APPENDIX B UPDATED BDAR

Biodiversity Development Assessment Report

WELLINGTON NORTH SOLAR FARM

FEBRUARY 2021

www.nghenvironmental.com.au

Document Verification

Wellington North Solar Farm

Project Number:		17-382 & 20-483			
Project File Name:		Wellington North BDAR Final V3.0			
Revision	Date	Prepared by (name)	Reviewed by (name)	Approved by (name)	
Draft v1.0	13/04/18	Julie Gooding (Accredited	Dave Maynard (Accredited	Dave Maynard (Accredited	
		BAM Assessor BAAS18074)	BAM Assessor – BAAS17026)	BAM Assessor – BAAS17026)	
Final v1.0	28/05/18	Julie Gooding (Accredited	Dave Maynard (Accredited	Dave Maynard (Accredited	
		BAM Assessor BAAS18074)	BAM Assessor – BAAS17026)	BAM Assessor – BAAS17026)	
Final v2.0	7/06/18	Julie Gooding (Accredited	Dave Maynard (Accredited	Dave Maynard (Accredited	
		BAM Assessor BAAS18074)	BAM Assessor – BAAS17026)	BAM Assessor – BAAS17026)	
		Dave Maynard (Accredited			
		BAM Assessor – BAAS17026)			
		Minor changes			
Final v2.1	25/06/18	Julie Gooding (Accredited	Dave Maynard (Accredited	Dave Maynard (Accredited	
		BAM Assessor BAAS18074)	BAM Assessor – BAAS17026)	BAM Assessor – BAAS17026)	
Final v2.2	01/03/19	Julie Gooding (Accredited	Mitch Palmer (Accredited	Mitch Palmer (Accredited	
		BAM Assessor BAAS18074)	BAM Assessor – BAAS17051)	BAM Assessor – BAAS17051)	
Final v2.3	06/08/19	Julie Gooding (Accredited	Mitch Palmer (Accredited	Mitch Palmer (Accredited	
		BAM Assessor BAAS18074)	BAM Assessor – BAAS17051)	BAM Assessor – BAAS17051)	
Updated Project Number: 20-483					
Final V3.0	21/10/20	Beth Noel (Accredited BAM	Brooke Marshall (Accredited	Brooke Marshall (Accredited	
		Assessor BAAS19015)	BAM Assessor BAAS18149)	BAM Assessor BAAS18149)	
Final 3.1	03/12/20	Michelle Patrick (accredited	Beth Noel (Accredited BAM	Beth Noel (Accredited BAM	
		BAM assessor BAM19078)	Assessor BAAS19015)	Assessor BAAS19015)	
Final 3.2	02/02/21	Michelle Patrick (accredited	Beth Noel (Accredited BAM	Beth Noel (Accredited BAM	
		BAM assessor BAM19078)	Assessor BAAS19015)	Assessor BAAS19015)	

NGH Environmental prints all documents on environmentally sustainable paper including paper made from bagasse (a by-product of sugar production) or recycled paper.

NGH Environmental Pty Ltd (ACN: 124 444 622. ABN: 31 124 444 622)

e: ngh@nghenvironmental.com.au

Canberra - NSW SE & ACT

8/27 yallourn st (po box 62)

Bega - ACT and South East NSW 89-91 auckland st (po box 470) bega nsw 2550 (t 02 6492 8333)

fyshwick act 2609 (t 02 6280 5053) Wagga Wagga - Riverina and Western NSW suite 1, 39 fitzmaurice st (po box 5464)

wagga wagga nsw 2650 (t 02 6971 9696)

www.nghenvironmental.com.au

Sydney Region 18/21 mary st surry hills nsw 2010 (t 02 8202 8333)

Newcastle - Hunter and North Coast 2/54 hudson st hamilton nsw 2303 (t 02 4929 2301)

Brisbane suite 4, level 5, 87 wickham tce spring hill qld 4000 (t 07 3129 7633)

CONTENTS

ACRO	DNYMS AND ABBREVIATIONS	I
EXEC	CUTIVE SUMMARY	. 11
1	INTRODUCTION	. 1
1.1	THE PROPOSAL	1
1.2	THE DEVELOPMENT SITE	1
1.	2.1 Site location	1
1.	2.2 Site description	2
1.3	STUDY AIMS	4
1.4	DEFINITIONS	4
1.5	SOURCE OF INFORMATION USED IN THE ASSESSMENT	5
1.6	CONSULTATION	5
2	LANDSCAPE FEATURES	. 6
2.1	IBRA BIOREGIONS AND SUBREGIONS	6
2.2	NSW LANDSCAPE REGIONS AND AREA	6
2.3	NATIVE VEGETATION	6
2.4	CLEARED AREAS	7
2.5	RIVER AND STREAMS	8
2.6	WETLANDS	11
2.7	CONNECTIVITY FEATURES	12
2.8	AREAS OF GEOLOGICAL SIGNIFICANCE	12
2.9	AREAS OF OUTSTANDING BIODIVERSITY VALUE	12
2.10	SITE CONTEXT COMPONENTS	13
3	NATIVE VEGETATION	15
3.1	NATIVE VEGETATION EXTENT	15
3.2	PLANT COMMUNITY TYPES (PCTS)	17
3.	2.1 Methods to assess PCTs	17
3.	2.2 PCTs identified on the Development Site	18
3.3	VEGETATION INTEGRITY ASSESSMENT	27
3.	3.1 Vegetation zones and survey effort	27
3.	3.2 Paddock Trees	36
3.	3.3 Vegetation integrity assessment results	39
4	THREATENED SPECIES	39

4.1	L EC	OSYSTEM CREDIT SPECIES	39
	4.1.1	Species excluded from the assessment	.41
4.2	2 SP	ECIES CREDIT SPECIES	. 41
	4.2.1	Candidate species to be assessed	.41
	4.2.2	Exclusions based on habitat quality	.48
	4.2.3	Candidate species requiring confirmation of presence or absence	.49
	4.2.4	Targeted Species Surveys	. 52
4.3	B AD	DITIONAL HABITAT FEATURES RELEVANT TO PRESCRIBED BIODIVERSITY IMPACTS	62
	4.3.1	Occurrences of karst, caves, crevices and cliffs	.62
	4.3.2	Occurrences of rock	.62
	4.3.3	Occurrences of human made structures and non-native vegetation	.64
	4.3.4	Hydrological processes that sustain and interact with the rivers, streams and wetlands	.67
5	M	ATTERS OF NATIONAL ENVIRONMENTAL SIGNIFICANCE	68
5.1	L W	ETLANDS OF INTERNATIONAL IMPORTANCE	68
5.2	2 TH	REATENED ECOLOGICAL COMMUNITIES	68
5.3	3 TH	REATENED SPECIES	69
5.4	1 M	GRATORY SPECIES	. 69
6	A۱	OID AND MINIMISE IMPACTS	. 70
6.1	L AV	OIDING AND MINIMISING IMPACTS ON NATIVE VEGETATION AND HABITAT	. 70
	6.1.1	Site selection	.70
	6.1.2	Proposal components – consideration of alternate modes or technologies	.70
	6.1.3	Proposal planning phase – detailed design	.70
	6.1.4	Precautionary assessment approach	.71
6.2	2 AV	OIDING AND MINIMISING PRESCRIBED BIODIVERSITY IMPACTS	. 74
	6.2.1	Impacts of development on the habitat of threatened species associated with rocks	.74
	6.2.2	Impacts of development on the habitat of threatened species associated with human made structu	ures
			.74
	6.2.3	Impacts of development on the habitat of threatened species associated with non-native vegetat	
	6.2.4	Impacts of development on the connectivity of different areas of habitat of threatened species t facilitates the movement of those species across their range	
	6.2.5	Impacts of development on the connectivity of different areas of habitat of threatened species t facilitates the movement of threatened species that maintain their lifecycles	
	6.2.6	Impacts of development on water quality, water bodies and hydrological processes that sus	
		threatened species and threatened ecological communities	.75

7	IN	/IPACTS UNABLE TO BE AVOIDED
7.2	L D	IRECT IMPACTS
	7.1.1	Impacts to Native Vegetation
	7.1.2	Loss of species credit species habitat or individuals78
	7.1.3	Loss of Hollow-bearing trees
7.2	<u>2</u> IN	IDIRECT IMPACTS
7.3	B PI	RESCRIBED IMPACTS
	7.3.1	Impacts of development on the habitat of threatened species or ecological communities associated with rocks
	7.3.2	Impacts of development on the habitat of threatened species or ecological communities associated with non-native vegetation
	7.3.3	Impacts of development on the connectivity of different areas of habitat of threatened species that facilitates the movement of those species across their range
	7.3.4	Impacts of the development on movement of threatened species that maintains their life cycle83
	7.3.5	Impacts of development on water quality, water bodies and hydrological processes that sustain threatened species and threatened ecological communities
	7.3.6	Impacts of vehicle strikes on threatened species of animals or on animals that are part of a TEC84
7.4	1 IN	/PACTS TO MATTERS OF NATIONAL ENVIRONMENTAL SIGNIFICANCE
7.5	5 IN	/PACTS TO BIODIVERSITY VALUES THAT ARE UNCERTAIN
7.6	5 LI	MITATIONS TO DATA, ASSUMPTIONS AND PREDICTIONS
7.7	7 M	IITIGATION MEASURES
	7.7.1	Impacts from the clearing of vegetation and habitats88
	7.7.2	Indirect impacts
	7.7.3	Prescribed impacts
7.8	3 A	DAPTIVE MANAGEMENT STRATEGY
8	SI	ERIOUS AND IRREVERSIBLE IMPACTS (SAII)
8.2	L PO	OTENTIAL SERIOUS AND IRREVERSIBLE IMPACT ENTITIES
	8.1.1	Threatened ecological communities96
	8.1.2	Threatened species
	8.1.3	Additional potential entities
8.2	2 A	SSESSMENT OF SERIOUS AND IRREVERSIBLE IMPACTS
	8.2.1	White Box-Yellow Box-Blakely's Red Gum Woodland (Box-gum woodland)96
	8.2.2	Large Bent-winged Bat (Miniopterus orianae oceanensis)98
	8.2.3	Conclusion
9	R	EQUIREMENT TO OFFSET 105

9.1	IMPAC	S REQUIRING AN OFFSET 105
9.	1.1 Ecos	ystem credits
9.	1.2 Spec	ies credits
9.	1.3 Pado	ock Tree credits
9.	1.4 Offs	ets required under the EPBC Act108
9.2	IMPAC	S NOT REQUIRING AN OFFSET 108
9.3	AREAS	NOT REQUIRING ASSESSMENT 108
9.4	SUMM	RY OF OFFSET CREDITS REQUIRED 111
10	CONCL	JSION
11	REFERE	NCES 113
APPE	NDIX A	PERSONNELA-I
APPE	NDIX B	PADDOCK TREESB-I
APPE		
	NDIX C	FAUNA SPECIES RECORDED
APPE	NDIX C NDIX D	
		FAUNA SPECIES RECORDED C-I
APPE	NDIX D	FAUNA SPECIES RECORDED
APPE APPE	NDIX D NDIX E	FAUNA SPECIES RECORDED
APPE APPE APPE	NDIX D NDIX E NDIX F	FAUNA SPECIES RECORDED C-I FLORISTIC PLOT FIELD DATA D-I FLORISTIC PLOT PHOTOS E-I FIELD DATA SHEETS F-I
APPE APPE APPE APPE	NDIX D NDIX E NDIX F NDIX G	FAUNA SPECIES RECORDED C-I FLORISTIC PLOT FIELD DATA D-I FLORISTIC PLOT PHOTOS E-I FIELD DATA SHEETS F-I EPBC PROTECTED MATTERS SEARCH G-I

TABLES

Table 1-1 Consultation with relevant departments
Table 3-1 Description of PCT 266 in Development Site
Table 3-2 Description of PCT 437 in the Development Site
Table 3-3 Vegetation Zones within the Development Site 28
Table 3-4 Table of current vegetation integrity scores for each vegetation zone within the Development Footprint
Table 4-1 Ecosystem credit species40
Table 4-2 Candidate species credit species requiring assessment. 42
Table 4-3 Exclusions of flora species based on habitat quality48
Table 4-4 Exclusion of fauna species based on habitat quality 48
Table 4-5 Summary of species credit species surveyed at the Development Site
Table 4-6 Weather conditions during site surveys 53
Table 6-1 Vegetation zones avoided by the proposal
Table 7-1 Potential impacts to biodiversity during the construction and operational phases
Table 7-2 Table of current and future vegetation integrity scores for each vegetation zone within the Development Footprint (solar panels, laydown area, roads infrastructure). 77
Table 7-3 Table of current and future vegetation integrity scores for each vegetation zone within Transmission Line route
Table 7-4 Summary of species credit species loss at the Development Site 78
Table 7-5 Hollow bearing trees impacted by the proposal
Table 7-6 Potential impacts to biodiversity during the construction and operational phases
Table 7-7 Impacts by vehicle strikes. 84
Table 7-8: Koala habitat assessment tool for inland areas (DoE, 2014). 85
Table 7-9 Mitigation measures proposed to avoid and minimise impacts on native vegetation and habitat.
Table 8-1 Box-gum Woodland Vegetation Integrity Scores
Table 9-1 PCTs and vegetation zones that require offsets for the Development Site and Transmission Line
Table 9-2 Species credit species that require offsets 106

Table 9-3 Paddock Trees that require offsets with the Development Site	106
Table 9-4 PCTs and vegetation zones that do not require offsets	108
Table 9-5 Vegetation zones that do not require offsets	108
Table 9-6 Credit Requirements for the Development Footprint	111
Table 11-1 Fauna survey results from Development Site (Solar array)	C-II
Table 11-2 Fauna survey results (Transmission line easement)	C-XIII
Table 11-33 Flora Species List Transmission line route – (plot Tx 1 – Tx 15)	D-X

FIGURES

Figure 1-1 Site Map	3
Figure 2-1 Examples of cleared landscapes within the Development Site.	8
Figure 2-2 Tributary 1. Unnamed 3rd Order stream within the Development Site	9
Figure 2-3 Tributary 2. Unnamed 2nd order stream within the Development Site.	10
Figure 2-4 Tributary 3 Unnamed 1st order drainage line within the Development Site.	10
Figure 2-5 Tributary 7 Constructed Channel within the Development Site	11
Figure 2-6 Dam within the Development Site	12
Figure 2-7 Location map	14
Figure 3-1. Native vegetation extent within and surrounding the Development Site	16
Figure 3-2 PCTs and TECs at the Development Site (north)	25
Figure 3-3 PCTs and TECs at the Development Site (south).	26
Figure 3-4 Vegetation zones in the Development Site (north).	37
Figure 3-5 Vegetation zones in the Development Site (south)	38
Figure 4-1 Example of habitat from location of ANABAT.	57
Figure 4-2 Threatened species polygons and targeted survey locations (north).	60
Figure 4-3 Threatened species polygons and targeted survey locations (south).	61
Figure 4-4 Example of Rocky outcrop on hilltop	63
Figure 4-5 Example of manually piled rocky outcrop.	63
Figure 4-6 Example of rocky outcrops along the 3rd order stream	64

Figure 4-7 Man-made culvert within the Development Site.	65
Figure 4-8 Example of planted vegetation within the Development Site	66
Figure 4-9 Exotic vegetation within the Development Site.	66
Figure 6-1 Final Project footprint	73
Figure 8-1 Location of serious and irreversible impacts (north)	.103
Figure 8-2 Location of serious and irreversible impacts (south).	.104
Figure 9-1 Impacts requiring offset, not requiring offset, and not requiring assessment (north)	.109
Figure 9-2 Impacts requiring offsets, not requiring offset, and not requiring assessment (south)	.110

ACRONYMS AND ABBREVIATIONS

BAM	Biodiversity Assessment Methodology
BC Act	Biodiversity Conservation Act 2016 (NSW)
BDAR	Biodiversity Development Assessment Report
BOM	Australian Bureau of Meteorology
CEMP	Construction environmental management plan
CEEC	Critically Endangered Ecological Community
DECCW	Refer to OEH
DPIE	(NSW) Department of Planning, Industry and Environment
EEC	Endangered Ecological Community
EIA	Environmental impact assessment
EPBC Act	Environmental Protection and Biodiversity Conservation Act 1999 (Cwth)
EP&A Act	Environmental Planning and Assessment Act 1979 (NSW)
FM Act	Fisheries Management Act 1994 (NSW)
ha	hectares
НВТ	Hollow-bearing Tree
KFH	Key Fish Habitat
km	kilometres
LRET	Large Scale Renewable Energy Target
m	Metres
MNES	Matters of national environmental significance under the EPBC Act (c.f.)
NSW	New South Wales
OEH	(NSW) Office of Environment and Heritage, formerly Department of Environment, Climate Change and Water
РСТ	Plant Community Type
REAP	Regional Environmental Action Plan (NSW)
SSD	State Significant Development
SEARS	Secretary's Environmental Assessment Requirements
SAII	Serious and Irreversible Impact
SEPP	State Environmental Planning Policy (NSW)
sp/spp	Species/multiple species
TEC	Threatened Ecological Community

EXECUTIVE SUMMARY

The proposed Wellington North Solar Farm (the Project) includes the construction and operation of a 300 Megawatt (MW) photovoltaic (PV) solar farm and associated infrastructure within the Dubbo Regional Local Government Area, approximately 7km north-east of Wellington. The Project would develop approximately 803.54 ha for the main site and 15.48 ha for the transmission line easement. The entire development site is 1018 ha.

The original Biodiversity Development Assessment Report (BDAR, versions 1 - 2.3) was prepared by NGH Environmental on behalf of AGL. Lightsource bp have since acquired the Project and are requesting two alterations to the original proposal, requiring the BDAR to be amended. These amendments include:

- Amendments to the transmission line corridor, to account for the planned upgrade of the Wellington Substation infrastructure and allow flexibility in the detailed design of the transmission line. The proposed transmission line corridor is 60 metres wide from Goolma Road to Twelve Mile Road. However, the corridor widens to 200 metres between Twelve Mile Road and the Wellington Substation to allow for two different route options to be constructed for the transmission line (Option A and Option B). While flexibility is required as to which option would be constructed, for the purposes of this BDAR Option A has been selected, as it would have a larger biodiversity impact on White Box Woodland.
- Amendments to the Project's site access point. This access point was proposed as one operational site access point but will now serve as the Project's only construction and operational access point. Therefore, an upgraded intersection treatment is now required.

This BDAR V3.1 has been updated by NGH to reflect these two amendments to the Project. As the Biodiversity Conservation Division (BCD) have reviewed V2.3, this version highlights the changes made in to facilitate additional BCD review. As the amendments are within areas that have been previously assessed, additional surveys were not required. Mapping and impact areas have, however, been updated and the conclusions of the original assessment evaluated and updated as required.

The aim of this BDAR is to address the biodiversity matters raised in the Secretary's Environmental Assessment Requirements (SEARs) and to address the requirements of the *Biodiversity Conservation Act 2016*. This BDAR has been updated as part of the amendment report to address the changes for the transmission line easement and access. The amendment report and this BDAR form part of the Environmental Impact Statement (EIS) for a State Significant Development (SSD), which was prepared under Part 4 of the *Environmental Planning and Assessment Act 1979* (EP&A Act).

The Biodiversity Assessment Methodology 2017 (BAM) is the assessment methodology used for this SSD Project under the NSW Biodiversity Offsets Scheme prescribed by the NSW *Biodiversity Conservation Act 2016 (BC Act).* The BAM is established for assessing certain impacts on threatened species and threatened ecological communities and their habitats. This report follows the BDAR format required by the BAM.

Field surveys of the Development Site identified two plant community types (PCTs): White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266) and Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion (PCT 437). These vegetation communities are both listed as an Endangered Ecological Community (EEC): White Box-Yellow Box-Blakely's Red Gum woodland under the BC Act. The White Box Woodland in the transmission line easement meets the criteria for the EPBC listed community. An Assessment of Significance was completed (Appendix I) and it was determined no referral was required for the removal of White Box Woodland in the transmission line.

Consideration has been given to avoid and minimise impacts to EECs where possible. Site design options have been assessed against key environmental, social and economic criteria. Mitigation and management measures will be put in place to adequately address impacts associated with the proposal, both direct and indirect.

For biodiversity impacts that are unavoidable, the proposal would require the removal of:

- 11.16 ha of White Box grassy woodland (PCT 266)
- 92.80 ha of derived native grassland (PCT 266)
- 2.1 ha of planted woodland (aligning mostly to PCT 266)
- 2.1 ha of Yellow Box Grassy Woodland (PCT 437)
- 10.2 ha of planted woodland (aligning mostly to PCT 437)
- 55 paddock trees (aligning mostly to PCT 266 and PCT 437)

Two ecosystem credit species, Large Bent-winged Bat *Miniopterus orianae oceanensis* (Vulnerable, BC Act) and foraging Grey-headed Flying Fox *Pteropus Poliocephalus* (Vulnerable, BC Act) were detected during the site survey. These species are not considered to be breeding within the Development Site and are accounted for in the ecosystem credit requirements of the development determined by the PCT.

One species credit species, the Southern Myotis (*Myotis macropus*) was detected within the Development Site during the site surveys. 0.22ha of habitat for this threatened species (Hollow-bearing trees within 200m of a waterway) would be removed. Species credits were calculated from the BAM Calculator for this entity.

The transmission line route was surveyed at a later stage and six species credit species were unable to be surveyed during the appropriate survey times in the transmission line easement. The species that were assumed to have suitable habitat include Pink-tailed Legless Lizard, Glossy Black Cockatoo, Masked Owl and Barking Owl within the transmission line easement and generated credits within the BAM Calculator.

The following credits were generated as a result of the proposal:

- 322 ecosystem credits for impacts to White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266)
- 7 ecosystem credits for impacts to paddock trees from White Box grassy woodland2 in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266)
- 256 ecosystem credits for impacts to Yellow Box grassy woodland on lower hillslopes and valley flats in the Southern NSW Brigalow Belt South Bioregion (PCT 437).
- 25 ecosystem credits for impacts to paddock trees from Yellow Box grassy woodland on lower hillslopes and valley flats in the Southern NSW Brigalow Belt South Bioregion (PCT 437).
- 5 species credits for impacts to the Southern Myotis
- 14 species credits for assumed impacts to the Pink-tailed Legless-lizard
- 204 species credits for assumed impacts to the Glossy Black Cockatoo
- 204 species credits for assumed impacts to the Masked Owl
- 204 species credits for assumed impacts to the Barking Owl.

The retirement of these credits will be carried out in accordance with the NSW Biodiversity Offsets Policy for Major Proposals.

1 INTRODUCTION

The Wellington North Solar Farm proposal is classified as State Significant Development (SSD) under the State and Regional Development State Environmental Planning Policy (SEPP) and therefore a 'major project'. This Biodiversity Development Assessment Report (BDAR) assesses the impacts of the proposed Wellington North Solar Farm(the Project) according to the NSW Biodiversity Assessment Methodology (BAM) as required by the Secretary's Environmental Assessment Requirements (SEARs) for the proposal. NGH Environmental has prepared this report on behalf of the proponent, Lightsource bp.

1.1 THE PROPOSAL

The Wellington North Solar Farm proposal involves the construction, operation and decommissioning of a ground-mounted photovoltaic (PV) solar panels farm which would generate approximately 300MW (AC) into the national electricity grid. The key infrastructure for the proposal would include:

- Approximately 1.2 million PV modules, spaced 4-8m apart and mounted on east-west horizontal tracking systems or north-orientated fixed-tilt structures (both fixed and tracking options are considered viable for the Project).
- Up to 155 inverter stations to allow conversion of DC module output to AC electricity and transformation to medium voltage for site reticulation (typically 22kV or 33kV).
- Underground and overhead electrical conduits and cabling to connect the solar panels, combiner boxes and inverters.
- An onsite substation containing up to two transformers and associated switchgear.
- Up to 6km of 132kV or 330kV transmission line to the existing TransGrid 330kV Wellington Substation.
- Site access off Goolma Road.
- Internal access tracks and upgrades to existing access roads, where required.
- Site office and maintenance building with associated car park.
- Space for future energy storage facility (Note: while the Development Footprint allows space for a future energy storage facility, energy storage is not currently proposed and therefore is not part of this assessment).
- Perimeter security fencing and CCTV.
- Vegetation planting to provide visual screening for specific viewpoints, as required.

1.2 THE DEVELOPMENT SITE

1.2.1 *Site location*

The Wellington North Solar Farm development site is located approximately 7 km north east of Wellington, NSW, within the Dubbo Regional LGA.

The Wellington North proposal would be situated within 970ha of freehold land, identified as the following Lots and Deposited Plan (DPs)

- Lots 75 84, DP2987
- Lot 88, DP2987
- Lots 119 121, DP2987
- Lots 1 2, DP1104720

- Lot 3, DP976701
- Lots 1-3, DP808748
- Lot 100, DP750760
- Lot 1, DP664645
- Lot 1, DP1206579

The site is bounded by Campbells Lane to the north, Goolma Road to the east, private land and Cobbora Road to the west and Wellington Solar Farm to the south, which is owned by Lightsource bp.

The proposed transmission line that will connect the Project to the existing TransGrid Wellington Substation would be a 132kV or 330kV transmission line. From the development site, the transmission line would cross Goolma Road, approximately 400m north of the Soil Conservation Service site access. It would continue east for approximately 1.1km to the eastern side of the Wellington Correctional Centre, before heading south to Twelve Mile Road for approximately 2km. It would cross Twelve Mile Road and enter the Wellington Substation from the east (refer to Figure 1-1). The transmission line would be located in the following lots and Deposited Plans (DPs):

- Lot 106, DP2987
- Lot 73, DP750760
- Lot 2, DP1053234
- Lot 32, DP622471
- Lot 1 DP1226751
- Lot 1 DP 1249719
- Lot 7 DP750760

1.2.2 *Site description*

The development site comprises several large paddocks which consist of undulating hills that have been largely cleared for cropping. Remnant vegetation throughout the site is derived from a community of White Box Woodland and Yellow Box Woodland. Some patches of remnant woodland have been fenced from stock and are in a moderate to good condition. However, the majority of the woodland throughout the site has been highly disturbed and lacks native understorey due to heavy grazing and pasture improvement practices. Plantings of native species have been used as wind breaks and for rehabilitation along onsite waterways. Two Farm Forestry plantations, planted as research species trials for dryland salinity by the CSIRO and Dept. Land and Water Conservation, occur within the site, one located in the north east of the site and another in the south east. These plantations are a mix of local and non-local Eucalypts, Acacias and Pine Trees planted approximately 30 years ago.

The land immediately surrounding the development site includes cropping and grazing land, the Wellington and Macquarie Correctional Centres, and rural residences (including a residential subdivision). TransGrid's 330kV Wellington Substation occurs approximately 3km south of the development site.

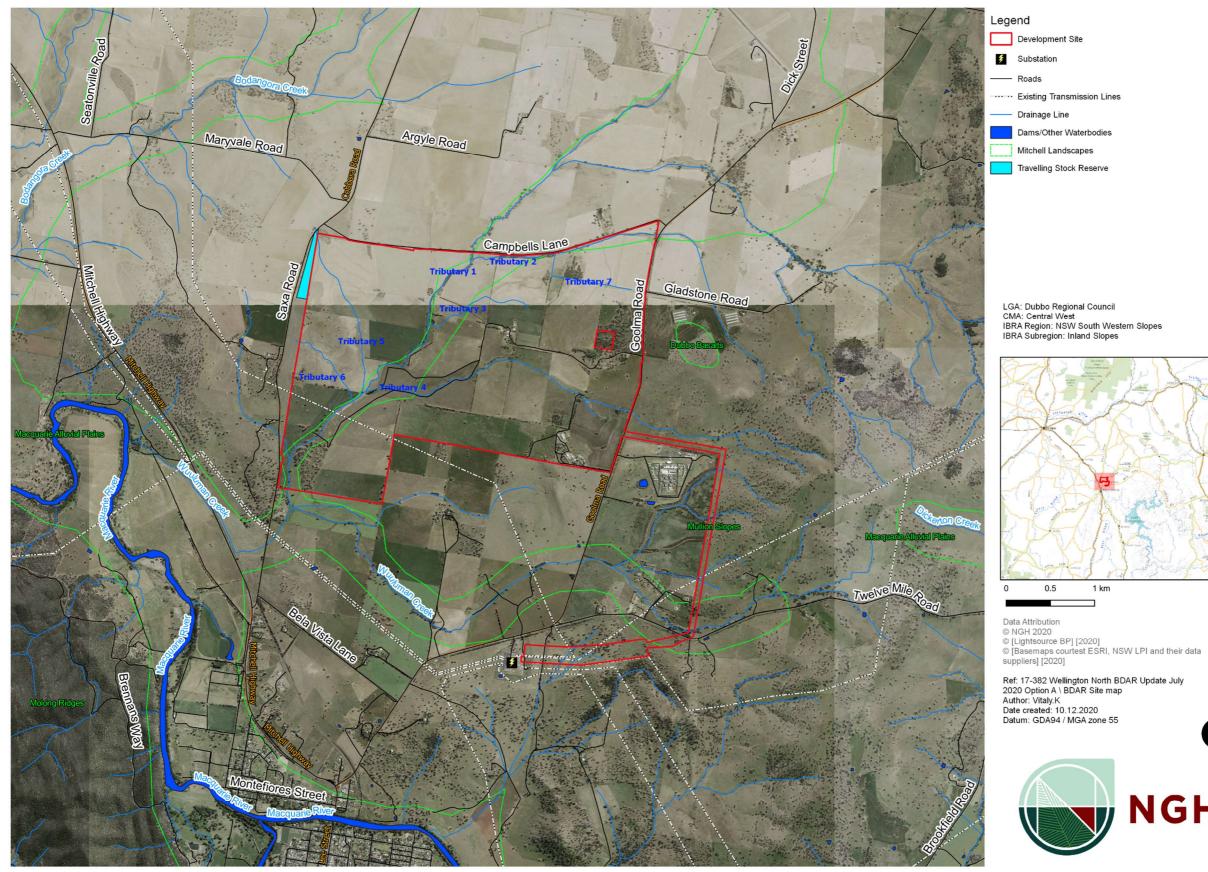


Figure 1-1. Site Map.

1 km

1.3 STUDY AIMS

This BDAR has been prepared by NGH Environmental on behalf of LSbp.

The aim of this BDAR is to address the requirements of the BAM, as required in the Secretary's Environmental Assessment Requirements (SEARs) and summarised below.

Secretary's Environmental Assessment Requirement

The EIS must address the following specific issues:

Biodiversity – including an assessment of the biodiversity values and the likely biodiversity impacts of the development in accordance with the *Biodiversity Conservation Act 2016* (NSW), a detailed description of the proposed regime for minimising, managing and reporting on the biodiversity impacts of the development over time, and a strategy to offset any residual impacts of the development in accordance with the *Biodiversity Conservation Act 2016* (NSW);

Responses from the NSW Office of Environment and Heritage (OEH) indicated the Biodiversity Assessment Method (BAM) must be used to assess impacts to biodiversity in accordance with the *Biodiversity Conservation Act 2016* (BC Act) and documented in a Biodiversity Development Assessment Report (BDAR). This BDAR has been developed using the BAM 2016 method.

No specific considerations for any threatened species, populations or communities were specified in the SEARs or by the NSW Biodiversity Conservation Division.

1.4 **DEFINITIONS**

The Development Footprint

The area of land that is directly impacted by the proposal including solar panels design, perimeter fence, access roads, transmission line footprint and areas used to store construction materials.

The Development Footprint is the impact area assessed in this BDAR. The Development Footprint for the solar panels including roads, lay down, substation, O&M office and future energy storage facility is approximately 803.54 ha.

The Development Footprint also includes the Project's site access point on Goolma Road. This access had originally been proposed as an operational site access point for light vehicles only but will now serve as the Project's only construction and operational access point. Therefore, an upgraded intersection treatment is now required.

The Development Footprint for the transmission line corridor is approximately 15.48 ha. After further consideration to minimise impact on White Box Woodland, Option A has been selected for this BDAR as the worst case scenario. Option A and Option B are shown in Figure 6-1.

The Development Site

The area of land within affected lot boundaries that is subject to the proposed development (the proposal as defined above). The Development Site is the area surveyed for this assessment. The Development Site is approximately 1018 ha.

Buffer Area

All land within 1500m of the outside edge of the boundary of the Development Site.

1.5 SOURCE OF INFORMATION USED IN THE ASSESSMENT

The following information sources were used in the preparation of this report:

- Proposal layers, construction methodology and concept designs provided by the Proponent.
- Amended proposal layers for the transmission line route corridor provided by Lightsource bp.
- Commonwealth Department of Environment and Energy (DoEE) Species Profiles and Threats database (SPRAT) <u>http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl.</u>
- Commonwealth Department of Environment and Energy Protected Matters Search Tool. Accessed online at <u>http://environment.gov.au/epbc/protected-matters-search-tool.</u>
- Department of Environment and Climate Change NSW (DECC) (2002). Descriptions for NSW (Mitchell) Landscapes, Version 2.
- NSW OEH's Biodiversity Assessment Method (BAM) calculator (http://www.environment.nsw.gov.au/bbccapp/ui/mynews.aspx).
- NSW OEH's BioNet threatened biodiversity database Accessed online via login at http://www.bionet.nsw.gov.au/.
- OEH Threatened Species Profiles
 <u>http://www.environment.nsw.gov.au/threatenedSpeciesApp/</u> and
 <u>www.environment.nsw.gov.au/AtlasApp/UI_Modules/</u>.
- OEH BioNet Vegetation Classification Database (OEH 2017) Accessed online via login at http://www.environment.nsw.gov.au/NSWVCA20PRapp/default.aspx.
- OEH VIS Mapping Accessed online at <u>http://www.environment.nsw.gov.au/research/VISmap.htm.</u>
- Office of Environment and Heritage (OEH) (2017). Biodiversity Assessment Method.
- NSW Government SEED Mapping <u>https://geo.seed.nsw.gov.au/Public_Viewer/index.html?viewer=Public_Viewer&locale=en_-AU.</u>
- NSW Biodiversity Values Map <u>https://www.lmbc.nsw.gov.au/Maps/index.html?viewer=BVMap.</u>

1.6 CONSULTATION

Consultation with relevant government agencies is shown in Table 1-1.

Table 1-1 Consultation with relevant government agencies.

Date	Contact	Reason	Response
22/12/17	Michelle Cox, OEH Regional Operations Group	Mapped Important areas for the Swift Parrot and Regent Honeyeater	The Development Site does not fall within an area of mapped important areas for these species
31/01/18	Michelle Howarth, OEH Senior Conservation Planning Officer	Confirming offsetting not required for vegetation with a Vegetation Integrity score of less than 15.	Offsetting not required for vegetation with score less than 15.

Date	Contact	Reason	Response
13/03/18	Michelle Howarth, OEH Senior Conservation Planning Officer	Confirming approach to deal with planted native vegetation in the BAM Calculator.	Supportive of approach that offsetting is not required for planted native vegetation that is not representative of a PCT.
16/03/18	Michelle Howarth, OEH Senior Conservation Planning Officer Michelle Cox, OEH Regional Operations Group	Clarifying definition of the Glossy Black Cockatoo geographic limitations in the BAM Calculator	The Glossy Black Cockatoo is included the BAM Calculations for this Development Site.
22/08/2018- 19/09/2018	Department of Planning, Industry and Environment	EIS Public Exhibition	Amendment Report Completed
23/09/2018	Rob Beckett	Letter response to BDAR	Some further changes required

2 LANDSCAPE FEATURES

2.1 IBRA BIOREGIONS AND SUBREGIONS

Bioregions are large, geographically distinct areas of land with common characteristics such as geology, landform patterns, climate, ecological features, and flora and fauna communities. The Development Site is located within the NSW South Western Slopes Bioregion and the Inland Slopes subregion (DoEE 2012). The geology is characteristic of the eastern Lachlan Fold Belt, comprised of Cambrian to Early Carboniferous sedimentary and volcanic rocks with characteristic landforms of undulating and hilly ranges and isolated peaks set in wide valleys at the apices of the Riverina alluvial fans.

The dominant IBRA subregion impacted by the proposal is the Inland Slopes subregion. This was entered into the BAM Calculator for the proposal.

2.2 NSW LANDSCAPE REGIONS AND AREA

Two Mitchell Landscapes occur within the Development Site. These are the:

- Mullion Slopes.
- Macquarie Alluvial Plains.

Mullion Slopes is the dominant landscape and was entered into the BAM calculator for the proposal.

2.3 NATIVE VEGETATION

As determined by GIS mapping from aerial imagery, approximately 1,441 ha of Native Vegetation occurs within the 1,500m buffer area surrounding the site. This vegetation within the buffer area is considered to be predominantly Western Slopes Grassy Woodland comprised of White Box on the Hilltops and Yellow Box along the gullies. Plantings of native vegetation generally occur as linear strips along fence lines or gullies.

2.4 CLEARED AREAS

Cleared areas within the subject land are primarily used for cropping and grazing. These areas have been frequently cultivated and lack any remnant native vegetation. Cleared areas provide very little in terms of native fauna habitat but could provide limited foraging habitat for raptors, parrots, cockatoos and macropods.

Approximately 720 ha of cleared land occurs within the boundary of the Development Site. This is approximately 71% of the Development Site.

Figure 2-1 Examples of cleared landscapes within the Development Site.

2.5 RIVER AND STREAMS

Seven unnamed watercourses occur within the Development Site (Figure 1-1). These facilitate water in the north-south direction and are all tributaries of Wuuluman Creek which is located some 300m south of the Site. These are:

- **Tributary 1.** One unnamed 3rd Order Stream that flows from the North to the Southwestern corner of the site. This tributary is the only waterway onsite that flows. This waterway has mostly been cleared and grazed but some native grasses such as Red Grass (*Bothriochloa macra*), *Austrostipa sp.* and Curly Windmill Grass (*Chloris truncata*) remain on the bank. Native Bulrush (*Typha sp.*) is present within the stream providing aquatic habitat for frogs and birds. Rocks and riffles are also present in some parts of the stream providing aquatic habitat for amphibians (Figure 2-2).
- **Tributary 2 and 4.** Unnamed 2nd Order Streams which are incised waterways. No water flow present at the time of inspection but small pools of water remaining. Vegetation in these waterways is degraded and dominated by exotic grasses that have been grazed by stock (Figure 2-3).
- **Tributary 3, 5 and 6.** Three unnamed 1st Order Streams which are minor incised drainage lines, flowing only after rain events. Vegetation in these waterways is degraded and dominated by exotic grasses that have been grazed by stock and provide very little aquatic habitat (Figure 2-4).
- **Tributary 7.** One constructed channel for drainage surrounding cropping land. This channel is cleared with very little vegetation and provides very little aquatic habitat (Figure 2-5).

These tributaries flow into the Macquarie River, approximately 2.5km downstream.

The transmission line easement would cross Wuuluman Creek on the east of the Development Site. The creekline at this location has a canopy of White Box (*Eucalyptus albens*) and Pepper Trees (**Schinus molle* var. *areira*).

Figure 2-2 Tributary 1. Unnamed 3rd Order stream within the Development Site.

Figure 2-3 Tributary 2. Unnamed 2nd order stream within the Development Site.

Figure 2-4 Tributary 3 Unnamed 1st order drainage line within the Development Site.

Figure 2-5 Tributary 7 Constructed Channel within the Development Site.

2.6 WETLANDS

No wetlands occur within or adjacent to the Development Site. The nearest nationally important wetland downstream from the Development Site is the Macquarie Marshes located over 150km downstream.

Four man-made dams occur within the Development Site for stock. These dams lack fringing vegetation or aquatic vegetation (Figure 2-6).

Figure 2-6 Dam within the Development Site.

2.7 CONNECTIVITY FEATURES

The landscape within the Development Site has been heavily cleared and lacks functional connectivity. Remnant vegetation occurs as small, isolated patches within the cropped landscapes.

The main connectivity throughout the landscape occurs along the watercourse through the centre of the site. This watercourse supplies permanent water and has a groundcover dominated by native grasses; however, the tree cover is scattered and isolated. Other connectivity features include linear plantings and scattered paddock trees. These provide some habitat connectivity for more disturbance tolerant and mobile species to travel across the landscape.

Large tracts of grassy woodland occur outside the Development Site to the south and east and provide better connectivity for movement across the landscape.

2.8 AREAS OF GEOLOGICAL SIGNIFICANCE

No karsts, caves, crevices, cliffs or other areas of geological significance occur in or adjacent to the Development Site.

2.9 AREAS OF OUTSTANDING BIODIVERSITY VALUE

No areas of Outstanding Biodiversity Value occur within the Development Site.

2.10 SITE CONTEXT COMPONENTS

Method applied

The proposal conforms to the definition of a *site-based development* under the BAM. The site-based development assessment methodology has been used in this BAM assessment.

Percent Native Vegetation Cover

The Percent Native Vegetation Cover within the 1,500m buffer area surrounding the Development Site prior to the development was calculated to be approximately 28.7%. This was entered into the BAM calculator for the proposal. This Percent Native Vegetation was calculated by estimating the area of native vegetation (woody and non-woody) within the 1500m buffer area. Areas of native vegetation were calculated using GIS mapping and aerial photography. The total area of the 1500m buffer area is 5030 ha. The area of native vegetation within the buffer area is estimated to be 1441 ha. This puts the native vegetation cover into the cover class of 10-30%.

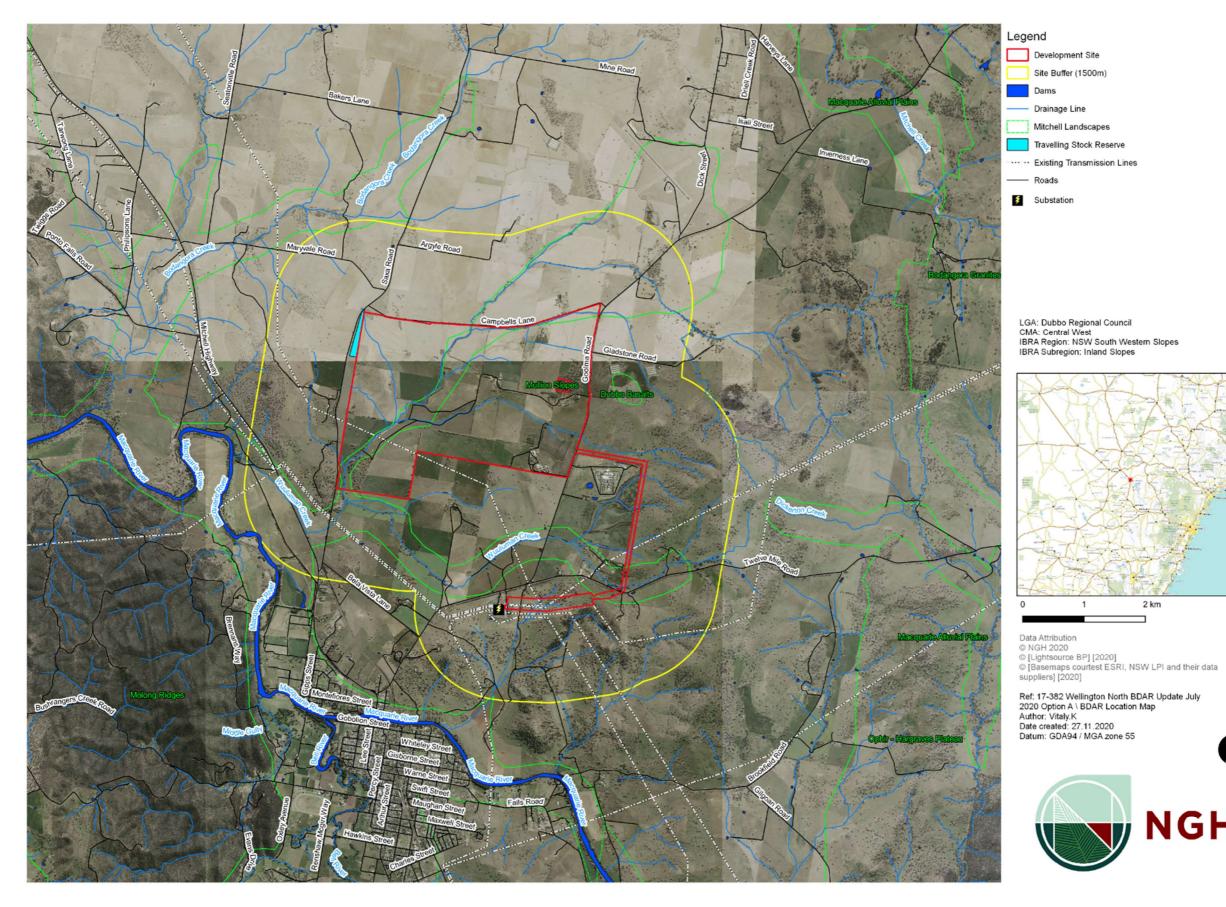


Figure 2-7 Location map.

3 NATIVE VEGETATION

3.1 NATIVE VEGETATION EXTENT

Approximately 281.66 ha of native vegetation occurs within the Development Site. This occurs as both remnant and planted native vegetation comprising around:

- 107.79 ha of remnant vegetation of Yellow Box Woodland and White Box Woodland.
- 23.19 ha of planted vegetation in the form of ecological plantings representing the surrounding vegetation communities.
- 4.38 ha of planted native vegetation not representing ecological plantings.
- 146.29 ha of derived native grasslands.

Approximately 720 ha of the Development Site occurs as cropped land. These areas were dominated by exotic vegetation such as Oats (**Avena sativa*) and Barley (**Hordeum distichon*). These areas do not provide any threatened species habitat, and therefore do not require further assessment.

80 scattered paddock trees occur throughout the Development Site (Figure 3-1). Paddock trees are defined as:

- a tree or a group of up to three trees less than 50m apart from each other, and
- over an exotic groundcover, and
- more than 50m away from any other living tree greater than 20cm DBH, and
- on category 2 land surrounded by category 1 land (as defined by the BAM, 2017). *

*Staged release of the regulatory land mapping is occurring under the new *Local Land Service Act 2016* (LLS Act). Stage 1b has not been yet been published. During the transitional period, land categories are to be determined in accordance with the definitions of regulated land in the LLS Act. In this case, the paddock trees are located on land with native vegetation present since January 1990, surrounded by land that has been cleared of native vegetation since January 1990.

Paddock trees throughout the Development Site were assessed under the streamlined assessment module – clearing paddock trees (Appendix 1 of the BAM) and incorporated into this report. They are considered both in terms of ecosystem credits and as habitat for threatened species and any credits generated are additional to those created by applying the full BAM.

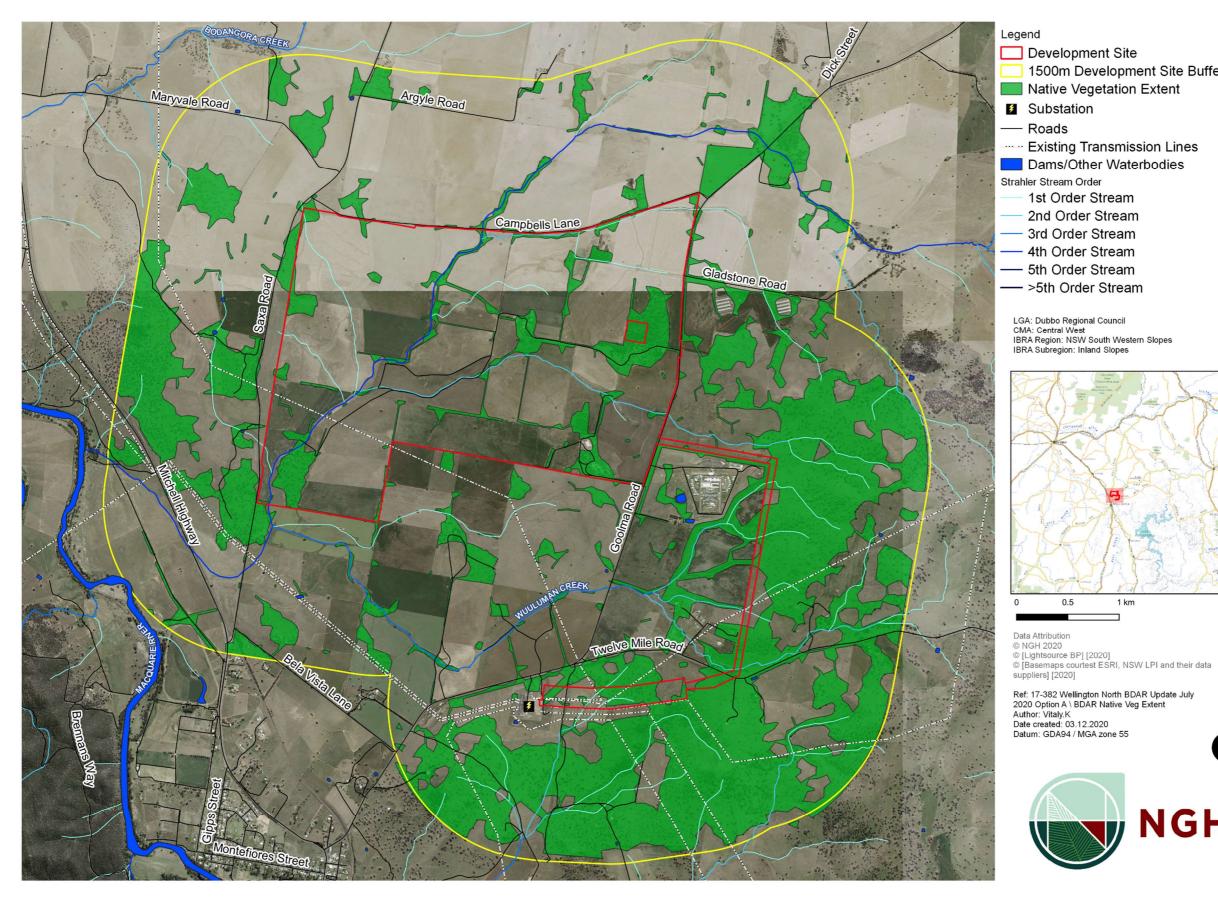


Figure 3-1. Native vegetation extent within and surrounding the Development Site

1500m Development Site Buffer

----- Existing Transmission Lines

3.2 PLANT COMMUNITY TYPES (PCTS)

3.2.1 *Methods to assess PCTs*

Review of existing information

A search was undertaken of the OEH Vegetation Information System (VIS) database and NSW SEED (Sharing and Enabling Environmental Data) mapping to access existing vegetation mapping information within the study area. Two relevant existing vegetation maps were assessed:

- Central West and Lachlan Catchments Vegetation Mapping by the Department of Environment and Conservation (2017). Small patches of vegetation surrounding or within the Development Site were mapped as Yellow Box Grassy Woodland or White Box, White Cypress Grassy Woodland.
- NSW Government SEED Mapping (2017). This identified four PCT's surrounding and within the Development Site. These were:
 - PCT511 Queensland Bluegrass Red-leg Grass Rat's tail Grass Spear grass panic grass derived grassland of the Nandewar Bioregion and Brigalow Belt South Bioregion.
 - PCT 266 White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion
 - PCT74 Yellow Box River Red Gum Tall Grassy Riverine woodland of NSW South Western Slopes Bioregion and Riverina Bioregion.
 - PCT76 Western Grey Box tall grassy woodland on alluvial loam and clay soils in the NSW South Western Slopes and Riverina Bioregion.

Floristic survey

Flora surveys were undertaken in October 2017, February 2018 and December 2018.

The entire subject land was surveyed by car and foot on the $4^{th} - 6^{th}$ October 2017 by an ecologist from NGH Environmental. The aim of the initial survey was to determine the PCTs on the Development Site and their condition on site. Random meander searches were conducted in areas of native vegetation to determine the plant species present. PCT's were identified from the native species present, landforms and physiography and location within the IBRA subregion with reference to the BioNet Vegetation Classification Database. The subject land was then stratified into areas of similar condition class to determine vegetation zones for each PCT.

Detailed floristic surveys were undertaken on the 18th - 20th October 2017. Vegetation integrity plots of 20m by 50m were established in each vegetation zone. Data was collected on the composition, structure and function of the vegetation. Data was collected utilising the methodology presented in the BAM 2017 by persons trained in the BAM and under the directions of persons accredited under the BAM (Appendix A). The number of plots for each zone was based on the area of each zone and the minimum number of plots and transects required per zone area as specified by the BAM.

Further vegetation integrity plots were undertaken on the 14th Feb 2018 to cover additional areas to be impacted by the proposal and on the 5th December 2018 to survey the transmission line route.

3.2.2 *PCTs identified on the Development Site*

Two Plant Community Types (PCT) were identified in the Development Site (Figure 3-2 & Figure 3-3):

- White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266).
- Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion (PCT 437)

•

A description of each of these PCTs follows in Table 3-1 and Table 3-2.

Table 3-1 Description of PCT 266 in Development Site

White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266).				
Vegetation formation	Grassy Woodlands			
Vegetation class	Western Slopes Grassy Woodland			
Vegetation type	PCT ID	266		
	Common Community Name	White Box Grassy woodland		
Approximate extent within the Development Site	 80.5 ha – Remnant Woodland (Development Site); 11.16 ha (Development Footprint) 3.3 ha – Planted Woodland (Development Site); 2.1 ha (Development Footprint) 142 ha – Derived Grassland (Development Site); 92.8 ha (Development Footprint) 			
Species relied upon for PCT identification	Species name		Relative abundance	
	White Box (Eucalyptus albens)		Dominant – 30% Cover	
	White Cypress (Callitris glaucophylla)		10%	
	Kurrajong (Brachychiton populneus)		10%	
	Bamboo Grass (Austrostipa verticillata)		0.5%	
	Tufted Bluebell (Wahlenbergia communis)		0.5%	
	Fuzzweed (Vittadinia cuneata)		0.5%	
	Weeping Meadow Grass (Microlaena stipoides)		0.1	
	Knottybutt Grass (Paspalidium constrictum)		0.5%	
Justification of evidence used to identify the PCT	The remnant woodland within the Development Site is very degraded, having been extensively cleared and heavily grazed. Scattered paddock trees remain in patches on the rocky hilltops and very little native understorey species remain. The dominant native species on the hilltops are White Box. Some scattered White Cypress and Kurrajong also occur on the hill slopes. An occasional Grey Box (<i>Eucalyptus microcarpa</i>) occurred on the lower hillslopes. The understorey is mostly exotic pasture species or bare ground, however scattered Bamboo Grass (<i>Austrostipa verticillata</i>), Fuzzweed (<i>Vittadinia cuneata</i>) and Knottybutt Grass (<i>Paspalidium constrictum</i>) occur in low abundance.			

White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266).		
	Thirteen Floristic 20m x 20m plots were undertaken for this PCT (Appendix D). The results of these surveys were entered into the BioNet Vegetation classification database.	
	Based on the remnant overstory species, floristic plots, vegetation mapping and the IBRA subregion – three PCT's were shortlisted for consideration.	
	PCT 266 – White Box Grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (Kurrajong is a characteristic species).	
	PCT 267 – White Box – White Cypress Pine – Western Grey Box shrub/grass/forb woodland in the NSW South Western Slopes Bioregion.	
	PCT 435 - White Box – White Cypress Pine Shrub grass hills woodland in the Brigalow Belt South Bioregion and Nandewar Bioregion.	
	The landscape has been very cleared and grazed with little remaining understorey and the lack of native species made it difficult to distinguish between the three PCTs. Neither PCT 266 nor PCT 267 have both Kurrajong and White Cypress as characteristic species for the community.	
	It could be that PCT 266 (White Box and Kurrajong) occurred on the Hilltops and PCT 267 (White Box, White Cypress and Grey Box) or PCT76 (Western Grey Box Tall Grassy Woodland) occurred slightly lower downhill, however within the fragmented landscape it is not clear to determine whether an intergrade of two vegetation communities occurred.	
	Based on the dominance of the White Box in the paddock trees and relevant vegetation mapping surrounding the Development Site (DEC 2017, NSW Government, 2017), PCT 266 was selected as the vegetation community within the Development Site.	
TEC Status	This PCT forms part of the EEC: White Box-Yellow Box-Blakely's Red Gum Woodland.	
Estimate of percent cleared in Bioregion	58%	
Examples		

White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266).

Example of White Box Woodland (Plot 15).

Example of White Box Woodland (Plot 9)

White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266).

Example of White Box Woodland Planted (Plot 12).

Table 3-2 Description of PCT 437 in the Development Site.

Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion (437)				
Vegetation formation	Grassy Woodlands			
Vegetation class	Western Slopes Grassy Woodland			
Vegetation type	PCT ID 437			
	Common Community Name	Yellow Box grassy woodland on lower hillslopes and valley flats		
Approximate extent within the Development Site	 27.2 ha – Remnant Woodland (Development Site); 2.1 ha (Development Footprint) 19.8 ha – Planted Woodland (Development Site); 10.2 ha (Development Footprint) 4.3 ha – Derived Grassland (Development Site); 0 ha (Development Footprint) 			
Species relied upon for PCT identification	Species name		Relative abundance	
	Yellow Box (Eucalyptus melliodora)		30%	
	Kurrajong Tree (Brachychiton populneus subsp. populneus)		5%	
	Red Grass (Bothriochloa macra)		10%	
	Sida (Sida corrugata)		0.5%	
	Spear grass (Austrostipa scabra)		8%	
	Yellow Burr Daisy (Calotis lappulacea)		0.1%	
	Creeping Saltbush (Atriplex semibaccata)		3%	
	Kidney Weed (Dichondra repens)		0.1%	
	Climbing Saltbush (Einadia nutans)		0.1%	
	Oxalis (Oxalis perennans)		0.5%	
Justification of evidence used to identify the PCT	The remnant woodland within the Development Site is very degraded, having been extensively cleared and heavily grazed. Scattered paddock trees remain along the river flats and watercourses. The dominant native species along the flats are Yellow Box with occasional Kurrajong (<i>Brachychiton populneus</i>). Understorey species are mostly exotic pasture species, however some native species occurred as listed above.			
	Eight floristic 20m x 20m plots were undertaken for this PCT (Appendix D). The results of these surveys were entered into the BioNet Vegetation Classification database.			
	Based on the remnant overstorey species, floristic plots, vegetation mapping and the IBRA subregion – three PCT's were shortlisted for consideration.			
	PCT 74 - Yellow Box - River Red Gum tall grassy riverine woodland of NSW South Western Slopes Bioregion.			
	PCT 276 – Yellow Box Grassy Tall Woodland on alluvium or parna loams and clays on flats in NSW South Western Slopes Bioregion.			

Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion (437)		
	PCT 437 – Yellow Box Grassy Woodland on lower hillslopes and valley flats in the Southern NSW Brigalow Belt South Bioregion.	
	Despite there being some mature planted River Red Gums in woodlots there was no evidence that River Red Gums had been naturally occurring in the area so PCT 74 was not considered to be a compatible PCT.	
	Based on the location within the landscape and associated understorey species, PCT 437 was selected to be the best match for the vegetation community within the Development Site.	
TEC Status	This vegetation community forms part of the listed EEC: White Box-Yellow Box-Blakely's Red Gum Woodland.	
Estimate of percent cleared in Bioregion.	90%	
Examples	<image/>	

Examples

Yellow Box Woodland Planted Vegetation (Plot 2).

