicated otherwise.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES1732034

Client : COFFEY ENVIRONMENTS PTY LTD Laboratory : Environmental Division Sydney

Contact : MR MATTHEW LOCKE Contact : Angelene Kumar

Address : LEVEL 19, 799 PACIFIC HIGHWAY Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

CHATSWOOD NSW, AUSTRALIA 2067

Tower B - Citadel Tower

 Telephone
 : +61 02 9911 1000
 Telephone
 : +61 2 8784 8555

 Facsimile
 : +61 9911 1001
 Facsimile
 : +61-2-8784 8500

Project : SYDGE 211253 Concord Page : 1 of 2

 Order number
 : -- Quote number
 : EM2017COFENV0002 (EN/007/16)

 C-O-C number
 : 110351
 QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : 2017 Blanket Quote - Primary Samples

Sampler : AIDEN MCKENZIE

Dates

Date Samples Received : 15-Dec-2017 12:00 Issue Date : 16-Dec-2017 Client Requested Due : 28-Dec-2017 Scheduled Reporting Date : 28-Dec-2017

Date

Delivery Details

Mode of Delivery : Undefined Security Seal : Not Available

No. of coolers/boxes : 1 Temperature : 15.7 - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Issue Date : 16-Dec-2017

Page

2 of 2 ES1732034 Amendment 0 Work Order

Client : COFFEY ENVIRONMENTS PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the OIL - S-26 metals/TRH/BTEXN/PAH laboratory and displayed in brackets without a time component **Joisture Content** Matrix: SOIL Client sample ID Laboratory sample Client sampling ID date / time ES1732034-001 14-Dec-2017 00:00 Dup 2_14.12.17

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

DELFA S	SARABIA
---------	---------

- A4 - AU Tax Invoice (INV)	Email	delfa.sarabia@coffey.com
INVOICES CHAT-GeneralAdmin		
- A4 - AU Tax Invoice (INV)	Email	CHAT-GeneralAdmin@coffey.com
MATTHEW LOCKE		
 *AU Certificate of Analysis - NATA (COA) 	Email	matthew.locke@coffey.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	matthew.locke@coffey.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	matthew.locke@coffey.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	matthew.locke@coffey.com
- A4 - AU Tax Invoice (INV)	Email	matthew.locke@coffey.com
- Chain of Custody (CoC) (COC)	Email	matthew.locke@coffey.com
- EDI Format - ENMRG (ENMRG)	Email	matthew.locke@coffey.com
- EDI Format - ESDAT (ESDAT)	Email	matthew.locke@coffey.com
SIMON HAY		
 *AU Certificate of Analysis - NATA (COA) 	Email	simon.hay@coffey.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	simon.hay@coffey.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	simon.hay@coffey.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	simon.hay@coffey.com
- A4 - AU Tax Invoice (INV)	Email	simon.hay@coffey.com
- Chain of Custody (CoC) (COC)	Email	simon.hay@coffey.com
- EDI Format - ENMRG (ENMRG)	Email	simon.hay@coffey.com
- EDI Format - ESDAT (ESDAT)	Email	simon.hay@coffey.com

CERTIFICATE OF ANALYSIS

Work Order : ES1732034 Page : 1 of 6

Client : COFFEY ENVIRONMENTS PTY LTD Laboratory : Environmental Division Sydney

Contact : MR MATTHEW LOCKE Contact : Angelene Kumar

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 19, 799 PACIFIC HIGHWAY Tower B - Citadel Tower

CHATSWOOD NSW, AUSTRALIA 2067

Telephone : +61 02 9911 1000 Telephone : +61 2 8784 8555 Date Samples Received **Project** : SYDGE 211253 Concord

Order number

C-O-C number · 110351

Sampler : AIDEN MCKENZIE

Site : 2017 Blanket Quote - Primary Samples

Quote number : EN/007/16

No. of samples received : 1 No. of samples analysed : 1

: 15-Dec-2017 12:00 **Date Analysis Commenced** : 19-Dec-2017

Issue Date · 27-Dec-2017 16:28

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW	
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW	
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW	
Raymond Commodore	Instrument Chemist	Sydney Inorganics, Smithfield, NSW	

Page : 2 of 6 Work Order : ES1732034

Client : COFFEY ENVIRONMENTS PTY LTD

Project : SYDGE 211253 Concord

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

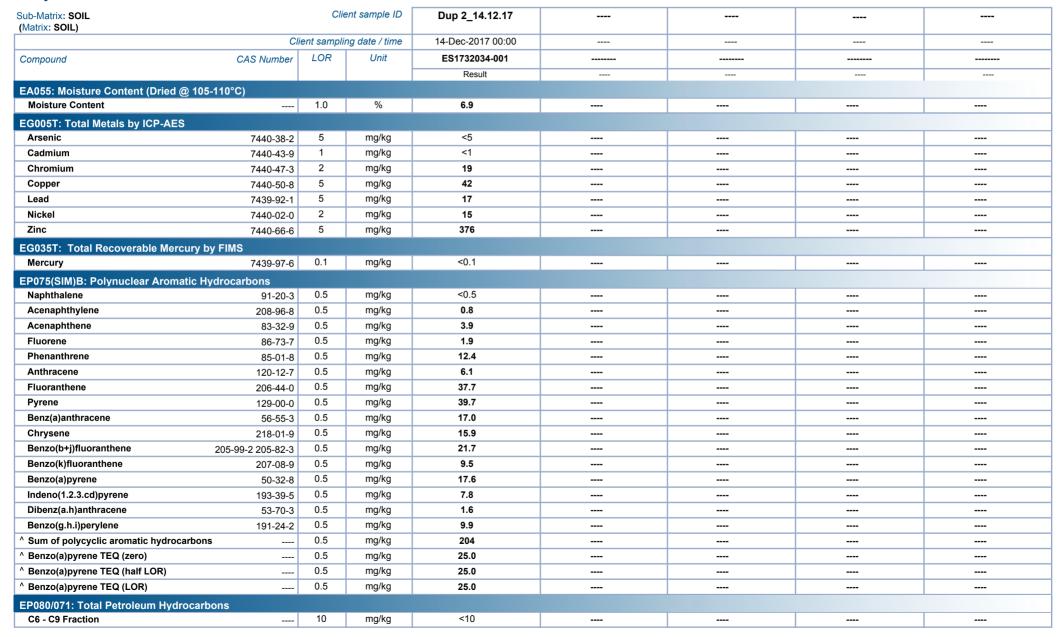
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP071: Results of sample Dup 2 14.12.17 have been confirmed by re-extraction and re-analysis.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

