

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

84944.01.R.001.Rev0 30 May 2017 PMO

Cranbrook School
5 Victoria Road
BELLEVUE HILL NSW 2023

Attention: Mr Mark Flanagan

Dear Sirs

In Situ Waste Classification Assessment Proposed Redevelopment Cranbrook School, Bellevue Hill

1. Executive Summary

This report describes the methodology and results of an In Situ Waste Classification assessment undertaken by Douglas Partners Pty Ltd (DP) in the area of the proposed redevelopment on the Cranbrook School oval. The intention of the assessment was to cover the materials that are to be removed during excavation works for proposed underground sporting, performing arts and carpark facilities. The results are summarised in Tables 1 and 2 which refer to the attached Drawing C1.

Table 1: Summary of Waste Classification Assessment for Yellow Shaded Areas on Drawing C1

In Situ Location	Filling materials that are above natural soil/rock in the yellow shaded areas on Drawing C1
Material Description	Silty sand filling and sand filling as described on the attached borehole logs for BH2, BH10 and BH113.
Classification	General Solid Waste (non-putrescible)
References	NSW EPA Waste Classification Guidelines (2014)

Table 2: Summary of Waste Classification Assessment for Non-Shaded Area on Drawing C1

In Situ Location	Filling materials that are above natural soil/rock in all areas within the excavation footprint except for the yellow shaded areas on Drawing C1
Material Description	Silty sand and silty clay topsoil, and sand filling as described on the attached borehole logs.
Classification	General Solid Waste (non-putrescible) (Excavated Natural Material if Foreign Materials criterion met)
References	NSW EPA Waste Classification Guidelines (2014) The excavated natural material order/exemption 2014

Reference should be made to the following sections of the report for information on the materials and their location which are subject to this assessment, the sampling and testing methodology, guidelines used, analytical results, and the conditions and limitations associated with this assessment.

2. Introduction

This In Situ Waste Classification assessment was commissioned by Cranbrook School to provide information in relation to disposal options for materials that will be removed from the site. These materials are likely to include bulk excavation spoil and pile spoil. The attached Drawing C1 shows the location of the proposed excavation works.

The assessment was undertaken in accordance with the requirements of *The excavated natural material order 2014* issued by the NSW EPA under Part 9, Clause 93 of the *Protection of the Environment Operations (Waste) Regulation 2014*. Where the ENM requirements were not met, the materials were classified in accordance with *Waste Classification Guidelines* (NSW EPA, 2014).

3. Scope of Works

The scope of works for the waste classification was as follows:

- Review the results of previous contamination testing undertaken on the site by Douglas Partners in as part of a geotechnical investigation in 2015 (Ref. 84944.00 Rev0 dated 23 February 2016);
- Drill an additional 25 boreholes (BH101 to BH105 and BH111 to BH130) within the proposed excavation footprint;
- Collect discrete soil samples from various depths within the boreholes in general accordance with the ENM Order;
- Dispatch the soil samples to a NATA accredited laboratory (Envirolab Services Pty Ltd) for quantitative analysis for the suite of contaminants outlined in the ENM Order. It is noted that Foreign Materials testing was not undertaken due to the volume of sample required – this testing must be carried out during excavation, prior to removal of the material from the site, if the material is to be disposed of as ENM;
- Preparation of this In Situ Waste Classification Assessment report.

4. Site Information and Potential for Contamination

Cranbrook School opened in 1918 and presumably the oval has been in use since this time. The southern portion of the oval is below a batter slope and the northern portion is supported by a retaining wall. As such, it appears likely that material was excavated from a natural hill in the south and deposited in the lower area to the north to create a large level playing area. To our knowledge, no obviously contaminating activities have been undertaken in this area of the site.

The suite of contaminants required to be assessed under the ENM Order is as follows:

- Eight priority metals: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc;
- Total petroleum hydrocarbons (TPH);
- Benzene, toluene, ethylbenzene and xylenes (BTEX);
- Polycyclic aromatic hydrocarbons (PAH);
- pH; and
- Electrical conductivity.

Foreign Materials testing is also required but was not undertaken due to the volume of sample required. This testing must be carried out during excavation, prior to removal of the material from the site, if the material is to be disposed of as ENM.

In addition to these analytes, the following suite was also assessed in accordance with the *Waste Classification Guidelines*:

- Organochlorine pesticides (OCP);
- Organophosphorus pesticides (OPP);
- Polychlorinated biphenyls (PCB);
- · Phenol; and
- Asbestos.

5. Field Work Rationale and Methodology

The area of the assessment is shown on Drawing C1 which is attached to this report. The accessible area has been assessed to be approximately 15,000 m² and therefore 25 sampling locations are considered adequate on the basis of the *ENM Order* and *Sampling Design Guidelines* (NSW EPA, 1995). Results from three previous boreholes have also been used in this assessment.

The borehole drilling and environmental sampling for the current assessment were performed by Douglas Partners between 10 and 13 April 2017, with reference to standard operating procedures outlined in the DP *Field Procedures Manual*. All sampling data was recorded on DP chain-of-custody sheets. The general sampling procedure comprised:

- Collection of representative soil samples from within the boreholes in general accordance with the requirements of the ENM Order;
- The use of decontaminated equipment for each sampling event;
- Transfer of samples into laboratory-prepared glass jars, capping immediately, minimising the headspace within the sample jar;
- Collection of replicate soil samples in zip-lock bags for asbestos screening purposes;

- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth;
- Placing the glass jars into a cooled, insulated and sealed container for transport to the laboratories; and
- Use of chain of custody documentation ensuring that sample tracking and custody could be cross-checked at any point in the transfer of samples from the field to the laboratory. Copies of completed chain of custody forms are attached.

6. Waste Classification Assessment

The Waste Classification Guidelines include the following six-step process for waste classification:

- Establish if the waste is 'special waste'
- Establish if the waste is 'liquid waste'
- Establish if the waste is 'pre-classified' by the EPA
- Establish if the waste possesses hazardous characteristics
- Determine the contaminant concentrations of the waste
- Establish if the waste is putrescible

Visual inspection and the laboratory analysis indicated that asbestos was not present in the soil samples tested. The soil samples did not contain clinical waste or tyres and therefore the soils on the site are not classified as special waste.

The samples analysed were not in liquid form and therefore could not be described as liquid waste.

The EPA has pre-classified glass, plastic, rubber, bricks, concrete, building and demolition waste, and asphalt waste as General Solid Waste (non-putrescible). The materials within the samples were typically soil and therefore not pre-classified.

The samples analysed did not possess any obvious hazardous characteristics and could not be described as hazardous waste prior to chemical analysis. All samples analysed were assessed on a visual and tactile basis as being incapable of significant biological transformation and are therefore considered to be non-putrescible.

Due to the number of samples used for this assessment, the sample mean, sample standard deviation and 95% UCL concentrations were used to compare the contaminant concentrations with the contaminant threshold (CT) criteria provided in the guidelines. All sample mean, sample standard deviation and 95% UCL concentrations were within the CT1 criteria.

On this basis, all samples of filling would be classified as General Solid Waste (non-putrescible) and would need to be disposed of at a site that is licenced to receive this category of waste. Any materials encountered on the site that are different to those described herein may have a different classification.

The natural soils and, where encountered, rock below the filling should be able to be described as virgin excavated natural material (VENM) upon excavation, providing they are not cross-contaminated during excavation/piling works. Validation of this status will be required once the overburden has been removed from the site. VENM can usually be transported to a site for use as filling rather than requiring disposal at landfill.

7. ENM Assessment

The excavated natural material order 2014 defines ENM as naturally occurring rock and soil that has:

- been excavated from the ground; and
- · contains at least 98% (by weight) natural material; and
- does not meet the definition of Virgin Excavated Natural Material.

Further, ENM does not include material located in a hotspot, material that has been processed, or material that contains asbestos, acid sulphate soils (actual and potential) or sulfidic ores. The *ENM Order* also describes sampling frequency, contaminants to be analysed and test methods to be used.

The recent testing described in this report was carried out in general accordance with the requirements for in situ assessment as outlined in the ENM Order. An exception to this is Foreign Materials testing which was not undertaken due to the small volume of sample that could be obtained from the boreholes. As such, confirmatory testing of Foreign Materials content will be required prior to removal of any potential ENM from the site.

The laboratory test results, sample receipt and chain-of-custody documentation are attached to this report. A summary of the results of the testing, as well as the ENM criteria for the various analytes, are provided in Tables 3 to 5 which are attached to this report.

All sample analysis was conducted by Envirolab Services Pty Ltd in accordance with the chain-of-custody prepared by DP. Based on a review of the laboratory reported QC results, it is considered that the laboratory test data obtained are reliable and useable for this assessment.

As shown in Tables 3 to 5, the majority of the samples analysed met the requirements of the *ENM Order*. Only the samples from previous boreholes BH2 and BH10, and the current borehole BH113 did not due to slightly elevated concentrations of Arsenic or Benzo(a)pyrene. These areas have been delineated in yellow shading in the attached Drawing C1.

Based on the observations at the time of sampling and the reported analytical results, the materials outside the areas of yellow shading are likely to be able to be described as *Excavated Natural Material* (ENM) upon excavation, provided that Foreign Materials testing is undertaken prior to disposal.

8. Additional Comments

Part 4, Division 3, Section 45, of the *Protection of the Environment Operations (Waste) Regulation 2014* states that it is an offence for waste to be transported to a place that cannot lawfully be used as a facility to accept that waste. It is the duty of the owner and transporter of the waste to ensure that the waste is disposed of appropriately. Douglas Partners does not accept liability for the unlawful disposal of waste materials from any site. Similarly Douglas Partners accepts no responsibility for the material tracking, loading, management, transport or disposal of waste from the site.

The requirements of the ENM Order and ENM Exemption must be followed if any material is disposed of as ENM, and these documents are attached to this report for information.

The results provided in the report are indicative of the conditions only at the specific sampling locations, and then only to the depths investigated and at the time the work was carried out. Surface and sub-surface conditions can change as a result of human influences, and such changes may occur after Douglas Partner's field testing has been completed. Should suspected ACM or other unexpected conditions arise during the loading of the materials for off-site disposal/re-use, Douglas Partners should be consulted for further advice.

9. Limitations

Douglas Partners (DP) has prepared this report for this project at Cranbrook School, Bellevue Hill, in accordance with Douglas Partners' proposal SYD170264.P.001.Rev2 and subsequent acceptance received from Cranbrook School. This report is provided for the use of Cranbrook School for this project only and for the purposes as described in the report. It should not be used for other projects or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Please contact either of the undersigned for clarification of the above as necessary.

Yours faithfully

Douglas Partners Pty Ltd

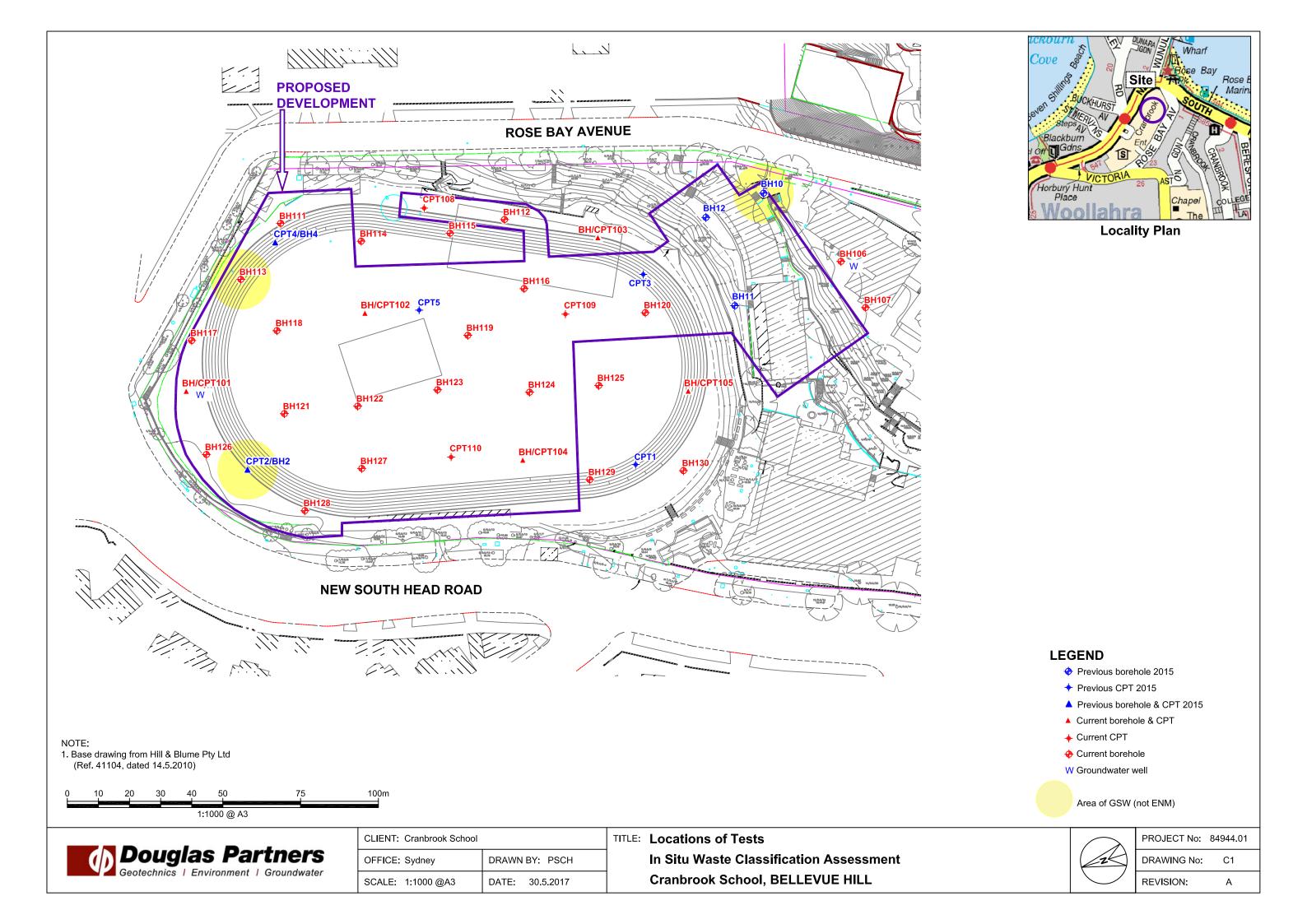
Reviewed by

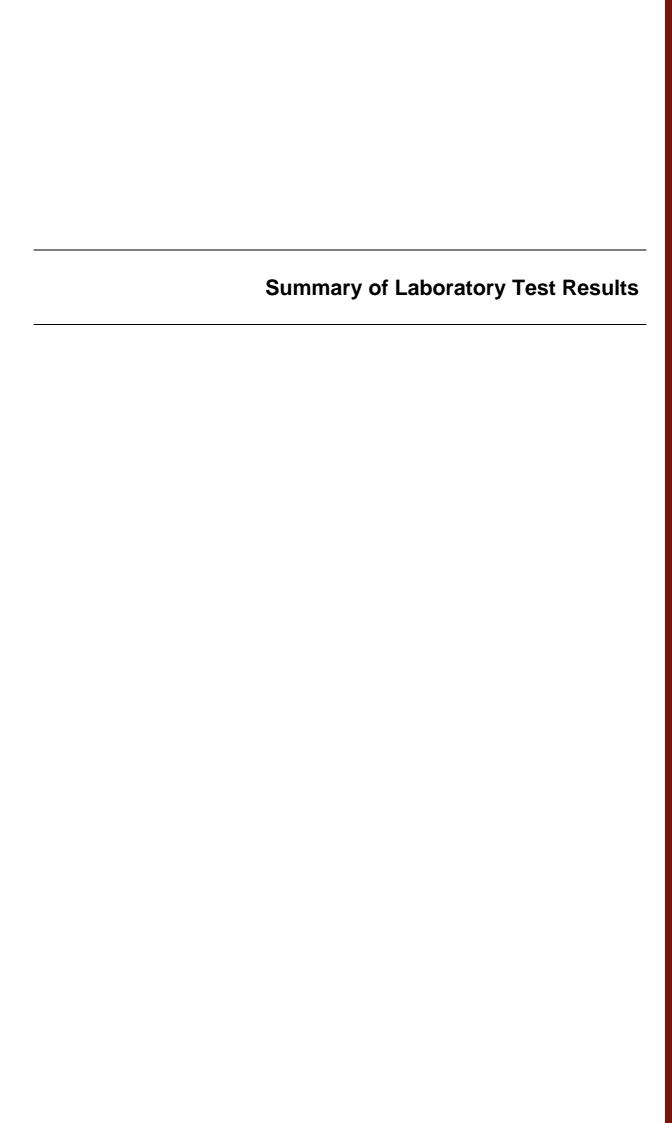
Peter Oitmaa

Principal

J M Nash Principal

Attachments: Drawing C1


Summary of Laboratory Test Results Current and Previous Borehole Logs


NATA Laboratory Certificates, Chain-of-Custody Documentation & Sample Receipt Advice

ENM Order and ENM Exemption

Notes About this Report

Drawing C1			
Drawing C1			
			Drawing C1

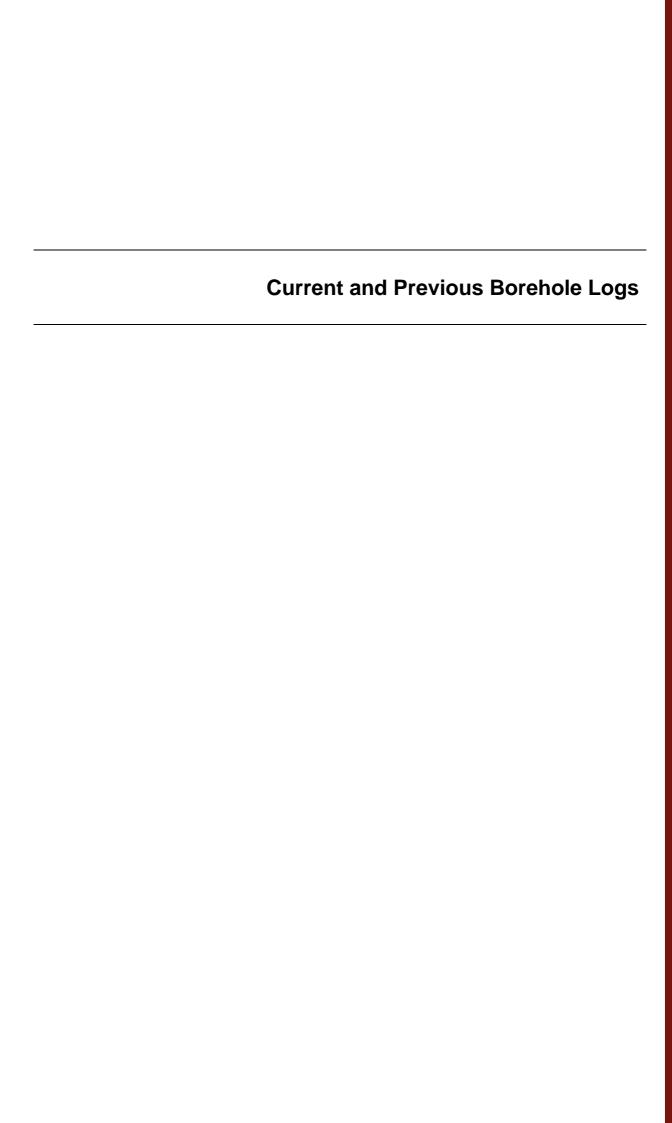
Table 3: Contaminant Concentrations in Filling