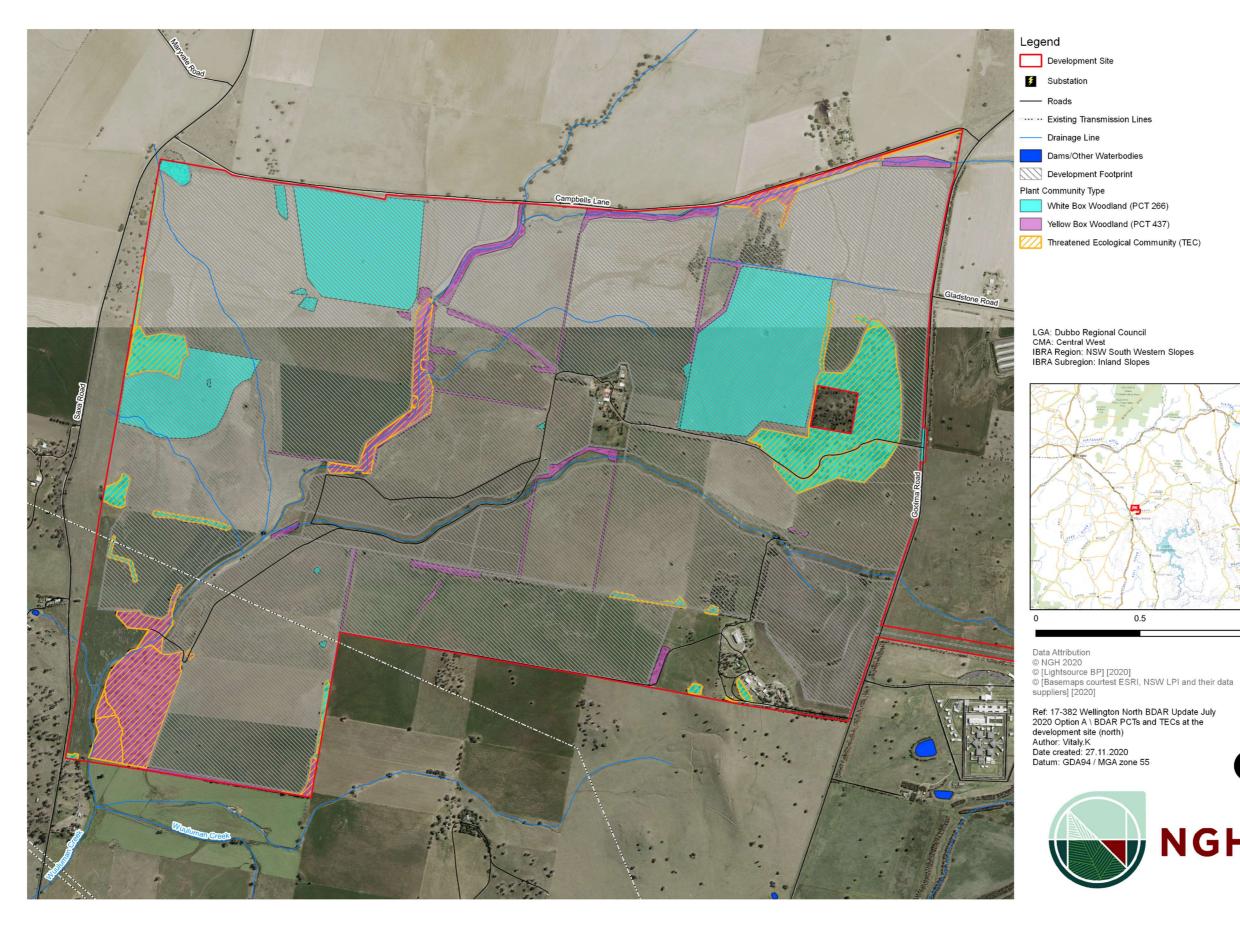


Figure 3-2 PCTs and TECs at the Development Site (north).

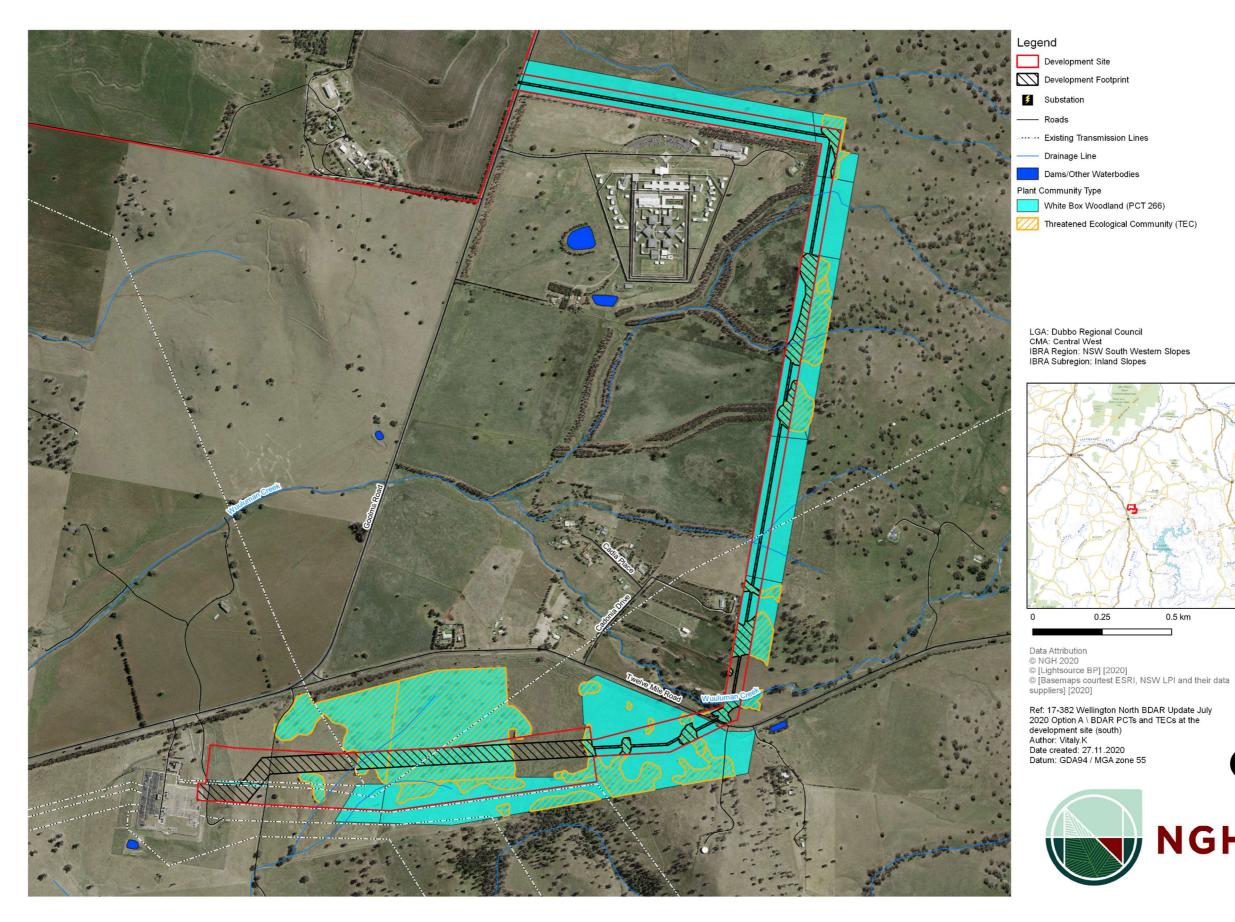



Figure 3-3 PCTs and TECs at the Development Site (south).

Threatened Ecological Community (TEC)

3.3 VEGETATION INTEGRITY ASSESSMENT

3.3.1 Vegetation zones and survey effort

The random meander, overview inspection and detailed floristic plots have been used to assist the delineation of zones. Two PCTs were identified in the Development Site. Each of these PCTs was stratified into zones with a similar broad condition state. These zones were defined based on the overstorey condition, understorey condition and observed land management practices and described in Table 3-3. Nine zones were identified and a further two zones were identified for vegetation not aligning to a locally indigenous PCT. These are mapped in Figure 3 4 and Figure 3 5.

Twenty-three vegetation integrity plots were conducted throughout the nine zones. A further five plots were undertaken in areas of exotic dominated vegetation and planted non-local vegetation to determine their condition.

The transmission line route was surveyed at a later stage and due to this seasonal variation, it was assigned its own zones. One PCT was identified along the transmission line route and stratified into three separate zones of a similar broad condition state. Thirteen vegetation integrity plots were undertaken in these zones.

Table 3-3 Vegetation Zones within the Development Site

Zone ID	РСТ ID	Condition	Development Site (ha)	Development Footprint (Ha)	Survey effort (# plots)	Patch size (ha)	Example
1	266	Moderate Remnant White Box Woodland. Five patches of this woodland occur within the Development Site, all with the same broad condition state. The understorey is heavily grazed and very little native species exist other than a sparse White Box (<i>Eucalyptus albens</i>) overstorey. This zone is heavily grazed. This woodland is a TEC - White Box-Yellow Box- Blakely's Red Gum Woodland EEC (Box-Gum Woodland) based on White Box being a dominant overstorey species.	11.3	3.1	4	550	
2	266	Derived Native Grassland. Three patches of this grassland occur within the Development Site, all with the same broad condition state. The grassland is comprised of some scattered native grasses and forbs within an exotic dominated pasture. This zone is heavily grazed. This grassland does not form part of the Box- Gum Woodland EEC as there is less than 50% cover of native grasses and due to long term grazing and pasture improvement would be unlikely to respond to natural regeneration (NSW Scientific Committee, 2002).	91.0	90.8	6	91	

Zone ID	PCT ID	Condition	Development Site (ha)	Development Footprint (Ha)	Survey effort (# plots)	Patch size (ha)	Example
3	266	PlantedSix patches of these planted woodlots occur within the Development Site. These plantings occur on hillslopes and are generally comprised of planted White Box, White Cypress and Acacia species that are typical of PCT 4266. Understorey is almost 100% exotic species. This zone is not grazed in the understorey.This zone does not form part of the Box-Gum Woodland EEC as the understorey is dominated by shrubs (NSW Scientific Committee, 2002)	3.3	2.1	3	550	
7	266	Good. Remnant White Box Woodland. This area has been fenced from stock and maintains a native understorey with native forbs, grasses and shrubs. Rocky outcrops and fallen timber are present throughout this zone. This woodland is a TEC - White Box-Yellow Box- Blakely's Red Gum Woodland EEC (Box-Gum Woodland) based on White Box being a dominant overstorey species.	26.4	0	0*	550	

Zone ID	PCT ID	Condition	Development Site (ha)	Development Footprint (Ha)	Survey effort (# plots)	Patch size (ha)	Example
4	437	Moderate Remnant Yellow Box Woodland. Two patches of this woodland occur within the Development Site. The understorey is heavily grazed and very little native species exist other than a sparse Yellow Box (<i>Eucalyptus melliodora</i>) overstorey. This zone is heavily grazed. This woodland is a TEC - White Box-Yellow Box- Blakely's Red Gum Woodland EEC (Box-Gum Woodland) based on Yellow Box being a dominant overstorey species.	6.2	1	2	550	
5	437	Planted Fifteen patches of these planted woodlots of varying ages occur within the Development Site. These plantings occur along watercourses or drainage depressions and are generally comprised of planted Yellow Box and mixed Acacia species that could be typical of PCT 437. The understorey is predominantly exotic with occasional native grasses. These zones are fenced from stock, but grazing has occurred.	19.8	10.2	3	550	

Zone ID	PCT ID	Condition	Development Site (ha)	Development Footprint (Ha)	Survey effort (# plots)	Patch size (ha)	Example
6	437	Low This zone occurs along the 3rd order stream in the centre of the site. Some scattered Yellow Box planted <i>Casuarina Cunninghamiana</i> and native shrubs and juvenile Eucalypts occur along the creek. These trees occur in low density, occupying less than 1% of the zone. Some occasional exotic species such as Pepper Tree (<i>Schinus molle</i>) are also present. Native grass species such as Red-leg Grass (<i>Bothriochloa macra</i>), and Spear Grass (Austrostipa sp.) are present in low abundance in the understorey. High threat exotic species such as Khaki Weed (* <i>Alternanthera pungens</i>) and Bathurst Burr (* <i>Xanthium spinosum</i>) are also present. This zone forms part of the Box-Gum Woodland EEC as although the site is highly disturbed, the soil has not been cultivated and the vegetation would likely respond to assisted natural regeneration (NSW Scientific Committee, 2002).	6.6	1.1	2	550	
8	437	Derived Native Grassland. One patch of this grassland occurs on the north of the site along a drainage channel and adjoins roadside vegetation along Campbells Lane on the North of the site. This zone has no overstorey but has a good coverage of native grasses in the understorey.	4.3	0	2	4.30	

Zone ID	РСТ ID	ConditionDevelopment Site (ha)Development Footprint (Ha)Survey effort (# plots)Patch 		Example			
9	437	Good Remnant Yellow Box Woodland. Native forbs and grasses and fallen timber are present in the understorey. This woodland is a TEC - White Box-Yellow Box- Blakely's Red Gum Woodland EEC (Box-Gum Woodland) based on Yellow Box being a dominant overstorey species.	14.4	0	1	550	
10	-	Planted non-local Vegetation (No PCT) This zone comprised three separate patches of planted vegetation. These woodlots have been planted in neat rows of evenly spaced trees and do not resemble a natural ecosystem. Trees are a mix of endemic Eucalypts such as Yellow Box (<i>E. melliodora</i>) and Mugga Ironbark (<i>E. sideroxylon</i>) and non-local species such as Spotted Gum (<i>C. maculata</i>), and Monkey Grey Gum (<i>E. cypellocarpa</i>). The plantations lack any understorey species and only have a very sparse groundcover due to the dense plantings of overstorey species. These plantings were planted 30-40 years ago for dryland salinity control. No hollows are yet present in any of the trees. Whilst comprised of native species, these patches were not considered to represent a TEC.	18.1	11.4	3	550	

Biodiversity Development Assessment Report Wellington North Solar Farm

Development Development Survey Patch effort РСТ Site (ha) Footprint Zone Condition size Example ID (Ha) (# (ha) plots) Exotic vegetation and cleared areas -Exotic vegetation dominated by crops such as Oats (*Avena sativa), Lucerne (*Medicago sativa) and Barley (*Hordeum sp.) Some exotic patches also occur as planted Pepper Tree (Schinus molle) groves with an 797.3 700 2 exotic understorey. 1000 246 TRANSMISSION LINE EASEMENT Tx 1 266 Derived Grassland This zone is comprised of a mix of native and exotic grasses. These areas have been ploughed previously and are currently used for grazing of stock. 51 2.0 6 51

ID

11

Zone ID	PCT ID	Condition	Development Site (ha)	Development Footprint (Ha)	Survey effort (# plots)	Patch size (ha)	Example
Tx 2	266	Moderate This zone is characterised by an overstorey of White Box (<i>E. albens</i>) that have been partially cleared through past agricultural practices. The understorey is a mix of exotic and native grasses and forbs such as Wallaby Grass (<i>Rytidosperma</i> spp), Spear Grass (<i>Austrostipa</i> spp.), Fuzzweed (<i>Vittadinia cuneata</i>) and climbing saltbush (<i>Einadia nutans</i>). This zone is currently used for grazing stock. This woodland is a TEC - White Box-Yellow Box- Blakely's Red Gum Woodland EEC (Box-Gum Woodland) based on White Box being a dominant overstorey species.	41.9	7.56	4	100+	

Zone ID	PCT ID	Condition	Development Site (ha)	Development Footprint (Ha)	Survey effort (# plots)	Patch size (ha)	Example
Тх 3	266	Creekline This zone is characterised by an overstory of White Box (<i>E. albens</i>) along Wuuluman Creek. The exotic Pepper Tree (* <i>Schinus molle</i>) is also abundant in this zone. The understorey is a mix of exotic and native grasses and forbs such as Couch (<i>Cynodon dactylon</i>) and Early Spring Grass (<i>Eriochloa pseudoacrotricha</i>). Fallen timber is present along the creekline. This woodland is a TEC - White Box-Yellow Box- Blakely's Red Gum Woodland EEC (Box-Gum Woodland) based on White Box being a dominant overstorey species.	0.8	0.50	1	100+	
Тх 4	-	Exotic Vegetation This zone is comprised of crops of Lucerne (*Medicago sativa) and Kale (*Brassica oleracea) in the transmission line route. It is not considered native vegetation.	21.3	5.35	0	n/a	

3.3.2 Paddock Trees

90 paddock trees occur throughout the Development Site (Appendix B). Paddock trees are a mixture of White Box (*Eucalyptus albens*), Kurrajong (*Brachychiton populneus*), Yellow Box (*Eucalyptus melliodora*), White Cypress (*Callitris glaucophylla*), Mugga Ironbark (*Eucalyptus sideroxylon*) and the exotic Pepper Tree (*Schinus molle* var. *areira*). The paddock trees are most likely remnants of the surrounding PCTs identified in the Development Site. These are:

- PCT 266 White Box Grassy Woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion.
- PCT 437 Yellow Box Grassy Woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion.

Paddock trees have been assigned to the above PCTs based on the following assumptions:

- White Box, White Cypress and Kurrajong on the hills most likely formed part of PCT 266.
- Yellow Box, White Cypress and Kurrajong on the flats most likely formed part of PCT 437.

Threatened species that would use the paddock trees are assumed to be the same ecosystem credit species that are returned by the BAM Calculator for the two vegetation zones. Where targeted fauna surveys for species credit species were required for the BAM Calculations, paddock trees were also included in the surveys. Assessments of threatened species that would use the paddock trees as habitat have been incorporated into this BDAR under Sections 4 and 5.

All paddock trees were mapped in the field using GIS software on a handheld GPS enabled Tablet (Appendix A). Trees were identified to genus and species. The trees were visually assessed to determine whether any hollows were present. The Diameter at Breast Height (DBH) of the tree was recorded and assigned a class relevant to the large tree benchmark. The large tree benchmark for PCT 266 and PCT 437 is 50cm DBH. The three size classes were Class 3 (>50 cm), Class 2 (>20 cm and < 50 cm) and Class 1 (<20cm).

Fifty-five paddock trees are present within the Development Footprint. Of these, 41 trees will be impacted, and the paddock tree credit assessment is detailed in Section 9.1.3.

The classes of the paddock trees occurring in the Development Site are shown in Figure 3 4 and Figure 3 5.

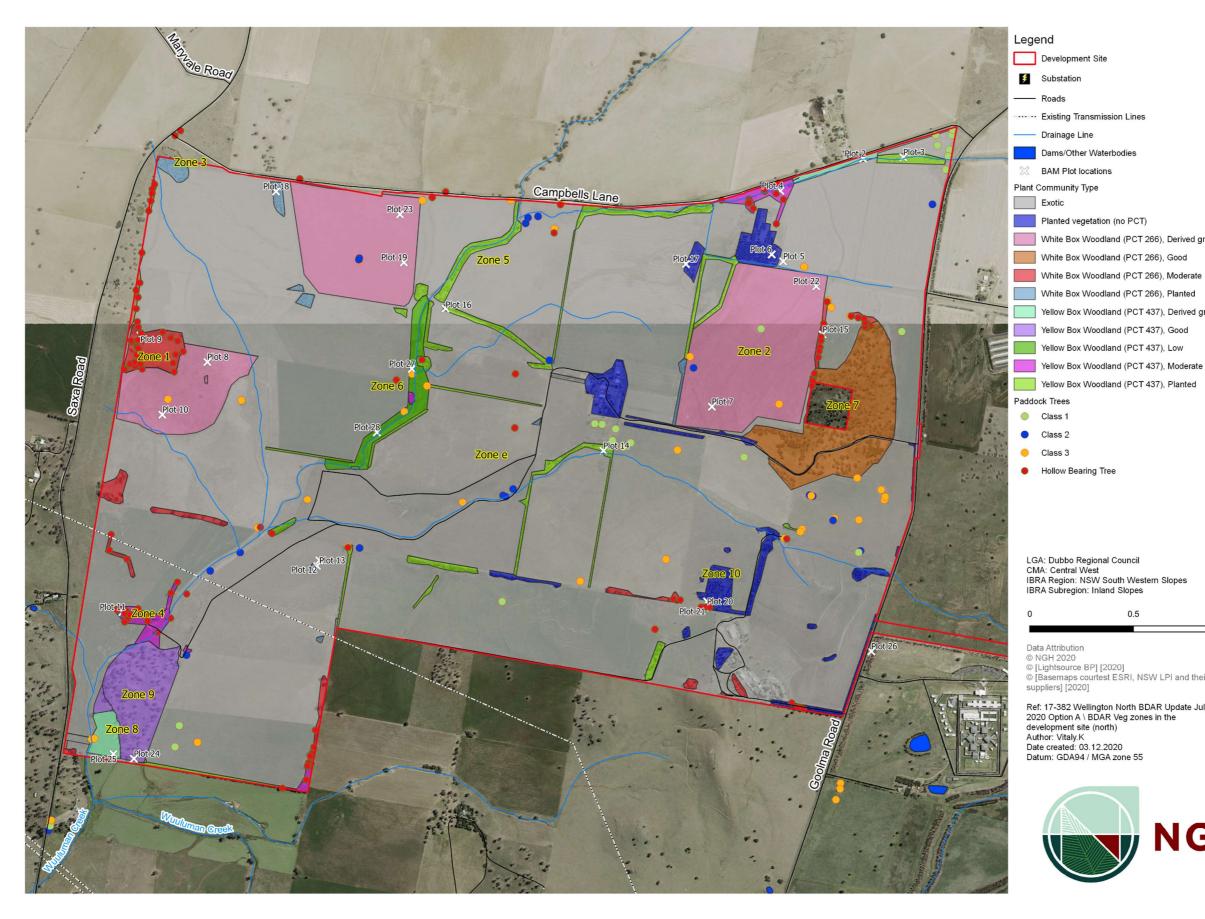


Figure 3-4 Vegetation zones in the Development Site (north).

White Box Woodland (PCT 266), Derived grassland White Box Woodland (PCT 266), Moderate White Box Woodland (PCT 266), Planted Yellow Box Woodland (PCT 437), Derived grassland Yellow Box Woodland (PCT 437), Good

Yellow Box Woodland (PCT 437), Planted

CMA: Central West IBRA Region: NSW South Western Slopes 0.5 1 km

© [Lightsource BP] [2020] © [Basemaps courtest ESRI, NSW LPI and their data

Ref: 17-382 Wellington North BDAR Update July 2020 Option A \ BDAR Veg zones in the

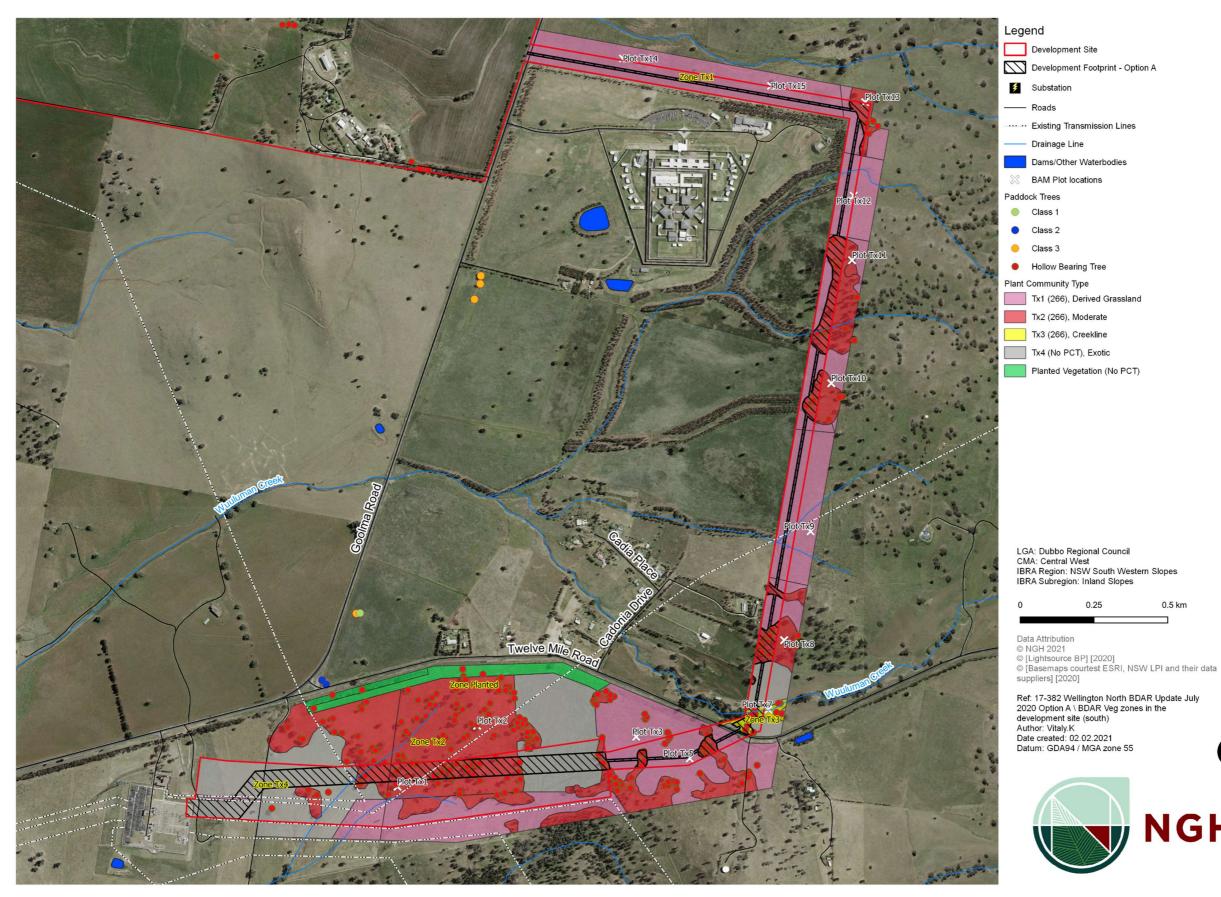


Figure 3-5 Vegetation zones in the Development Site (south).

0.5 km

Wellington North Solar Farm

Biodiversity Development Assessment Report

3.3.3 Vegetation integrity assessment results

140 plant species were identified within the twenty-eight vegetation integrity survey plots in the Development Site. 57 of these were exotic species. 132 plant species were identified within the transmission line easement, with 73 of these being exotic species. The results of the plot field data can be found in Appendix D and photos of each plot are shown in Appendix E.

The plot data from the vegetation integrity survey plots were entered into the BAM calculator by an accredited assessor (Julie Gooding - BAAS18074 and David Maynard BAAS17026).

The results of the vegetation integrity assessment are provided in Table 3-4.

Table 3-4 Table of current vegetation integrity scores for each vegetation zone within the Development Footprint.

Zone ID	Composition score	Structure score	Function score	Vegetation Integrity Score
Solar Array and Infras	tructure			
1 PCT 266_Moderate	6.9	32.7	53.5	23
2 PCT 266_Derived Grassland	23.1	0.5	15.6	5.8
3 PCT 266_planted	46.4	77.5	43.2	53.7
4 PCT 437_Moderate	39.5	61.1	49.9	49.4
5 PCT 437_Planted	45.6	46.2	44.1	45.3
6 PCT 437_Low	7.9	3.8	18.9	8.3
Transmission Line				
Tx1 PCT 266_derived grassland	63.6	17.5	15	25.6
Tx2 PCT 266_moderate	70.4	60.2	28.5	49.5
Tx3 PCT 266_creekline	77.7	70.9	61.7	69.8

4 THREATENED SPECIES

4.1 ECOSYSTEM CREDIT SPECIES

Ecosystem credit species returned by the calculator as being associated with the PCTs present on the Development Site are shown in Table 4-1. Ecosystem credits apply to these species.

Table 4-1 Ecosystem credit species

Common name	Scientific name	NSW Listing Status
Barking Owl (foraging)	Ninox connivens	Vulnerable
Black-chinned Honeyeater (eastern subspecies)	Melithreptus gularis subsp. gularis	Vulnerable
Brown Treecreeper (eastern subspecies)	Climacteris picumnus subsp. victoriae	Vulnerable
Corben's Long-eared Bat	Nyctophilus corbeni	Vulnerable
Diamond Firetail	Stagonopleura guttata	Vulnerable
Dusky Woodswallow	Artamus cyanopterus	Vulnerable
Large Bent-winged Bat (foraging)	Miniopterus orianae oceanensis	Vulnerable
Flame Robin	Petroica phoenicea	Vulnerable
Gang-gang Cockatoo (foraging)	Callocephalon fimbriatum	Vulnerable
Glossy Black Cockatoo (Foraging)	Calyptorhynchus lathami	Vulnerable
Grey-crowned Babbler (eastern subspecies)	Pomatostomus temporalis subsp. temporalis	Vulnerable
Grey-headed Flying Fox (foraging)	Pteropus poliocephalus	Vulnerable
Hooded Robin (south-eastern form)	Melanodryas cucullata subsp. cucullata	Vulnerable
Koala (foraging)	Phascolarctos cinereus	Vulnerable
Little Eagle (foraging)	Hieraaetus morphnoides	Vulnerable
Little Lorikeet	Glossopsitta pusilla	Vulnerable
Masked Owl (foraging)	Tyto novaehollandiae	Vulnerable
Painted Honeyeater	Grantiella picta	Vulnerable
Regent Honeyeater (Foraging)	Anthochaera phrygia	Critically Endangered
Purple-crowned Lorikeet	Glossopsitta porphyrocephala	Vulnerable
Scarlet Robin	Petroica boodang	Vulnerable
Speckled Warbler	Chthonicola sagittata	Vulnerable
Spotted Harrier	Circus assimilis	Vulnerable
Spotted-tailed Quoll	Dasyurus maculatus	Vulnerable
Square-tailed Kite (foraging)	Lophoictinia isura	Vulnerable
Superb Parrot (foraging)	Polytelis swainsona	Vulnerable
Swift Parrot (foraging)	Lathamus discolor	Endangered

Common name	Scientific name	NSW Listing Status
Turquoise Parrot	Neophema pulchella	Vulnerable
Varied Sittella	Daphoenositta chrysoptera	Vulnerable
White-bellied Sea-Eagle (foraging)	Haliaeetus leucogaster	Vulnerable
Yellow-bellied Sheathtail-bat	Saccolaimus flaviventris	Vulnerable

4.1.1 Species excluded from the assessment

Based on habitat constraints, one ecosystem species was considered to have no suitable habitat for these species to occur within the Development Site. This is the:

• Purple-crowned Lorikeet (*Glossopsitta porphyrocephala*).

The habitat constraint for this species is listed in the BioNet Threatened Biodiversity Data Collection as: *'Currently only recorded from vicinity of Murray River, but potentially anywhere downstream of Hume Dam'* The Development Site is not in the vicinity of the Murray River and as such, the Purple-crowned Lorikeet has been excluded from the assessment.

4.2 SPECIES CREDIT SPECIES

4.2.1 Candidate species to be assessed

The BAM Calculator predicted the following species credit species to occur at the Development Site.

Table 4-2 Candidate species credit species requiring assessment.

Species Credit Species	NSW listing status	National listing status	Habitat components and geographic restrictions	Sensitivity to gain class	Habitat components and abundance on site	Included or excluded	Reason for inclusion or exclusion
FAUNA							
Pink-tailed Legless Lizard Aprasia parapulchella	Vulnerable	Vulnerable	Within 50m of Rocky Areas	High	23 rocky outcrops present within the Development Site	Included	Habitat components on site
Bush Stone-curlew Burhinus grallarius	Endangered	-	Fallen/standing dead timber including logs	High	Fallen/standing dead timber on site in transmission line route	Included in transmission line route	Habitat components present on site
Gang-Gang Cockatoo Callocephalon fimbriatum (breeding)	Vulnerable	-	Breeding Eucalypt tree species with hollows greater than 9 cm diameter	High	21 suitable hollow bearing trees (HBTs) present within the Development Site.	Included	Habitat components on site
Glossy Black Cockatoo Calyptorhynchus lathami (breeding)	Vulnerable	Vulnerable	Breeding Living or dead tree with hollows greater than 15cm diameter and greater than 5m above ground. Foraging Presence of Allocasuarina and casuarina species	High	21 HBTs with hollows greater than 15cm and over 5m above the ground. Some planted Allocasuarina or Casuarina species within the Development Site or surrounding area	Included	Some planted Allocasuarina species on site. HBTs present on site.
Large-eared Pied Bat Chalinolobus dwyeri	Vulnerable	Vulnerable	Within two kilometres of rocky areas containing caves, overhangs, escarpments, outcrops,	Very High	Small Caves or mines may occur within 2km.	Included	Habitat constraints may occur surrounding the Development Site.

Species Credit Species	NSW listing status	National listing status	Habitat components and geographic restrictions	Sensitivity to gain class	Habitat components and abundance on site	Included or excluded	Reason for inclusion or exclusion
			or crevices, or within two kilometres of old mines or tunnels.				
Eastern Pygmy Possum Cercartetus nanus	Vulnerable	-	None	High	NA	Included	No Habitat constraints
Sloane's Froglet Crinia sloanei	Vulnerable	-	Containing relatively shallow sections with submergent and emergent vegetation, or within 500m of wet area Within 500m of swamps Within 500m of waterbody	Moderate	Four dams present within the Development Site	Included	Habitat components on site
Little Eagle Hieraaetus morphnoides (breeding)	Vulnerable	-	Breeding Nest trees - live (occasionally dead) large old trees within vegetation.	Moderate	Large paddock trees present within the Development Site.	Included	Habitat components on site
White Bellied Sea-Eagle Haliaeetus leucogaster (breeding)	Vulnerable	-	Breeding Living or dead mature trees with suitable vegetation within 1km of rivers, lakes, large dams or creeks, wetlands and coastlines	Moderate	Mature trees within 1km of creeks present within the Development Site.	Included	Habitat components on site.
Swift Parrot Lathamus discolor (breeding)	Endangered	Critically Endangered	Breeding Mapped Important Areas (OEH)	Moderate	Outside Mapped Areas (As per OEH draft habitat mapping)	Excluded	Development Site occurs outside mapped important areas.

Biodiversity Development Assessment Report

Species Credit Species	NSW listing status	National listing status	Habitat components and geographic restrictions	Sensitivity to gain class	Habitat components and abundance on site	Included or excluded	Reason for inclusion or exclusion
Square-tailed Kite Lophoictinia isura (breeding)	Vulnerable	-	Breeding Nest Trees	Moderate	Large trees present within the Development Site	Included	Habitat components on site
Superb Parrot Polytelis swainsonii (breeding)	Vulnerable	Vulnerable	Breeding Living or dead E. blakelyi, E. melliodora, E. albens, E. camaldulensis, E. microcarpa and E. polyanthemos with hollows greater than 8cm diameter; greater than 4m above ground or trees with a DBH of greater than 30cm.	High – (breeding) Moderate – (Foraging)	<i>E. Melliodora</i> and <i>E. Albens</i> present within the Development Site with hollows	Included	Habitat components on site
Large Bent-winged Bat Miniopterus orianae oceanensis (breeding)	Vulnerable	-	Breeding Cave, tunnel, mine, culvert or other structure known or suspected to be used for breeding	Very High (Breeding) High (Foraging)	Two man-made bridge culverts present within the Development Site	Included	Habitat components on site
Southern Myotis <i>Myotis macropus</i>	Vulnerable	-	Within 200m of riparian zone Bridges, caves or artificial structures within 200m of riparian zone	High	Two man-made bridge culverts over waterways present within the Development Site One flowing watercourse within the Development Site	Included	Habitat components on site

Species Credit Species	NSW listing status	National listing status	Habitat components and geographic restrictions	Sensitivity to gain class	Habitat components and abundance on site	Included or excluded	Reason for inclusion or exclusion
Barking Owl Ninox connivens (breeding)	Vulnerable	-	Living or dead trees with hollows greater than 20cm diameter and greater than 4m above the ground.	High	Suitable HBTs with hollows greater than 20cm present in Development Site.	Included	Habitat components on site
Squirrel Glider Petaurus norfolcensis	Vulnerable	-	Relies on large old trees with hollows for breeding and nesting. These trees are also critical for movement and typically need to be closely-connected (i.e., no more than 50-m apart).	High	Suitable HBTs present within the Development Site	Included	Habitat components on site
Brush-tailed Rock Wallaby Petrogale penicillata	Endangered	Vulnerable	Land within 1km of rocky escarpments, gorges, steep slopes, boulder piles, rock outcrops or cliff lines	Very High	Habitat components absent	Excluded	Specific habitat components absent from the site
Brush-tailed Phascogale Phascogale tapoatafa	Vulnerable	-	During breeding season, males may seek temporal refuge points in paddock trees with hollows.	High	Suitable HBTs present within the Development Site	Included	Habitat components on site
Koala Phascolarctos cinereus (breeding)	Vulnerable	Vulnerable	Areas identified via survey as important habitat based on density of Koalas and quality of habitat	High	Survey required to identify	Included	Survey Required

Species Credit Species	NSW listing status	National listing status	Habitat components and geographic restrictions	Sensitivity to gain class	Habitat components and abundance on site	Included or excluded	Reason for inclusion or exclusion
Grey-headed Flying Fox Pteropus poliocephalus (breeding)	Vulnerable	Vulnerable	Breeding Camps	High	Survey required to identify	Included	Survey Required
Masked Owl Tyto novaehollandiae (breeding)	Vulnerable	-	Breeding Habitat Living or dead trees with hollows greater than 20cm diameter.	High	8 trees with hollows greater than 20cm present within the Development Site	Included	Habitat components on site
Regent Honeyeater Anthochaera phrygia (breeding)	Critically Endangered	Critically Endangered	Mapped Areas (as per OEH)	High	Outside Mapped Areas (As per OEH draft habitat mapping)	Excluded	Development Site occurs outside mapped important areas
Golden Sun Moth Synemon plana	Endangered	Critically Endangered	Specific grass species A radius 15km west of Binalong A radius of 15km from Tumut	High	Specific grass species absent	Excluded	Specific habitat components absent from the site and outside of the geographic restrictions for the species.
FLORA							
Ausfeld's Wattle Acacia ausfeldii	Vulnerable	-	None	High	NA	Included	BAM Calculator Species
Yass Daisy Ammobium craspedioides	Vulnerable	Vulnerable	South of Cowra	High	NA	Excluded	Development Site north of Cowra
Bluegrass Dichanthium setosum	Vulnerable	Vulnerable	None	High	NA	Included	BAM Calculator Species

Species Credit Species	NSW listing status	National listing status	Habitat components and geographic restrictions	Sensitivity to gain class	Habitat components and abundance on site	Included or excluded	Reason for inclusion or exclusion
Euphrasia Euphrasia arguta	Critically Endangered	Critically Endangered	None	High	NA	Included	BAM Calculator Species
Tumut Grevillea Grevillea wilkinsonii	Endangered	Endangered	Eastern part of sub- region from 10km west of the Hume Highway and north of the Snowy Mountains Highway	High	NA	Excluded	Development Site outside of geographic constraint area
Small Purple-pea Swainsona recta	Endangered	Endangered	None	NA	NA	Included	BAM Calculator Species
Silky Swainson-Pea Swainsona sericea	Vulnerable	-	None	High	NA	Included	BAM Calculator Species
Zieria obcordata Zieria obcordata	Endangered	Endangered	Land containing granite boulders on rocky outcrops.	High	Granite boulders and rocky outcrops present within the Development Site	Included	Habitat components present on site

4.2.2 Exclusions based on habitat quality

Under Section 6.4.1.17 of the BAM, a species credit species can be considered unlikely to occur on a Development Site (or within specific vegetation zones) if following field assessment, it is determined that the habitat is substantially degraded such that the species is unlikely to utilise the Development Site (or specific vegetation zones).

Flora

Table 4-3 identifies the flora species and zones excluded on the basis of habitat quality. The habitats in these zones were no longer representative of the habitats in which these species could occur.

Species Credit Species	Zones Excluded	Reason for exclusion
<i>Acacia ausfeldii</i> Ausfeld's Wattle	Zone 3, 5 & 10.	Planted Vegetation – no suitable habitat
	Zone 3, 5, 10	Planted Vegetation – no suitable habitat
<i>Swainsona recta</i> Small Purple-pea	Zone Tx 1, 2 and 3	These zones have been ploughed for crops or pasture improvement thereby eliminating sensitive native species. In addition, the whole area has been subject to heavy grazing by livestock for over 100 years and the subject threatened species are unlikely to have survived.
	Zone 3, 5 10	Planted Vegetation – no suitable habitat
Swainsona sericea Silky Swainson-Pea	Zone Tx 1, 2 and 3	These zones have been ploughed for crops or pasture improvement thereby eliminating sensitive native species. In addition, the whole area has been subject to heavy grazing by livestock for over 100 years and the subject threatened species are unlikely to have survived.
Zieria obcordata Zieria obcordata	Zone 3, 5, 10	Planted Vegetation – no suitable habitat
Dichanthium setosum Queensland Blue Grass	Zone Tx 1, 2 and 3	Species not associated with PCT 266

Table 4-3 Exclusions of flora species based on habitat quality.

Fauna

Table 4-3 identifies the fauna species and zones excluded on the basis of habitat quality. The habitats in these zones were no longer representative of the habitats in which these species could occur.

Species Credit Species	Zones Excluded	Reason for exclusion
Large Bent-winged Bat Miniopterus orianae oceanensis(breeding)	Zone Tx 1, 2 and 3	No caves, tunnels, mines, culverts or suitable breeding structures in transmission line easement.
Southern Myotis	Zone Tx 1, 2 and 3	Species not associated with PCT 266.

Table 4-4 Exclusion of fauna species based on habitat quality

Species Credit Species	Zones Excluded	Reason for exclusion
Myotis macropus		
Large-eared Pied Bat Chalinolobus dwyeri	Zone Tx 1, 2 and 3	Species not associated with PCT 266.
White Bellied Sea-eagle Haliaeetus leucogaster	Zone Tx 1, 2 and 3	Not within 1km of a river, large creek, lake, dam, wetland or coastline.
Masked Owl Tyto novaehollandiae	Zones 1 - 6	See below

One species, the Masked Owl, although known to occur in the area, is considered unlikely to breed on the Development Site (Solar array area) given the highly cleared and fragmented context and absence of specific habitat resources. Although habitat is present on site that meets the breeding habitat constraint for this species (living or dead trees with hollows greater than 20cm diameter), it is considered unlikely that the Masked Owl would use these habitat features given the context in which theses habitat features occur.

The Masked Owl is a large forest owl that prefers uncleared or lightly cleared areas with high densities of old Hollow-bearing trees (DEC 2006). Studies of woodland fragments on privately-owned and unprotected lands in south-eastern New South Wales showed that virtually all records of the Masked Owl were associated with extensively forested areas or occurred within one kilometre of the boundary of these areas (Kavanagh and Stanton, 2002). The Development Site is highly cleared and fragmented with the nearest densely forested area over 2.5 kilometres to the south-west. As such, the Development Site is unlikely to be preferred habitat for this species. Further, breeding usually occurs in close proximity to foraging areas.

Common Ringtail Possum, Greater Glider and the Sugar Glider are important prey species for large forest owls (Kavanagh and Stanton, 2002), none of which were recorded at the Development Site during nocturnal surveys. The Development Site is therefore unlikely to provide preferred foraging habitat for the Masked Owl. The NSW Recovery Plan for large forest owls (DEC 2006) states that the Masked Owl requires old hollow eucalypts with hollows greater than 40cm wide and greater than 100cm deep for nesting. No hollows within the Development Site were recorded as likely to have these attributes.

Based on the above it is considered unlikely that the Masked Owl would utilise the hollows within the Development Site for nesting. As such, no breeding resources would be impacted by the proposal and species credits are not considered to be generated for this species.

Given the species has been recorded just to the south of the site, it is likely that the species may travel through and occasionally forage. Being a dual credit species, these habitat resources are accounted for in the ecosystem credits generated.

4.2.3 Candidate species requiring confirmation of presence or absence

The species listed in Table 4-5 are those that are considered to have habitat present at the Development Site. Surveys have been conducted for these species. The results are summarised in Table 4-5. Details of the survey methodologies and results are provided for each surveyed species are provided below. Targeted survey locations are mapped in Figure 4-2.

Species polygons have been defined for the species present on the site as mapped in Figure 4-2.

Species Credit Species	Biodiversity risk weighting	Survey Time	Assumed to occur/survey/ expert report	Present on site?	Species polygon area or count
FAUNA					
Pink-tailed Legless Lizard Aprasia parapulchella	2.00	September - November	Surveyed Oct 2017 Not surveyed for in transmission line route	Assumed present in transmission line route	0.56 ha (Rocky areas in transmission line easement)
Bush Stone Curlew Burhinus grallarius	2.00	All Year	Surveyed Jan 2019	No	-
Glossy Black Cockatoo Calyptorhynchus lathami	2.00	May - August	Surveyed May 2018 Not surveyed for in transmission line route	Assumed present in transmission line route in woodland PCTs	7.56 ha PCT 266 moderate and 0.5 ha of PCT 266 creek line.
Gang-Gang Cockatoo Callocephalon fimbriatum	2.00	October - January	Surveyed Oct 2017 and Jan 2019	No	-
Large-eared Pied Bat Chalinolobus dwyeri	3.00	September - March	Surveyed December 2017	No	-
Eastern Pygmy Possum Cercartetus nanus	2.00	October - March	Surveyed Oct 2017	No	-
Little Eagle Hieraaetus morphnoides	1.5	August -October	Surveyed Oct 2017 Not surveyed for in transmission line route	No	-
White Bellied Sea-Eagle Haliaeetus Ieucogaster	2.00	July-December	Surveyed Oct 2017	No	-
Swift Parrot Lathamus discolor	3.00	May - August	Surveyed Oct 2017	No – not within mapped	-

Table 4-5 Summary of species credit species surveyed at the Development Site.

Species Credit Species	Biodiversity risk weighting	Survey Time	Assumed to occur/survey/ expert report	Present on site?	Species polygon area or count
				important area	
Square-tailed Kite Lophoictinia isura	1.5	September- January	Surveyed Oct 2017 and Jan 2019	No	-
Superb Parrot Polytelis swainsonii	2.00	September - November	Surveyed Oct 2017 Not surveyed for in transmission line route	Foraging only. No breeding habitat on site	-
Large Bent- winged Bat Miniopterus schreibersii oceanensis	3.00	November - February	Surveyed Dec 2017	Yes. Foraging only. No Breeding Habitat	-
Southern Myotis Myotis macropus	2.00	November – March	Surveyed December 2017	Yes	0.22 ha – (Combined area of hollow bearing trees within 200m of watercourse)
Barking Owl Ninox connivens	2.00	May - December	Surveyed Oct 2017 Not surveyed for in transmission line route	Assumed Present in transmission line route	7.56 ha PCT 266 moderate and 0.5 ha of PCT 266 creek line
Masked Owl Tyto novaehollandiae	2.00	May – August	Not surveyed for in transmission line route	Assumed Present in transmission line route	7.56 ha PCT 266 moderate and 0.5 ha of PCT 266 creek line
Squirrel Glider Petaurus norfolcensis	2.00	All Year	Surveyed Oct 2017 and Jan 2019	No	-
Brush-tailed Phascogale Phascogale tapoatafa	2.00	All Year	Surveyed Oct 2017 and Jan 2019	No	-
Koala Phascolarctos cinereus	2.00	All Year	Surveyed Oct 2017, Oct 2018 and Jan 2019	No	-

51

ngh environmental

Wellington North Solar Farm **Biodiversity** Assumed to **Species Credit** Present on Species polygon **Survey Time** risk occur/survey/ Species site? area or count weighting expert report Grey-headed Flying Fox Foraging only. Surveyed Oct October -Pteropus 2.00 2017 and Oct No Breeding Poliocephalus December 2018 Camps. (Breeding camps) No – not Regent within Honeyeater September -Surveyed Oct 3.00 mapped December 2017 Anthochaera important phrygia area **FLORA** Surveyed Oct Ausfeld's Wattle 2.00 Any 2017 and Dec No Acacia ausfeldii 2018 Bluegrass Surveyed Feb 2.00 December - May No Dichanthium 2018 setosum Euphrasia Surveyed Oct 3.00 2017 and Dec No Euphrasia -_ 2018 arguta

Small Purple-pea Swainsona recta	1.00	September - October	Surveyed Oct 2017 Not surveyed for in transmission line route	No	-
Silky Swainson- Pea Swainsona sericea	2.00	September - February	Surveyed Oct 2017 and Dec 2018.	No	-
Zieria obcordata Zieria obcordata	3.00	All	Surveyed Oct 2017 and Dec 2018.	No	-

4.2.4 **Targeted Species Surveys**

The majority of the targeted surveys were completed between the 18th and 20th October 2017. Further fauna surveys were undertaken on the 11th -12th December 2017, 30th-31st May 2018, 1st June 2018 and 16th-17th October 2018. Further flora surveys were undertaken on the 14th February 2018.

Targeted surveys for the transmission line route were undertaken between the 3rd-5th December 2018 (for Flora) and the 15th – 18th January and 29th – 31st January 2019 (for fauna).

Weather conditions recorded for these dates at the Wellington Weather Station were as follows:

Date	Maximum Temperature (°C)	Minimum Temperature (°C)	Rainfall (mm)
18 th October 2017	No data	No data	0
19 th October 2017	30.2	No data	0
20 th October 2017	23.2	18.6	21.6
11 th December 2017	33.1	15.2	0
12 th December 2017	35.0	16.6	0
14 th February 2017	36.6	16.0	0
30 th May 2018	13.5	7.0	10.6
31 st May 2018	15.0	2.0	0
1 st June 2018	17.3	0.5	0
16 th October 2018	27.0	13.5	0
17 th October 2018	25.0	25.0	0.6
3 rd December 2018	29.0	8.5	0
4 th December 2018	32.0	11.0	0
5 th December 2018	32.0	17.8	0
15 th January 2019	42.0	23.5	0
16 th January 2019	43.5	27.0	0.5
17 th January 2019	43.5	24.0	0
18 th January 2019	41.5	24.5	0
29 th January 2019	38.3	23.1	0
30 th January 2019	34.0	24.0	0
31 st January 2019	36.5	22.5	0

Table 4-6 Weather conditions during site surveys

Pink-tailed Legless Lizard (Aprasia parapulchella)

SURVEY EFFORT

A targeted search was completed on the 19th and 20th October 2017 for a total of approximately 4 hours each day.

All rocky outcrops within the Development Site were surveyed. The location of these surveys are shown in Figure 4-2. A survey of an outcrop consisted of rolling appropriately sized and shaped rocks that could be rolled before being placed back into their original position, up to a maximum of 30minutes/outcrop. Surveys were conducted between sunrise and 11:30am as the temperature then rose beyond 25 degrees which is not appropriate for detecting *Aprasia* (TTSC, 2015). Due to rain on the following day, the sites could not be repeated.

SURVEY RESULTS

22 rocky outcrops were surveyed. No *Aprasia* or sloughed skins of *Aprasia* were detected during the survey. Aprasia feed on the larvae and eggs of ants and there were very few colonies of appropriately sized ants (small species) for Aprasia to feed on. Results of other species found under or amongst rocks are shown in Appendix C.

One rocky outcrop occurs in the transmission line route (Figure 4-3). Surveys were unable to be undertaken in the transmission line easement during the recommended survey time. Thus, the Pink-tailed Legless Lizard was assumed to be present in this area. This 0.56ha of rocky outcrop to be impacted was entered into the BAM calculator as assumed presence.

Woodland Birds (Hollow dependent) - Gang-Gang Cockatoo, Little Eagle, White-Bellied Sea Eagle, Square-tailed Kite, Superb Parrot, Regent Honeyeater.

SURVEY EFFORT

Targeted surveys were undertaken on the 18th-20th October 2017. Further targeted surveys were undertaken between the 15th-18th January and 29th-31st January 2019 to survey the transmission line easement. Four twenty-minute point count surveys were conducted after sunrise in areas of woodland. The locations of these point surveys are shown in Figure 4-2 and Figure 4-3.

Hollow bearing trees were assessed for suitability for the Gang-Gang Cockatoo and Superb Parrot. Trees with suitable hollows for the Gang-Gang Cockatoo were observed for signs of activity during dawn and dusk.

Paddock trees and remnant trees were surveyed for evidence of stick nests used by raptors.

Opportunistic bird surveys were also recorded throughout the three days spent on site.

SURVEY RESULTS

No target threatened birds were detected over the duration of the surveys. The site was also noted to lack many Honeyeater species (despite a lot of flowering blossom) and small canopy feeders (e.g., Thornbills/Weebills).

No evidence of nesting material for raptors was observed in remnant trees.

HBTs were considered suitable for the Gang-Gang Cockatoo, however it was not detected within the Development Site. Results of other birds detected are shown in Appendix C.

Surveys were unable to be undertaken in the transmission line easement during the recommended survey time for the Superb Parrot and Little Eagle. The preferred breeding habitat for Superb Parrot is not within this locality. It is assumed that both species would potentially utilise the transmission easement for foraging thus no species credits for breeding habitat is required.

Glossy Black Cockatoo

SURVEY EFFORT

Targeted surveys were undertaken on the 30th-31st May and 1st June 2018. Hollow bearing trees were assessed for suitability for the Glossy Black Cockatoo. Trees with suitable hollows for the Glossy Black Cockatoo were observed for signs of activity during dawn and dusk. Surveys were undertaken for 2 hours before sunset on the 30th and 31st May (3:30pm – 5:30pm) and 1.5 hours on the morning (7:30 -9:00am) of the 31st May and 1st June. Hollow bearing trees surveyed were located near patches of remnant woodland. Isolated paddock trees were not surveyed for Glossy Black Cockatoo as this species needs larger patches and more intact landscape for breeding (BioNet, 2018).

A hollow bearing tree inventory was undertaken in January 2019 in the transmission line easement to determine if there is suitable breeding habitat for the Glossy Black Cockatoo.

SURVEY RESULTS

No Glossy Black Cockatoos were observed during the survey of the Development Site (Solar array).

Surveys were unable to be undertaken in the transmission line easement during the recommended survey time. Thus, the Glossy Black Cockatoo was assumed to be present in woodland areas (Zone Tx 2 and Tx 3) within the transmission line easement. 31 trees with suitable medium hollows (> 15cm in size) are present in this area. This species was assumed to be present in woodland areas (Zone Tx2 and Tx3) within the transmission line easement. The area of these two woodland zones was calculated to be the assumed area of impact for the Glossy Black Cockatoo.

Nocturnal Birds – Barking Owl, Masked Owl and Bush Stone Curlew

SURVEY EFFORT

Targeted surveys were undertaken on the evenings of 18th and 19th October 2017 by two ecologists for a total of approximately three hours each night. Additional surveys were undertaken on the evenings of 15th–17th January and 29th-31st January in the transmission line easement. A 100-watt spotlight was used in a slow-moving vehicle within planted vegetation, remnant vegetation and isolated paddock trees. Call playback of the Masked Owl, Barking Owl and Bush Stone Curlew was undertaken at six separate locations within the Development Site at the locations shown in Figure 4-2 and Figure 4-3. Call playback was undertaken for each species for a period of 5 minutes with a ten-minute listening period following.

A hollow bearing tree inventory was undertaken in January 2019 in the transmission line easement to determine if there is suitable breeding habitat for the Barking Owl and Masked Owl.

SURVEY RESULTS

No target threatened birds were detected over the duration of the surveys. Two common nocturnal birds were detected – The Southern Boobook (*Ninox novaeseelandiae*) and the Tawny Frogmouth (*Podargus strigoides*).

Surveys were not undertaken in the transmission line easement during the recommended survey time. Thus, the Barking Owl and Masked Owl are assumed to be present in woodland areas (Zone Tx 2 and Tx 3) within the transmission line easement. Six trees with suitable large hollows (>20cm in size) are present in this area. This species was assumed to be present in woodland areas (Zone Tx2 and Tx3) within the transmission line easement. The area of these two woodland zones was calculated to be the assumed area of impact for the Masked Owl and Barking Owl.

Nocturnal Mammals – Eastern Pygmy Possum, Squirrel Glider, Brush-tailed Phascogale and Koala

SURVEY EFFORT

Targeted surveys were undertaken on the evenings of 18th and 19th October 2017 by two consultants for a total of approximately three hours each night. Further targeted surveys were undertaken on the 15th– 18th January and 20th and 31st January 2019 to survey the transmission line easement. A 100-watt spotlight was used in both vehicle-based and foot surveys within planted vegetation, remnant vegetation and isolated paddock trees.

SURVEY RESULTS

No target threatened mammals were detected over the duration of the surveys. Only the common brushtail possum was detected within the woodlands (Zone PCT 266_good) of the Development Site.

Koala.

SURVEY EFFORT

Targeted surveys for the solar panels Development Site were undertaken on the 16th and 17th October 2018. Further targeted surveys were undertaken on the 15th–18th January 2019 to survey the transmission line easement. Trees were surveyed for koala scats using the Spot Assessment Technique (SAT). In woodland areas, one centre tree was selected that provided a food source for Koalas and the nearest 29 trees were surveyed for Koala Scats.

SURVEY RESULTS

No Koalas were detected over the duration of the surveys. No Koala scats were detected at the base of the trees surveyed.

Frogs – Booroolong Frog

SURVEY EFFORT

Frog surveys were undertaken on the evenings of the 11th and 12th December 2017. 200m transects and call playbacks were undertaken along the open water points in the creek line of Tributary 1. Four transects were undertaken in total. These are shown in Figure 4-2.

SURVEY RESULTS

Almost all areas of the creeks were clogged with rushes to the point of not being able to see water. This is not typical habitat for this species which prefers more open rocky areas for basking. No Booroolong Frogs were detected, and this species is considered unlikely to occur within the Development Site.

Microbats – Large-eared Pied Bat, Large Bent-winged Bat and Southern Myotis

SURVEY EFFORT

Surveys were undertaken on the evenings of the 11th and 12th December 2017. Three ANABAT units were deployed on both nights. ANABATS were set up in trees or on posts facing either open water representing potential foraging habitat for Myotis and nearby Hollow-bearing trees, or, facing Hollow-bearing trees within 200m of running creeks. One was set up facing a culvert. The location of the ANABAT is shown in Figure 4-2, and Figure 4-1 shows the habitat the ANABAT microphones were facing. ANABATS acquired a GPS signal and were all set to record for the entire night. Recordings were then sent for expert analysis.

Two nights of stag watching were also undertaken on the 11th and 12th December 2017.

Figure 4-1 Example of habitat from location of ANABAT.

SURVEY RESULTS

No threatened bats were observed during the stagwatch. The creek line was filled with rushes with very little open water present along the creek. No open water reduces the foraging habitat for the Southern Myotis. The ANABAT data was analysed specifically for the three threatened microbat species by Fly by Night Bat Surveys PL (2018).

Thirteen recorded echolocation calls of the Large Bent-winged Bat were identified from two different locations – along the Creek line at ANABAT 1 and by the Culvert along Campbells Lane. (Figure 4-2). No breeding or roosting Large Bent-winged Bats were detected. Potential roosting habitat within the culverts would not be impacted. This species is a dual credit species. Species credit only apply to breeding habitat. Foraging habitat is considered as part of the ecosystem credit species calculations.

Two recorded echolocation calls of the Southern Myotis were identified from one ANABAT on the evening of the 11th December 2017. This was at ANABAT 1 along the creek line. (Figure 4-2). As the Southern Myotis was recorded as present on site, the hollow bearing trees on this creek line formed the species polygons covering an area of 0.22 hectares.

No ANABAT records of the Large-eared Pied Bat were detected.

Grey-Headed Flying Fox

SURVEY EFFORT

Two nights of stag watching were undertaken on the 11th and 12th December 2017. Stag watching was undertaken along the creek line shown in Figure 4-2. The Development Site was surveyed for breeding camps.

SURVEY RESULTS

No Breeding camps were detected within the Development Site.

Several grey headed flying foxes were seen flying overhead or in a tree foraging along the creek line in the centre of the site.

Ausfeld's Wattle (*Acacia ausfeldii*)

SURVEY EFFORT

Suitable habitat for these species could occur in areas of remnant woodland vegetation. Surveys were undertaken for these species between the 4th and 5th October, 18th and 20th of October 2017, 17th October 2018 and 3rd - 5th December 2018. This is within the optimal detection period for this species. Within the woodland areas, very few mid-storey species were present, and any individuals would have been easily detected.

SURVEY RESULTS

Ausfeld's Wattle was not detected during the site surveys. It is a conspicuous shrub 2-4m tall. Very few understorey shrubs were detected within the Development Site. It is considered unlikely that the species would have been overlooked if present and as such it is not considered to occur at the Development Site.

Blue Grass (Dichanthium setosum)

SURVEY EFFORT

Surveys were undertaken for this species on the 14th February 2018 for a period of 5 hours. Surveys were undertaken in areas where suitable habitat was considered to occur. This included the low condition native grassland and areas of remnant woodland vegetation. Areas of suitable habitat were surveyed using the parallel field traverse survey technique in accordance with the NSW Guide to Surveying Threatened Plants (OEH, 2016). Targeted Survey areas are shown in Figure 4-2.