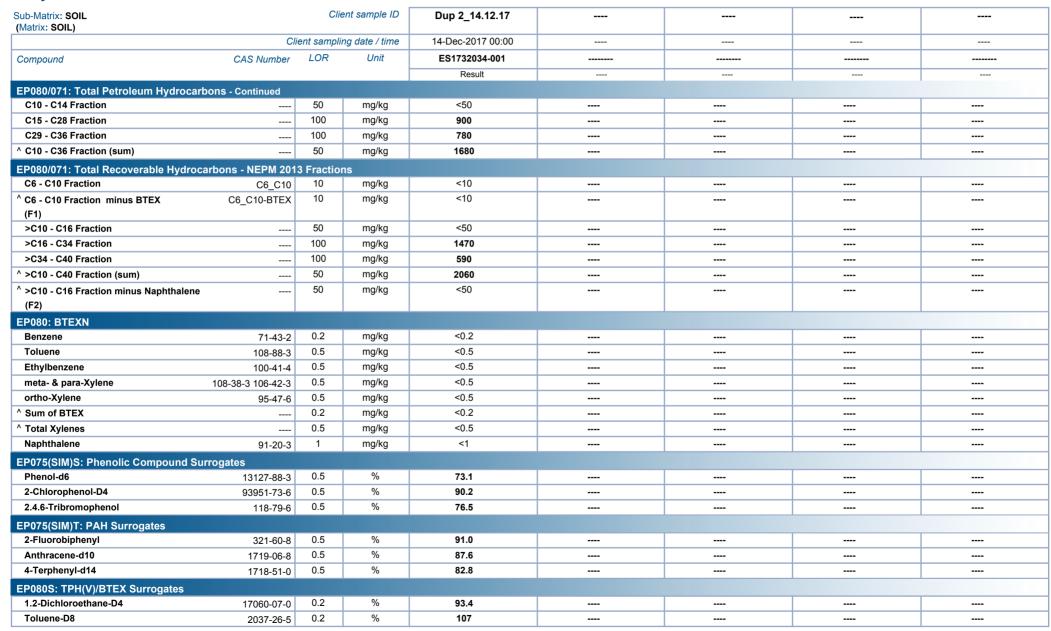


Page : 3 of 6 Work Order : ES1732034

Client : COFFEY ENVIRONMENTS PTY LTD

Project : SYDGE 211253 Concord

Analytical Results

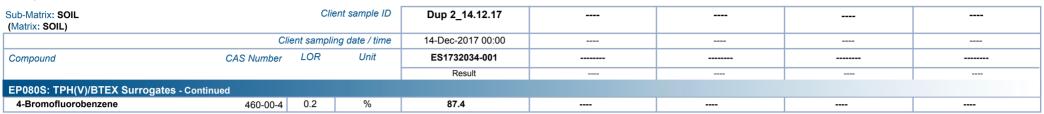


Page : 4 of 6 Work Order : ES1732034

Client : COFFEY ENVIRONMENTS PTY LTD

Project : SYDGE 211253 Concord

Analytical Results



Page : 5 of 6
Work Order : ES1732034

Client : COFFEY ENVIRONMENTS PTY LTD

Project : SYDGE 211253 Concord

Analytical Results

Page : 6 of 6
Work Order : ES1732034

Client : COFFEY ENVIRONMENTS PTY LTD

Project : SYDGE 211253 Concord

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 1 of 1 110352

	environments SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE SYDGE 21, 253 Task No:	Consigni	ng Office:	Coffey	Chatawood																	
COI	SPECIALISTS IN ENVIRONMENTAL,	Report R	lesults to:	Huffren L	orte	11	Mob	bile: 🔿	420	170	3 08	39		Er	nail:	SIL	on.	hay				@coffey.co
	SOCIAL AND SAFETY PERFORMANC	E Invoices	to: Delf	· Screbic			Pho	ne:							nail:							@coffey.co
	0104-51100)	. 16,000	or C				100					An	alysis	Req	uest	Secti	ion					
Project N	ame: Concord Laboratory	Eurohn									/	1	1/2	1	7	//	//	/	//	//	//	/
Sampler's	s Name: Simo Hay Project Ma structions: SDAY TA	nager: Oel	fa Sara!)in						/	1/4	2/	5/5	15	/	//	//	//	/	//	//	
Special In	structions: 1 STAY TA	T							/	1		-9%	23/2	A.	/	//	//	//	/	//		
		1						/	No.		7 19	8	ested	/	/	/	//	//	//	/		
Lab No.	Sample ID	Sample Date	Time	(Soiletc)	Container Type & Preservative*	T-A-T (specify)	1	100/2			3/4	ed.	//	/	/	//	//	//	//		NOTE	ES
4	GARAGE CONTRACTOR	21.12.17		Water	Amber/val/plashi	5 0A4																
	BHIDZ JOWGA GME				1	1	1			/												
3	BH205_ KWWY GME						1			1	1											
	BH 211 - GLMSG GME						1			1	1											
	8 H 302 - QW6 1 GNE				4.4.					1	/				1							
1	BH307 - GWAS GHE	11-					1			1	1											371
1	BH 310 - BLOWN GHE	V		V	•		/			1	1											100
						V																
	21_21_12_17_GHE						1			1												
	20pl - 21-12-17-GME				()		1			1												
	up2-21-12-17-6Me				V		1			1			4						leur	600 a	and t	to ALS
	27-51-15-15-due	- VI		V	vial			1	/													
	61-21-12-17 GME	V		V	vial	V	-	. 1	/													
								71							-							
						- 4								-	-							
						1																
	RELINQUISHED BY					EIVED BY							Sar	nple	Recei	ipt Ad	vice: ((Lab U	se Only	y)		
Name: 5	1 MUN HAY Date: 21,12.17	→	Name:	hordon Yi	_		Date:	211	121	117			All	Samp	les R	ecieve	d in G	ood C	onditio	n		
Coffey Env	vironments Time: 4:30 pm		Compan	v: Ersofn	rest		Time:	Pann.	:20				100				is in Pr]
Name:	Date:	>	Name:	Any			Date:	22/1	21	17			San	nples	Rece	ived P	roperl	ly Chil	led]
Company:	Time:			v: EPIMON	578955			12:					100			h No.						-

Melbourne MelDourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: Coffey Environments Pty Ltd NSW

Contact name: Matthew Locke Project name: CONCORD Project ID: SYDGE211253

110352 COC number: Turn around time: 5 Day

Dec 21, 2017 5:20 PM Date/Time received:

Eurofins | mgt reference: 578955

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 10.1 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- V Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

R1 and Dup1 no amber received Cannot do semi-volatile tests.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Matthew Locke - Matthew.Locke@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing
The results of the tests, calibrations and/or
measurements included in this document are traceable
to Australian/national standards.

Attention: Matthew Locke

 Report
 578955-W-V2

 Project name
 CONCORD

 Project ID
 SYDGE211253

 Received Date
 Dec 21, 2017

Client Sample ID			BH102_GME	BH205_GME	BH211_GME	BH302_GME
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M17-De32014	M17-De32015	M17-De32016	M17-De32017
Date Sampled			Dec 21, 2017	Dec 21, 2017	Dec 21, 2017	Dec 21, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM						
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
втех						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	111	111	107	109
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Acenaphthylene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Anthracene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Benz(a)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Benzo(a)pyrene	0.00001	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Benzo(b&j)fluorantheneN07	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Benzo(g.h.i)perylene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Benzo(k)fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Chrysene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Fluorene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005

Client Sample ID Sample Matrix			BH102_GME Water	BH205_GME Water	BH211_GME Water	BH302_GME Water
Eurofins mgt Sample No.			M17-De32014	M17-De32015	M17-De32016	M17-De32017
Date Sampled			Dec 21, 2017	Dec 21, 2017	Dec 21, 2017	Dec 21, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Phenanthrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Pyrene	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Total PAH*	0.00005	mg/L	< 0.00005	< 0.00005	< 0.00005	< 0.00005
2-Fluorobiphenyl (surr.)	1	%	82	57	61	60
p-Terphenyl-d14 (surr.)	1	%	128	113	118	83
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.002	0.002	0.003	0.003
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	0.0005
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.002	0.003	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.006	0.024	0.007	0.16
Zinc (filtered)	0.005	mg/L	0.028	0.096	< 0.005	0.62

Client Sample ID Sample Matrix			BH307_GME Water	BH310_GME Water	R1_21_12_17_ GME Water	DUP1_21_12_1 7_GME Water
Eurofins mgt Sample No.			M17-De32018	M17-De32019	M17-De32020	M17-De32021
Date Sampled			Dec 21, 2017	Dec 21, 2017	Dec 21, 2017	Dec 21, 2017
Test/Reference	LOR	Unit			,	
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions	1				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	0.03	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-	-
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	0.02	mg/L	0.03	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	-	-
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	0.014	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	109	107	114	104

Client Sample ID			BH307_GME	BH310_GME	R1_21_12_17_ GME	DUP1_21_12_1 7_GME
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M17-De32018	M17-De32019	M17-De32020	M17-De32021
Date Sampled			Dec 21, 2017	Dec 21, 2017	Dec 21, 2017	Dec 21, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	•					
Acenaphthene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Acenaphthylene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Anthracene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Benz(a)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Benzo(a)pyrene	0.00001	mg/L	< 0.00001	< 0.00001	-	-
Benzo(b&j)fluoranthene ^{N07}	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Benzo(g.h.i)perylene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Benzo(k)fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Chrysene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Dibenz(a.h)anthracene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Fluoranthene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Fluorene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Indeno(1.2.3-cd)pyrene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Naphthalene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Phenanthrene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Pyrene	0.00005	mg/L	< 0.00005	< 0.00005	-	-
Total PAH*	0.00005	mg/L	< 0.00005	< 0.00005	-	-
2-Fluorobiphenyl (surr.)	1	%	65	61	-	-
p-Terphenyl-d14 (surr.)	1	%	94	121	-	-
Heavy Metals						
Arsenic	0.001	mg/L	-	-	< 0.001	-
Arsenic (filtered)	0.001	mg/L	0.007	< 0.001	-	0.004
Cadmium	0.0002	mg/L	-	-	< 0.0002	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	-	< 0.0002
Chromium	0.001	mg/L	-	-	< 0.001	-
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	-	< 0.001
Copper	0.001	mg/L	-	-	< 0.001	-
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	-	< 0.001
Lead	0.001	mg/L	-	-	< 0.001	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	-	< 0.001
Mercury	0.0001	mg/L	-	-	< 0.0001	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	-	< 0.0001
Nickel	0.001	mg/L	-	-	< 0.001	-
Nickel (filtered)	0.001	mg/L	0.12	0.009	-	0.007
Zinc	0.005	mg/L	-	-	< 0.005	-
Zinc (filtered)	0.005	mg/L	0.041	0.018	-	0.006