Sample/	В	Т	Е	X	TRH ₆₋₉	TRH ₁₀₋₃₆	+PAH	B(a)P	+OCP	+PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	рН	EC
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg	units	dS/m							
Filling (2015)																						
BH2/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	41	<0.4	3	5	3	<0.1	<1	36	6.3	0.021
BH2/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	1	3	<0.1	<1	3	6.5	0.013
BH2/3.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	<1	1	<0.1	<1	1	6.5	0.013
BH2/4.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	<1	1	<0.1	<1	<1	5.8	0.014
BH4/1.0	<0.2	<0.5	<1	<3	<25	<250	5.8	0.3	NIL	NIL	<5	N	<4	<0.4	2	2	5	<0.1	<1	3	6.3	0.014
BH4/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	1	9	<0.1	<1	3	6.1	0.012
BH4/3.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	<1	4	<0.1	<1	2	6.0	0.011
BH4/4.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	1	14	<0.1	<1	4	6.2	0.014
BH10/1.0	<0.2	<0.5	<1	<3	<25	<250	29	1.6	NIL	NIL	<5	N	<4	<0.4	2	22	10	<0.1	1	10	9.9	0.087
Filling (2017)																			•			
BH101/0.5	<0.2	<0.5	<1	<3	<25	<250	3.0	0.3	NIL	NIL	<5	N	6	<0.4	2	18	22	<0.1	1	12	6.4	0.022
BH102/0.5	<0.2	<0.5	<1	<3	<25	<250	1.2	0.2	NIL	NIL	<5	N	11	<0.4	7	18	28	0.3	3	24	6.2	0.027
BH103/0.1	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	42	15	14	<0.1	21	24	5.3	0.200
BH111/0.45-0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	<1	1	<0.1	<1	1	6.3	0.012
BH113/1.0-1.05	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	41	<0.4	1	2	2	<0.1	<1	4	6.1	0.012
BH115/0.1	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	14	<0.4	5	5	6	<0.1	3	16	6.1	0.032
BH117/1.95-2.0	<0.2	<0.5	<1	<3	<25	<250	0.2	<0.05	NIL	NIL	<5	N	<4	<0.4	1	3	7	<0.1	<1	6	6.1	0.014
BH118/0.1-0.15	<0.2	<0.5	<1	<3	<25	<250	0.78	0.06	NIL	NIL	<5	N	5	<0.4	4	5	11	0.2	2	9	5.8	0.027
BH124/0.1	<0.2	<0.5	<1	<3	<25	<250	0.59	0.1	NIL	NIL	<5	N	5	<0.4	4	5	12	0.2	2	13	6.2	0.028
BH126/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	1	2	<0.1	<1	3	6.4	0.008
BH128/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	1	<0.1	<1	5	6.2	0.011
BH130/0.1	<0.2	<0.5	<1	<3	<25	<250	2.3	0.2	NIL	NIL	<5	N	19	0.5	9	19	50	<0.1	4	42	5.7	0.025
Statistical Analysi	s of Conta	minant Co	oncentratio	ons in Filli	ng (mg/kg	1)																
Maximum	NA	NA	NA	NA	NA	NA	29	1.6	NA	NA	NA	NA	41	0.5	42	22	50	0.3	21	42	9.9	0.200
Minimum	NA	NA	NA	NA	NA	NA	NIL	<0.05	NA	NA	NA	NA	<4	<0.4	<1	<1	1	<0.1	<1	<1	5.3	0.008
Average	NA	NA	NA	NA	NA	NA	2.0	0.13	NA	NA	NA	NA	6.8	NA	4.4	6.0	9.8	0.03	1.8	10.5	6.3	0.029
Std. Deviation	NA	NA	NA	NA	NA	NA	6.3	0.35	NA	NA	NA	NA	12.6	NA	8.9	7.4	11.7	0.11	4.6	11.8	0.9	0.043
95% UCL	NA	NA	NA	NA	NA	NA	8.1	0.5	NA	NA	NA	NA	18.7	NA	12.9	13.0	15.7	0.20	6.1	21.7	6.6	0.070

Notes: B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; TRH = total recoverable hydrocarbons; +PAH = Positive polycyclic aromatic hydrocarbons; B(a)P = Benzo(a)pyrene; OCP = Organochlorine pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; EC = electrical conductivity; NT = Not tested; NA = not applicable

YELLOW shading refers to an exceedance as shown in Table 5

Table 4: Contaminant Concentrations in Natural Soil


Sample/	В	Т	E	X	TRH ₆₋₉	TRH ₁₀₋₃₆	+PAH	B(a)P	+OCP	+PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	рН	EC
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg	units	dS/m							
Natural Soil (2015)								•		•					-							
BH10/2.0	<0.2	<0.5	<1	<3	<25	<250	0.1	<0.05	NIL	NIL	<5	NT	<4	<0.4	2	<1	2	<0.1	1	1	7.2	0.036
Natural Soil (2017))																					
BH101/4.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	<1	<0.1	<1	2	6.1	0.008
BH102/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	3	<0.1	<1	3	6.0	0.009
BH103/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	2	<1	<0.1	<1	3	5.7	0.031
BH104/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	<1	2	<0.1	<1	4	5.8	0.011
BH105/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	3	3	<0.1	<1	4	6.5	0.018
BH111/2.9-3.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	<1	3	<0.1	<1	2	6.1	0.010
BH112/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	4	4	10	<0.1	2	11	5.6	0.064
BH114/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	1	3	<0.1	<1	4	6.0	0.013
BH116/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	0.6	<1	1	7	<0.1	<1	3	6.4	0.014
BH119/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	2	2	<0.1	<1	5	5.8	0.012
BH120/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	9	<0.4	8	7	16	0.1	3	17	8.0	0.130
BH121/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	3	<0.1	<1	7	6.6	0.012
BH122/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	8	4	6	<0.1	8	7	6.6	0.018
BH123/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	1	3	<0.1	<1	2	6.4	0.015
BH125/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	7	4	<0.1	2	9	6.1	0.017
BH127/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	3	<0.1	1	13	5.9	0.013
BH129/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	2	2	<0.1	1	12	6.0	0.016
BH129/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	<1	1	<0.1	<1	1	6.1	0.015
Statistical Analysi	s of Conta	minant Co	ncentratio	ons in Nati	ural Soil (ı	mg/kg)																
Maximum	NA	NA	NA	NA	NA	NA	0.1	NA	NA	NA	NA	NA	9	0.6	8	7	16	0.1	8	17	8.0	0.130
Minimum	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	<0.4	<1	<1	<1	<0.1	<1	1	5.6	0.008
Average	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.9	2.3	3.9	NA	0.9	6.1	6.2	23.7
Std. Deviation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.4	2.1	3.9	NA	2.0	4.6	0.5	29.4
95% UCL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.4	4.4	7.9	NA	3.0	8.7	6.4	53.9

Notes: B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; TRH = total recoverable hydrocarbons; +PAH = Positive polycyclic aromatic hydrocarbons; B(a)P = Benzo(a)pyrene; OCP = Organochlorine pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; EC = electrical conductivity; NT = Not tested; NA = not applicable

Table 5: Comparative Criteria

Description	В	Т	Е	X	TRH ₆₋₉	TRH ₁₀₋₃₆	+PAH	B(a)P	+OCP	+PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	рН	EC
Description	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg	units	dS/m							
Waste Classificati	on Guideli	nes (2014))																			
CT1	10	288	600	1000	650	10000	200	0.8	Various	50	288	N	100	20	100	NA	100	4	40	NA		
ENM Order (2014)																						
Max. Average	NA	NA	NA	NA	NA	250	20	0.5	NA	NA	NA	N	20	0.5	75	100	50	0.5	30	150	5-9	1.5
Absolute Max.	0.5	65	25	15	NA	500	40	1.0	NA	NA	NA	N	40	1	150	200	100	1	60	300	4.5-10	3

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI
LOCATION: New South Head Book Belley

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.13 AHD **EASTING:** 338378.84 **NORTHING:** 6250846.18 **DIP/AZIMUTH:** 90°/--

BORE No: BH101 **PROJECT No:** 84944.01 **DATE:** 12/4/2017 **SHEET** 1 OF 2

	1		Dogree of		Pock	1		_			
	Donth	Description	Degree of Weathering	ء ح	Rock Strength	Fracture Spacing	Discontinuities				n Situ Testing
R	Depth (m)	of		Log	Strength Nedium	(m)	B - Bedding J - Joint	Type	ore %	RQD %	Test Results &
	, ,		WH WE WE TO SEE THE CONTRACT OF THE CONTRACT O	פ	EX LGW LOW LOW LOW LOW LOW LOW LOW LOW LOW LO	0.05 0.50 1.00	S - Shear F - Fault	🖹	S &	, R	Comments
-91		TOPSOIL - dark brown, fine to		Y				Α/E			
† [0.4	medium silty sand topsoil, moist		$\langle \chi \rangle$							
E	- 0.4	FILLING - yellow-brown, fine to medium sand filling, dry to moist		\times				A/E			
[:	9.7m: as above, grey-brown and		\times							
-	- -1	yellow-brown		\times		ii ii		Α			
-15	-			\times							
	-			\times							
	-	1.5m: as above, grey-brown and		$\langle \! $		11 11					
 		yellow brown mottled dark brown		\times							
4	-2			\times		ii ii		A/E			
[-	-			\times							
[:			$\times\!\!\!\times$							
	:			\times							
	[\bigvee							
-6	-3 - - 3.2			X				A/E			
F	3.2	SAND - yellow-brown, fine to									
[]	-	medium sand, dry to moist									
E	:										
-	- -4							A/E			
-27	-										
	-										
1					i i i i i i i	ii ii					
F	-										
[_	-5		[
[-	-										
	:										
-	-6										
-6	-										
[-										
-	.										
	-										
	7			• • •							
-6						ii ii					
[:										
[-		.			11 11					
	-8										
F											
[-					11 11					
-	- -9										
	-					11 11					
	:										
	.										
F						11 11					
ш									<u> </u>		

RIG: Scout 2 DRILLER: JS LOGGED: SI/RW CASING: HW to 5.4m

TYPE OF BORING: Solid flight auger to 5.5m; Rotary to 14.35m; NMLC-Coring to 17.4m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 13.7m (screen 10.7-13.7m; gravel 9.7-13.7m; bentonite 8.7-9.7m; backfill to 0.1m below ground level; grass over gatic

	00101	')				
	S	AMPLING	& IN SITU TESTING	G LEGE	ND	7
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	ı
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)	ı
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	ı
С	Core drilling	WÎ	Water sample	pp	Pocket penetrometer (kPa)	ı
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	ı
_		.1	\A/=4== [=::=]		Oliver and in (LDa)	-1

SURFACE LEVEL: 16.13 AHD

Cranbrook School CLIENT: PROJECT: Cranbrook School ECI

EASTING: 338378.84 LOCATION: New South Head Road, Bellevue Hill **NORTHING:** 6250846.18 **DIP/AZIMUTH:** 90°/--

BORE No: BH101 **PROJECT No:** 84944.01 **DATE:** 12/4/2017 SHEET 2 OF 2

		Description	Degree of Weathering	<u>.0</u>	Rock Strength ็อ	Fracture	Discontinuities	Sá	ampling &	In Situ Testing
RL	Depth (m)	of	, rr saansiinig	iraph Log	Strength Nedium High Ex High E	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. % RQD %	Test Results &
Ш		Strata	EW H W W R R	υ.	Very Very Very Very Very	0.00	S - Shear F - Fault	F	0 8 8	Comments
9	-11	SAND - yellow-brown, fine to medium sand, dry to moist (continued)								
4	-12									
8	-13						Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°			
-2	- 14									
-	14.35 - 15	SANDSTONE - medium and high strength, moderately weathered, slightly fractured and unbroken, red-brown and brown, medium to coarse grained sandstone					14.7m: B0°, fe 15.2m: B10°, cly vn, ti			PL(A) = 4.14 PL(A) = 0.66
-0	-16 -17						15.72 & 15.75m: Cs	С	100 99	PL(A) = 1.52
E'	47.									PL(A) = 0.91
-2	17.4 - 18	Bore discontinued at 17.4m								
-3	-19									

DRILLER: JS LOGGED: SI/RW CASING: HW to 5.4m RIG: Scout 2

TYPE OF BORING: Solid flight auger to 5.5m; Rotary to 14.35m; NMLC-Coring to 17.4m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 13.7m (screen 10.7-13.7m; gravel 9.7-13.7m; bentonite 8.7-9.7m; backfill to 0.1m below ground level; grass over gatic

	covci)				
	SAME	PLING	& IN SITU TESTING	LEGE	ND
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	WÎ	Water sample	pp ·	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
	Contractor and a second	•	\A/=4== l=::=l	١./	Chanas (I-Da)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.28 AHD EASTING: 338374.19 NORTHING: 6250784.3 DIP/AZIMUTH: 90°/--

BORE No: BH102 **PROJECT No:** 84944.01 **DATE:** 12/4/2017 **SHEET** 1 OF 2

		Description	Degree of Weathering	<u>:</u>	Rock Strength 5	Fracture	Discontinuities			In Situ Testing
R	Depth (m)	of		iraph Log	Strength Needium High Nery High Needium High Needium Needium High New Year High Needium Need	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. % RQD	Test Results &
			M H W H H	0	Low High Very Ex H	0.05	S - Shear F - Fault		0 % %	Comments
و	0.2	TOPSOIL - dark brown, fine to medium silty sand topsoil, dry to						A/E		
-	-	\moist FILLING - dark brown, fine to		\otimes		 		A/E		
Ė	- 0.6	medium sand filling with clay, dry		XX IIII						
ŀ	[-1	SAND - dark brown, fine to medium sand, dry to moist (possibly filling)						A/E		
-5	1.1	SAND - grey fine to medium sand,				 				
ŧ,	-	dry to moist 1.4m: as above but becoming								
F		yellow-brown								
Ė	-2	1.8m: as above but grey-brown			.	 		A/E		
4	-				.					
ŧ										
ŧ	-					 				
F	-3					 				
-€	-									
ļ	-									
Ė						 				
ŀ	-4									
-5	-									
ŀ	-					 				
ŀ	-									
ŧ	-5				1					
-2	-									
F	-				.	 				
ŧ	- - -6									
+	-									
Ę						 				
ŧ	-					 				
ŀ	-7									
	-									
F	-					 				
F	-									
ŧ	-8					i ii ii				
	[
Ē	-			::::		 				
ŧ	-				1					
-	-9									
-	-					 				
ŧ	-									
ŧ	-				.					
<u> </u>										1

RIG: Scout 2 DRILLER: JS LOGGED: SI/RW CASING: HW 11.6m

TYPE OF BORING: Solid flight auger (TC-bit) to 5.5m; Rotary to 11.6m; NMLC-Coring to 17.45m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.28 AHD **EASTING**: 338374.19 **NORTHING**: 6250784.3

DIP/AZIMUTH: 90°/--

BORE No: BH102 **PROJECT No:** 84944.01 **DATE:** 12/4/2017 **SHEET** 2 OF 2

		Description	Degree of Weathering	<u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
묍	Depth (m)	of	Weathering	raph	Strength Nedium	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	ور %	Test Results &
	, ,	Strata	EW HW EW	g	Kery Very Kery Kery Kery Kery Kery Kery Kery K	0.00	S - Shear F - Fault	_5	2 8	R,	Comments
- 9	-11	SAND - grey fine to medium sand, dry to moist <i>(continued)</i> 11.35m: yellow brown, fine to medium grained clayey sand					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				
- 4	- 11.6 - - - - 12 12.0 - - - - 12.4 -	SANDSTONE - medium strength, highly weathered, slightly fractured, brown, coarse grained sandstone with some quartz gravel SANDSTONE - very low and low					11.86m: CORE LOSS: 140mm	С	86	50	PL(A) = 0.82
3	-13	strength, highly to moderately weathered, slightly fractured, light grey and red-brown, fine to medium grained sandstone with some extremely low strength bands			L		12.8m: J60°, pl, ro, cln 12.85m: B0°, cly				PL(A) = 0.23
2	- - - - 14						13.52-13.58m: Ds 13.65m: J60°- 70°, cu, ro, fe	С	100	92	PL(A) = 0.22
-	- 14.4 - - - - - - 15	SANDSTONE - medium and medium to high strength, moderately weathered, slightly fractured, brown to red-brown, medium grained sandstone	1 				14.35m: B0°, cly, 10mm 14.4-14.45m: Cs 14.5-14.62m: B (x3) 0°- 5°, fe, cly co				PL(A) = 0.83
-	- - - - 16						15.4m: J30°, he	С	100	92	PL(A) = 0.55
-0.							16.15 & 16.42m: B (x2) 5°, fe				PL(A) = 2.87
	- 17 - - - - - - 17.45 -	Bore discontinued at 17.45m					16.9m: B5°, fe, cly, 10mm				PL(A) = 0.84
-2	- - - - - -										
	-19										