SURVEY RESULTS

Dichanthium setosum was not detected during the targeted surveys. A common bluegrass (*Dichanthium sericeum*) was detected scattered throughout the low condition grassland. *Dichanthium setosum* is not considered to occur within the Development Site.

Euphrasia arguta

SURVEY EFFORT

Euphrasia arguta is an erect annual herb up to 35cm tall. This species is semi-parasitic and it is found in Eucalypt forests with a mixed grass and shrub understorey. Surveys were undertaken for this species between the 18th and 20th October 2017 and 3rd-5th December 2018. This is within the optimal detection period for this species. Areas of suitable habitat were surveyed using the parallel field traverse survey method. This included the areas of remnant woodland with native understorey, moderate condition derived native grasslands and previously unploughed gullies in the transmission line easement. Targeted Survey areas are shown in Figure 4-2.

SURVEY RESULTS

Euphrasia arguta was not detected during the surveys and is not considered to occur within the Development Site.

Small Purple Pea and Silky Swainson-Pea

SURVEY EFFORT

Silky Swainson-Pea (*Swainsona sericea*) is a prostrate or erect perennial up to 10cm tall (OEH, 2016). It is found in Box Gum Woodland in the Southern Tablelands and the South West Slopes. Small Purple Pea

(*Swainsona recta*) is an erect perennial herb growing to 30cm tall. It occurs in the grassy understorey of woodland and open forests (OEH, 2016). Surveys were undertaken for these species between the 18th and 20th October 2017 and 3rd–5th December 2018 during the optimal detection period. Areas of suitable habitat were surveyed using the parallel field traverse survey method. This included the areas of remnant woodland with native understorey, moderate condition derived native grassland and previously unploughed gullies in the transmission line easement. Targeted survey areas are shown in Figure 4-2.

SURVEY RESULTS

Small Purple Pea and Silky Swainson-Pea were not detected during the surveys. As such, they are not considered to occur within the Development Site.

Zieria obcordata

SURVEY EFFORT

Suitable habitat for this species could occur in areas of White Box woodland on the rocky hill slopes. Surveys were undertaken for this species in areas of remnant woodland and rocky outcrops. Within the woodland areas, very few mid-storey species were present and any individuals would have been easily detected. Surveys were undertaken within the appropriate detection period for this species between the 4th and 5th October, 18th and 20th of October 2017 and 3rd-5th December 2018.

SURVEY RESULTS

Zieria obcordata was not detected during the site surveys. It is a conspicuous perennial shrub. Very few understorey shrubs were detected within the Development Site. It is considered unlikely that the species would have been overlooked if present and as such it is not considered to occur at the Development Site.

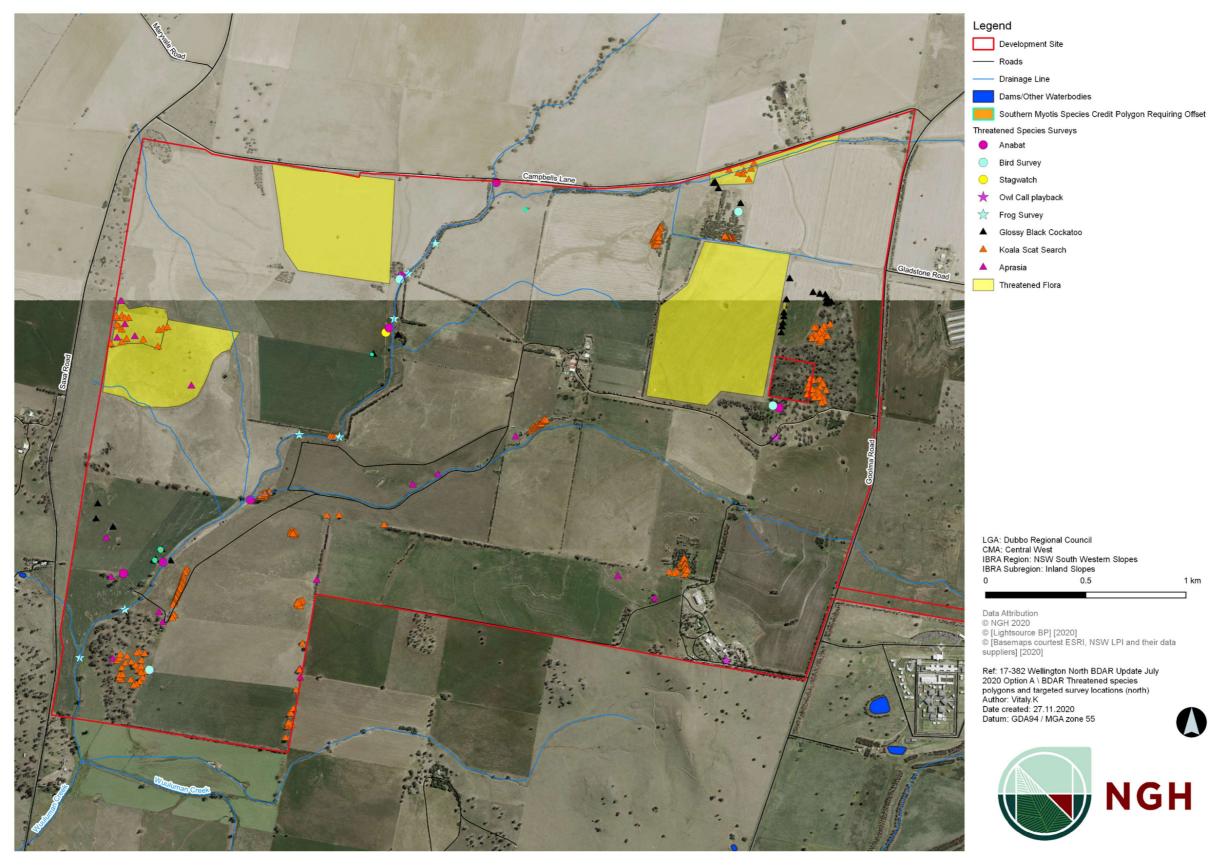


Figure 4-2 Threatened species polygons and targeted survey locations (north).

1 km

Biodiversity Development Assessment Report Wellington North Solar Farm

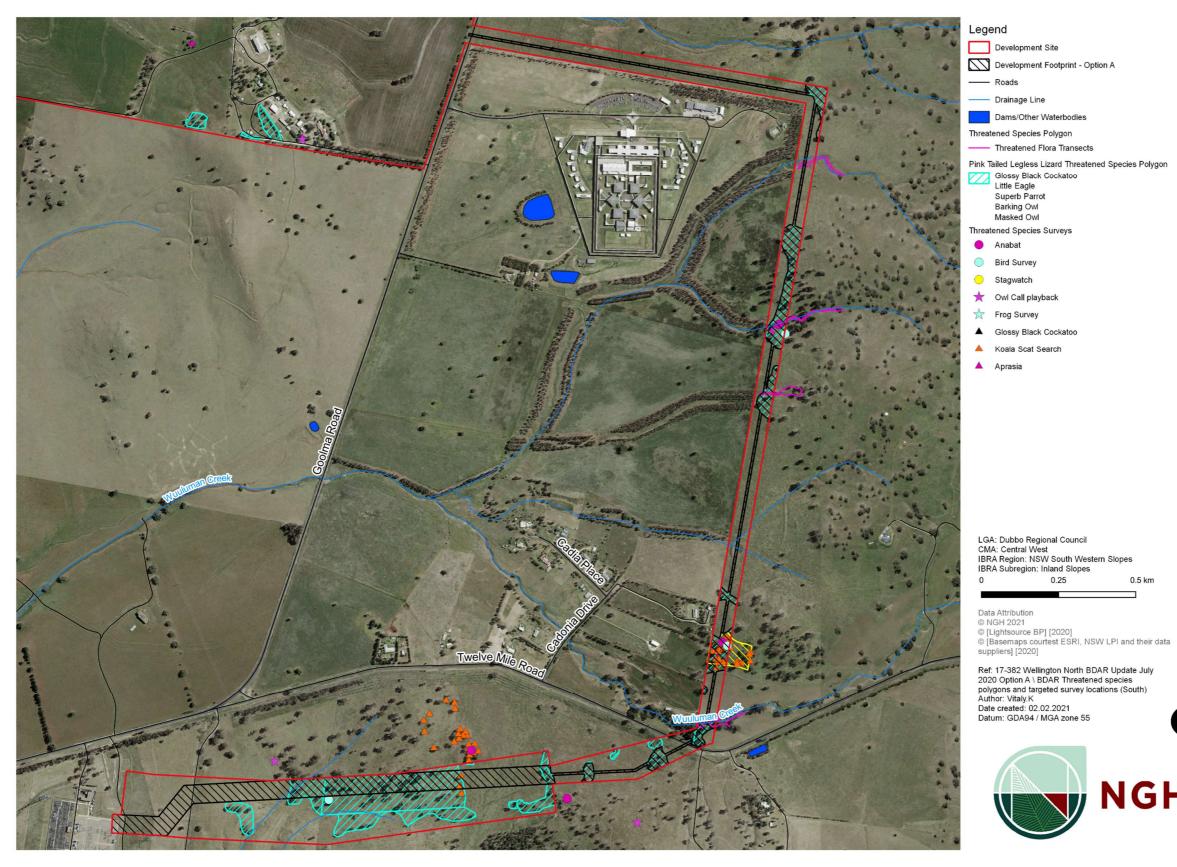


Figure 4-3 Threatened species polygons and targeted survey locations (south).

0.5 km

Biodiversity Development Assessment Report Wellington North Solar Farm

4.3 ADDITIONAL HABITAT FEATURES RELEVANT TO PRESCRIBED BIODIVERSITY IMPACTS

4.3.1 Occurrences of karst, caves, crevices and cliffs

As verified by the field inspection, there are no occurrences of karst, caves, crevices or cliffs within the Development Site.

4.3.2 Occurrences of rock

Twenty-three rocky outcrops occur throughout the Development Site.

Geology mapping shows the rocky hills are basalt, basaltic andesite and latite intrusions from the Ordovician period, while along the creek line rock units are described as alluvial silt, clay and sand with pebble to cobble-sized conglomeratic lenses from the Quaternary period. (Scott et al, 2000 and Colquhoun et al, 1999).

Rocky outcrops are present in a number of forms. Outcrops on hilltops are exposed igneous intrusions ranging in size from 10-80cm in diameter (Figure 4-4). Some rocks have been manually placed in piles along fence lines after being exposed from ploughing paddocks (Figure 4-5). These are generally smaller, ranging from 5–30cm in diameter.

Smaller rocks occur along and surrounding the creek lines with some larger exposed rocks through the middle of the creek creating a small cascade (Figure 4-6).

Threatened species that could occur in these rocky outcrops are the:

- Pink-tailed Legless Lizard (*Aprasia parapulchella*). Surveys were undertaken for this species in rocky outcrops but were not detected (Figure 4-2).
- Booroolong Frog (*Litoria booroolongensis*). Booroolong Frog breeds in rocky habitats along the creek lines. Surveys were undertaken for the Booroolong Frog along the creek and were not detected.

As these species were not detected, the rocky outcrops were considered unlikely to provide habitat for threatened species.

Figure 4-4 Example of Rocky outcrop on hilltop.

Figure 4-5 Example of manually piled rocky outcrop.

Figure 4-6 Example of rocky outcrops along the 3rd order stream.

4.3.3 Occurrences of human made structures and non-native vegetation

MAN-MADE CULVERTS

One man made earth culvert occurs within the Development Site underneath a track over a creek crossing (Figure 4-7). Another concrete culvert occurs outside the Development Site on Campbells Lane, just north of the Development Site. Threatened species that could use this habitat could also forage onto the Development Site.

Threatened species that can use small culverts are the:

- Large Bent-winged Bat (Miniopterus orianae oceanensis).
- Southern Myotis (Myotis Macropus).

Both these species were detected within the Development Site under analysis of ANABAT recordings. These microbats could use the man-made culverts as roosting habitat. The man-made culverts would not be impacted by the proposal.

Figure 4-7 Man-made culvert within the Development Site.

NON-NATIVE VEGETATION

Eighteen exotic pepper trees (*Schinus molle var. areira*) occur as paddock trees and 0.5ha occur as planted windbreaks throughout the Development Site. No threatened species are known to rely on the Pepper Tree for habitat, however it is likely some threatened bird species could utilise the Pepper Trees for foraging or nesting on occasion or as steppingstones for connectivity across the landscape.

Planted vegetation that is not representative of a PCT is not considered to be native vegetation and is not required to be offset. Planted vegetation, however, may still provide habitat for threatened species. Vegetation that does not form part of a PCT is considered as non-native vegetation for this assessment.

18.1 ha of vegetation occurs as farm forestry plantations of Mixed Eucalypts species such as Long Leaved Box (*Eucalyptus goniocalyx*), Mugga Ironbark (*Eucalyptus sideroxylon*), Monkey Grey Gum (*Eucalyptus cypellocarpa*), mixed Acacias and exotic Pinus species. These plantations are in neat rows of evenly spaced trees and do not resemble a natural ecosystem. The plantations lack any understorey species and only have a very sparse groundcover due to the dense plantings of overstorey species. These plantings were planted 30-40 years ago for farm forestry as trial species for dryland salinity control. No hollows are yet present in any of the trees. Threatened bird and mammal species could use these plantations for foraging or nesting habitat.

Fauna surveys were undertaken within the planted woodlots and no threatened species were detected.

Figure 4-8 Example of planted vegetation within the Development Site.

Figure 4-9 Exotic vegetation within the Development Site.

4.3.4 *Hydrological processes that sustain and interact with the rivers, streams and wetlands*

Seven tributaries throughout the Development Site facilitate water flow to the south of the site. These tributaries flow into Wuuluman Creek 300m south of the site, which flows into the Macquarie River at Wellington. Four dams are present within the Development Site in the south that provide a catchment for overland flow.

The main creek line, Tributary 1, is fringed with native vegetation of sedges and rushes. Some rocky outcrops and pebbles are also present along this creek. It could provide habitat for the threatened Booroolong Frog (*Litoria booroolongensis*). Surveys were undertaken for this species along Tributary 1 and it was not detected within the waterway.

The internal access tracks would require approximately five waterway crossings within the two main waterways onsite. The design of the waterway crossings would be in accordance with the following publications, to minimise erosion and protect the waterway function:

- Why do fish need to cross the road? Fish Passage Requirements for Waterway Crossings (Fairfull & Witheridge, 2003).
- Policy and Guidelines for Fish Friendly Waterway Crossings (NSW DPI, 2003).
- Guidelines for Watercourse Crossings on Waterfront Land (NSW DPI, 2012).

5 MATTERS OF NATIONAL ENVIRONMENTAL SIGNIFICANCE

An EPBC protected matters report was undertaken on the 12 September 2017 and 13 March 2019 (10km buffer of the Development Site) to identify Matters of National Environmental Significance (MNES) that have the potential to occur within the Development Site (refer to Appendix G). Relevant to Biodiversity these include:

- Wetlands of International Importance.
- Threatened Ecological Communities.
- Threatened species.
- Migratory species.

The potential for these MNES to occur at the site is discussed below.

5.1 WETLANDS OF INTERNATIONAL IMPORTANCE

Four wetlands of international importance were returned from the protected matters report. The nearest of these (within 200km of the Development Site) is the Macquarie Marshes. All other wetlands returned from the search are over 500km away. The Macquarie Marshes occur approximately 150km northwest of the Development Site and are fed by flooding of the lower Macquarie River. The 1st to 3rd order watercourses within the Development Site eventually feed into the Macquarie River, however, based on the minor nature of these streams and the distance from these wetlands, the proposal is unlikely to impact on any Wetland of International Importance.

5.2 THREATENED ECOLOGICAL COMMUNITIES

Two threatened ecological communities were returned from the protected matters report. These are:

- Grey Box (*Eucalyptus microcarpa*) Grassy Woodlands and Derived Native Grasslands of South-eastern Australia.
- White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland.

White Box and Yellow Box Grassy woodlands are present within the Development Site in varying condition.

The White Box and Yellow Box Woodland within the Development Site (solar panels and infrastructure) is degraded in the understorey and less than 50% of the groundcover is native. It does not meet the condition threshold for the EPBC listed community. Additionally, the derived native grassland component within the Development Site (solar panels and infrastructure), similarly has less than 50% native groundcover (ranging from 0.4% - 14% native ground cover from plot data collected), less than 12 native understorey species and lacks natural regeneration of the dominant Eucalyptus species. It does not form part of the EPBC listed White Box-Yellow Box-Blakely's Red Gum Grassy Woodland EEC.

However, the White Box Woodland within the transmission line easement has, in parts, greater than 50% perennial native vegetation cover, more than 12 native forbs and two important species. Thus, it meets the condition threshold of the EPBC listed community and is considered to form part of White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland.

5.3 THREATENED SPECIES

Twenty-nine threatened species were returned from the protected matters report, comprising nine birds, four fish, six mammals, eight plants and two reptile species. Based on a habitat assessment (Appendix H), 11 of these species are considered to have the potential to use the habitats at the Development Site. These are the:

- Regent Honeyeater (Anthochaera phrygia).
- Painted Honeyeater (Grantiella picta).
- Swift Parrot (*Lathamus discolor*).
- Superb Parrot (*Polytelis swainsonii*).
- Large-eared Pied Bat (*Chalinolobus dwyeri*).
- Corben's Long-eared Bat (Nyctophilus corbeni).
- Koala (Phascolarctos cinereus).
- Grey-headed Flying Fox (Pteropus Poliocephalus).
- Pink-tailed Worm-lizard (Aprasia parapulchella).
- Striped Legless Lizard (Delmar impar).
- Small Purple-pea (Swainsona recta).

These species were surveyed for during the site surveys.

One species, the Grey-headed Flying Fox, was observed within the Development Site. Several Grey-headed Flying Foxes were seen flying overhead along the creek line and are likely to use the habitat for foraging. An assessment of significance was undertaken for this species (refer Appendix I).

Known records of the Superb Parrot occur within 10km of the Development Site. The Superb Parrot was unable to be surveyed for during the breeding season in the transmission line easement. 40 suitable hollow bearing trees would be removed by the proposal. An assessment of significance was undertaken for this species (refer Appendix I).

Based on the comprehensive mammal and bird surveys undertaken and evaluation of habitat, no other EPBC listed species are considered likely to occur in the Development Site regularly or rely on the habitats present.

5.4 MIGRATORY SPECIES

Eleven listed migratory species were returned from the protected matters report. Two of these species could occur on the site on occasion – the Fork-tailed Swift and the White-throated Needletail. As these species are almost exclusively aerial (DoE, 2015) impacts to these species are considered unlikely.

The proposal is unlikely to impact on any EPBC listed Migratory Species.

6 AVOID AND MINIMISE IMPACTS

6.1 AVOIDING AND MINIMISING IMPACTS ON NATIVE VEGETATION AND HABITAT

6.1.1 Site selection

In selecting the site initially, numerous sites within NSW were reviewed for the Project proposal. Various options relating to location, technology and scale of the Project were evaluated in developing the proposal. Lightsource bp further reviewed the site plans and has altered the transmission line connection point at the substation. The site was selected as being a suitable site for a solar farm based on:

- A mostly cleared landscape with minimal vegetation removal required.
- Low environmental constraints (predominantly cleared cropping land with minimal vegetation removal).
- Compatible land use zoning of the land.
- Proximity to the transmission network.

The Development Footprint is of a scale that allows for flexibility in the design, allowing impacts on ecological constraints to be avoided and minimised.

6.1.2 Proposal components – consideration of alternate modes or technologies

The Large-scale Renewable Energy Target (LRET) and Regional Environmental Action Plan (REAP) outline the commitment by both Australia and NSW to reduce Greenhouse Gas emissions and set targets for increasing the supply of renewable energy. Other forms of large-scale renewable energy accounted for in the LRET include wind, hydro, biomass, and tidal energy. The feasibility of wind, solar, biomass, hydro and tidal projects depend on the availability of energy resources and grid capacity.

Photovoltaic solar technology was chosen because it is cost-effective, low profile, durable and flexible regarding layout and siting. It is a proven and mature technology which is readily available for broad scale deployment at the site. In terms of its impacts on biodiversity, PV solar has minimal construction footprint, with mounts being either pile driven or positioned on small footings. The largest footprint components are the perimeter tracks and inverter and switch station footings. The layout can be flexible to minimise any impacts on site constraints.

6.1.3 Proposal planning phase – detailed design

A preliminary constraints analysis was conducted by NGH Environmental on the 5th and 6th October 2017. This constraints analysis informed the site layout design by avoiding areas of high biodiversity value.

Vegetation constituting the highest ecological constraint, such as forming components of a TEC, were avoided and minimised as far as practical by:

- Avoiding areas of good condition remnant vegetation that formed part of an EEC (zone 7, zone 8 and zone 9) These areas are located within the Development Site. These vegetation zones form part of the White Box Grassy Woodland and Yellow Box Woodland that had minimal grazing (Table 6-1).
- Minimising the impact to areas of moderate condition remnant vegetation (i.e., TECs). These were areas of White Box Grassy Woodland and Yellow Box Woodland with a grazed understorey.

- Locating the Project away from the 3rd order stream that may provide foraging habitat for threatened species such as the Southern Myotis, Large Bent-winged Bat and Grey-headed Flying Fox.
- Buffering waterways in accordance with their classifications and the "Guidelines for Riparian Corridors on Waterfront Land" (NSW Office of Water, 2012) to minimise impacts on hydrology and water quality.
- Avoiding impacts to rocky outcrops where possible.
- Avoiding impacts to Hollow-bearing trees where possible.
- Locating ancillary facilities in areas where there are no biodiversity values.
- Making provision for the ecological restoration, rehabilitation and/or ongoing maintenance of retained native vegetation habitat on the Development Site.

Table 6-1 Vegetation zones avoided by the proposal

Zone ID	РСТ	Zone Name	TEC	Zone Area (ha)
7	266 - White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion	PCT 266_Good	EEC	26.4
8	437 - Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion	PCT 437_Derived Native Grassland	EEC	4.3
9	437 - Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion	PCT 437_Good	EEC	14.4

Areas that could not be avoided

The final site layout for the solar farm Development Footprint has not been able to completely avoid all areas of biodiversity value because the length and size of the solar panels means it is difficult to avoid small patches of vegetation such as planted woodlots and isolated paddock trees.

In addition to the impacts to the solar farm Development Footprint, Lightsource bp requested minor changes including:

- Amendments to the transmission line corridor, to account for the planned upgrade of the Wellington Substation infrastructure and allow flexibility in the detailed design of the transmission line. The proposed transmission line corridor is 60 metres wide from Goolma Road to Twelve Mile Road. However, the corridor widens to 200 metres between Twelve Mile Road and the Wellington Substation to allow for two different route options to be constructed for the transmission line (Option A and Option B). While flexibility is required as to which option would be constructed, for the purposes of this BDAR Option A has been selected, as it would have a larger biodiversity impact on White Box Woodland.
- Amendments to the Project's site access point. This access point was proposed as one operational site access point but will now serve as the Project's only construction and operational access point. Therefore, an upgraded intersection treatment is now required.

6.1.4 *Precautionary assessment approach*

The largest area of impact for this Project is due to the solar panels. However, it is noted that the impacts of shading on groundcover species composition over the long term is largely unknown. Solar panels will

cause extensive shading over the site. However, it is not known whether shading would lead to a significant change in groundcover species composition and if this is the worst case scenario, it is necessary to assume this vegetation will be removed rather than modified by shading. To mitigate the loss of ground storey species composition and cover, the intention is to minimise ground disturbance and reinstate disturbed areas. Further precautionary measures include adopting an adaptive management approach involving the ongoing monitoring of ground cover vegetation to determine the impacts, with the potential replacement with shade tolerant ground cover vegetation.

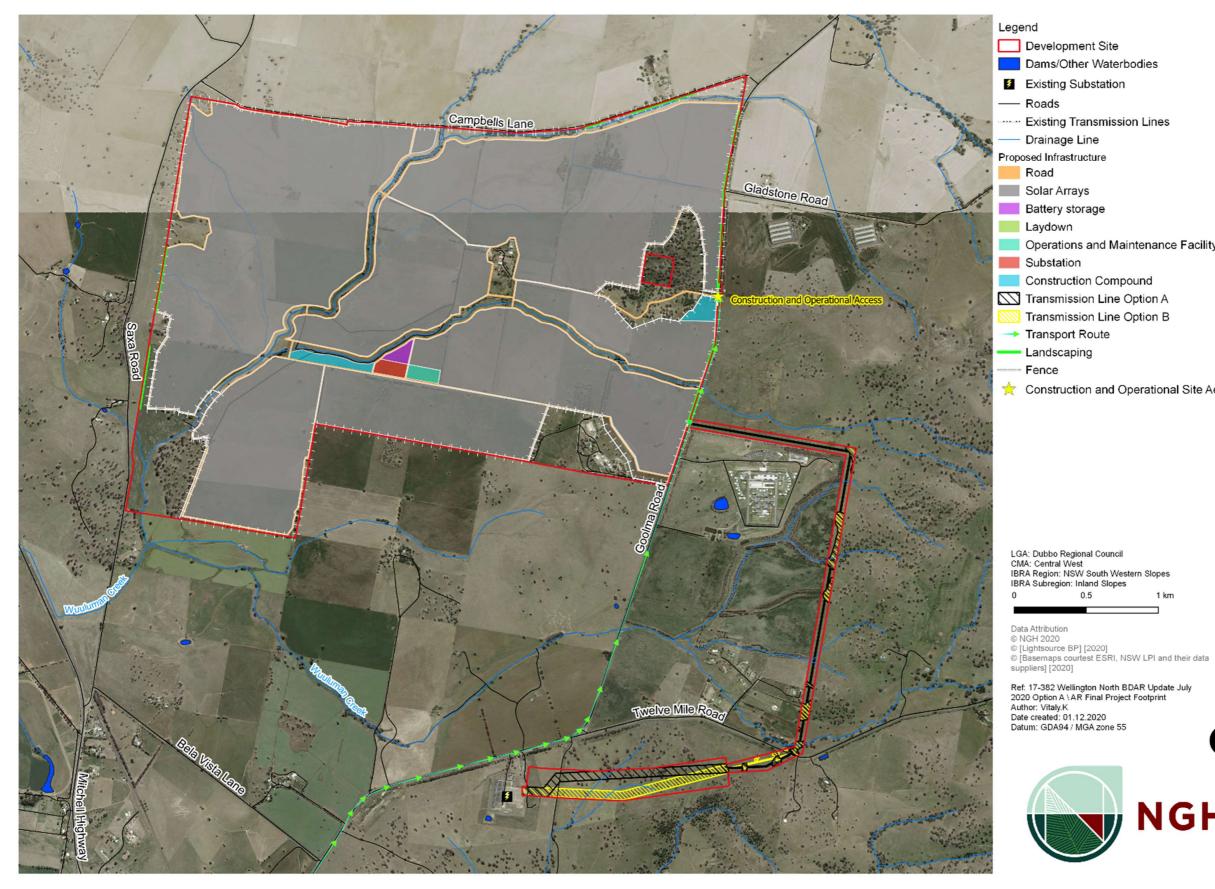


Figure 6-1 Final Project footprint.

Operations and Maintenance Facility

☆ Construction and Operational Site Access

1 km

6.2 AVOIDING AND MINIMISING PRESCRIBED BIODIVERSITY IMPACTS

The *Biodiversity Conservation Regulation 2017* (BC Regulation) (clause 6.1) identifies actions that are prescribed as impacts to be assessed under the biodiversity offsets scheme.

Prescribed biodiversity impacts relevant to the Project are:

- Impacts of development on the habitat of threatened species associated with rocks.
- Impacts of development on the habitat of threatened species associated with human made structures.
- Impacts of development on the habitat of threatened species associated with non-native vegetation.
- Impacts of development on the connectivity of different areas of habitat of threatened species that facilitates the movement of those species across their range.
- Impacts of development on movement of threatened species that maintains their life cycle.
- Impacts of development on water quality, water bodies and hydrological processes that sustain threatened species and threatened ecological communities.
- Impacts of vehicle strikes on threatened species or on animals that are part of a TEC.

How these prescribed impacts have been avoided and minimised by the Project are detailed below.

6.2.1 Impacts of development on the habitat of threatened species associated with rocks

Twenty-three rocky outcrops occur within the Development Site. The majority of these have been avoided by the proposal. Five rocky outcrops occurring in the middle of the cleared paddocks were unable to be avoided by the Development Footprint due to the size constraints of the individual solar panels. These rocky outcrops would be removed through construction of the solar farm.

6.2.2 Impacts of development on the habitat of threatened species associated with human made structures

Two man-made culverts occur within the Development Site that may provide habitat for threatened bats such as the Large Bent-winged Bat (*Miniopterus orianae oceanensis*). The Development Footprint of the proposal was designed to avoid impacts to this man-made habitat.

6.2.3 Impacts of development on the habitat of threatened species associated with non-native vegetation

18.1ha of planted vegetation occurs within the Development Site that does not conform to a plant community type. 6.3ha would be avoided by the proposal, however 11.8ha of planted vegetation is unable to be avoided due to solar panel design constraints. These areas were selected to be removed as they are areas where biodiversity values are lowest.

6.2.4 Impacts of development on the connectivity of different areas of habitat of threatened species that facilitates the movement of those species across their range

The predominantly cleared landscape provides low quality connectivity across the Development Site. The main creek line (Tributary 1) and planted vegetation along the riparian zone provides some connectivity across the landscape for highly mobile threatened species such as the Southern Myotis (*Myotis Macropus*) and Large Bent-winged Bat (*Miniopterus orianae oceanensis*) that were observed on site.

The Development Footprint of the proposal was designed to avoid impacts to the main creek line (Tributary 1) and adjacent planted vegetation as well as tributary 2 running in an east-west direction where defined embankments are present. These areas would allow for connectivity to be maintained through the Project in a north-south and east-west direction.

6.2.5 Impacts of development on the connectivity of different areas of habitat of threatened species that facilitates the movement of threatened species that maintain their lifecycles

The predominantly cleared landscape provides low quality connectivity across the Development Site. The main creek line (Tributary 1) and planted vegetation along the riparian zone provides some connectivity across the landscape. The remnant Yellow Box Woodland and White Box woodland provides habitat for threatened species in the form of Hollow-bearing trees and flowering Eucalypts. These features may provide habitat for threatened bats such as the Southern Myotis that was detected on site. These remnant woodlands would be largely avoided by the development, however some scattered paddock trees with suitable hollows would be removed. The Southern Myotis is a highly mobile aerial species and could continue to utilise the retained habitats within the Development Site.

6.2.6 Impacts of development on water quality, water bodies and hydrological processes that sustain threatened species and threatened ecological communities

Seven watercourses occur within the Development Site. The Development Footprint was selected to avoid impacts to the two main tributaries – Tributary 1 and Tributary 2. The planted vegetation surrounding Tributary 1 was also avoided, leaving a 30m buffer around the watercourse.

Although no solar infrastructure would occur along Tributary 1, the final site layout could not completely avoid all impacts to this creek line. Approximately five waterway crossings would occur across the two main creek lines. The design of the waterway crossings would be in accordance with the following publications, to minimise erosion and protect the waterway function:

- Why do fish need to cross the road? Fish Passage Requirements for Waterway Crossings (Fairfull & Witheridge, 2003).
- Policy and Guidelines for Fish Friendly Waterway Crossings (NSW DPI, 2003).
- Guidelines for Watercourse Crossings on Waterfront Land (NSW DPI, 2012).

The transmission line route will also cross Wuuluman Creek. Transmission line poles would be placed on either side of the creek and not within the creek bed or banks reducing any impacts to water quality, flow or hydrological processes.

Solar panels would be installed over some sections of the other five minor tributaries. These drainage lines would remain, and the proposal would not likely change the hydrology of the site.

Four farm dams are present within the Development Site. These farm dams could not be avoided due to the size constraints of the solar panels. These farm dams would be filled in during construction of the solar farm. The impacts proposed to these dams are not anticipated to have any broader impacts for environments that sustain and interact with the rivers, streams and wetlands either on or offsite.

6.2.7 Impacts of vehicle strikes on threatened species or on animals that are part of a TEC

The proposal would not directly increase impacts of vehicle strikes on threatened species. Threatened species would not be funnelled into transport corridors. It is estimated the proposal would generate up to 138 extra vehicles per day during peak construction periods. (GHD, 2018). Currently, traffic volume studies

show 1000-1200 vehicles use Goolma Rd per day, 200-250 Vehicles per day on Cobbora Rd and around 30 vehicles per day on Campbells Lane (GHD, 2018). An increase in vehicle traffic may indirectly increase vehicle strikes on native fauna. Site design would be unlikely to reduce impacts to vehicle strikes as these species generally fly above the canopy. Site management to enforce and reduce site speed limits would minimise impacts of vehicle strikes.

7 IMPACTS UNABLE TO BE AVOIDED

7.1 DIRECT IMPACTS

The construction and operational phases of the proposal have the potential to impact biodiversity values at the site that cannot be avoided. This would occur through direct impacts such as habitat clearance and installation of infrastructure.

Nature of impact	Extent	Frequency	Duration and timing	Consequence
Direct impacts				
Habitat clearance for permanent and temporary construction facilities.	108.3ha – (Development Footprint). 10.06 ha – (transmission line)	One-off	Construction Phase: Long- term.	 Direct loss of native flora and fauna habitat. Potential over-clearing of habitat outside proposed Development Footprint. Injury and mortality of fauna during clearing of fauna habitat and habitat trees. Disturbance to stags, fallen timber, and bush rock.
Displacement of resident fauna.	Unknown	One-off	Construction & Operational Phase: Long- term.	 Direct loss of native fauna. Decline in local fauna populations.
Injury or death of fauna.	Unknown	Irregular	Construction Phase: Short- term.	Direct loss of native fauna.Decline in local fauna populations.
Removal of habitat features e.g., Hollow-bearing trees (HBTs).	92 HBT's 5 rocky outcrops	One-off	Construction Phase: long- term.	 Direct loss of native fauna habitat. Injury and mortality of fauna during clearing of habitat features.
Bush Rock removal and disturbance.	5 rocky outcrops	One-off	Construction Phase: long- term.	 Direct loss of native fauna habitat. Injury and mortality of fauna during clearing of habitat features.

Table 7-1 Potential impacts to biodiversity during the construction and operational phases.

Nature of impact	Extent	Frequency	Duration and timing	Consequence
Shading by solar infrastructure.	365 ha	Constant	Operational Phase: Long- term.	 Modification of native fauna habitat.
Existence of permanent solar infrastructure.	730 ha	Constant	Operational Phase: long- term.	 Modification of native fauna habitat. Reduced fauna movements across landscape.

7.1.1 Impacts to Native Vegetation

The changes in vegetation integrity scores as a result of clearing for the solar array, laydown areas and access roads are documented for each vegetation zone in Table 7-2. 108.3 ha would be cleared, however 90.8 ha of this area is comprised of a low condition native grassland. Complete clearing is assumed within the solar infrastructure for the purposes of the BAM Calculator; however, some native grasses may persist under the solar panels during operation.

10.2 ha of native vegetation would be cleared along the transmission line easement (Table 7-3).

Table 7-2 Table of current and future vegetation integrity scores for each vegetation zone within the Development Footprint (solar panels, laydown area, roads infrastructure).

Zone ID	РСТ	TEC and/or threatened species habitat?	Area of impact (ha)	Current vegetation Integrity Score	Future vegetation Integrity Score
1	266_Moderate	EEC – White Box-Yellow Box-Blakely's Red Gum Woodland	3.1	23	0
2	266_DerivedGrassland	-	90.8	5.8	0
3	266_Planted	-	2.1	53.7	0
4	437_Moderate	EEC – White Box-Yellow Box-Blakely's Red Gum Woodland	1.0	49.4	0
5	437_Planted	-	10.2	45.3	0
6	437_Low	EEC – White Box-Yellow Box-Blakely's Red Gum Woodland	1.1	8.3	0
TOTAL:			108 ha		

Table 7-3 shows the changes in vegetation scores from the transmission line easement for each of these management zones.

Table 7-3 Table of current and future vegetation integrity scores for each vegetation zone within Transmission Line route.

Zone ID	РСТ	TEC and/or threatened species habitat?		Area of impact (ha)	Current vegetation Integrity Score	Future vegetation Integrity Score
Tx-1	266_Derived Grassland	EEC – White Box-Yellow Box-Blakely's Red Gum Woodland		2	25.6	0.0
Tx -2	266 Moderate	EEC – White Box-Yello				
	_	Gum Wo	oodland	7.56	49.5	0.0
T 2		EEC – White Box-Yellow Box-Blakely's Red Gum Woodland				
Tx-3	266_Creekline			0.50	69.8	0.0
			Total:	10.06 ha		

7.1.2 Loss of species credit species habitat or individuals

The loss of species credit species habitat or individuals as a result of clearing is documented in Table 7-4 below.

Species Credit Species	Biodiversity risk weighting	Area of habitat lost (ha)
Southern Myotis (Myotis macropus)	2	0.22
Pink-tailed Legless Lizard (Aprasia parapulchella)	2	0.56
Glossy Black Cockatoo (Calyptorhynchus lathami)	2	8.06
Barking Owl (Ninox connivens)	2	8.06
Masked Owl (Tyto novaehollandiae)	2	8.06

Table 7-4 Summary of species credit species loss at the Development Site

7.1.3 Loss of Hollow-bearing trees

324 Hollow-bearing trees were recorded within the Development Site. 92 of these Hollow-bearing trees occur within the Development Footprint and would be removed by the proposal. The number of hollow bearing trees in each zone is shown in Table 7-5.

Table 7-5 Hollow bearing trees impacted by the proposal

Zone	Description	HBTs within zone	HBTs impacted
1	266_Moderate	43	18
2	266_DerivedNativeGrassland	1	1
3	266_Planted	0	0

Biodiversity Development Assessment Report Wellington North Solar Farm

Zone	Description	HBTs within zone	HBTs impacted
4	437_Moderate	31	5
5	437_Planted	3	2
6	437_Low	0	0
7	266_Good	16	0
	Paddock Trees	9	9
Tx 1	266_Derived Grassland	1	0
Tx 2	266_Moderate	196	51
Tx 3	266_Creekline	10	6
Tx 4	Exotic	5	0
Planted (no PCT)		9	0
TOTAL		324	92

7.2 INDIRECT IMPACTS

Indirect impacts of the proposal include soil and water contamination, creation of barriers to fauna movement or the generation of excessive dust, light or noise. Section 9.1.4.2 of the BAM identifies the specific indirect impacts that must be considered. Table 7-6 below details the type, frequency, intensity, duration and consequence of the indirect impacts that may occur as a consequence of the proposal as identified by Section 9.1.4.2 of the BAM. Given the current land management practices and degraded nature of the Development Site, indirect impacts that are unlikely to occur or be exacerbated as a result of the proposal include:

- Trampling of threatened flora species.
- Inhibition of nitrogen fixation.
- Fertiliser drift.
- Rubbish dumping.
- Wood collection.
- Bush rock removal and disturbance.
- Increase in predatory species populations.
- Increase in pest animal populations.
- Increased risk of fire.

Table 7-6 Potential impacts to biodiversity during the construction and operational phases

Nature of impact	Extent	Frequency	Duration and timing	TEC, threatened species and habitats likely to be affected	Consequence for bioregional persistence
Indirect impacts					
Inadvertent impacts on adjacent habitat or vegetation.	Unknown	Rare	Construction Phase: Short- term.	 White Box – Yellow Box – Blakely's Red Gum Woodland EEC. Southern Myotis (<i>Myotis</i> <i>Macropus</i>). Glossy Black Cockatoo (<i>Calyptorhynchus lathami</i>) Masked Owl (<i>Tyto</i> <i>novaehollandiae</i>) Barking Owl (<i>Ninox connivens</i>) 	 Direct loss of native flora and fauna habitat. Injury and mortality of fauna during clearing of fauna habitat and habitat trees. Disturbance to stags, fallen timber, and bush rock. Increased edge effects.
Reduced viability of adjacent habitat due to edge effects.	Unknown	Constant	Operational Phase: Long- term.	• White Box – Yellow Box – Blakely's Red Gum Woodland EEC.	 Degradation of White Box – Yellow Box – Blakely's Red Gum Woodland EEC. Loss of native flora and fauna habitat.
Reduced viability of adjacent habitat due to noise, dust or light spill.	Unknown	Rare	Operational Phase: Short- term.	 Southern Myotis (Myotis Macropus). Glossy Black Cockatoo (Calyptorhynchus lathami) Masked Owl (Tyto novaehollandiae) Barking Owl (Ninox connivens) 	• Loss of Foraging habitat.
Transport of weeds and pathogens from the site to adjacent vegetation.	Unknown	Irregular	Construction & Operational Phase: Long- term.	 White Box – Yellow Box – Blakely's Red Gum Woodland EEC. 	 Degradation of White Box – Yellow Box – Blakely's Red Gum Woodland EEC. Loss of native flora and fauna habitat.
Increased risk of starvation, exposure	Unknown	Constant	Construction & Operational	• Southern Myotis (<i>Myotis Macropus</i>).	Loss of foraging habitat.

Biodiversity Development Assessment Report

Nature of impact	Extent	Frequency	Duration and timing	TEC, threatened species and habitats likely to be affected	Consequence for bioregional persistence
and loss of shade or shelter.			Phase: Long- term.		
Loss of Breeding Habitats.	92HBT	Constant	Construction Phase: Long- Term.	 Southern Myotis (<i>Myotis</i> <i>Macropus</i>). Glossy Black Cockatoo (<i>Calyptorhynchus lathami</i>) Masked Owl (<i>Tyto</i> <i>novaehollandiae</i>) Barking Owl (<i>Ninox connivens</i>) 	• Loss of breeding habitat.
Increased soil salinity.	Unknown	Irregular	Operational Phase: Long- Term.	• White Box – Yellow Box – Blakely's Red Gum Woodland EEC.	 Degradation of White Box – Yellow Box – Blakely's Red Gum Woodland EEC.

7.3 PRESCRIBED IMPACTS

The following prescribed biodiversity impacts are relevant to the proposal:

- Impacts of development on the habitat of threatened species or ecological communities associated with rocks.
- Impacts of development on the habitat of threatened species or ecological communities associated with non-native vegetation.
- Impacts of development on connectivity of different areas of habitat of threatened species that facilitate the movement of those species across their range.
- Impacts of the development on the movement of threatened species that maintain their lifecycle.
- Impacts of development on water quality, waterbodies and hydrological processes that sustain threatened species and threatened ecological communities.
- Impacts of vehicle strikes on threatened species of animals or animals that are part of a TEC.

These are discussed in detail below and the necessary information required by Section 9.2 of the BAM provided.

7.3.1 Impacts of development on the habitat of threatened species or ecological communities associated with rocks

Five rocky outcrops would be impacted by the proposal. Surveys for reptiles were undertaken within the rocky outcrops. No threatened species were observed, and no threatened species or communities are considered likely to use the habitat.

7.3.2 Impacts of development on the habitat of threatened species or ecological communities associated with non-native vegetation

Surveys of the planted vegetation (no PCT) were undertaken for threatened fauna. No threatened birds or mammals were observed within these areas and no threatened species or communities are considered likely to use the habitat.

7.3.3 Impacts of development on the connectivity of different areas of habitat of threatened species that facilitates the movement of those species across their range

Three threatened bats were detected utilising the Development Site - the Southern Myotis, Grey-headed Flying Fox and Large Bent-winged Bat. The predominantly cleared landscape provides low quality connectivity across the Development Site. The main creek line (Tributary 1) and planted vegetation along the riparian zone provides some connectivity across the landscape for threatened species such as the Southern Myotis (*Myotis Macropus*), Grey-headed Flying Fox (*Pteropus poliocephalus*) and Large Bent-winged Bat (*Miniopterus orianae oceanensis*) that were observed on site. This creek line would remain within the Development Site.

These bat species are highly mobile and can travel large distances (Churchill, 2009). They can fly high above the canopy and would still be able to utilise the Project for movement across the landscape. The proposal would not impact on movement of these species across their range.

The Development Site is not a known major connectivity link for any other threatened species. Due to the highly cleared and fragmented landscape within the Development Site the proposal is not likely to disrupt the movement of any other threatened species across their range.

7.3.4 Impacts of the development on movement of threatened species that maintains their life cycle

Three threatened bats were detected utilising the Development Site - the Southern Myotis, Grey-headed Flying Fox and Large Bent-winged Bat.

The Grey-headed Flying Fox and Large Bent-winged Bat are highly mobile and wide-ranging species, travelling up 60km from their roosts to forage (Churchill, 2009). No breeding habitat is present within the Development Footprint and no impacts to breeding would occur. The area of foraging habitat (21ha) to be removed is relatively small within their foraging range. These species fly high above the canopy and would still be able to utilise the Development Site for movement across the landscape. The Project is unlikely to impact on the lifecycle of these species.

The Southern Myotis (*M. macropus*) roosts in hollow bearing trees within 200m from riparian zones. They forage over streams and pools (OEH, 2017). 22 Hollow-bearing trees (HBTs) occur within 200m of the main creek line (Tributary 1) within the Development Site. 10 of these trees would be impacted by the proposal. The majority of the trees to be impacted are isolated paddock trees. A large number of HBTs would remain in the adjacent Yellow Box Woodland that provides better quality roosting habitat. Impacts could occur to the Southern Myotis if the species is roosting in a HBT that would be cleared by the proposal. The Southern Myotis breeds in November and December (OEH, 2017). Mitigation measures to time works to avoid clearing during the breeding season and hibernation season would minimise impacts to the life cycle of this species. Movement and foraging habitat would still be maintained within the Development Site. The creek line and adjacent Yellow Box woodland would not be developed by the proposal. Southern Myotis are highly mobile, aerial species and would still be able to utilise the Development Site for movement across the landscape. Mitigation measures to improve and enhance the creek line and adjacent remnant Yellow Box woodland would enhance the quality of foraging and roosting habitat for these species. With these mitigation measures the development is unlikely to impact on the bioregional persistence of these threatened species.

The Development Site is not a known migratory path for any other threatened species. Due to the highly cleared and fragmented landscape within the Development Site the proposal is not likely to disrupt the movement of any other threatened species that maintains their lifecycle.

7.3.5 Impacts of development on water quality, water bodies and hydrological processes that sustain threatened species and threatened ecological communities

The main creek line (Tributary 1) in the Development Site could provide habitat for the Booroolong Frog. Surveys were undertaken for the Booroolong Frog and they were not detected and are not considered to occur in the waterways.

The construction of the proposal would not directly affect surface water quality. Indirectly, the proposed works would involve a range of activities that would disturb soils and potentially lead to sediment laden runoff affecting local waterways during rainfall events. These potential impacts are unlikely to significantly impact water quality with the recommended mitigation measures to implement sediment control procedures. The use of fuels and other chemicals on site poses a risk of surface water contamination in the event of a spill. Mitigation measures to implement spill management procedures would minimise impacts to waterways and hydrological processes.

Operation of the proposal would have minimal potential for any impact to surface water quality. Appropriate drainage features would be constructed along internal access roads to minimise the risk of dirty water leaving the site or entering waterways. With the exception of internal roads, parking areas and

areas around site offices, the site would be largely vegetated with grass cover (specifically, ground cover would be maintained beneath the solar panels). There would be a low risk of contamination in the event of a chemical spill (fuels, lubricants, herbicides etc.) as storage and emergency handling protocols would be implemented.

7.3.6 Impacts of vehicle strikes on threatened species of animals or on animals that are part of a TEC

A consideration of threatened species that were observed on site is shown in Table 7-7. Mitigation measures will be implemented to enforce a site speed limit. With the recommended mitigation measures, it is therefore not likely that vehicles associated with the proposal will have a substantive impact on these species and the risk of vehicle collision is considered to be low.

Species	Likelihood of vehicle strike	Predicted Impacts
Large Bent-winged Bat (Miniopterus orianae oceanensis)	Low – Flies high above canopy.	Unlikely to be impacted by vehicle strikes.
Grey-headed Flying Fox (Pteropus poliocephalus)	Low – Flies high above canopy.	Unlikely to be impacted by vehicle strikes.
Southern Myotis (<i>Myotis Macropus</i>)	Low – Flies high above canopy.	Unlikely to be impacted by vehicle strikes.

Table 7-7 Impacts by vehicle strikes.

7.4 IMPACTS TO MATTERS OF NATIONAL ENVIRONMENTAL SIGNIFICANCE

Threatened Ecological Communities

The White Box Woodland within the transmission line easement meets the condition threshold of the EPBC listed community and is considered to form part of a White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland. 7.1 ha of this woodland vegetation would be removed by the development. An assessment of significance was undertaken for this community (Appendix I) and concluded that a significant impact was unlikely on the basis that the proposal would not significantly:

- Reduce the extent of the ecological community.
- Increase fragmentation of an ecological community.
- Modify or destroy abiotic factors.
- Cause a substantial change in the species compositions.
- Cause a substantial reduction in the quality or integrity of an occurrence of an ecological community.

An EPBC referral is not considered necessary for this species.

Threatened Fauna and Flora

Twelve EPBC listed species were considered to have the potential to occur within the Development Site (Section 5.3). Surveys were undertaken for these species and only one of these species was detected.

The Grey-headed Flying Fox was observed foraging along Tributary 1 and flying overhead. An assessment of significance has been completed for the Grey-headed Flying-Fox (Appendix I) and concluded that a significant impact was unlikely on the basis that the proposal would not:

- Lead to a reduction of the size or area of occupancy of an important population, or fragment or disrupt the breeding cycle of an important population.
- Affect habitat critical to the survival of the species.
- Affect habitat or introduce disease such that the species would decline.
- Introduce invasive species harmful to the Grey-headed Flying Fox.
- Interfere with the recovery of the species.

An EPBC referral is not considered necessary for this species.

Known records of the Superb Parrot occur within 10km of the Development Site. An assessment of significance has been completed for the Superb Parrot (Appendix I) and concluded that a significant impact was unlikely on the basis that the proposal would not:

- Lead to a reduction of the size or area of occupancy of an important population, or fragment or disrupt the breeding cycle of an important population.
- Affect habitat critical to the survival of the species.
- Affect habitat or introduce disease such that the species would decline.
- Introduce invasive species harmful to the Grey-headed Flying Fox.
- Interfere with the recovery of the species.

An EPBC referral is not considered necessary for this species.

The EPBC Referral Guidelines for the Koala (DoE, 2014) documents the 'Koala habitat assessment tool' to assist proponents in determining if a proposal may impact on habitat critical to the survival of the Koala. The tool is provided as Table 7-8 below as it applies to the proposal. Impact areas that score five or more using the habitat assessment tool contain habitat critical to the survival of the Koala. The assessment in Table 7-8 resulted in a score of 4 and as such habitat within the study area is not considered to be critical to the survival of the Koala. An assessment of significant impact is not required for the Koala.

Attribute	Score	Inland	Applicable to the proposal?
Koala occurrence	+2 (high)	Evidence of one or more koalas within the last 5 years.	
	+1 (medium)	Evidence of one or more koalas within 2km of the edge of the impact area within the last 10 years.	
	0 (low)	None of the above.	✓
Vegetation composition	+2 (high)	Has forest, woodland or shrubland with emerging trees with 2 or more known koala food tree species, OR 1 food tree species that alone accounts for	✓ White Box and Yellow Box are listed food trees.

Table 7-8: Koala habitat assessment tool for inland areas (DoE, 2014).

Attribute	Score	Inland	Applicable to the proposal?
		>50% of the vegetation in the relevant strata.	
	+1 (medium)	Has forest, woodland or shrubland with emerging trees with only 1 species of known koala food tree present.	
	0 (low)	None of the above.	
Habitat connectivity	+2 (high)	Area is part of a contiguous landscape ≥1000 ha.	
	+1 (medium)	Area is part of a contiguous landscape <1000 ha, but ≥500 ha.	✓ Remnant vegetation can connect to large stands of woodlands south and west of Goolma Road.
	0 (low)	None of the above.	
Key existing threats	+2 (high)	Little or no evidence of koala mortality from vehicle strike or dog attack at present in areas that score 1 or 2 for koala occurrence. Areas which score 0 for koala occurrence and have no dog or vehicle threat present.	
	+1 (medium)	Evidence of infrequent or irregular koala mortality from vehicle strike or dog attack at present in areas that score 1 or 2 for koala occurrence, OR Areas which score 0 for koala occurrence and are likely to have some degree of dog or vehicle threat present.	✓ Some degree of Vehicle Threat present along Goolma Road.
	0 (low)	Evidence of frequent or regular koala mortality from vehicle strike or dog attack in the study area at present, OR Areas which score 0 for koala occurrence and have a significant dog or vehicle threat present.	
Recovery value	+2 (high)	Habitat is likely to be important for achieving the interim recovery objectives for the relevant context, as outlined in Table 1.	

Attribute	Score	Inland	Applicable to the proposal?
	+1 (medium)	Uncertain whether the habitat is important for achieving the interim recovery objectives for the relevant context, as outlined in Table 1.	
	0 (low)	Habitat is unlikely to be important for achieving the interim recovery objectives for the relevant context, as outlined in Table 1.	✓ Study area is not considered a habitat refuge nor does it provide important connectivity to large areas surrounding a habitat refuge.
Total	4	Decision: Habitat not critical to the survival significance not required	of the Koala—assessment of

7.5 IMPACTS TO BIODIVERSITY VALUES THAT ARE UNCERTAIN

The majority of the development (around 70%) will consist of solar panels, mounted above the ground, installed using piles. Where installation occurs, there will be ground disturbance and these areas will be rehabilitated. The installation works will not impact much of the ground cover that forms part of the Development Footprint minimising soil disturbance. However, the impacts of shading and diversion of rainfall runoff from the panels themselves is largely unknown on the grasslands that will remain, throughout construction and operation, beneath the panels. For the purpose of this BDAR report, the entire Development Footprint is assumed to be impacted however, as the indicative layout shows, substantial grassland areas are likely to be subject to shading rather than removed. It is highly likely that a good number of perennial native species will persist underneath the solar panels. Certainly, only a minor proportion of the seed bank will be impacted, given the limited excavation proposed.

In this assessment an assumption has been made that all vegetation within the Development Footprint would be impacted. This is a 'worst case' conservative approach. There is currently limited ability to vary this assumption without specific scientific data to justify a lesser impact; such as the results of ground cover monitoring beneath the solar array. Therefore, the costs associated with purchasing and retiring ecosystem and species credits or the need for offset areas is currently an 'over estimated result' of the impacts of this solar farm undertaken to address current uncertainty.

7.6 LIMITATIONS TO DATA, ASSUMPTIONS AND PREDICTIONS

It is possible that some species were not recorded during the survey due to the timing of the survey outside their recommended survey period. Where survey effort or timing is not consistent with the BAM or relevant guidelines, this is stated explicitly in the assessment and measures identified to address the limitation; i.e., assumption of occurrence for three species whose survey window could not be met.

The calculation of hollow-bearings trees, in particular the size and number of hollows, was made from ground level. It is possible that some hollows are present that were not visible from ground level, which may result in underestimates of the number of hollows. However, it was noted where it was considered likely that hollows were present but not visible from ground level.

The site is subject to grazing pressures and sheep and cattle are rotated around the different paddocks. The impacts of grazing may alter the visible foliage cover of native grasses, forbs and high threat exotic species. Plot data was collected in zones that had been subject to heavy grazing. Some native grasses or forbs may have been heavily chewed to the ground and would not have been visible during the time of survey. Likewise, some heavily grazed grasses were unidentifiable to species level. Where chewed stubs of perennial grasses were visible, they were assumed to be native grasses and identified to the most likely genus, based on habit and surrounding intact grasses. Native forbs and grasses may rejuvenate when grazing pressure is taken off the vegetation zones.

7.7 MITIGATION MEASURES

A general summary of the key measures required to mitigate the impacts of the proposal is provided below. Mitigation measures proposed to manage impacts, including proposed techniques, timing, frequency, responsibility for implementing each measure, risk of failure and an analysis of the consequences of any residual impacts are provided in Table 7-9.

7.7.1 Impacts from the clearing of vegetation and habitats

- Time works to avoid critical life cycle events.
- Implement clearing protocols during tree clearing works, including pre-clearing surveys, daily surveys and staged clearing, in the presence of a trained ecological or wildlife handler.
- Relocate habitat features (fallen timber, hollow logs) from within the Development Site.

7.7.2 Indirect impacts

- Clearing protocols that identify vegetation to be retained, prevent inadvertent damage and reduce soil disturbance; for example, removal of native vegetation by chainsaw, rather than heavy machinery, is preferable in situations where partial clearing is proposed.
- Adaptive dust monitoring programs to control air quality.
- Temporary fencing to protect significant environmental features such as riparian zones.
- Hygiene protocols to prevent the spread of weeds or pathogens between infected areas and uninfected areas.
- Staff training and site briefing to communicate environmental features to be protected and measures to be implemented.

7.7.3 Prescribed impacts

• Sediment barriers to control the quality of water runoff from the site into the receiving environment.

- Implement Emergency Spill Management procedures.
- Make provision for the ecological restoration, rehabilitation and/or ongoing maintenance of retained native vegetation habitat on or adjacent to the Development Site.
- Enforce site speed limits to reduce impacts of vehicle strikes on threatened fauna.

Table 7-9 Mitigation measures proposed to avoid and minimise impacts on native vegetation and habitat.

Mitigation measure	Proposed techniques	Timing	Frequency	Responsibility	Risk of failure	Risk and consequences of residual impacts	
Displacement of resident fauna through vegetation clearing and habitat removal							
Time works to avoid critical life cycle events such as breeding or nursing.	 Hollow-bearing trees would not be removed during breeding season or hibernation period (Winter to early summer) to mitigate impacts on Southern Myotis, Glossy Black Cockatoo, Barking Owl, Superb Parrot and Masked Owl. If clearing outside of this period 	Construction Phase	Regular	Contractor	Low	Species not detected during pre-clearing surveys may be impacted.	
	cannot be achieved, pre-clearing surveys would be undertaken to ensure no impacts to fauna would occur.						
Implement clearing protocols including pre-clearing surveys, daily surveys and staged clearing in the presence of a trained ecologist or licensed wildlife handler during clearing events.	 Pre-clearing checklist. Tree clearing procedure.	Construction Phase	Regular	Contractor	Low	Species not detected during pre-clearing surveys may be impacted.	
Relocate habitat features (fallen timber, hollow logs, rocks) from within the Development Site.	 Tree-clearing procedure including relocation of habitat features to adjacent area for habitat enhancement. 	Construction Phase	Regular	Contractor	Low	None	
Indirect impacts on native vege	etation and habitat						
Clearing protocols that identify vegetation to be retained, prevent inadvertent	 Approved clearing limits to be clearly delineated with temporary fencing or similar 	Construction Phase	Regular	Contractor	Low	None	

Mitigation measure	Proposed techniques	Timing	Frequency	Responsibility	Risk of failure	Risk and consequences of residual impacts
damage and reduce soil disturbance; for example, removal of native vegetation by chainsaw, rather than heavy machinery, is preferable in situations where partial clearing is proposed.	 prior to construction commencing. No stockpiling or storage within dripline of any mature trees. In areas to clear adjacent to areas to be retained, chainsaws would be used rather than heavy machinery to minimise risk of unauthorised disturbance. 					
Noise barriers or daily/seasonal timing of construction and operational activities to reduce impacts of noise.	 Construction Environmental Management Plan will include measures to avoid noise encroachment on adjacent habitats such as avoiding night works as much as possible. 	Construction	Regular	Contractor	Low	None
Light shields or daily/seasonal timing of construction and operational activities to reduce impacts of light spill.	Avoid night works.Direct lights away from native vegetation.	Construction/ Operation	Regular	Contractor	Low	None
Adaptive dust monitoring programs to control air quality.	 Daily monitoring of dust generated by construction activities. Construction would cease if dust observed being blown from site until control measures were implemented. All activities relating to the proposal would be undertaken with the objective of preventing visible dust emissions from the Development Site. 	Construction	Regularly	Contractor	Moderate	Sedimentation in ephemeral waterways and dams.