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled	LOR	Unit	R ²⁰ TS1_21_12_ 17_GME Water M17-De32022 Dec 21, 2017	TB1_21_12_17 _GME Water M17-De32023 Dec 21, 2017
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				
TRH C6-C9	0.02	mg/L	110	< 0.02

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			R20TS1_21_12_ 17_GME Water M17-De32022 Dec 21, 2017	TB1_21_12_17 _GME Water M17-De32023 Dec 21, 2017
Test/Reference	LOR	Unit		
BTEX				
Benzene	0.001	mg/L	96	< 0.001
Toluene	0.001	mg/L	90	< 0.001
Ethylbenzene	0.001	mg/L	87	< 0.001
m&p-Xylenes	0.002	mg/L	86	< 0.002
o-Xylene	0.001	mg/L	88	< 0.001
Xylenes - Total	0.003	mg/L	87	< 0.003
4-Bromofluorobenzene (surr.)	1	%	124	112

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Dec 27, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons	Melbourne	Dec 27, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jan 03, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Dec 27, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Eurofins mgt Suite B1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 03, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 03, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Water by GCMS			
Metals M8	Melbourne	Dec 27, 2017	28 Days
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Metals M8 filtered	Melbourne	Dec 27, 2017	28 Day

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

578955

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: CONCORD SYDGE211253

Received: Dec 21, 2017 5:20 PM

 Due:
 Jan 2, 2018

 Priority:
 5 Day

Contact Name: Matthew Locke

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa		TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B1	BTEXN and Volatile TRH		
Melb	ourne Laborato		Х	Х	Х	Х	Х	Х	Х			
Sydr	ney Laboratory	- NATA Site # 1	8217									
Brisl	bane Laborator	y - NATA Site #	20794									
Pertl	h Laboratory - N	NATA Site # 237	36									
Exte	rnal Laboratory	,										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	BH102_GME	Dec 21, 2017		Water	M17-De32014		Х		Х		Х	
2	BH205_GME	Dec 21, 2017		Water	M17-De32015		Х		Х		Х	
3	BH211_GME	Dec 21, 2017		Water	M17-De32016		Х		Х		Х	
4	BH302_GME	Dec 21, 2017		Water	M17-De32017		Х		Х		Х	
5	BH307_GME	Dec 21, 2017		Water	M17-De32018		Х		Х		Х	
6	BH310_GME	Dec 21, 2017		Water	M17-De32019		Х		Х		Х	
7	R1_21_12_17 _GME	Dec 21, 2017		Water	M17-De32020			Х				Х
8	DUP1_21_12_ 17_GME	Dec 21, 2017		Water	M17-De32021				Х			Х

Report Number: 578955-W-V2

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

578955

+61 2 9406 1000

+61 2 9406 1004

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: CONCORD SYDGE211253

Received: Dec 21, 2017 5:20 PM

Due: Jan 2, 2018
Priority: 5 Day

Contact Name: Matthew Locke

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail						Polycyclic Aromatic Hydrocarbons	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B1	BTEXN and Volatile TRH
Melbourn	e Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Х	Х	Х
Sydney La	aboratory	- NATA Site # 1	8217									
Brisbane	Laborator	y - NATA Site #	20794									
Perth Lab	oratory - N	ATA Site # 237	36									
9 TS1_ 7_GI	_21_12_1 VIE	Dec 21, 2017		Water	M17-De32022	Χ				Х		
10 TB1_ 7_GI	_21_12_1 VIE	Dec 21, 2017		Water	M17-De32023	Х				Х		
Test Cour	est Counts								7	2	6	2

Report Number: 578955-W-V2

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.
 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.001	Pass	
o-Xylene	mg/L	< 0.002	0.002	Pass	
Xylenes - Total	mg/L	< 0.003	0.001	Pass	
Method Blank	IIIg/L	< 0.003	0.003	Fass	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.00005	0.00005	Pass	
Acenaphthylene	mg/L	< 0.00005	0.00005	Pass	
Anthracene	mg/L	< 0.00005	0.00005	Pass	
Benz(a)anthracene	mg/L	< 0.00005	0.00005	Pass	
Benzo(a)pyrene	mg/L	< 0.00003	0.00003	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.00001	0.00001	Pass	
Benzo(g.h.i)perylene		< 0.00005	0.00005	Pass	
10 /1 /	mg/L				
Benzo(k)fluoranthene	mg/L	< 0.00005	0.00005	Pass	
Chrysene	mg/L	< 0.00005	0.00005	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.00005	0.00005	Pass	
Fluoranthene	mg/L	< 0.00005	0.00005	Pass	
Fluorene	mg/L	< 0.00005	0.00005	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.00005	0.00005	Pass	
Naphthalene	mg/L	< 0.00005	0.00005	Pass	
Phenanthrene	mg/L	< 0.00005	0.00005	Pass	
Pyrene	mg/L	< 0.00005	0.00005	Pass	
Method Blank					
Heavy Metals	<u> </u>				
Arsenic	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	%	94	70-130	Pass	
Naphthalene	%	94	70-130	Pass	
TRH C6-C10	%	104	70-130	Pass	
TRH C6-C10	%	104	70-130	Pass	
TRH >C10-C16	%	105	70-130	Pass	
LCS - % Recovery	,,		10.100	1 5.55	
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	tions				
TRH C6-C9	%	112	70-130	Pass	
TRH C10-C14	%	119	70-130	Pass	
LCS - % Recovery	7,0	110	70 100	1 466	
BTEX					
Benzene	%	95	70-130	Pass	
Toluene	%	90	70-130	Pass	
Ethylbenzene	%	86	70-130	Pass	
m&p-Xylenes	%	86	70-130	Pass	
Xylenes - Total	%	87	70-130	Pass	
LCS - % Recovery	/0	07	10-130	Fass	
Polycyclic Aromatic Hydrocarbons		Т			
Acenaphthene	%	75	70-130	Pass	
•					
Acenaphthylene	%	82 84	70-130	Pass	
Anthracene	%		70-130	Pass	
Benz(a)anthracene	%	92	70-130	Pass	
Benzo(a)pyrene	%	95	70-130	Pass	
Benzo(b&j)fluoranthene	%	95	70-130	Pass	
Benzo(g.h.i)perylene	%	87	70-130	Pass	
Benzo(k)fluoranthene	%	108	70-130	Pass	
Chrysene	%	94	70-130	Pass	
Dibenz(a.h)anthracene	%	88	70-130	Pass	
Fluoranthene	%	94	70-130	Pass	
Fluorene	%	74	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	86	70-130	Pass	
Naphthalene	%	83	70-130	Pass	
Phenanthrene	%	87	70-130	Pass	
Pyrene	%	96	70-130	Pass	
LCS - % Recovery		1			
Heavy Metals	ı			_	
Arsenic	%	113	80-120	Pass	
Arsenic (filtered)	%	113	80-120	Pass	
Cadmium	%	97	80-120	Pass	
Cadmium (filtered)	%	97	80-120	Pass	
Chromium	%	112	80-120	Pass	
Chromium (filtered)	%	112	80-120	Pass	
Copper	%	105	80-120	Pass	
Copper (filtered)	%	105	80-120	Pass	
Lead	%	95	80-120	Pass	