RIG: Scout 2 DRILLER: JS LOGGED: SI/RW CASING: HW 11.6m

TYPE OF BORING: Solid flight auger (TC-bit) to 5.5m; Rotary to 11.6m; NMLC-Coring to 17.45m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAMPLING & IN SITU TESTING LEGEND										
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (pp						
	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (N						
BLK	Block sample	U,	Tube sample (x mm dia.)		Point load diametral test ls(5)						
	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)						
	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	¥	Water level	V	Shear vane (kPa)						

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.75 AHD **EASTING:** 338361.5

NORTHING: 6250706.3 **DIP/AZIMUTH:** 90°/--

BORE No: BH103 **PROJECT No:** 84944.01 **DATE:** 11/4/2017 **SHEET** 1 OF 2

	.	Description	Degree of Weathering A € € % & £ £	je Sie	Rock Strength	Fracture	Discontinuities			_	n Situ Testing
귐	Depth (m)	of		Log	Vate In Inches	Spacing (m)	B - Bedding J - Joint	Туре	ore : %	δD ,	Test Results &
	()	Strata	EW HW SW SW ER	Ō	Streow New Low New High New Hi	0.01	S - Shear F - Fault	\ \breve{\sum_2}	Core Rec. %	RC %	& Comments
16	0.5	TOPSOIL - dark brown, silty clay topsoil with rootlets, dry	-					A/E A			
15	1.3	SAND - yellow-brown, fine to medium sand, dry to moist						A/E			
14	-3										
13	-4										
11 12	-5										
10	-6 -7										
6	-8						Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				
8	8.5	SANDSTONE - medium strength, slightly weathered then fresh stained, fractured and slightly fractured, light grey, medium grained sandstone with some extremely low and very low strength bands and traces of carbonaceous laminations					8.96m: B0°- 5°, un, ro, fe stn 9.45m: J20°, pl, ro, fe	С	93	89	PL(A) = 0.55 PL(A) = 0.43
	9.85			\times			9.6m: Cs, 50mm 9.65m: CORE LOSS:				

RIG: Scout 2 DRILLER: JS LOGGED: RW/JN CASING: HQ to 8.5m

TYPE OF BORING: Solid flight auger (TC-bit) to 8.5m; NMLC-Coring to 14.4m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

SAMPLING & IN SITU TESTING LEGEND													
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)								
BLK	Block sample	U,	Tube sample (x mm dia.)) PL(D)	Point load diametral test ls(50) (M								
С	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)								

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.75 AHD **EASTING:** 338361.5 **NORTHING:** 6250706.3

DIP/AZIMUTH: 90°/--

BORE No: BH103 **PROJECT No:** 84944.01 **DATE:** 11/4/2017

SHEET 2 OF 2

		Description	Degree of Weathering	<u>.</u>	Rock Strength 5	Fracture	Discontinuities				n Situ Testing
R	Depth (m)	of Strata	>>>	Graphic Log	Mat Nat	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Туре	Sore ec. %	RQD %	Test Results &
9	-11	SANDSTONE - medium strength, slightly weathered then fresh stained, fractured and slightly fractured, light grey, medium grained sandstone with some extremely low and very low strength bands and traces of carbonaceous laminations (continued)	EW EW HWW HWW SW S		지 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	0.100	200mm 10.10, 10.15m: J45°, un, ro, cln 10.13m: J70°, un, ro, cln 10.26m: Ds, 20mm	С	93	89	PL(A) = 0.7
- 2	-12						11.66m: B0°- 5°, un, ro, cbs, st 11.68m: J0°- 30°, cu, ro, cbs, st 11.97m: J0°- 30°, cu, ro,				PL(A) = 0.36
4	12.52			X			fe stn 12.52m: J30°, pl, ro, cln CORE LOSS: 450mm	С	85	75	PL(A) = 0.31
	- ₁₃ 12.97										PL(A) = 0.54
8	- - - 14 -						13.68m: Cs, 10mm 13.72, 13.76m: J30°, pl, ro, cln 13.8m: Ds, 50mm 13.88m: Cs, 30mm				PL(A) = 0.47
	14.4	Bore discontinued at 14.4m - target depth reached		•:•:•:•			14.12m: Cs, 80mm				
2	- - - - - - - - -	anger departreasned									
	- - - - 16 - -										
0	- - - - 17										
	- - - - 18 -										
-5	-19 -19 										
_ဗု -	- - -										

RIG: Scout 2 DRILLER: JS LOGGED: RW/JN CASING: HQ to 8.5m

TYPE OF BORING: Solid flight auger (TC-bit) to 8.5m; NMLC-Coring to 14.4m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

SAMPLING & IN SITU TESTING LEGEND													
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)								
BLK	Block sample	U,	Tube sample (x mm dia.)) PL(D)	Point load diametral test ls(50) (M								
С	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)								

CLIENT: Cranbrook School PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.34 AHD **EASTING:** 338308.87 **NORTHING:** 6250760.78

DIP/AZIMUTH: 90°/--

BORE No: BH104 **PROJECT No:** 84944.01 **DATE:** 12/4/2017

SHEET 1 OF 2

	Double	Description	Degree of Weathering		Rock Strength ក្រ	Fracture Spacing	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth (m)	of Strata	> > > > ~	Graph	Ex Low Very Low Medium High Kery High Ex High Water	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core tec. %	RQD %	Test Results &
16	0.2	TOPSOIL - dark brown, fine to medium silty sand topsoil, moist SAND - dark brown mottled brown, iron indurated, fine to medium sand, moist (possibly filling) 0.8m: as above but brown and grey-brown mottled dark brown	MWW HWW SW	<i>Y</i>)/	<u>面学写覧達字面</u>			A/E A/E	Ľ.		Comments
14 15	- 1.3- - - - - -2	SAND - yellow brown mottled brown and dark brown, grey fine to medium sand, moist						A/E			
13	-3										
12	-4										
	-5				¥		Note: Unless otherwise				
10	- 6 - - - - - - - - - - - - - - - - - -	SANDSTONE - medium strength,		X			stated, rock is fractured along rough planar bedding dipping 0°- 10° 6.8m: CORE LOSS:				PL(A) = 0.71
- 6		moderately weathered, fractured and slightly fractured, light grey and red-brown, medium grained sandstone					7.3-7.45m: B (x3) 0°, cly co, 1-2mm 7.9 & 7.95m: B0°, fe				PL(A) = 0.36
8	-8 8.0 -	SANDSTONE - high strength, fresh, slightly fractured and unbroken, light grey, medium grained sandstone						С	97	90	PL(A) = 1.19
	-					- 	9.4m: B0°, cly, 5mm	С	100	100	PL(A) = 1.2

RIG: DT100 DRILLER: SS LOGGED: RW/SI CASING: HW to 6.8m

TYPE OF BORING: Solid flight auger (TC-bit) to 5.5m; Rotary to 6.8m; NMLC-Coring to 12.4m

WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Piston sample
(x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

LEGENU
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.34 AHD **EASTING**: 338308.87 **NORTHING**: 6250760.78 **DIP/AZIMUTH**: 90°/--

BORE No: BH104 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 2 OF 2

		Description	Degree of Weathering Order	R	Rock ength ក្រ	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
씸	Depth (m)	of	aphi surgania		Medium High Very High Ex High Water Water	Spacing (m)	B - Bedding J - Joint	g.	Core Rec. %	Q.,	Test Results
	(,	Strata	WH WW ST H	Ex Lo	Mediu Figh FX High	0.05	S - Shear F - Fault	Туре	ပြည့်	RG %	& Comments
9	-11	SANDSTONE - high strength, fresh, slightly fractured and unbroken, light grey, medium grained sandstone (continued)						С	100		PL(A) = 1.17
- 2	-12						11.9m: B0°, cly, 10mm		100	100	PL(A) = 1.01
-							. •				PL(A) = 1.08
3	12.4 - 13	Bore discontinued at 12.4m									.,
2	-14										
-	-15										
0	-16										
	-17										
-2	-18										
-3	-19										

RIG: DT100 DRILLER: SS LOGGED: RW/SI CASING: HW to 6.8m

TYPE OF BORING: Solid flight auger (TC-bit) to 5.5m; Rotary to 6.8m; NMLC-Coring to 12.4m

WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School Cranbrook School ECI PROJECT:

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.54 AHD **EASTING**: 338303.82 **NORTHING:** 6250703.09

DATE: 10/4/2017

BORE No: BH105

PROJECT No: 84944.01

DIP/AZIMUTH: 90°/--SHEET 1 OF 2

		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	S			n Situ Testing
귐	Depth (m)	of		Ex Low Very Low Medium High Very High Ex High Water Water	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Sore %.	RQD %	Test Results &
		Strata TOPSOIL - dark brown, silty sand	WH WW R R	E KIGIGION TO THE TOTAL TO THE	0.00	3-Sileai 1-Tault	A/E	_	ш.	Comments
16		topsoil filling with some rootlets, damp			 		A/E			
	0.6	SAND - grey-brown medium sand with some coarse graining, moist (possible filling)					A/E			
15	1.5	SAND - brown to dark brown medium sand, damp (possible filling)					A/E			
14	2.7 - · 3	SAND - light brown to orange-brown medium sand, damp				Note: Unless otherwise stated, rock is fractured along rough planar	A/E			
13	· 4 4.15/ 4.15/	4.1m: becoming extremely weathered sandstone				bedding dipping 0°- 10° 4.1m: CORE LOSS: 50mm				
. 11	4.3	SANDSTONE - medium strength, moderately to slightly weathered, slightly fractured, light grey-brown to red-brown, medium grained sandstone				4.15-4.3m: Cs 4.35m: J35°, he 4.4m: B20°, pl, ro, cln 4.93, 5.05 & 5.18m: B (x3) 0°- 5°, fe 5.28m: J70°, un, ro, fe 5.44, 5,81, 5.86m: B (x3) 0°- 5°, fe, cly	С	98	84	PL(A) = 0.5 PL(A) = 0.49
10	· 6 6.75 -					5.93m: J60° & 85°, st, ro, fe 6.63m: J (x2) 70°, un, ro,				PL(A) = 0.31
	7	SANDSTONE - medium and high strength, moderately to slightly weathered and fresh, slightly fractured, light grey-brown, medium grained sandstone				fe, partially he 6.75-6.77m: Cs 7.16m: J70°, he				PL(A) = 1.31
. - . - . - . - . -	8					7.82m: B0°, cly, 5mm 8.12m: J30°, pl, sm, cln				
-8	-9					8.6m: J20°, pl, ro, cln	С	100	91	PL(A) = 0.61
						9.35m: B5°, fe, cly, 5mm 9.45m: J25°, pl, ro, fe 9.85-10.10m: Cs				PL(A) = 0.49

LOGGED: RM/SI CASING: HQ to 4.1m RIG: Scout 2 DRILLER: JS

TYPE OF BORING: Solid flight auger (TC-bit) to 4.1m; NMLC-Coring to 15.48m

WATER OBSERVATIONS: Some seepage from 0.5m

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Gas sample
Piston sample
Piston sample
(x mm dia.)
Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p
Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School Cranbrook School ECI PROJECT:

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.54 AHD **EASTING:** 338303.82 **NORTHING:** 6250703.09

DATE: 10/4/2017 SHEET 2 OF 2

BORE No: BH105

PROJECT No: 84944.01

DIP/AZIMUTH: 90°/--

		Description	Degree of Weathering	<u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
R	Depth (m)	of Strata	Weathering :	Graph Log	Wate	Spacing (m) 97.00.1.00.1.00.1.00.1.00.1.00.1.00.1.00	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. %	RQD %	Test Results & Comments
	11 10.96	SANDSTONE - medium and high strength, moderately to slightly weathered and fresh, slightly fractured, light grey-brown, medium grained sandstone (continued) 40.35-10.66m: very low strength 40.66-10.96m: extremely low strength SANDSTONE - high then medium strength, slightly weathered and fresh, slightly fractured and					10.45-10.47m: Ds 10.66-10.96m: Ds	С	100	91	PL(A) = 0.65 PL(A) = 0.1 PL(A) = 1.26
4	-12 -13 -13	unbroken, light grey to light grey-brown, medium grained sandstone with some extremely low to very low strength bands					11.7m: J25°, ,pl, ro, cln 12.15m: J30°, pl, ro, fe, cly 12.22-12.36m: Cs 12.4-12.48m: Cs 12.6m: J70°, pl, ro, cln				PL(A) = 1.06
2	- - - - - - - - - - - - - - - - - - -						13.86m: B5°, cly, 10mm 14.15m: B5°, cbs co	С	100	88	PL(A) = 1.26 PL(A) = 1.03
-	- -15 - - - - - 15.48	Bore discontinued at 15.48m		_			14.75-14.9m: Cs				PL(A) = 0.92
	-16 										
	- 17 										
-3	-19 										

LOGGED: RM/SI CASING: HQ to 4.1m RIG: Scout 2 DRILLER: JS

TYPE OF BORING: Solid flight auger (TC-bit) to 4.1m; NMLC-Coring to 15.48m

WATER OBSERVATIONS: Some seepage from 0.5m

REMARKS:

CAMPI INC	0 111	CITLI	TECTINO	LECEND
SAMPLING	ı & IN	2110	IESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 38.47 AHD **EASTING:** 338318.63 **NORTHING:** 6250640.39 **DIP/AZIMUTH:** 90°/--

BORE No: BH106 **PROJECT No:** 84944.01 **DATE:** 12/4/2017 **SHEET** 1 OF 2

		Description	Degree of Weathering A € € % £ £	<u>.</u> 0	Rock Strength	Discontinuities	Sa	ampli	ng & I	n Situ Testing
묍	Depth (m)	of	VVCdtricring	aph Log	Strength Spacing (m) Strength Strength Spacing (m) Strength Spac	B - Bedding J - Joint	e	e %.	۵.,	Test Results
	(111)	Strata	EW HW SW SW FE	<u>ن</u>	Ex Low Very Low Medium	S - Shear F - Fault	Туре	ပ္သည္တ	RQD %	& Comments
	0.08	√FILLING - brick pavers		X			Α			
38	0.3	FILLING - brown silty sand filling with some fine to medium grained sandstone gravel, moist					Α			
	0.65	FILLING - sandstone boulder filling		XX			Α			
E	· -1	FILLING - concrete slab								
37	•	SAND - very loose, light grey medium grained sand, moist					S			1,1,1 N = 2
- "										
	-2									
36										1,1,2
	-3						S 			N = 3
35	· ·									
	- - -4 4.0									
	4 4.0	SAND - loose, pale yellow medium grained sand, moist					s			4,5,5 N = 10
34										
	-5 -									
33	. 5.5 -	SAND - dense, yellow medium				-		-		0.00
	- - -6	grained sand, moist					S			2,3,3 N = 6
	· · ·									
32	· ·									
	- 7 - 7						s			5,10,10 N = 20
31	· ·									N = 20
	-8									
30										
-							S			6,11,15 N = 26
	-9									
29	· ·									

RIG: Bobcat DRILLER: GM LOGGED: JN CASING: HW to 8.5m; HQ to 12.45m

TYPE OF BORING: Solid flight auger (TC-bit) to 8.5m; Rotary (mud) to 12.45m; NMLC-Coring to 15.55m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 12.5m (screen 9.5-12.5m; gravel 8.5-12.5m; backfill to GL with gatic cover)

-[SA	MPLING	& IN SITU TESTING	G LEGE	ND
	Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
		Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
- 1	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
		Core drilling	WÎ	Water sample		Pocket penetrometer (kPa)
- 1	D	Disturbed sample	⊳	Water seep	S	Standard penetration test
	E	Environmental sample	9 ₹	Water level	V	Shear vane (kPa)

CLIENT: Cranbrook School **PROJECT:** Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 38.47 AHD **EASTING**: 338318.63 **NORTHING**: 6250640.39

DIP/AZIMUTH: 90°/--

DATE: 12/4/2017 **SHEET** 2 OF 2

BORE No: BH106 **PROJECT No:** 84944.01

		Description	Degree of Weathering	. <u>o</u>	Rock Strength ក្រ	Fracture	Discontinuities				n Situ Testing
R	Depth (m)	of	Weathering	Graph Log	Strength Needium Needi	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	SQD %	Test Results &
H	-	Strata SAND - dense, yellow medium	M H W SW W S B		Ex L	0.00 0.00	C Chedi I I duk		~ <u>~</u>		10,17,19
-82		grained sand, moist <i>(continued)</i> 40.0m: becoming wet						S			N = 36
-											
ŀ	_ -11										
-	-										
27							Note: Unless otherwise stated, rock is fractured	s			10,14,18
E	- - - 12						along rough planar bedding dipping 0°- 10°	_			N = 32
26	12.45	SANDSTONE - medium then low strength, slightly weathered then									PL(A) = 0.63
ŀ	- - - 13	fresh stained, slightly fractured then unbroken, orange and light grey					12.85-13.08m: J60°- , 90°, un, ro, cln, partially				
E		medium grained sandstone with traces of very low strength bands					he 13.08m: Ds, 20mm				PL(A) = 0.56
25							13.5, 13.9, 14.06m: B0°- 5°, pl, ro, cly, 1mm				
	- - - 14					┆┈┆┆┎┛┆┆	5 , pi, ro, ciy, imin	С	100	99	
	- ''' -								100		
24						i ii L i	14.5m: B5°, pl, ro, fe stn				PL(A) = 0.53
E											
	-15 -										
23	15.55	Bore discontinued at 15.55m			 						PL(A) = 0.28
ŀ	- - 	- target depth reached									
	- 16 - -										
22											
ŀ	-										
ŀ	- 17 - -										
21						 					
-	- 18 -										
20											
E						 					
ŀ	- - 19 -										
- 61											
Ė											
	-		<u> </u>								

RIG: Bobcat DRILLER: GM LOGGED: JN CASING: HW to 8.5m; HQ to 12.45m

TYPE OF BORING: Solid flight auger (TC-bit) to 8.5m; Rotary (mud) to 12.45m; NMLC-Coring to 15.55m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 12.5m (screen 9.5-12.5m; gravel 8.5-12.5m; backfill to GL with gatic cover)

		SAMPLING	& IN SITU TE	STING LEGE	ND
Α	Auger sample	G	Gas sample	PID	Photo
_	D. II. a second		D'ata a sanata	DI (A)	D - 1 - 1 1

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

G G Sas sample
P Piston sample
X Water sample (x mm dia.)
W Water sample
Y Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 39.22 AHD **EASTING:** 338301.69 **NORTHING:** 6250640.1