Mitigation measure	Proposed techniques	Timing	Frequency	Responsibility	Risk of failure	Risk and consequences of residual impacts
Temporary fencing to protect significant environmental features such as riparian zones.	 Prior to construction commencing, exclusion fencing and signage would be installed around habitat to be retained. 	Construction	Constant	Constructor	Low	None
Hygiene protocols to prevent the spread of weeds or pathogens between infected areas and uninfected areas.	 A Weed Management procedure would be developed for the proposal to prevent and minimise the spread of weeds. This would include: Management protocol for declared priority weeds under the <i>Biosecurity Act 2015</i> during and after construction. Weed hygiene protocol in relation to plant, machinery, and fill. Any occurrences of pathogens such as Myrtle Rust and Phytophthora would be monitored, treated, and reported. 	Construction, Operation	Regular	Contractor	Moderate	Weed encroachment.
Staff training and site briefing to communicate environmental features to be protected and measures to be implemented.	Site induction.Toolbox talks.	Construction	Regular	Contractor	Moderate	Impacts to native vegetation or threatened species for staff training not being followed.
Preparation of a vegetation management plan to regulate activity in vegetation and habitat adjacent to residential development. The vegetation	 Preparation of a biodiversity management plan that would include protocols for: Protection of native vegetation to be retained. 	Construction	One-off	Contractor	Moderate	Impacts to native vegetation or threatened species for Biodiversity Management Plan not being followed.

Mitigation measure	Proposed techniques	Timing	Frequency	Responsibility	Risk of failure	Risk and consequences of residual impacts
management plan may include controls on pet ownership, rubbish disposal, wood collection, fire management and disturbance to nests and other niche habitats.	 Best practice removal and disposal of vegetation. Staged removal of Hollow-bearing trees and other habitat features such as fallen logs with attendance by an ecologist. Weed management. Unexpected threatened species finds. Rehabilitation of disturbed areas. 					
Prescribed biodiversity impacts	5					
Erosion and sediment controls	 An erosion and sediment control plan would be prepared in conjunction with the final design and implemented. Sediment barriers or sedimentation ponds to control the quality of water released from the site into the receiving environment. 	Construction	Regular	Contractor	Moderate	Impacts may occur if erosion and sedimentation control plan not implemented.
Implement Emergency Spill procedures.	 A Spill and Contamination Response Plan would be developed as part of the overall Emergency Response Plan to prevent contaminants affecting adjacent surrounding waterways. 	Construction	Regular	Contractor	Moderate	Impacts may occur if spill management procedures are not implemented.

Mitigation measure	Proposed techniques	Timing	Frequency	Responsibility	Risk of failure	Risk and consequences of residual impacts
Making provision for the ecological restoration, rehabilitation and/or ongoing maintenance of retained native vegetation habitat on or adjacent to the Development Site.	 Retained native vegetation would be considered as an offset site. 	Operation	Regular	Client	Low	None
Staff training and site briefing to communicate impacts of traffic strikes on native fauna.	 Awareness training during site inductions regarding enforcing site speed limits. Site speed limits to be enforced to minimise fauna strike. 	Construction and Operation	Regular	Contractor	Moderate	Fauna strikes from vehicles.

7.8 ADAPTIVE MANAGEMENT STRATEGY

No adaptive management strategies are proposed for the development.

8 SERIOUS AND IRREVERSIBLE IMPACTS (SAII)

8.1 POTENTIAL SERIOUS AND IRREVERSIBLE IMPACT ENTITIES

Two potential SAII entities that are listed in the *Guidance to assist a decision-maker to determine a serious and irreversible impact* could be impacted by the proposal. These are discussed below.

8.1.1 Threatened ecological communities

One threatened ecological community will be impacted by the proposal that is listed as a potential SAII entity in the *Guidance to assist a decision-maker to determine a serious and irreversible impact*. This is the White Box-Yellow Box-Blakely's Red Gum Woodland (Box-gum Woodland) EEC.

8.1.2 Threatened species

One threatened species observed within the Development Site is listed as an SAII entity in the *Guidance to assist a decision-maker to determine a serious and irreversible impact*. This is the Large Bent-winged Bat (*Miniopterus orianae oceanensis*).

8.1.3 Additional potential entities

No further entities were identified as being impacted by the proposal with the potential to becoming a serious and irreversible impact.

8.2 ASSESSMENT OF SERIOUS AND IRREVERSIBLE IMPACTS

8.2.1 White Box-Yellow Box-Blakely's Red Gum Woodland (Box-gum woodland)

a) the action and measures taken to avoid the direct and indirect impact on the potential entity for an SAII

Approximately 41 ha of good condition Box-gum woodland falling within the subject land was avoided by the proposal. A further 13.4 ha of moderate condition Box-gum woodland was also avoided by the Development Footprint by arranging the solar panels to avoid patches of remnant woodland.

It is noted that areas that cannot be avoided may not be completely removed by infrastructure. Removal would occur to accommodate tracks and infrastructure footings; however, the largest proportion of the infrastructure footprint is the mounted solar panels which leave understorey vegetation largely intact. Indirect impacts of shading and altered microclimate would impact these areas but the understorey species composition in these areas would be expected to remain largely intact during the operational phase of the Project. Remediation of the site during decommissioning is also a commitment of the Project.

b) the area (ha) and condition of the TEC to be impacted directly and indirectly by the proposed development. The condition of the TEC is to be represented by the vegetation integrity score for each vegetation zone

Approximately 17.3 ha of Box-gum woodland and 20.2 ha of derived grassland would be removed by the proposal. The planted Box-gum woodland (Zone 3 and Zone 5) does not meet the criteria of the EEC due to a predominantly shrubby understorey of planted acacias. Zone 2 and Zone 6 are in very low condition and do not meet the threshold

condition score. The condition of the Box-gum Woodland to be removed is shown in Table 8-1.

Zone ID	Vegetation Zone	EEC	Area to be removed (ha)	Vegetation Integrity Score
1	266_ Moderate	Box-Gum Woodland	3.1	23
2	266_Derived Grassland	No	90.8	5.8
3	266_Planted	No	2.1	53.7
4	437_Moderate	Box-Gum Woodland	1.0	49.4
5	437_Planted	No	10.2	45.3
6	437_Low	No	1.1	8.3
Tx 1	266_Derived Grassland	No	2.0	25.6
Tx 2	266_Moderate	Box-Gum Woodland	7.56	49.5
Tx 3	266_Creekline	Box-Gum Woodland	0.5	69.8

Table 8-1 Box-gum Woodland Vegetation Integrity Scores

c) a description of the extent to which the impact exceeds the threshold for the potential entity that is specified in the Guidance to assist a decision-maker to determine a serious and irreversible impact

No threshold has yet been defined by OEH for the extent of Box-gum Woodland to be removed that constitutes a serious and irreversible impact.

d) the extent and overall condition of the potential TEC within an area of 1000ha, and then 10,000ha, surrounding the proposed Development Footprint

Using GIS and State Vegetation Mapping, it is estimated 153ha of Box-gum Woodland occurs within an area of 1000ha surrounding the proposed Development Footprint and 1640ha of Box-gum Woodland occurs within an area of 10,000ha surrounding the proposed Development Footprint. The areas of Box-gum Woodland estimated are likely to be in good condition as they are visible using aerial imagery and have tree cover. There may be some further areas that are in low condition or derived native grasslands that are not easily distinguished using aerial imagery.

 e) an estimate of the extant area and overall condition of the potential TEC remaining in the IBRA subregion before and after the impact of the proposed development has been taken into consideration

Threatened Species Scientific Committee (2006) estimates 55,798ha of Box-gum Woodland remains in the NSW South Western Slopes IBRA Region. Approximately 12.14 ha is proposed to be removed which is <0.01% of the estimated extent remaining.

f) an estimate of the area of the potential TEC that is in the reserve system within the IBRA region and the IBRA subregion

In NSW, Box-gum Grassy Woodland is known to occur within at least 42 reserve systems. 8,000ha of Box-gum woodland is estimated to occur in national parks and nature reserves within the NSW South Western Slopes IBRA Region (Benson 2008).

g) The development, clearing or biodiversity certification proposal's impact on:

i. *abiotic factors critical to the long-term survival of the potential TEC*. Groundwater supplies and levels are unlikely to be affected by the development of the Project and

no groundwater is anticipated to be intercepted or extracted. During construction, the proposal would have a short-term gross impact upon soils and possibly surface water flow within discreet areas. These impacts are manageable with the implementation of erosion and sediment controls and would be unlikely to impact on abiotic factors critical to the long-term survival of Box-gum woodland. As above, a relatively small proportion of the infrastructure footprint requires excavation with the vast majority being mounted panels. Flood studies undertaken to support the EIS have verified the infrastructure would have no offsite impacts on flooding and would not exacerbate erosion onsite.

- ii. characteristic and functionally important species. The Box-gum woodland to be impacted has an exotic dominated understorey and very few native species present. The overstorey species, White Box (*E. albens*) and Yellow Box (*E. melliodora*) are characteristic of the community and some remnant trees would be removed by the proposal. Understorey native species that are present are common plants often found in agricultural and disturbed landscapes. No impacts are anticipated to the remaining Box-gum woodland. No introduced fire or flooding regimes would occur and no increase in natural occurrences of these events is anticipated from the development. No removal of understorey species or harvesting of plants would occur in the remaining Box-gum woodland.
- iii. the quality and integrity of an occurrence of the potential TEC through threats and indirect impacts. 26.41 ha of Box-gum woodland would be removed. It is likely the remaining 81.37 ha of Box gum woodland avoided by the development would improve in condition through reduced impacts from cropping and grazing¹. The loss of cropping adjacent to the Box-gum woodlands will reduce fertiliser and herbicide impacts and erosion. The reduction in livestock and grazing will reduce localised impacts to the understorey of the Box-gum woodland where high concentrations of livestock have used the trees for shelter.
- h) direct or indirect fragmentation and isolation of an important area of the potential TEC The 26.41 ha of Box-gum woodland to be removed is already fragmented and isolated. It is unlikely the removal of this Box-gum woodland would significantly exacerbate reduced connectivity across the landscape.
- i) the measures proposed to contribute to the recovery of the potential TEC in the IBRA subregion.

The 26.41 ha of Box gum woodland to be removed will be offset by 453 ecosystem credits that will be used for management of another area of Box-gum woodland in the same IBRA region.

Based on these criteria, it is considered unlikely the proposal would have a serious and irreversible impact on the White Box-Yellow Box-Blakely's Red Gum Woodland EEC.

8.2.2 Large Bent-winged Bat (Miniopterus orianae oceanensis)

a) the action and measures taken to avoid the direct and indirect impact on the potential entity for an SAII

¹ Managed grazing may be a tool used to manage ground cover onsite but it is not expected to be as high as current stocking rates.

The Large Bent-winged Bat was detected in the Development Site from two ANABAT recordings. The Large Bent-winged Bat breeds in caves, tunnels, mines or culverts (OEH, 2018). Two culverts were present in the Development Site that may provide breeding or roosting habitat for the bat. These areas are avoided by the proposal and no impacts to breeding or roosting habitat would occur.

Indirect impacts may occur through the removal of potential foraging habitat. The Large Bentwinged Bat forages on moths, flies, cockroaches and beetles just above the forest canopy or in grasslands, a few metres above the ground (Churchill, 2009). Approximately 106.06 ha of native vegetation, (comprised of up to 13.26 ha of woodland and 92.8 ha of derived native grassland) would be removed by the development. 730ha of agricultural land would be replaced by solar panels. As these species are aerial hunters, foraging habitat would still remain within the Development Site to some degree. 65ha of remnant woodland and about 20ha of grassland vegetation along Tributary 1 would be retained by the development and would remain as foraging habitat for this species.

The connectivity value of the site has been assessed as low and therefore unlikely to provide an important steppingstone for this species, however, foraging habitat to be removed will be offset in the region.

b) the size of the local population directly and indirectly impacted by the development, clearing or biodiversity certification

The size of the local population is unknown. 13 records of the Large Bent-winged Bat were detected on the ANABAT over a period of two nights in two separate locations along Tributary 1. This suggests only low number of individuals are present within the site. No key management sites occur within or surrounding the Development Site and no known maternity caves occur on site. The nearest previous known record of the species occurs about 10km south of the Development Site with one sighting east of Burrendong Dam and two records on the Bell River near Neurea (OEH, 2018). Populations of this species are centred around maternity caves. The species is wide ranging and highly mobile and may travel distances of several hundred kilometres to maternity roosts (Hoye and Spence, 2004). The closest known maternity roost is located in Drum Cave near Goulburn, 300km south of the Development Site. As above, the connectivity value of the site has been assessed as low and therefore unlikely to provide an important steppingstone for this species during migration.

c) The threshold for the extent to which the impact exceeds any threshold for the potential entity that is specified in the Guidance to assist a decision-maker to determine a serious and irreversible impact

The threshold defined by OEH for the Large Bent-winged Bat is 'Breeding Habitat identified by survey'. Breeding habitats for the Large Bent-winged Bat are caves, tunnels, mines or culverts. Two culverts identified in the survey would not be impacted by the proposal. The proposal does not exceed the threshold for this species.

- the likely impact (including direct and indirect impacts) that the development, clearing or biodiversity certification will have on the habitat of the local population, including but not limited to:
 - i. an estimate of the change in habitat available to the local population as a result of the proposed development

No roosting habitat would be impacted by the proposal.

Up to 13.26 ha of native woodland vegetation would be removed by the proposal that could provide foraging habitat. The Large Bent-winged Bat forages on moths, flies, cockroaches and beetles just above the forest canopy or in grasslands a few metres above the ground (Churchill, 2009). As this is an aerial species, the species could continue to utilise the site for foraging, however the quality of the foraging habitat would be lower with a reduced native woodland cover.

ii. the proposed loss, modification, destruction or isolation of the available habitat used by the local population, and

Up to 13.26 ha of native woodland vegetation would be removed by the proposal that could be used by foraging habitat. The species is highly mobile and broad ranging and unlikely to be impacted by the loss of this native woodland.

The connectivity value of the site has been assessed as low and therefore the proposal is unlikely to exacerbate the isolation of habitat.

- iii. modification of habitat required for the maintenance of processes important to the species' life cycle, genetic diversity and long-term evolutionary development. There is no suitable breeding habitat for these species in the Development Sites. The proposal would not disrupt the breeding cycle of the local population. The species is highly mobile and no isolation of populations would occur. The proposal is unlikely to modify habitat that would impact on the species lifecycle or genetic diversity.
- e) the likely impact on the ecology of the local population. At a minimum, address the following:
 - i. for fauna, (breeding, foraging, rooting and dispersal or movement pathways) - breeding

There is no suitable breeding habitat for these species in the Development Site. The proposal would not disrupt the breeding cycle of the local population.

– foraging

Up to 13.26 ha of native woodland would be removed that could provide foraging habitat. The species is broad ranging and highly mobile, travelling up to 65km from their roost sites (Churchill, 2009). The area of foraging habitat to be removed is relatively small within their foraging range and unlikely to impact on the ecology of the local population.

– roosting, and

No roosting habitat would be impacted by the development. The proposal would not disrupt roosting sites of the local population.

- dispersal or movement pathways

The species is wide-ranging and can travel long distances. It flies high above the canopy. The proposal would not impact on movement pathways for the local population.

f) a description of the extent to which the local population will become fragmented or isolated as a result of the proposed development

The Large Bent-winged Bat is highly mobile and flies high above the canopy (Churchill, 2009). The Large Bent-winged Bat could continue to utilise the aerial space above the solar panels. The proposal would not fragment or isolate a population of this species. The existing vegetation is already fragmented. The proposal would not significantly increase this effect, as the infrastructure has been planned to avoid better woodland patches.

g) the relationship of the local population to other population/populations of the species.

Populations are centred around maternity caves. Three major maternity caves are known in NSW: Willi Willi Caves in Kempsey, Drum Cave near Goulburn and Church Cave at Wee Jasper (Hoye and Spence, 2004). During winter smaller colonies move out to smaller roost caves. The species is highly mobile and can travel hundreds of kilometres to maternity caves (Churchill, 2009). The local population would migrate to a maternity cave during Autumn to breed, however the location of the maternity cave is unknown.

 h) the extent to which the proposed development will lead to an increase in threats and indirect impacts, including impacts from invasive flora and fauna, that may in turn lead to a decrease in the viability of the local population

Threats to this species include (OEH, 2017):

- Disturbance by recreational cavers.
- Cave entrances being blocked.
- Loss of high productivity foraging habitat.
- Introduction of exotic pathogens.
- Hazard reduction and wildfire fire during the breeding season.
- Predation by feral cats and foxes around roosting sites, particularly maternity caves.

The proposal may lead to an increase to two of these threats:

Loss of high productivity foraging habitat. Up to 13.26 ha of native woodland that could provide foraging habitat would be impacted by the proposal. The quality of potential foraging habitat is low, being highly disturbed and fragmented by agriculture. The species is highly mobile and can forage up to 65km from their roosting site (Churchill, 2009). The area of foraging habitat to be removed is relatively small within their foraging habitat and unlikely to lead to a decrease in the viability of the local population.

Introduction of exotic pathogens. There is a risk that diseases could be introduced to the Development Site via machinery, vehicles and materials during construction and operation. With the implementation of recommended mitigation measures for hygiene protocols, the proposal is unlikely to result in the introduction of disease that may cause a decrease in the viability of the local population.

i) an estimate of the area, or number of populations and size of populations that is in the reserve system in NSW, the IBRA region and the IBRA subregion

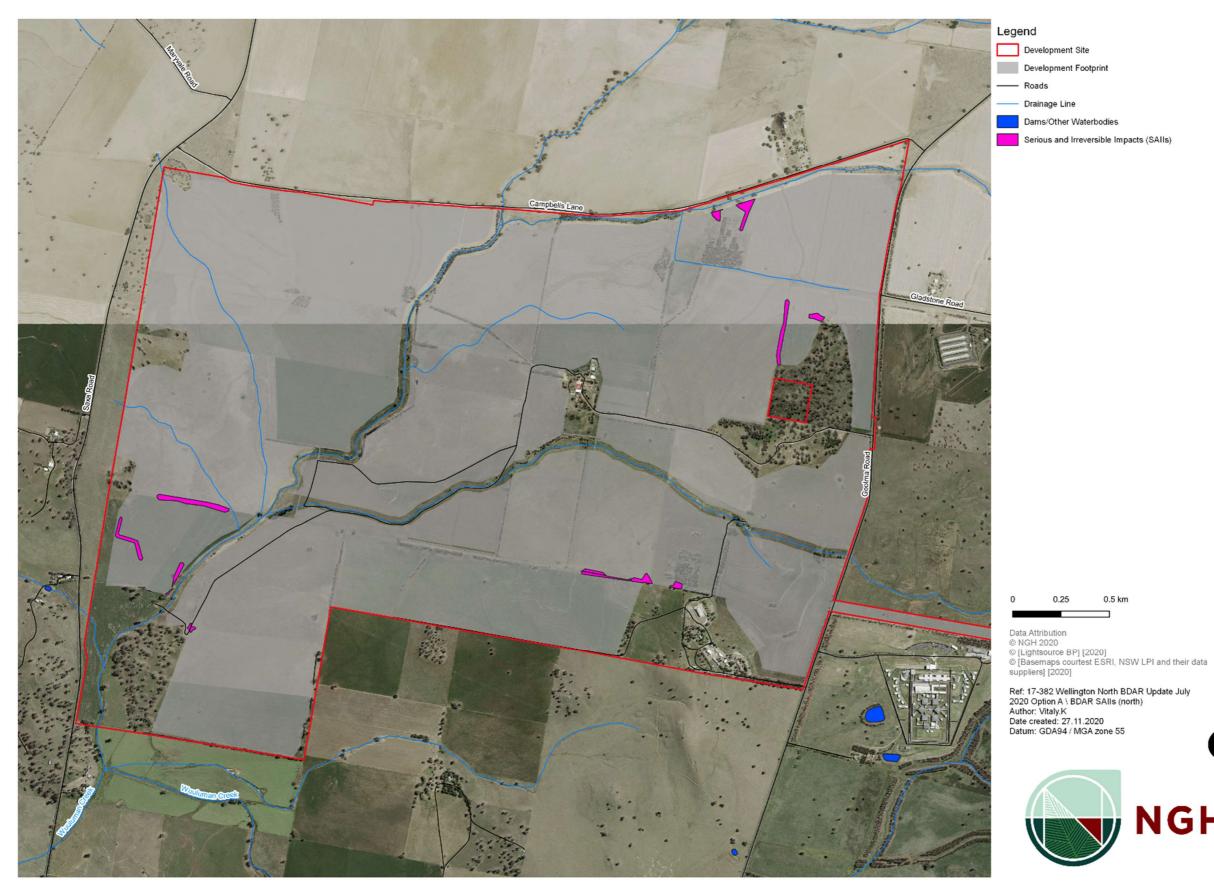
The size of the local population is unknown. Three major maternity roosts are known in NSW: Willi Willi Caves in Kempsey, Drum Cave near Goulburn and Church Cave at Wee Jasper (Hoye and Spence, 2004). These main maternity roosts are protected in NSW National Parks or Nature Reserves.

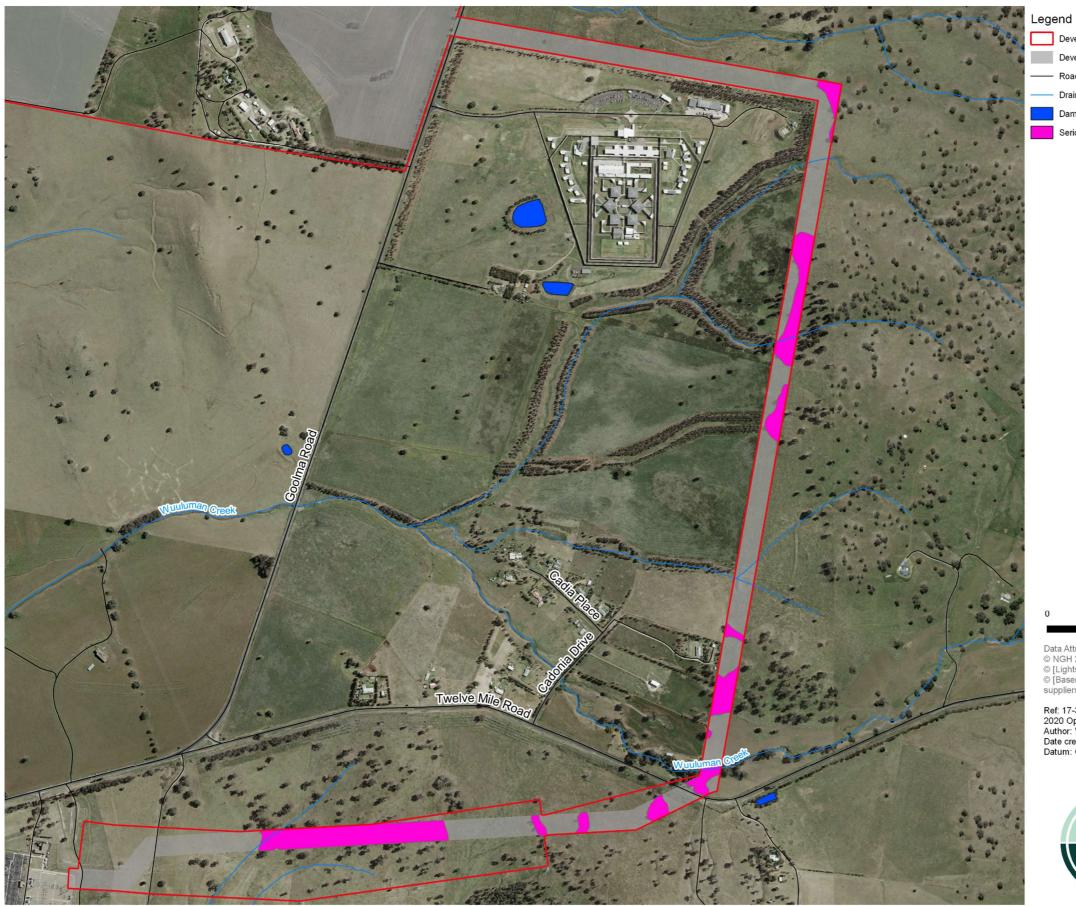
j) the measure/s proposed to contribute to the recovery of the species in the IBRA subregion

The Large Bent-winged Bat is considered an ecosystem species for White Box Grassy Woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266). 680 ecosystem credits would be generated for this plant community type by the proposal. These ecosystem credits will be used for management and restoration of another area of White Box Grassy Woodland in the IBRA region that would increase high productivity foraging habitat and contribute to the recovery of the species.

8.2.3 Conclusion

Based on the appropriate criteria, it is considered highly unlikely the proposal would have a serious and irreversible impact on the White Box-Yellow Box-Blakely's Red Gum Woodland EEC or the Large Bentwinged Bat.




Figure 8-1 Location of serious and irreversible impacts (north).

0.5 km

ngh environmental

Development Footprint Roads Drainage Line

Ref: 17-382 Wellington North BDAR Update July 2020 Option A \ BDAR SAlls (south) Author: Vitaly.K Date created: 03.12.2020 Datum: GDA94 / MGA zone 55

Figure 8-2 Location of serious and irreversible impacts (south).

Development Site

Dams/Other Waterbodies

Serious and Irreversible Impacts (SAIIs)

0.25 0.5 km

Data Attribution © NGH 2020 © [Lightsource BP] [2020] © [Basemaps courtest ESRI, NSW LPI and their data suppliers] [2020]

ngh environmental

9 REQUIREMENT TO OFFSET

9.1 IMPACTS REQUIRING AN OFFSET

437_Planted

9.1.1 Ecosystem credits

An offset is required for all impacts of development on PCTs that are associated with:

- a vegetation zone that has a vegetation integrity score ≥15 where the PCT is representative of an endangered or critically endangered ecological community, or
- b) a vegetation zone that has a vegetation integrity score of ≥17 where the PCT is associated with threatened species habitat (as represented by ecosystem credits), or is representative of a vulnerable ecological community, or
- c) a vegetation zone that has a vegetation integrity score ≥20 where the PCT is not representative of a TEC or associated with threatened species habitat.

The PCTs and vegetation zones requiring offset and the ecosystem credits required are documented in Table 9-1 and mapped in Figure 9-1.

Table 9-1 PCTs and vegetation zones that require offsets for the Development Site and Transmission Line

Zone ID	PCT ID	Zone name	Impact area (ha)	Vegetation integrity loss	Ecosystem credits required			
White Box Grassy Woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266)								
1	266	266_Moderate	3.1	23	36			
3	266	266_Planted	2.1	53.7	56			
Tx-1	266	Transmission Line_derived Grassland	2.0	25.6	26			
Tx-2	266	Transmission line_moderate	7.56	49.5	187			
TX-3	266	Transmission line_creekline	0.5	69.8	17			
				Subtotal:	322			
Yellow Box Grassy Woodland on lower hillslopes and valley flats in the Southern NSW Brigalow Belt South Bioregion (PCT 437)								
4	437	437_Moderate	1.0	49.4	25			

ngh environmental

5

437

10.2

45.3

Subtotal:

TOTAL:

231

256

578

The full Biodiversity Credit Reports generated by the BAM Calculator are provided in Appendix J.

9.1.2 Species credits

An offset is required for the threatened species impacted by the development that require species credits. These species and the species credits required are documented in Table 9-2.

Species Credit Species	Biodiversity risk weighting	Area of habitat lost (Ha)	Species credits required
Southern Myotis (Myotis macropus)	2	0.22	5
Pink Tailed Legless Lizard (Aprasia parapulchella)	2	0.56	14
Glossy Black Cockatoo (Calyptorhynchus lathami)	2	8.06	204
Barking Owl (Ninox connivens)	2	8.06	204
Masked Owl (Tyto novaehollandiae)	2	8.06	204
		TOTAL:	631

Table 9-2 Species credit species that require offsets

The full Biodiversity Credit Reports generated by the BAM Calculator are provided in Appendix J.

9.1.3 Paddock Tree credits

Offsets are required for the clearing of Class 2 and Class 3 paddock trees. 55 paddock trees would be removed by construction of the solar panels, lay down areas and access roads (Appendix B). 14 of these 55 paddock trees are Class 1 and do not require offsetting. No additional paddock trees would need to be removed through the construction of the transmission line.

Ecosystem credits for paddock trees are calculated as per the streamlined assessment defined in Appendix 1 of the BAM. These ecosystem credits required are documented in Table 9-3. Paddock trees are comprised of PCT 266 and PCT 437. The large tree benchmark for these PCTs is 50cm DBH.

32 ecosystem credits are required for the clearing of the paddock trees within the Development Footprint. This is in addition to the biodiversity credits required by the BAM calculator for defined vegetation zones (refer to credit reports provided in Appendix J).

Class of Paddock Tree being cleared	Hollows Present	Number of Paddock Trees to be cleared	Number of Credits Required	Ecosystem credits required
PCT 266				
Class 2 (>20cm DBH and < 50cm DBH)	No	2	0.5	1
Class 2 (>20cm DBH and < 50cm DBH)	Yes	0	0.75	0
Class 3 >50cm DBH	No	5	0.75	4

Table 9-3 Paddock Trees that require offsets with the Development Site.

Class of Paddock Tree being cleared	Hollows Present	Number of Paddock Trees to be cleared	Number of Credits Required	Ecosystem credits required
Class 3 >50cm DBH	Yes	2	1	2
			SUB TOTAL	7
PCT 437				
Class 2 (>20cm DBH and < 50cm DBH)	No	8	0.5	4
Class 2 (>20cm DBH and < 50cm DBH)	Yes	0	0.75	0
Class 3 >50cm DBH	No	19	0.75	16
Class 3 >50cm DBH	Yes	5	1	5
	25			
	32			

9.1.4 *Offsets required under the EPBC Act*

No species listed on the EPBC Act have been identified as having the potential to be significantly impacted by the development (Section 7.4). As such, the proposal is not considered to require offsets in accordance with the EPBC Offsets Policy.

9.2 IMPACTS NOT REQUIRING AN OFFSET

It is expected that 90.8 ha of Derived Native Grassland would be impacted by the proposal. This grassland is in low condition, comprising only 0.5 - 20% native ground cover. Six vegetation integrity plots were undertaken in this area and returned a vegetation integrity score of 5.8.

1.1ha of low condition woodland (PCT 437) would be impacted by the proposal. This woodland is in low condition comprising less than 10% native ground cover with only a few remnant Yellow Box (*Eucalyptus camaldulensis*) remaining. This zone returned a vegetation integrity score of 8.3.

As defined in section 10.1.1 of the BAM, vegetation zones that have a vegetation integrity score of less than 15 do not require offsets. These PCTs and vegetation zones are identified in Table 9-4 and mapped on Figure 9-1 and Figure 9-2.

Zone ID	РСТ	Zone Name	Zone area (ha)	Vegetation integrity score
2	266	Derived Grassland	90.8	5.8
6	437	Low	1.1	8.3

Table 9-4 PCTs and vegetation zones that do not require offsets.

9.3 AREAS NOT REQUIRING ASSESSMENT

11.8ha of planted vegetation that do not form part of a PCT would be impacted by the development. Planted areas may still provide habitat for threatened species. Targeted surveys for threatened species, including bird surveys and nocturnal spotlighting surveys, did not detect any threatened species using these areas. No habitat features such as hollow bearing trees or fallen timber were present in these plantings. These areas did not require offsetting or further assessment.

Approximately 700ha of exotic vegetation comprised of agricultural crops or planted exotic trees would be impacted by the proposal. These zones are not considered native vegetation and do not require offsetting or further assessment.

Zone ID	РСТ	Zone Name	Zone area (ha)	Vegetation integrity score
10	-	Planted Vegetation (No PCT)	11.4	NA
11	-	Exotic vegetation	Approx. 797	NA

Table 9-5 Vegetation zones that do not require offsets.

These areas are mapped on Figure 9-1 and Figure 9-2.

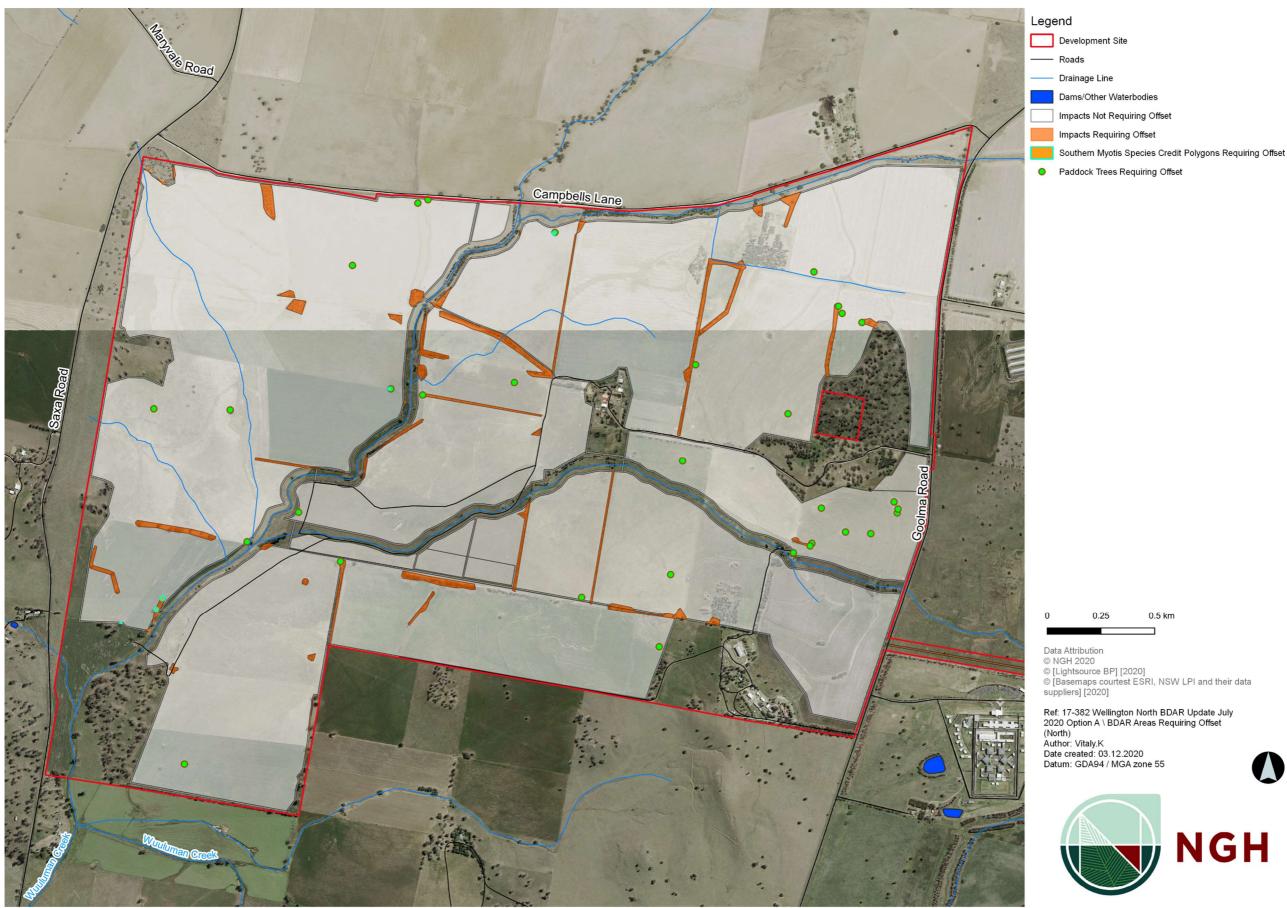


Figure 9-1 Impacts requiring offset, not requiring offset, and not requiring assessment (north).

ngh environmental

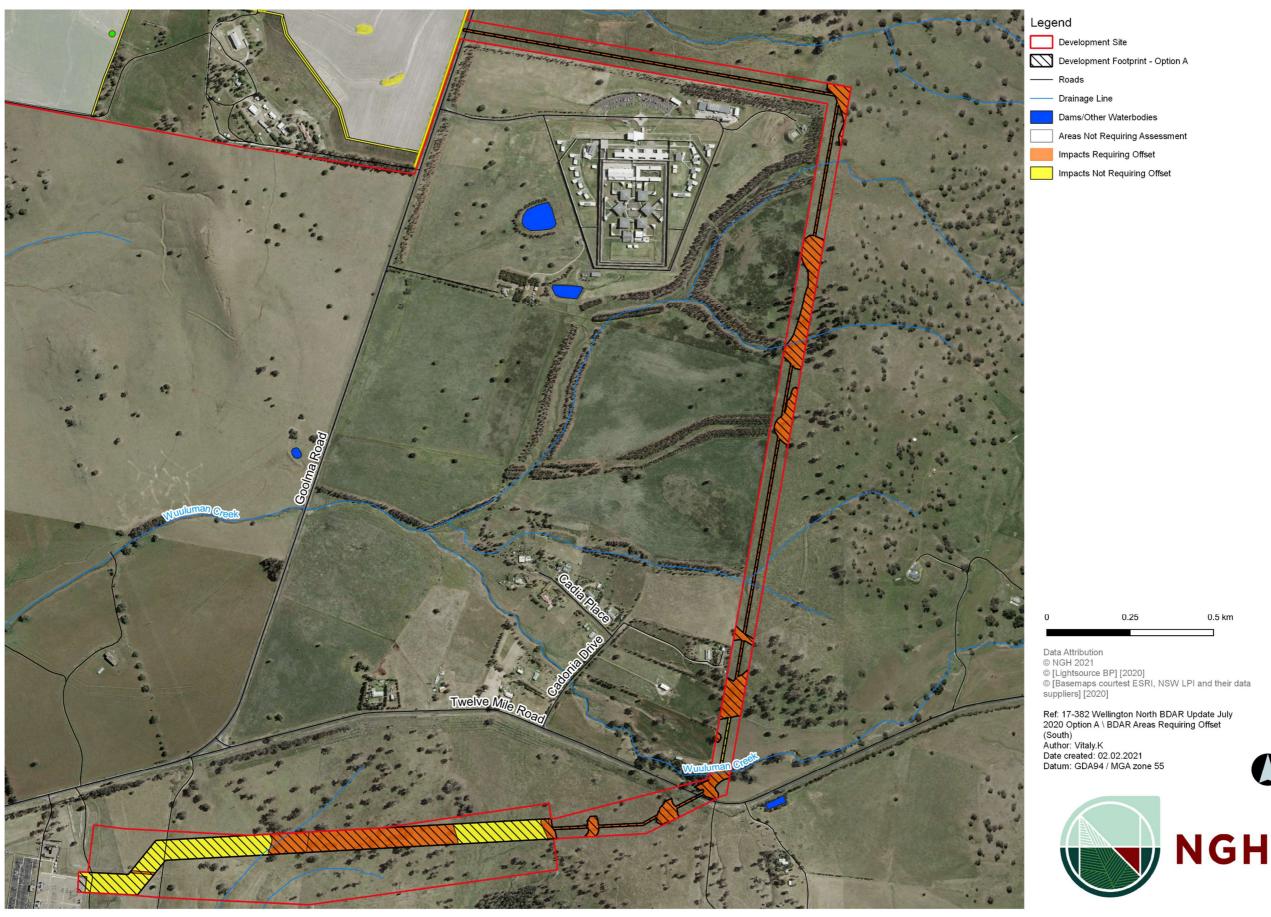


Figure 9-2 Impacts requiring offsets, not requiring offset, and not requiring assessment (south).

ngh environmental

9.4 SUMMARY OF OFFSET CREDITS REQUIRED

The following credit requirement is generated for the Project.

Table 9-6 Credit Requirements for the Development Footprint

Ecosystem Credits	Offset credits required
White Box Grassy Woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266)	322
Paddock Trees – White Box Grassy Woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266)	7
Subtotal:	329
Yellow Box Grassy Woodland on lower hillslopes and valley flats in the Southern NSW Brigalow Belt South Bioregion (PCT 437)	256
Paddock Trees - Yellow Box Grassy Woodland on lower hillslopes and valley flats in the Southern NSW Brigalow Belt South Bioregion (PCT 437)	25
Subtotal:	281
TOTAL	610
Species Credits	Offset Credits Required
Southern Myotis (<i>Myotis Macropus</i>)	5

Southern Myotis (<i>Myotis Macropus</i>)	5
Pink Tailed Legless Lizard (Aprasia parapulchella)	14
Glossy Black Cockatoo (Calyptorhynchus lathami)	204
Barking Owl (Ninox connivens)	204
Masked Owl (Tyto novaehollandiae)	204
TOTAL:	631

10 CONCLUSION

The purpose of this BDAR was to address the requirements of the BAM and to address the biodiversity matters raised in the SEARs.

NGH Environmental has updated this BDAR on behalf of Lightsource bp for the Wellington North Solar Farm to account for minor changes to the Development Footprint. As the changes were within previously assessed areas, this did not require additional survey. Mapping and impact areas have however been updated and the conclusions of the original assessment evaluated and updated as required.

In this BDAR V3.1:

- Biodiversity impacts have been assessed through comprehensive mapping and assessment completed in accordance with the BAM.
- Mitigation measures have been outlined to reduce the impacts to biodiversity.
- The credit requirement has been recalculated as:
 - 322 Ecosystem Credits for impacts to White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266)
 - 7 Ecosystem Credits for impacts to paddock trees from White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion (PCT 266)
 - 256 Ecosystem credits for impacts to Yellow Box grassy woodland on lower hillslopes and valley flats in the Southern NSW Brigalow Belt South Bioregion (PCT 437).
 - 25 Ecosystem credits for impacts to paddock trees from Yellow Box grassy woodland on lower hillslopes and valley flats in the Southern NSW Brigalow Belt South Bioregion (PCT 437).
 - o 5 species credits for impacts to the Southern Myotis
 - o 14 species credits for assumed impacts to the Pink-tailed Legless-lizard
 - o 204 species credits for assumed impacts to the Glossy Black Cockatoo
 - o 204 species credits for assumed impacts to the Masked Owl
 - o 204 species credits for assumed impacts to the Barking Owl.

The retirement of these credits will be carried out in accordance with the NSW Biodiversity Offsets scheme, and will be achieved by either:

- a) Retiring credits under the Biodiversity Offsets Scheme based on the like-for-like rules, or
- b) Making payments into the Biodiversity Conservation Fund using the offset payments calculator, or
- c) Funding a biodiversity action that benefits the threaten entity(ies) impacted by the development.

11 REFERENCES

Benson (2008) New South Wales vegetation classification and Assessment: Part 2 Plant communities of the NSW South-western Slopes Bioregion and update of NSW Western Plains plant communities. Version 2 of the NSWVCA database. Cunninghamia 10 (4): 599-673.

Churchill, S. (2009) Australian Bats, Allen and Unwin

- Colquhoun G.P., Meakin N.S., Morgan E.J., Raymond O.L., Scott M.M., Watkins J.J., Barron L.M., Cameron R.G., Henderson G.A.M., Jagodzinski E.A., Krynen J.P., Pogson D.J., Warren A.Y.E., Wyborn D. and Yoo E.K., 1999, Dubbo 1:250 000 Geological Sheet SI/55-04, 2nd edition, Geological Survey of New South Wales, Sydney
- DEC (2006) NSW Recovery Plan for the Large Forest Owls: Powerful Owl (Ninox strenua), Sooty Owl (Tyto tenebricosa) and Masked Owl (Tyto novaehollandiae) Department of Environment and Conservation (NSW), Sydney.
- DECC (2010) National Recovery Plan for White Box Yellow Box Blakely's Red Gum Grassy Woodland and Derived Native Grassland. Department of Environment, Climate Change and Water NSW.
- DEC (2017) Central West and Lachlan Catchments Vegetation Mapping, Department of Environment and Conservation
- DoE (2017) National Flying-fox monitoring viewer accessed at http://www.environment.gov.au/webgisframework/apps/ffc-wide/ffc-wide.jsf
- DoE (2016). Species Profile and Threats Database, Department of Sustainability, Environment, Water, Population and Communities, Canberra. Available from: <u>http://www.environment.gov.au/sprat</u>.
- DoE (2015a) Referral guideline for management actions in grey-headed and spectacled flying-fox camps, EPBC ACT Policy Statement, Australian Government
- DoE (2014) EPBC Act Referral Guidelines for the vulnerable koala (combined populations of Queensland, New South Wales and the Australian Capital Territory), Commonwealth Department of Environment, 2014.
- DoEE (2012) Interim Biogeographic Regionalisation for Australia, version 7.
- Environment Australia (2001) A Directory of Important Wetlands in Australia. 3rd Edition. Environment Australia, Canberra.
- Fly by Night Bat Surveys Pty Ltd (2018) *Microbat echolocation call analysis for sites at Wellington, NSW for NGH BEGA,* Personal communication
- GHD (2018) Wellington North Solar Farm Traffic Impact Assessment. Report prepared for AGL.
- Hoye & Spence (2004) The Large Bent-wing Bat Miniopterus schreibersii in Urban Environments: a survivor?
- Kavanagh R. P. and Stanton M. A. (2002) Response to habitat fragmentation by the Powerful Owl (*Ninox strenua*), Sooty Owl (*Tyto tenebricosa*), Masked Owl (*Tyto novaehollandiae*) and other nocturnal fauna in South-eastern Australia. In Ecology and Conservation of Owls, Kavanagh R. P. [Ed].
- NSW NPWS (2002) White Box Yellow Box Blakely's Red Gum Woodland (Box-Gum Woodland) Identification Guidelines for Endangered Ecological Communities.
- NSW Scientific Committee (2002) White box yellow box Blakely's red gum woodland endangered ecological community listing

- NSW Office of Water (2012) Guidelines for riparian corridors on waterfront land. Department of Primary Industries
- OEH (2014) Central Tablelands Vegetation, API. VIS_ID 4163 Vegetation mapping of the Central West and Lachlan Catchments accessed online at <u>http://data.environment.nsw.gov.au/dataset/central-tablelands-vegetation-api-vis_id-4163449af</u>
- OEH (2016) NSW Guide to Surveying Threatened Plants, NSW Government
- OEH (2017a) Grey-headed Flying-fox -profile, NSW Government accessed at www.environment.nsw.gov.au/threatenedspeciesapp/profile.aspx?id=10697
- Office of Environment and Heritage (OEH) (2017b) Biodiversity Assessment Methodology (BAM). Office of Environment and Heritage for the NSW Government, Sydney, NSW.
- Office of Environment and Heritage (OEH) (2017c) BioNet Vegetation Information System: Classification Database. Accessed online at http://www.environment.nsw.gov.au/research/Visclassification.htm
- OEH (2017d) Southern Myotis profile accessed at http://www.environment.nsw.gov.au/threatenedspeciesapp/profile.aspx?id=10549
- OEH (2018) Bionet Database accessed at <u>https://www.environment.nsw.gov.au/AtlasApp/Default.aspx?a=1</u>
- Phillips and Callaghan (2011) The Spot Assessment Technique: a tool for determining localised levels of habitat use by Koalas *Phascolarctos cinereus*. *Australia Zoologist* Vol 35 (3). Pg. 774 780.

NSW Government (2017) NSW Government Sharing and Enabling Environmental Data (SEED) Mapping accessed at <u>https://geo.seed.nsw.gov.au/Public_Viewer/index.html?viewer=Public_Viewer&locale=en-AU</u>

- Scott, M.M., Raymond Scott M.M., Raymond O.L., Henderson G.A.M., Morgan E., Warren A.Y.E. and Wyborn D., 2000, Wellington 1:100 000 Geological Sheet 8632, 1st edition. Geological Survey of New South Wales, Sydney & Geoscience Australia, Canberra
- Threatened Species Scientific Committee (TSSC) (2006) White Box Yellow Box Blakely's Red Gum Grassy Woodlands and Derived Native Grasslands listing advice and conservation advice. Minister for the Environment and Heritage.
- Threatened Species Scientific Committee (TSSC) (2015) Conservation Advice, Aprasia parapulchella Pink tailed Worm Lizard

Appendix A PERSONNEL

Personnel involved in the report are:

Name	Title	Qualifications	Roles
Dave Maynard	Principal Ecologist	 BAM Accredited Assessor B Science (Ecology, First Class Honours) 	Direction in BAM assessment and BDAR. Approval of BDAR
Mitch Palmer	Senior Ecologist (Technical Lead)	 BAM Accredited Assessor B. Science (Geology and Geography) 	Review and approval of BDAR
Brooke Marshall	Manager Projects	 BAM Assessor Training – Accreditation in progress B. Nat Res. (Hons) 	Assistance in review QA Approval
Julie Gooding	Environmental Consultant - Ecologist	BAM Accredited AssessorB. Science (Biology)	Field Work including PCT identification, vegetation mapping, vegetation integrity plots and threatened flora surveys. Author of BDAR
Lisa Hamilton	Environmental Consultant - Ecologist	 B. Environmental Science and Management 	Field Work including vegetation integrity plots, threatened flora surveys and targeted fauna surveys.
Damian Lettoof	Wildlife Ecologist	 M Science in Wildlife health and population management 8 years field survey experience in terrestrial fauna 	Targeted Fauna surveys
Shane Priddle	Principal Consultant	Certified Environmental Practitioner	GIS Mapping
Col Bower	Principal Ecologist Flora Search (Orange)	 BSc (Hons) (Zoology), PhD Zoology 	Targeted Flora surveys and BAM Plots of transmission line route
Zoe Quaas	Environmental Consultant - Ecologist	• B. Environmental Science and Management (First class honours)	Targeted Fauna Surveys of Transmission line route
Beth Noel	Senior Environmental Consultant - Ecologist	 B. Applied Science M. Wildlife Management BAM accredited assessor 	Targeted Fauna Surveys of Transmission line route Update of BDAR
Kirsten Vine	Ecologist	 Associate Degree Parks, Heritage & Recreation. BAM Accreditation 	Review and update BDAR

			Adv. Diploma Conservation & Land Management	
Michelle Patrick	Senior Ecologist	•	Masters of Environment BoT (Natural Resource Management) BAM Accredited	BDAR update

Appendix B PADDOCK TREES

Paddock Trees within the Development Site.

ID	Latitude	Longitude	Species	Common Name	Associated PCT	DBH (cm)	DBH above benchmark (50cm)	Hollows Present	Paddock Tree Class	Impacted by proposal
1	148.9692	-32.523005	B. populneus	Kurrajong	437	45	No	No	2	No
2	148.9691	-32.522871	M. azedarach	White Cedar	266	30	No	No	2	No
2	148.9703	-32.520805	B. populneus	Kurrajong	437	60	Yes	No	3	No
3	148.9704	-32.52079	Acacia sp.	Acacia sp	437	10	No	No	1	No
4	148.9666	-32.492456	E. albens	White Box	266	23	No	No	2	Yes
5	148.9736	-32.489702	Unknown	Stag	-	61	Yes	No	1	Yes
6	148.9734	-32.489406	E. albens	White Box	266	90	Yes	Yes	3	Yes
7	148.9493	-32.487949	B. populneus	Kurrajong	437	48	No	No	2	Yes
8	148.9493	-32.488051	B. populneus	Kurrajong	437	65	Yes	No	3	Yes
9	148.9518	-32.494593	E. melliodora	Yellow Box	437	80	Yes	No	3	No
10	148.949	-32.500516	E. melliodora	Yellow Box	437	80	Yes	No	3	Yes
11	148.9549	-32.498483	E. microcarpa	Grey Box	266	69	Yes	No	3	No
12	148.9727	-32.497884	B. populneus	Kurrajong	437	45	No	No	2	Yes
13	148.9728	-32.497923	B. populneus	Kurrajong	437	30	No	No	2	Yes
14	148.9751	-32.497101	B. populneus	Kurrajong	437	65	Yes	No	3	No
15	148.9723	-32.499425	E. melliodora	Yellow Box	437	60	Yes	No	3	Yes
16	148.9723	-32.499389	E. melliodora	Yellow Box	437	60	Yes	No	3	Yes
17	148.974	-32.498892	E. sideroxylon	Mugga Ironbark	437	60	Yes	No	3	Yes
18	148.9753	-32.500286	B. populneus	Kurrajong	437	21	No	No	2	Yes
19	148.9752	-32.500353	B. populneus	Kurrajong	437	15	No	No	1	Yes
20	148.9765	-32.498049	E. sideroxylon	Mugga Ironbark	437	53	Yes	No	3	Yes
21	148.9339	-32.513114	B. populneus	Kurrajong	437	22	No	No	2	No
22	148.934	-32.512807	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No

ngh environmental

ID	Latitude	Longitude	Species	Common Name	Associated PCT	DBH (cm)	DBH above benchmark (50cm)	Hollows Present	Paddock Tree Class	Impacted by proposal
23	148.934	-32.512916	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
24	148.934	-32.512651	E. melliodora	Yellow Box	437	80	Yes	Yes	3	No
25	148.9745	-32.510414	E. sideroxylon	Mugga Ironbark	437	70	Yes	No	3	No
26	148.9745	-32.510658	E. sideroxylon	Mugga Ironbark	437	60	Yes	No	3	No
27	148.9743	-32.511132	E. sideroxylon	Mugga Ironbark	437	60	Yes	No	3	No
28	148.936	-32.509106	E. melliodora	Yellow Box	437	1	Yes	No	3	No
29	148.9362	-32.509073	E. melliodora	Yellow Box	437	1	Yes	Yes	3	No
30	148.9569	-32.498139	E. microcarpa	Grey Box	266	55	Yes	No	2	No
31	148.9571	-32.49819	E. microcarpa	Grey Box	266	55	Yes	No	2	No
32	148.9574	-32.497855	E. microcarpa	Grey Box	266	55	Yes	No	2	No
33	148.9405	-32.508446	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	Yes
34	148.9403	-32.509372	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	Yes
35	148.9496	-32.500562	E. melliodora	Yellow Box	437	80	Yes	No	2	Yes
36	148.97	-32.490687	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	Yes
37	148.9773	-32.490693	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	Yes
38	148.9789	-32.482562	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	Yes
39	148.9794	-32.483616	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
40	148.9795	-32.482749	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No

ID	Latitude	Longitude	Species	Common Name	Associated PCT	DBH (cm)	DBH above benchmark (50cm)	Hollows Present	Paddock Tree Class	Impacted by proposal
41	148.9795	-32.483029	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
42	148.9788	-32.482122	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
43	148.9796	-32.482109	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
44	148.9797	-32.481874	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
45	148.9585	-32.48599	B. populneus	Kurrajong	437	45	No	No	2	No
46	148.958	-32.486055	B. populneus	Kurrajong	437	45	No	No	2	No
47	148.9578	-32.486299	B. populneus	Kurrajong	437	45	No	No	2	Yes
48	148.9746	-32.49007	E. albens	White Box	266	70	Yes	Yes	3	Yes
49	148.9575	-32.49286	Unknown	Stag	-	60	Yes	Yes	1	Yes
50	148.9575	-32.495201	Unknown	Stag	-	0	No	No	1	Yes
51	148.9649	-32.503864	Unknown	Stag	-	80	Yes	Yes	1	Yes
52	148.9593	-32.486513	E. melliodora	Yellow Box	437	200	Yes	Yes	3	Yes
53	148.9514	-32.493221	E. melliodora	Yellow Box	437	110	Yes	Yes	3	Yes
54	148.9592	-32.492246	E. albens	White Box	266	40	No	No	2	Yes
55	148.9469	-32.498484	C. glaucophylla	White Cypress	266	57	Yes	No	3	Yes
56	148.9415	-32.509157	C. glaucophylla	White Cypress	266	65	Yes	No	3	Yes
57	148.9396	-32.494238	C. glaucophylla	White Cypress	266	52	Yes	No	3	Yes
58	148.9434	-32.494228	C. cunninghamiana	River Sheoak	437	100	Yes	No	3	Yes
59	148.9728	-32.497909	B. populneus	Kurrajong	437	55	Yes	No	3	Yes
60	148.9664	-32.491972	E. sideroxylon	Mugga Ironbark	437	56	Yes	No	3	Yes
61	148.9722	-32.487966	B. populneus	Kurrajong	437	70	Yes	No	3	Yes
62	148.9787	-32.485151	B. populneus	Kurrajong	437	30	No	No	2	Yes

'ellington	North	Solar	Farm
------------	-------	-------	------

ID	Latitude	Longitude	Species	Common Name	Associated PCT	DBH (cm)	DBH above benchmark (50cm)	Hollows Present	Paddock Tree Class	Impacted by proposal
63	148.971	-32.493959	B. populneus	Kurrajong	437	85	Yes	No	3	Yes
64	148.9493	-32.488007	B. populneus	Kurrajong	437	43	No	No	2	Yes
65	148.9764	-32.497592	E. melliodora	Yellow Box	437	70	Yes	No	3	Yes
66	148.9766	-32.497893	E. sideroxylon	Mugga Ironbark	437	60	Yes	No	3	Yes
67	148.9659	-32.496033	B. populneus	Kurrajong	437	60	Yes	No	3	Yes
68	148.9654	-32.500809	B. populneus	Kurrajong	437	60	Yes	No	3	Yes
69	148.9714	-32.499801	E. albens	White Box	266	80	Yes	No	3	Yes
70	148.9722	-32.499501	E. sideroxylon	Mugga Ironbark	437	70	Yes	No	3	Yes
71	148.9752	-32.498939	C. endlicheri	Black Cypress	437	53	Yes	No	3	Yes
72	148.9739	-32.498981	B. populneus	Kurrajong	437	47	No	No	2	Yes
73	148.9616	-32.494956	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
74	148.962	-32.494981	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
75	148.9625	-32.495668	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
76	148.9634	-32.495755	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	No
77	148.9627	-32.495165	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	Yes
78	148.9631	-32.49594	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	Yes
79	148.9444	-32.499761	E. melliodora	Yellow Box	437	110	Yes	Yes	3	Yes
80	148.9435	-32.500851	B. populneus	Kurrajong	437	45	No	No	2	No
81	148.942	-32.501677	B. populneus	Kurrajong	437	45	No	No	2	No
82	148.9529	-32.493451	E. melliodora	Yellow Box	437	55	Yes	No	3	Yes

Biodiversity Development Assessment Report

Wellington North Solar Farm

ID	Latitude	Longitude	Species	Common Name	Associated PCT	DBH (cm)	DBH above benchmark (50cm)	Hollows Present	Paddock Tree Class	Impacted by proposal
83	148.9522	-32.492948	C. cunninghamiana	River Sheoak	437	55	Yes	No	3	No
84	148.9571	-32.485306	E. melliodora	Yellow Box	437	70	Yes	Yes	3	No
85	148.953	-32.485241	E. melliodora	Yellow Box	437	70	Yes	Yes	3	Yes
86	148.9525	-32.485392	E. blakelyi	Blakely's Red Gum	437	65	Yes	Yes	3	Yes
87	148.9596	-32.485418	E. melliodora	Yellow Box	437	75	Yes	Yes	3	No
88	148.9693	-32.496289	Unknown	Stag	-	0	No	No	1	Yes
89	148.957	-32.50278	*S. molle var. areira	Pepper Tree	Exotic	0	No	No	1	Yes
90	148.961	-32.501832	E. albens	White Box	266	65	Yes	No	3	Yes

Appendix C FAUNA SPECIES RECORDED

Table 11-1 Fauna survey results from Development Site (Solar array)