Test	:		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Lead (filtered)			%	95			80-120	Pass	
Mercury			%	89			75-125	Pass	
Mercury (filtered)			%	89			70-130	Pass	
Nickel			%	107			80-120	Pass	
Nickel (filtered)			%	107			80-120	Pass	
Zinc			%	93			80-120	Pass	
Zinc (filtered)			%	93			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	tions		Result 1					
Naphthalene	B17-De32294	NCP	%	112			70-130	Pass	
Naphthalene	B17-De32294	NCP	%	112			70-130	Pass	
TRH C6-C10	B17-De32294	NCP	%	126			70-130	Pass	
TRH C6-C10	B17-De32294	NCP	%	126			70-130	Pass	
TRH >C10-C16	Z17-De24602	NCP	%	71			70-130	Pass	
Spike - % Recovery	,								
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	tions		Result 1					
TRH C6-C9	B17-De32294	NCP	%	128			70-130	Pass	
TRH C10-C14	Z17-De24602	NCP	%	76			70-130	Pass	
Spike - % Recovery	217 0024002	1101	70	10			70 100	1 400	
BTEX				Result 1					
Benzene	B17-De32294	NCP	%	123			70-130	Pass	
	B17-De32294	NCP	%	118			70-130	Pass	
Toluene									
Ethylbenzene	B17-De32294	NCP	%	115			70-130	Pass	
m&p-Xylenes	B17-De32294	NCP	%	114			70-130	Pass	
o-Xylene	B17-De32294	NCP	%	112			70-130	Pass	
Xylenes - Total	B17-De32294	NCP	%	113			70-130	Pass	
Spike - % Recovery				Ι	1				
Heavy Metals	T			Result 1					
Arsenic (filtered)	M17-De32014	CP	%	107			70-130	Pass	
Cadmium (filtered)	M17-De32014	CP	%	99			70-130	Pass	
Chromium (filtered)	M17-De32014	CP	%	101			70-130	Pass	
Copper (filtered)	M17-De32014	CP	%	98			70-130	Pass	
Lead (filtered)	M17-De32014	CP	%	98			70-130	Pass	
Mercury (filtered)	M17-De32014	CP	%	113			70-130	Pass	
Nickel (filtered)	M17-De32014	CP	%	100			70-130	Pass	
Zinc (filtered)	M17-De32014	CP	%	101			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	B17-De29560	NCP	%	114			75-125	Pass	
Cadmium	B17-De29560	NCP	%	96			75-125	Pass	
Chromium	B17-De29560	NCP	%	109			75-125	Pass	
Copper	B17-De29560	NCP	%	101			75-125	Pass	
Lead	B17-De29560	NCP	%	98			75-125	Pass	
Mercury	B17-De29560	NCP	%	101			70-130	Pass	
Nickel	B17-De29560	NCP	%	102			75-125	Pass	
Zinc	B17-Dc29560	NCP	%	93			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		Journe					Liiillo		
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M17-De32329	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M17-De32329	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	M17-De32014	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		000.00							550.5
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C16-C34	M17-De32014	СР	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M17-De32014	СР	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate		•	- ŭ		,				
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M17-De32329	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M17-De32014	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M17-De32014	СР	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M17-De32014	СР	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate		•	J		,				
BTEX				Result 1	Result 2	RPD			
Benzene	M17-De32329	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M17-De32329	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M17-De32329	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M17-De32329	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M17-De32329	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M17-De32329	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate		•	J		,				
Polycyclic Aromatic Hydrocark	oons			Result 1	Result 2	RPD			
Acenaphthene	M17-De32014	СР	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Acenaphthylene	M17-De32014	СР	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Anthracene	M17-De32014	СР	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Benz(a)anthracene	M17-De32014	СР	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Benzo(a)pyrene	M17-De32014	СР	mg/L	< 0.00001	< 0.00001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M17-De32014	СР	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Benzo(g.h.i)perylene	M17-De32014	СР	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Benzo(k)fluoranthene	M17-De32014	CP	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Chrysene	M17-De32014	CP	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Dibenz(a.h)anthracene	M17-De32014	CP	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Fluoranthene	M17-De32014	CP	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Fluorene	M17-De32014	CP	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M17-De32014	CP	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Naphthalene	M17-De32014	CP	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Phenanthrene	M17-De32014	CP	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Pyrene	M17-De32014	СР	mg/L	< 0.00005	< 0.00005	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	M17-De32014	CP	mg/L	0.002	0.002	<1	30%	Pass	
Cadmium (filtered)	M17-De32014	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M17-De32014	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M17-De32014	CP	mg/L	0.002	0.002	4.0	30%	Pass	
Lead (filtered)	M17-De32014	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	M17-De32014	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M17-De32014	CP	mg/L	0.006	0.006	1.0	30%	Pass	
Zinc (filtered)	M17-De32014	CP	mg/L	0.028	0.030	4.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	B17-De29560	NCP	mg/L	0.001	0.001	1.0	30%	Pass	
Cadmium	B17-De29560	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	B17-De29560	NCP	mg/L	0.001	0.002	27	30%	Pass	
Copper	B17-De29560	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	B17-De29560	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	B17-De29560	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Nickel	B17-De29560	NCP	mg/L	0.001	0.001	16	30%	Pass	
Zinc	B17-De29560	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

This report has been revised (V2) to amend BTEX and volatile test results for sample M17-De32022.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Comments

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
R20	This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins; Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins; Imgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported everyein full and art relates only to the intens tested. Unliess indicated otherwise, the tests were performed on the samples as received.

Page 14 of 14 Report Number: 578955-W-V2

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Эсо Неу.сот @coffey.com Place Court to ALS Environmental Division felsptione : +61-3-8649 9600 Melbourne All Samples Recieved in Good Condition Sample Receipt Advice: (Lab Use Only) All Cocumentation is in Proper Order Samples Received Property Chilled Einail Stonon, hay Analysis Request Section Jub Rei/Batch No. Mobile: 0424 763 CC3 Container Type & Preservation Codes: P - Plastic, G. Glass Euctle, J - Glass Jan, V. Wal, Z - Ziplock Bag, N. Mitric Acid Preserved, C - Pydrochiotic Acid Preserved. 5/10/17 Date: P177 Time: (2,00 Time: Date: FELLENS OF (Alipads) 1-4-1 RECEIVED BY Container Type & Preservative * Consigning Offices Coffey Outswood 13.3. Punpunk: (Vi Chia Chia) Report Results to. Hullicui Locki 5 - Sulphuric Acid Preserved, 1 - Ice. ST - Sodium Thiosalfate, NP - No Prescryative, OP - Other Preservative Name Series (5011...410) Company: Of M.Ch. SPECIALISTS IN ENVIRONMENTAL.
SPECIAL ISTS AND SAFETY PERFORMANCE. INVOICES TO: DATE SCALE. Watch Matrix prose Project Manager: Oelp Bur Sic Market Tark No. Fre 10-ork Laboratory: English 21.12.14 Sample Date E FON Date: 21 . [Z - (] coffev ? environments Time: 🔆 151-21-12-17-4ME Dup 2 - 21 - 12 - 17 She RELINQUISHED BY アクーク・ロースー10名 RI-21-12-19-67 Time Date B H 205 - WWW. SYEE BH 211 - Alman STE BH 302. QWS 1 GRE Project No: SY09E 211 253 1 1130年一次44年 公司 THE MENTS TOLL HO Sample ID BH102 _ 4 work Ame: ON ON THE Sampler's Name: Summer Project Name: Concord Special Instructions: Coffey Environments ompany Lab No. SPAC BETE (SQ) ONITHING SMAWOO

(Received by Scott (ALS) 28/12/17, 12.35

Issue Date: 24/08/2012

Coffey Environments

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM1717738

Client : COFFEY GEOTECHNICS Laboratory : Environmental Division Melbourne

Contact : DELFA SARABIA Contact : Bronwyn Sheen

Address : Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : +61 02 9911 1000
 Telephone
 : +61-3-8549 9636

 Facsimile
 : +61 02 99111001
 Facsimile
 : +61-3-8549 9601

Project : SYDGE211253 Page : 1 of 2

 Order number
 : --- Quote number
 : EM2017COFGEO0002 (EN/077/16)

 C-O-C number
 : 110352
 QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : SH

Dates

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Not Available

No. of coolers/boxes : 1 Temperature : 9.7°C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.