DIP/AZIMUTH: 90°/--

BORE No: BH107 **PROJECT No:** 84944.01 **DATE:** 13/4/2017 **SHEET** 1 OF 2

					Deals						
	Donth	Description	Degree of Weathering	je E	Rock Strength 5	Fracture Spacing	Discontinuities				n Situ Testing
RL	Depth (m)		Degree of Weathering	Grapt	Ex Low Very Low Needjum High Nery High Ex High Water Water	0.00 0.00 0.10 (m) 0.50 0.10	B - Bedding J - Joint S - Shear F - Fault	Туре	Core Rec. %	RQD %	Test Results & Comments
-	0.05	FILLING - brick pavers						Α			
39		FILLING - brown silty sand filling with some fine to medium sandstone		\bowtie		i ii ii		Α			
-		gravel, moist		\bowtie							
[\bowtie				A			
<u> </u>	-1 1.0	SAND - very loose then loose, light	.								1,1,1
-8		grey medium grained sand, moist						S			N = 2
·	-2										
34											
:											1,1,1
	· ·							S			N = 2
:	-3										
36											
-											
	-4						Note: Unless otherwise stated, rock is fractured				2,3,5
35						<u> </u>	along rough planar bedding dipping 0°- 10°	S			N = 8
:							3 11 3				
	4.9							S			10/149mm
. 45	-5	SANDSTONE - medium strength, slightly weathered, slightly fractured, orange and light grey medium									refusal PL(A) = 0.48
	•	grained sandstone					5.3m: CORE LOSS: 410mm				1 L(A) - 0.40
: [5.71						5.73m: CORE LOSS:	С	58	56	
	5.91 -6						_180mm _5.91m: J45°, pl, ro, cln				
33							6.2m: J20°, un, ro, cln				PL(A) = 0.54
						i ii i i					
: [
	-7					 	6.8m: J30°, pl, ro, cly, 5mm				
32						i ii ii	^L 6.88m: J45°- 60°, un, ro, cln				
:											
	:						7.57, 7.64m: J20°, pl, ro, cly, 2mm	С	100	92	PL(A) = 0.46
:	-8						•		100	92	
31							8.03-8.35m: J70°, un, ro, fe stn, partially he				
:											PL(A) = 0.45
: }	9 9.05						8.93, 8.94m: B10°, pl,				
8	. 0.00	SANDSTONE - medium strength, fresh, slightly fractured then					ro, cly, 1mm				
:	·	unbroken, light grey medium grained sandstone with traces of									PL(A) = 0.48
	·	carbonaceous laminations						С	100	100	1 L(A) = 0.40
-	-		Liiiii		1 i i i l i i i l	li ii iil					

RIG: Bobcat DRILLER: GM LOGGED: JN CASING: HW to 4.9m; HQ to 4.9m

TYPE OF BORING: Solid flight auger (TC-bit) to 4.9m; NMLC-Coring to 14.0m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

	SAMPLING & IN SITU TESTING LEGEND												
Α	Auger sample		Gas sample		Photo ionisation detector (ppm)								
	Bulk sample		Piston sample	PL(A	Point load axial test Is(50) (MPa)								
BLK	Block sample	U,	Tube sample (x mm dia.)) PL(D	Point load diametral test Is(50) (MPa)								
С	Core drilling	WÎ	Water sample	pp	Pocket penetrometer (kPa)								
D	Disturbed sample	⊳	Water seep	S	Standard penetration test								
	Continuous static second		\A/=4== =	1/	Channa (I-Da)								

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 39.22 AHD **EASTING**: 338301.69 **NORTHING**: 6250640.1

DIP/AZIMUTH: 90°/--

BORE No: BH107 PROJECT No: 84944.01 DATE: 13/4/2017 SHEET 2 OF 2

		Description	Degree of Weathering or Carbon Services of Carbon S	Rock Strength	Fracture	Discontinuities	Sa	amplii	 ng & I	n Situ Testing
묍	Depth (m)	of	aph	Strength Low High Ligh Ligh Low Wery High Ligh Low Very High Low Water Water 10.01	Spacing (m)	B - Bedding J - Joint	Туре	e %	RQD %	Test Results
	(111)	Strata	WH WW S SY I	Ex Low Mediu		S - Shear F - Fault	ΙŽ	လွှဲ့	R	& Comments
- -	-11	SANDSTONE - medium strength, fresh, slightly fractured then unbroken, light grey medium grained sandstone with traces of carbonaceous laminations (continued)				10.4m: B0°, pl, ro, cly, 1mm 10.54m: Cs, 10mm				PL(A) = 0.5
27 28	-12					11.37m: B5°, pl, ro, cly, 2mm 11.87m: B5°, pl, ro, fe stn	С	100	100	PL(A) = 0.64
26	- 13						С	100	100	PL(A) = 0.49
 	-14 14.0	Bore discontinued at 14.0m								PL(A) = 0.71
24 25	- 15	- target depth reached								
23	-16									
22	- 17									
21	-19									

RIG: Bobcat DRILLER: GM LOGGED: JN CASING: HW to 4.9m; HQ to 4.9m

TYPE OF BORING: Solid flight auger (TC-bit) to 4.9m; NMLC-Coring to 14.0m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

REMARKS:

SAMPL	ING	& IN	SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.28 AHD **EASTING**: 338412.68 **NORTHING**: 6250794.55 **DIP/AZIMUTH**: 90°/--

BORE No: BH111 PROJECT No: 84944.01 DATE: 13/4/2017 SHEET 1 OF 1

		Description	0		Sam	ipling 8	& In Situ Testing		Well
균 De	pth	of	Graphic Log	a)				Water	Construction
r (n	n)	Strata	Gra	Type	Depth	Sample	Results & Comments	≥	Details
- 1-	0.3	TOPSOIL - brown medium sand filling with trace red-brown clay and rootlets		_A/E_/	0.1 0.15	0)			-
		FILLING - dark brown medium sand filling (possibly natural)		_A/E_/	0.45 0.5				-
-1	0.8	FILLING - pale brown mottled dark brown, medium sand filling (possibly natural)		_A/E_/	1.0 1.05				-1 -1
-2				_A/E_	1.9 2.0				-2
-3	2.6	SAND - pale brown and yellow, medium sand, moist		_A/E_	2.9 3.0				-3
13	3.1	Bore discontinued at 3.1m - target depth reached	<u> </u>		3.0				
									- - - -4
12 7									-
-5									-5 - - -
									- - -
-6 -6									6
7									7
-8									- -8 -
-9									-9 1

RIG: DT100 DRILLER: SS LOGGED: AT CASING: Uncased

TYPE OF BORING: Auger to 3.1m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p
Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)

Cranbrook School CLIENT: Cranbrook School ECI PROJECT:

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.61 AHD **EASTING:** 338380.55 **NORTHING:** 6250730.19 **DIP/AZIMUTH:** 90°/--

BORE No: BH112 **PROJECT No:** 84944.01 **DATE:** 11/4/2017 SHEET 1 OF 1

П			Description	0		San	npling 8	& In Situ Testing		Well
귐	De	pth	of	Graphic Log	a)				Water	Construction
	(n	n)	Strata	Grand L	Туре	Depth	Sample	Results & Comments	>	Details
			TOPSOIL - dark brown, silty clay topsoil with rootlets, dry		ΑÆ	0.1	0)			
16		0.4	SAND - dark brown mottled yellow-brown, fine to medium grained sand, dry to moist (possibly filling)	NXV	А	0.5				
	1	1.0	SAND - yellow-brown mottled dark brown, fine to medium sand, dry to moist		ΑÆ	1.0				-1 -
15	2	2.0	1.5m: as above but yellow-brown			-2.0-				
42	3	2.0	Bore discontinued at 2.0m - target depth reached		AL	2.0				-3
13	J									
	4									4
12	5									-5
-7-										
	6									6
-2-	7									7
6										
	8									8
8-	9									9

LOGGED: RW **CASING:** Uncased **RIG:** DT100 DRILLER: SS

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.22 AHD **EASTING:** 338402.54 **NORTHING:** 6250814

DIP/AZIMUTH: 90°/--

BORE No: BH113 PROJECT No: 84944.01 DATE: 13/4/2017 SHEET 1 OF 1

	_		Description	.je		Sam		& In Situ Testing	_	Well
牊	De _l (n	pth n)	of	Graphic Log	Туре	oth	Sample	Results &	Water	Construction
	(,	Strata	้อ	Ţ	Depth	Sam	Results & Comments	>	Details
16	-	0.2	FILLING - brown, medium grained sand filling (topsoil) with some red-brown clay, traces of rootlets		_A/E_/	0.1 0.15				
ŀ	-		FILLING - dark brown, medium sand filling		_A/E_/	0.5 0.55				-
ŀ	-	0.7	FILLING - pale brown mottled dark brown, medium sand filling			1.0				
-51	- 1		Š		_A/E_/	1.05				
ŀ	-									-
ŀ	- - - 2					1.95				-2
-4	-	2.3			A/E	1.95 2.0				-
-	-		SAND - pale brown and yellow, medium sand, moist							
Ė	- - -3	3.0			-A/E-	-3.0-				
13-	-	0.0	Bore discontinued at 3.0m		///	0.0				
ŀ	-		- target depth reached							
ŀ	-									
- 2	-4 -									-4
ŀ										
ŀ	- - -									-
-=	-5 - -									-5 [
Ē	-									
ŀ	-									
-0	-6 - -									<u>-</u> 6
ŀ	-									-
Ė	- - - 7									-7
-6	- ' -									-
ŀ	-									
Ē	- - -8									-8
	-									
-	-									
-	- - -9									- -9
- 1	-									
Ē	-									
-	-									-

RIG: DT100 DRILLER: SS LOGGED: AT CASING: Uncased

TYPE OF BORING: Auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.40 AHD EASTING: 338395.64

NORTHING: 6250774.08 **DATE**: 11/4/2017 **DIP/AZIMUTH**: 90°/-- **SHEET** 1 OF 1

BORE No: BH114

PROJECT No: 84944.01

	Donth	Description	ji E				& In Situ Testing	<u></u>	Well
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.2	TOPSOIL - dark brown, fine to medium silty sand topsoil	<i>YX</i> .	A/E	0.1	O)			-
16		SAND - dark brown mottled-brown, fine to medium sand, moist (possibly filling)		ΑÆ	0.5				-
	·1			ΑÆ	1.0				-1 -1
15	1.8								
14	·2	SAND - dark brown mottled yellow-brown, fine to medium sand with iron indurated pockets, moist		ΑÆ	2.0				-2
-	·3 3.0	Date discontinued at 2 One		-A/E-	-3.0-				-3
13		Bore discontinued at 3.0m - target depth reached							
-	-4								- - -4
12									
	-5								-5 -1
-1-									-
	-6								- -6
10									
	-7								7
-									
- 8	-8								-8
-									
	-9								-9 - - - -
-									

RIG: Scout 2 DRILLER: JS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p
Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School **PROJECT:** Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.43 AHD **EASTING:** 338384.73

NORTHING: 6250747.66 **DIP/AZIMUTH:** 90°/--

BORE No: BH115 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

			Description	.je		Sampling & In Situ Testing			Well		
RL	Dep (m	oth	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction	
L			Strata	0			Sar	Comments		Details	
ŀ		0.3	TOPSOIL - dark brown, fine to medium silty sand topsoil, dry to moist		A/E	0.1					
16	-		SAND - grey-brown, fine to medium sand, dry to moist (possibly filling)		Α/E	0.5					
			0.8m: as above but becoming dark brown and grey-brown								
	- 1 -	1.1	SAND - pale grey, fine to medium sand, dry to moist		ΑÆ	1.0				-1	
15			SAND - pale grey, fine to mealum sand, dry to moist								
	- - -										
-	- - - 2	2.0			-A/E-	-20-				2	
-	- ⁻		Bore discontinued at 2.0m - target depth reached		,,_	2.0					
-4	-		3								
	-										
	-3									-3	
13	-										
	- - -									-	
-	- - -4									-4	
-											
12											
	-									-	
	-5									-5	
-11	-										
	- - -										
	- - -6									-6	
-	-										
10	-										
	7									-7	
- 6	-										
	- - -8									- - -8	
-	• •										
	- 9 -									-9	
-	· ·										
	· ·										
-	· ·										

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.45 AHD EASTING: 338357.98

NORTHING: 6250734.72 **DIP/AZIMUTH:** 90°/--

BORE No: BH116 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

	_		Description	.je		San		& In Situ Testing		Well
R	De _l (n	pth n)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
Ļ			Strata	W X			Sa	Comments		Details
-		0.3	TOPSOIL - dark brown, fine to medium silty sand topsoil, dry to moist		A/E	0.1				
- 16		0.7	SAND - dark brown and yellow-brown, fine to medium sand, dry to moist (possibly filling)		ΑÆ	0.5				
	- 1	0.7	SAND - dark grey, fine to medium sand, moist		A/E	1.0				-
					~-	1.0				
15			1.5m: as above but becoming pale grey							-
			1.511. as above but becoming pale grey							
	-2	2.2			ΑÆ	2.0				-2
-4		2.2	SAND - dark brown mottled brown, fine to medium sand, iron indurated, dry to moist							
			· •							
	-3	3.0	Bore discontinued at 3.0m		-A/E-	-3.0-				3
			- target depth reached							
- 13										-
	-4									-4
	•									
12										-
	- 5									-5 [
-1-										
	-6									-6
-01										
	- 7									- -7
										[
-6										-
										<u> </u>
-	-8									- 8
										<u> </u>
-										
	9									-9
										<u> </u>
-										-
-										-

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING	& IN SITU	TESTING	LEGEND
--	----------	-----------	----------------	--------

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
P(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.04 AHD **EASTING:** 338392.47 **NORTHING:** 6250837.21

DIP/AZIMUTH: 90°/--

BORE No: BH117 **PROJECT No:** 84944.01 **DATE:** 13/4/2017 **SHEET** 1 OF 1

	Day	- 4la	Description	je r	Sampling & In Situ Testing			& In Situ Testing	_ h	Well
R	De _l	n)	of Charles	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
-9-	_		Strata TOPSOIL - grey and dark brown, silty sand filling (topsoil), traces of rootlets	<i>YX</i>		0.1 0.15	Š			Details
ŧ	-	0.2	\traces of rootlets / FILLING - dark brown, medium sand filling]	l .				
ŀ	-		TILLING - dark brown, medium sand ming		_A/E_	0.45 0.5				
- 51	- - 1				A/E	0.95 1.0				-1
ŧ						1.0				
ŧ										
-4-	- -				A/E	1.95 2.0				-2
-	- -					2.0				
[-	2.5	FILLING - pale grey and dark brown, medium sand filling							
-	-				<u>.</u>	2.05				
13-	-3 - -	3.2	CAND and array hours and hours and hours		AE	2.95 3.0				-3
ŧ	-		SAND - pale grey, brown and brown, medium sand (possibly filling)							
ļ										
-5	-4 -	4.0	Bore discontinued at 4.0m	1						4
-	-		- target depth reached							
ŀ	-									-
-=	- - 5 -									5
ļ										
ŀ										
-6	- -6									-6
F	-									
[-									
-	- - -7									-7
	-									
ŀ	-									
ŀ	-									
-80	-8 - -									-8
ŀ	-									
F	-									
-	-9 - -									-9 -
ŀ	-									
ŧ	-									
Ł										<u>†</u>

RIG: Scout 2 DRILLER: JS LOGGED: AT CASING: Uncased

TYPE OF BORING: Auger to 4.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p
Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)

Cranbrook School CLIENT: Cranbrook School ECI PROJECT:

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.14 AHD **EASTING**: 338382.59 **NORTHING:** 6250811.43 **DIP/AZIMUTH:** 90°/--

BORE No: BH118 PROJECT No: 84944.01 **DATE:** 13/4/2017 SHEET 1 OF 1

			Description	·Θ	Sampling & In Situ Testing			& In Situ Testing		Well
꿉	De _l (n	oth	of	Graphic Log	ЭС	oth	Sample	Results &	Water	Construction
	("	Strata	<u>ō</u> _	Type	Depth	Sam	Results & Comments	>	Details
-91	-	0.2	TOPSOIL - grey-brown, medium silty sand (topsoil), \traces of rootlets, organic odour		_A/E_/	0.1 0.15	- 07			
Ė	-		FILLING - dark brown medium sand filling, traces of silt		_A/E_/	0.45 0.5				
-	-	0.7	SAND - pale brown and yellow, medium sand, moist	XXX IIII						
-51	-1 - -				AE	0.95 1.0				<u>-</u> 1
Ė	-									
Ē	-	1.8	SAND - pale brown and brown, medium sand, moist			1 05				
-4	-2 - -				A/E	1.95 2.0				-2
-	-	2.5	Bore discontinued at 2.5m							
ŧ	- - 3		- target depth reached							-3
13	- - -									
Ė	-									
ŀ	- - -4									-4
12										
Ē	-									
-	-5									
- =	-									
ŀ	-									
0	-6 -									[-6
-										
Ē	-									
-6	- -7 -									7
-	-									
-	-									
	- -8 -									-8 -
-	-									
-	-									
-	- 9 -									- 9
-	-									
Ė	-									
Ł_					l					

LOGGED: AT **CASING:** Uncased **RIG:** DT100 DRILLER: SS

TYPE OF BORING: Auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGE	END
G	Gas sample		PID	Pho

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.38 AHD **EASTING:** 338353.07 **NORTHING:** 6250757.73 **DIP/AZIMUTH:** 90°/--

BORE No: BH119 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 1

			Description	U		San	npling &	& In Situ Testing		Well
牊	De	pth	of Description	Graphic Log	o o				Water	Construction
	(n	")	Strata	Gr.	Type	Depth	Sample	Results & Comments	>	Details
		0.2	TOPSOIL - dark brown, fine to medium silty sand topsoil, \dry to moist	<i>YY</i>	A/E	0.1	0)			
16	-		SAND - grey-brown, fine to medium sand, dry to moist (possibly filling)		ΑÆ	0.5				-
-	-		SAND - yellow, fine to medium sand, dry to moist							
	-1 - -		1.0m: as above but dark brown		A/E	1.0				-1
-	-		1.5m: as above but grey-brown mottled yellow-brown							
ŀ	-	2.0	1.9m: as above but dark grey		/-	20				
14	-2 - - - -	2.0	Bore discontinued at 2.0m - target depth reached		⊢A/E−	—2.U—				
ŀ	-									
-	- -3									-3
۳										
-	-									
-										
-	-4 -									-4
12	-									-
ŀ	-									-
-	- -5									-5
-										
-										
Ė	-									
-	-6 -									6
-6	_									-
-	-									-
-	- - -7									-7
-	-									
-6	-									<u> </u>
ŀ	-									-
-	-8 -									-8
	-									
Ė	-									
ŧ	- - -9									- -9
E	- -									-
	-									-
-	-									
	-									<u> </u>