Family	Scientific Name	Common Name	Date and Time	Quantity	Latitude	Longitude	Altitude (m)	Accuracy (m)	Comment
Amphibia	Crinia parinsignifera	Beeping Froglet	20/10/2017 11:19	2	-32.4844	148.938034	357	5	
Amphibia	Crinia signifera	Clicking Froglet	11/12/2017 21:45	2	-32.4894	148.953476	334	5	
Amphibia	Crinia signifera	Clicking Froglet	19/10/2017 20:51	5	-32.4896	148.952759	334	5	
Amphibia	Crinia signifera	Clicking Froglet	18/10/2017 22:18	2	-32.4896	148.953201	340	10	
Amphibia	Limnodynastes dumerilii	Eastern Pobblebonk	12/12/2017 21:09		-32.497	148.947708	322	5	
Amphibia	Limnodynastes dumerilii	Eastern Pobblebonk	11/12/2017 21:44	2	-32.4894	148.953476	333	5	
Amphibia	Limnodynastes dumerilii	Eastern Pobblebonk	11/12/2017 20:48	3	-32.5051	148.938065	310	5	
Amphibia	Limnodynastes tasmaniensis	Spotted Marsh Frog	12/12/2017 21:07		-32.497	148.94902	326	5	
Amphibia	Limnodynastes tasmaniensis	Spotted Marsh Frog	12/12/2017 20:43		-32.5044	148.939316	314	5	
Amphibia	Limnodynastes tasmaniensis	Spotted Marsh Frog	11/12/2017 21:41	3	-32.4896	148.952957	332	5	
Amphibia	Limnodynastes tasmaniensis	Spotted Marsh Frog	11/12/2017 21:15	2	-32.5052	148.93898	308	5	
Amphibia	Limnodynastes tasmaniensis	Spotted Marsh Frog	19/10/2017 20:51	2	-32.4896	148.952789	337	10	
Amphibia	Limnodynastes tasmaniensis	Spotted Marsh Frog	18/10/2017 22:18	2	-32.4897	148.952621	338	5	
Amphibia	Litoria caerulea	Green Tree Frog	11/12/2017 21:09	2	-32.5052	148.938675	313	5	
Amphibia	Litoria peronii	Emerald-spotted Tree Frog	20/10/2017 9:38	1	-32.4859	148.970627	369	5	
Amphibia	Uperoleia laevigata	Smooth Gungan	19/10/2017 7:25	2	-32.4896	148.952972	338	5	

Family	Scientific Name	Common Name	Date and Time	Quantity	Latitude	Longitude	Altitude (m)	Accuracy (m)	Comment
Aves	Acanthiza chrysorrhoa	Yellow-rumped Thornbill	19/10/2017 10:40	3	-32.4966	148.958984	345	5	
Aves	Acanthiza chrysorrhoa	Yellow-rumped Thornbill	19/10/2017 9:24	2	-32.494	148.941605	341	5	
Aves	Acanthiza chrysorrhoa	Yellow-rumped Thornbill	19/10/2017 7:51	7	-32.4972	148.947632	322	5	
Aves	Anas superciliosa	Pacific Black Duck	19/10/2017 7:49	3	-32.4965	148.949341	329	5	
Aves	Anthochaera carunculata	Red Wattlebird	18/10/2017 16:43	1	-32.5061	148.971115	391	5	
Aves	Anthus novaeseelandiae	Australasian Pipit	20/10/2017 8:42	1	-32.4928	148.960907	356	5	
Aves	Cacatua galerita	Sulphur-crested Cockatoo	19/10/2017 7:19	1	-32.4896	148.95256	339	5	
Aves	Cacatua galerita	Sulphur-crested Cockatoo	19/10/2017 7:09	2	-32.4937	148.962082	361	5	
Aves	Cacatua sanguinea	Little Corella	19/10/2017 8:01	2	-32.5076	148.939728	313	5	
Aves	Cacatua sanguinea	Little Corella	19/10/2017 6:59	2	-32.4951	148.972992	409	5	
Aves	Chenonetta jubata	Australian Wood Duck	18/10/2017 16:30	10	-32.5	148.971603	356	5	
Aves	Coracina novaehollandiae	Black-faced Cuckoo- shrike	19/10/2017 9:11	2	-32.4998	148.944366	322	5	
Aves	Coracina novaehollandiae	Black-faced Cuckoo- shrike	19/10/2017 6:37	2	-32.4952	148.972672	403	5	
Aves	Corcorax melanorhamphos	White-winged Chough	19/10/2017 7:41	10	-32.4896	148.95314	334	5	
Aves	Corcorax melanorhamphos	White-winged Chough	18/10/2017 16:42	4	-32.5061	148.97113	378	5	
Aves	Corcorax melanorhamphos	White-winged Chough	18/10/2017 16:25	5	-32.5004	148.970535	373	5	
Aves	Corvus coronoides	Australian Raven	19/10/2017 7:48	2	-32.4896	148.953094	334	5	

Date and Altitude Accuracy Scientific Name Family Common Name Quantity Latitude Longitude Comment Time (m) (m) 19/10/2017 2 Corvus tasmanicus Forest Raven -32.4951 148.972534 402 5 Aves 6:38 20/10/2017 1 5 Aves Coturnix ypsilophora Brown Quail -32.4844 148.938141 357 11:35 20/10/2017 **Pied Butcherbird** 1 -32.4847 148.97052 370 5 Aves Cracticus nigrogularis 9:11 19/10/2017 1 5 Cracticus nigrogularis Pied Butcherbird -32.4924 148.952713 337 Aves 15:23 19/10/2017 -32.5075 148.939148 317 5 Aves Cracticus nigrogularis Pied Butcherbird 8:15 19/10/2017 Aves Cracticus nigrogularis Pied Butcherbird 1 -32.5076 148.939758 312 5 8:01 19/10/2017 Aves Cracticus nigrogularis **Pied Butcherbird** 1 -32.4952 148.972656 402 5 6:37 18/10/2017 1 5 Aves Cracticus nigrogularis Pied Butcherbird -32.523 148.947357 341 17:58 19/10/2017 1 5 Aves Cracticus tibicen Australian Magpie -32.4895 148.952881 337 7:23 18/10/2017 2 Aves Cracticus tibicen Australian Magpie -32.5195 148.945358 323 5 18:21 20/10/2017 1 5 Aves Cracticus torquatus Grey Butcherbird -32.4848 148.970688 369 9:12 19/10/2017 Grey Butcherbird 1 -32.4895 148.952881 337 5 Cracticus torquatus Aves 7:23 19/10/2017 1 5 Aves Cracticus torquatus Grey Butcherbird -32.4953 148.972626 399 6:47 20/10/2017 Laughing 1 Dacelo novaequineae 10 Aves -32.4848 148.970703 367 Kookaburra 9:17 19/10/2017 Laughing Dacelo novaeguineae 1 5 Aves -32.5074 148.938812 319 Kookaburra 8:18 Black-shouldered 20/10/2017 1 148.973068 5 Elanus axillaris -32.4917 375 Aves Kite 10:54 Black-shouldered 18/10/2017 5 Aves Elanus axillaris 1 -32.4985 148.977905 383 Kite 17:05

Date and Altitude Accuracy Family Scientific Name Common Name Latitude Longitude Quantity Comment Time (m) (m) Blue-faced 20/10/2017 2 5 Aves Entomyzon cyanotis -32.4852 148.969269 367 Honeyeater 9:26 Blue-faced 18/10/2017 2 10 Aves Entomyzon cyanotis -32.5072 148.97374 355 Honeyeater 16:40 Blue-faced 18/10/2017 Entomyzon cyanotis -32.5004 148.970535 371 10 Aves 16:25 Honeyeater Blue-faced 18/10/2017 1 5 Aves Entomyzon cyanotis -32.5064 148.966873 401 16:06 Honeyeater 20/10/2017 2 -32.4846 148.970596 374 10 Aves Eolophus roseicapillus Galah 9:11 19/10/2017 6 Eolophus roseicapillus Aves Galah -32.4868 148.959244 350 5 15:04 19/10/2017 3 Aves Eolophus roseicapillus Galah -32.5076 148.939774 312 5 8:00 19/10/2017 3 5 Aves Eolophus roseicapillus Galah -32.4896 148.95256 338 7:19 19/10/2017 2 403 5 Aves Eolophus roseicapillus Galah -32.4948 148.972809 6:50 18/10/2017 Aves Eolophus roseicapillus Galah 1 -32.5231 148.947433 341 5 17:57 18/10/2017 6 -32.5055 148.964813 377 5 Aves Eolophus roseicapillus Galah 15:34 19/10/2017 Falco berigora Brown Falcon 1 -32.5046 148.939819 312 5 Aves 8:52 20/10/2017 2 Falco cenchroides -32.4902 148.97551 5 Aves Nankeen Kestrel 391 10:15 19/10/2017 1 148.958954 5 Aves Falco cenchroides Nankeen Kestrel -32.4966 343 10:39 20/10/2017 2 148.970703 364 10 Aves Glossopsitta concinna Musk Lorikeet -32.4849 9:16 20/10/2017 Grallina cyanoleuca 1 148.97052 10 Magpie-lark -32.4847 362 Aves 9:11 19/10/2017 2 5 Aves Grallina cyanoleuca Magpie-lark -32.4895 148.952881 337 7:23

Date and Altitude Accuracy Scientific Name Common Name Longitude Family Quantity Latitude Comment Time (m) (m) 19/10/2017 2 5 Aves Grallina cyanoleuca Magpie-lark -32.4953 148.972687 394 6:36 18/10/2017 2 5 Aves Grallina cyanoleuca Magpie-lark -32.5027 148.964432 370 15:48 19/10/2017 Hirundo neoxena Welcome Swallow 2 -32.4868 148.959244 349 5 Aves 15:04 19/10/2017 1 5 Aves Hirundo neoxena Welcome Swallow -32.4937 148.962082 361 7:10 Lichenostomus Yellow-faced 19/10/2017 2 5 -32.4966 148.958984 344 Aves 10:39 chrysops Honeyeater White-plumed 20/10/2017 Lichenostomus 2 Aves -32.4861 148.970612 389 10 9:39 penicillatus Honeyeater Lichenostomus White-plumed 18/10/2017 Aves 1 -32.5017 148.9758 381 5 penicillatus 16:34 Honeyeater 19/10/2017 4 -32.492 5 Aves Malurus cyaneus Superb Fairy-wren 148.95256 330 15:13 19/10/2017 3 -32.4927 5 Aves Malurus cyaneus Superb Fairy-wren 148.96109 358 7:11 18/10/2017 Aves Malurus cyaneus Superb Fairy-wren 4 -32.5066 148.971375 394 5 15:05 Yellow-throated 18/10/2017 Manorina flavigula 3 -32.5061 148.971054 391 5 Aves 16:43 Miner 18/10/2017 Yellow-throated 3 Manorina flavigula -32.5047 148.965118 379 10 Aves Miner 15:37 20/10/2017 Manorina 2 5 Aves Noisy Miner -32.4848 148.970673 370 melanocephala 9:19 Manorina 19/10/2017 5 148.939728 5 Aves Noisy Miner -32.5077 313 melanocephala 8:11 Manorina 19/10/2017 1 -32.4952 399 5 Aves Noisy Miner 148.972565 melanocephala 6:41 Manorina 18/10/2017 2 -32.5202 148.945358 330 5 Aves Noisy Miner melanocephala 18:35 Manorina 18/10/2017 2 5 Aves Noisy Miner -32.5242 148.948547 343 melanocephala 17:54

Family	Scientific Name	Common Name	Date and Time	Quantity	Latitude	Longitude	Altitude (m)	Accuracy (m)	Comment
Aves	Ninox novaeseelandiae	Southern Boobook	18/10/2017 21:47	1	-32.5092	148.947449	337	5	
Aves	Northiella haematogaster	Blue Bonnet	19/10/2017 18:08	2	-32.4954	148.967758	370	10	
Aves	Northiella haematogaster	Blue Bonnet	18/10/2017 15:59	3	-32.5051	148.964981	378	5	
Aves	Ocyphaps lophotes	Crested Pigeon	20/10/2017 9:40	2	-32.4866	148.970459	361	10	
Aves	Ocyphaps lophotes	Crested Pigeon	19/10/2017 6:45	1	-32.4953	148.97261	379	5	
Aves	Ocyphaps lophotes	Crested Pigeon	18/10/2017 18:16	1	-32.5204	148.945404	326	5	
Aves	Ocyphaps lophotes	Crested Pigeon	18/10/2017 15:52	5	-32.5027	148.965485	381	5	
Aves	Ocyphaps lophotes	Crested Pigeon	18/10/2017 15:14	2	-32.5041	148.968018	386	5	
Aves	Pachycephala rufiventris	Rufous Whistler	19/10/2017 10:54	1	-32.493	148.959274	351	5	
Aves	Pachycephala rufiventris	Rufous Whistler	19/10/2017 10:40	1	-32.4966	148.958984	344	5	
Aves	Pardalotus punctatus	Spotted Pardalote	19/10/2017 8:01	2	-32.5076	148.939774	311	5	
Aves	Pardalotus striatus	Striated Pardalote	20/10/2017 9:12	1	-32.4847	148.97052	375	5	
Aves	Pardalotus striatus	Striated Pardalote	19/10/2017 16:27	1	-32.5021	148.940155	314	333.10195 9	
Aves	Pardalotus striatus	Striated Pardalote	19/10/2017 10:43	1	-32.4967	148.959106	346	5	
Aves	Pardalotus striatus	Striated Pardalote	19/10/2017 9:30	1	-32.4931	148.93985	350	5	
Aves	Pardalotus striatus	Striated Pardalote	19/10/2017 8:14	3	-32.5075	148.939224	318	5	
Aves	Passer domesticus	House Sparrow	19/10/2017 7:10	3	-32.4937	148.962082	360	5	

Family	Scientific Name	Common Name	Date and Time	Quantity	Latitude	Longitude	Altitude (m)	Accuracy (m)	Comment
Aves	Petrochelidon nigricans	Tree Martin	19/10/2017 8:14	2	-32.5075	148.939224	318	5	
Aves	Platycercus eximius	Eastern Rosella	20/10/2017 9:36	2	-32.4862	148.969971	382	10	
Aves	Platycercus eximius	Eastern Rosella	19/10/2017 17:26	2	-32.4919	148.938278	349	5	
Aves	Platycercus eximius	Eastern Rosella	19/10/2017 8:15	2	-32.5075	148.939148	317	5	
Aves	Platycercus eximius	Eastern Rosella	19/10/2017 6:50	3	-32.4948	148.972855	400	5	
Aves	Platycercus eximius	Eastern Rosella	18/10/2017 18:29	1	-32.5194	148.945602	330	5	
Aves	Platycercus eximius	Eastern Rosella	18/10/2017 17:57	1	-32.523	148.947464	340	5	
Aves	Platycercus eximius	Eastern Rosella	18/10/2017 16:35	2	-32.5018	148.975708	380	5	
Aves	Platycercus eximius	Eastern Rosella	18/10/2017 15:48	2	-32.5026	148.964432	371	5	
Aves	Plectorhyncha Ianceolata	Striped Honeyeater	18/10/2017 16:46	2	-32.5068	148.971146	393	5	
Aves	Podargus strigoides	Tawny Frogmouth	19/10/2017 22:07	1	-32.4955	148.971039	381	5	
Aves	Podargus strigoides	Tawny Frogmouth	18/10/2017 22:51	1	-32.4853	148.960159	348	5	
Aves	Podargus strigoides	Tawny Frogmouth	18/10/2017 22:39	1	-32.5068	148.970398	395	5	
Aves	Podargus strigoides	Tawny Frogmouth	18/10/2017 22:32	1	-32.4963	148.970413	375	5	
Aves	Psephotus haematonotus	Red-rumped Parrot	20/10/2017 9:11	1	-32.4847	148.97052	375	5	
Aves	Psephotus haematonotus	Red-rumped Parrot	19/10/2017 7:26	1	-32.4897	148.953293	337	5	
Aves	Psephotus haematonotus	Red-rumped Parrot	19/10/2017 6:35	4	-32.4953	148.972702	397	5	

ngh environmental

Date and Altitude Accuracy Scientific Name Family Common Name Quantity Latitude Longitude Comment Time (m) (m) 18/10/2017 Psephotus Aves **Red-rumped Parrot** 1 -32.5187 148.945847 322 5 18:33 haematonotus Psephotus 18/10/2017 5 Aves **Red-rumped Parrot** 4 -32.5026 148.964478 372 15:49 haematonotus 19/10/2017 Rhipidura leucophrys 2 -32.5074 148.938736 319 5 Aves Willie Wagtail 8:19 19/10/2017 2 5 Aves Rhipidura leucophrys Willie Wagtail -32.4896 148.952591 339 7:19 19/10/2017 5 Rhipidura leucophrys 1 -32.4952 148.97261 400 Aves Willie Wagtail 6:41 18/10/2017 Aves Rhipidura leucophrys Willie Wagtail 1 -32.5026 148.964478 372 5 15:49 20/10/2017 Strepera graculina Pied Currawong 1 -32.4861 148.969864 372 5 Aves 9:35 20/10/2017 7 5 Aves Struthidea cinerea Apostlebird -32.4848 148.970749 368 9:13 19/10/2017 12 10 Aves Struthidea cinerea Apostlebird -32.4896 148.952545 338 7:18 18/10/2017 9 Aves Struthidea cinerea Apostlebird -32.5064 148.970047 400 5 16:50 20/10/2017 2 -32.4847 148.97052 5 Aves Sturnus vulgaris Common Starling 374 9:11 19/10/2017 2 Sturnus vulgaris Common Starling -32.4868 148.959167 342 10 Aves 15:04 19/10/2017 5 5 Aves Sturnus vulgaris Common Starling -32.5076 148.939804 312 8:00 19/10/2017 5 5 Aves Sturnus vulgaris Common Starling -32.4897 148.952652 337 7:22 19/10/2017 2 Sturnus vulgaris 402 5 Aves Common Starling -32.4948 148.972855 6:50 18/10/2017 1 -32.5204 148.945404 327 5 Sturnus vulgaris **Common Starling** Aves 18:16 18/10/2017 7 5 Aves Sturnus vulgaris **Common Starling** -32.5018 148.975708 382 16:35

Date and Altitude Accuracy Scientific Name Family Common Name Quantity Latitude Longitude Comment Time (m) (m) 18/10/2017 3 Aves Sturnus vulgaris **Common Starling** -32.5027 148.964401 369 5 15:48 Taeniopygia Double-barred 20/10/2017 3 5 Aves -32.4925 148.959412 349 bichenovii Finch 8:40 20/10/2017 Vanellus miles Masked Lapwing 2 -32.4851 148.968323 376 5 Aves 9:32 19/10/2017 Mammali 1 5 Felis catus Cat -32.4954 148.975372 394 20:36 а Mammali 18/10/2017 Felis catus Cat 1 -32.5072 148.972717 380 5 22:43 а 19/10/2017 Mammali Lagorchestes Central Hare-1 -32.493 148.939865 351 5 а asomatus wallaby 9:30 Mammali 18/10/2017 Lepus capensis Brown Hare 1 -32.5015 148.975082 379 5 16:33 а Mammali Eastern Grey 19/10/2017 3 5 Macropus giganteus -32.5074148.938751 319 Kangaroo 8:20 а Mammali Eastern Grey 18/10/2017 1 5 Macropus giganteus -32.5015 148.975037 378 Kangaroo 16:33 а Mammali 19/10/2017 Macropus robustus Common Wallaroo 1 -32.495 148.973022 407 5 7:01 а 18/10/2017 Mammali 1 -32.4954 10 Macropus robustus Common Wallaroo 148.97258 401 18:56 а 18/10/2017 Mammali Macropus robustus Common Wallaroo 1 -32.5233 148.94722 340 5 17:48 а 18/10/2017 Mammali Common Wallaroo 3 5 Macropus robustus -32.5059 148.964828 375 15:17 а 18/10/2017 Mammali 1 5 Macropus robustus Common Wallaroo -32.5066 148.968338 398 15:11 а Mammali 2 +Myotis macropus Southern Myotis 12/12/17 ANABAT recording records а Mammali +Miniopterus orianae Large Bent-winged 13 12/12/17 ANABAT recording а oceanensis Bat records Mammali 18/10/2017 5 Oryctolagus cuniculus Rabbit 11 -32.4953 148.976013 389 18:55 а

Wellington North Solar Farm

Family	Scientific Name	Common Name	Date and Time	Quantity	Latitude	Longitude	Altitude (m)	Accuracy (m)	Comment
Mammali a	+Pteropus poliocephalus	Grey-headed Flying- fox	12/12/2017 21:05	3	-32.4969	148.949722	325	5	Feeding in flowering gum
Mammali a	+Pteropus poliocephalus	Grey-headed Flying- fox	12/12/2017 20:50	1	-32.5055	148.937042	295	5	
Mammali a	+Pteropus poliocephalus	Grey-headed Flying- fox	11/12/2017 20:45	1	-32.505	148.938293	310	5	
Mammali a	+Pteropus poliocephalus	Grey-headed Flying- fox	11/12/2017 20:40	1	-32.5029	148.94014	317	5	
Mammali a	Trichosurus vulpecula	Common Brushtail Possum	19/10/2017 22:20	1	-32.4961	148.9729	380	5	
Mammali a	Trichosurus vulpecula	Common Brushtail Possum	18/10/2017 22:33	1	-32.4962	148.970474	373	5	
Mammali a	Vulpes vulpes	Fox	18/10/2017 22:03	2	-32.4969	148.947647	321	5	
Mammali a	Vulpes vulpes	Fox	18/10/2017 21:10	1	-32.4954	148.966217	347	1655.3347 2	
Mammali a	Vulpes vulpes	Fox	18/10/2017 20:58	1	-32.4942	148.959091	353	5	
Reptilia	Anilios proximus	Proximus Blind Snake	19/10/2017 10:41	1	-32.4966	148.959076	343	10	
Reptilia	Anilios proximus	Proximus Blind Snake	19/10/2017 9:54	1	-32.4916	148.938492	352	5	
Reptilia	Austrelaps superbus	Lowlands Copperhead	19/10/2017 6:41	3	-32.4952	148.97261	399	5	
Reptilia	Carlia tetradactyla	Southern Rainbow- skink	19/10/2017 11:13	1	-32.5039	148.966339	382	5	
Reptilia	Carlia tetradactyla	Southern Rainbow- skink	18/10/2017 18:16	2	-32.5204	148.945389	328	10	
Reptilia	Cryptoblepharus australis	Inland Snake-eyed Skink	19/10/2017 17:10	1	-32.4926	148.937881	340	5	
Reptilia	Cryptoblepharus australis	Inland Snake-eyed Skink	19/10/2017 16:38	1	-32.5019	148.938019	312	5	
Reptilia	Cryptoblepharus australis	Inland Snake-eyed Skink	19/10/2017 16:26	1	-32.5022	148.940369	289	5	

Family	Scientific Name	Common Name	Date and Time	Quantity	Latitude	Longitude	Altitude (m)	Accuracy (m)	Comment
Reptilia	Cryptoblepharus australis	Inland Snake-eyed Skink	19/10/2017 15:22	1	-32.4924	148.952682	340	10	
Reptilia	Ctenotus robustus	Eastern Striped Skink	20/10/2017 12:26	1	-32.491	148.939331	337	5	
Reptilia	Ctenotus robustus	Eastern Striped Skink	20/10/2017 12:10	1	-32.49	148.938644	349	5	
Reptilia	Ctenotus robustus	Eastern Striped Skink	20/10/2017 12:07	1	-32.4899	148.938629	348	5	
Reptilia	Ctenotus robustus	Eastern Striped Skink	19/10/2017 10:04	1	-32.4916	148.938522	357	5	
Reptilia	Morethia boulengeri	South-eastern Morethia Skink	19/10/2017 9:42	1	-32.4927	148.938858	354	5	
Reptilia	Morethia boulengeri	South-eastern Morethia Skink	19/10/2017 8:37	2	-32.5074	148.938751	318	5	
Reptilia	Pseudonaja textilis	Eastern Brown Snake	12/12/2017 19:04	1	-32.4834	148.973801	367	5	
Reptilia	Pseudonaja textilis	Eastern Brown Snake	18/10/2017 18:01	1	-32.5231	148.94754	345	5	

+ denotes threatened species

Table 11-2 Fauna survey results (Transmission line easement)

Common Name	Scientific Name			Count	(#) or (-) if a ca	all only		
		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7
		10/01/2019	10/01/2019	10/01/2019	10/01/2019	10/01/2019	30/01/2019	30/01/2019
Australian Magpie	Cracticus tibicen	1			(-)1	(-)4		(-)1
Australian Raven	Corvus coronoides					1	(-)1	1
Collared Sparrowhawk	Accipiter cirrocephalus						1	
Crested Pigeon	Ocyphaps lophotes	5				1		
Eastern Rosella	Platycercus eximius	(-)1	(-)1				2	(-)1
Galah	Eolophus roseicapillus	2	2		(-)1		(-)2	2
Magpie Lark	Grallina cyanoleuca	(-)1			(-)1			
Noisy Miner	Manorina melanocephala	3	(-)1	1	(-)2	1	(-)1	(-)1
Pardalote sp.	Pardalotus sp.		1					
Pied Butcherbird	Cracticus nigrogularis							(-)1
Pied currawong	Strepera graculina				1		(-)1	
Pigeon sp.		1	(-)1			1		
Spur winged Plover	Vanellus miles						(-)1	
Red-rumped Parrot	Psephotus haematonotus	1	13	5	3	15	(-)2	(-)5
Starling	Sturnus vulgaris	1	6	5	4	12		
Willy Wagtail	Rhipidura leucophrys							(-)1

Appendix D FLORISTIC PLOT FIELD DATA

Results of Field data

- C Cover (% cover in 20m * 20m quadrat)
- A Abundance (approximate # plants)
- *exotic species
- Δ High Threat Exotic (defined by OEH)
- Plot locations are shown on Figure 3-4

Table 11-1 Flora Species list - Plot 1 -13

			Р	lot 1	P	lot 2	Pl	ot 3	Plo	ot 4	Pl	ot 5	Plo	ot 6	P	lot 7	P	ot 8	P	lot 9	Pl	ot 10	Pl	ot 11	Plo	ot 12	Plo	ot 13
	Scientific Name	Common Name		-	(Zo	one 8)	(Zo	ne 5)	(Zo	ne 4)	(Zor	ne 11)	(Zon	ie 10)	(Zo	one 2)	(Zo	ne 2)	(Zo	one 1)	(Zo	one 2)	(Zo	ne 4)	(Zo	ne 3)	(Zon	ne 1:
		Common Name	c	A	c	A	с	A	c	A	c	A	с	А	с	A	с	A	c	A	с	A	c	A	с	Α	с	A
EE	ES																											
	Acacia dealbata	Silver Wattle																							8	15		
	Acacia linearifolia	Narrow-leaved Wattle																										
	Acacia melanoxylon	Blackwood																							2	1		
	Acacia pendula	Weeping Myall, Boree																							2	2		
	Acacia pycnantha	Golden Wattle																										
	Acacia salicina	Cooba					2	2																				
	Brachychiton populneus	Kurrajong																							1	1		
	Callitris glaucophylla	White Cypress																										
	Callitris endlicheri	Black Cypress																										
	Casuarina cunninghamiana	River Oak																										
	Corymbia citriodora	Lemon Scented Gum																										
	Eucalyptus albens	White Box	5	1															10	2					10	5		
	Eucalyptus camaldulensis	River Red Gum																										
	Eucalyptus cinerea	Argyle Apple																										
	Eucalyptus cladocalyx	Sugar Gum																										
	Eucalyptus cypellocarpa	Monkey Grey Gum																										
	Eucalyptus maculata	Spotted Gum																										
	Eucalyptus melliodora	Yellow Box					2	1	5	2													15	1	5	2		
	Eucalyptus microcarpa	Western Grey Box																							10	3		
	Eucalyptus sideroxylon	Mugga Ironbark											10	4														
	Eucalyptus goniocalyx	Long Leaved Box											15	3														
	Eucalyptus sp 2	Planted Eucalyptus											10	4														
	Eucalyptus sp 3	Planted Eucalyptus																										
	Grevillea robusta	Silky Oak																										
	Melia azedarach	White Cedar																										
	Pinus sp.	Pine Tree											3	1														
RU	UBS																											
	Acacia baileyana	Cootamundra Wattle																										
	Acacia cardiophylla	Wyalong Wattle																							3	2		
	Acacia cultriformis	Cut-leaf Wattle																										
	Acacia decora	Western Silver Wattle																							5	5		
	Acacia havilandii	Needle Wattle																										
	Acacia implexa	Hickory Wattle																							3	3		
	Acacia iteaphylla	Willow-leafed wattle																										
	Acacia uncinata	Gold-dust Wattle																										
	Callistemon sieberi	River Bottlebrush																										
	Dissocarpus biflorus								0.5	50																		
	Exocarpos cupressiformis	Cherry Ballart																										

			Plot 1	F	Plot 2	P	lot 3	Pl	ot 4	Plo	ot 5	Plo	ot 6	Pl	ot 7	P	lot 8	P	lot 9	Plo	ot 10	Plo	ot 11	Plo	ot 12	Plo	ot 13
				(Z	one 8)	(Zo	one 5)	(Zo	ne 4)	(Zon	ie 11)	(Zon	ie 10)	(Zo	ne 2)	(Zo	one 2)	(Zo	one 1)	(Zo	ne 2)	(Zo	one 4)	(Zo	one 3)	(Zor	ne 11
Scientific Name	Common Name		2 A	c	A	с	A	c	A	с	A	с	A	с	А	c	A	c	A	c	A	с	A	c	A	c	A
Lycium ferocissim	num African Boxthorn	1						2	10																		
Acacia cultriform	is Knife-leaf wattle																										
Acacia leucoclado																											
Melaleuca linariij																											
Melaleuca nodos																											
Melaleuca styphe																											
Schinus molle	Pepper Tree																										
Senna (occidenta				0.1	10																						
ORBS	isi j			0.1	10																						
Δ Alternanthera pu	ngens Khaki Weed	0	1 30					0.1	5							0.1	50			0.4	50	0.1	50				
Amaranthus sp.	Amaranth	0	1 3U					0.1	5							0.1	50			0.4	50	0.1	50				
Arrctotheca calen						0.1	1																				
Argemone ochrol	·					0.1	1																			0.1	50
* Asphodelus fistul																										0.1	50
 Asphouelus Jistul Astragalus hamo 		h a	1 7	0.1	20					0.1	-																
Astragalas namo Atriplex semibaco		-	1 2	0.1	30			2	100	0.1	5	0.1	2														
Boerhavia domin		11						3	100			0.1	2		•		-				-				•	-	
									-					0.1	3	0.1	5			0.1	5	0.1	1	0.1	3	5	50
Brussicu tourneje						0.1	10	0.1	5	0.3	50																
Calotis lappulace		ý						0.1	2																		
		0	1 1	10	1000			0.2	5	0.2	50			2	20	5	200			0.5	20						
Centaurea solstit			0 300) 2	1000	3	200	0.2	50	0.2	20			2	50	4	100	4	100	1	100	0.2	30	0.1	10		
Chenopodium me		d																				0.1	1				
Cirsium vulgare	Spear Thistle																										
Citrullus lanatus	Camel Melon																										
Conyza sp.	Fleabane																										
Dichondra repens	s Kidney Weed							0.1	30																		
Echium plantagir	Patterson's Curs	e		0.1	50	0.1	1					0.1	1														
Euphorbia drumr	nondii Caustic Weed																										
Einadia nutans	Climbing Saltbus	h 0	1 1					0.1	20			0.2	50			0.1	1			0.1	5			3	30		
Erodium botrys	Long Storksbill																										
Fumaria muralis	Fumitory																	0.1	3								
Geranium molle	Cranesbill Geran	ium		0.1	500	0.1	5																				
Heliotropium eur	opaeum Common Heliotr	оре																									
Hypochaeris radi	cata Catsear													0.1	2												
Lactuca serriola	Prickly Lettuce									0.1	1			2	20												
Lepidium pseudo	-	0	5 20			0.1	1	8	100		3	0.2	50	0.2	20	0.1	5							0.1	30		
Malva parviflora			1 1						2									0.1	20			0.1	30			0.1	2
Marrubium vulgo												0.1	5	0.1	5									0.1	3		
Medicago minim				0.1	400								-		-										-	2	50

			Р	lot 1	P	lot 2	Р	ot 3	Pl	ot 4	Pl	ot 5	Plo	ot 6	Pl	ot 7	P	lot 8	P	lot 9	Ple	ot 10	Ple	ot 11	Plo	ot 12	Pl	ot 13
					(Zo	one 8)	(Zo	one 5)	(Zo	ne 4)	(Zor	ne 11)	(Zon	e 10)	(Zo	ne 2)	(Zo	one 2)	(Zo	one 1)	(Zo	ne 2)	(Zo	one 4)	(Zo	ne 3)	(Zo	ne 11)
	Scientific Name	Common Name	с	A	с	А	с	А	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A
*	Medicago sativa	Lucerne			1	100	15	200	5	100	60	800	0.2	20	2	25	4	100			3	50	10	400	0.1	5		
*	Medicago truncatula	Barrel Medic	0.1	40			1	50	3	20					0.1	20	0.5	500										
	Oxalis perennans	Oxalis	0.1	2	0.1	500			0.2	30	0.1	1	0.1	50	0.1	40	0.1	50			0.1	30						
*	Plantago lanceolata	Lambs Tongue							0.1	5																		
	Rumex brownii	Swamp Dock																										
	Rumex dumosus	Wiry Dock																										
*	Salvia verbenaca	Vervain			1	100	2	100	0.1	5							0.1	2			0.1	5			0.1	30		
	Sida corrugata	Corrugated Sida	1	25	0.1	500	0.1	40		100					0.5	40	0.1	30	0.1	30	0.1	30			0.1	20	0.1	5
	Sida cunninghamii	Ridge Sida																										
*	Silybum marianum	Variegated Thistle	0.1	5			0.1	40			0.1	5	0.2	30			0.1	20	0.1	20			0.1	10				
*	Sisymbrium erysimoides	Smooth Mustard																	0.1	10								
* ∆	Solanum elaeagnifolium	Silver-leaved Nightshade			0.1	30			0.1	5																		
	Solanum esuriale	Quena					0.1	30	3	80	0.1	20	0.2	20	0.1	25												
*	Solanum nigrum	Black-berry Nightshade																										
	Solenogyne bellioides																		0.1	1								
*	Sonchus oleraceus	Common Sowthistle																					0.1	1	0.1	1		
*	Tragopogon porrifolius	Salsify					0.1	5																				
*	Tribulus terrestris	Cat-head																	0.1	50	0.2	30	0.1	100				
*	Trifolium arvense	Haresfoot Clover			0.1	100																						
*	Trifolium subterraneum	Subterranean clover			-						0.5	500					0.5	500									0.1	50
	Vittadinia cuneata	A Fuzzweed	0.1	30																							-	
	Vittadinia gracilis	Woolly New Holland Daisy			2	100	0.1	30	0.1	10							0.1	10										
	Wahlenbergia spp.	Bluebell			0.1	80																						
	Wahlenbergia communis				0.1												0.1	30			0.1	10						
*	Xanthium spinosum	Bathurst Burr															-			_								
Δ																			0.2	5	0.1	5						
	Zaleya galericulata	Hogweed																										
GRA	ASSES and GRASSLIKE																											
	Aristida ramosa	Purple Wiregrass			5	30	1	50																				
	Austrostipa scabra	Spear grass	10	500	1	100			8	100					0.1	5	0.2	30										
	Austrostipa sp.	Spear grass			0.1	10																						
	Austrostipa verticillata	Slender Bamboo Grass							0.1	20					0.2	10	0.2	30			0.1	5						
*	Avena fatua	Wild Oats	0.1	50	1	500	5	500	0.2	50															0.1	50		
*	Avena sativa	Oats																									80	1000
	Bothriochloa macra	Red Grass			10	500																						
*	Bromus catharticus	Prairie Grass					10	1000																				
*⊿	Bromus diandrus	Great Brome	5	500					10	500			1	500			0.1	30										
*	Bromus hordeaceus	Soft Brome	20	1000	5	1000	15	1000											5	400	5	500					10	500
	Cynodon dactylon	Common Couch													10	100												
	Dichanthium sericeum	Queensland Blue Grass																										

			Р	lot 1	P	lot 2	P	ot 3	Plo	ot 4	Ple	ot 5	Plo	ot 6	P	lot 7	P	ot 8	P	lot 9	Plo	ot 10	PI	ot 11	Ple	ot 12	Plo	ot 13
					(Zo	one 8)	(Zc	ne 5)	(Zo	ne 4)	(Zor	ne 11)	(Zon	ne 10)	(Zo	one 2)	(Zo	ne 2)	(Zo	one 1)	(Zo	ne 2)	(Zo	one 4)	(Zo	one 3)	(Zo	ne 11)
	Scientific Name	Common Name	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	A
	Digitaria brownii	Cotton Panic																										
	Echinochloa colona	Barnyard Grass																										
	Enteropogon ramosus	Curly Windmill Grass			2	500	0.5	50	0.1	10					0.1	10									5	100		
	Eragrostis sp.	A Lovegrass			0.1	100			5	100																		
*	Hordeum distichon	Two Row Barley																									0.1	10
*	Hordeum leporinum	Barley Grass	20	1000			10	1000	10	500	5	500	2	500	65	1000	10	1000	40	1000	25	1000	15	1000	5	1000	1	500
	Juncus (usitatus?)	A Rush													0.1	1												
*	Cenchrus clandestinus	Kikuyu																										
*	Lolium perenne	Perennial Ryegrass	10	1000	1	1000	10	1000							0.2	50							5	500			0.1	20
	Lomandra filiformis	Wattle Matt-rush																										
	Microlaena stipoides	Weeping Grass																										
	Paspalidium constrictum	Knottybutt Grass			1	100							0.2	10			5	100	0.2	50	0.5	50						
*⊿	Paspalum dilatatum	Paspalum			0.1	30							0.2	5														
*	Phalaris aquatica	Phalaris					30	50	0.5	5					0.1	2	25	200			20	50			15	15		
	Phragmites australis	Common Reed																										
*	Polypogon monspeliensis	Annual Beard Grass																										
	Rytidosperma caespitosum	Ringed Wallaby Grass	10	500	15	500	5	500	15	500																		
	Rytidosperma sp.	Wallaby Grass																							0.1	5		
*	Thinopyrum ponticum	Tall Wheat Grass																										
	Typha orientalis	Cumbungi																										
*	Vulpia myuros	Rat's Tail Fescue																									0.1	20
VIN	ES and CLIMBERS																											
	Glycine sp.	Glycine	0.1	5																								
	Glycine tabacina	Variable Glycine																										

Table 11-2 Flora species list - plot 14 - 26

				ot 14		ot 15	Plo			t 17		ot 18	Plot 19		lot 20		lot 21		t 22	Plot		Plot		Plot		Plot :		ncident
Scie	entific Name	Common Name	(Zo	ne 5)		ne 1) 	(Zor	ne 5)		e 10)		ne 3)	(Zone 2	<u>)</u> (Zo	one 10)) (Zo	one 1)		ne 2)	(Zon	e 2)	(Zon	e 9)	(Zone	e 8)	(Zone	3)	
			C	A	C	A	С	Α	С	Α	С	Α	C	, c	A	C	A	C	A	С	Α	С	A	c	A	C	A	
EES																												
Aca	cia dealbata	Silver Wattle												10	4													
Aca	cia linearifolia	Narrow-leaved Wattle					0.1	1																				
Aca	cia melanoxylon	Blackwood																										
Aca	cia pendula	Weeping Myall, Boree					10	2																				
Aca	cia pycnantha	Golden Wattle												2	2													
Aca	cia salicina	Cooba																										
Brad	chychiton populneus	Kurrajong			0.1	2					0.1	1																
Call	itris glaucophylla	White Cypress																										٧
Call	itris endlicheri	Black Cypress																										٧
Casi	uarina cunninghamiana	River Oak							5	4																		
Cory	ymbia citriodora	Lemon Scented Gum																										٧
Euco	alyptus albens	White Box	20	1	30	4					8	7				13	3									8	4	
Euco	alyptus camaldulensis	River Red Gum							30	8																		
Euco	alyptus cinerea	Argyle Apple																										V
Euco	alyptus cladocalyx	Sugar Gum																										V
Euco	alyptus cypellocarpa	Monkey Grey Gum																										V
Euco	alyptus maculata	Spotted Gum																										v
Euco	alyptus melliodora	Yellow Box	15	1			40	5														10	3			10	4	
Euco	alyptus microcarpa	Western Grey Box																									5	
Euco	alyptus sideroxylon	Mugga Ironbark												1	1													
Euco	alyptus goniocalyx	Long Leaved Box	10	2																								
Euco	alyptus sp 2	Planted Eucalyptus																										
Euco	alyptus sp 3	Planted Eucalyptus												10	7													
Grev	villea robusta	Silky Oak													1													
Mel	lia azedarach	White Cedar																				0.3	1					v
Pinu	ıs sp.	Pine Tree																										
RUBS																												
Aca	cia baileyana	Cootamundra Wattle																										v
Aca	cia cardiophylla	Wyalong Wattle																										
	cia cultriformis	Cut-leaf Wattle	20	2																								
	cia decora	Western Silver Wattle	10	1																								
Aca	cia havilandii	Needle Wattle																										٧
Aca	cia implexa	Hickory Wattle																										
Aca	cia iteaphylla	Willow-leafed wattle									25	5																
	cia uncinata	Gold-dust Wattle																										٧
	listemon sieberi	River Bottlebrush							0.5	1																		
Diss	socarpus biflorus																											
	na florulenta	Lignum																				0.1	2					

				ot 14		ot 15		t 16		t 17		ot 18		ot 19		t 20		ot 21		ot 22		t 23		t 24		t 25	Plo		Inciden
	Scientific Name	Common Name	(Zo	one 5)	(Zo	ne 1)	Zoı	ne 5)	(Zon	e 10)	(Zo	ne 3)	(Zo	ne 2)	(Zon	e 10)	(Zo	one 1)	(Zo	ne 2)	(Zoi	ne 2)	(Zoı	ne 9)	(Zoi	ne 8)	(Zor	ne 3)	
			c	A	c	A	с	A	с	A	с	A	c	Α	с	A	c	A	с	A	с	A	с	A	c	A	с	A	
	Exocarpos cupressiformis	Cherry Ballart																											٧
	Eremophila debilis	Amulla																					0.1	2					
	Lycium ferocissimum	African Boxthorn																					0.1	1					
	Acacia cultriformis	Knife-leaf wattle																											
	Acacia leucoclada	Northern Silver Wattle	5	1																									
	Melaleuca linariifolia	Flax leaved Paperbark	1	1																									
	Melaleuca nodosa	Black Tea Tree	1	1																									
	Melaleuca styphelioides	Prickly Tea Tree					20	4																					
	Schinus molle	Pepper Tree																											٧
	Senna (occidentalis?)	Coffee Senna	0.1	1																									
ORB	S																												
Δ	Alternanthera pungens	Khaki Weed	0.1	1															0.1	20			0.1	5					
	Amaranthus sp.	Amaranth																	0.1	3									
	Arctotheca calendula	Capeweed																											
	Argemone ochroleuca	Mexican Poppy																											
k	Asphodelus fistulosus	Onion Weed									0.1	5																	
k	Astragalus hamosus	Yellow Milk-vetch																											
	Atriplex semibaccata	Creeping Saltbush	0.2	50																									
	Boerhavia dominii	Tarvine																					0.1	10					
	Brassica tournefortii	Mediterranean Turnip			0.1	50									0.1	10	1	50											
	Calotis lappulacea	Yellow Burr-daisy																											
	Carthamus lanatus	Saffron Thistle																	1	80	0.1	5	0.1	10	5	200			
	Centaurea solstitialis	St Barnabys Thistle	0.5	50							0.1	5					0.1	20					0.1	50	4	500			
	Chenopodium melanocarpum	Black Crumbweed																			0.1	10							
	Cirsium vulgare	Spear Thistle	0.1	1																									
	Citrullus lanatus	Camel Melon							0.1	20									0.1	1	0.1	1							
	<i>Conyza</i> sp.	Fleabane																				100							
	Dichondra repens	Kidney Weed									0.1	20																	
	Echium plantagineum	Patterson's Curse	0.1	1																									
	Euphorbia drummondii	Caustic Weed																			0.1	20							
	Einadia nutans	Climbing Saltbush	0.2	100			0.1	1			0.1	1	0.1	1	0.1	1						-					0.1	30	
	Erodium botrys	Long Storksbill															0.1	3											
	Fumaria muralis	Fumitory																											
	Geranium molle	, Cranesbill Geranium																											
	Heliotropium europaeum	Common Heliotrope																	2	200	0.2	50							
	Hypochaeris radicata	Catsear																	-										
	Lactuca serriola	Prickly Lettuce									0.1	5											0.1	1					
	Lepidium pseudohyssopifolium	Peppercress									0.1	5			01	30							0.1	-					
	Malva parviflora	Small-flowered Mallow															20	1000			0.1	5							

			ot 14 ne 5)		ot 15 ne 1)		t 16 ne 5)	Plo (Zon	t 17 e 10)		ot 18 ne 3)		ot 19 ne 2)		ot 20 ne 10)		ot 21 ne 1)		it 22 ne 2)		it 23 ne 2)		t 24 ne 9)		ot 25 ne 8)		ot 26 ne 3)	Incident
Scientific Name	Common Name	с	A	с	A	с	A	с	A	с	A	с	A	с	A	с	А	с	A	c	A	с	A	с	A	с	A	
Maireana enchylaenoides	Wingless Bluebush																					0.1	1					
Marrubium vulgare	White Horehound			0.4	20					0.2	20			2	15	20	20	0.1	20									
Medicago minima	Woolly Burr Medic																											
Medicago sativa	Lucerne			0.4	80	0.1	20					10	100	0.1	5	5	50	40	500			0.1	1			0.1	10	
Medicago truncatula	Barrel Medic																											
Oxalis perennans	Oxalis									0.1	30			0.1	10	0.1	50											
Plantago lanceolata	Lambs Tongue																											
Rumex brownii	Swamp Dock									0.1	1																	
Rumex dumosus	Wiry Dock	0.1	1																									
Salvia verbenaca	Vervain	3	500																			0.1	20					
Sida corrugata	Corrugated Sida	0.1	50									0.1	2							2	100	0.1	50	0.1	10	0.1	1	
Sida trichopoda	Ridge Sida		-																		-		-		-	0.1		
, Silybum marianum	Variegated Thistle	1	100											0.1	1												-	
Sisymbrium erysimoides	Smooth Mustard	_												0.1	30	10	100											
Solanum elaeagnifolium	Silver-leaved Nightshade			0.5	100																							
Solanum esuriale	Quena	0.1	1																	0.2	100							
Solanum nigrum	Black-berry Nightshade									0.1	1																	
Solanum rostratum	Buffalo Burr																			0.1	3							
Solenogyne bellioides																												
Sonchus oleraceus	Common Sowthistle	0.1	2					0.1	1					0.1	5													
Tragopogon porrifolius	Salsify																											
Tribulus terrestris	Cat-head			0.1	10									0.1	100	30	100	0.1	20	0.5	100							
Trifolium arvense	Haresfoot Clover																											
Trifolium subterraneum	Subterranean clover	0.1	30	0.1	30																							
Vittadinia cuneata	A Fuzzweed	0.1										0.1	30															
Vittadinia gracilis	Woolly New Holland Daisy																									0.1	30	
Wahlenbergia spp.	Bluebell																											
Wahlenbergia communis	Tufted Bluebell																											
Xanthium spinosum	Bathurst Burr							0.1	1									0.1	1			0.1	1	0.5	100			
Zaleya galericulata	Hogweed					0.1	1			0.1	20					0.1	50	0.1	2					0.1	1			
SSES and GRASSLIKE																												
Aristida ramosa	Purple Wiregrass																											
Austrostipa scabra	Spear grass																	0.2	40			0.1	10					
Austrostipa sp.	Spear grass																											
Austrostipa verticillata	Slender Bamboo Grass			0.4	20					0.4	40	0.1	1									10	80	0.5	50			
Avena fatua	Wild Oats				-					10	1000		1000	5	500							-						
Avena sativa	Oats													-														
Bothriochloa macra	Red Grass																			0.5	50					0.1	10	
Bromus catharticus	Prairie Grass			0.2	200	0.5	100							5	500					5.5							-	

				ot 14 one 5)		ot 15 ne 1)		ot 16 ne 5)		ot 17 ne 10)		ot 18 one 3)		ot 19 ne 2)		ot 20 ne 10)		ot 21 one 1)	Plot (Zon			t 23 ne 2)		t 24 ne 9)		t 25 ne 8)		ot 26 one 3)	Incidenta
	Scientific Name	Common Name	c	A	C	A	<u>с</u>	A	C	A	<u>с</u>	A	C	A	C	A	c	A	c	A	C	A	C	A	C	A	C	A	
*⊿	Bromus diandrus	Great Brome	10	1000							10	500																1	
*	Bromus hordeaceus	Soft Brome	3	500																									
	Chloris truncata	Windmill Grass																							15	200	5	300	
	Cynodon dactylon	Common Couch															30	300											
	Dichanthium sericeum	Queensland Blue Grass																											٧
	Digitaria brownii	Cotton Panic																			0.5	30							
*	Echinochloa colona	Barnyard Grass																			30	300							
	Enneapogon nigricans	Nineawn Grass																									15	500	
	Enteropogon ramosus	Curly Windmill Grass																			25	300	10	200	5	100	0.5	30	
	Eragrostis sp.	A Lovegrass																											
*	Hordeum distichon	Two Row Barley																											
*	Hordeum leporinum	Barley Grass	15	1000			0.5	100	10	1000			10	500	10	500	5	1000			1	100							
	Juncus (usitatus?)	A Rush																											
*	Cenchrus clandestinus	Kikuyu																											٧
*	Lolium perenne	Perennial Ryegrass	30	1000			0.5	100	5	100			10	500															
	Lomandra filiformis	Wattle Matt-rush									0.1	2																	
	Microlaena stipoides	Weeping Grass			0.1	2																							
	Paspalidium constrictum	Knottybutt Grass	0.1	30	0.1	50					30	100																	
*⊿	Paspalum dilatatum	Paspalum																											
*	Phalaris aquatica	Phalaris	15	100																									
	Phragmites australis	Common Reed																											٧
*	Polypogon monspeliensis	Annual Beard Grass																											V
	Rytidosperma caespitosum	Ringed Wallaby Grass	20	100			0.1	1																					
	Rytidosperma setaceum	Small-flower Wallaby Grass																									15	500	
	Rytidosperma sp.	Wallaby Grass																							0.1	50			
*	Thinopyrum ponticum	Tall Wheat Grass							70	1000																			
	Typha orientalis	Cumbungi																											V
*	Vulpia myuros	Rat's Tail Fescue																											
VIN	ES and CLIMBERS																												
	Glycine sp.	Glycine																					0.1	20					
	Glycine tabacina	Variable Glycine																						-					V

Table 11-33 Flora Species List Transmission line route – (plot Tx 1 – Tx 15)

			(Z	t TX 1 one x2)	Plot (Zone	TX 2 e Tx2)		t TX 3 e Tx1)		: TX 5 e tx1)	Plot (Zone			: TX 8 e Tx2)		t TX 9 le Tx1)		: TX 10 ne Tx2)	Plot (Zone	TX 11 e Tx 2)		TX 12 e Tx1)		TX1 3 e Tx2)		TX 14 e Tx1)		TX 15 e Tx1)	
	Scientific Name	Common Name	C	A	C	A	C	A	C	A	С	A	C	A	C	A	C	A	С	A	С	A	С	A	C	A	С	A	Орр
TRE	ES																												
	Brachychiton populneus	Kurrajong									0.1	1															5	1	
	Eucalyptus albens	White Box	35	1	15	1					25	3																	
*	Schinus molle var. areira	Pepper Tree									10	5																	
SHR	RUBS																			<u> </u>									
*⊿	*Lycium ferocissimum	African Boxthorn	0.1	1							0.1	2															1	2	
	Sclerolaena birchii	Galvanized Burr	1	10																									
	Solanum cinereum	Narrawa Burr											0.1	3	0.1	2	0.1	1	0.2	5	0.1	3							
*⊿	*Solanum elaeagnifolium	Silver-leaved Nightshade			0.5	100	0.1	10																					
FOR			1					1			1													1					
*⊿	Alternanthera pungens	Khaki Weed	0.1	1	0.2	5																							
*	Amaranthus powellii	Powell's Amaranth	0.2	20	0.2	20	0.1	10	0.2	3	0.1	5	0.1	10	0.1	10	0.2	30	0.1	10	0.2	20	0.1	1					
*	Amsinckia intermedia	Common Fiddleneck																	0.1	10									
*	Arctotheca calendula	Capeweed	0.1	5	0.1	5																	0.1	1					
*	*Arenaria leptoclados	Lesser Thyme-leaved Sandwort																					0.1	10					
*	*Argemone ochroleuca subsp. ochroleuca	Mexican Poppy																					0.1	10					
	Asperula conferta	Common Woodruff											0.1	30															
*	*Asphodelus fistulosus	Onion Weed									0.1	2													0.2	4	35	700	
*	*Astragalus hamosus	Yellow Milk-vetch																									0.2	4	
	Atriplex spinibractea	Spiny-fruit Saltbush																							0.3	10	0.2	3	
*	Bidens pilosa	Cobbler's Pegs									0.1	5							0.1	1									
	Boerhavia dominii	Tarvine			0.1	1	0.2	5	0.1	1	0.1	3	0.1	5	0.1	5	0.1	5	0.1	10	2	200	0.2	20			0.1	3	1
	Calotis lappulacea	Yellow Burr-daisy	0.2	10					0.1	1									0.1	5	0.1	5	0.1	5	0.1	2			-
*	*Capsella bursa-pastoris	Shepherd's Purse			1	100	0.1	20	1	40			0.1	5			0.1	20	0.1	2	0.2	40	0.1	6			0.1	20	
*	Carduus pycnocephalus	Slender Thistle									0.1	5																	
*⊿	Carthamus lanatus	Saffron Thistle	0.1	10	0.2	20	0.5	40			0.1	1	0.1	10	0.1	2	0.3	20	2	50	0.1	10	20	1000	20	1000	0.1	1	
*	Centaurea melitensis	Maltese Cockspur	0.2	30	0.1	3	10	300	0.2	50	0.5	50	25	1500	35	3000	50	4000	50	2000	30	2000	0.1	5	0.2	10	0.2	10	
*	*Chenopodium album	Fat Hen	0.1	1	0.5	20	0.1	2					0.1	1					0.1	2	0.1	3	0.1	1					

			TX 1 one (2)	Plot (Zone	TX 2 2 Tx2)		: TX 3 e Tx1)		TX 5 e tx1)	Plot (Zone			: TX 8 e Tx2)		: TX 9 e Tx1)		TX 10 e Tx2)		TX 11 2 Tx 2)		TX 12 e Tx1)		TX1 3 e Tx2)	Plot (Zone	TX 14 e Tx1)	Plot ⁻ (Zone		
Scientific Name	Common Name	C	A	С	A	С	A	С	A	С	A	C	A	С	A	С	A	С	A	С	A	С	A	С	A	С	A	Орр
Chenopodium glaucum														0.1	4	0.2	10	0.1	3			0.1	1					
Chondrilla juncea	Skeleton Weed	0.1	1					0.1	2					0.3	35	0.1	1	0.2	10	2	200	0.2	20					
*Citrullus lanatus var. lanatus	Camel Melon																			0.1	1	0.1	1					
Conyza bonariensis	Flaxleaf Fleabane																							0.1	3			
Cymbonotus Iawsonianus	Bears-ear																					0.1	20					
Dysphania pumilio	Small Crumbweed			0.1	5	0.1	20	0.5	50			0.5	200	0.5	200	3	600	10	1000	0.5	100	1	200			0.2	30	
Echium plantagineum	Paterson's Curse	0.1	1	0.1	1	0.1	2	0.1	5							0.1	1	0.1	1	0.1	10							
Einadia nutans subsp. nutans	Climbing Saltbush	5	500	10	500	1	50	1	100	0.1	1	1	200	0.1	10	0.2	20	1	200			1	200	0.2	30	0.5	100	
Erodium crinitum	Blue Storksbill			0.1	1	0.1	3											0.1	1									
Euchiton involucratus	Star Cudweed																							0.2	3			
*Euphorbia davidii										0.5	200	0.1	1			0.1	1											
Euphorbia drummondii	Caustic Weed	1	50																			0.1	7	0.2	10			
*Fumaria sp.				0.1	1					0.1	10																	
*Geranium molle subsp. molle	Cranesbill Geranium									0.1	1																	
Geranium solanderi	Native Geranium									0.1	2																	
Goodenia pinnatifida		0.3	20																									
Hedypnois rhagadioloides	Cretan Weed																							3	100			
Heliotropium europaeum	Potato Weed																			0.1	2					0.2	6	
*Hirschfeldia incana	Hairy Brassica			1	30	5	400	10	300	0.1	20	0.1	1					0.1	1									
Hypochaeris radicata	Catsear									0.1	1																	
Lactuca serriola	Prickly Lettuce			0.1	3					0.1	10													0.2	10			
*Lepidium africanum		0.2	30	0.2	30	15	1000	30	500	0.1	10	1	400	0.1	5	1	100	2	500	3	500			0.1	1	0.2	30	
Maireana enchylaenoides	Wingless Bluebush	3	400																									
*Malva parviflora	Small-flowered Mallow	0.1	1	0.5	100	0.1	2	0.1	10	0.1	2	0.1	1	0.1	3	0.1	1	0.1	1	0.2	5					0.2	50	
*Marrubium vulgare	White Horehound	0.1	1	0.2	20																	0.1	2	0.1	4	3	100	
*Medicago minima	Woolly Burr Medic	4	400	1	100	1	100	0.1	40	0.1	10	0.2	50			0.5	100	0.2	100	1	200	5	500	0.2	50	3	100	
*Medicago sativa	Lucerne	0.2	2																									
*Medicago truncatula	Barrel Medic									0.1	2																	

Biodiversity Development Assessment Report Wellington North Solar Farm

			(Z	: TX 1 one x2)	Plot (Zone	TX 2 e Tx2)		t TX 3 ie Tx1)		: TX 5 e tx1)	Plot (Zon	TX 7 e tx3)		: TX 8 e Tx2)		: TX 9 e Tx1)		TX 10 e Tx2)	Plot (Zone		Plot (Zon	TX 12 e Tx1)		TX1 3 e Tx2)		TX 14 e Tx1)		TX 15 e Tx1)	
	Scientific Name	Common Name	C	A	С	A	С	A	C	A	С	A	С	A	C	A	C	A	C	A	С	Α	С	A	C	A	С	A	Орр.
*	*Modiola caroliniana	Red-flowered Mallow									0.3	40																	
	Oxalis exilis																												
	Oxalis perennans		3	100	1	50	0.1	20			0.2	50	0.1	10	0.2	50	0.2	20	0.2	100	0.1	20	0.1	20			0.1	5	
*	*Petrorhagia nanteuilii						0.2	6			0.1	3	0.1	20	0.2	30	0.1	10	1	100	0.1	5	0.3	30	0.1	1			
*	*Polycarpon tetraphyllum	Four-leaved Allseed																					0.1	20	0.2	50	0.1	10	
*	*Polygonum aviculare	Wireweed					0.5	40							0.1	1							0.2	40	0.5	200	0.5	100	
	Portulaca oleracea	Pigweed							0.1	1	0.2	15	0.4	40	0.5	200	1	200	1	200	0.5	50	0.1	5	0.2	20	2	200	
*	*Rapistrum rugosum	Turnip Weed									0.1	1																	
	Rumex brownii	Swamp Dock	0.1	2	0.3	10					0.2	5	0.1	1			0.1	5	0.1	1	0.1	10	0.2	4			0.1	1	
*	*Rumex crispus	Curled Dock									0.5	20																	
*	*Salvia verbenaca	Vervain	1	200							0.2	20			0.1	2					3	100							
	Senna barclayana	Smooth Senna																					0.1	2	0.1	1			
	Sida corrugata	Corrugated Sida	1	200	1	50	0.2	40	1	100	0.1	20	0.2	90	1	40					1	100	0.2	50	0.2	20	0.1	20	
*	Silybum marianum	Variegated Thistle	0.1	1	0.2	5					0.1	4									0.5	50	0.1	10	0.1	1	0.2	5	
*	*Sisymbrium irio	London Rocket			1	30					0.1	3					0.5	100			1	30					0.2	2	
*	*Sisymbrium officinale	Hedge Mustard											0.1	1					0.2	10									
*	*Sisymbrium orientale	Indian Hedge Mustard	2	50	15	300	0.1	2	1	30			0.1	1	0.1	10	0.1	10	15	50	0.2	20					0.2	40	
*	Sonchus oleraceus	Common Sowthistle	0.1	1							0.2	20	0.1	3									0.1	1	0.3	100			
*	*Stachys arvensis	Stagger Weed									5	200																	
	Tribulus micrococcus	Yellow Vine			0.1	5	0.1	15	0.1	10	0.1	5	0.2	50	0.1	10	0.2	30	0.1	30	2	200	1	200			5	300	
*	*Trifolium angustifolium	Narrow-leaved Clover											0.1	5															
*	*Trifolium arvense	Haresfoot Clover	0.1	1	0.1	3	0.2	30			0.1	3	0.2	30	0.1	5	0.1	10	0.1	5	0.1	10	0.5	80	0.5	50			
*	*Trifolium campestre	Hop Clover									0.2	10	0.5	100	0.2	20							0.1	20	0.2	50			
*	*Trifolium glomeratum	Clustered Clover			0.2	50	5	1000	2	300	0.1	5	1	200	2	200	5	500	1	100	1	300	2	400	2	300	0.2	50	
*	*Trifolium repens	White Clover									0.1	1																	
*	*Trifolium striatum	Knotted Clover																					0.1	30					
*	*Trifolium subterraneum	Subterranean Clover													0.1	20			0.1	1			0.2	100					
*	*Trifolium vesiculosum						5	400	2	100																			+
	Urtica incisa	Stinging Nettle																									1	100	

Biodiversity Development Assessment Report Wellington North Solar Farm

		(Ze	: TX 1 one x2)	Plot (Zone	TX 2 e Tx2)		: TX 3 e Tx1)		: TX 5 e tx1)	Plot (Zon	TX 7 e tx3)		: TX 8 e Tx2)		t TX 9 e Tx1)		: TX 10 ne Tx2)		TX 11 e Tx 2)		TX 12 e Tx1)		TX1 3 ie Tx2)		TX 14 e Tx1)		TX 15 e Tx1)	
Scientific Name	Common Name	C	A	C	A	C	A	C	A	C	A	C	A	C	A	C	A	C	A	C	A	C	A	C	A	С	A	Ор
* *Urtica urens	Small Nettle			0.2	10																							
Vittadinia cuneata var. hirsuta	Fuzzweed	0.5	80	0.2	30	0.1	2			0.1	1	0.1	1	0.1	2	0.1	2	0.1	5			0.2	50	1	400			
Wahlenbergia communis	Tufted Bluebell	0.4	40									0.1	5									0.2	100					
Wahlenbergia luteola										0.1	5																	
∆ Xanthium spinosum	Bathurst Burr	0.1	4	0.1	5																	0.1	3	0.1	10			
RASSES				1			1																			<u> </u>		
Anthosachne scabra	Wheatgrass											0.1	10							2	500							
Aristida behriana	Bunch Wiregrass											0.1	3									0.1	5					
Aristida personata	Purple Wire-grass	0.1	4	0.1	4	0.2	3	0.3	10	0.1	1	2	30	0.5	20	0.2	5			0.2	6	0.3	30	0.1	1	0.1	5	
Austrostipa bigeniculata												0.5	20															
Austrostipa nodosa																										0.2	10	
Austrostipa scabra	Spear grass	1	200	2	100	5	300	5	500			5	600	1	200	3	200	7	800			20	1500			0.2	20	
Austrostipa verticillata	Slender Bamboo Grass									0.1	2															1	20	
Avena barbata	Bearded Oats			0.1	5	0.5	5	0.2	20	5	150	1	80	1	100	0.1	1					0.1	1					
Avena sativa	Oats																							2	60	0.2	5	
Bothriochloa macra	Red Grass	0.1	10																							0.1	1	
* Bromus alopecuros										0.1	1	0.5	200															
* Bromus catharticus	Prairie Grass									0.2	10																	
△ Bromus diandrus	Great Brome	1	5	0.1	6	0.1	2	0.1	1	1	100	5	500			0.1	1							0.1	1			
Bromus hordeaceus	Soft Brome			0.2	20	5	500	2	200	0.1	1	2	500	5	200	5	500	5	1000	5	1000	0.1	10	1	200	0.2	50	
Carex inversa																										0.1	1	
Chloris truncata	Windmill Grass	0.2	10							0.1	1			0.1	1									0.2	50			
Cynodon dactylon	Couch		2							5	50			0.1										0.2			<u> </u>	
	Umbrella Sedge	0.1	-							1	50																<u> </u>	
cyperus erugiostis											50			0.1	1									10	800		<u> </u>	
Dichanthium sericeum	Queensland Bluegrass	0.0	F			0.4	2	0.5	100			4	200											10	000	4	20	
Digitaria brownii	Cotton Panic Grass		5			0.1	2	0.5	100			1	200	1	200							0.1				1	30	
Enneapogon gracilis	Slender Bottle-washers	0.1	5			0.1	1															0.1	1				<u> </u>	
Enteropogon acicularis				0.2	20			0.5	100																			
Eragrostis barrelieri	Pitted Lovegrass																									0.1	1	

Biodiversity Development Assessment Report Wellington North Solar Farm

			(Z	t TX 1 one x2)		TX 2 e Tx2)		: TX 3 e Tx1)		: TX 5 e tx1)	Plot (Zone	TX 7 e tx3)		t TX 8 e Tx2)		: TX 9 e Tx1)		TX 10 e Tx2)	Plot (Zone	TX 11 2 Tx 2)		TX 12 e Tx1)		TX1 3 e Tx2)		TX 14 e Tx1)		TX 15 e Tx1)	
S	cientific Name	Common Name	С	A	С	A	С	A	С	A	С	A	С	A	С	A	C	A	С	A	С	A	С	A	С	A	С	A	Opp.
	riochloa seudoacrotricha	Early Spring Grass									10	300																	
	lordeum leporinum	Barley Grass			5	500	1	200	5	400	0.2	50	0.1	10			0.1	20					0.1	20	0.2	10	40	300	
* Lo	amarckia aurea	Goldentop			0.2	20																							
* Lo	olium perenne	Perennial Ryegrass			2	200	10	1000	30	400	1	30	0.1	20															
* Lo	olium rigidum	Wimmera Ryegrass	4	100			0.2	10			15	500	30	2000	15	500	3	300	0.1	1	1	200			15	1000			
N	1icrolaena stipoides	Weeping Grass																			0.1	2							
P	anicum effusum	Hairy Panic													0.1	1													
P	aspalidium criniforme						5	300			0.1	1	0.3	10															
P	aspalidium distans																										5	500	
* <u></u> ⊿ Р	aspalum dilatatum	Paspalum									0.1	2													0.1	1			
* R	ostraria cristata	Annual Cat's Tail																					0.1	3					
R	ytidosperma bipartitum	Wallaby Grass			1	50					0.2	50			0.2	20									1	200			
	ytidosperma aespitosum	Ringed Wallaby Grass	7	500					0.1	20							0.2	30					0.1	10			0.5	100	
	ytidosperma pilosum	Smooth-flowered Wallaby Grass											0.5	100													0.5	100	
R	ytidosperma setaceum	Smallflower Wallaby Grass	0.2	20	2	200	0.2	20					0.1	10									0.2	50					
Sį	porobolus caroli	Fairy Grass																							0.1	1			
Ti	ragus australianus	Small Burrgrass																							0.5	200			
* U	Irochloa panicoides	Urochloa Grass							0.1	1	3	100			0.2	20	0.1	1					0.1	1	0.2	10			
FERN	S	1	1			1		1	I	I		1			I	1	1	1		1	I		1		1			1	1
C	heilanthes sieberi	Poison Rock Fern																					0.5	50					
OTHE	R																												
	onvolvulus raminetinus		0.1	1															0.1	1									
	ichondra repens	Kidney Weed	0.2	5	0.2	10	0.3	20	2	100	1	40					0.1	5			0.1	2	0.1	8	0.1	5	0.5	40	
G	lycine tabacina		0.1	1	0.1	10					0.2	10	0.2	30					0.1	1									

Biodiversity Development Assessment Report Wellington North Solar Farm

Table 11-4 Summary of Plot field data.