: 28-Dec-2017 Issue Date

Page

2 of 2 EM1717738 Amendment 0 Work Order : COFFEY GEOTECHNICS Client

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time - W-18 - C9)/BTEXN component Matrix: WATER /ATER-Client sample ID Laboratory sample Client sampling ID date / time 21-Dec-2017 00:00 | Dup2_21_12_17_GME EM1717738-001

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

DELFA SARABIA

2 = 2		
- *AU Certificate of Analysis - NATA (COA)	Email	delfa_sarabia@coffey.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	delfa_sarabia@coffey.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	delfa_sarabia@coffey.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	delfa_sarabia@coffey.com
- A4 - AU Tax Invoice (INV)	Email	delfa_sarabia@coffey.com
- Chain of Custody (CoC) (COC)	Email	delfa_sarabia@coffey.com
- EDI Format - ENMRG (ENMRG)	Email	delfa_sarabia@coffey.com
- EDI Format - ESDAT (ESDAT)	Email	delfa_sarabia@coffey.com
MATTHEW LOCKE		
- *AU Certificate of Analysis - NATA (COA)	Email	matthew.locke@coffey.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	matthew.locke@coffey.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	matthew.locke@coffey.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	matthew.locke@coffey.com
- Chain of Custody (CoC) (COC)	Email	matthew.locke@coffey.com
- EDI Format - ENMRG (ENMRG)	Email	matthew.locke@coffey.com
- EDI Format - ESDAT (ESDAT)	Email	matthew.locke@coffey.com
SIMON HAY		
- *AU Certificate of Analysis - NATA (COA)	Email	simon.hay@coffey.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	simon.hay@coffey.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	simon.hay@coffey.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	simon.hay@coffey.com
- Chain of Custody (CoC) (COC)	Email	simon.hay@coffey.com
- EDI Format - ENMRG (ENMRG)	Email	simon.hay@coffey.com
- EDI Format - ESDAT (ESDAT)	Email	simon.hay@coffey.com

CERTIFICATE OF ANALYSIS

Work Order : **EM1717738**

Client : COFFEY GEOTECHNICS

Contact : DELFA SARABIA

Address

Telephone : +61 02 9911 1000
Project : SYDGE211253

Order number : ----

C-O-C number : 110352
Sampler : SH
Site : ----

Quote number : EN/077/16

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 4

Laboratory : Environmental Division Melbourne

Contact : Bronwyn Sheen

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9636

Date Samples Received : 28-Dec-2017 12:35

Date Analysis Commenced : 29-Dec-2017

Issue Date : 03-Jan-2018 10:35

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Eric Chau Metals Team Leader Melbourne Inorganics, Springvale, VIC
Xing Lin Senior Organic Chemist Melbourne Organics, Springvale, VIC

Page : 2 of 4

Work Order : EM1717738

Client : COFFEY GEOTECHNICS

Project : SYDGE211253

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

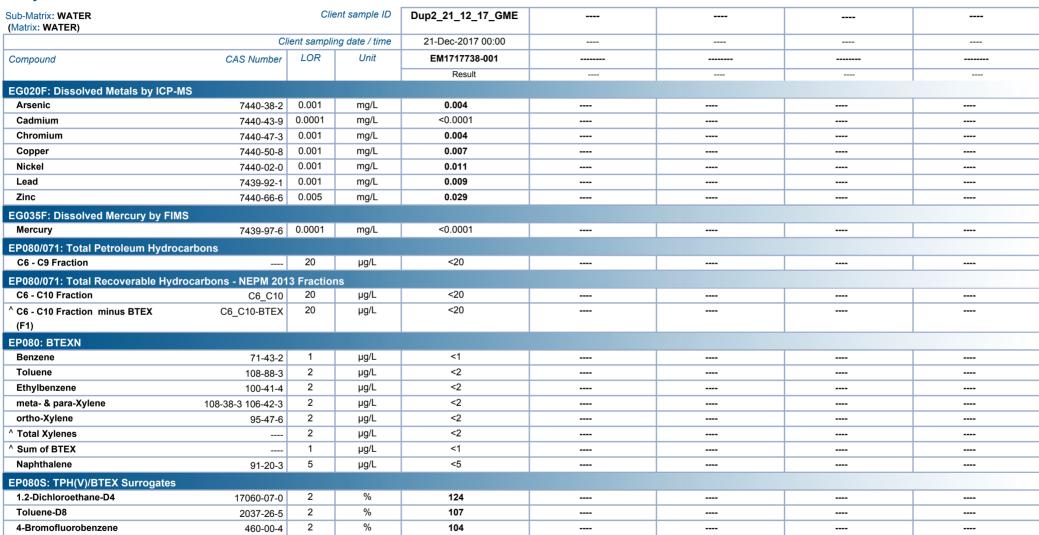
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : EM1717738

Client : COFFEY GEOTECHNICS

Project : SYDGE211253

Analytical Results

Page : 4 of 4
Work Order : EM1717738

Client : COFFEY GEOTECHNICS

Project : SYDGE211253

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	73	129	
Toluene-D8	2037-26-5	70	125	
4-Bromofluorobenzene	460-00-4	71	129	

DATA COMPLETENESS

Field Considerations

	Yes	No	Comments
Were all critical locations sampled?			Sampling was carried out in general accordance with the proposal, sampling constraints are discussed in Section 10 of this report.
Were all critical depths sampled?			Sampling was carried out in general accordance with the proposal, sampling constraints are discussed in Section 10 of this report.
Were the SOPs appropriate and complied with?	\boxtimes		Coffey Environments Standard Operating Procedures (SOP) are consistent with relevant guidelines and were complied with by field staff.
Was the sampler adequately experienced?	\boxtimes		Samples were collected by trained and appropriately experienced staff members from Coffey Environments.
Was the field documentation complete?	\boxtimes		Daily field logs and records were compiled on-site by the Coffey Environments staff members. Samples selected for analysis were scheduled on the COC provided in Appendix F.
Is a copy of the signed chain of custody form for each batch of samples included?	\boxtimes		Copies are included in Appendix F.

Laboratory Considerations

	Yes	No	Comment
Were all requested samples analysed?	\boxtimes		Samples scheduled on the COC were analysed for the analytes requested.
Were the laboratory methods appropriate?	\boxtimes		Methods used were the recommended industry methods/ standards and/or NATA accredited methods
Were the laboratory methods adopted NATA endorsed?	\boxtimes		Laboratory analytical reports are provided in Appendix F.
Was the NATA Seal on the laboratory reports?	\boxtimes		Laboratory analytical reports are provided in Appendix F.

	Yes	No	Comment
Were the laboratory reports signed by an authorised person?	\boxtimes		Laboratory reports were signed by authorised signatories using electronic signatures.
Were the laboratory LORs below the assessment criteria?	\boxtimes		N/A
Was sample documentation complete?			COCs were filled out correctly at time of dispatch and receipt, they are included with the sample receipt and analysis reports provided by the laboratories.
Were sample holding times complied with?	\boxtimes		N/A
Custody Seals intact (if used)			N/A
Attempt to chill was evident			N/A
Sample correctly preserved			N/A
Appropriate sample containers have been used			N/A
Sample containers for volatile analysis received with minimal headspace			N/A

COMPLETENESS CONCLUSION

	Yes	No	Comment
Was data adequately complete?	\boxtimes		Based on the information in the previous sections, Coffey is of the opinion that the data was adequately complete for the objective of the works.

DATA COMPARABILITY

Field considerations

	Yes	No	Comment
Was there more than one sampling round?			Soil sampling was undertaken on the 23 rd of November and 14 th of December 2017. Groundwater sampling was undertaken on 21 st of December 2017.
Were the same sampling methodology and SOPs used for all sampling?	\boxtimes		N/A
Was all sampling undertaken by the same sampler?			Soil sampling was undertaken by Aidan Mackenzie, an experienced geologist from Coffey and Russel Copeland, a geotechnical engineer from Coffey. Coffey SOPs for sampling were followed at all times during sampling. Goundwater sampling was undertaken by Simon Hay, an Environmental Scientists from Coffey. Coffey SOPs for sampling were followed at all times during sampling.
Were sample containers, preservation, filtering the same?	\boxtimes		Containers used were supplied by the corresponding laboratories to provide appropriate sample storage.
Could climatic conditions (temperature, rainfall, wind) have influenced data comparability?			Coffey is of the opinion that the normal range of climatic conditions experienced over the sampling period would not significantly have affected data comparability. Samples were collected quickly and placed immediately in a cooled esky, where required.
Were the same types of samples collected (filtered, size fractions etc) for each media?	\boxtimes		Samples were collected in laboratory supplied jars, bags and bottles.