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING	& IN SITU	TESTING	LEGEND
--	----------	-----------	----------------	--------

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.70 AHD **EASTING**: 338333.04 **NORTHING**: 6250703.65

DIP/AZIMUTH: 90°/--

DATE: 11/4/2017 **SHEET** 1 OF 1

BORE No: BH120

PROJECT No: 84944.01

	_		Description	ازر _		Sam		& In Situ Testing	<u></u>	Well
RL	De _l (n	ptn n)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
H	-		Strata TOPSOIL - dark brown, fine to medium silty sand topsoil,	XX	A	0.1	Sa			Details
-		0.2	\dry to moist							-
16	-	0.7	SAND - brown-yellow, fine to medium sand, dry to moist (possibly filling)		А	0.5				-
	- 1		SAND - dark brown and yellow-brown, fine to medium sand, iron indurated, dry to moist		А	1.0				- - -1
	-									
-					E	1.5				
15										
-	-2	2.0	Bore discontinued at 2.0m - target depth reached		-A/E-	-2.0-				
-	- -		- target deptil reactied							
-4										
	-3									-3
-										-
13										
-	- -4									-4
-										
12										
	- - - 5									- -5
	- - -									
	-									
-1										
	-6 -									-6 -
-	-									-
-0										-
	- -7									-7
										-
- 6										
	- - -8									- -8
	- -									
	-									
-8										
	-9 - -									-9
	- -									
- /	- -									
	-									<u> </u>

RIG: Scout 2 DRILLER: JS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Cranbrook School PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.11 AHD **EASTING:** 338357.75

NORTHING: 6250821.77 **DIP/AZIMUTH**: 90°/--

BORE No: BH121 **PROJECT No:** 84944.01 **DATE:** 12/4/2017 SHEET 1 OF 1

	D-		Description	ji T		Sam		& In Situ Testing		Well
씸	1)	epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-91		0.0	TOPSOIL - dark brown, fine to medium silty sand topsoil	XX	A/E	0.1	ιχ			- Details
Ē	-	0.2	dry to moist FILLING - yellow-brown fine to medium sand filling, dry to		ΑÆ	0.5				
ŧ	-	0.75	moist		, ,,,	0.0				
-51	- -1 -		SAND - yellow-brown and grey-brown mottled dark brown, fine to medium sand, dry to moist (possibly filling)		ΑÆ	1.0				1
E	-									
ŧ	-									
-4	-2	2.2			A/E	2.0				-2
ŧ	-		SAND - yellow-brown, fine to medium sand, dry to moist							
Ė	-									
13	-3 -	3.0	Bore discontinued at 3.0m	1	-A/E-	-3.0-				3
Ė	-		- target depth reached							
[-									
12	-4 -									-4
E	-									
Ė										
=	-5 - -									- 5
Ė	-									
Ē	- - -6									-6
-2	- ` - -									
ŧ										
Ė	- - -7									-7
-6										
-	-									
-	- - -8									-8
F**	-									
-	- -									
-	- - -9									-9
-	-									
ŧ	-									
Ŀ										-

LOGGED: RW **CASING:** Uncased RIG: DT100 DRILLER: SS

TYPE OF BORING: Auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
P Piston sample (x mm dia.)
W Water sample (x mm dia.)
W Water seep
Water seep
Water seep
Water seep
Water seep
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.22 AHD **EASTING**: 338349.17 **NORTHING**: 6250799.56

PROJECT No: 84944.01 **DATE:** 11/4/2017 **SHEET** 1 OF 1

BORE No: BH122

DIP/AZIMUTH: 90°/-- SHEET 1 OF 1

	De	n dda	Description	Sampling & In Situ Testing		<u></u>	Well			
R	(1	epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
16	-		FILLING - dark brown, fine to medium silty sand filling, dry to moist		A/E	0.1	0)			-
Ė	-	0.3	SAND - dark brown mottled grey, fine to medium sand, dry to moist (possibly filling)		ΑÆ	0.5				
ŀ	- - - 1		a, to (possize)g,		ΑÆ	1.0				
15	- ' -	1.2	SAND - yellow-brown, fine to medium sand, dry to moist		\ _	1.0				- ' - -
-	-									
-	- -2	2.0	Bore discontinued at 2.0m		-A/E-	-2.0-				2
-4	-		- target depth reached							-
Ė										-
13	-3 -3									3
-	-									- - -
ŀ	-									-
12	-4 -									_4
ŀ	-									
-	- - 5									- -5
==										-
Ė										
	- -6									- -6 [
-	-									
ŀ										
-6	-7 -									-7
F	-									
Ė	- - 8									- - -8
	-									
-	-									
Ė	-9 -									-9 -
-	-									
-	-									
t_										

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D D isturbed sample
E Environmental sample
W Water sample
Water sample
Water seep
Water level

CLIENT: Cranbrook School PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.31 AHD **EASTING:** 338341.92

NORTHING: 6250774.57 **DIP/AZIMUTH:** 90°/--

BORE No: BH123 **PROJECT No:** 84944.01 **DATE:** 11/4/2017

SHEET 1 OF 1

			Description	i i		Sam		& In Situ Testing	Well by		
씸	Dep (m	pth n)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction	
			Strata	0			Sar	Comments		Details	
- 9		0.2	TOPSOIL - dark brown, fine to medium silty sand topsoil, \dry to moist	<i>Y V</i>	A/E	0.1					
[-			SAND - grey-brown, fine to medium sand, dry to moist (possibly filling)		ΑÆ	0.5				-	
	- - 1	0.7	SAND - dark brown, fine to medium sand, iron indurated, dry to moist		ΑÆ	1.0				-1 -1	
15		1.5	SAND - yellow-brown, fine to medium sand, dry to moist								
			SAND - yellow-blown, line to medium salid, dry to most								
14	-2	2.0	Bore discontinued at 2.0m - target depth reached		⊢A/E−	 2.0					
	-3									-3	
13											
										-4	
12	. T										
	- 5									- - -5	
-=											
	-6									6	
-2											
										-	
	- 7 - 1									7	
-6 -										- - -	
	-8									-8	
-8											
										-	
	-9									-9 -	
										- - -	
	•									[

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D D isturbed sample
E Environmental sample
W Water sample
Water sample
Water seep
Water level

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.51 AHD **EASTING**: 338327.48 **NORTHING**: 6250748.48

DIP/AZIMUTH: 90°/--

DATE: 10/4/2017 **SHEET** 1 OF 1

BORE No: BH124

PROJECT No: 84944.01

Sampling & In Situ Testing Well Description Graphic Log Depth 屋 Construction of Depth Type (m) Details Strata TOPSOIL - dark brown, fine to medium silty sand topsoil, Α 0.1 dry to moist SAND - grey-brown, fine to medium sand, dry to moist ΑÆ 0.5 (possible filling) SAND - grey-brown mottled yellow-brown, fine to medium sand with occasional dark brown pockets of iron indurated Α 1.0 sand, dry to moist -2 2.0 -2.0--A/E-Bore discontinued at 2.0m - target depth reached -3 . 3 5 -5

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

- 8

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 D LESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
W Water seep
Water level

LEGENU
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S standard penetration test
V Shear vane (kPa)

-8

CLIENT: Cranbrook School Cranbrook School ECI PROJECT:

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.50 AHD **EASTING:** 338319.11 **NORTHING:** 6250727.97

DIP/AZIMUTH: 90°/--

PROJECT No: 84944.01 **DATE:** 10/4/2017 SHEET 1 OF 1

BORE No: BH125

	D	-41-	Description	ji _	Sampling & In Situ Testing				<u>_</u>	Well
RL	De _l	ptn n)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
H	-		Strata TOPSOIL - dark brown, fine to medium silty sand topsoil,	XX	A	0.1	Sa		+	Details -
	-	0.2	\dry to moist	<i>// // /</i>						
16	-	0.7	SAND - dark brown and grey-brown, fine to medium sand, dry to moist (possibly filling)		Α	0.5				
	- - - 1		SAND - grey mottled yellow-brown, fine to medium sand, dry to moist		A/E	1.0				-1
	-		1.2m: as above but yellow-brown mottled brown							
15	-									
	-									
	-2 -	2.0	Bore discontinued at 2.0m - target depth reached		-A/E-	-2.0-				
-4	-		- target departeached							
	-3									-3
3	-									
Ĺ	-									
	- - 4									-4
	-									-
12	-									-
	- - -5									-5
	-									
1	-									
	-									
	-6 - -									- 6
10										
-	-									
	-7 -									-7 [
- 6	-									
	-									
	- - 8 -									8
	-									
-8	-									
	- - -9									-9
	-									
-	-									
	-								1	

LOGGED: RW **CASING:** Uncased **RIG:** DT100 DRILLER: SS

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Piston sample
(x mm dia.)
Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p
Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.10 AHD **EASTING**: 338357.72 **NORTHING**: 6250849.98 **DIP/AZIMUTH**: 90°/--

BORE No: BH126 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 1 OF 1

	Description	U		San	ipling &	& In Situ Testing		Well
균 Depth (m)	of	Graphic Log	Φ				Water	Construction
	Strata	يق	Type	Depth	Sample	Results & Comments	>	Details
	TOPSOIL - dark brown, fine to medium silty sand topsoil, trace gravel, dry to moist		ΑÆ	0.1	- 0,			
0.0	FILLING - yellow brown, fine to medium sand filling, dry to moist		ΑÆ	0.5				
1 1 	1.3m: as above but grey-brown		A/E	1.0				1
2 - 4 -			A/E	2.0				-2
-3	2.4m: as above but becoming grey-brown and dark brown		Α⁄Ε	3.0				-3
3.4	SAND - yellow-brown, fine to medium sand, moist							
4 4.0	Bore discontinued at 4.0m - target depth reached	1	<u>—</u> А—	 4.0				-
5 - 5								-5 -5
- 01								-6
- 7 - 7 - 0 - 1 - 1								7
- 8 - 8 - 8								-8
9								9
-								-

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 4.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p
Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School PROJECT: Cranbrook School ECI

SURFACE LEVEL: 16.07 AHD **EASTING:** 338330.67

PROJECT No: 84944.01 **DATE:** 11/4/2017 SHEET 1 OF 1

BORE No: BH127

NORTHING: 6250807.63 LOCATION: New South Head Road, Bellevue Hill **DIP/AZIMUTH**: 90°/--

	Description Depth Of					Sam		& In Situ Testing		Well
R	De _l	ptn n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
16	-	0.3	TOPSOIL - dark brown, fine to medium silty sand topsoil, dry to moist	M	A/E	0.1	o		-	
-	-	0.3	SAND - dark brown mottled yellow-brown, fine to medium sand with iron indurated pockets, dry to moist (possibly filling)		ΑÆ	0.5			-	
15	- -1 -	1.2			ΑÆ	1.0			-1	
	-	1.2	SAND - yellow-brown, fine to medium sand, moist						-	
4	- - -2	2.0			-A/E-	-2.0-			2	
	-		Bore discontinued at 2.0m - target depth reached		_					
13	- -3 -								-3	•
-	- - - - -4								-4	
12									-	
-17	- - - 5 -								-5	;
-	- - - - - - -								-6	
	-								-	
-6	- - - 7 -								-7	
-	- - - -								-	
-80	- 8 - - -								-8	
4	- - - - 9								-9)
-	-								-	
_	-								-	

LOGGED: RW **CASING:** Uncased RIG: DT100 DRILLER: SS

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Cranbrook School PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 15.95 AHD **EASTING**: 338327.14

PROJECT No: 84944.01 **DATE:** 12/4/2017 **SHEET** 1 OF 1

BORE No: BH128

 NORTHING:
 6250830.2
 DATE:
 12/4/2017

 DIP/AZIMUTH:
 90°/- SHEET
 1 OF 1

	_		Description	:E _		Sam		& In Situ Testing		Well
RL	De (r	pth n)	of Strate	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
H			Strata TOPSOIL - dark brown, fine to medium silty sand topsoil,	- Y / Y	A/E	0.1	Š			Details
	· ·	0.3	moist FILLING - yellow-brown mottled dark brown, fine to medium sand filling, dry to moist		ΑÆ	0.5				
15	- - - 1				ΑÆ	1.0				1
	• • •	1.4	SAND - mottled yellow-brown, dark brown and grey-brown, fine to medium sand, dry to moist (possibly filling)							
14	-2		filling)		ΑÆ	2.0				_2
	• • •	2.2	SAND - yellow-brown, fine to medium grained sand, dry to moist							
13	-3 -3	3.0	Bore discontinued at 3.0m - target depth reached		-A/E-	-3.0-				3
			- target departeached							-
12	- 4 									-4 -4
	· · ·									
11	- 5 									-5 -5
	· · ·									
10	-6 -									-6 -6
- 6	- 7 									7
- 8	- 8 -									-8 -
	· ·									
7	-9 -									9
	· · ·									
Ŀ										-

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.35 AHD **EASTING**: 338293.77 **NORTHING**: 6250744.3 **DIP/AZIMUTH**: 90°/--

BORE No: BH129 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 1

П	Description .9						pling 8	& In Situ Testing		Well
귐	De _l (n	pth	of	Graphic Log	e e				Water	Construction
	(11		Strata	يق	Type	Depth	Sample	Results & Comments	<	Details
		0.3	TOPSOIL - dark brown, fine to medium silty sand topsoil, dry to moist		Α/E	0.1				
-			SAND - grey-dark brown, fine to medium sand, dry to moist (possibly filling)		ΑÆ	0.5				
	1	1.2	OAND are the decree become and college become and with		ΑÆ	1.0				-1
15			SAND - mottled grey-brown and yellow-brown sand with pockets of iron induration, moist							
41	2				ΑÆ	2.0				-2
	3		2.5m: as above but grey-brown		А	3.0				3
13		3.5	SAND - yellow-brown, fine to medium sand with clay, wet							
	4	4.0	3.9m: as above but pale-grey		_ _A _	-4 .0-				-
12			Bore discontinued at 4.0m - target depth reached							
=======================================	5									-5 -5
	6									-6
9	•									
	7									7
F-6										
	8									-8
	9									-9

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 4.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 of IESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p
Pocket penetrometer (kPa)
Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.44 AHD **EASTING**: 338282.32 **NORTHING**: 6250716.51

DIP/AZIMUTH: 90°/--

BORE No: BH130 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 1

onstruction Details
Details
_

RIG: DT100 DRILLER: SS LOGGED: RW CASING: Uncased

TYPE OF BORING: Auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEN	ō
----------------------------------	---

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D D isturbed sample
E Environmental sample
W Water sample
Water sample
Water seep
Water level

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
P(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School
PROJECT: Stage 1 Development

LOCATION: Victoria Road, Bellevue Hill

SURFACE LEVEL: 16.10 AHD

EASTING:
NORTHING:
DIP/AZIMUTH: 90°/--

BORE No: 2
PROJECT No

PROJECT No: 84944 **DATE:** 7/7/2015 **SHEET** 1 OF 2

		Description	Degree of Weathering Section 2.5	္	Rock Strength	Fracture	Discontinuities	Sa	ampling & I	n Situ Testing
귐	Depth (m)	of	Weathening 1.2		Strength Strength Water Water	Spacing (m)	B - Bedding J - Joint	g	Core Rec. %	Test Results
	(''')	Strata	EW HW SW SW FE	5 _	Very Low Medium Wery High Ex High		S - Shear F - Fault	Туре	S S S S	& Comments
15 16	0.15	TOPSOIL - dark brown, silty sand topsoil with trace rootlets, damp FILLING - poorly compacted, dark brown and light grey-brown mottled, silty sand, damp						E S		1,0,1 N = 1
147	·2							E		
13	3							S E		0,0,1 N = 1
11	4.85	SAND - light yellow-brown, medium grained sand, damp						S E		1,1,1 N = 2
10	-6									
8	8									
	9									

RIG: Bobcat DRILLER: SY LOGGED: MP/SI CASING: HQ to 9.5m

TYPE OF BORING: Solid flight auger to 9.5m; Rotary to 11.25m; NMLC-Coring to 14.3m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Cranbrook School PROJECT: Stage 1 Development LOCATION: Victoria Road, Bellevue Hill

SURFACE LEVEL: 16.10 AHD **EASTING:**

PROJECT No: 84944 NORTHING: DATE: 7/7/2015 **DIP/AZIMUTH:** 90°/--SHEET 2 OF 2

BORE No: 2

		Description	Degree of Weathering :≌	Rock Strength	Fracture	Discontinuities	Si	ampli	ng &	In Situ Testing
RL	Depth (m)	of Strata	Degree of Weathering	Ex Low Very Low Medium High Ex High Ex High Ex High Water	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Sec. %	RQD %	Test Results & Comments
9	10.85	SAND - light yellow-brown, medium grained sand, damp (continued) SILTY CLAY - light grey, silty clay				Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				Commente
	11.25	SANDSTONE - medium and medium to high strength, moderately weathered then fresh, slightly fractured and unbroken, red-brown then light grey-brown, medium grained sandstone with some very low strength bands								PL(A) = 0.5
	-13					12.34-12.37m: Cs 12.58-12.60m: fg	С	100	86	PL(A) = 0.7
2	- - - 14 - - - 14.3	13.85-14.15m: very low strength siltstone bands				13.83m: J65°, un, ro, cly 14.1m: B5°, cly co 14.15m: J30°, pl, sm, cly,				PL(A) = 1.2 PL(A) = 0.4
	-15	Bore discontinued at 14.3m				(1.1011.000 , pl, olli, oly)				
0	-16									
-	- 17 - 17 									
-2	- - -18 - -									
6-	- - -19									

LOGGED: MP/SI CASING: HQ to 9.5m DRILLER: SY

TYPE OF BORING: Solid flight auger to 9.5m; Rotary to 11.25m; NMLC-Coring to 14.3m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