	РСТ	Veg	Zone	Easting	Northing	Bearing		Com	position (No. of pl	lants)			Structur	e (% Cov	er native	species)		Func	tion (#)	Function		Functio	on (Tree ster	m Count - Pr	esent/Abse	nt)		High Threat Exotic %
		Zone					Tree	Shrubs	Grass	Forbs	Ferns	Other	Tree	Shrubs	Grass	Forbs	Ferns	Other	Large Trees	Hollow Trees	Litter (%)	Logs (m)	5-10cm	10-20cm	20-30cm	30-50cm	50-80cm	Regen	
1	266	n/a	55	682815	6399947	122	1	0	2	5	0	1	5	0	20	1.8	0	0.1	3	1	45	16	0	0	0	0	1	0	5.2
2	437	8	55	685589	6404283	41	0	0	8	4	0	0	0	0	34.2	2.4	0	0	0	0	20	0	0	0	0	0	0	0	10.2
3	437	5	55	685783	6404291	87	2	0	3	4	0	0	4	0	6.5	0.4	0	0	0	0	48	0	1	1	1	1	0	1	0.5
4	437	4	55	685192	6404127	231	1	1	5	10	0	0	5	0.5	27.2	15.3	0	0	2	2	64	19	0	0	0	0	0	0	12.4
5	-	11	55	685203	6403786	-	0	0	0	2	0	0	0	0	0	0.2	0	0	0	0	8	0	0	0	0	0	0	0	0.2
6	-	10	55	685145	6403842	-	2	0	1	5	0	0	25	0	0.2	0.8	0	0	0	0	85.5	28	1	1	1	1	1	1	1.2
7	266	2	55	684851	6403075	250	0	0	4	5	0	1	0	0	10.4	14.6	0	0.1	0	0	79	0	0	0	0	0	0	0	2.2
8	266	2	55	682420	6403306	35	0	0	2	7	0	0	0	0	0.4	0.7	0	0	0	0	67.4	0	0	0	0	0	0	0	5.2
9	266	1	55	682115	6403374	-	1	0	0	1	0	0	10	0	0	0.1	0	0	2	1	56	0	0	0	0	0	1	0	0.2
10	266	2	55	682206	6403046	-	0	0	2	5	0	0	0	0	0.6	0.5	0	0	1	1	77	0	0	0	0	0	0	0	1
11	437	4	55	682207	6403046	-	1	0	0	2	0	0	15	0	0	0.2	0	0	1	0	35.6	6	0	0	0	0	0	0	0.1
12	266	3	55	682951	6402316	-	7	3	1	4	0	0	38	11	5	3.4	0	0	0	0	52	2	1	1	1	0	0	1	0
13	-	11	55	682918	6402378	-	0	0	0	2	0	0	0	0	0	5.1	0	0	0	0	12	0	0	0	0	0	0	0	0
14	437	5	55	684381	6402866	-	4	6	3	5	0	0	50	58	20	0.6	0	0	0	0	43.6	0	1	1	1	1	0	1	10
15	266	1	55	686044	6403321	-	1	0	3	0	0	1	30	0	0.6	0	0	0.1	4	2	80.6	25.3	0	0	0	1	1	0	0.5
16	437	5	55	683573	6403559	-	3	1	1	2	0	0	50.1	20	0.1	0.2	0	0	0	0	42.4	9	1	1	1	0	0	1	0
17	-	10	55	684722	6403778	65	4	0	0	0	0	0	37.5	0	0	0	0	0	4	0	35	0	1	1	1	1	1	0	0.1
18	266	3	55	682759	6404120	-	2	1	1	5	0	0	8.1	25	30	0.6	0	0	0	0	40	0	1	1	1	0	0	1	10
19	266	2	55	683365	5403797	354	0	0	1	3	0	0	0.0	0.0	0.1	0.3	0.0	0.0	0	0	22.6	0.0	0	0	0	0	0	0	0.0
20	-	10	55	685132	6403876	-	5	0	0	3	0	0	29.0	0.0	0.0	0.3	0.0	0.0	0	0	82.8	0.0	0	0	0	0	0	0	0.0
21	266	1	55	684827	6403797	55	1	0	0	2	0	0	13.0	0.0	0.0	0.2	0.0	0.0	3	3	60.0	0.0	0	1	0	0	0	0	0.0
22	266	2	55	685363	6403667	200	0	0	1	1	0	0	0.0	0.0	0.2	0.1	0.0	0.0	0	0	80.0	0.0	0	0	0	0	0	0	1.2
23	266	2	55	683354	6404012	58	0	0	3	4	0	0	0.0	0.0	26.0	2.4	0.0	0.0	0	0	51.0	0.0	0	0	0	0	0	0	0.1
24	437	9	55	682069	6401384	260	1	2	3	3	0	1	10.0	0.2	20.1	0.3	0.0	0.1	3	3	89.0	98.0	0	0	0	0	0	0	0.4
25	437	8	55	681971	6401407	255	0	0	4	2	0	0	0.0	0.0	20.6	0.2	0.0	0.0	0	0	76.0	0.0	0	0	0	0	0	0	5.5
26	266	3	55	685628	6401904	188	3	0	5	4	0	0	28.0	0.0	30.6	0.4	0.0	0.0	0	0	44.0	0.0	1	1	1	1	0	0	0.0
27	437	6	55	683412	6403267	0	1	0	2	1	0	0	8.0	0.0	0.1	0.1	0.0	0.0	1	1	45.0	5.0	0	0	0	0	0	0	0.4
28	437	6	55	683280	6402988	0	0	0	3	0	0	0	0.0	0.0	2.6	0.0	0.0	0.0	0	0	39.0	0.0	0	0	0	0	0	0	0.2

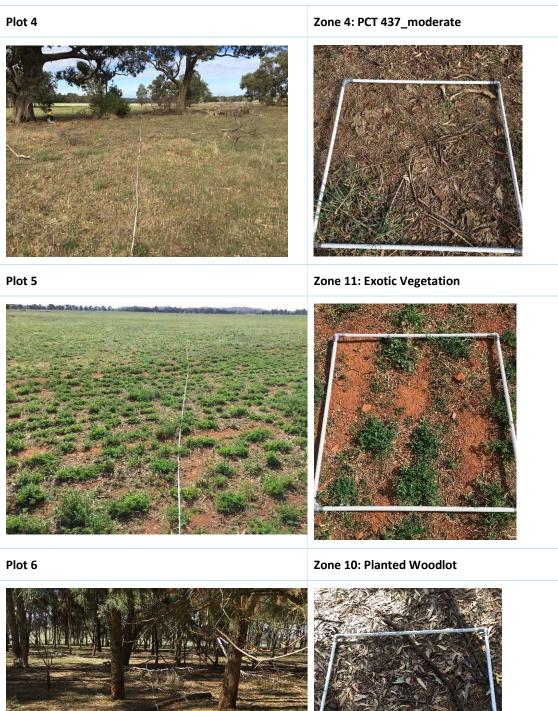
	РСТ	Veg Zone	Zone	Easting	Northing	Bearing		Com	position (No. of pl	ants)			Structur	e (% Cov	er native	species)		Func	tion (#)	Function		Functi	on (Tree sten	n Count - Pro	esent/Abser	nt)		High Threat
		Lone					Tree	Shrubs	Grass	Forbs	Ferns	Other	Tree	Shrubs	Grass	Forbs	Ferns	Other	Large Trees	Hollow Trees	Litter (%)	Logs (m)	5-10cm	10-20cm	20-30cm	30-50cm	50-80cm	Regen	Exotic %
TX1	266	Mod	55	685197	6399535	0	1	1	9	11	0	2	35	10	9	14.7	0	0.2	2	0	48	0	0	0	0	0	0	0	0.4
TX2	266	Mod	55	685467	6399741	1	0	5	10	0	1	15	15	0	5.3	13.1	0	0.1	1	1	48	0	0	0	0	0	0	0	1
TX4	266	Mod	55	686006	6399704	5	0	0	6	9	0	0	0	0	10.6	2.2	0	0	0	0	58	0	0	0	0	0	0	0	0.6
TX5	266	Mod	55	686187	6399631	0	0	0	5	8	0	0	0	0	6.4	4.9	0	0	0	0	60	0	0	0	0	0	0	0	0
TX7	266	Good	55	686455	6399795	75	2	0	7	11	0	1	25.1	0	15.6	2.3	0	0.2	1	0	37	43.6	0	1	0	1	0	0	1.3
TX8	266	Good	55	686508	6400032	0	0	1	9	11	0	1	0	0.3	9.6	2.9	0	0.2	0	0	56	0	0	0	0	0	0	0	0.1
тх9	266	Grass	55	686597	6400400	0	0	1	7	9	0	0	0	0.1	3	2.7	0	0	0	0	36	0	0	0	0	0	0	0	0.1
TX10	266	Mod	55	686668	6400902	355	0	1	3	10	0	0	0	0.1	3.4	5.2	0	0	0	0	30	2	0	0	0	0	0	0	0.3
TX11	266	Good	55	686739	6401320	358	0	1	1	11	0	2	0	0.2	7	12.9	0	0.2	0	0	35	0	0	0	0	0	0	0	2
TX12	266	Grass	55	686744	6401538	0	0	1	3	9	0	0	0	0.1	2.3	6.4	0	0	0	0	47	0	0	0	0	0	0	0	0.1
TX13	266	Mod	55	686782	6401856	350	0	0	6	16	1	0	0	0	20.8	4.8	0.5	0	0	0	43	0	0	0	0	0	0	0	20.1
TX14	266	Grass	55	685962	6402003	355	0	0	6	10	0	0	0	0	11.9	2.6	0	0	0	0	35	0	0	0	0	0	0	0	20.2
TX15	266	Grass	55	686463	6401911	10	1	0	10	11	0	0	5	0	8.7	9.8	0	0	1	0	55	11.4	0	0	0	0	0	0	1.1

Appendix E FLORISTIC PLOT PHOTOS

Plot 1

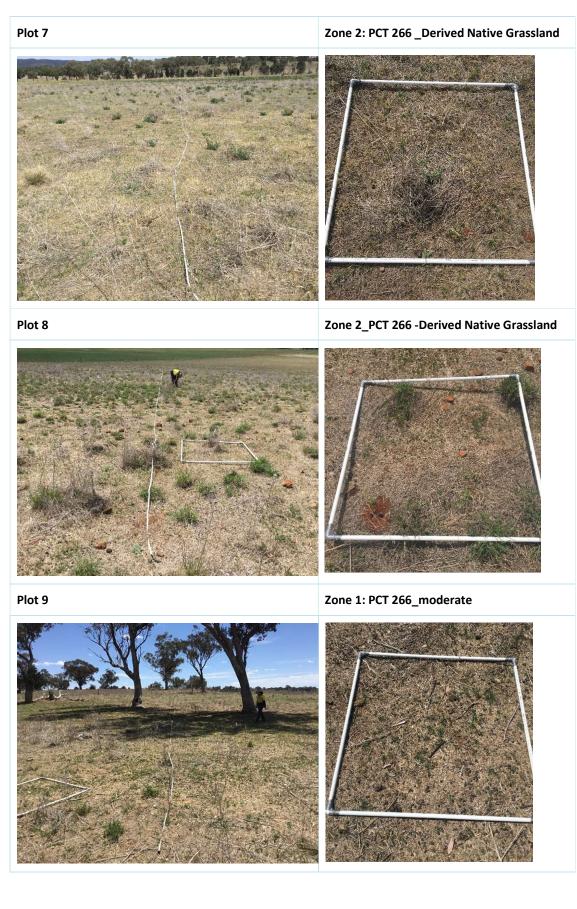
n/a

Zone 8: PCT 437_Derived Native Grassland



Plot 3

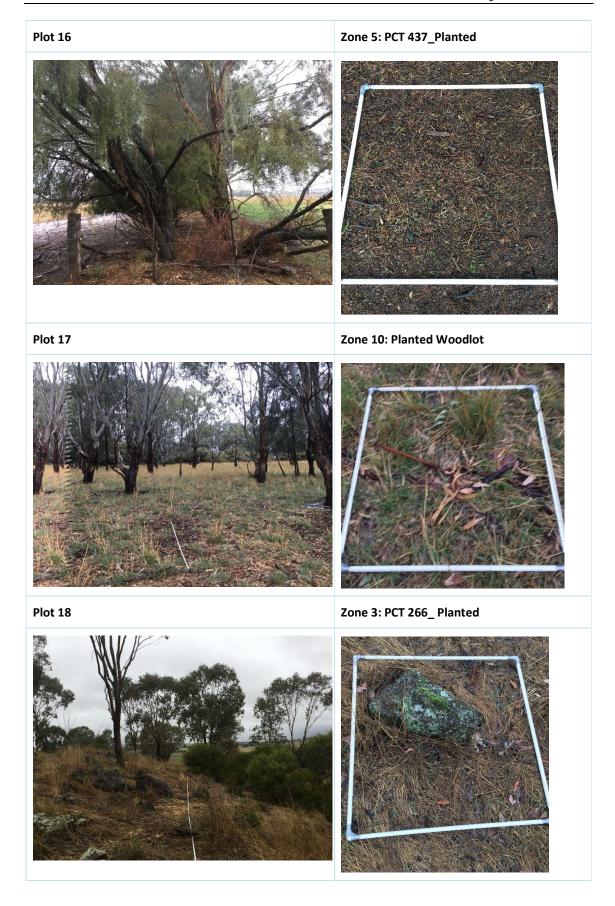
Zone 5: PCT 437 _Planted



Zone 11_ Exotic Vegetation

Plot 14

Zone 5: PCT 437_Planted



Plot 15

Zone 1: PCT 266_Moderate

Plot 22

Zone 2: PCT 266_Derived Native Grassland

Zone 2: PCT 266_Derived Native Grassland

Plot 24

Zone 9: PCT 437_ Good

Plot 23

Plot 25

Zone 8: PCT 437_Derived Native Grassland

Zone 3: PCT 266_Planted

Plot 27

Zone 6: PCT 437_Low

Appendix F FIELD DATA SHEETS

	BAN	I Site – Fiel	d Survey	y Form			Site She	et no:	1 of
		Survey N	lame	Plot Ide	entifier	AND STOLEN AND STOLEN	Rece	orders	
Date	18 10 17	Ross trans	mission l.	1	(wf1)	Julie (Fooding	Lisa	Hamilton
Zone	Datum	IBRA region	south w slope	lest s	Photo #			Zone ID	
Easting 55H 6828/3	Northing 6399947	Din	nensions	20 ×50	1		n of midline e 0 m point.	1 1 1 1	36
Vegetation C	lass	white &	Box Gro	ssy W	oodland	. 00	56		Confidence: H M L
Plant Commu	inity Type	white 1	DOX Gra	ussy v	loodlan	el PET		EC:	Confidence: H M L

Record easting and northing from the plot marker. If applicable, orient picket so that perforated rib points along direction of midline. Dimensions (Shape) of 0.04 ha base plot inside 0.1 ha FA plot should be identified, magnetic bearing taken along midline.

	Attribute m ² plot)	Sum values
	Trees	/
	Shrubs	6
Count of Native	Grasses etc.	62
Richness	Forbs	56
	Ferns	0
	Other	Ø
	Trees	5
Sum of	Shrubs	Õ
of native vascular	Grasses etc.	7520
plants by	Forbs	18
growth form group	Ferns	Õ
	Other	0.
High Threat	Weed cover	5.7%

BAM Attribute (20 x 50	m plot)	# Tree Ste	ems Count	- Record number of
dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*
large trees for 80 + Euc* & Non Euc cm	l	0	0	(Euc*) and living native non-eucalypt (Non Euc) stems
50 – 79 cm	Ц .	6	1	separately * includes all species
30 – 49 cm	0	υ	0	of Eucalyptus, Corymbia, Angophora,
20 – 29 cm	0	0	0	Lophostemon and Syncarpia
10 – 19 cm	0	0	0	¹ Record total number of stems by size class with
5 – 9 cm	0	0	n/a	hollows (including dead stems/trees)
< 5 cm	0	0	n/a	
Length of logs (m) (≥10 cm diameter, >50 cm in length)	4m 8	am Bm Im		total 16m

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. For **hollows** count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Li	itter co	ver (%	6)	Ba	re gro	ound	cover	(%)	Cr	yptog	jam c	over	(%)		Rock	cove	er (%)	1
Subplot score (% in each)	15 5	508	04	050	1	0	0	0	5	0	0	0	0	0	2	0	1	0	0
Average of the 5 subplots		4	5				1.2	-			C)					0.6	0	

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal	1		
Grazing (identify native/stock)			
Fire damage	-		
Storm damage			
Weediness			
Other	1		

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

Printed 29 September 2017

400 m² j	plot: Sheet	of _	Su	rvey Name	Plot Identifier			Recorde	ers		
Date	18 10	17	Ross	trasmission	WWSF J	JU	1/LI-1	1			
GF Code					II species name mandatory ne where practicable		N, E or HTE	Cover	Abund	stratu m	vouch er
Т	white	Box		Euce	luphin alters		N	5	1	05	
(G)	Brenner	1 g/as	55		rdeim leporinu		E	20	1000	GC	
1	P2 Ryc a				ium perenne		E	10	1000	ac	
(G).	D3 Walla	sby	gras.		danthoma caespitos	a	N	10	500	Gí	
(F)	St Ba	inda	is th		violurea solstitia		E	10	300	GC	
Ē	Cida	Cn	nnin	shamier S.	da corrupta		N	.	25	GC	
	Can	edi	1	Gh	icine tomentella	L	N	Q.1	5	úC	
G	61.29		one	Bro	mus diandrus		HTE	S	500	úc	
G	Styp	n sc	arbra	A	strustipa scabru		N	19	500	úc	
F	Com	moh	repp	ecress Le	pidiuin (pacisto hyson	(clus n)	N	.5	20	CC	
F	Fu7		eed	Vit	actinia conecta	/ /	Z	0.1	30	CC	
(G)	DI Sof	+ br	ome	Br	omus hordeaced	15	E	20	1000	EL	
F	N N	e di c	- C++	t-loost born	el Medicago truncas	Vla	E	- /	40	LL	
F		ahki	w	ead ,	Alternantivera pu	narn	HTE	.1	30	LC	
ŧ	5a	Ever		mistle (arthamus lanat	US	HIE	.1	/	ac	
F	En	nda	nuta	ns E	nadia nuturs		N	01	1	üL	
F		rigal	col p		lybum marianum	7	E	01	5	ũc.	
G		inta c	Dents	A	venafaka		F	.1	50	4C	
Ŧ	Pt	29 -	Villo:	Vekh of	Hindus Complexion	تدم	E	.1	2	ac	
F	26 ().10	is de	nvenans			N	. 1	2	aL	
r-	5	mall	flow	ered me	Man Malua porvi	t lora	Ē	.1	1	GC	
	GATY ES	in to	ment	eltra	1 1						
	18										
	10										
	di i										
	1		1								
	1.2										

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, **HTE:** high threat exotic **GF** – **circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = $2.0 \times 2.0 \text{ m}$, 5% = $4 \times 5 \text{ m}$, 25% = $10 \times 10 \text{ m}$ **Abundance:** 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

	BAN	l Site – Field	Surve	y Form		S	ite She	et no:	QÍ
		Survey Nar	ne	Plot I	dentifier		Reco	orders	
Date	19 10 17	Crussland		WN.	SF2	Unlie	+ 65	ia -	NGH
Zone 55	Datum	IBRA region	sout a slop	vert	Photo #			Zone ID	
Easting	Northing 6404283	Dime	nsions	20,	K SOM	Orientation from the	of midline 0 m point.	410	bhac relia
Vegetation C	lass	Grussle	ind		1				Confidence: H M L
Plant Commu	inity Type	Yellow	N BO	o× De	enved e	grassland	l ee	C:	Confidence: H M L

Record easting and northing from the plot marker. If applicable, orient picket so that perforated rib points along direction of midline. Dimensions (Shape) of 0.04 ha base plot inside 0.1 ha FA plot should be identified, magnetic bearing taken along midline.

	Attribute m ² plot)	Sum values	
	Trees	0	
	Shrubs	0	-
Count of Native	Grasses etc.	8	1
Richness	Forbs	4	
	Ferns	0	
5.	Other	0	
1.3	Trees	0	┢
Sum of Cover	Shrubs	0	
of native vascular	Grasses etc.	34.2	
plants by growth	Forbs	2.4	F
form group	Ferns	0	
2.	Other	Õ	_
High Threat	Weed cover	10.2	

685389

55

BAM Attribute	(20 x 50 i	n plot)	# Tree Ste	ems Count	- Record number of
dbh large trees for Euc* & Non Euc		uc*	Non Euc	Hollows [†]	living eucalypt*
		0	0	0	(Euc [*]) and living native non-eucalypt (Non Euc) stems
50 –	79 cm	0	0	0	separately * includes all species
30 – 49 cm	0		0	0	of Eucalyptus, Corymbia, Angophora,
20 – 29 cm	0		0	0	Lophostemon and Syncarpia
10 – 19 cm	0		0	0	¹ Record total number of stems by
5 – 9 cm	0		0	n/a	size class with hollows (including dead stems/trees)
< 5 cm	0		C	n/a	
Length of logs (m) (≥10 cm diameter, >50 cm in length)			0 , space		total

ounts must apply to each size class when the number of living tree stems within the size class is ≤10. stimates can be used when the number of living tree stems within a class is > 10. Estimates should draw om the number series: 10, 20, 30..., 100, 200, 300

or a multi-stemmed tree, only the largest living stem is included in the count/estimate. For hollows count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare gro	und cover	(%)	Cry	/ptog	am c	over ((%)		Rock	cov	er (%)
Subplot score (% in each)	10 30 40 30 20	20 5	101	15	0	0	0	6	0	0	0	0	0	0
Average of the 5 subplots	20	10	0.2			0	>				5			-

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	/ help in determining PCT a	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs), O=old (>10yrs)

100 m² p	olot: Sheet _	of _	Survey Nar	ne	Plot Identifier	Sec. 3	- 31-4	Recorde	ers		
Date	9101 10	17	Wellngton Nor	HL	WNSF2]	ALM				
GF Code	Top 3 native s All other nativ	species i re and ex	in each growth form g	roup: F	ull species name mandatory me where practicable		N, E or HTE	Cover	Abund	stratu m	vouch er
(F)	saf	fran	mistle		Carthanius lanatur.)	HTE	10	2000+	GC	
Ē	WI	ld 5	iage,		Dalvia Verbenaco		12.1	1	100	CiC	
F		122	weedR	V	Attachinia graal	0	2	2	100	GC	
T-	- VADIV	na	gracitis	arresenance		Annual of the association of the	N	anatalinan tran	en arritek esterek ek esterek	und und diedlet all D.A.	and the second
Gr	Sof	the	rowe	B	omus pordeaceu	3	E	5	1000	CIC	
G	Ar	isti	La SP		Anistida ramos		N	5	10030	GC	
G	No	lak	y grass-	K	y housperma caespin	bsa	N	15	500	GC	
(\overline{G})	Re	d U	eg grass		Bothriochloa mad	ra	N	10	500	ac	
F	hav	res (rot clare	~	Trifolium arvens	e	E	ه	100	GC	
F	C	, da	COVINGA	ta	Children and and an 1910		N	6	500	ac	
0HF	m	ede	enc - Wooh	y	Medicago Bolyna	pha	E	0 (400	ac	
and the second	N	raele	uberg,a	SP	Whalenbergiasp		N	.1	80	ac	
F	1.8	uce	wh -		Medicago Sativa		Ē	ŀ	100	ac	
G	Jan Barris	\$ 5	pear gras	55	Austrostipa sp. 1		N	•1	100	ac	
F	15 n	ativ	e gerani	ļи	Geranin moll	e	E	*/	500	ac	
G	16	wild	Obts		Avend faha		E	31	500	GC	
&F	0	xali	5 pervene				N	•1	1500	ac	
F	. 18 5	eni	na ocider	たい	- ?		E	, (10	GC	
(F)	19	54	Bamalays		Centaurea soisti	halis	E	2	1000	GC	
G	20 k	Zye	grass A	,	Lolium perenne		F	1	1000	GC	
F	21 9	silv	er leat "	righ	shade solarun	Glivn	HTE	•1	5030	GC	
GT	22	NOC	grosts sp		0		N	.1	1100	GC	
Gr	23 S	styp	a scalua		Austrostipa scabi	a	N	1	100	GC	
G	C	inla	y, under	ull e	Pospaliclium construct	amosu.	N	2	500	GC	
Cr	25	Spo	robolis !	C	Paspalichium construc	lom	N	-1	100	GC	
F	26	pa	Hersons	Cur	se Echium planta	gine	ηE	.1	50	GC	
F	yellow m	ilk vet	hothopus	ea	Astrogalys, hamosi	20	E	•1	30	GC	
G	28	pl	aspalum		Paspalum dilah	m	HTE	-	30	GC	
	20	ľ	l								
	30										
	34										
	3.2										
	3.2										
	3.4										
	75. 1										
	54 ⁻¹							-			
	17										
	40										

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m **Abundance:** 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAN	I Site – Fiel	d Surve	y Form		Site	e She	et no:	51
		Survey N	ame	Plot Ide	entifier		Reco	orders	
Date	19 10 17	Wellington	NM	WNS	F3	Lison t	Ju	1.2	
Zone 55	Datum	IBRA region	SWS		Photo #			Zone ID	
Easting 685783	Northing 6404291	Din	nensions	20+	Som	Orientation of r from the 0 m		87	°C
Vegetation C	lass	Yake	wood	lland		. А			Confidence: H M L
Plant Commu	unity Type	Yel	low k	of wa	onolland	-planted	EE	C:	Confidence: H M L

Record easting and northing from the plot marker. If applicable, orient picket so that perforated rib points along direction of midline. Dimensions (Shape) of 0.04 ha base plot inside 0.1 ha FA plot should be identified, magnetic bearing taken along midline.

BAM Attribute		Sum values	BAM Attribut	te (20 x 50	m plot)	# Tree Ste	ms Count	- Record number of
(400	m² plot)	Sum values	dbh	E	Euc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	2	large trees for Euc* & Non Euc	80 +	0	0	0	(Euc*) and living native non-eucalypt
	Shrubs	0		cm	0	0	0	(Non Euc) stems separately
Count of	Grasses etc.	3	50) – 79 cm	0	0	6	* includes all species
Native Richness	Forbs	4	30 – 49 cm	11		0	0	of Eucalyptus, Corymbia, Angophora,
	Ferns	0	20 – 29 cm	11		0	0	Lophostemon and Syncarpia
	Other	U	10 – 19 cm	1		6	0	1 Record total
	Trees	派 4		1		0	0	number of stems by size class with
Sum of Cover	Shrubs	щo	5 – 9 cm			0	n/a	hollows (including dead stems/trees)
of native vascular	Grasses etc.	6.5	< 5 cm	11		0	n/a	
plants by	Forbs	004	Length of log			~		total
growth form group	Ferns	0	(≥10 cm diamet in length)	er, >50 cm		U		
	Other	0						hin the size class is ≤10. 0. Estimates should draw
High Threat	Weed cover	Anter C	🀴 from the numbe	r series: 10, 1	20, 30 100, 2	200, 300		
-		0.5	count only the p	presence of a	stem containin		unt of hollows in	stimate. For hollows that stem. Only count as dead stem.

BAM Attribute (1 x 1 m plots)	Litte	r cove	er (%)	Τ	Bar	e gro	und	cover	(%)	Cry	/ptog	am c	over	(%)		Rock	COV	er (%))
Subplot score (% in each)	305	50	708	5	20	10	5	2	•1	C	0	0	0	0	0	0	0	0	0
Average of the 5 subplots		48					7.	42				0					0		

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage	1		
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs). O=old (>10yrs)

plot: Sheet _ of _	Survey Name				Recorde	ers		
19/10/17	Wellingho N	With WSF3 -YBP	JG	LH				
					r			vou
All other native and exot		up: Full species name mandatory es name where practicable	, 	N, E or HTE	Cover	Abund	stratu m	e
Yellow BOX		Evcalyphis mellio	dora	N	2.1.	1	5	38
Lucerne		Medicago Sativa		e	15	200	GC	
FUZZWEEC (VII	Hadwir	Vi Hadania gracil	is	N	0.1	30	GC	
Dide commin	gharria	Dida convegatu		N	01	40	Gra	
Wild Dage)	Salvia verbenac	ea	E	20-5	100	GC	
phalans		Phalans agraph	6	E	30	50	GC	
Rye Grass		Lolum perens	re	E	10	1000	GC	
Variegated the	ustle	Silvbum manias		E	0.1	40	GC	
Renyed wall	2 S	Ryholasperma celesp	1	N	5	500	GC	
Soft brome.	1	Bromus hordeac		E	15	1000	GC	
Saffron thust	10	Carthanus land	/	ATE	0.5	40	GC	
Great Brome	u.	Bromus diandi		E	5	Iman	GC	
Barley Gran		Hordeum leporn		E	10	10007	GC	
		Centurea sulsha	/	G	3	200	GC	
At Barnabys H						5		
Bulling Lity) Tragopogon por	TOTIOS	E	0.1	50	GC	
Aristida ramo		A 18-		N		1.00		
Dillow weet's		Acuus Saligna	/	Ň	21.	2	S	
Quena	1	Solanum esuria	1000	N	0.1	30	GC	
Canola - Wildt		Brassica burefort		e	0-1	10	GC	-
Curly Windom	ri crass	Enleropogon rama,		N	0.5	50	GC	
Capelvece	2	Arctotheca cale	ndula	e	01	4	GC	
Daffron thist		Cart						
piterounin	win	Echimplantique	un.	C	01	1	GC	
Brome		Bromis corthand	hous	C.	10	1000	Gel	
Common per	percress	Cepidum pseudophyssa	foller)	psd 1	01	1	GC	
Barrel Medic	<i>v</i>	Medicago trunca	Na	eo.	105	50	GC	
Wild oak		Ivena Jaha		E	65	500	GC	
Geranum m	olle	0		E	51	5	GC	
					0			
le: see Growth Form de	finit	finitions in Appondix 1		finitions is Assessing 4			finitions in Appendix 1 N: native E: evotic HTE: high threat evotic CE _ circle cod	

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

	BAN	l Site – Field	d Surve	y Form		Site Sh	neet no:	oí
		Survey N	ame	Plot Ide	entifier	Re	corders	
Date	19/10/7	Wellington	Now	WNS	F4	Julie + l	1.59	
Zone 55	Datum	IBRA region	SWS)	Photo #		Zone ID	
Easting 554 665192	Northing 640 4127	Din	nensions	204	SOM	Orientation of midlin from the 0 m poin	1/2	0
Vegetation C	lass	grassy W	oodland			٨		Confidence: H M L
Plant Commu	inity Type	Ye	llow Bo	x grass	y wood	land	EEC:	Confidence: H M L

BAM	Attribute	Sum values	BAM Attri	bute (20 x 50) m plot)	# Tree Ster	ms Count	
(400	m ² plot)	Sum values	dbh		Euc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	1	large trees for Euc* & Non Eu		11	-	1)	(Euc*) and living native non-eucalypt
	Shrubs	0		GII	1			(Non Euc) stems separately
Count of	Grasses etc.	5		50 – 79 cm	-			* includes all species
Native Richness	Forbs	1210	30 – 49 cm	n		-	-	of Eucalyptus, Corymbia, Angophora,
	Ferns	0	20 – 29 cm	1	_		(Lophostemon and Syncarpia
	Other	0	10 – 19 cm	1				¹ Record total number of stems by
	Trees	5			-			size class with
Sum of	Shrubs	10 0.5	5 – 9 cm		5		n/a	hollows (including dead stems/trees)
of native vascular	Grasses etc.	27.2	< 5 cm		_		n/a	
plants by growth	Forbs	153	Length of		bm	5m 2m p	le timbe	v total
form group	Ferns	0	(≥0 cm dian in length)	neter, >50 cm		any spaces	(6m)	Lam
	Other	0						vithin the size class is ≤10. 10. Estimates should draw
High Threat	Weed cover	1213	from the num	nber series: 10	. 20, 30, 10	0, 200, 300		
		12.4	count only th	e presence of	a stem contain	est living stem is included ning hollows, not the counced. The hollow-bearing	int of hollows i	in that stem. Only count as
BAM Attribu	ute (1 x 1 m plots)	Litter co	over (%)	Bare groui	nd cover (%) Cryptogam co	ver (%)	Rock cover (%)
Subple	ot score (% in eac	:h) 70109	08070	12 90	0 .1 5	5000	000	0000
Ave	rage of the 5 subple	ots 4	64	2	0.02	0		0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other	T		

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

400 m ²		eet _	of _	Survey Nam	ie	Plot Identifier			Recorde	ers		
Date	19	10	17	Wellingbri	upfl	WNSF4-VBW	-	SG/L	Н			
GF Code						Il species name mandatory ne where practicable		N, E or HTE	Cover	Abund	stratu m	vouc er
A	Yell	OU 6	62		E	vcalyphis melliodo.	ra	N	51	2	T	6
6			Box 11	om		voium leoccisom		HE	2	10	5	4
F	Que					Janum esurial	e.	N	M	80	GC	
B			n Det	percess	Le	epidium pseuduhusopi	blum	N	81.	60	GC	
F				hishode	De	slanum eleagnifó	ling	HIE	01	Б	GrC	
G	Grea	A Bri	ome		Br	omus diandrus		HEE	10	500	GC	
P	Creek	oing	Salt	bush (Atripl	ex re	mibaccatta)		\sim	3	100	GC	
G			1; 5 B)		N	500	100	GC	V
(a)	Gite	et Br	om 6	arley Gras	s P	Jordeyn leporinu	m	E	10	500	GC	
F	sma	UA	forere	d mallor	M	alva parviflora		E	6.1	2	GR	
F	Car	ala	-wild h	IMIP	BY	rassica toomefori	er.	C	0.1	5	GC	
G	Aus	hos	stipa	scabra		/		N	B	100	GC	
F	EIN	adu	i nud	tens				N	0.1	20	GE	
F	oxo	dis	pere	nnen				N	0.2	30	GC	
¥S			ipus		Diss	socarpus biflorus		N	0.5	50	GC	V2
Ð	Luce	erne	<u>.</u>	,	Me	dicago sativa		E	5	100	GC	
Ğ	wild	oa	ts		Au	end Jaho		E	0.2	50	GC	
F	St B	arne	abus)	thiste	Cen	taurea solstitiale	à	E	0.2	50	GE	
1-	Kho	1er	weed	1	Alte	manthera pungen	0	HIE	0%	5	GC	
£	Saf	hon	thist	i	la	thamis lanahu	۵	HTE	0.2	5	GC	
F	Bar	rel/	Nech	i c	m	eclicago truncati	ula	E	3	20	GC	
G	Pho	lan	62		Ph	alaris aquatica		E	05	5	ac	
G.	Rer	ge	d Wa	Uaby Gross	Ryho	dusperma caespilos	a,	\sim	VO 15	500	GC	
F.	Plas	Ane	mnat	ute	pla	Mago lanceolater	1 - 11	MARE	01	5	Gi	
F	Sicla	Co	mga	fa ia		1		N	0.1	100	6C	
G	Aus	hos	lipav	erhcillata	-			N	0.1	20	GR	
G	Dott	Brc	me		Bron	ms horder ceus	•	C	61	500	GC	
	Pat	512	SCAR	action defenses)					-		
F	Dich	ond	ia nep					N	0.1	30	GC	
F	Dese	ert.	cida			wnnighamina		N·	01		GC	Ň.
F	Viti				Vitta	duria gracilis		N	01	10	Gel	
F	Wilds	Ch	R	1 5	Salu	ia verbenacea		E	01	5	GE	
Fe	yeva		wend	calots 1	alot	tis lappulacea		\sim	01	2	GC	
G	CW	Car			Enteri	pogon ramas		2	0.1	10	GC	
				1			_					

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic $\mathbf{GF} - \mathbf{circle} \ \mathbf{code} \ \mathbf{if} \ \mathbf{top} \ \mathbf{3'}$. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ... 100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

		BAM	Site - Fiel	d Surve	y Form		Site St	neet no:	őĺ
			Survey N	ame	Plot Ide	entifier	Re	corders	
	Date	19 10 17	Wellingto N	opth	WNSF	5	Lisa t	Julie	7
	Zone 55	Datum	IBRA region	SW	\$	Photo #		Zone ID	
554	Easting 665 203	Northing 640 3766	Din	nensions	20×5	50 m	Orientation of midli from the 0 m point		og starte
	Vegetation C	lass	Pas	itwel a	grassla	nd (es	ioh c)		Confidence: H M L
	Plant Commu	inity Type		exot	ic pa	Sture		EEC:	Confidence: H M L

BAM	Attribute	0	BAM Attribute (20 x 50) m plot)	# Tree Ste	ms Count	Record number of
(400	m ² plot)	Sum values	dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	0	large trees for 80 + Euc* & Non Euc	0	0	0	(Euc*) and living native non-eucalypt
	Shrubs	0		0		2	(Non Euc) stems separately
Count of	Grasses etc.	0	50 – 79 cm	0	C	0	* includes all species
Native Richness	Forbs	2	30 – 49 cm	0	0	\bigcirc	of Eucalyptus, Corymbia, Angophora,
	Ferns	0	20 – 29 cm	0	\mathbb{C}	\mathcal{O}	Lophostemon and Syncarpia
	Other	0	10 – 19 cm	~	p. ~.	0	† Record total
	Trees	0		0	\bigcirc	200	number of stems by size class with
Sum of	Shrubs	0	5 – 9 cm	0	\mathcal{O}	n/a	hollows (including dead stems/trees)
Cover of native vascular	Grasses etc.	0	< 5 cm	0	Series -	n/a	
plants by growth	Forbs	0.7	Length of logs (m)	0			total
form group	Ferns	0	(≥ 0 cm diameter, >50 cm in length)	0			. 0
Illeh Theres	Other	0	Counts must apply to each Estimates can be used whe from the number series: 10	in the number o	of living tree stems with		
High Inreat	Weed cover	0.2	For a multi-stemmed tree count only the presence of 1 stem per tree where tree	a stem containii	ng hollows, not the co	unt of hollows in	that stem. Only count as

BAM Attribute (1 x 1 m plots) Litter cover (%)				Bare ground cover (%)					Cryptogam cover (%)				Rock cover (%))				
Subplot score (% in each)	10	10	Ø	5	\leq	50	40	P	603	30	0	0	0	0	G	0	0	C	-	!
Average of the 5 subplots			8				5	50					0					0.	4	

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Mana	agement	Zone (optiona	(l)
--	---------	---------------	-----

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other	1		

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs). O=old (>10yrs)

10 m² p	lot: Sheet		Survey Name	Plot Identifier	ļ		Record	ers		
Date	19/10	11	Nellington North	WNSF5		LISOI.		170	के	
GF Code			each growth form group: Fu otic species: Full species nan			N, E or HTE	Cover	Abund	stratu m	vou ei
I)	lucer	ne		Medicapsati	101	E	60	6001	GC	
J		3			* -					
	1									
(\overline{f})	in cat	Ivan	Mistle	Carthamus lan	otrac	HTE	0.12	50	GC	
-			in si C	Corrighting 1011	A/ 1 A/-a	11 1 100	- Aller		V 10	
F	C	uer	na	Solanum esur	10/2	N	0.1	20	GrC	
F	0	o late	weregs common	1 epidium pseudo	ahysch	N	0.1	N	GC	
1	- Ocli		wer egs (orminer)	Lacheuma I ma	10:000	E	5	500	GC	
9 F	Garle	NA CAVO	ins in the second secon	lardeum lepor Infolium subleiranou	(P) A PA	E	05	600	GC	
-	clover						1020	4		
F	· · /			ilybum mariar	10000		0.1	5	GC	-
F	oxalis					N	01	1	GC	
F			hamenos	Lauraa - lat -	1	E	0.1	5	CC CC	-
F	St barn		11	taurea solstiti		E	0.2	20	GC	-
F	Carnota	Fron 1	cuild hunip (Brass	pica toumetortii)		F	03	50	GC	
F	Prickly	Lettu	ce La	ctued serviced	,	E	01	1	GrC	
	we way									_
	1									
	<i>R</i>									
				<u> </u>						
	2.060									
	25 I.									
								-		
										-
										-
										-
										-
								E		1

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

		BAN	l Site – Fiel	d Surve	y Form		Site Sh	neet no:	-əi
			Survey N	ame	Plot Ide	entifier	Re	corders	
Î	Date	19 10 17	wellington	North	WNSF	6	Lisa + Ju	die.	
	Zone 55	Datum	IBRA region	SW	ŝ	Photo #		Zone ID	
t	Easting 685145	Northing 640 3842	Din	nensions	204	50m	Orientation of midlin from the 0 m poir	and the second se	Magner
	Vegetation C	lass		Nood	diand				Confidence: H M L
	Plant Commu	inity Type		plantee	d Woo	dland		EEC:	Confidence: H M L

	Attribute m ² plot)	Sum values	B
	Trees	2	lar
	Shrubs	0	Eu
Count of	Grasses etc.	1	
Native Richness	Forbs	5	30
	Ferns	0	20
	Other	0	10
	Trees	25	
Sum of	Shrubs	0	5
Cover of native vascular	Grasses etc.	0.2	
plants by	Forbs	0.8	Le
growth form group	Ferns	Ô	(≥ in
с 8 1	Other	0	Co Es
High Threat	Weed cover	1.2	fro Fo

55

BAM Attribute	(20 x 50	m plot)		# Tree Ste	ems Count	Record number of
dbh	E	Euc*	N	lon Euc	Hollows [†]	living eucalypt*
large trees for Euc* & Non Euc	80 + cm	0		0	0	(Euc*) and living native non-eucalypt (Non Euc) stems
50 -	- 79 cm	0		0	0	separately * includes all species
30 – 49 cm	111		the state	eure)	0	of Eucalyptus, Corymbia, Angophora,
20 – 29 cm	HT	HT	+		0	Lophostemon and Syncarpia
10 – 19 cm	141	HITI	\$		0	¹ Record total number of stems by size class with
5 – 9 cm	[\]		6	0	n/a	hollows (including dead stems/trees)
< 5 cm	11			0	n/a	
Length of logs (≥10 cm diameter, in length)		5m	700	9m 7	m	total 28 m

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. For **hollows** count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	L	itter	cove	er (%)	Ba	re gro	ound o	cover	(%)	Cry	/ptog	jam c	over	(%)		Rock	cov	er (%)	
Subplot score (% in each)	99	85	70	9580	1	• /	.2	• /	0	0	0	0	0	0	0	0	0	0	U
Average of the 5 subplots		8	35.	4		0	.2	B				6					0		

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that ma	y help in determining PCT an	nd Management Zone (optional)
--------------------------------------	------------------------------	-------------------------------

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs). O=old (>10yrs)

00 m² p	olot: Sh		of _	Survey		Plot Identifier			Recorde	ers		
Date	19	10	17	Helling to,	n North	WNSF6 -planted	0	GILH				
GF Code	Top 3 I All othe	native s er nativ	species ir e and ex	n each growth for otic species: Full	m group: Fu species nan	ll species name mandatory ne where practicable		N, E or HTE	Cover	Abund	stratu m	voue
T-	Vare	rgat	led the	estle		Silybum marian	num	E	6.2	30	GC	
P			nute					N	03	50	GC	22
P			renna					N	6.1	50	GC	8.0
P	Luces				n	nedico sativa		E	0.2	20	Cc	
-			epperc	Ros	Lepid	um pseudohys	Solum	N	02	50	Ge	
F	Over		· ·		Sola	num esurial		N	02	20	GC	
F	Pall	Don	15 cu	TOP .	Ech	ium plantagin.	eum	Ë	61	1	GC	
G	Grea				Bre	ium plantagin.	is	HTE	1	500	GC	_
G-	Apo,	060	lus	7	Pa	spalidium constit	chm	N	0.2	10	G.C	
4	Barle				1-10.	deum leporini	nm	e	02	500	GC	
2	Phan	ions	Pag	balum	Pas	polum dilatort	um	HIE	0.2	5	GC	
T	Mug	9a 1	ronba	ork	Ene	aliptus siderate	ylan	N	10	4	The	-
F	PLOTE	chou	nci		mul	rubian vulgai	R	E	01	S	GC	
p	creep	ing	salthe	sh	Atri	plex permisarca	bla	M	0.1	2	GC	The second
T	strin	9460	avle 5	YA				(N)	15	\$	T	1
T	Pino	1 400	,		Pinu	s halapensi's		E	S	1	T	
7	1.00		ssyleane	2		. /		N	10	4	T	2
	5											
										-		

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, HTE: high threat exotic GF - circle code if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

Printed 29 September 2017

	BAN	I Site – Fiel	d Surve	y Form		Site S	Shee	et no:	31	
	1	Survey N	lame	Plot Ide	entifier	R	eco	rders		
Date	19/10/17	Wellington	North	WNST	7	Lish Juli	e			
Zone 55	Datum	IBRA region	SWS		Photo #			Zone ID		
6 84851	Northing 6403075	Din	nensions	20+	50m	Orientation of mid from the 0 m po		250	0	140 U
Vegetation C	lass	C	massle	end		٨			Confidenc	ce: L
Plant Commu	inity Type	1	white	box o	glassla	ind	EEC	C:	Confidenc H M	xe: L

	Attribute m ² plot)	Sum values	BA
	Trees	0	large
	Shrubs	0	Euc*
Count of	Grasses etc.	4	
Native Richness	Forbs	5	30 -
	Ferns	0	20 -
	Other		10 -
	Trees	0	
Sum of Cover	Shrubs	0	5 -
of native vascular	Grasses etc.	10.4	<
plants by	Forbs	10.6	Len
growth form group	Ferns	0	(≱0 in ler
	Other	0.1	Cour Estir
High Threat	Weed cover	2.2	from For a

SSH

BAM Attribute (20 x 5	0 m plot)	# Tree Ste	ems Count	- Record number of
dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*
large trees for 80 + Euc* & Non Euc cm	0	0		(Euc*) and living native non-eucalypt (Non Euc) stems
50 – 79 cm	0	0		separately * includes all species
30 – 49 cm	0	0		of Eucalyptus, Corymbia, Angophora,
20 – 29 cm	0	0		Lophostemon and Syncarpia
10 – 19 cm	0	0		[†] Record total number of stems by size class with
5 – 9 cm	0	0	n/a	hollows (including dead stems/trees)
< 5 cm	0	0	n/a	
Length of logs (m) (≥10 cm diameter, >50 cm in length)	0	2		total

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. For **hollows** count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	1 m plots) Litter cover (%)		Bare ground cover (%)				Cryptogam cover (%)				Rock cover (%))			
Subplot score (% in each)	80 80 80	8540	\mathcal{O}	1	0	0	1	0	0	C	0	0	0	1	0	0	/
Average of the 5 subplots	79		0.4			0				0.4							

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT a	Management Zone (option	al)
---	-------------------------	-----

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs). O=old (>10yrs)

400 m ² j	olot: Sheet 🤰 of	2	Survey Nam	ne	Plot Identifier		Recorde	ers	284	
Date		7	Wellington N	outh	WSFJ-whiteBox	-	56	111:		
GF Code			each growth form gr	oup: Fu	Il species name mandatory ne where practicable	N, E or HTE	Cover	Abund	stratu m	VOL
G	Barley Gre				denn Leporinum		65	1000	GC	
B		ar e 4			licago Sativa	e	3	25	GC	
B	St Bainabys +	l +	40		taurea solshtialis	E	2	500	GC	
F.	Sida correg		CE.		a corrugata.	N	0.5	40	GC	
F	Prickly Lett				thea sevrida	E	2	20	GC	
(F)	saffron th		u		hamus lanertus	HTE	2	20	GC	
Ţ	Horehorono				wublow vulgare	E	6.1	5	GC	
F	Towne			Boer	1	N	0.1	3	GC	
F	Flatweed (H	aint	eaf)-ra		pochaens, rodicato		61	2	GC	
F	Contract of the second s	/		n. 102	lum pseudohyssofelium		02	30	GC	
a	Riegran	8.0		Loli	um perenne	E	0.2	50	GC	
Gr	Austrastipa	i ve	trailenter		1	7	02	10	GC	
F	Oxalis per					N	61	40	Ge	27
F	avenna				rum esuriale	N	0.1	25	GC	
G	Curhy undm	11 gu	en E	ntere	pogon acicularis	N	61	10	GC	
G	Austrastipa	Su			1)	N	01	5	GC	
Þ	Barrel Med	1c		1 12	ro truncatula	G	0.1	20	GC	
G	Phalavis		f	Phalo	ins spaquatica	E	0-1	2	GC	
F	Wild Bade	IJ	uncus sp.		cus sp	N	01	1	GrC	
G	Couch:		(yvo	idan daetylan	N	10	160	GC	1
					/	_				
	- 29									-
	25									-
	2					_				-
						_				
										-
						_				-
										_
										-
										_
						è.				
	VBNOODLAND					LOU LOA	DITION	-		

 GF Code:
 see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

ï	÷	BAN	l Site – Fiel	d Surve	y Form		Site Sheet no:					
			Survey N	ame	Plot Ide	entifier	Recorders					
	Date	19/10/17	Wellinton	Nth	WNSF	B	Lura + 1	e Juli	e			
	Zone 55	Datum	IBRA region	SWS	>	Photo #		Zone ID				
55H	Easting 662-220	Northing	Din	nensions	20-1	som	Orientation of midlin from the 0 m poin	10	R ^{ing} thette			
	Vegetation C	lass		Gras	sslane	h	٨		Confidence: H M L			
	Plant Commu	inity Type	M	hite E	Box Gr	asslav	rel	EEC:	Confidence: H M L			

BAM Attribute		Sum values	BAM Attribut	e (20 x 50	m plot)	# Tree Ste	ems Count	- Record number of
(400	m ² plot)	Sum values	dbh		Euc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	0	large trees for Euc* & Non Euc	80 +	1			(Euc*) and living native non-eucalypt
	Shrubs	0		cm				(Non Euc) stems separately
Count of	Grasses etc.	2	50	– 79 cm		X		* includes all species
Native Richness	Forbs	7	30 – 49 cm			/		of Eucalyptus, Corymbia, Angophora,
	Ferns	Ô	20 – 29 cm			0		Lophostemon and Syncarpia
	Other	0	10 – 19 cm			<u> </u>		† Record total
	Trees	0	10 10 011	-				number of stems by size class with
Sum of	Shrubs	0	5 – 9 cm				n/a	hollows (including dead stems/trees)
Cover of native vascular	Grasses etc.	0.4	< 5 cm			/	n/a	
plants by growth	Forbs	0.7	Length of log			~	¢	total
form group	Ferns	0	(≥ 0 cm diameter in length)	er, >50 cm	X	0		0
	Other	0						hin the size class is ≤10. 0. Estimates should draw
High Threat	Weed cover	5.2	from the number For a multi-sten	r series: 10, nmed tree.	20, 30, 100. only the largest	200, 300 t living stem is include	ed in the count/es	

1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.											
BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)							
Subplot score (% in each)	8582 697085	.1 .1 .1 .1 .2	00000	-2.2.5.1.1							
Average of the 5 subplots	67.4	0.12	0	0.02							

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	/ help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Sile Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage	1		
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs). O=old (>10yrs)

400 m ² j	plot: Sheet _ of _	Survey Name	Plot Identifier	1		Record	ers		
Date	IQ ID ID	welling to North	WSF8- WBGrossle	ŋ	5				
GF Code		each growth form group: Fu tic species: Full species nai	Ill species name mandatory me where practicable		N, E or HTE	Cover	Abund	stratu m	vouch er
6	Phalaris		Phalavis aquatic		ŧ	25:	200	GrC	
Ð	St Barnobys -	thistle	Centau rea sols		SE	\$	100	GC	
f	Wahlenbergio	(Tall) (S	Wahlenbergia comm		N	0.1	30	GC	
G	Barley Grans	H	ordenm Teporin	1 UMA	E	10%	1000		
£	Werne		Medico sativa		E	4	100	CAC	
Ø	sparobolus		<u><u>aspalidium</u> constr</u>	ichm		5.	100	GC	
Ð	saffronthistle	. (Carthamus land	atus	HTE	5%	200	GC	
a	Austro stipa s	cabra			N	02	30	GC	
G	Austro stipa	rehalladay			N	0.2	30	GC	
F	cida cong	atu	^		N	0.1	30	AC	
F	olover 0	Trif	dium sublemaneum dico truncatu	2	E	05	500		photo
F	Medic - Barrel	Media Me	dico truncatu	la.	E	0.5	500	V	phob
F	Oxalis perenne	ns.	0.01.0.0		N	01	50	GC	
F	khaki weed	1	ernanthera pur			01	50	GC	
f	Common pup	mercress Ley	idium pseudophi	Issofil	M/N	01	-	GC	2.18
4	Tarvine.	Boe	rhavia dominii -	· (N	01	5	ac	
+	Einachanota	4-3	in un that an OP	80	N	0.1	1	GrC	
1	Wild Dage	-	via verbenaces		E	01	Z	GC	
+	Varegated the		ilybum marian		E	01	20	ac	
t	Villadenia -s.	offhairs Vitt	adima gracilis		Z	01	10	GC	
J	Coreat brome -	Bro	mus diandrus		HTE	01	30	CAC	
								- 1	
		(*)							