Laboratory Considerations

	Yes	No	Comment
Were the same analytical methods used (including clean up)?	\boxtimes		
Were the LORs the same?			LOR were generally the same.
Were the same laboratories used?	\boxtimes		As discussed in Section 13 of the report.
Were the units reported the same?			

COMPARABILITY CONCLUSION

	Yes	No	Comment
Was data adequately comparable?	\boxtimes		Overall, Coffey are of the opinion that the data was adequately comparable for the objective of the works.

DATA REPRESENTATIVENESS

Field Considerations

	Yes	No	Comment
Was appropriate media sampled?	\boxtimes		Sampling was carried out in general accordance with the proposal, sampling constraints are discussed in Section 10 of the report.
Were all media identified sampled?	\boxtimes		Sampling was carried out in general accordance with the proposal, sampling constraints are discussed in Section 10 of the report.
Were the samples properly and adequately preserved? This includes keeping the samples chilled, where applicable.	\boxtimes		Samples were immediately placed in ice chilled cooler boxes for transport where required, under COC conditions. Sample jars were sealed, with minimal remaining headspace. Soil and groundwater samples were received at the laboratories in a chilled condition.
Were the samples in proper custody between the field and reaching the laboratory?	\boxtimes		See COC documentation for this information.
Were the samples received by the laboratory in good condition?	\boxtimes		Laboratory sample receipts are provided in Appendix F.

REPRESENTATIVENESS CONCLUSION

	Yes	No	Comment
Was data adequately representative?			Coffey is in the opinion that the data were adequately representative for the objective of the works.

DATA PRECISION AND ACCURACY

Field considerations

	Yes	No	Comment
Were the SOPs appropriate and complied with?			Coffey Standard Operating Procedures (SOP) are consistent with relevant guidelines and were complied with by field staff.
Was sampling equipment calibrated?	\boxtimes		Calibration certificates are provided in Appendix H.

Summary of Media Sampled

Media	Number of Primary Samples Analysed	Days Sampling	Dates Sampling	Number of Batches	Primary Laboratory Report References
Soil	4	2	23/11/2017 14/12/2017	2	Eurofins 576600 Eurofins 577580
Water	6 samples total, 1 sample collected from a well located within the investigation area	1	21/12/2017	1	Eurofins 578955

Field Duplicate Samples

The purpose of duplicate samples were to estimate the variability of a given characteristic or contaminant associated with a population.

How were the	Media	Methodology
field duplicate samples collected?	Soil	Field duplicate soil samples were collected from soil immediately adjacent to the primary sample by placing approximately equal portions of the primary sample into two (2) sample jars. Samples were labelled so as to conceal their relationship to the primary sample from the laboratory.
	Groundwater	Duplicated groundwater samples were collected by placing approximately equal portions of the primary sample in approximately equal portions into the appropriate sets of vials. Samples were labelled so as to conceal their relationship to the primary sample from the laboratory.

What field duplicate samples were analysed?	Media	Primary Sample	Intra-lab Duplicates	Inter-lab Duplicates	
	Soil	BH101/0.05-0.2	Dup1_14.12.17	Dup2_14.12.17	
	Groundwater	BH211_GME	Dup1_21_12_17_GME	Dup1_21_12_17_GME	

What was the rate of duplicate samples	Media	Analyte	No of Primary Samples Analysed	Intra-lab Duplicates Analysed		Inter-l Duplica Analys	ates
analysed?				Quantity	Rate	Quantity	Rate
	Soil	Metals	4	1	>1:20	1	>1:20
	Soil	TRH	4	1	>1:20	1	>1:20
	Soil	BTEX	4	1	>1:20	1	>1:20
	Soil	PAH	4	1	>1:20	1	>1:20
What was the rate of duplicate samples	Media	Analyte	No of Primary Samples Analysed	Intra-l Duplica Analys	ates	Inter-l Duplica Analys	ates
analysed?				Quantity	Rate	Quantity	Rate
	Groundwater	Metals	6	1	>1:20	1	>1:20
	Groundwater	TRH	6	1	>1:20	1	>1:20
	Groundwater	BTEX	6	1	>1:20	1	>1:20

	Media	Yes	No (Comment Below)
Were an adequate number of field duplicates analysed?	Soil	\boxtimes	
	Groundwater	\boxtimes	
Comments			

Relative percent differences (RPDs) were calculated for each of the duplicate samples analysed. RPDs were calculated by dividing the difference between the primary sample and duplicate sample by the average of the two, as shown below:

RPD =
$$\frac{(X_1 - X_2)}{(X_1 + X_2)/2} \times 100\%$$

Where: X_1 = Primary sample result; and

 X_2 = Replicate sample result.

When calculating the RPDs, the following procedures were also	RPDs were only considered when a concentration was greater than 10 x LOR.
considered	In instances where results were greater than the LOR for the one (1) sample, but below LOR for the corresponding primary or duplicate sample, an RPD was not calculated.

Were RPD results within acceptable limits??	Media	Results Table Reference	Yes	No (Comment Below)
	Soil	Table T2		

Comments

RPDs were found to be within the acceptable limits with the exception of PAHs, select metals and select TRH fractions between primary and intra-lab and inter-lab duplicates, which were exceeded. It is considered likely that these RPD exceedances are attributed to the heterogeneity of the fill rather than sampling and analysis methodology and procedures. Furthermore, concentrations of the select analytes in duplicate samples were generally in the same order of magnitude and the concentrations of analytes in both the interlab and intralab duplicates did not exceed the adopted assessment criteria. Overall, these exceedances are not considered to have impacted the results of the investigation.

Were RPD results within acceptable limits??	Media	Results Table Reference	Yes	No (Comment Below)
	Groundwater	Table T5		

Comments

While RPDs for select metals were exceeded, concentrations were less than 10 times the LOR and were therefore not considered.

Trip Blanks

Trip blanks assess the potential for cross contamination between transit from the site to the laboratory. Samples were analysed for volatile compounds. The trip blank samples were prepared by the primary laboratories, carried to the field unopened and subjected to the same preservation methods as the primary field samples.

What trip blank samples were analysed? What was the rate of trip blank samples analysed?	Media	Quantity Analysed	Sample ID	Rate
	Groundwater	1	TB1_21_12_17_GME	1 per phase

Were an adequate number of trip blanks analysed to meet the data quality indicators?	Media	Yes	No (Comment Below)
	water	\boxtimes	
Comments			

Were the trip blank results within acceptable limits?	Media	Results Table Reference	Yes	No (Comment Below)
	Soil	Table T6	\boxtimes	
Comments				

Trip Spikes

Trip spikes are assessed for the potential loss of volatile constituents from samples whilst in transit from the site to the laboratory. The trip spike samples were prepared by the primary laboratories, and contained a known concentration of volatile compounds.

What trip spike samples were analysed? What was the rate of trip spike	Media	Quantity Analysed	Sample ID	Rate
samples analysed?				
	Groundwater	1	TS1_21_12_17_GME	1 per phase

Were an adequate number of trip blanks analysed to meet the data quality indicators?	Media	Yes	No (Comment Below)
	water	\boxtimes	
Comments			

Were the trip spike results within acceptable limits?	Media	Results Table Reference	Yes	No (Comment Below)
	Soil	Table T6	\boxtimes	
Comments	•		•	

Rinsate Blanks

Rinsate blanks consist of pre-preserved bottles filled with laboratory prepared water that is passed over decontaminated field equipment and then collected in containers used for the sampling process. Rinsate blanks were preserved in a similar manner to the original samples. The rinsate blank was a check on decontamination procedures.

What rinsate blank samples were analysed? What was the rate of rinsate blank samples analysed?	Media	Quantity Analysed	Sample ID	Rate
	Soil	1	R1_14.12.17	1 per phase
	Groundwater	1	R1_21.12.17	

Were an adequate number of rinsate blank samples analysed?	Media	Yes	No (Comment Below)
	Soil	\boxtimes	
	Groundwater		
Comments			

Were the rinsate blank results within acceptable limits?	Media	Results Table Reference	Yes	No (Comment Below)
	Soil	Table T3		\boxtimes
	Groundwater	Table T6	\boxtimes	

Comments

Zinc in rinsate sample R1_14.12.17 was detected marginally above the LOR of 0.005 mg/L at 0.0006 mg/L. This is not considered to affect the outcome of the investigation.