	SAMPLING	& IN SITU TEST	ING LEGE	ND
Auger sample	G	Gas sample	PID	Photo i

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

CLIENT: Cranbrook School PROJECT: Stage 1 Development

LOCATION: Victoria Road, Bellevue Hill

SURFACE LEVEL: 16.35 AHD

EASTING: **NORTHING: DIP/AZIMUTH:** 90°/-- **BORE No:** 4

PROJECT No: 84944 DATE: 3/7/2015 SHEET 1 OF 3

		Description	Degree of Weathering Capping States	Rock Strength	Fracture	Discontinuities			In Situ Testing
묍	Depth (m)	of	Sraph	Strength Needium Low Very High High High String Need High Mater Need High Ne	Spacing (m)	B - Bedding J - Joint	Type Core	RQD %	Test Results &
			SW WW EW	EX L Very Very Very	0.00	S - Shear F - Fault	F. 05	F 12.	Comments
16	0.6	TOPSOIL - dark brown, silty sand topsoil with trace rootlets, damp					E		
	- - - 1	FILLING - dark brown and grey-brown, silty sand filling, damp							0.00
15	· · · · ·						S		2,2,3 N = 5
-4-	-2	- becoming slightly silty and yellow-brown mottled below 2.0m					E		
13	-3 -						S		3,4,4 N = 8
12	-4 4	4.0-4.5m: trace organic material					E S		1,2,3 N = 5
	4.5-	SILTY SAND - brown and brown-grey, fine to medium grained sand, damp							
10	-6								
-6	-7 7.0- - - - -	SAND - yellow-brown, medium grained sand, damp							
8	-8 -8								
	- - -9 -								
-	• •								

LOGGED: MP/SI CASING: HW to 11.5m RIG: Bobcat DRILLER: SY

TYPE OF BORING: Solid flight auger to 9.5m; Rotary to 18.0m; NMLC-Coring to 21.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

	SAMPLING	3 & IN SITU	TESTING	LEGE	END
nle	G	Gas sample		PID	Pho

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level PUX A

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cranbrook School

PROJECT: Stage 1 Development LOCATION: Victoria Road, Bellevue Hill SURFACE LEVEL: 16.35 AHD

PROJECT No: 84944 EASTING: NORTHING:

DATE: 3/7/2015 **DIP/AZIMUTH:** 90°/--SHEET 2 OF 3

BORE No: 4

				Degree of	l	Rock	<u> </u>		D: " "				
	De	epth	Description	Degree of Weathering	ohic g	Rock Strength	ter	Fracture Spacing	Discontinuities				n Situ Testing Test Results
R	(n	n)	of Strata	. > > >	Grap	Strength Key Low Medium Medium Medium Key High Key High Key High	×	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Sore ec. %	RQD %	&
H		\dashv	SAND - vellow-hrown medium	W W W W W W W W W W W W W W W W W W W		M M M M M M M M M M M M M M M M M M M	7	10.00	- Ciloui I I duit		~	_	Comments
-	[SAND - yellow-brown, medium grained sand, damp (continued)										
F"	-												
-													
[- - 11												
<u> </u>	[
-	Ė												
ŀ	-												
-	- 12												
4	-												
-													
[]	-												
Ė	- 13												
- 8	-												
Ė	-												
-													
	- 14 -												
2	-												
-													
Ė													
-	- 15 -												
-	-												
ŀ	[
	- - - 16												
Ė	- 10												
-0													
-	-	40.0											
[- - 17	16.8	SILTY CLAY - light grey, silty clay						Nata Halana - 0				
[-				V.				Note: Unless otherwise stated, rock is fractured				
-	-				V				along rough planar bedding dipping 0°- 10°				
-					Y.								
	- - 18	17.9 18.0	SANDSTONE - very low strength,	 			4						
-			light grey-brown, fine to medium grained sandstone						18.27 & 18.46m: B (x2)				
F '	-		SANDSTONE - low and medium		!::::::				5°- 10°, cly vn, ti				PL(A) = 0.5
[-		strength, highly to moderately then slightly weathered, slightly fractured,					 					
	- 19		red-brown then light brown, medium grained sandstone with some very							С	100	91	
_.	-		low strength bands			<mark>*</mark>		 	19.2m: B10°, fe, cly				
[]								 	19.5-19.55m: Cs				PL(A) = 0.2
[]	-												, , 0
Ы					<u> </u>								

LOGGED: MP/SI CASING: HW to 11.5m DRILLER: SY

TYPE OF BORING: Solid flight auger to 9.5m; Rotary to 18.0m; NMLC-Coring to 21.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

SAMPLING	& IN SITU	TESTING	LEGE	:ND
G	Gas sample		PID	Pho

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level G P U×W △♥

CLIENT: Cranbrook School **PROJECT:** Stage 1 Development

LOCATION: Victoria Road, Bellevue Hill

SURFACE LEVEL: 16.35 AHD

EASTING: PROJECT No: 84944 **NORTHING: DATE:** 3/7/2015 **SHEET** 3 OF 3

BORE No: 4

						11 //	AZIMU I H:	90°/	SHE		, ()	3
		Description	Degree of	O	Rock Strength	_	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
뀝	Depth (m)	of Strata	Degree of Weathering	Graphi Log	Strength Very Low Low High Very High Ex High	Wate	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-4	- - - - - 21	SANDSTONE - low and medium strength, highly to moderately then slightly weathered, slightly fractured, red-brown then light brown, medium grained sandstone with some very low strength bands (continued)						20.2m: B10°, cly vn, ti 20.45m: J70°, pl, ro, fe, cly 20.82m: B0°, cly	С	100	91	PL(A) = 0.5 PL(A) = 0.4
- - - -	21.1	Bore discontinued at 21.1m										1 L(A) = 0.4
- 9	-22											
	- 23 23											
- 8	-24											
6-	- - - - - - - - -											
-10	- 26											
-11	-27											
-12	- 28 											
-13	- - -29											
	-											

RIG: Bobcat DRILLER: SY LOGGED: MP/SI CASING: HW to 11.5m

TYPE OF BORING: Solid flight auger to 9.5m; Rotary to 18.0m; NMLC-Coring to 21.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

SAMPLING & IN SITU TESTING LEGEN	ID
---	----

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 D LESTING
G Gas sample
P Piston sample
V Water sample (x mm dia.)
W Water sample
Water seep
Water level

CLIENT: Cranbrook School PROJECT: Stage 1 Development Victoria Road, Bellevue Hill LOCATION:

SURFACE LEVEL: 32.4 AHD **EASTING: NORTHING: DIP/AZIMUTH:** 90°/--

BORE No: 10 PROJECT No: 84944 **DATE:** 6/7/2015 SHEET 1 OF 3

П		Description	Degree of Weathering A € € % £ £	ల	Rock Strength	Fracture	Discontinuities	Sa	ampling &	n Situ Testing
귒	Depth (m)	of	. Vocali Cili Ig	raph	Strength Nate High High High High High High High High	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. % RQD %	Test Results &
		Strata	EW HW EW SW SW SW FR	Ō	Ex Low Very Low Low Medium High Very High Ex High	0.05 0.10 0.50 1.00	S - Shear F - Fault	Ţ	S	& Comments
П	0.05	CONCRETE SLAB	-	XX						
32	0.55	FILLING - dark brown, silty sand, medium to coarse grained sand, damp	i i i i i i i i i i i	\bigotimes						
		FILLING - light grey, medium grained sand with trace of silt, damp								
	-1	granisa sana wan aass si sin, aamp		\bowtie				E		333
[-				\bowtie				S		3,3,3 N = 6
				\otimes						
	. 1.95							E		
	-2 1.95	SAND - yellow-brown, medium grained sand with a trace of silt,				 				
8		damp								
		- loose				i ii ii l		S		6,8,11*
	-3									refusal
<u> </u>	-					 				
29	3.5	- medium dense below about 3.5m								
		- medium dense below about 5.5m				i ii ii l				
Ė	-4									
								S		7,9,12 N = 21
78										
						i ii ii l				
	-5									
27										
[]										9,12,14
						i ii ii l		S		N = 26
	-6									
26						 				
	- 7			::::		i ii ii l				
<u> </u>								s		8,13,16 N = 29
25						 				1, 20
[]										
<u> </u>	-8 8.0	- dense below about 8.0m				<u> </u>				
24						 				13,20,20/100mm
<u> </u>								S		refusal
	-9					i ii ii l				
2										
["						 				
	10.0									
ш	10.0	l .					l .			

LOGGED: MP/SI RIG: Bobcat DRILLER: SY CASING: HW to 8.5m; HQ to 17.5m

TYPE OF BORING: Solid flight auger to 8.5m; Rotary to 20.3m; NMLC-Coring to 22.18m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *SPT pushed 0.5m in collapsed sand prior to SPT. Numbers higher than realistic

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level Core drilling
Disturbed sample
Environmental sample

CLIENT: Cranbrook School
PROJECT: Stage 1 Development
LOCATION: Victoria Road, Bellevue Hill

SURFACE LEVEL: 32.4 AHD EASTING:
NORTHING:
DIP/AZIMUTH: 90°/--

BORE No: 10 **PROJECT No:** 84944 **DATE:** 6/7/2015 **SHEET** 2 OF 3

		Description	Degree of Weathering	<u>.0</u>	Rock Strength 5	Fracture	Discontinuities	Sa	ampling &	In Situ Testing
씸	Depth (m)	of	vvcau ici ii ig	raphi	Ex Low Very Low Medium High Kvery High Ex High Ex High Six High Ex Hig	Spacing (m)	B - Bedding J - Joint			
	(111)	Strata	MW HW SW FS FS FS	<u>ნ</u>	Ex Lov Very L Mediu Mediu Very F Ex High	0.00 0.00 0.10 0.50 0.50 0.50 0.50 0.50	S - Shear F - Fault	Туре	Core Rec. % RQD %	& Comments
		SAND - yellow-brown, medium grained sand with a trace of silt,						s		12,26/150mm refusal
22	-	damp							1	reiusai
ŀ						 				
	-									
	-11									
21						 				
Ė									1	13,24,24 N = 48
	·							S		N = 48
Ė	-12									
20	-									
Ė										
	:									
	-13 -									
19	-									
	.									
	-14 -									
-@	-									
						i ii ii l		s]	13,16,26 N = 42
ŀ	- - - 15]	N = 42
[]	- 15									
4						i ii ii l				
	.									
[- - -16									
	.									
-9										
	-									
[- - 17									
[.									
15	.					 				
Ė	:									
 	- 18									
E	·					 				
-4	:									
Į į										
	- -19									
[i ii ii				
13-	: :						Note: Unless otherwise stated, rock is fractured			
[]	- - - 19.8		.				along rough planar bedding dipping 0°- 10°			
Ш			Liiiii				5 1. 5			

RIG: Bobcat DRILLER: SY LOGGED: MP/SI CASING: HW to 8.5m; HQ to 17.5m

TYPE OF BORING: Solid flight auger to 8.5m; Rotary to 20.3m; NMLC-Coring to 22.18m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *SPT pushed 0.5m in collapsed sand prior to SPT. Numbers higher than realistic

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk Slock sample
C C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN S11 U I ESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level

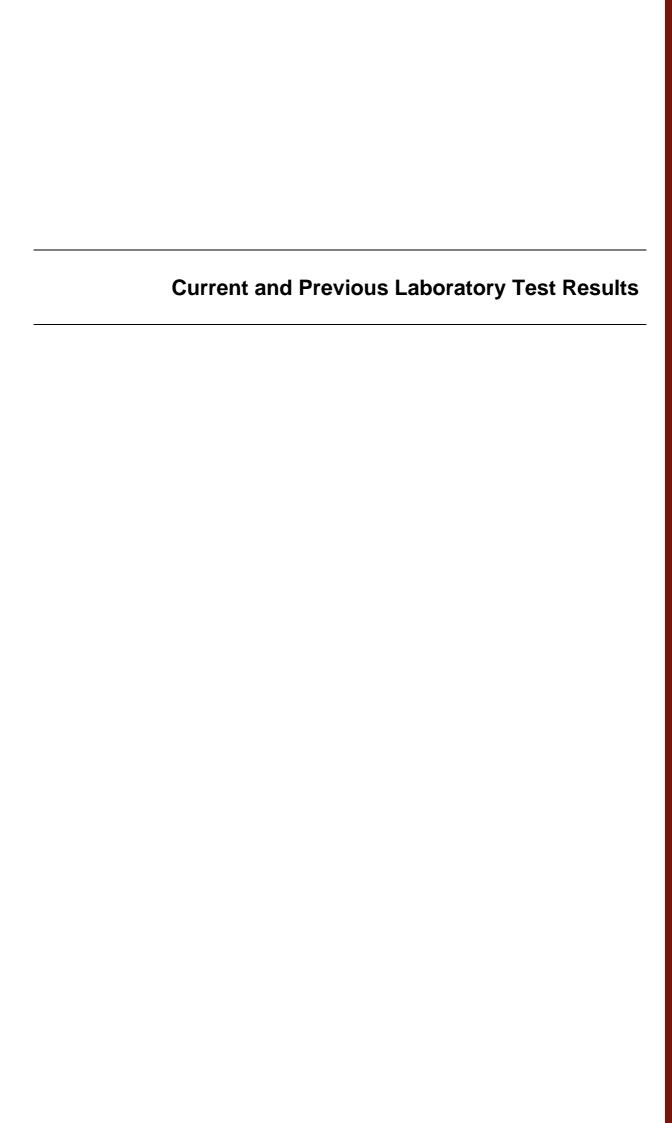
CLIENT: Cranbrook School PROJECT: Stage 1 Development LOCATION: Victoria Road, Bellevue Hill SURFACE LEVEL: 32.4 AHD **EASTING: NORTHING: DIP/AZIMUTH:** 90°/--

BORE No: 10 PROJECT No: 84944 **DATE:** 6/7/2015 SHEET 3 OF 3

		Description	Degree of Weathering	.ల	Rock Strength	Fracture	Discontinuities	S	ampli	ng & I	n Situ Testing
귐	Depth (m)	of	Troduiomig	Sraph Log	Strength Medium High String Nater Water Wa	Spacing (m)	B - Bedding J - Joint	Туре	ore c. %	RQD %	Test Results &
L		Strata SILTY CLAY - light grey and	W W W W W W W W W W W W W W W W W W W		EXIST NEW PROPERTY OF THE PROP	0.01	S - Shear F - Fault	F.	ი <u>გ</u>	α_	Comments
Ē.,	20.3	red-brown, silty clay with trace \[\text{ironstone bands (continued)} \[//									DI (A)
12		SANDSTONE - low and very low					20.48-20.6m: B (x3) 0°-				PL(A) = 0.2
ŧ		strength, highly to moderately then slightly weathered, slightly fractured,				i 	10°, fe, cly co 20.86m: B0°, cly				
ŧ	- 21 -	light grey-brown, medium to coarse grained sandstone				i ii l ii	21.18m: B5°, fe	С	100	80	
==									100		PL(A) = 0.2
-							21.55m: B10°, fe, cly				
ŧ	-22				╽┪┩┆┆┆┆		21.93-22.18m: J80°, pl, ro, cly inf				PL(A) = 0.1
-6	- 22.18	Bore discontinued at 22.18m					10, Gly IIII				
ŧ											
ŧ	- -23					 					
ŧ											
-6	-										
ŧ											
ŧ	-24										
ŀ						 					
ŧ	25					 					
-											
ŀ											
ŀ	- - 26										
ŀ											
-9	-										
ŀ	<u> </u>										
ŀ	- 27 [
-2	-										
ŧ	<u> </u>				i i i i i i						
E	[-28										
F	[- -										
4	[
F	[
ŀ	- 29 -										
-6	[
ŧ	<u> </u>					 					
L	<u>t</u>		Liiiii								

LOGGED: MP/SI RIG: Bobcat DRILLER: SY CASING: HW to 8.5m; HQ to 17.5m

TYPE OF BORING: Solid flight auger to 8.5m; Rotary to 20.3m; NMLC-Coring to 22.18m


WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *SPT pushed 0.5m in collapsed sand prior to SPT. Numbers higher than realistic

	SAMPLING	3 & IN SITU TEST	ING LEGE	END
Auger sample	G	Gas sample	PID	Phot

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

SERVICES

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

165477

CERTIFICATE OF ANALYSIS

Client:

Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

Sample log in details:

Your Reference: 84944.01, Bellevue Hill

No. of samples: 30 soils

Date samples received / completed instructions received 19/04/17 / 19/04/17

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 27/04/17 / 27/04/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer/ General Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference: Your Reference	UNITS	165477-1 BH101	165477-2 BH101	165477-3 BH102	165477-4 BH102	165477-5 BH103
Depth Date Sampled Type of sample		0.5 12/04/2017 Soil	4.0 12/04/2017 Soil	0.5 12/04/2017 Soil	2.0 12/04/2017 Soil	0.1 11/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	92	100	93	98

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	94	93	99	97

VTDH/C6 C40\/DTEVNin Soil						
vTRH(C6-C10)/BTEXN in Soil	LINITO	105477 11	105477.40	105477.40	105477 44	105477.45
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	101	100	94	100

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
	-					
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	97	102	98	86

			ı			
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	98	100	94	91

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	21/04/2017	21/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	94	87	96	96	94

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-
Your Reference		BH101	BH101	BH102	BH102	BH103
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled Type of sample		12/04/2017 Soil	12/04/2017 Soil	12/04/2017 Soil	12/04/2017 Soil	11/04/201 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/201
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/201
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	84	85	82	87
				<u> </u>		
svTRH (C10-C40) in Soil	1					1

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	83	84	83	82

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
Depth Date Sampled Type of sample		0.5 11/04/2017 Soil	1.0-1.05 13/04/2017 Soil	1.0 11/04/2017 Soil	0.1 11/04/2017 Soil	1.0 11/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	21/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	84	85	84	81

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
	-					
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	81	83	81	83

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	86	82	83	82	83

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	84	86	85	86

PAHs in Soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
	-					
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.6	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.5	<0.1	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.3	<0.1	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.5	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.3	<0.05	0.2	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	3.0	<0.05	1.2	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	97	90	94	93	99

PAHs in Soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total+ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	95	92	92	95	94

PAHs in Soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled Type of sample		11/04/2017 Soil	13/04/2017 Soil	11/04/2017 Soil	11/04/2017 Soil	11/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	98	93	95	93	92

PAHs in Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
	-					
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.06	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.2	0.78	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	94	94	95	97	91

PAHs in Soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled Type of sample		11/04/2017 Soil	11/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil	12/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	0.59	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	93	91	98	93	91