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAM Site – Field Survey Form Site Sheet no:							
		Survey N	ame	Plot Ide	entifier	Re	corders	· · · · · · · · · · · · · · · · · · ·
Date	1910/17	Wellingta	Wellington North WNS			Use Ju	4	
Zone	Datum	IBRA region	SW	5	Photo #	Zone ID		
Easting 642115	Northing b 40 33 74	Din	nensions	20+	50m	Orientation of midlin from the 0 m poin		Magnet
Vegetation C	lass	Grassy Woodland						Confidence: H M L
Plant Commu	inity Type	White Box grassy woodland EEC:						Confidence: H M L

	Attribute m ² plot)	Sum values
	Trees	
	Shrubs	0
Count of Native	Grasses etc.	0
Richness	Forbs	Marganites.
	Ferns	0
	Other	0
	Trees	10
Sum of Cover	Shrubs	0
of native vascular	Grasses etc.	0
plants by	Forbs	0.1
growth form group	Ferns	0
	Other	0
High Threat	Weed cover	0.2

BAM Attribute	(20 x 50 m	plot)	# Tree Ste	ems Count	- Record number of			
dbh	Eu	ic* Non Euc		Hollows [†]	living eucalypt*			
large trees for Euc* & Non Euc	80 + cm	0	0	6	(Euc*) and living native non-eucalypt (Non Euc) stems			
50 – 79 cm)	0		separately * includes all species			
30 – 49 cm Ø			0	0	of Eucalyptus, Corymbia, Angophora,			
20 – 29 cm			Ô	0	Lophostemon and Syncarpia			
10 – 19 cm			0	0	[†] Record total number of stems by			
5 – 9 cm			0	n/a	 size class with hollows (including dead stems/trees) 			
< 5 cm	С)	0	n/a				
Length of logs (≥0 cm diameter, in length)		/			total			

Counts must apply to each size class when the **number of living tree stems** within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. For **hollows** count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	O Rock cover (%)
Subplot score (% in each)	50 4560 55 70	12000	00000	20000
Average of the 5 subplots	56	0.42	0	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	y help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal	1		
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other	1		

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs). O=old (>10yrs)

400 m ²	plot: Sheet $\frac{1}{2}$ of $\frac{2}{2}$	Survey Name	Plot Identifier			Recorde	ers		
Date	19 10 17	WellingtonSF	WSF9 - WBGran	0 36	a				
GF Code	Top 3 native species in All other native and exo	each growth form group: Fu tic species: Full species nar	Ill species name mandator where practicable		N, E or HTE	Cover	Abund	stratu m	vouch er
(G)	Barley Gras	is Hori	denn lepor	kinum	E	40	10004	GC	
S	White Box		1 11	iens	N	10 .	2	T	
G	Soft Brome	Bro	mus hordea	cens	e	5	400	GC	
F	Caltrop bindi			estus	e	01	50	GC	
Ð	St Garnaby the		manrea sols.	fitialis		4	200	GC	
F	sida comugant				N	21	30	GC	
F	Small flowered		lalva parvifl		E	01	20	GC	
F	Bathorst Purv		Kanthium spin		HTE	0.2	P	GR	
G	Aporotoluo		spalidium constri		N	0.2	50	GR	1
F	Solengyene?	5 mooth mastard (Sis	plenogyne bellin	DICES	-	0.1	1	CO	
F	Variegated this		ymbrive erysimoid Lybum marra		E	0.1	10	GC	
1	Varregiones this	rue (dead) SI	Journ maria	VIUPPI	t	01	20	NC	
	18								
	S.								
	20								
	1								
	- 27								
						}			
						m			
	And the second								

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

	BAN	1 Site – Field	d Surve	y Form		Site Sh	eet no:	01
		Survey N	ame	Plot I	dentifier	Red	corders	
Date	19/10/17	NOALWE	Unjter	MNS	F10	Lisa t	Julie	-
Zone S 5	Datum	IBRA region	SW	5	Photo #		Zone ID	
Easting 68 220 6	Northing	Dim	nensions			Orientation of midlin from the 0 m poin		21045a
Vegetation C	lass	U U U	Arassl					Confidence: H M L
Plant Commu	unity Type	5	hite	Box	deniee	grassland E	EC:	Confidence: H M L

BAM	Attribute	0	BAM Attrib	ute (20 x 50 n	n plot)	# Tree Ste	ems Count	Record number of
(400	m ² plot)	Sum values	dbh	E	uc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	0	large trees for	80 +	~	0	6	(Euc*) and living native non-eucalyp
	Shrubs	0	Euc* & Non Euc	cm	0	U		(Non Euc) stems separately
Count of	Grasses etc.	2	5	50 – 79 cm	0	ð	0	* includes all specie
Native Richness	Forbs	5	30 – 49 cm	0)	0	0	of Eucalyptus, Corymbia, Angophora,
F	Ferns	0	20 – 29 cm	ć)	Ó	Ø	Lophostemon and Syncarpia
	Other	0	10 – 19 cm				0	[†] Record total
Tre	Trees	0	10 – 19 cm	C		O		number of stems b size class with
Sum of	Shrubs	0	5 – 9 cm	C		Ô	n/a	hollows (including dead stems/trees)
Cover of native vascular	Grasses etc.	0.6	< 5 cm	0)	с	n/a	
plants by	Forbs	0.5	Length of lo	ogs (m)				total
growth form group	Ferns	0	(≱0 cm diame in length)	eter, >50 cm	Ø			0
8	Other	0						thin the size class is ≤10 0. Estimates should dra
High Threat	Weed cover	W/ 98	from the numb	per series: 10, 2	0, 30, 100, 2	200, 300		
		1.0	count only the	presence of a s	tem containing		ount of hollows in	stimate. For hollows that stem. Only count a dead stem.
BAM Attribu	te (1 x 1 m plots) Litter co	1	Bare ground		Cryptogam co	1	Rock cover (%)

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	7585807075	10/000	00000	12.121
Average of the 5 subplots	77	0.08	0	1.04

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs). O=old (>10yrs)

100 m ² p	olot: Sh	neet 2	of	Survey	Name	Plot Identifier			Recorde	ers		
Date	19	10	17	welling to	n North	WS FIO WB Gran	a cinst		3	JGL	+1	
GF Code						ll species name manda ne where practicable	atory	N, E or HTE	Cover	Abund	stratu m	voue
G	Bar	ley	Gra	3	Horder	um leporin	им	E	25	1000	GE	
F	kha	kih	Red		Alter	nanthera p	ingers	HE	0.4	50	GC	
Ø	stG	lorna	bys t	thistle	Cento	manthera p murea solst	itialis	\in	1	100	GeC	
F			Nigat					N	0.1	30	Cre	
ŕ	oxali	s pen	corres	2				N	0.1	30	C+C	
0	soft	bron	ne		Bron	nus horde	aceus	E	5	15001		
(a)	Phale				Phal	verberae	jah ca	E	20	50	GR	
F	Wild	Nog	ye.		Salvia	verbenae	ear	E	6.1	5	GC	
F	Bath	m+i	Surr		Xan	thium spine	sum	HIG	01	1005	GC	
G	Ash	Uship	na ver	hullata				N	0.1	5	GC	
Ð	Daf	non	thist	U -		namus lan		HEE	0.5	29	GC	
F	Wal	rlen	bergia	(tall)	Wah	enbergia comm	unis	N	01	10	GC	
F	Tarv	line	\bigcirc	1	Boer	hovia domen	rt	N	01	5	GC	
F	Einer	dia ni	stans	>				N	01	5	GrC	
G	Apo	proba	201		Paspa	alidium constain 1/45 terre:	chim	N	0,5		GC	
ta	Calt	rop.			Tribi	ilus terre:	stus	E	02	30	GrC	
P	Lue	me			Medi	re sativa		E	n	50	GC	
\lor												
								5				
						14						
								<i>e</i>				
u												
	28					-						
21					12.1							
2	-											

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAN	1 Site – Field	d Surve	y Form		Site S	heet no:	M
		Survey Name Plot Id			entifier	Recorders		
Date	19/10/17	Wollngton	Nodth	WNS	FI	Julve.	+ Lisa	
Zone 55	Datum	IBRA region	SW	IS	Photo #		Zone ID	
Easting 682207	Northing 6403046	Din	nensions	504	:20m	Orientation of midl from the 0 m po		llj ,: ₹
Vegetation Cl	ass		Moor	Mans	l	1. 1		Confidence: H M L
Plant Community Type			m bo	x Moad	Alma	EEC:	Confidence: H M L	

	Attribute m ² plot)	Sum values
	Trees	
	Shrubs	0
Count of	Grasses etc.	0
Native Richness	Forbs	2
	Ferns	0
	Other	0
	Trees	15
Sum of Cover	Shrubs	0
of native vascular	Grasses etc.	0
plants by	Forbs	0.2
growth form group	Ferns	0
	Other	0
High Threat	0.1	

BAM Attribute (20 x 50 m plot)		# Tree Ste	ems Count	Record number of	
dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*	
large trees for 80 + Euc* & Non Euc cm	1	0	1	(Euc*) and living native non-eucalypt (Non Euc) stems	
50 – 79 cn	0		0	separately * includes all species	
30 – 49 cm	0	0	0	of Eucalyptus, Corymbia, Angophora,	
20 – 29 cm	0	0	0	Lophostemon and Syncarpia	
10 – 19 cm	0	0	Ø	¹ Record total number of stems by	
5 – 9 cm	0	0	n/a	size class with hollows (including dead stems/trees)	
< 5 cm	0	0	n/a		
Length of logs (m) (≥10 cm diameter, >50 cr in length)	2.51	n 2.5m	Im	total 6 M	

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. For **hollows** count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	75 65 \$ 30 25	0090.150	00000	205125
Average of the 5 subplots	35.6	28.02	6	3.82

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			-
Storm damage			
Weediness	1		
Other	1		

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

00 m ² p	olot: She	et ⊆of	2	Survey Nam			dentifier		,	Recorde	ers		
Date	19	10 1	7	Lellington No	Le	WSF 11	Boodland	Ja.	ILH				
GF Code	Top 3 na All other	tive spec native an	ies in Id exo	each growth form gr tic species: Full spec	oup: Fu sies nai	III species nan me where prac	ne mandatory		N, E or HTE	Cover	Abund	stratu m	VOL
Ð	Vella	u Box	P			Eucalyon	15 melliod	ora	N	15	1	T	
Ð		ley 6		S	L	loideum	lepordu	num	e	15	1000	GR	
P		hono					errestris		E	0.1	100	GC	
F	Carro						(muralis	<		61	3	GC	
F			d + d	histle			mariam		G	0.1	10	GC	
F		Weed					herapur		HIFE	01	50	GC	
F	Amall	flow		1 Malla			Dav Villave	1	G	01	30	(aC	
(G)	RVe	rois		the second second		olium	perenn		e	5	500	GR	
A.		bureed			Barrow		m melanaci			01	1	GE	
F	luces					edicagos		ar prin	e	10	400	GC	
	Tan	and the second second	2			verhavia			N	0.1		GC	
E	and the fact of the lot of the lo	histl	¢ .		S	onchus	oleral	eus	E	0 1		Car	
P				thist le			a solsti		C	01	20	GAC	
5	100 000	erna y	00 1	VUUST LE	CU		1 41 141		- Cilitari	0.6	20	one	
				1.									

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAN	l Site – Field	Site Sheet no:					
		Survey N	ame	Plot Identifier		Recorders		
Date	19 10 17	Wellington Nortz		WNSF12		Lisa + Julie		
Zone 55	Datum	IBRA region	SN	15	Photo #		Zone ID	
Easting 682951	Northing 6402316	Dim	nensions	204	: Som	Orientation of midlin from the 0 m poir		
Vegetation Class		grassy woodland					Confidence: H M L	
Plant Community Type		Planted negetat			von	EEC:	Confidence: H M L	

	Attribute m ² plot)	Sum values
	Trees	17
Count of Native Richness	Shrubs	\$3
	Grasses etc.	APT 1
	Forbs	4
	Ferns	0
	Other	0
	Trees	曲多
Sum of	Shrubs	TAB 1
Cover of native	Shrubs Grasses etc.	5
Cover of native vascular plants by		5 3.4
Cover of native vascular	Grasses etc.	5 3.4 0
Cover of native vascular plants by growth	Grasses etc. Forbs	5 3.4 0 0

BAM Attribut	e (20 x 50	m plot)	# Tree Ste	ems Count	- Record number of		
dbh		Euc*	Non Euc	Hollows [†]	living eucalypt*		
large trees for Euc* & Non Euc	80 + cm		6	0	(Euc*) and living native non-eucalypt (Non Euc) stems		
50	– 79 cm		- 0	0	separately * includes all species		
30 – 49 cm			0	6	of Eucalyptus, Corymbia, Angophora,		
20 – 29 cm	111	3)	0	0	Lophostemon and Syncarpia		
10 – 19 cm	HTI	18	15	0	¹ Record total number of stems by size class with		
5 – 9 cm	111	3	16	n/a	hollows (including dead stems/trees)		
< 5 cm	- 14	28	20	n/a			
Length of log (≥10 cm diamete in length)		2m		1	total 2m		

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. For **hollows** count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	85 85 90	000-	000-	00-1-
Average of the 5 subplots	52	0	0	0.02

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs), O=old (>10yrs)

r i	olot: Sheet _ of _	Survey Name		Recorders						
Date	19 10 17	Wallington North	WSF 12 - planded	JG/LH						
GF Code	Top 3 native species in All other native and exo	each growth form group: F iic species: Full species na	ull species name mandatory ame where practicable	N, E or HTE	Cover	Abund	stratu m	VOI		
OF)	While Box	Euco	alyphis albens	N	10	6	05			
Ð	Yellow Box	Euc	alyptus rellido	ola N	5.	2	OS			
G	Phalans		avis sp aquatic	a E	15	15	QS			
T D	Silver Wattle	. Ace	acia dealbate	7 N	8	15	MS			
S	Acacia Imple	0		N	3	3	MS			
Ŧ	Enadia nuta	nS		N	3	30	GC			
	WeepingMyas	A	acia pendul	a. N	2	2	MS			
Ŧ	Uild Dacro.	Sal		ne e	0.1	30	GC			
Q	CUNN Bindmi	11 Gross Fr.	teraporon vanu		5	100	Cre			
T	Kurraiona		chycluton popul	how N	011.	1	Os			
Ŧ	Common pepp		dum pseudophyss		01	30	GC			
Q	Barley Gron				5	1000	GC			
S) cardiophylla - W	1	N	3	2	MS	-6		
1	Sida corrugo			N	01	20	GC			
28		m) Melanoxylon -B	lackwand	N	2	7	ms			
500	Acada decor		the protection of the part.	N	5	5	ms			
F	Horehornd -	Marry	biam vulgeve	M	01	3	GC			
G	Wild Oats	Avenu		G	01	50	GE			
¢.,	Janan		harvia domuin.	A	0.1	3	GC			
E	St barnabys the	1	urea solstialis	6	0)	10	GC			
F	lucerne.	Medu	1	Ē	0.1	5	GC			
F	Dou thistle		nchus olerace		0)	1	GC			
C.	D. Intarno ana ? 1	1	duspama sp.	N	01	5	GC	6		
Ã	Faren Box	Encal	motic microcar		10	3	05	1		
U	Cieg our	L VIE VVC	A manual and		10	-	Con and			
	26									

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAN	1 Site – Field Surve	y Form		Site SI	heet no:	1 of
		Survey Name	Plot Ide	entifier	Re		
Date	19 10 17	Wellingbr North	WSF13-0	exolic	JG/LH		
Zone	Datum	IBRA region NSU S	lopes	Photo #		Zone ID	
Easting 52919	Northing 640-257-9	Dimensions	20	50	Orientation of midli from the 0 m poi		1 al 1=0.
/egetation Cl	ass	Exotic Crops .					Confidence: H M L
Plant Commu	inity Type	Exotic				EEC:	Confidence: H M L

	Attribute m ² plot)	Sum values	
	Trees	0	
	Shrubs	0	
Count of Native	Grasses etc.	0	
Richness	Forbs	2	
	Ferns	0	
	Other	0	
	Trees	0	
Sum of Cover	Shrubs	0	
of native vascular	Grasses etc.	0	
plants by growth	Forbs	5.1	
form group	Ferns	0	
	Other	0	
High Threat	High Threat Weed cover		

BAM Attribute	(20 x 50 m plot) # Tree Ster	ms Count	Record number of
dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*
large trees for Euc* & Non Euc	80 + cm -	~ ``	-	(Euc*) and living native non-eucalypt (Non Euc) stems
50 –	79 cm	- Yerow	ø	separately * includes all species
30 – 49 cm		and a	10ATCA	of Eucalyptus. Corymbia, Angophora,
20 – 29 cm	-	_	(Lophostemon and Syncarpia
10 – 19 cm		-		[†] Record total number of stems by size class with
5 – 9 cm	_	-	n/a	hollows (including dead stems/trees)
< 5 cm		-	n/a	
Length of logs (≥10 cm diameter, in length)		0		total

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. For **hollows** count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)			
Subplot score (% in each)	15 15 10 15 25	60 70 70 50 50	00000	00000			
Average of the 5 subplots	12	49.5	0	0			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (option						
Morphological	Landform	Landform	Microrelief			
Type	Element	Patlern				
Lithology	Soil Surface	Soil	Soil			
	Texture	Colour	Depth			
Slope	Aspect	Site Drainage	Distance to nearest water and type			

Plot Disturbance	Severity code	Age code	Observational evidence:					
Clearing (inc. logging)								
Cultivation (inc. pasture)								
Soil erosion								
Firewood / CWD removal								
Grazing (identify native/stock)								
Fire damage								
Storm damage								
Weediness								
Other	1							

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs), O=old (>10yrs)

Printed 29 September 2017

400 m ²	plot: Sheet _ of _	Survey Name	Plot Identifier		Recorde	ers		
Date	19/0/7	Wellington North	WNSF13	Lise	1)whie	2	
GF Code	All other native and exol	each growth form group: Ful tic species: Full species nam	e where practicable	N, E or HTE	Cover	Abund	stratu m	vouch er
(G)	Oats -	crop AL	lena sativa mus hordeaceus deum leporniul emone ochroleuco	E	AO	1000	GC	
G	Saft	brame Bro	mus hordeaceus	E	10	500		
E	Cida	corrugata	a get the Barry American Contraction	N in	+(5	GTC	2
G	barles	n grass-Hon	deum leporniu	NE	1	500	40 1 -000	
) H	Mexica	in popjoy - Arge	emone ochroleuco	2 E	•	1005	bGC	
1. F								
)GIL	Ryc	grass Lo	lium perenne Medicago minin	E	•1	20	GC	
F	Furry	medic - 1	Medicago minin	19 15	2	50	GC	
Gr	2 10	w barley-	ag Hordeum dist	ichan E avos E	•/	10	GC	
(F)	Rate	toul phesei	ie - Vulpla my	Avos E		20	GC	
E	- ta	wwwe -Boerh	anna domini	N	5	500		
	Clau	er sp-white	ag Hordeum dist 2 - Vulpia my anna domini Alimen sublesione Malva pervisite	wa E	• 1	50	GC	
F	Small flow	vered mallow -	Malva parvisle	eva F	*/	2	GC	
			/					
				4				
				2				
		*						
					-			

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAN	I Site – Field	Site Sheet no:							
		Survey N	ame	Plot Ide	entifier	Reco	rders			
Date	19 10 17	Wellington	North	WNSF	14	Lisa Jul	ie			
Zone	Datum	IBRA region	SW	5	Photo #		Zone ID	-		
Easting 684381	Northing 6402866	Dimensions		20%	isom	Orientation of midline from the 0 m point.	340	5		
Vegetation C	lass	grassy	Woodl	land				Confidence: H M L		
Plant Community Type YB planted regetation					EE	Confidence: H M L				
	and northing from the pape) of 0.04 ha base p					is along direction of midline. aken along midline.				

BAM	BAM Attribute Sum values		BAM Attribute	e (20 x 50	m plot)	# Tree Ste	Record number of	
(400	m² plot)	Sum values	dbh		Euc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	4	large trees for Euc* & Non Euc	80 + cm	0	0	0	(Euc*) and living native non-eucalypt
	Shrubs	6			<u> </u>			(Non Euc) stems separately
Count of	Grasses etc.	3	50	– 79 cm	0	0	8	* includes all species
Native Richness	Forbs	5	30 – 49 cm	1		0	0	of Eucalyptus, Corymbia, Angophora.
	Ferns	0	20 – 29 cm	11/1		HH	6	Lophostemon and Syncarpia
	Other	0	10 – 19 cm			(0	¹ Record total number of stems by
	Trees 50 Sum of Shrubs 58			1		1.11	-	size class with
			5 – 9 cm	111		HHI	n/a	hollows (including dead stems/trees)
Cover of native vascular	Grasses etc.	20	< 5 cm	1		1	n/a	
plants by	Forbs	0,6	Length of log					total
growth form group	Ferns	0	(≥10 cm diamete in length)	er, >50 cm	, >50 cm			0
	Other	0	Estimates can be	e used wher	n the number	of living tree stems wit	g tree stems wit hin a class is > 1	hin the size class is ≤10. 0. Estimates should draw
High Threat	Weed cover	10	from the number				1.5.11	1
			count only the pr	resence of a	stem contain	st living stem is include ing hollows, not the co ed. The hollow-bearing	ount of hollows in	that stem. Only count as

BAM Attribute (1 x 1 m plots)	Litter cover (%) Bare ground cover (%)				Cryptogam cover (%)				Rock cover (%)							
Subplot score (% in each)	65 30 40 40 70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Average of the 5 subplots	43.6	0			0				0							

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

- 20

551

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal		*******************************	
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

400 m ² j	olot: Sheet 2 of _	Survey Name	Plot Identifier			Recorde	ers		
Date	19 10 17	Wellenghen North	WSF 19 Blanting	JG	144 .	>			
GF Code		each growth form group: Fu ic species: Full species nan			N, E or HTE	Cover	Abund	stratu m	vouch er
9	Acacia decorcu	·			N	10	1	ms	
T	Eucalypt 2 (thick	cally leaf gum)			N	10	2	ms	-
F	Cida corruga	ta 91			N	0.1	50	GC	
F	son thistle		Sonchus olera		E	6.1	2	GC	
6	Ryegrass		Lolium peren	ne	E	30	600+	GC	
6	Borley grass	ŀ	fordeum leporin	пим	E	15	1000	GC	
Q	Great Grome	B	romus diand	rus	HTE	10	1000+	GR	
Ð	Uld Sage	Sc	aluia verbenaci	a	N II I	3	500	GE	
6	Acacio will rifer	mo		1	N	20	2	GE	1
F	Atuples semibi				N	0.2	50	GC	
F	Einadia nutans				N	0.2	100	GC	
Gr	Soltbrome	Bro	mus hordeace	ers	ter	03	5000		
	Melaleuca line	anfolia			N	011	1	MS	
1	Melaleuca nodi		A	1	N	1%	1	MAS	
Gr	Phalasis.	Pha	laris aquahca aurea solstitia	,	Tom	15	100	GC	
Ð	At Gainabys this	ste Cerr	aurea solshie	alis	E	OB	50	GE	
G	Approbalos	Paspa	alidium conshic.	12mm	N	01	30	GC	
Ô	ringed wallaby	grass Ryh	dosperma caespilo	sum	N	20.	100	GrC	
F	Variequited this	stle Sily	bum marubium		E	١	100	GC	
F	RUNDA duniós	sus		-	N	01	ſ	GC	1
2	Aracial-brinypu				N	1	2	MAG,	-
7	Angophara sp (App	leBon?)			N	5.	1	ms	فتلعده
S	Acacia Nobillansik	evale) Acacio	ptus medidor	1	N	5	1	ms	ĺ
T	Yellow DOY				N	15.		MS	
F	clove.	Trifoliu	m abterraneum		FI	01	30	GC	
The second	penna	Denna	(occidentalis) -	E	0.1		GE	
F	Khaki weed	Altern	anthera punger	15	t.	0 1	1	GC	
F	Pattersons (une	Echiuw	n plantequum		14	0.1	1	GR	
F	Querros .	Dolanu			E	0	10	GC	
-	Blackthistle	Cirsiyi	m vulgare		1	01	1	GE	
T	White Box,		ptus albens		N	20	1	os	
F	Willadimia boft h	uir) Vitladi	hia coreata		N	6.1	1	GC	
		*							

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

A C

	BAN	I Site – Field		Site Sheet no:					
		Survey Name		Plot Identifier		Recorders			
Date	20 10 17	Wallington	ballington North WNSF 15		Jullie + Lisa.				
Zone	Datum	IBRA region	SWSlop	res	Photo #		Zone ID		
Easting 686044	Northing 6403321	Dim	ensions			Orientation of midlin from the 0 m poin			
Vegetation C	lass			. Woo				Confidence: H M L	
Plant Community Type		White Box Wood			ional	EEC:	Confidence: H M L		

BAM	Attribute	0	BAM Attribu	ute (20 x 50	m plot)	# Tree Ster	ms Count	Record number of
(400	m ² plot)	Sum values	dbh		Euc* 🚳	Non Euc	Hollows [†]	living eucalypt*
· · ·	Trees	120 s/h 7.	large trees for Euc* & Non Euc	80 + cm	0	• 0	0	(Euc*) and living native non-eucalypt (Non Euc) stems
	Shrubs	0° Ø	5	0 – 79 cm	111	0	11	separately
Count of Native	Grasses etc.	3 OHB			11(3	5	ų į	 includes all species of Eucalyptus.
Richness	Forbs	O DA	30 – 49 cm	()	8	0	0	Corymbia. Angophora,
	Ferns	0.01	20 – 29 cm	. 6	2.	0	0	Lophostemon and Syncarpia
	Other	10/1	10 – 19 cm		0	0	0	¹ Record total number of stems by
	Trees	. 30.						size class with
Sum of Cover	Shrubs	0.	5 – 9 cm		0	0	n/a	hollows (including dead stems/trees)
of native	Grasses etc.	0.6	< 5 cm		0	0	n/a	
 plants by growth 	Forbs	0	Length of lo		3.5m	m 1.5 1.2	1.3 5m	total
form group	Ferns	0	(≥10 cm diame in length)	eter, >50 cm		3.5 lm . 8m	Im Sml.	25.3
d. 1.	Other	0.1	Estimates can	be used whe	n the number (of living tree stems with		hin the size class is ≤10. 0. Estimates should draw
High Threat	Weed cover	0.5	front the numb				d in the accustion	atimata. Far hallows
	4		count only the	presence of a	a stem contain	st living stem is included ing hollows, not the cou ed. The hollow-bearing	unt of hollows in	that stem. Only count as
BAM Attribu	te (1 x 1 m plots)	Litter co	over (%)	Bare grour	d cover (%)	Cryptogam co	ver (%)	Rock cover (%)
Subplo	t score (% in eac	H) 80 70 9	598 60 K	0 1.0	102	0000	000	0 8 0 2
		ts 80	1.6 .	~	-			0.4

Littler cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, tongs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation Integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site	features that may help in	determining PCT and Mar	nagement Zone (optional)
arabalagical	Landform - *	Landform	

Morphological Type		Element .	-	Pattern *	•	Microrelief	-
Lithology		Soil Surface Texture		Soil. Colour -		Soil .Depth	1
Slope	· ·	Aspect		Site Drainage	•	Distance to nearest water and type	

Plot Disturbance	Severity code	Age code	Observational evid	lence:		•				
Clearing (inc. logging)	k .			•						
Cultivation (inc. pasture)	•							0	*	
Soil erosion			•	•	·		*	-	:	
Firewood / CWD removal	1	•						-	•	
Grazing (identify native/stock)				A		•		1		10
Fire damage				•						•
Storm damage				0			•••	0		
Weediness			•			*				
Other '		*	1	•					0 ^e	

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe Age: R=recent (<3vrs), NR=not recent (3-10vrs), O=old (>10vrs)

Form version 5 - designed March 2017

۹ 💮

-

400 m ² i	plot: She	eet	of	Survey Na	me	Pl	ot Identifier		1 -	Rende	ers		
Date	20	10		Wellington 1			-WB	Ja.	/uH			,	
									109	-	6		
GF Code				in each growth form xotic species: Full sp				ory	N, E or HTE	Cover	Abund	stratu @m	vouch er
	White	Ro	×	an morning with and	E	ucaly	otus albi	ens.	N	30	4	T	
Gr	Auso	stat	o de	enticillata	A	ustrost	ipa verti	illata	N	04	20		
Ē	Flore	cho	und			larub		laave	E	04	50	GC	
Ê	Lince	wal			M	edice	ago sat	iva	E	0:4	80	GC	
Ð				nightshade	Se	Janus	n elaeg		HTE	67.5	100	GC	
G				ireie			Cathart		F	0.2	300	C+C	•
F				ild must-id)			tourifo		Ē	01	50	GC	
	Courses - 1	A CONTRACT	100	10-110-51-50-			10.000		0	01	14	510	
1	Kenn	1010	ma	(seedling)	Bro	achvel	Jon popu	theis	N	01	2	05	
		1.1	10.	bana		1	fabaci		N	01	2	GC	
G				stippides	40	1	3		N	61	2	GC	
Cr	C Q a	Cabo	alus	stippioses	Dric	nation	in constr	ich ina	N		50	GC	
t	e lou	-	1821.2				Suberrar			01		GE	
- former -	A REPORT OF A REAL	101	bir	dil	1	hulut	+erres	-Luc	E	01	30	GC	
-	Can	asi p	1011	Carl & C	11	10MIM	Terre	51115	E	0.1	1.50	UL	
												22	
-						÷	15.	7					
								la-					
							and a second sec						
				•									
	5.00	-		#)							0		
				· · · · · · · · · · · · · · · · · · ·									
			100 y			£							
	1		2		6								
										2			
	-												
	20												
	.d.			+	•			4					
	3.3										$\sim \gamma$		
			ų.										5
										18			
							- 9	· · · · · · · · · · · · · · · · · · ·					
									7				
	é n												

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAN	I Site – Fiel	d Surve	y For	m	Site S	neet no:	of	
		Survey N	ame	Plot Identifier		Recorders			
Date	20/10/17	Wellingfor	1 North	WH	SF16	Lisa	[Julie	2	
Zone	Datum	IBRA region	SN	15	Photo #		Zone ID		
683573	Northing 64_03559	Din	nensions	20	o x som	Orientation of midli from the 0 m poi			
Vegetation C	lass		V	Noo	dland			Confidence: H M L	
Plant Commu	unity Type	YB	Plan	ted	Vegeta	hom	EEC:	Confidence: H M L	

Attribute	Sum values	BAM Attribute (20)
m² plot)	Sum values	dbh
Trees	14-3	large trees for 80 Euc* & Non Euc
Shrubs	MAL	Cin
Grasses etc.		50 – 79 c
Forbs	2	30 – 49 cm
Ferns	0	20 – 29 cm
Other	0	10 – 19 cm
Trees	60.1	10 – 19 cm
Shrubs	20 ./4	5 – 9 cm
Grasses etc.	0.1	< 5 cm
Forbs	0.2	Length of logs (m)
Ferns	0	(≥10 cm diameter, >50 o in length)
Other	Ø	Counts must apply to ea Estimates can be used
Weed cover	0	from the number series For a multi-stemmed t
	Shrubs Grasses etc. Forbs Ferns Other Trees Shrubs Grasses etc. Forbs Ferns	m² plot) Sum values Trees M-3 Shrubs M-1 Grasses etc. 1 Forbs 2 Ferns O Other O Trees Solution Shrubs 20 M Grasses etc. 0.1 Forbs 0.2 Ferns O Other 0 Other 0

BAM Attribute (20 x 5	0 m plot)	# Tree Ste	ems Count	Record number of			
dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*			
large trees for 80 + Euc* & Non Euc cm	0	0	0	(Euc*) and living native non-eucalypt (Non Euc) stems			
50 – 79 cm	C	0	0	separately * includes all species			
30 – 49 cm	6	0	6	of Eucalyptus, Corymbia, Angophora,			
20 – 29 cm	11	\mathcal{O}	Ø	Lophostemon and Syncarpia			
10 – 19 cm	1 3	0	0	¹ Record total number of stems by size class with			
5 – 9 cm	1	0	n/a	hollows (including dead stems/trees)			
< 5 cm	61	5	n/a				
Length of logs (m) (≥0 cm diameter, >50 cm in length)	4m1	51.5 Zv	W)	total 9m			

Counts must apply to each size class when the **number of living tree stems** within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a multi-stemmed tree, only the largest living stem is included in the count/estimate. For hollows count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	6090257030	1 1 60 5 40	00000	00000
Average of the 5 subplots 42.4		21.4	0	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological Type	Landform Element	Landform Pattern	Microrelief
Lithology	Soil Surface Texture	Soil Colour	Soil Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:	
Clearing (inc. logging)				
Cultivation (inc. pasture)				
Soil erosion	1		×	
Firewood / CWD removal				
Grazing (identify native/stock)				
Fire damage				
Storm damage				14-
Weediness				
Other	1			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs), O=old (>10yrs)

400 m ² p	lot: Sheet _ of _ Survey Name Plot Identifier		Recorde	ers		
Date	2010 1= Wellington North WHSFLD			K/L	H	
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratu m	voud
P	Weeping Myall Acacia pendula	·N	10	2	MS	
A	VellowBox Eucloyoths Mellidova	N	40	5	ÓS	
5	Melaleuca straheloides.	N	20	A	MS	
(G)	Bromus cathartiens	E	0.5	100	GE	1
G	Rye Grass I dium periens	E	O.S	100	GC	
(Ga)	BarleyGarass Hordeum Leponnum	pa-	0.5	100	GC	
(R)	Lucerne Medico sofiva	E	01	20	Cal	
(C)	Eineda nutans	N	01	1	GC	
T	S S S S S S S S S S S S S S S S S S S		01	30		
G	Ringed Wallaby Grass Ryfido sperma caespiti	SA N	01	1	GC	
E	Hogweed Zaleya galericulato	N	01	1	GC	
7	Store sectional		0.1	8		
TBA	Acacia lineatolia (seedling)	N	0.1	1	MS	
1.501	Teneror (Second)		- 1			
	· · · · · · · · · · · · · · · · · · ·					
	7					
			•,			
)					
						-
					v.	
		× 1				
		1				
		1				
	7	t.		_		

GF Code: see Growth Form definitions in Append. 1 N: native, **E:** exotic, **HTE:** high threat exotic **GF** – **circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...10 % (folia: e_ver); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area or approximately 4^{-4} x 1.4 m, and $1\% = 2.0 \times 2.0$ m, $5\% = 4 \times 5$ m, $25\% = 10 \times 10$ m **Abundance:** 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

	BAN	I Site – Field	Surve	y Form		Site S	heet no:	1 01
		Survey Na	ame	Plot lo	dentifier	R	ecorders	
Date	201017	mellingtor	1	WNSF	17	L192 +	Julie	
Zone	Datum	IBRA region	SW	5	Photo #		Zone II)
Easting bsume	Northing	Dim	ensions	ZOY	som	Orientation of mid from the 0 m po	1.00	Pillionelio
Vegetation C	lass	К.	Carr	assy	Wood	land		Confidence: H M L
Plant Community Type		planted veg				EEC:	Confidence: H M L	

BAM	Attribute	Cum undung	BAM Attribute	e (20 x 50	m plot)	# Tree Ste	ems Count	- Record number of
(400	m² plot)	Sum values	dbh		Euc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	4	large trees for Euc* & Non Euc	80 +	0	0	0	(Euc*) and living native non-eucalypt
	Shrubs	0	Euc" & Non Euc	cm	11.1.1	~		(Non Euc) stems separately
Count of	Grasses etc.	0	50	– 79 cm		D O	0	* includes all species
Native Richness	Forbs	6	30 – 49 cm	and a sector	TIG	0	0	of Eucalyptus, Corymbia, Angophora,
	Ferns	0	20 – 29 cm	rrritag nerative damenaa	E	1 6	0	Lophostemon and Syncarpia
	Other	0	10 – 19 cm	1	~	~	0	1 Record total
	Trees	37.5	10 - 13 cm		Q	0		number of stems by size class with
Sum of Cover	Shrubs	0	5 – 9 cm	ALALST .	\bigcirc	3	n/a	hollows (including dead stems/trees)
of native vascular	Grasses etc.	0	< 5 cm		0	0	n/a	
plants by	Forbs	0	Length of log			5		total
growth form group	Ferns	0	(≥10 cm diamete in length)	r, >50 cm		C		0
	Other	0						hin the size class is ≤10. 0. Estimates should draw
High Threat	Weed cover	0.1	from the number					
			count only the pr	esence of a	a stem contain	st living stem is include ing hollows, not the co ed. The hollow-bearing	ount of hollows in	that stem. Only count as

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)		
Subplot score (% in each)	7030352515	00.10	0000	00000		
Average of the 5 subplots	35	1.02	0	0		

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			, , ,
Fire damage			
Storm damage			
Weediness			
Other	1		

Severity: ()=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs). NR=not recent (3-10yrs), O=old (>10yrs)

ا 400 m ²	olot: Sheet _ of _ Survey Name Plot Identifier		Recorde	ers		
Date	20 10 Fre Wellington North WSFIT- Planted J	G/UH	C			
GF Code	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratu m	vouch er
D	Riverked Gum Eucalyptus amaldulen	ra N	30	R	05	Bh. Com
Q	River Red Gram Eucalyptus camaldulen tall Wheat Grass. Thinopyrum pohticu	m C	(BO	1000	GC	
0	WIDNA WIENE	N	D.	1	ms	84.7
Ŵ	Barley Gran Hordeum leporinum Rye Gran Lolium perenne Camel Melon reedlings in Crtrullus Canatus Bathwat Buck Spinosur	E	10	1000	GC	
(6)	Rye Gran Lolium perenne	E	13	100	GC	
<u> </u>	Camel Melon reedlings in Crtrullus Canatus	E	0.1	20	GC	
		HTE	6.1	1	GC	
S	Callistemon (allistem seteres	N	05	1	MS	Sec. 1
	Casuarina conninghamia Souchus alevarens	·N	5	4	MS	2
	pouthuste Sonchus oleraceus	e	0.1	1	GC	
			12			
	20					
	21					
	22					
	MERUD	-				
	24				- China	
	25					
	0.0					
	Z ²					
	05					
					-	29
						-

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAN	I Site – Fiel	d Surve	y Form		Site	Shee	et no:	of
		Survey N	ame	Plot Ide	entifier		Reco	rders	
Date	201017	Wellington	North	WNSI	F18	Lisa	Jul	2	
Zone 55	Datum	IBRA region	SN	15	Photo #		100	Zone ID	
Easting 682.759	6464126	Din	nensions	-		Orientation of min from the 0 m p		166"	0
Vegetation C	lass		GNAS	ssy h	loodla	nel			Confidence: H M L
Plant Commu	unity Type	F	lante	d White	box	woodland	EEG	C:	Confidence: H M L

	Attribute m ² plot)	Sum values			
	Trees	2			
	Shrubs				
Count of	Grasses etc.	01			
Native Richness	Forbs	5			
	Ferns	0			
	Other	0			
	Trees	8.1			
Sum of Cover	Shrubs	25			
of native vascular	Grasses etc.	30?			
plants by	Forbs	0.6			
growth form group	Ferns	0			
	Other	0			
High Threat	High Threat Weed cover				

BAM Attribute	(20 x 50 m	plot)	# Tree Ste	ems Count	Record number of			
dbh	Euc	*	Non Euc	Hollows [†]	living eucalypt*			
large trees for Euc* & Non Euc	80 + cm	0	0	Sectore	(Euc*) and living native non-eucalypt (Non Euc) stems			
50 – 79 cm 30 – 49 cm		υ	0	and the second se	separately * includes all specie			
		1	0		of Eucalyptus, Corymbia, Angophora,			
20 – 29 cm			0	p	Lophostemon and Syncarpia			
10 – 19 cm	LHT		0	Charles	¹ Record total number of stems by size class with			
5 – 9 cm	111		HHT	n/a	hollows (including dead stems/trees)			
< 5 cm	_0		diany is a	n/a				
Length of logs (≥0 cm diameter in length)				0	total			

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. For **hollows** count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	50 50 80 50 30	00000	0000,01	50452 3030
Average of the 5 subplots	40.	0	0.04	26

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other	1		

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

Printed 29 September 2017

0 m²	olot: Sheet _ o	f_[Survey Nar	me	Plot	Identifier	1. 1. C.		Rec	ers	1	
Date	20 10 1	7	Wellington N	orth	WBWoodle	nd planted	JGE/	LH				
GF ode	Top 3 native spe All other native a	cies in ea Ind exotic	ach growth form g species: Full spe	roup: Fu ecies nan	ll species na ne where pra	me mandatory acticable		N, E or HTE	Cover	Abund	stratu m	vou
D	White Book	χ	(A		realyp	tus alb	ens.	N	8	the for	os	
S)	Acacia Is	(1) F	cacia itea	phyl	la	1		N	25	5	MS	
E)	Sporeshe	alis	h	Pos	spalidi	om consi	huctur	N	30	100	GC	Harr
Gr	Wild Oats	5			ena	fatua	_	E	10	1000	GC	2
-	Oman bly	eed	/	Asi	phode	hus fish	alasus	E	01	5	GC	
F	Hoveho	uno	1	mi	irubian	n vulga	re	E	0.2	20	GR	
$\left(\overline{\lambda} \right)$	Great	Gran	ne	6	Bromus	diane	lus	HTE	10	500	GC	
H	Oxalis	pe	vennar			Charles and Charles		N	01	30	GAC	
7	Rumext							N	01	1	GC	
C	Eingolio	0.000	utans		1			N	01	1	GAC	
Г	Kuwaje			Ba	achyel	nton pop	Ineu		01	1	MS	1357
		1 - A war	Hinto	6	enter	la solst		Ē	6.1	6	GC	
e- p	Prickly			10	ctuca	serviola		E	01	5	P.C	
	Hogwe	1 A	Voc Com		leya	galerici	late		01	20	GE	
	Tel fam. sha	140 11	hall there a			verticall			04	40	AL	
(L)+- 1/	Dichand	van	projens	MUST	103 1	VUITURA	M 03	N	0.1	20	00	
p	Loman			nic				N	0.1	00	Cal	
an-	11/2 /2			1	- r.1	a country as	Po it was		1,77	1	Col	1
par-	black	ren and	phighsh	20-5	2 201	anum ni	Gravn	bimpu-	01	2	ac	
	20 1					67						
	120	- 2 - 2				DA						
		1		-4		re						
	- 4.4 											
	- 2.5										-	
	204							×.				•
	25	1			2				0			
	Rocky iv	R+ 6 17	10			2				10		
	27											
	76											
	29											
		÷									к.,	
	àu.		2011									
	2.2					6.4	×1.					
	28								×			
								2				
	10	ł		14					1.1			
						2						
_	liddiad		· · · ·									
110000										3		
Contractor Contractor												

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, **HTE:** high threat exotic **GF** – **circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm a circle about 71 cm across, 0.5% cover represents an area of approximately $1.4 \times 1.4 m$, and $1\% = 2.0 \times 2.0 m$, $5\% = 4 \times 5 m$, $25\% = 10 \times 10$ **Abundance:** 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

C

Printed 28 August 2017

V

1

							100					
	BA	Site - Field	d Surve	y Form		Site S	et no): 1 of				
	-	Survey N	ame	Plot lo	lentifier	R	ecorders					
Date	201017	Wellington	North	WNST	= (9	Usa t	Juil	10				
Zone	Datum	IBRA region	SV	15	Photo #		Zone) ID				
Easting	Northing 6403791	Dim	nensions		A	Orientation of mid from the 0 m po		54°				
Vegetation C	lass		C/ V	ASSIAN	GA			Confidence: H M L				
Plant Commu	inity Type	Low C	endite	m gra	ssland		EEC:	Confidence:				

BAM	Attribute	Cum undung	BAM Attribute	(20 x 50 m plot)	# Tree Ste	ems Count	Record number of
(400	m² plot)	Sum values	dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	0	large trees for	80 +			(Euc*) and living native non-eucalypt
	Shrubs	0	Euc* & Non Euc	cm			(Non Euc) stems separately
Count of	Grasses etc.	1	50 –	79 cm			* includes all species
Native Richness	Forbs	3	30 – 49 cm	-			of Eucalyptus, Corymbia, Apgophero
	Ferns	0	20 – 29 cm	_			Angophora, Lophostemon and Syncarpia
	Other	0	10 – 19 cm				1 Record total
	Trees	0	10 - 19 cm				number of stems by size class with
Sum of Cover	Shrubs	0	5 – 9 cm			n/a	hollows (including dead stems/trees)
of native vascular	Grasses etc.	0.1	< 5 cm	_		n/a	
plants by	Forbs	0.3	Length of logs				total
growth form group	Ferns	0	(≥ 0 cm diameter, in length)	>50 cm			and the second se
	Other	0					nin the size class is ≤10. D. Estimates should draw
High Threat	Weed cover	0	from the number se	eries: 10. 20, 30, 100	. 200. 300	1111 a class 13 - 11	. Estimates should draw
		Ŭ	count only the pres	ed tree, only the large ence of a stem contain are tree is multi-stemm	ing hollows, not the co	unt of hollows in	that stem. Only count as

BAM Attribute (1 x 1 m plots)	Li	tter cove	er (%)		Bar	e gro	ound co	ver (%)	Cryptogam c	over (%)		Rock	cove	r (%))
Subplot score (% in each)	20 2	15 30	-0-0 -0-0	20	1 and	0	153	10	100	000	-0-0	0	G	G	0	\bigcirc
Average of the 5 subplots		22.	6													

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and	nd Management Zone (optional)
---	-------------------------------

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other	I		

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

Nor

00 m² p	olot: Sheet _ d	of _	Survey Name	Plot Identifier	14	- <i>1</i> 2-12	Recorde	ers		
Date	2010	17	Willing her North	WSFICI	Ja	: /LES	41 IS			
							_		0.000	
GF Code	Top 3 native spe All other native	ecies in and exc	each growth form group: Fo tic species: Full species na	ull species name mandatory me where practicable	- Andre	N, E or HTE	Cover	Abund	stratu m	voucler
F	FUZZWA	c-ed	- cuneata	Villadina coned	ita	2	0.1	30		
F	Cidaco	rrva	gata	Sida convart		N	0.1	2		
	wild Oa	15	gata	Avena faka		e	40	1000		
	Jureme			Medicago Satu	Ċ	6	10	100		
G	Austosh	Dav	ehallah	Astrostipa vertic		N	01	1		
	RVR Gr	ass		Lolium perenn	e	Zww	10	500		
	Barley	Gra	in	Hordeumlepol	inam	e	10	500		
F	Einadia			Ernadia nutar	ns	N	01	/		•
	10									
	12									
	13									
	15									
	a ().									
	19									
	20									
	24									
	72									
	2									
	-24									
	25									
	25									
	27									
	2.6									
	20									
	30									
	31									
	1.27									
										-
	1-1									

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

Printed 29 September 2017

ΰ

	BAN	/ Site – Field S	Site Sheet no:					
		Survey Name	,	Plot Identifier		Recorders		
Date	20 10 17	Nellinsten Nom		WNSF20		Julie	+ 1	159.
Zone 55	Datum	IBRA region	SWS	S	Photo #		Zone ID	
Easting 685132	Northing 6403876	Dimens	ions	Đ		Orientation of midlin from the 0 m poir		th a price
Vegetation Class		Woodland					Confidence: H M L	
Plant Community Type		Planted Veg				1	EEC:	Confidence: H M L

BAM Attribute		Sum values	BAM Attribute (20 x 50 m plot)			# Tree Ster	# Tree Stems Count		
(400	m ² plot)	Sulli values	dbh		Euc*	Non Euc	Hollows [†]	 Record number of living eucalypt* 	
Trees		5	large trees for	80 +		_		(Euc*) and living native non-eucalypt	
	Shrubs	0	Euc* & Non Euc	cm	_			(Non Euc) stems separately	
Count of	Grasses etc.	0	50) – 79 cm	_			* includes all species	
Native Richness	Forbs	3	30 – 49 cm	0		0		of Eucalyptus, Corymbia, Angophora,	
	Ferns	0	20 – 29 cm	(Lophostemon and Syncarpia	
	Other	0	10 – 19 cm	LITIC	HIIK,	114		[†] Record total	
	Trees	29			MIL	1411	1	number of stems by size class with	
Sum of Cover	Shrubs	0	5 – 9 cm	HAT	11	1)/	n/a	hollows (including dead stems/trees)	
of native vascular	Grasses etc.	0	< 5 cm	E		HTHI	n/a		
plants by growth	Forbs	03	Length of log					total	
form group	Ferns	0	(≥10 cm diamete in length)	er, >50 cm	0			0	
	Other	Ó	Counts must ap Estimates can b	ply to each s	ize class whe	en the number of living of living tree stems with	tree stems with	in the size class is ≤10.). Estimates should draw	
High Threat	Weed cover	0	from the number	r series: 10,	20, 30, 100	st living stem is included			

		ne presence of a stem containing tree where tree is multi-stemmed	. The hollow-bearing stem may b		
BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)	
Subplot score (% in each)	70 85 75 8995	00000	00000	10000	
Average of the 5 subplots	82.8			(

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope Aspect		Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

ot: Sheet 20 10 Top 3 native spec All other native and AcdCIA pyc			W	SF20			1			
All other native a				120	-	JG/LH				
All other native a				plan	As /	1.1.4	1	1		
Acacia pyc	ia enere op	growth form grou becies: Full specie			atory	N, E or HTE	Cover	Abund	stratu m	voucler
	antha					N	2	<u></u>		
horehound			Marri	bium vulga	re	E	2	15		
Small flow	ered Ma	lav	Malu	a parviflon	â	E	05	100		
anegated	thistle		SILp	sh maria	num	E	0 i	and the second s		
Callop		-		us terres		e	01	100		
oon thistle			Sond	ius olerace	eus	E	01	52		
vild Oats			Avena	Itaha		E	5	500		
rome		(Bromu,) carthart	CUD	e	8	SCE		
Vid to think	2		BIASSI	ca hourne fo	intri	e	01	10		
Silver Vattle			Acae	10 deal	bata.	N	# <i>(</i>)	430		
ommon Pep	perchan	2	Lepidic	m pseudohys	soptolu	n D	01			
EUC -Raught	scaed Gun	n-glaurosko	Neg.	, ,		N	13	7		
Einedia nut	ans	0	Eina	dia nuta	ns	2	0.1	1		
oxalis peren	rens		Oxali	perennen	D	2	01	10		
oxalis peren Wild musta	rcl		Disym	brium enjsi Iea robust	imoida	A C	01	30		
silky vale		(TIEVIL	lea robust	í.	N	11			
Eux -wonbow	C					N	11	in the second		
Lucerne		N	Nedical	o sativa		e	01	5		
	ກ				num	E	10	500		
-1010				10						
2.4										
20										
20										
	Uniter grow	Burley grow	Kenter groop P	Horded	Hordburn lepor u	Burley gi on Hordeburn lepor inum			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	United and the portinition E 10 500 Image: Ima

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

	BAN	I Site – Fiel	Site Sheet no: 1 of					
		Survey N	lame	Plot Identifier		Recorders		
Date	20 10 17	Willington	North	WNSF	21	ELH /OG	-	
Zone 55	Datum	IBRA region	SW Slo	pes	Photo #		Zone ID	
Easting 684827	Northing	Dir	nensions		113	Orientation of midling from the 0 m point	6 M	 Magnetic
Vegetation Class		in Wordland						Confidence: H M L
Plant Community Type		White box wood				land E	EC:	Confidence: H M L

BAM Attribute		Sum values BAM Attrib		te (20 x 50 m plot)		# Tree Stems Count		Record number of		
(400	m ² plot)	Sum values	dbh		Euc*	Non Euc	Hollows [†]	living eucalypt*		
	Trees	/	large trees for Euc* & Non Euc	80 + cm	1//	Tatan Proc	11)	(Euc*) and living native non-eucalypt		
	Shrubs	0			E[/			(Non Euc) stems separately		
Count of	Grasses etc.	0	50 -	– 79 cm				* includes all species		
Native Richness	Forbs	2	30 – 49 cm		*6			of Eucalyptus, Corymbia, Angophora.		
	Ferns	0	20 – 29 cm		0			Lophostemon and Syncarpia		
	Other	0	10 – 19 cm		ĥ			† Record total		
	Trees	13			U			number of stems by size class with		
Sum of Cover	Shrubs	0	5 – 9 cm		C		n/a	hollows (including dead stems/trees)		
of native vascular	Grasses etc.	0	< 5 cm		0		n/a			
plants by	Forbs	0.2	Length of logs		2m 3	m 1.8 1.5	1.5	total		
growth form group	Ferns	0	(≥ 0 cm diameter in length)	r, >50 cm	Im In	" 2.3m lm	<m< th=""><th></th></m<>			
	Other	0						hin the size class is ≤10. 0. Estimates should draw		
High Threat	Weed cover	0	from the number	series: 10,	20, 30, 100,					
		3	count only the pre	esence of a	stem containir		nt of hollows in	that stem. Only count as		
BAM Attribu	ute (1 x 1 m plots) Litter co	over (%) Ba	are groun	d cover (%)	Cryptogam cov	er (%)	Rock eover (%)		
Subplo	ot score (% in ea	ch) 70803	10606020	1 40	2015	000	007	24030		

60 Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (optional) Morphological Landform Microrelief Type Pattern Element Soil Surface Soil Soil ithology Texture Colour Depth

)e		Aspect		Site Drainage	Distance to nearest water and type
Disturbance	e Severity code	y Age code	Observation	al evidence:	
ing (inc. loggin					
tion (inc. past	ture)				
sion					
1/CWD rem	noval				
dentify native/s	stock)				
је					
ige	2044.y			5	
	1				

b evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

Distance to nearest

Average of the 5 subplots

of m

Printed 29 September 2017

Date UNSEL Gef Au ober native appelses in all appoints form group: Full species name mandatory All other native and exolt species. It all species name where practicable all of the native and exolt species. It all species name where practicable and Manual material species. The species name where practicable and Manual species. The species name where practicable and the species in all species name where practicable and the name and species name where practicable and the species name where practicable and the name practicable and the species of the species of the species and the species name where practicable and the species name material species of the species of the species and the species of the species name material species of the spec	400 m ²	plot: Sheet _ of _	Survey Name	Plot Identifier	enter i	Recorde	ers		
Code All other native and excite species: Full species name where practicable Image: Covert Abund m <thm< th=""> m <thm< th=""> m <thm< th=""> m<th></th><th></th><th></th><th>WNSF21</th><th></th><th></th><th></th><th></th><th></th></thm<></thm<></thm<>				WNSF21					
E have haved Maintering village E 10 20 E wild mussbard Sisymbring englisside E 10 100 Inclum Mediago satua E 5 50 Inclum grass Harding leponium C 5 100 Caltro of birdit Tablis terrespis E 30 1000 F hage lived 2 Zalug galenutation N 1 50 T Matel Vox Evaluation leponium N 1 50 Matel Vox Evaluation leponium N N 1 50 Matel Vox Evaluation leponium N N 1 50 Matel Vox Eval Eval E 1 10 E Vox I status Eval 1 1 <t< th=""><th></th><th>Top 3 native species in All other native and exo</th><th>each growth form group: F tic species: Full species na</th><th>ull species name mandatory me where practicable</th><th>N, E or HTE</th><th>Cover</th><th>Abund</th><th></th><th></th></t<>		Top 3 native species in All other native and exo	each growth form group: F tic species: Full species na	ull species name mandatory me where practicable	N, E or HTE	Cover	Abund		
E horehand Manufium pullation E 120 20 E wild mastard Sisymbum englisholde E 10 100 Marine Medicago satua E 50 50 Marine grass Hording satua E 50 50 Calloo Jacks Hording satua E 30 1000 F hoge Weld Zatua galenulatin N 1 50 F hoge Weld Zatua galenulatin N 1 50 T Marte Vox Zatua galenulatin N 1 50 F hoge Weld Zatua galenulatin N 1 50 T Marte Vox Zatua galenulatin N 1 50 F hoge Weld Zatua galenulatin N 1 50 F Oracles percentario percentario percentario percentario percentario F Oracles percentario percentario percentario percentario	Æ.	Small P	avered nat	low ralvaparutoka	E	30	1000		
E wild mustard Sisymbum enjolioide E 10 100 Incern Medicago satura E 5 50 harver grass Hordin lepornum E 5 100 callos direct Tublis tereshis E 30 100 F hag weld Zaterg galanutate N 11 50 T Mute Vox Evaluations N 13 50 Produs perfection of the So enclose perfection of t	Ð	hoveho	und,						
Description Medicago salva e 5 50 haven grass Hordin leporinum e 300 mm 5 1000 callo o bindi Tribulis terreshis 6 30 mm F hog meled 2aleya galanulala N 1 55 T Mile Vox Evaluation leporinum N 1 55 F org meled 2aleya galanulala N 1 55 T Mile Vox Evaluation albens N 18 mm 3 11 F orgalic pender and terrespirati e 1 50 1 50 exidant - Caral Exotem todys E 1 3 exidant - Caral Exotem todys E 1 3 exidant - Caral Exotem todys E exidant - Caral Exotem todys 1 20 centairea solstialis 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 <	E	wild	mnstard	Sisymbrin enjoinoides			100		
harley grass Hordinn leporinum C. 5 1000 Callo or brind 1 Tribulus terrespis E 30 1000 F hag I weld Zaleya galeuwlah N 1 50 T Mile Vox Evalgais albers N 13 3 1 F orcalis persona tomefortic C 1 50 erodium - Caral Ecolumicators E 1 3 erodium - Caral Ecolumicators E 1 3 St Barnahys Hishle cent C 1 20 Centainea solstialis	(F)	Inceri	\wedge		e	5	50		
F hog I weld Zatup galamutati N 1 50 T Mite Vox Evalgehsülbens N13 3 T F Orcalis pervensiona torrefortic E I 50 evodium - Seval Esterningers E 1 3 St Barnatys Mistle cent E 1 20 Centairea solstialis		harle	uj grass	j-lorderm leporinum	E	-5	1000		
T Mul e Vox Evalgens albens N 13 3 1 F Oralis envenans N 1 So N		calle	of bineli	Tribulus terreshis	C	30			
T Multe Vox Evaluphis albens N 15 % 3 1 F Ocalis envenans N 1 50 1 50 evalue oralis grassia tormefortii E 1 50 1 3 evalue oralis grassia tormefortii E 1 30 1 evalue for any in tory is E 1 3 1 1 evalue for any is for any is for any is E 1 3 1 evalue for any is for any is for any is for any is 1 1 1 evalue for any is for any is for any is 1 1 1 1 for any is 1 1 1 for any is for any is for any is for any is 1 1 1 1 for any is 1 1 1 1 1	F	hog	1 weld	Zaleya galeriwlata	N		SO		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T		VOX	Evalyphsalbens	N13	A.S.	-	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F	oxal	is perver	ans		• \			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			raddlish	Brassica tomefortii	E	(
Centairea Solstialiis I I I I I I I I I I I I I I I I I I I I		ENUC	1	devariation.		• (
Image: sector		St			e	+	20		
) Ce	entaurea solstalis					
		14							
		164							
		22							
		24							
	- Carlos	1							
			Teller.						
		1.							
									_

GF Code: see Growth Form definitions in Appendix 1 **N:** native, **E:** exotic, **HTE:** high threat exotic **GF - circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); *Note:* 0.1% cover represents an area of approximately 63 x 63 cm a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 Abundance: 1, 2, 3, ..., 10, 20, 30, ... 1000, ...