Field QA/QC Statement

Field QA/QC was:		☐ Unsatisfactory
	☐ Partially Satisfactory	

Comments					
Laboratory Considerations	<u> </u>				
Methods					
the analytical procedures an analysis of laboratory blanks	d instr sampl tory C	umer es, du	nt acc uplica	quality program for assessment of the repeatability uracy under their NATA accreditation. This included be samples, spike samples, control samples and edures and results are described within the laborat	i
Results					
laboratory's NATA guidelines recoveries has been used to data was assessed in relatio	s. Furt scree n to si impac	herm n lab pecific	ore, tl orator c labo	s were reviewed and were consistent with the ne adoption of the general advisory ranges for specty data. Where recoveries were outside these range ratory comments, published industry 'norms' for spectrory comments, published industry 'norms' for spectrory comments.	s the
The laboratory internal QA/QC	was:			☐ Satisfactory ☐ Unsatisfactory	
				☐ Partially Satisfactory	
Comments					
DATA PRECISION AND ACCU	JRACY	CON	CLUS	ION	
	Yes	No	Com	ment	
Was data adequately precise and accurate?	\boxtimes			all, Coffey is of the opinion that the data were adequately se and accurate for the objective of the works.	′
DATA USABILITY					
Data Directly Usable					
Data Usable with the following	ng con	sider	ations		\boxtimes
Data Not Usable.					

Considerations

Variability in PAHs, select metals and TRH fractions was noted between primary and duplicate samples, however the results are considered to be representative of the conditions at the time of sampling. The variability was likely attributable to the heterogeneity of contamination distribution in the material sampled.

Equipment Report - Solinst Model 122 Interface Meter

This Meter	has been p	erformance of	checked / ca	librated* as follows:		
Cleaned/T Probe Tape/Re	el		Pass? Yes	□No	i	
			ns are receiv	Checked by: yed and that all items are call charge may be applied		
Items not	returned will	be billed for	at the full re	placement cost.		
Sent	Received	Returned	Plastic Box Spare 9V B	check OK c / Bag Battery Qty aning Brush		
			Decon Instruction Tape Guide	leaflet		
Droops	□ sors Signatur		7			
1100030	ors digitator	c/ mitais	100			
Quote	Reference	csoo	1961	Condition on return		
Cı	stomer Ref	- William				
E	quipment ID	SOLIZ	2-25			
Equipme	nt serial no.	2373	574			
	Return Date	1	1			
F	Return Time			The state of the s		

r none. (r ree can) i	300 735 295	Fax: (Free Call) 1800 675 1	123 Emai	: RentalsAU@Thermofisher.com
Melbourne Branch	Sydney Branch	Adelaide Branch	Brisbane Branch	Perth Branch
5 Caribbean Drive,	Level 1, 4 Talavera Road,	27 Beulah Road, Norwood,	Unit 2/5 Ross St	121 Beringarra Ave
Scoresby 3179	North Ryde 2113	South Australia 5067	Newstead 4006	Malaga WA 6090

Equipment Report - Micropurge Flow Cell

Operation	ns Check				
Clean	decon				
Date:	solulzon	7		Checked by: Dave o'N	
eturn. A	minimum \$2	0 cleaning /	service / re	eived and that all items are cleaned and decepair charge may be applied to any unclean replacement cost.	contaminated before or damaged items.
Sent	Received	Returned	Item		
			Sample	Pro Pump	
			Flow Cel		
	П		3-way va	ng tubes (3)	
DE	П		Optional		
D	П		Optional	Cable	
D	0		_		
			-		
Proces	sors Signatur	e/ Initials	TA		
Quot	e Reference	C5007	7961	Condition on return	
С	ustomer Ref		101		
	quipment ID	EFLSOR	2-22		
Е	ent serial no.				1
E Equipme	ent serial no. Return Date	1	1		

	"We do more than	n give you great equipment W	e give you great so	olutions!"
	e Call) 1300 735 295	Fax: (Free Call) 1800 675 1		Email: RentalsAU@Thermofisher.com
Melbourne Branch 5 Caribbean Drive, Scoresby 3179	Sydney Branch Level 1, 4 Talavera Road, North Ryde 2113	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4006	Perth Branch 121 Beringarra Ave Malaga WA 5090
leeue 5		0 44		malaya VIA 0000

G0548

Equipment Certification Report - TPS 90FLMV Water Quality Meter

Conductivity 12.88mS/cm	
Dissolved Sodium Sulphite O O ppm 9 O ppm 5 Saturation in Air 30 Check only Redox (ORP) * Operability test +/- 10% 2 4 / mV * This meter uses an Ag/AgCl ORP electrode. To convert readings to SHE (Standard Hydrogen Electrode mV reading. Battery Status 7 4 (min 7.2V) Electrical Safety Tag attached (AS/NZS 3760) Tag No: 600507 Valid to: 26/02/2072	306264 253(ss) 0125(DI) 306358(A) 306679(B) 2trode), add 199mV to the
Dissolved Oxygen Sodium Sulphite O O ppm In Sodium Sulphite Saturation in Air Sodium Sulphite Saturation in	253(ss) 0125(DI) 306358(A) 306679(B) trode), add 199mV to the
Oxygen / Air in Sodium Sulphite Saturation in Air 30 Check only Redox Electrode operability test +/- 10% 2 4 / mV * This meter uses an Ag/AgCl ORP electrode. To convert readings to SHE (Standard Hydrogen Electrode) Tag No: 600507 Valid to: 26/02/2072	306358(A) 306679(B) trode), add 199mV to the
Redox (ORP) * Deprability test	306679(B) 4 trode), add 199mV to the
* This meter uses an Ag/AgCl ORP electrode. To convert readings to SHE (Standard Hydrogen Electrode MV reading. Battery Status (min 7.2V) Electrical Safety Tag attached (AS/NZS 3760) Tag No: 600507 Valid to: 26/02/2072	306679(B) 4 trode), add 199mV to the
* This meter uses an Ag/AgCl ORP electrode. To convert readings to SHE (Standard Hydrogen Electrode mV reading. Battery Status	trode), add 199mV to the
rate	
Signed:	
Please check that the following items are received and that all items are cleaned and decorninimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged billed for at the full replacement cost.	taminated before return items. Items not return
Sent Returned Item	
90FLMV Unit. Ops check/Battery status: 8.0	
90FLMV Unit. Ops check/Battery status: pH sensor with wetting cap, 5m Conductivity/TDS/Temperature K=10 sensor, 5m Dissolved oxygen YSI5739 sensor with wetting cap, 5m	

Sent	Returned	Item
		90FLMV Unit. Ops check/Battery status: 8 0
		pH sensor with wetting cap, 5m
		Conductivity/TDS/Temperature K=10 sensor, 5m
		Dissolved oxygen YSI5739 sensor with wetting cap, 5m
		Redox (ORP) sensor with wetting cap, 5m
4		Power supply 240V to 12V DC 200mA
		Instruction Manual
	H	Quick Guide
8	H	Syringe with storage solution for pH and ORP sensors
	H	Carry Case
		Check to confirm electrical safety (tag must be valid)
Date: 3	0/11/201	7
	16	
Signed:	1D	

TFS Reference	CS007961	Return Date: / /
Customer Reference		Return Time:
Equipment ID	90FLMV - Z	Condition on return:
Equipment Serial No.	W4488	

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free Call) 1300 735 295 Fax: (Free Call) 1800 675 123 Email: RentalsAU@Thermofisher.com

Melbourne Branch
5 Carlbbean Drive,
5 Carlbbean Drive,
6 Carlbbean Drive,
8 North Ryde 2113 Adelaide Standh
7 South Australia 5067 Perts Brisbane Branch
121 Beringarra Ave
Malaca WA 5090
Malaca WA 5090

Equipment Report - Solinst Model 122 Interface Meter

Cleaned/Tested		Pass? tye	s
DProbe			
Tape/Reel			Q 01/9-01/
Performance Test &	Battery Volt	age Check	(v) 8.0v minimum
			1, 0.07 1111111111111
Date: 20/12	12017		_Checked by:
			Checked by:
Signed:			
Please check that the	fallowing iter	ns are recei	ved and that all items are cleaned and decontaminated before
return. A minimum \$2	0 cleaning /	service / rep	air charge may be applied to any unclean or damaged items
Items not returned will	be billed for	at the full re	placement cost.
Sent Received	Returned	Item	
			s check OK
		Plastic Box	
			Battery Qtyaning Brush
	0	Decon	aning brush
0		Instruction	leaflet
		Tape Guid	e
Processors Signatur	e/ Initials	MS	
Quote Reference	(200	8090	Condition on return
Customer Ref			
Equipment ID	S1226	osa	- Control of the Cont
Equipment serial no.	12200	5093-1	
Return Date	The state of the s	1	
Return Time			
	,		