PAHs in Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled Type of sample		11/04/2017 Soil	12/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.5
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	2.3
Surrogate p-Terphenyl-d14	%	97	93	97	93	93

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
Depth	-	0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	102	100	99	99

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
Depth	-	1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	102	96	98	99

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	97	98	98	97

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Depth	-	1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	94	100	96	95

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth Serveled		1.0 11/04/2017	0.5 11/04/2017	0.1 10/04/2017	0.5 10/04/2017	2.0 12/04/2017
Date Sampled Type of sample		11/04/2017 Soil	11/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil	12/04/2017 Soil
, , , , , , , , , , , , , , , , , , ,		20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date extracted	-					
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	,g/kg %	99	103	97	99	99
Surrogate TOWA	/0	55	100	31	53	55

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth Sevented		0.5 11/04/2017	1.0 12/04/2017	0.5 10/04/2017	2.0 10/04/2017	0.1 10/04/2017
Date Sampled Type of sample		11/04/2017 Soil	12/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil
7		20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date extracted	-					
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	,g/kg %	100	101	99	100	96
Surrogate TONIA	/0	100	101	53	100	30

Organophosphorus Pesticides						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
Depth	-	0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	102	100	99	99

Organophosphorus Pesticides						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	102	96	98	99

Organophosphorus Pesticides						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	97	98	98	97

Organophosphorus Pesticides Our Reference: Your Reference	UNITS	165477-16 BH117	165477-17 BH118	165477-18 BH119	165477-19 BH120	165477-20 BH121
Depth Date Sampled Type of sample		1.95-2.0 13/04/2017 Soil	0.1-0.15 13/04/2017 Soil	0.5 10/04/2017 Soil	0.5 11/04/2017 Soil	1.0 12/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	94	100	96	95

Organophosphorus Pesticides						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	103	97	99	99

Organophosphorus Pesticides Our Reference: Your Reference	UNITS	165477-26 BH127	165477-27 BH128	165477-28 BH129	165477-29 BH129	165477-30 BH130
Depth Date Sampled Type of sample		0.5 11/04/2017 Soil	1.0 12/04/2017 Soil	0.5 10/04/2017 Soil	2.0 10/04/2017 Soil	0.1 10/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	101	99	100	96

PCBs in Soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
Depth	-	0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	102	100	99	99
	1					
PCBs in Soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Envirolab Reference: 165477 Revision No: R 00

Total +ve PCBs (1016-1260)

Surrogate TCLMX

mg/kg

%

<0.1

98

<0.1

102

<0.1

96

<0.1

98

<0.1

99

PCBs in Soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
5 "	-	0.5	40405	4.0	0.4	4.0
Depth Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled Type of sample		11/04/2017 Soil	13/04/2017 Soil	11/04/2017 Soil	11/04/2017 Soil	11/04/2017 Soil
Type of sample		3011	3011	3011		3011
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	98	97	98	98	97
			_			
PCBs in Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Depth	-	1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017

Your Reference		BH117	BH118	BH119	BH120	BH121
Depth Date Sampled Type of sample		1.95-2.0 13/04/2017 Soil	0.1-0.15 13/04/2017 Soil	0.5 10/04/2017 Soil	0.5 11/04/2017 Soil	1.0 12/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	94	100	96	95

PCBs in Soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
Depth Date Sampled Type of sample	-	1.0 11/04/2017 Soil	0.5 11/04/2017 Soil	0.1 10/04/2017 Soil	0.5 10/04/2017 Soil	2.0 12/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	103	97	99	99

						1
PCBs in Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	101	99	100	96

Acid Extractable metals in soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
	-					
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	6	<4	11	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	1	7	1	42
Copper	mg/kg	18	2	18	2	15
Lead	mg/kg	22	<1	28	3	14
Mercury	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Nickel	mg/kg	1	<1	3	<1	21
Zinc	mg/kg	12	2	24	3	24

Acid Extractable metals in soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	<1	1	1	<1	1
Copper	mg/kg	2	<1	3	<1	<1
Lead	mg/kg	<1	2	3	1	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	<1
Zinc	mg/kg	3	4	4	1	2

Acid Extractable metals in soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
Depth Date Sampled Type of sample	-	0.5 11/04/2017 Soil	1.0-1.05 13/04/2017 Soil	1.0 11/04/2017 Soil	0.1 11/04/2017 Soil	1.0 11/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	41	<4	14	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.6
Chromium	mg/kg	4	1	2	5	<1
Copper	mg/kg	4	2	1	5	1
Lead	mg/kg	10	2	3	6	7
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	<1	<1	3	<1
Zinc	mg/kg	11	4	4	16	3

Acid Extractable metals in soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Depth Date Sampled Type of sample	-	1.95-2.0 13/04/2017 Soil	0.1-0.15 13/04/2017 Soil	0.5 10/04/2017 Soil	0.5 11/04/2017 Soil	1.0 12/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	5	<4	9	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	4	<1	8	1
Copper	mg/kg	3	5	2	7	2
Lead	mg/kg	7	11	2	16	3
Mercury	mg/kg	<0.1	0.2	<0.1	0.1	<0.1
Nickel	mg/kg	<1	2	<1	3	<1
Zinc	mg/kg	6	9	5	17	7

Acid Extractable metals in soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	<4	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	<1	4	2	<1
Copper	mg/kg	4	1	5	7	1
Lead	mg/kg	6	3	12	4	2
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	8	<1	2	2	<1
Zinc	mg/kg	7	2	13	9	3

Acid Extractable metals in soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	<4	<4	<4	19
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.5
Chromium	mg/kg	1	1	2	2	9
Copper	mg/kg	2	2	2	<1	19
Lead	mg/kg	3	1	2	1	50
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	<1	1	<1	4
Zinc	mg/kg	13	5	12	1	42

Acid Extractable metals in soil				
Our Reference:	UNITS	165477-31	165477-32	165477-33
Your Reference		BH101 -	BH112 -	BH122 -
	-	[TRIPLICATE]	[TRIPLICATE]	[TRIPLICATE]
Depth		0.5	0.5	1.0
Date Sampled		12/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	2	2	53
Copper	mg/kg	14	1	5
Lead	mg/kg	11	7	6
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	1	<1	16
Zinc	mg/kg	7	6	8

Misc Soil - Inorg						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
	-					
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
		20/04/2047	20/04/2017	20/04/2047	20/04/2047	20/04/2047
Date prepared	-	20/04/2017		20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg			1			
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
	ONITS					
Your Reference		BH103	BH104	BH105	BH111	BH111
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
	ONITS					
Your Reference		BH112	BH113	BH114	BH115	BH116
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		11/04/2017 Soil	13/04/2017 Soil	Soil	Soil	11/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Mico Coil Incre						
Misc Soil - Inorg	LINITO	405477 40	405477.47	405477.40	405477.40	405477.00
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		13/04/2017 Soil	Soil	Soil	Soil	12/04/2017 Soil
Date prepared	_	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

						T
Misc Soil - Inorg						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
						_
Misc Soil - Inorg						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

	Olichi	Reference.	04944.01, Delle	vuc IIII		
Moisture Our Reference: Your Reference	UNITS	165477-1 BH101	165477-2 BH101	165477-3 BH102	165477-4 BH102	165477-5 BH103
Depth Date Sampled Type of sample		0.5 12/04/2017 Soil	4.0 12/04/2017 Soil	0.5 12/04/2017 Soil	2.0 12/04/2017 Soil	0.1 11/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	9.7	9.7	15	18	20
Majatura			1		T	T
Moisture Our Reference: Your Reference	UNITS	165477-6 BH103	165477-7 BH104	165477-8 BH105	165477-9 BH111	165477-10 BH111
Depth Date Sampled Type of sample		1.0 11/04/2017 Soil	1.0 12/04/2017 Soil	1.0 10/04/2017 Soil	0.45-0.5 13/04/2017 Soil	2.9-3.0 13/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	5.5	9.0	17	5.6	5.5
Moisture						
Our Reference: Your Reference	UNITS	165477-11 BH112	165477-12 BH113	165477-13 BH114	165477-14 BH115	165477-15 BH116
Depth Date Sampled Type of sample		0.5 11/04/2017 Soil	1.0-1.05 13/04/2017 Soil	1.0 11/04/2017 Soil	0.1 11/04/2017 Soil	1.0 11/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	6.7	4.0	5.1	15	10
Moisture Our Reference: Your Reference	UNITS	165477-16 BH117	165477-17 BH118	165477-18 BH119	165477-19 BH120	165477-20 BH121
Depth Date Sampled Type of sample		1.95-2.0 13/04/2017 Soil	0.1-0.15 13/04/2017 Soil	0.5 10/04/2017 Soil	0.5 11/04/2017 Soil	1.0 12/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	6.3	15	4.0	9.5	19

Moisture						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	5.0	4.4	9.2	6.3	20
	_					
Moisture						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	4.1	20	6.2	7.0	15

Asbestos ID - soils						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
5 "	-	0.5		0.5		
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017 Soil
Type of sample		Soil	Soil	Soil	Soil	3011
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 40g	Approx. 30g	Approx. 40g	Approx. 35g	Approx. 40g
Sample Description	-	Brown sandy	Brown sandy	Brown sandy	Brown sandy	Brown
		soil	soil	soil	soil	coarse-grained
						soil & rocks
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis		No asbestos				
Trace Analysis		detected	detected	detected	detected	detected
Asbestos ID - soils						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 35g	Approx. 20g	Approx. 40g	Approx. 30g	Approx. 30g
Sample Description	-	Brown sandy				
		soil	soil	soil	soil	soil
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				
	1	detected	detected	detected	detected	detected

Asbestos ID - soils						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 40g	Approx. 30g	Approx. 30g	Approx. 30g	Approx. 30g
Sample Description	-	Brown sandy				
		soil	soil	soil	soil	soil
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	_	No asbestos				
1.000 / 1.10.190.0		detected	detected	detected	detected	detected
		L	L	L		
Asbestos ID - soils						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
	-					
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 30g	Approx. 30g	Approx. 50g	Approx. 50g	Approx. 40g
Sample Description	-	Brown sandy				
		soil	soil	soil	soil	soil
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres detected				
Trace Analysis						
Trace Analysis	-	No asbestos detected				
		actoclea	GCICCIEU	GCIGCIGG	detected	detected

Asbestos ID - soils						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 30g	Approx. 30g	Approx. 50g	Approx. 40g	Approx. 40g
Sample Description	-	Brown sandy				
		soil	soil	soil	soil	soil
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	_	No asbestos				
		detected	detected	detected	detected	detected
Asbestos ID - soils						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017 Soil	10/04/2017 Soil	10/04/2017	10/04/2017
Type of sample		Soil	5011	5011	Soil	Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 30g	Approx. 40g	Approx. 40g	Approx. 35g	Approx. 35g
Sample Description	-	Brown sandy				
		soil	soil	soil	soil	soil
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	_	No asbestos				
Trace Analysis		detected	detected	detected	detected	detected
	1	========		========	========	========

	1					
Misc Inorg - Soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		12/04/2017 Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
pH 1:5 soil:water	pH Units	6.4	6.1	6.2	6.0	5.3
Electrical Conductivity 1:5 soil:water	μS/cm	22	8	27	9	200
Misc Inorg - Soil	LINUTO	405477.0	405477.7	405477.0	405477.0	405477.40
Our Reference:	UNITS	165477-6 BH103	165477-7 BH104	165477-8 BH105	165477-9 BH111	165477-10
Your Reference		BH 103	BH104	BH 105	BHIII	BH111
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	_	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	_	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
•	nH I Inita	5.7	5.8	6.5		6.1
pH 1:5 soil:water	pHUnits				6.3	
Electrical Conductivity 1:5 soil:water	μS/cm	31	11	18	12	10
Misc Inorg - Soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
pH 1:5 soil:water	pH Units	5.6	6.1	6.0	6.1	6.4
Electrical Conductivity 1:5	μS/cm	64	12	13	32	14
soil:water	μο/σπ	U -1	14	15	J2	14
Misc Inorg - Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
	-					
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	_	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
pH 1:5 soil:water	pH Units	6.1	5.8	5.8	8.0	6.6
Electrical Conductivity 1:5	μS/cm	14	27	12	130	12
soil:water	μο/σπ	14	21	12	130	12

Misc Inorg - Soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
pH 1:5 soil:water	pH Units	6.6	6.4	6.2	6.1	6.4
Electrical Conductivity 1:5 soil:water	μS/cm	18	15	28	17	8
Misc Inorg - Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
pH 1:5 soil:water	pH Units	5.9	6.2	6.0	6.1	5.7
Electrical Conductivity 1:5 soil:water	μS/cm	13	11	16	15	25

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes"
	is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" td="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.

Client Reference: 84944.01, Bellevue Hill QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II %RPD Soil 20/04/2 165477-1 20/04/2017 | 20/04/2017 LCS-6 20/04/2017 Date extracted 017 Date analysed 21/04/2 165477-1 20/04/2017 || 20/04/2017 LCS-6 21/04/2017 017 Org-016 TRHC6 - C9 mg/kg 25 <25 165477-1 <25||<25 LCS-6 111% Org-016 25 <25 165477-1 <25||<25 LCS-6 111% TRHC6 - C10 mg/kg Org-016 <0.2 165477-1 116% Benzene mg/kg 0.2 <0.2||<0.2 LCS-6 Toluene mg/kg 0.5 Org-016 < 0.5 165477-1 <0.5||<0.5 LCS-6 103% Ethylbenzene 1 Org-016 <1 165477-1 <1||<1 LCS-6 110% mg/kg 2 Org-016 <2 m+p-xylene 165477-1 <2||<2 LCS-6 113% mg/kg o-Xylene mg/kg 1 Org-016 <1 165477-1 <1||<1 LCS-6 110% naphthalene 1 Org-014 <1 165477-1 [NR] [NR] mg/kg <1||<1 % Org-016 100 165477-1 98 | 97 | RPD: 1 LCS-6 104% Surrogate aaa-Trifluorotoluene QUALITYCONTROL UNITS PQL Blank **METHOD** Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II %RPD 20/04/2 165477-1 20/04/2017 || 20/04/2017 LCS-6 Date extracted 20/04/2017 017 21/04/2 165477-1 20/04/2017 || 20/04/2017 LCS-6 21/04/2017 Date analysed 017 TRHC10 - C14 mg/kg 50 Org-003 <50 165477-1 <50 || <50 LCS-6 110% TRHC15 - C28 mg/kg 100 Org-003 <100 165477-1 <100 | | <100 LCS-6 104% Org-003 165477-1 <100 || <100 LCS-6 94% TRHC29 - C36 mg/kg 100 <100 Org-003 TRH>C10-C16 mg/kg 50 <50 165477-1 <50 || <50 LCS-6 110% TRH>C16-C34 mg/kg 100 Org-003 <100 165477-1 <100 || <100 LCS-6 104% Org-003 <100 <100 || <100 LCS-6 94% TRH>C34-C40 mg/kg 100 165477-1 Surrogate o-Terphenyl % Org-003 87 165477-1 84 | 87 | RPD: 4 LCS-6 104% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD 20/04/2 165477-1 Date extracted 20/04/2017 || 20/04/2017 LCS-6 20/04/2017 017 21/04/2 21/04/2017 || 21/04/2017 Date analysed 165477-1 LCS-6 21/04/2017 017 Naphthalene 0.1 Org-012 <0.1 165477-1 <0.1||<0.1 LCS-6 89% mg/kg Org-012 <0.1 165477-1 [NR] Acenaphthylene 0.1 <0.1||<0.1 [NR] mg/kg Org-012 Acenaphthene mg/kg 0.1 < 0.1 165477-1 <0.1||<0.1 [NR] [NR] Fluorene 0.1 Org-012 <0.1 165477-1 <0.1||<0.1 LCS-6 84% mg/kg Org-012 <0.1 LCS-6 89% Phenanthrene 0.1 165477-1 0.1||<0.1 mg/kg Anthracene 0.1 Org-012 < 0.1 165477-1 <0.1||<0.1 [NR] [NR] mg/kg Fluoranthene 0.1 Org-012 <0.1 165477-1 0.6 || 0.4 || RPD: 40 LCS-6 85% mg/kg Org-012 LCS-6 82% Pyrene 0.1 <0.1 165477-1 0.5 | | 0.3 | | RPD: 50 mg/kg Benzo(a)anthracene 0.1 Org-012 < 0.1 165477-1 0.2 | | 0.1 | | RPD: 67 [NR] [NR] mg/kg Chrysene 0.1 Org-012 <0.1 165477-1 0.3 || 0.2 || RPD: 40 LCS-6 79% mg/kg

<0.2

165477-1

0.5 || 0.3 || RPD: 50

Envirolab Reference: 165477 Revision No: R 00

mg/kg

0.2

Org-012

Benzo(b,j+k)

fluoranthene

[NR]

[NR]

Client Reference: 84944.01, Bellevue Hill									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PAHs in Soil						Base II Duplicate II %RPD			
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	165477-1	0.3 0.2 RPD:40	LCS-6	83%	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	165477-1	0.3 0.2 RPD:40	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	165477-1	0.2 0.1 RPD:67	[NR]	[NR]	
Surrogate p-Terphenyl- d14	%		Org-012	96	165477-1	97 96 RPD:1	LCS-6	122%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Organochlorine Pesticides in soil					G.T.	Base II Duplicate II %RPD		ricocvery	
Date extracted	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017	
Date analysed	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017	
HCB	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	103%	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	96%	
Heptachlor	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	100%	
delta-BHC	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
Aldrin	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	92%	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	103%	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	114%	
Dieldrin	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	110%	
Endrin	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	104%	
pp-DDD	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	109%	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	81%	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]	
Surrogate TCMX	%		Org-005	101	165477-1	99 98 RPD:1	LCS-6	114%	