BAM Site Fiel	d Survey							
Project:	Welington North	Plot Identifier	27	Pic 20x20		Pic 20x50		
Survey date:	1/06/2018		Compass Orie	entation (hea	d of 20x20 plot)		0	
Recorders	J.Gooding		PCT:	437				
GPS Easting	683412	GPS Northing	6403267		Datum	UTS	Zone	13
Landform			Soils			Drainage & S	Slope	
Morphology	Creekline		Soil Texture			Slope		
LandF Element			Soil Colour			Aspect		
LandF Pattern			Soil Depth			Drainage		
Microrelief			Geology			Watercourses		
Plot Disturba	nce							
	Severity	Age	Observationa	l Evidence				
Clearing	3	0						
Cultivation	0							
Soil erosion	2	NR						
Firewood	0							
Grazing	3	R	Heavily graze	<mark>d</mark> grasses - dif	ficult to identify	to species.		
Fire Damage	0							
Storm Damage	0							
Weediness	2	R						
Other								
	vidence, 1=light, 2=mode	rate, 3=severe Age: R=	recent (<3yrs)	, NR=not rece	ent (3-10yrs), O=	old (>10yrs)		
Additional inf	formation							
Current land use								
Grazing								
Age class of trees	(DBH range) , Condition	of Vegetation, Hollow	/S					
10 - 100	Very Few							
-	. fire, grazing,ferals, clear	ing, logging, soil degra	adation, pollut	ion, weeds, c	lieback)			
Grazing, vehicle t								
Significant and th	reatened species and co	mmunities (if present,	note pop. size	e/area, struct	ure, repro statu	s, habit, habitat,	threats, pho	tos)
Dominant Specie	s outside Plot							

27	

BAM Attribut	e (20x20m plot)		
	Stratum	Sum	
	Tree (TG)	0	
	Shrub (SG)	0	
Count of Native	Forb (FG)	1	
Richness	Grass/Sedge (GG)	2	
Menness	Fern (EG)	0	
	Other (OG)	0	
	TOTAL	3	
BAM Attribut	e (20x20m plot)		
	Stratum	Sum	
	Tree (TG)	0	
	Shrub (SG)	0	
Count of cover	Forb (FG)	0.1	
abundance	Grass/Sedge (GG)	0.6	
(<u>native</u> vascular		0	
plants)	Other (OG)	0	
	TOTAL Native	0.7	
	TOTAL 'HT'	4	
BAM Attribut	e (20 x 50m plot) Tr	ee Stem Counts	
DBH (cm)	Euc	Non Euc	Hollows
>80	0	1	1
50-79	0	0	
30-49	0	0	
20-29	0	0	
10-19	0	0	
5-9	0	0	N/A
<5	0	0	N/A
Length of logs (m		5	

	Tape length	% cover	Average %	Photos
Litter Cover		20%		
	15m	35%		
	25m	45%	45%	
	35m	60%		
	45m	65%		
Dare	5m			
	15m			
	25m		#DIV/0!	
	35m			
	45m			
~	5m			
gan	15m			
Cryptogam cover	25m		#DIV/0!	
Š	35m			
•	45m			
	5m			
	15m			
Rock Cover	25m		#DIV/0!	
	35m			
	45m			

									1
Species recor	rded for	27							
N:Native	E:Exotic	HT: Higł	n Threat Exotic						
Abbreviation	Scientific Name	Common Name	Family	Exotic	% Cover	Abundance	N, E or 'HT'	EPBC Stat	BCA Stat
TREE (TG)									
casu cunn cunn	еиса	River Oak	Casuarinacea		8	1	N		Р
SHRUB (SG)	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC Stat
lyci fero	Lycium ferocissimum	African Boxthorn	Solanaceae	*	0.1	1	HT		
FORB (FG)	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC Stat
Xant Spin	Xanthium spinosum	Bathurst Burr	Asteraceae	*	0.1	10	HT		
Cart lana	Carthamus lanatus	Saffron Thistle	Asteraceae	*	0.1	2	HT		
Zale gale	Zaleya galericulata	Hogweed	Aizoaceae		0.1	2	N		
alte pung	Alternanthera pungens	Khaki Weed	Amaranthace	*	0.1	30	HT		
GRASS/SEDGE (G	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC State
cyno dact	Cynodon dactylon	Common Couch	Poaceae		0.5	10	N		
aust	Austrostipa sp.		Poaceae		0.1	100	N		
Penn clan	Pennisetum clandestinun	Kikuyu Grass	Poaceae	*	2	10	E		
FERN (EG)	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC State
	#N/A	#N/A	#N/A	#N/A				#N/A	#N/A
Other (OG)	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC State
	#N/A	#N/A	#N/A	#N/A				#N/A	#N/A

BAM Site Fiel	d Survey							
Project:	Welington North	Plot Identifier	28	Pic 20x20		Pic 20x50		
Survey date:	1/06/2018		Compass Orie	entation (hea	d of 20x20 plot)		226	
Recorders	J.Gooding		PCT:	437				
GPS Easting	683280	GPS Northing	6402988		Datum	UTS	Zone	13
Landform			Soils			Drainage & S	Slope	
Morphology	Creekline		Soil Texture			Slope		
LandF Element			Soil Colour			Aspect		
LandF Pattern			Soil Depth			Drainage		
Microrelief			Geology			Watercourses		
Plot Disturba	nce							
	Severity	Age	Observationa	l Evidence				
Clearing	3	0						
Cultivation	0							
Soil erosion	2	NR						
Firewood	0							
Grazing	3	R	Heavily graze	d grasses - dif	fficult to identify	to species.		
Fire Damage	0							
Storm Damage	0							
Weediness	2	R						
Other								
	vidence, 1=light, 2=mode	rate, 3=severe Age: R=	recent (<3yrs)	, NR=not rece	ent (3-10yrs), O=	old (>10yrs)		
Additional inf	formation							
Current land use								
Grazing								
Age class of trees	(DBH range), Condition	of Vegetation, Hollow	'S					
10 - 100	Very Few							
-	. fire, grazing,ferals, clear	ing, logging, soil degra	adation, pollut	ion, weeds, c	lieback)			
Grazing, vehicle t								
Significant and th	nreatened species and co	mmunities (if present,	note pop. size	e/area, struct	ure, repro statu	s, habit, habitat,	threats, pho	tos)
Dominant Specie	s outside Plot							

28			
BAM Attribut	e (20x20m plot)		
	Stratum	Sum	
	Tree (TG)	0	
	Shrub (SG)	0	
Count of Native	Forb (FG)	1	
Richness	Grass/Sedge (GG)	3	
Richness	Fern (EG)	0	
	Other (OG)	0	
	TOTAL	4	
BAM Attribut	e (20x20m plot)		
	Stratum	Sum	
	Tree (TG)	0	
	Shrub (SG)	0	
Count of cover	Forb (FG)	0.1	
abundance	Grass/Sedge (GG)	2.6	
(<u>native</u> vascular	Fern (EG)	0	
plants)	Other (OG)	0	
	TOTAL Native	2.7	
	TOTAL 'HT'	3	
			-
BAM Attribut	e (20 x 50m plot) Tr	ee Stem Counts	
DBH (cm)	Euc	Non Euc	Hollows
>80	0	1	1
50-79	0	0	
30-49	0	0	
20-29	0	0	
10-19	0	0	
5-9	0	0	N/A
<5	0	0	N/A
Length of logs (m)	5	

	Tape length	% cover	Average %	Photos
Litter Cover	5m	40%		
	15m	40%		
	25m	45%	39%	
	35m	30%		
	45m	40%		
Dare	5m			
	15m			
	25m		#DIV/0!	
	35m			
	45m			
-	5m			
gan ir	15m			
Cryptogam cover	25m		#DIV/0!	
Š	35m			
0	45m			
	5m			
	15m			
Rock Cover	25m		#DIV/0!	
	35m			
	45m			

Species reco	orded for	28							
N:Native	E:Exotic	HT: Hig	h Threat Exotic						
Abbreviation	Scientific Name	Common Name	Family	Exotic	% Cover	Abundance	N, E or 'HT'	EPBC Stat	BCA Stat
TREE (TG)									
		#N/A	#N/A	#N/A				#N/A	#N/A
SHRUB (SG)	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC Stat
	#N/A	#N/A	#N/A	#N/A				#N/A	#N/A
FORB (FG)	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC Stat
Xant Spin	Xanthium spinosum	Bathurst Burr	Asteraceae	*	0.1	1	HT		
Cart lana	Carthamus lanatus	Saffron Thistle	Asteraceae	*	0.1	1	HT		
medi	Medicago spp.	A Medic	Fabaceae (Fab	*	0.1	80	N		
salv verb	Salvia verbenaca	Vervain	Lamiaceae	*	0.5	80	HT		
GRASS/SEDGE (G Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC Stat
both macr	Bothriochloa macra	Red Grass	Poaceae		2	60	N		
aust	Austrostipa sp.		Poaceae		0.5	50	N		
ryti	Rytidosperma spp.		Poaceae		0.1	1	N		
FERN (EG)	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC State
	#N/A	#N/A	#N/A	#N/A				#N/A	#N/A
Other (OG)	Scientific Name	Common Name	Family	Exotic	Cover%	Abundance	N, E or 'HT'	EPBC Stat	TSC State
	#N/A	#N/A	#N/A	#N/A				#N/A	#N/A

Appendix G EPBC PROTECTED MATTERS SEARCH

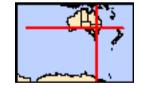
Australian Government

Department of the Environment and Energy

EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected.

Information on the coverage of this report and qualifications on data supporting this report are contained in the caveat at the end of the report.


Information is available about <u>Environment Assessments</u> and the EPBC Act including significance guidelines, forms and application process details.

Report created: 12/09/17 12:34:01

Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements Geurie Wellington

This map may contain data which are ©Commonwealth of Australia (Geoscience Australia), ©PSMA 2010

Coordinates Buffer: 10.0Km

Summary

Matters of National Environmental Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance:	4
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	None
Listed Threatened Ecological Communities:	2
Listed Threatened Species:	29
Listed Migratory Species:	11

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Land:	2
Commonwealth Heritage Places:	1
Listed Marine Species:	17
Whales and Other Cetaceans:	None
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Commonwealth Reserves Marine:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have nominated.

State and Territory Reserves:	None
Regional Forest Agreements:	None
Invasive Species:	29
Nationally Important Wetlands:	None
Key Ecological Features (Marine)	None

Details

Matters of National Environmental Significance

Wetlands of International Importance (Ramsar)	[Resource Information]
Name	Proximity
Banrock station wetland complex	800 - 900km upstream
<u>Riverland</u>	700 - 800km upstream
The coorong, and lakes alexandrina and albert wetland	900 - 1000km upstream
The macquarie marshes	150 - 200km upstream

Listed Threatened Ecological Communities

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Nievees	Otatus	Turne of Dresser
Name	Status	Type of Presence
Grey Box (Eucalyptus microcarpa) Grassy Woodlands and Derived Native Grasslands of South-eastern Australia	Endangered	Community likely to occur within area
White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland	Critically Endangered	Community likely to occur within area
Listed Threatened Species		[Resource Information]
Name	Status	Type of Presence
Birds		
Anthochaera phrygia		
Regent Honeyeater [82338]	Critically Endangered	Foraging, feeding or related behaviour likely to occur within area
Botaurus poiciloptilus		
Australasian Bittern [1001]	Endangered	Species or species habitat may occur within area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area
<u>Grantiella picta</u> Painted Honeyeater [470]	Vulnerable	Species or species habitat likely to occur within area

[Resource Information]

Lathamus discolor Swift Parrot [744]	Critically Endangered	Species or species habitat likely to occur within area
<u>Leipoa ocellata</u> Malleefowl [934]	Vulnerable	Species or species habitat likely to occur within area
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area
<u>Polytelis swainsonii</u> Superb Parrot [738]	Vulnerable	Species or species habitat known to occur within area
<u>Rostratula australis</u> Australian Painted Snipe [77037]	Endangered	Species or species

Name	Status	Type of Presence
		habitat may occur within area
Fish		alea
Galaxias rostratus	.	
Flathead Galaxias, Beaked Minnow, Flat-headed Galaxias, Flat-headed Jollytail, Flat-headed Minnow [84745]	Critically Endangered	Species or species habitat may occur within area
Maccullochella macquariensis		
Trout Cod [26171]	Endangered	Species or species habitat may occur within area
Maccullochella peelii		
Murray Cod [66633]	Vulnerable	Species or species habitat may occur within area
Macquaria australasica		
Macquarie Perch [66632]	Endangered	Species or species habitat may occur within area
Mammals		
<u>Chalinolobus dwyeri</u>		
Large-eared Pied Bat, Large Pied Bat [183]	Vulnerable	Species or species habitat likely to occur within area
Dasyurus maculatus maculatus (SE mainland populat	tion)	
Spot-tailed Quoll, Spotted-tail Quoll, Tiger Quoll (southeastern mainland population) [75184]	Endangered	Species or species habitat may occur within area
Nyctophilus corbeni		
Corben's Long-eared Bat, South-eastern Long-eared Bat [83395]	Vulnerable	Species or species habitat likely to occur within area
Petauroides volans		
Greater Glider [254]	Vulnerable	Species or species habitat may occur within area
Phascolarctos cinereus (combined populations of Qld,	NSW and the ACT)	
Koala (combined populations of Queensland, New South Wales and the Australian Capital Territory) [85104]	Vulnerable	Species or species habitat known to occur within area
Pteropus poliocephalus Grey-headed Flying-fox [186]	Vulnerable	Roosting known to occur within area
Plants		Within area
Androcalva procumbens		
[87153]	Vulnerable	Species or species habitat likely to occur within area
Austrostipa wakoolica		
[66623]	Endangered	Species or species habitat may occur within area
Euphrasia arguta		
[4325]	Critically Endangered	Species or species habitat may occur within area
Philotheca ericifolia		
[64942]	Vulnerable	Species or species habitat likely to occur within area
Prasophyllum petilum		
Tarengo Leek Orchid [55144]	Endangered	Species or species habitat may occur within area
Prasophyllum sp. Wybong (C.Phelps ORG 5269) a leek-orchid [81964]	Critically Endangered	Species or species habitat may occur within area
<u>Swainsona recta</u> Small Purple-pea, Mountain Swainson-pea, Small Purple Pea [7580]	Endangered	Species or species habitat known to occur within area

Name	Status	Type of Presence
<u>Tylophora linearis</u> [55231]	Endangered	Species or species habitat may occur within area
Reptiles		
<u>Aprasia parapulchella</u> Pink-tailed Worm-lizard, Pink-tailed Legless Lizard [1665]	Vulnerable	Species or species habitat may occur within area
Delma impar Striped Legless Lizard [1649]	Vulnerable	Species or species habitat may occur within area
Listed Migratory Species		[Resource Information]
* Species is listed under a different scientific name on	the EPBC Act - Threatened	Species list.
Name	Threatened	Type of Presence
Migratory Marine Birds		
<u>Apus pacificus</u> Fork-tailed Swift [678]		Species or species habitat likely to occur within area
Migratory Terrestrial Species		
Hirundapus caudacutus White-throated Needletail [682]		Species or species habitat likely to occur within area
Motacilla flava		
Yellow Wagtail [644]		Species or species habitat may occur within area
Myiagra cyanoleuca Satin Flycatcher [612]		Species or species habitat likely to occur within area
<u>Rhipidura rufifrons</u> Rufous Fantail [592]		Species or species habitat may occur within area
Migratory Wetlands Species		
<u>Actitis hypoleucos</u> Common Sandpiper [59309]		Species or species habitat

Calidris acuminata

Sharp-tailed Sandpiper [874]

Calidris ferruginea Curlew Sandpiper [856]

Calidris melanotos Pectoral Sandpiper [858]

Gallinago hardwickii Latham's Snipe, Japanese Snipe [863]

Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847] Species or species habitat may occur within area

may occur within area

Critically Endangered

Species or species habitat may occur within area

Species or species habitat may occur within area

Species or species habitat may occur within area

Critically Endangered Sp

Species or species habitat may occur within area

Other Matters Protected by the EPBC Act

Commonwealth Land [Resource Information] The Commonwealth area listed below may indicate the presence of Commonwealth land in this vicinity. Due to the unreliability of the data source, all proposals should be checked as to whether it impacts on a Commonwealth area, before making a definitive decision. Contact the State or Territory government land department for further information. Name Commonwealth Land - Australian Postal Commission Commonwealth Land - Australian Telecommunications Commission **Commonwealth Heritage Places** [Resource Information] State **Status** Name Historic Wellington Post Office Listed place NSW [Resource Information] Listed Marine Species Species is listed under a different scientific name on the EPBC Act - Threatened Species list. Type of Presence Name Threatened Birds Actitis hypoleucos Common Sandpiper [59309] Species or species habitat may occur within area Apus pacificus Fork-tailed Swift [678] Species or species habitat likely to occur within area Ardea alba Great Egret, White Egret [59541] Species or species habitat likely to occur within area Ardea ibis Cattle Egret [59542] Species or species habitat may occur within area Calidris acuminata Sharp-tailed Sandpiper [874] Species or species habitat may occur within area Calidris ferruginea

Curlew Sandpiper [856]

Critically Endangered

Species or species habitat may occur within area

Calidris melanotos Pectoral Sandpiper [858]

Gallinago hardwickii Latham's Snipe, Japanese Snipe [863]

<u>Haliaeetus leucogaster</u> White-bellied Sea-Eagle [943]

<u>Hirundapus caudacutus</u> White-throated Needletail [682]

Lathamus discolor Swift Parrot [744]

Merops ornatus Rainbow Bee-eater [670]

Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area

Species or species habitat may occur within area

Species or species habitat known to occur within area

Species or species habitat likely to occur within area

Critically Endangered Species o

Species or species habitat likely to occur within area

Species or species habitat may occur within area

Species or species habitat may occur within area

Name	Threatened	Type of Presence
Myiagra cyanoleuca		
Satin Flycatcher [612]		Species or species habitat likely to occur within area
Numenius madagascariensis		
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area
Rhipidura rufifrons		
Rufous Fantail [592]		Species or species habitat may occur within area
Rostratula benghalensis (sensu lato)		
Painted Snipe [889]	Endangered*	Species or species habitat may occur within area

Extra Information

Invasive Species		[Resource Information]
Weeds reported here are the 20 species of national significance (WoNS), along with other introduced plants that are considered by the States and Territories to pose a particularly significant threat to biodiversity. The following feral animals are reported: Goat, Red Fox, Cat, Rabbit, Pig, Water Buffalo and Cane Toad. Maps from Landscape Health Project, National Land and Water Resouces Audit, 2001.		
Name	Status	Type of Presence
Birds		
Acridotheres tristis		

Name	Status	Type of Presence
Birds		
Acridotheres tristis		
Common Myna, Indian Myna [387]		Species or species habitat likely to occur within area
Anas platyrhynchos		
Mallard [974]		Species or species habitat likely to occur within area
Carduelis carduelis		

European Goldfinch [403]

Columba livia Rock Pigeon, Rock Dove, Domestic Pigeon [803]

Passer domesticus House Sparrow [405]

Streptopelia chinensis Spotted Turtle-Dove [780]

Sturnus vulgaris Common Starling [389]

Turdus merula Common Blackbird, Eurasian Blackbird [596] Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Name	Status	Type of Presence
Mammals		
Bos taurus		
Domestic Cattle [16]		Species or species habitat likely to occur within area
Canis lupus familiaris		
Domestic Dog [82654]		Species or species habitat likely to occur within area
Capra hircus		
Goat [2]		Species or species habitat likely to occur within area
Felis catus		
Cat, House Cat, Domestic Cat [19]		Species or species habitat likely to occur within area
Feral deer		
Feral deer species in Australia [85733]		Species or species habitat likely to occur within area
Lepus capensis		
Brown Hare [127]		Species or species habitat likely to occur within area
Mus musculus		
House Mouse [120]		Species or species habitat likely to occur within area
Oryctolagus cuniculus		
Rabbit, European Rabbit [128]		Species or species habitat likely to occur within area
Rattus rattus		
Black Rat, Ship Rat [84]		Species or species habitat likely to occur within area
Sus scrofa		
Pig [6]		Species or species habitat likely to occur within area
Vulpes vulpes		
Red Fox, Fox [18]		Species or species habitat

Plants

Asparagus asparagoides Bridal Creeper, Bridal Veil Creeper, Smilax, Florist's Smilax, Smilax Asparagus [22473]

Lycium ferocissimum African Boxthorn, Boxthorn [19235]

Nassella neesiana Chilean Needle grass [67699]

Nassella trichotoma Serrated Tussock, Yass River Tussock, Yass Tussock, Nassella Tussock (NZ) [18884]

Opuntia spp. Prickly Pears [82753]

Pinus radiata Radiata Pine Monterey Pine, Insignis Pine, Wilding Pine [20780]

Rubus fruticosus aggregate Blackberry, European Blackberry [68406] Species or species habitat likely to occur within area

likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat may occur within area

Species or species habitat likely to occur

Name	Status	Type of Presence
		within area
Salix spp. except S.babylonica, S.x caloder	ndron & S.x reichardtii	
Willows except Weeping Willow, Pussy Will	low and	Species or species habitat
Sterile Pussy Willow [68497]		likely to occur within area
Tamarix aphylla		
Athel Pine, Athel Tree, Tamarisk, Athel Tan	narisk,	Species or species habitat
Athel Tamarix, Desert Tamarisk, Flowering	Cypress,	likely to occur within area
Salt Cedar [16018]		
Ulex europaeus		
Gorse, Furze [7693]		Species or species habitat likely to occur within area

Caveat

The information presented in this report has been provided by a range of data sources as acknowledged at the end of the report.

This report is designed to assist in identifying the locations of places which may be relevant in determining obligations under the Environment Protection and Biodiversity Conservation Act 1999. It holds mapped locations of World and National Heritage properties, Wetlands of International and National Importance, Commonwealth and State/Territory reserves, listed threatened, migratory and marine species and listed threatened ecological communities. Mapping of Commonwealth land is not complete at this stage. Maps have been collated from a range of sources at various resolutions.

Not all species listed under the EPBC Act have been mapped (see below) and therefore a report is a general guide only. Where available data supports mapping, the type of presence that can be determined from the data is indicated in general terms. People using this information in making a referral may need to consider the qualifications below and may need to seek and consider other information sources.

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species distributions have been derived through a variety of methods. Where distributions are well known and if time permits, maps are derived using either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc) together with point locations and described habitat; or environmental modelling (MAXENT or BIOCLIM habitat modelling) using point locations and environmental data layers.

Where very little information is available for species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc). In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More reliable distribution mapping methods are used to update these distributions as time permits.

Only selected species covered by the following provisions of the EPBC Act have been mapped:

- migratory and
- marine

The following species and ecological communities have not been mapped and do not appear in reports produced from this database:

- threatened species listed as extinct or considered as vagrants
- some species and ecological communities that have only recently been listed
- some terrestrial species that overfly the Commonwealth marine area
- migratory species that are very widespread, vagrant, or only occur in small numbers

The following groups have been mapped, but may not cover the complete distribution of the species:

- non-threatened seabirds which have only been mapped for recorded breeding sites
- seals which have only been mapped for breeding sites near the Australian continent

Such breeding sites may be important for the protection of the Commonwealth Marine environment.

Coordinates

-32.50319 148.9466

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program

-Australian Institute of Marine Science

-Reef Life Survey Australia

-American Museum of Natural History

-Queen Victoria Museum and Art Gallery, Inveresk, Tasmania

-Tasmanian Museum and Art Gallery, Hobart, Tasmania

-Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.

© Commonwealth of Australia Department of the Environment GPO Box 787 Canberra ACT 2601 Australia +61 2 6274 1111

Appendix H EPBC HABITAT ASSESSMENT

Name	Habitat	Habitat Present	Likelihood of occurrence	Potential for impact?
Regent Honeyeater Anthochaera phrygia	Temperate woodlands and open forests of the inland slopes of south-east Australia, in particular dry open forest, woodland, Box- Ironbark woodland, and riparian forests of River Sheoak.	Present – Box gum Woodlands present within the Development Site.	Unlikely – outside mapped important areas (OEH). Not detected during surveys.	No – Unlikely to occur on site
Australian Bittern Botaurus poiciloptilus	Permanent freshwater wetlands with tall, dense vegetation.	Absent – no freshwater wetlands with dense vegetation.	Unlikely	No – Unlikely to occur on site
Curlew Sandpiper Calidris ferruginea	Intertidal mudflats in both fresh and brackish waters in sheltered coastal areas, such as estuaries, bays, inlets, and lagoons. Also recorded inland, including around ephemeral and permanent lakes, dams, and waterholes, usually with bare edges of mud or sand.	Absent	Unlikely	No – Unlikely to occur on site
Painted Honeyeater Grantiella picta	Boree/Weeping Myall, Brigalow, and Box-Gum Woodlands and Box- Ironbark Forests.	Present	Unlikely – not detected during site surveys	No – Unlikely to occur on site
Swift Parrot Lathamus discolor	On the coast and southwest slopes in areas with abundant flowering eucalypts or lerp. Feed trees include winter flowering species such as Swamp Mahogany, Spotted Gum, Red Bloodwood, Mugga Ironbark, and White Box.	Present	Unlikely – outside mapped important areas (OEH). Not detected during surveys	No – Unlikely to occur on site
Mallee Fowl <i>Leipoa ocellata</i>	Semi-arid to arid shrublands and low woodlands, especially those dominated by Mallee and/or Acacia which are tall, dense, and floristically rich. A sandy to sandy- loam substrate and abundance of leaf litter are required for breeding.	Absent	Unlikely	No – Unlikely to occur on site
Eastern Curlew Numenius madagascariensis	Large intertidal mudflats often with seagrass beds along sheltered coasts including in estuaries, bays, harbours, inlets, lagoons, and among saltmarshes and mangroves.	Absent	Unlikely	No – Unlikely to occur on site

Name	Habitat	Habitat Present	Likelihood of occurrence	Potential for impact?
Superb Parrot Polytelis swainsonii	Box-Gum, Box-Cypress, and Boree Woodlands and River Red Gum Forests. They nest in hollows of large trees in tall open forest or woodland.	Present	Likely – Known records within 10km of Development Site	AoS Undertaken
Australian Painted Snipe Rostratula australis	Shallow terrestrial freshwater or occasionally brackish wetlands, including temporary and permanent lakes, swamps, and claypans, as well as inundated or waterlogged grassland or saltmarsh, dams, rice crops, sewage farms, and bore drains. Fringes of swamps, dams, and nearby marshy areas with cover of grasses, lignum, low scrub, or open timber. Shallow wetlands with areas of bare wet mud.	Absent	Unlikely	No – Unlikely to occur on site
Flathead Galaxias Galaxias rostratus	Still or slow-moving water bodies such as wetlands and lowland streams. Range of habitats including rock and sandy bottoms and aquatic vegetation.	Absent	Unlikely	No – No suitable habitat
Trout Cod Maccullochella macquariensis	Rivers with large in stream woody debris or snags.	Absent	Unlikely	No – No suitable habitat
Murray Cod Maccullochelle peelii	Wide range of warm water habitat including clear rocky streams, slow flowing turbid rivers, and billabongs, most frequently in main river channel and larger tributaries but occasionally in floodplain channels during floods. Near complex structural cover such as large rocks, woody debris, and overhanging vegetation.	Absent	Unlikely	No – No suitable habitat
Macquarie Perch Macquaria australasica	Both river and lake habitats; especially the upper reaches of rivers and their tributaries. Clear, deep, rocky holes with plenty of cover including aquatic vegetation, large boulders, large woody debris, and overhanging banks.	Absent	Unlikely	No – No suitable habitat

Name	Habitat	Habitat Present	Likelihood of occurrence	Potential for impact?
Large-eared Pied Bat Chalinolobus dwyeri	Low to mid elevation dry open forest and woodland near roosts. Roosts in caves (near entrance), crevices in cliffs, old mine workings and in disused mud nests of Fairy Martins.	Present	Unlikely – not detected during site surveys	No – Unlikely to occur on site
Spot-tailed Quoll Dasyurus maculatus	asyurus open forest, woodland, and inland		Unlikely	No – No suitable habitat
Corben's Long- eared Bat Nyctophilus corbei	Variety of vegetation types, most commonly Mallee, Bulloak, and Box-dominated communities, but most common in vegetation with distinct canopy and dense understorey. Roost in tree hollows, crevices, and under loose bark.	Present	Unlikely – not detected during site surveys	No – Unlikely to occur on site
Brush-tailed Rock-wallaby	Occupies rocky escarpments, outcrops and cliffs with a preference for complex structures with fissures, caves and ledges, often facing north.	Absent	Unlikely – no suitable habitat	No – Unlikely to occur on site
Greater Glider Petauroides volans	Eucalypt forests and woodlands. Found in tall montane moist eucalypt forests with relatively old trees and abundant hollows.	Absent	Unlikely	No – No suitable habitat
Koala Phascolarctos cinereus	Temperate, subtropical and tropical eucalypt woodlands and forests where suitable food trees grow, of which there are more than 70 eucalypt species and 30 non- eucalypt species that are particularly abundant on fertile clay soils.	Present	Unlikely – not detected during site surveys	No – Unlikely to occur on site
Grey-headed Flying-fox Pteropus poliocephalus	Range of vegetation communities including rainforest, open forest, and closed and open woodland. Roost sites usually near water, including lakes, rivers, and coastlines.	Present	Present – several seem foraging within Development Site.	AoS Undertaken

Name	Habitat	Habitat Present	Likelihood of occurrence	Potential for impact?
Pink-tailed Worm-lizard Aprasia parapulchella	Inhabits open woodland areas with predominantly native grassy ground layers. Commonly found beneath small, partially-embedded rock.	Present	Unlikely – not detected during site surveys	No – Unlikely to occur on site
Striped Legless Lizard Delmar impar	Found mainly in Natural Temperate Grasslands but has also been captured in grasslands that have a high exotic component.	Present	Unlikely – not detected during site surveys	No – Unlikely to occur on site
Small Purple-pea Swainsona recta	Grassy Woodlands dominated by Eucalyptus blakelyi. E. melliodora, E. rubida and E. goniocalyx.	Present	Unlikely – not detected during site surveys	No – Unlikely to occur on site

Appendix I EPBC ASSESSMENT OF SIGNIFICANT IMPACT

The Environment Protection and Biodiversity Conservation Act 1999 specifies factors to be considered in deciding whether a development is likely to significantly affect Endangered Ecological Communities, threatened species and migratory species, listed at the Commonwealth level. The Matters of Environmental Significance – Significant Impact Guidelines (DoE 2013) identify the factors the need to be considered.

The following assessments assesses the significance of the likely impacts associated with the proposed works on:

- White Box-Yellow Box-Blakely's Red Gum Grassy Woodland (Box-Gum Woodland) Critically Endangered
- Grey-headed Flying-fox (*Pteropus poliocephalus*) Vulnerable
- Superb Parrot (*Polytelis swainsonii*) Vulnerable

An action is likely to have a significant impact on a critically endangered or endangered ecological community if there is a real chance or possibility that it will:

a) Will the action reduce the 'extent' of a community?

The action will reduce the extent of the Box-Gum Woodland by up to 8.06 hectares for the construction of the transmission line.. The Development Site adjoins onto a patch of Box Gum Woodland that is estimated to be around 2800 ha, based on NSW State Vegetation Mapping (VIS 4468) PCT mapping. The area of Box-Gum Woodland directly impacted comprises around <0.01% of the overall adjoining patch (assuming that surrounding grasslands and woodlands contain similar vegetation).

A reduction of <0.01% of this patch of Box-Gum Woodland is a reduction in the extent but is not likely to be a reduction that would affect the ongoing survival of the overall patch of Box-Gum Woodland in the locality.

b) Will the action fragment or increase fragmentation of the community, for example by clearing vegetation for roads or transmission lines?

The Development Site occurs adjacent to a much larger patch of Box Gum Woodland that extends to the South and the East.

The North-South running section of the transmission line easement would occur on the western edge of a larger patch of Box-Gum woodland that extends to the east. The western boundary of the Development Site is bounded by the Wellington Correctional Centre that is cleared of vegetation and surrounded by high security fencing. The area of impact will occur on the western edge of the larger patch of Box-Gum Woodland and would marginally decrease the patch size but would not fragment or isolate the larger patch of Box-Gum woodland in the locality.

The southern east-west running of the transmission line easement would occur through the middle of a patch of Box-Gum Woodland. The easement is proposed to be up to 60m wide This patch of Box-Gum Woodland is already partially cleared by farming practices and fragmented by three existing powerlines that adjoin into the adjacent substation. The proposal could isolate a smaller patch (20ha) of Box-Gum Woodland from the larger overall patch

in the locality, but as the landscape is already partially cleared the proposal is unlikely to significantly affect connectivity across the landscape.

c) Will the action adversely affect habitat critical to the survival of an ecological community which consists of, or includes, fauna species?

The National Recovery Plan for the CEEC identifies habitat critical to the survival of Box-Gum Grassy Woodland as:

The moderate to highly fertile soils of the western slopes of NSW and Queensland, the northern slopes of Victoria, and the tablelands of the Great Dividing Range from southern Queensland through NSW and the ACT. Given the currently highly fragmented and degraded state of this ecological community, all areas of Box-Gum Grassy Woodland which meet the minimum condition criteria... should be considered critical to the survival of this ecological community. In addition, degraded woodland areas not considered part of the listed ecological community may also be essential to the long-term conservation of Box-Gum Grassy Woodland, by virtue of their landscape setting (e.g., providing connectivity) or remaining flora/fauna habitat features (e.g., occurrence of rare or threatened species, tree hollows), and should also be considered as potential habitat critical to the survival of this ecological community.

Vegetation zones Tx2 and Tx3 within the Development Footprint meet the condition criteria for White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grasslands and would be considered critical habitat. As such the proposal will adversely affect habitat critical to the survival of the community.

d) Will the action modify or destroy abiotic (non-living) factors (such as water, nutrients, or soil) necessary for the community's survival, including reduction of groundwater levels, or substantial alteration of surface water drainage patterns?

During construction, the proposal would have a short-term gross impact upon soils and possibly surface water flow, within discreet areas. These impacts are manageable with the implementation of erosion and sediment controls and would be unlikely to further degrade the surrounding Box-Gum Woodland in the long-term. The construction of the transmission line is not considered likely to substantially alter hydrological patterns necessary for the survival of Box-Gum Woodland in the locality.

e) Will the action cause a substantial change in the species composition of an occurrence of an ecological community, including causing a decline or loss of functionally important species, for example through regular burning or flora or fauna harvesting?

The proposal could cause a change in species composition through soil disturbance for the construction of the transmission line. Once the transmission line is constructed however, there would be no further disturbance to the understorey and groundcover species would be able to regenerate from the soil seed bank. Mitigation measures have been recommended to adequately manage risks associated with weed and/or disease introduction and spread. The proposal would be unlikely to cause a substantial change in species composition in remaining areas of the community, including through tree removal and disturbance, harvesting, disease infection, weed invasion or alteration to grazing, burning or flooding regimes.

f) Will the action cause a substantial reduction in the quality or integrity of an occurrence of an ecological community, including, but not limited to: - assisting invasive species, that are harmful to the listed ecological community, to become established; and - causing regular mobilisation of fertilisers, herbicides

or other chemicals or pollutants into the ecological community which kill or inhibit the growth of species in the ecological community?

The proposal has the potential to introduce or assist the spread of invasive weed species. The invasion of native vegetation by exotic perennial grasses is a particular risk for the community. These risks would be reduced to acceptable levels through weed and hygiene protocols, pre- and post-works weed control, soil erosion and sedimentation control and effective and timely site rehabilitation. The use of fertilisers is not proposed. Any herbicide applications would be conducted in accordance with recommended guidelines. Chemical pollution risks would be reduced using chemical spill kits and site sediment control structures. With these controls in place, the works are not expected to result in impacts from weeds or pollutants.

Increases in invasive fauna species are unlikely given that these species are already present, and the proposal would not introduce any factors that would increase the populations.

Considering the above, the proposal is unlikely to cause a substantial reduction in quality or integrity as a result of assisting invasive species, or causing regular mobilisation of fertilisers, herbicides, chemicals or pollutants.

g) Will the action interfere with the recovery of an ecological community?

The National Recovery Plan for the CEEC (DEH 2012) specifies the following criteria as indicators of CEEC recovery;

- 1. An increase in the area of listed CEEC,
- 2. An increase in areas meeting minimum condition criteria,
- 3. Maintenance of floristics, structure, ecological function across its distribution,
- 4. Improved landscape connectivity and
- 5. Improved overall condition in Box Gum woodland

The proposal is inconsistent with the recovery criteria as it will:

- Decrease the area of CEEC.
- Modify the floristics (by removing trees), 'structure' (by removal of canopy cover) and 'ecological function' through modifying key habitat resources such as hollow bearing trees and fallen timber as a result of tree removal.

Conclusion

The proposal would impact on up to 8.06 ha of Box-Gum Woodland for the construction of the transmission line. From state vegetation mapping, it is considered over 2800 ha of Box-Gum woodland occurs in the locality adjoining the Development Site. However, the condition of this vegetation has not been assessed. Based on similar land use, the Box-Gum Woodland is assumed to be in similar condition. The loss of <0.01% of this vegetation is not considered to significantly impact the long term survival of the Box-Gum Woodland community.

The following assessment assesses the significance of the likely impacts associated with the proposed works on the Grey-headed Flying Fox (*Pteropus poliocephalus*) listed as Vulnerable under the EPBC Act:

a) Will the action lead to a long-term decrease in the size of an important population of a species? Grey-headed Flying Fox (*Pteropus poliocephalus*)

Several Grey-headed Flying Foxes were seen flying overhead or in a tree foraging along Tributary 1 in the Development Site. No breeding camps were present within the Development Site. Nationally important populations of the grey-headed flying fox are listed on the Department of Environment's interactive flying fox viewer (DoE, 2015). No important population of Grey-headed Flying Fox is known in the Development Site. The nearest known flying fox camp is located on Wellington Island on the Macquarie River, Wellington approximately 4km south of the Development Site. It Is estimated 500-2500 flying fox could occupy the breeding camp (DoE, 2017). The flying fox camp located on Wellington Island supports a breeding population and is considered an important population. Grey-headed Flying Fox can forage within a range of up to 50km from their roosts (OEH, 2017) and individuals from the breeding camp may forage or travel over the Development Site on occasion.

Impacts may occur on the nearest important population of Grey-headed Flying Fox on Wellington Island through the removal of potential foraging habitat. Grey-headed Flying Fox forages on fruits and flowers of native trees such as Eucalypts, Melaleucas and Banksia (OEH, 2017). Up to 21ha of native woodland vegetation would be removed by the development. Grey-headed Flying Foxes can travel up to 50km from the camp to forage (OEH, 2017). Based on the large tract (5500ha) of woodland immediately to the west of the known camp and 20km east, the removal of up to 21ha of native woodland would be unlikely to lead to a significant decrease to the Flying Fox forage area and size of the population.

b) Will the action reduce the area of occupancy of an important population of a species?

Grey-headed Flying Fox (*Pteropus poliocephalus***)**

The nearest known important population of Grey-headed Flying Fox occurs approximately 4km south, on Wellington Island along the Macquarie River. Grey-headed Flying Fox generally forage within a range of around 15km from their roosts but can forage up to 50km.

The proposal would involve the removal of up to 25ha of foraging habitat for the species. The quality of potential habitat for these species is low, and the area of habitat to be removed is relatively small within their foraging range. No barriers to movement would be created by the development. The action will not reduce the area of occupancy of an important population of this species.

c) Will the action fragment an existing important population into two or more populations?

Grey-headed Flying Fox (Pteropus poliocephalus)

The nearest known important population of Grey-headed Flying Fox occurs approximately 4km south, on Wellington Island along the Macquarie River. The proposal would involve the removal of up to 25ha of potential foraging habitat. The quality of potential habitat for this species is low, and the area of habitat to be removed is relatively small within their foraging range. Habitat would be retained along Tributary 1 and connectivity would not be disrupted for this aerial species. The proposal would not fragment an existing important population of this species into two or more populations.

d) Will the action adversely affect habitat critical to the survival of a species?

Grey-headed Flying Fox (*Pteropus poliocephalus***)**

The Register of Critical Habitat established under the EPBC Act does not list any critical habitat for this species.

e) Will the action disrupt the breeding cycle of an important population?

Grey-headed Flying Fox (*Pteropus poliocephalus***)**

There is no breeding camp for this species in the Development Site. The proposal would not disrupt the breeding cycle of the Grey-headed Flying Fox.

f) Will the action modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline?

Grey-headed Flying Fox (*Pteropus poliocephalus***)**

The proposal would involve the removal of up to 25ha of habitat. Grey-headed Flying Foxes forage a range of 15km from their breeding camps but can travel up to 50km from the camp to forage (OEH, 2017). Based on the large tract (5500 ha) of woodland immediately to the west of the known camp and 20km East, the removal of 26.36 ha of woodland would be unlikely to lead to a substantial decrease to foraging habitat for the Grey-headed Flying Fox.

g) Will the action result in invasive species that are harmful to a vulnerable species becoming established in the vulnerable species' habitat?

Grey-headed Flying Fox (*Pteropus poliocephalus***)**

The proposal has the potential to contribute to the spread of invasive species in the Development Site through the transfer and introduction of plant material and soil on machinery. Mitigation measures have been recommended to prevent the spread of weeds on site. With the implementation of these measures, the proposal is unlikely to result in invasive species that are harmful to these vulnerable species becoming established in potential habitat.

h) Will the action introduce disease that may cause the species to decline?

Grey-headed Flying Fox (*Pteropus poliocephalus***)**

There is a risk that diseases could be introduced to the Development Site via machinery, vehicles, and materials during construction and operation. With the implementation of the recommended mitigation measures, the proposal is unlikely to result in the introduction of any disease that may cause this species to decline.

i) Will the action interfere substantially with the recovery of the species?

Grey-headed Flying Fox (Pteropus poliocephalus)

The draft National Recovery Plan for Grey-headed Flying Fox lists the following overall objectives:

- 1. Improve the Grey-headed Flying Fox national population trend by reducing the impact of threatening processes on Grey-headed Flying Foxes through habitat identification, protection, restoration, and monitoring.
- 2. Assist communities and Grey-headed Flying Foxes to coexist through better education, stakeholder engagement, research, policy and continued support to fruit growers.

The proposal would not interfere with any of these objectives.

Conclusion

As the individuals of the species that could potentially utilise the Development Site are not considered to constitute an important population of the species, the proposal is not considered likely to impact on

an important population. Though there will be the removal of up to 25ha of habitat, the extent of vegetation removal is not considered likely to impact the species to the degree that they would no longer utilise the proposal area as habitat. As such, impacts to the Grey-headed Flying Fox are unlikely to be significant, and a referral under the EPBC Act is not required.

The following assessment assesses the significance of the likely impacts associated with the proposed works on the Superb Parrot (*Polytelis swainsonii*) listed as Vulnerable under the EPBC Act:

j) Will the action lead to a long-term decrease in the size of an important population of a species?

Superb Parrot (Polytelis swainsonii)

An 'important population' is a population that is necessary for a species' long-term survival and recovery. This may include populations identified as such in recovery plans, and/or that are:

- key source populations either for breeding or dispersal
- populations that are necessary for maintaining genetic diversity, and/or
- populations that are near the limit of the species range.

The breeding population of Superb Parrots *Polytelis swainsonii* is approximately 6500. The species is somewhat mobile, and typically utilises foraging habitat within 10km of breeding habitat (SPRAT, 2017). No records of the Superb Parrot occur within the proposal area. No known population of Superb Parrot occurs within the proposal area.

The Development Site is not part of a core breeding area for the Superb Parrot. Nonetheless, the proposal will remove approximately 26.36 ha of woodland vegetation containing native canopy and the clearing of 92 Hollow-bearing trees. The action is not considered likely to lead to a long-term decrease in the size of the population as the development would likely constitute only a small portion of the population's foraging and breeding range within the NSW South West Slopes.

k) Will the action reduce the area of occupancy of an important population of a species?

Superb Parrot (Polytelis swainsonii)

As an important population is not considered to occur within the Development Site, the action is not considered to reduce the area of occupancy of an important population. The broader proposal area will continue to contain suitable areas of breeding and foraging habitat of a sufficient size and quality to maintain individuals of the species within the proposal area and the wider locality.

I) Will the action fragment an existing important population into two or more populations?

Superb Parrot (Polytelis swainsonii)

As the individuals of the species are not considered to form an important population, the action is not considered to fragment an existing important population. As the species is highly mobile, the proposal will not impact on its movement within or across the Development Site.

m) Will the action adversely affect habitat critical to the survival of a species?

Superb Parrot (Polytelis swainsonii)

The Register of Critical Habitat established under the EPBC Act does not list any critical habitat for these species.

n) Will the action disrupt the breeding cycle of an important population?

Superb Parrot (Polytelis swainsonii)

No known important population occurs within the proposal area. Three main breeding areas for the superb parrot occur in NSW. The nearest known breeding area to the proposal area occurs in the South West Slopes near Molong, approximately 65km south of Wellington. Within the South West Slopes, the Superb Parrot breeds in hollows in River Red Gum, Blakely's Red Gum, Apple Box, Grey Box, White Box and Red Box species. The nests are usually located near water and the same nest hollows are used in successive years. The action would not disrupt the breeding cycle of an important population.

o) Will the action modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline?

Superb Parrot (Polytelis swainsonii)

The proposal will remove approximately 26.36 ha of Box-Gum woodland vegetation in the transmission line easement and the Development Site of the solar array. Additionally, the potential foraging area for the species would be reduced as cropping would no longer occur within the Development Site. This modification and removal of habitat is not considered likely to modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline, as extensive habitat will remain in the locality.

p) Will the action result in invasive species that are harmful to a vulnerable species becoming established in the vulnerable species' habitat?

Superb Parrot (Polytelis swainsonii)

The proposal is not considered likely to result in invasive species becoming established within the Superb Parrot's habitat. Competition with Noisy Miners for breeding and foraging habitat and resources is a major threat to the species and cause for the decline in population numbers. Noisy Miners are already present at the Development Site. The proposal is unlikely to result in invasive species such as these that are harmful to the habitat of the Superb Parrot.

The proposal will modify the current land use, potentially creating additional shelter habitat for predatory invasive species such as foxes and cats, which are considered likely to be locally prevalent regardless of the proposal. Management protocols will be prepared and implemented as part of the Flora and Fauna Management Plan for the proposal which will monitor and manage these species within the Development Site.

q) Will the action introduce disease that may cause the species to decline?

Superb Parrot (*Polytelis swainsonii*)

Beak and Feather Disease has been proven to impact the Superb Parrot (DoE, 2017); however, the proposal is not considered likely to act as a vector for the disease.

r) Will the action interfere substantially with the recovery of the species?

Superb Parrot (Polytelis swainsonii)

Core breeding areas and surrounding habitat are considered important to the recovery of the species. The nearest known breeding area to the proposal area occurs in the South West Slopes near Molong, approximately 65km south of Wellington and the species typically utilises foraging habitat within 10km of breeding habitat. Habitats across the broader proposal area will remain available to the species and

given its mobility, the proposal would not restrict the movements of the species across the Development Site. The proposal is unlikely to interfere with the recovery of the Superb Parrot.

Conclusion

As the individuals of the species that could potentially utilise the Development Site are not considered to constitute an important population of the species, the proposal is not considered likely to impact on an important population. Though there will be the removal 26.36 ha of habitat, the extent of vegetation removal is not considered likely to impact the species to the degree that they would no longer utilise the proposal area as habitat. As such, impacts to the Superb Parrot are unlikely to be significant, and a referral under the EPBC Act is not required.

Appendix J BAM CALCULATOR CREDIT REPORTS

BAM Biodiversity Credit Report (Like for like)

Proposal Details

Assessment Id	Proposal Name	BAM data last updated *
00009144/BAAS18149/17/00009145	Wellington North Solar Farm	21/12/2020
Assessor Name	Assessor Number	BAM Data version *
Elisabeth (Beth) Q Noel	BAAS19015	36
Proponent Names	Report Created	BAM Case Status
Wellington North Solar Farm Pty Ltd	02/02/2021	Finalised
Assessment Revision	Assessment Type	Date Finalised
8	Major Projects	02/02/2021

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Potential Serious and Irreversible Impacts

Name of threatened ecological community	Listing status	Name of Plant Community Type/ID
White Box Yellow Box Blakely's Red Gum Woodland	Endangered Ecological Community	266-White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion
White Box Yellow Box Blakely's Red Gum Woodland	Endangered Ecological Community	437-Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion
Species		
Nil		

Assessment Id

Proposal Name

00009144/BAAS18149/17/00009145

Wellington North Solar Farm

Page 1 of 3

BAM Biodiversity Credit Report (Like for like)

Additional Information for Approval

PCTs With Customized Benchmarks

PCT

No Changes

Predicted Threatened Species Not On Site

Name

No Changes

Ecosystem Credit Summary (Number and class of biodiversity credits to be retired)

No Ecosystem Credit Data

Species Credit Summary

Species	Vegetation Zone/s	Area / Count	Credits
Aprasia parapulchella / Pink-tailed Legless Lizard	266_Tx_Moderate	0.6	14.00
Calyptorhynchus lathami / Glossy Black-Cockatoo	266_Tx_Moderate, 266_Tx_Creekline	8.1	204.00
Myotis macropus / Southern Myotis	437_Moderate	0.2	5.00
Ninox connivens / Barking Owl	266_Tx_Moderate, 266_Tx_Creekline	8.1	204.00

Assessment Id

Proposal Name

00009144/BAAS18149/17/00009145

Wellington North Solar Farm

BAM Biodiversity Credit Report (Like for like)

Tyto novaehollandiae / Masked Ov	vl	266_Tx_Moderate, 266_Tx_Creekline		8.1	204.00
Credit Retirement Options	Like-for-like credit retirement options				
Aprasia parapulchella / Pink-tailed Legless Lizard	Spp		IBRA subreg	gion	
	Aprasia parapulchella / Pink-tailed Leg	less Lizard	Any in NS	N	
Calyptorhynchus lathami / Glossy Black-Cockatoo	Spp	Spp I		IBRA subregion	
	Calyptorhynchus lathami / Glossy Blac	ck-Cockatoo	Any in NS	N	
Myotis macropus / Southern Myotis	Spp		IBRA subreg	gion	
	Myotis macropus / Southern Myotis		Any in NS	N	
Ninox connivens / Barking Owl	Spp		IBRA subregion		
	Ninox connivens / Barking Owl	Ninox connivens / Barking Owl		Any in NSW	
Tyto novaehollandiae / Masked Owl	Spp		IBRA subreg	gion	
	Tyto novaehollandiae / Masked Owl		Any in NS	N	

Assessment Id

Proposal Name

00009144/BAAS18149/17/00009145

Proposal Details

Assessment Id 00009144/BAAS18149/17/00009145	Proposal Name Wellington North Solar Farm	BAM data last updated * 21/12/2020
Assessor Name	Report Created	BAM Data version *
Elisabeth (Beth) Q Noel	02/02/2021	36
Assessor Number	Assessment Type	BAM Case Status
BAAS19015	Major Projects	Finalised
Assessment Revision 8	Date Finalised 02/02/2021	

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Name	Presence	Survey Months
Acacia ausfeldii Ausfeld's Wattle	No (surveyed) *Survey months are outside of the months specified in Bionet.	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep ☑ Oct □ Nov ☑ Dec ☑ Survey month outside the specified months?
Aprasia parapulchella Pink-tailed Legless Lizard	Yes (assumed present)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
Burhinus grallarius Bush Stone-curlew	No (surveyed)	☑ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?

Callocephalon fimbriatum	No (surveyed)	
Gang-gang Cockatoo	No (Surveyeu)	☑ Jan 🗆 Feb 🗆 Mar 🗆 Apr
		□ May □ Jun □ Jul □ Aug
		□ Sep ☑ Oct □ Nov □ Dec
		Survey month outside the specified months?
Calyptorhynchus lathami Glossy Black-Cockatoo	Yes (assumed present)	🗆 Jan 🗆 Feb 🗆 Mar 🗖 Apr
		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug
		Sep Oct Nov Dec
		Survey month outside the specified months?
Dichanthium setosum Bluegrass	No (surveyed)	🗆 Jan 🗹 Feb 🗆 Mar 🗆 Apr
Diacgrass		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug
		Sep Oct Nov Dec
		Survey month outside the specified months?
Euphrasia arguta Euphrasia arguta	No (surveyed) *Survey months are	🗆 Jan 🗆 Feb 🗖 Mar 🗖 Apr
	outside of the months	🗆 May 🗆 Jun 🗖 Jul 🗖 Aug
	specified in Bionet.	Sep Ø Oct Nov Ø Dec
		Survey month outside the specified months?
Haliaeetus leucogaster	No (surveyed)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr
White-bellied Sea-Eagle		□ May □ Jun □ Jul □ Aug
		□ Sep ☑ Oct □ Nov ☑ Dec
		Survey month outside the specified months?
Hieraaetus morphnoides	No (surveyed)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr
Little Eagle		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug
		□ Sep ☑ Oct □ Nov □ Dec
		Survey month outside the specified months?

<i>Lophoictinia isura</i> Square-tailed Kite	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep ☑ Oct □ Nov □ Dec □ Survey month outside the □ Survey □ Survey
<i>Miniopterus orianae oceanensis</i> Large Bent-winged Bat	No (surveyed)	specified months?
<i>Myotis macropus</i> Southern Myotis	Yes (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov ☑ Dec □ Survey month outside the specified months?
<i>Ninox connivens</i> Barking Owl	Yes (assumed present)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
Petaurus norfolcensis Squirrel Glider	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep ☑ Oct □ Nov □ Dec □ Survey month outside the specified months? □ □ □ □ □
<i>Phascogale tapoatafa</i> Brush-tailed Phascogale	No (surveyed)	☑ Jan Feb Mar Apr ☑ May Jun Jul Aug ☑ Sep Oct Nov Dec □ Survey month outside the specified months?

Phascolarctos cinereus	No (surveyed)					
Koala		🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr				
		□ May □ Jun □ Jul □ Aug				
		□ Sep ☑ Oct □ Nov □ Dec				
		Survey month outside the specified months?				
Polytelis swainsonii Superb Parrot	No (surveyed)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr				
		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug				
		□ Sep Ø Oct □ Nov □ Dec				
		Survey month outside the specified months?				
Pteropus poliocephalus Grey-headed Flying-fox	No (surveyed)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr				
Grey-neaded Flying-lox		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug				
		□ Sep Ø Oct □ Nov □ Dec				
		Survey month outside the specified months?				
Swainsona recta	No (surveyed)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr				
Small Purple-pea		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug				
		□ Sep ☑ Oct □ Nov □ Dec				
		Survey month outside the specified months?				
Swainsona sericea	No (surveyed)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr				
Silky Swainson-pea	*Survey months are outside of the months	□ May □ Jun □ Jul □ Aug				
	specified in Bionet.	□ Sep ☑ Oct □ Nov ☑ Dec				
		☐ Survey month outside the specified months?				
Tyto novaehollandiae Masked Owl	Yes (assumed present)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr				
		□ May □ Jun □ Jul □ Aug				
		Sep Oct Nov Dec				
		Survey month outside the specified months?				

Threatened species assessed as not on site

Refer to BAR for detailed justification

Common name	Scientific name	Justification in the BAM-C
Brush-tailed Rock-wallaby	Petrogale penicillata	Refer to BAR
Golden Sun Moth	Synemon plana	Geographic limitations
Regent Honeyeater	Anthochaera phrygia	Refer to BAR
Swift Parrot	Lathamus discolor	Refer to BAR
Tumut Grevillea	Grevillea wilkinsonii	Refer to BAR
Yass Daisy	Ammobium craspedioides	Geographic limitations

BAM Credit Summary Report

Proposal Details

Assessment Id	Proposal Name	BAM data last updated *
00009144/BAAS18074/19/00014567	Wellington North Solar Farm	21/12/2020
Assessor Name	Report Created	BAM Data version *
Elisabeth (Beth) Q Noel	02/02/2021	36
Assessor Number	BAM Case Status	Date Finalised
BAAS19015	Open	To be finalised
Assessment Revision	Assessment Type	BOS entry trigger
1	Scattered Trees	BOS Threshold: Area clearing threshold

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Scattered Trees Credit Requirement

Class	Contains hollows	Number of trees	Ecosystem credits
266-White Box gra Bioregion	ssy woodland in the upper	slopes sub-region of the NS	W South Western Slopes
2	False	2.0	1
3	True	2.0	2
3	False	2.0	2
3	False	3.0	2
			7
437-Yellow Box gra Belt South Bioregic	-	lslopes and valley flats in the	e southern NSW Brigalow
3	False	1.0	1
3	True	1.0	1
2	False	8.0	4
3	False	6.0	5
3	False	5.0	4
3	False	1.0	1
3	False	6.0	5
	False True	6.0 4.0	5
3			

00009144/BAAS18074/19/00014567

Wellington North Solar Farm

Species credits for threatened species

Nil

Biodiversity payment summary report

Assessment Id 00009144/BAAS18149/17/000091 45	Payment data version	Assessment Revision 8	Report created 02/02/2021
Assessor Name	Assessor Number	Proposal Name	BAM Case Status
Elisabeth (Beth) Q Noel	BAAS19015	Wellington North Solar Farm	Finalised
Assessment Type	Date Finalised		
Major Projects	02/02/2021		

PCT list

Price calculated	PCT common name	Credits
Yes	266 - White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion	322
Yes	437 - Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion	256

Species list

Price calculated	Species	Credits
Yes	Aprasia parapulchella (Pink-tailed Legless Lizard)	14
Yes	Calyptorhynchus lathami (Glossy Black-Cockatoo)	204
Yes	<i>Myotis macropus</i> (Southern Myotis)	5
Yes	Ninox connivens (Barking Owl)	204
Yes	Tyto novaehollandiae (Masked Owl)	204

Assessment Id

Proposal Name

00009144/BAAS18149/17/00009145

Wellington North Solar Farm

Page 1 of 3

Ecosystem credits for plant communities types (PCT), ecological communities & threatened species habitat

IBRA sub region	PCT common name	Threat status	Offset trading group	Risk premiu m	Adminis trative cost	Methodology adjustment factor	Price per credit	No. of ecosystem credits	Final credits price
•	266 - White Box grassy woodland in the upper slopes sub-region of the NSW South Western Slopes Bioregion	No	Western Slopes Grassy Woodlands >90%	20.69%	\$213.11	1.6005	\$6,643.14	322	\$ 2,139,091.7 1
	437 - Yellow Box grassy woodland on lower hillslopes and valley flats in the southern NSW Brigalow Belt South Bioregion	No	Western Slopes Grassy Woodlands >=70% and <90%	20.69%	\$206.32	2.2282	\$6,431.40	256	\$ 1,646,438.2 4
		•				Sub	total (excl.	,	\$,785,529.95 \$378,553.00

Species credits for threatened species

Assessment Id

Proposal Name

00009144/BAAS18149/17/00009145

Wellington North Solar Farm

Page 2 of 3

Biodiversity payment summary report

Species profile ID	Species	Threat status	Price per credit	Risk premium	Administrative cost	No. of species credits	Final credits price
10061	Aprasia parapulchella (Pink-tailed Legless Lizard)		\$463.67	20.6900%	\$80.00	14	\$8,954.45
10140	Calyptorhynchus lathami (Glossy Black-Cockatoo)		\$463.67	20.6900%	\$80.00	204	\$130,479.08
10549	Myotis macropus (Southern Myotis)		\$741.31	20.6900%	\$80.00	5	\$4,873.44
10561	Ninox connivens (Barking Owl)		\$173.02	20.6900%	\$80.00	204	\$58,918.84
10820	Tyto novaehollandiae (Masked Owl)		\$463.67	20.6900%	\$80.00	204	\$130,479.08
					Subt	otal (excl. GST)	\$333,704.89
						GST	\$33,370.49
		Total s	pecies credits (incl. GST)			\$367,075.38

Grand total \$4,531,158.32

Assessment Id