	"We do more than	n give you great equipment We	give you great solu	tions!"
Phone: (Fre	e Call) 1300 735 295	Fax: (Free Call) 1800 675 12		mail: RentalsAU@Thermofisher.com
5 Caribbean Drive, Scoresby 3179	Sydney Branch Level 1, 4 Talavera Road, North Ryde 2113	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4005	Perth Branch 121 Beringarra Ave Malaca WA 5090

Sue 5 Sep 11 G0561

Equipment Certification Report - TPS 90FLMV Water Quality Meter

Sensor	Concentra	tion	Span 1	Span 2	Traceability Lot #	Pass?
рН	pH 7.00 / pH	4.00	7.00 pH	4.01 pH	309016/308872	
Conductivity	12.88mS/cm	n.	O, O mS/cm	12.88 mS/cm	309852	ď
TDS	36 ppk		O.O ppk	36.0 ppk	306764	
Dissolved Oxygen	Sodium Sul / Air	lphite	0.0 ppm in Sodium Sulphite	9.05 ppm Saturation in Air	306 207	
heck only				111111111111111111111111111111111111111		
Redox (ORP) *	Electrod operability		240mV +/- 10%	237 mV	306358 306679	
Valid	to: 12/0	13/24	0/8			
Signed: Please check ninimum \$30 silled for at the plant of the	cleaning / sense full replacem	Item 90FLMV pH sense Conducti Dissolve Redox (C Power se Instructio Quick Ge Syringe Carry Ca Check to	Unit. Ops check/Bat or with wetting cap, 5 ivity/TDS/Temperatu d oxygen YSI5739 s DRP) sensor with we upply 240V to 12V D on Manual uide with storage solution	tery status: K=10 sensor, 5m ensor with wetting cap, tting cap, 5m	rs	fore retur
igned: lease check hinimum \$30 illed for at the sent Date:	that the follow cleaning / sense full replacem	Item 90FLMV pH sense Conducti Dissolve Redox (C Power se Instruction Quick G Syringe Carry Ca Check to	Unit. Ops check/Bat or with wetting cap, 5 ivity/TDS/Temperatu d oxygen YSI5739 s DRP) sensor with we upply 240V to 12V D on Manual uide with storage solution ase o confirm electrical se	tery status: te	5m	fore retur
Signed:Signed:Signed:Signed:Signed:Signed:Signed:Signed:	that the follow cleaning / sense full replacements Returned	Item 90FLMV pH sense Conducti Dissolve Redox (C Power se Instructio Quick Ge Syringe Carry Ca Check to	Unit. Ops check/Bat or with wetting cap, 5 ivity/TDS/Temperatu d oxygen YSI5739 s DRP) sensor with we upply 240V to 12V D on Manual uide with storage solution ase o confirm electrical se	tery status: te	5m	fore returnot return
Signed: Signed: Please check ninimum \$30 iilled for at the Sent Date: Signed: TFS Customer	that the follow cleaning / sense full replacem	Item 90FLMV pH sense Conducti Dissolve Redox (C Power se Instruction Quick G Syringe Carry Ca Check to	Unit. Ops check/Bat or with wetting cap, 5 ivity/TDS/Temperatu d oxygen YSI5739 s DRP) sensor with we upply 240V to 12V D on Manual uide with storage solution ase o confirm electrical se	tery status: te	5m	fore returnot return

Email: RentalsAU@Thermofisher.com

Peth Branch
121 Berlingara Ave
Malaga WA 6990 Phone: (Free Call) 1300 735 295
anch
Style, Style, Branch
Level 1, 4 Tallovers Road,
North Ryde 2113

Equipment Report - MiniRAE 3000 PID

Lamp	Compound	Concentration	Zero	Span	Traceability Lot #	Pass?
10.6 eV	Isobutylene	100ppm	O ppm	(00 ppm	389261 Cy19	
larm Limits		В	ump Test		S. L.	
High	100 ppm		Date	Target Gas	Reading	Pass?
Low	50 ppm		14/12/17	[DO ppm	(00 ppm	
Tag No: Valid to: ate:(4()) gned:ease check that th	atus (Min 5.5 volts) Tag attached (AS) 000981 6(61)18 12-(17	(NZS 3760)	at all items are c	☐ Data clean	ontaminated before ret	
led for at the full re	eplacement cost. turned Item Minif Lamp Prote Inlet Spar Char Crad Instru Quic Spar	RAE 2000 PID / Open 10.6 eV, Compountive yellow rubbe probe (attached to ewater trap filter(sign 240V to 12V12) de and Travel Charuction Manual behing Alkaline Battery (amountied amountied perational Check / ind Set to Isobuty r boot PID)) Qty	Battery Status lene, C/factor: 1	d items. Items not reti	urned w	
Sent Re	eplacement cost. turned Item Minif Lam Prote Inlet Spar Char Crad Instru Quic Spar	RAE 2000 PID / Open 10.6 eV, Compountive yellow rubbe probe (attached to ewater trap filter(sign 240V to 12V12) le and Travel Charuction Manual behing Alkaline Battery (a Moisture trap Filteration regulator & to cable and Softwar	perational Check / ind Set to Isobuty r boot PID)) Qty	Battery Status lene, C/factor: 1	d items. Items not reti	urned wi
Sent Re	eplacement cost. turned Item Minif Lam Prote Inlet Spar Char Crad Instru Quic Spar	RAE 2000 PID / Open 10.6 eV, Compountive yellow rubbe probe (attached to ewater trap filter(sign 240V to 12V12) de and Travel Charuction Manual behing Alkaline Battery (amountied amountied perational Check / ind Set to Isobuty r boot PID)) Qty	Battery Status lene, C/factor: 1	d items. Items not reti	urned wi	
Sent Re	eplacement cost. turned Item Minif Lam Prote Inlet Spar Char Crad Instru Quic Spar Calib Data Carry Chec	RAE 2000 PID / Open 10.6 eV, Compount of the probe (attached to ewater trap filter(sign 240V to 12V12) leand Travel Charuction Manual behick Guide Sheet behick Alkaline Battery (a Moisture trap Filter and Travel Charuction Manual behick Guide Sheet behick Alkaline Battery (a Moisture trap Filter ation regulator & Case and Software (Case and Software k to confirm electrical confirmation electrical	perational Check / ind Set to Isobuty r boot PID)) Qty	Battery Status lene, C/factor: 1	d items. Items not reti	urned wi
Sent Re	eplacement cost. turned Item Minif Lam Prote Inlet Spar Char Crad Instru Quic Spar Inline Calib Data Carry Chec	RAE 2000 PID / Open 10.6 eV, Compound of the Probe (attached to ewater trap filter(sign 240V to 12V12) leand Travel Charuction Manual behick Guide Sheet behick Alkaline Battery (a Moisture trap Filter attion regulator & Case confirm electric Recognition (Case confirm electric Recognition) Ret	perational Check / ind Set to Isobuty r boot PID)) Qty	Battery Status delene, C/factor: 1	d items. Items not reti	urned wi
sent Re Sent Re Sent Re TFS Refer	eplacement cost. turned Item Minif Lam Prote Inlet Spar Char Crad Instr Quic Spar Inline Calib	RAE 2000 PID / Ope 10.6 eV, Compound of the Probe (attached to ewater trap filter(see yellow rubbe probe (attached to ewater trap filter(see and Travel Charuction Manual behind Region Battery (see Alkaline Battery (see A	perational Check / ind Set to Isobuty r boot PID)) Qty	Battery Status delene, C/factor: 1	d items. Items not reti	urned wi

Phone: (Free Call) 1300 735 295
ch
kb, Sydney Branch
Level 1, 4 Talevera Road.
North Ryde 2113 Email: RentalsAU@Thermofisher.com
Perth Branch
121 Beringara Ave
Malaga WA 6090 Melbourne Branch 5 Caribbean Drive, Scoresby 3179 Issue 6

G0555