Client Reference: 84944.01, Bellevue Hill QUALITYCONTROL UNITS **PQL** METHOD Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Organophosphorus Base II Duplicate II % RPD Pesticides Date extracted 20/04/2 165477-1 20/04/2017 | 20/04/2017 LCS-6 20/04/2017 017 Date analysed 20/04/2 165477-1 20/04/2017 || 20/04/2017 LCS-6 20/04/2017 017 Org-008 Azinphos-methyl mg/kg 0.1 <0.1 165477-1 <0.1||<0.1 [NR] [NR] (Guthion) Org-008 Bromophos-ethyl mg/kg 0.1 <0.1 165477-1 <0.1||<0.1 [NR] [NR] 0.1 Org-008 <0.1 165477-1 92% Chlorpyriphos mg/kg <0.1||<0.1 LCS-6 Org-008 Chlorpyriphos-methyl mg/kg 0.1 <0.1 165477-1 <0.1||<0.1 [NR] [NR] Diazinon Org-008 mg/kg 0.1 <0.1 165477-1 <0.1||<0.1 [NR] [NR] Org-008 <0.1 84% Dichlorvos mg/kg 0.1 165477-1 <0.1||<0.1 LCS-6 Dimethoate mg/kg 0.1 Org-008 <0.1 165477-1 <0.1||<0.1 [NR] [NR] **Ethion** 0.1 Org-008 <0.1 165477-1 <0.1||<0.1 LCS-6 105% mg/kg Fenitrothion 0.1 Org-008 < 0.1 165477-1 <0.1||<0.1 LCS-6 111% mg/kg Malathion mg/kg 0.1 Org-008 <0.1 165477-1 <0.1||<0.1 LCS-6 79% Parathion 0.1 Org-008 <0.1 165477-1 <0.1||<0.1 LCS-6 90% mg/kg <0.1 LCS-6 83% Ronnel 0.1 Org-008 165477-1 <0.1||<0.1 mg/kg % Org-008 101 165477-1 99 | 98 | RPD: 1 LCS-6 98% Surrogate TCMX QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PCBs in Soil Base II Duplicate II %RPD 20/04/2 165477-1 20/04/2017 || 20/04/2017 Date extracted LCS-6 20/04/2017 017 20/04/2 Date analysed 165477-1 20/04/2017 | 20/04/2017 LCS-6 20/04/2017 017 Aroclor 1016 mg/kg 0.1 Org-006 < 0.1 165477-1 <0.1||<0.1 [NR] [NR]

165477-1

165477-1

165477-1

165477-1

165477-1

165477-1

165477-1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

99 | 98 | RPD: 1

[NR]

[NR]

[NR]

[NR]

LCS-6

[NR]

LCS-6

[NR]

[NR]

[NR]

[NR]

109%

[NR]

98%

Org-006

Org-006

Org-006

Org-006

Org-006

Org-006

Org-006

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

101

Envirolab Reference: 165477 Revision No: R 00

Aroclor 1221

Aroclor 1232

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

Surrogate TCLMX

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

0.1

0.1

0.1

0.1

0.1

0.1

Client Reference: 84944.01, Bellevue Hill QUALITYCONTROL UNITS **PQL METHOD** Blank Duplicate Duplicate results Spike Sm# Spike % Sm# Recovery Acid Extractable metals Base II Duplicate II %RPD in soil 20/04/2 165477-1 20/04/2017 | 20/04/2017 LCS-6 20/04/2017 Date prepared 017 20/04/2 165477-1 20/04/2017 || 20/04/2017 LCS-6 20/04/2017 Date analysed 017 Arsenic mg/kg 4 Metals-020 <4 165477-1 6||5||RPD:18 LCS-6 108% Metals-020 Cadmium 0.4 < 0.4 165477-1 <0.4 || <0.4 LCS-6 96% mg/kg Metals-020 165477-1 2||2||RPD:0 105% Chromium LCS-6 mg/kg 1 <1 Copper mg/kg 1 Metals-020 <1 165477-1 18 || 15 || RPD: 18 LCS-6 104% Metals-020 1 <1 165477-1 22 | 11 | RPD: 67 LCS-6 99% Lead mg/kg Metals-021 108% 0.1 <0.1 165477-1 <0.1||<0.1 LCS-6 Mercury mg/kg Nickel 1 Metals-020 <1 165477-1 1||1||RPD:0 LCS-6 96% mg/kg Zinc 1 Metals-020 <1 165477-1 12||7||RPD:53 LCS-6 98% mg/kg QUALITYCONTROL UNITS PQL Blank Spike % METHOD Duplicate **Duplicate results** Spike Sm# Sm# Recovery Base II Duplicate II % RPD Misc Soil - Inorg 20/04/2 165477-1 20/04/2017 || 20/04/2017 LCS-1 Date prepared 20/04/2017 017 20/04/2 20/04/2017 | 20/04/2017 Date analysed 165477-1 LCS-1 20/04/2017 017 Total Phenolics (as 5 Inorg-031 <5 165477-1 LCS-1 100% mg/kg <5||<5 Phenol) QUALITYCONTROL UNITS PQL Blank METHOD Duplicate Duplicate results Spike Sm# Spike % Recovery Misc Inorg - Soil Base II Duplicate II %RPD Date prepared 22/04/2 165477-1 22/04/2017 || 22/04/2017 LCS-6 22/04/2017 017 22/04/2 165477-1 22/04/2017 | 22/04/2017 LCS-6 22/04/2017 Date analysed 017 Inorg-001 pH 1:5 soil:water pH Units [NT] 165477-1 6.4 | | 6.1 | | RPD: 5 LCS-6 102% **Electrical Conductivity** Inorg-002 165477-1 107% µS/cm 1 <1 22 || 21 || RPD: 5 LCS-6 1:5 soil:water QUALITYCONTROL **UNITS** Dup. Sm# Duplicate Spike Sm# Spike % Recovery vTRH(C6-C10)/BTEXNin Base + Duplicate + %RPD Soil Date extracted 165477-11 20/04/2017 || 20/04/2017 LCS-5 20/04/2017 Date analysed 165477-11 20/04/2017 | 20/04/2017 LCS-5 20/04/2017 LCS-5 102% 165477-11 <25||<25 TRHC6 - C9 mg/kg 102% 165477-11 <25||<25 LCS-5 TRHC6 - C10 mg/kg Benzene mg/kg 165477-11 <0.2||<0.2 LCS-5 108% LCS-5 94% Toluene mg/kg 165477-11 <0.5||<0.5 Ethylbenzene 165477-11 LCS-5 101% mg/kg <1||<1 m+p-xylene mg/kg 165477-11 <2||<2 LCS-5 103% o-Xylene mg/kg 165477-11 <1||<1 LCS-5 100% naphthalene [NR] [NR] mg/kg 165477-11 <1||<1 98 || 97 || RPD: 1 LCS-5 97% % 165477-11 Surrogate aaa-

Envirolab Reference: 165477 Revision No: R 00

Trifluorotoluene

		Client Referenc	e: 84944.01, Bellevue	e Hill	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
TRHC10 - C14	mg/kg	165477-11	<50 <50	LCS-5	109%
TRHC15 - C28	mg/kg	165477-11	<100 <100	LCS-5	104%
TRHC29 - C36	mg/kg	165477-11	<100 <100	LCS-5	106%
TRH>C10-C16	mg/kg	165477-11	<50 <50	LCS-5	109%
TRH>C16-C34	mg/kg	165477-11	<100 <100	LCS-5	104%
TRH>C34-C40	mg/kg	165477-11	<100 <100	LCS-5	106%
Surrogate o-Terphenyl	%	165477-11	82 83 RPD:1	LCS-5	105%
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	21/04/2017 21/04/2017	LCS-5	21/04/2017
Naphthalene	mg/kg	165477-11	<0.1 <0.1	LCS-5	88%
Acenaphthylene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	165477-11	<0.1 <0.1	LCS-5	83%
Phenanthrene	mg/kg	165477-11	<0.1 <0.1	LCS-5	89%
Anthracene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	165477-11	<0.1 <0.1	LCS-5	85%
Pyrene	mg/kg	165477-11	<0.1 <0.1	LCS-5	81%
Benzo(a)anthracene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	165477-11	<0.1 <0.1	LCS-5	79%
Benzo(b,j+k)fluoranthene	mg/kg	165477-11	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	165477-11	<0.05 <0.05	LCS-5	80%
Indeno(1,2,3-c,d)pyrene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	165477-11	98 97 RPD:1	LCS-5	118%

		Client Reference	e: 84944.01, Bellevue	ie Hill			
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery		
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017		
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017		
HCB	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
alpha-BHC	mg/kg	165477-11	<0.1 <0.1	LCS-5	103%		
gamma-BHC	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
beta-BHC	mg/kg	165477-11	<0.1 <0.1	LCS-5	95%		
Heptachlor	mg/kg	165477-11	<0.1 <0.1	LCS-5	99%		
delta-BHC	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
Aldrin	mg/kg	165477-11	<0.1 <0.1	LCS-5	90%		
Heptachlor Epoxide	mg/kg	165477-11	<0.1 <0.1	LCS-5	102%		
gamma-Chlordane	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
alpha-chlordane	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
Endosulfan I	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
pp-DDE	mg/kg	165477-11	<0.1 <0.1	LCS-5	111%		
Dieldrin	mg/kg	165477-11	<0.1 <0.1	LCS-5	108%		
Endrin	mg/kg	165477-11	<0.1 <0.1	LCS-5	103%		
pp-DDD	mg/kg	165477-11	<0.1 <0.1	LCS-5	107%		
Endosulfan II	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
pp-DDT	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
Endrin Aldehyde	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
Endosulfan Sulphate	mg/kg	165477-11	<0.1 <0.1	LCS-5	82%		
Methoxychlor	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]		
Surrogate TCMX	%	165477-11	98 98 RPD:0	LCS-5	112%		

84944.01, Bellevue Hill **Client Reference:** Dup.Sm# QUALITYCONTROL Spike % Recovery UNITS Spike Sm#

QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	165477-11	<0.1 <0.1	LCS-5	93%
Chlorpyriphos-methyl	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	165477-11	<0.1 <0.1	LCS-5	101%
Dimethoate	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	165477-11	<0.1 <0.1	LCS-5	105%
Fenitrothion	mg/kg	165477-11	<0.1 <0.1	LCS-5	112%
Malathion	mg/kg	165477-11	<0.1 <0.1	LCS-5	79%
Parathion	mg/kg	165477-11	<0.1 <0.1	LCS-5	94%
Ronnel	mg/kg	165477-11	<0.1 <0.1	LCS-5	85%
Surrogate TCMX	%	165477-11	98 98 RPD:0	LCS-5	100%
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Aroclor 1016	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	165477-11	<0.1 <0.1	LCS-5	111%
Aroclor 1260	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	165477-11	98 98 RPD:0	LCS-5	100%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Arsenic	mg/kg	165477-11	<4 <4	LCS-5	107%
Cadmium	mg/kg	165477-11	<0.4 <0.4	LCS-5	99%
Chromium	mg/kg	165477-11	4 2 RPD:67	LCS-5	104%
Copper	mg/kg	165477-11	4 1 RPD:120	LCS-5	103%
Lead	mg/kg	165477-11	10 4 RPD:86	LCS-5	100%
Mercury	mg/kg	165477-11	<0.1 <0.1	LCS-5	111%
Nickel	mg/kg	165477-11	2 <1	LCS-5	95%
Zinc	mg/kg	165477-11	11 5 RPD:75	LCS-5	96%

	Client Reference: 84944.01, Bellevue Hill					
QUALITY CONTROL Misc Soil - Inorg	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date prepared	-	165477-11	20/04/2017 20/04/2017	LCS-2	20/04/2017	
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-2	20/04/2017	
Total Phenolics (as Phenol)	mg/kg	165477-11	<5 <5	LCS-2	101%	
QUALITY CONTROL Misc Inorg - Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date prepared	-	165477-11	22/04/2017 22/04/2017	LCS-7	22/04/2017	
Date analysed	-	165477-11	22/04/2017 22/04/2017	LCS-7	22/04/2017	
pH 1:5 soil:water	pH Units	165477-11	5.6 5.9 RPD:5	LCS-7	102%	
Electrical Conductivity 1:5 soil:water	μS/cm	165477-11	64 68 RPD:6	LCS-7	98%	
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017	
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017	
TRHC6 - C9	mg/kg	165477-21	<25 <25	165477-2	106%	
TRHC6 - C10	mg/kg	165477-21	<25 <25	165477-2	106%	
Benzene	mg/kg	165477-21	<0.2 <0.2	165477-2	110%	
Toluene	mg/kg	165477-21	<0.5 <0.5	165477-2	99%	
Ethylbenzene	mg/kg	165477-21	<1 <1	165477-2	105%	
m+p-xylene	mg/kg	165477-21	<2 <2	165477-2	108%	
o-Xylene	mg/kg	165477-21	<1 <1	165477-2	105%	
naphthalene	mg/kg	165477-21	<1 <1	[NR]	[NR]	
<i>Surrogate</i> aaa- Trifluorotoluene	%	165477-21	101 97 RPD:4	165477-2	100%	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017	
Date analysed	-	165477-21	21/04/2017 21/04/2017	165477-2	20/04/2017	
TRHC10 - C14	mg/kg	165477-21	<50 <50	165477-2	100%	
TRHC 15 - C28	mg/kg	165477-21	<100 <100	165477-2	92%	
TRHC29 - C36	mg/kg	165477-21	<100 <100	165477-2	73%	
TRH>C10-C16	mg/kg	165477-21	<50 <50	165477-2	100%	
TRH>C16-C34	mg/kg	165477-21	<100 <100	165477-2	92%	
TRH>C34-C40	mg/kg	165477-21	<100 <100	165477-2	73%	
Surrogate o-Terphenyl	%	165477-21	86 82 RPD:5	165477-2	84%	

Client Reference: 84944.01, Bellevue Hill QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery PAHs in Soil Base + Duplicate + %RPD 20/04/2017 | 20/04/2017 Date extracted 165477-21 165477-2 20/04/2017 Date analysed 165477-21 21/04/2017 | 21/04/2017 165477-2 21/04/2017 Naphthalene 165477-21 <0.1||<0.1 165477-2 84% mg/kg Acenaphthylene mg/kg 165477-21 <0.1||<0.1 [NR] [NR] Acenaphthene mg/kg 165477-21 <0.1||<0.1 [NR] [NR] Fluorene 165477-21 <0.1||<0.1 165477-2 78% mg/kg Phenanthrene <0.1||<0.1 165477-2 76% mg/kg 165477-21 Anthracene mg/kg 165477-21 <0.1||<0.1 [NR] [NR] Fluoranthene 165477-21 <0.1||<0.1 165477-2 73% mg/kg 165477-21 165477-2 75% Pyrene mg/kg <0.1||<0.1 Benzo(a)anthracene 165477-21 <0.1||<0.1 [NR] [NR] mg/kg Chrysene mg/kg 165477-21 <0.1||<0.1 165477-2 70% 165477-21 Benzo(b,j+k)fluoranthene mg/kg <0.2||<0.2 [NR] [NR] 165477-2 165477-21 <0.05||<0.05 76% Benzo(a)pyrene mg/kg [NR] Indeno(1,2,3-c,d)pyrene mg/kg 165477-21 <0.1||<0.1 [NR] 165477-21 Dibenzo(a,h)anthracene <0.1||<0.1 [NR] [NR] mg/kg Benzo(g,h,i)perylene mg/kg 165477-21 <0.1||<0.1 [NR] [NR] % 165477-21 93 || 97 || RPD: 4 165477-2 115% Surrogate p-Terphenyl-d14 QUALITYCONTROL **UNITS** Dup.Sm# Duplicate Spike Sm# Spike % Recovery Organochlorine Pesticides Base + Duplicate + %RPD in soil Date extracted 165477-21 20/04/2017 | 20/04/2017 165477-2 20/04/2017 Date analysed 165477-21 20/04/2017 | 20/04/2017 165477-2 20/04/2017 **HCB** mg/kg 165477-21 <0.1||<0.1 [NR] [NR] alpha-BHC 165477-21 <0.1||<0.1 165477-2 120% mg/kg gamma-BHC 165477-21 <0.1||<0.1 [NR] [NR] mg/kg beta-BHC 165477-21 <0.1||<0.1 165477-2 96% mg/kg Heptachlor 165477-21 <0.1||<0.1 165477-2 100% mg/kg delta-BHC mg/kg 165477-21 <0.1||<0.1 [NR] [NR] Aldrin 165477-21 165477-2 92% mg/kg <0.1||<0.1 Heptachlor Epoxide mg/kg 165477-21 <0.1||<0.1 165477-2 103% gamma-Chlordane mg/kg 165477-21 <0.1||<0.1 [NR] [NR] alpha-chlordane mg/kg 165477-21 <0.1||<0.1 [NR] [NR] Endosulfan I 165477-21 <0.1||<0.1 [NR] [NR] mg/kg pp-DDE 113% 165477-21 <0.1||<0.1 165477-2 mg/kg Dieldrin mg/kg 165477-21 <0.1||<0.1 165477-2 109% Endrin mg/kg 165477-21 <0.1||<0.1 165477-2 103% pp-DDD 165477-21 <0.1||<0.1 165477-2 108% mg/kg

Envirolab Reference: 165477 Revision No: R 00

mg/kg

mg/kg

mg/kg

mg/kg

165477-21

165477-21

165477-21

165477-21

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

[NR]

[NR]

[NR]

165477-2

Endosulfan II

pp-DDT

Endrin Aldehyde

Endosulfan Sulphate

[NR]

[NR]

[NR]

79%

Client Reference: 84944.01, Bellevue Hill						
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Methoxychlor	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Surrogate TCMX	%	165477-21	99 100 RPD:1	165477-2	112%	
QUALITYCONTROL Organophosphorus Pesticides	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017	
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017	
Azinphos-methyl (Guthion)	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Bromophos-ethyl	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Chlorpyriphos	mg/kg	165477-21	<0.1 <0.1	165477-2	89%	
Chlorpyriphos-methyl	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Diazinon	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Dichlorvos	mg/kg	165477-21	<0.1 <0.1	165477-2	86%	
Dimethoate	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Ethion	mg/kg	165477-21	<0.1 <0.1	165477-2	111%	
Fenitrothion	mg/kg	165477-21	<0.1 <0.1	165477-2	101%	
Malathion	mg/kg	165477-21	<0.1 <0.1	165477-2	75%	
Parathion	mg/kg	165477-21	<0.1 <0.1	165477-2	86%	
Ronnel	mg/kg	165477-21	<0.1 <0.1	165477-2	80%	
Surrogate TCMX	%	165477-21	99 100 RPD:1	165477-2	97%	
QUALITY CONTROL PCBs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017	
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017	
Aroclor 1016	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Aroclor 1221	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Aroclor 1232	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Aroclor 1242	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Aroclor 1248	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Aroclor 1254	mg/kg	165477-21	<0.1 <0.1	165477-2	107%	
Aroclor 1260	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]	
Surrogate TCLMX	%	165477-21	99 100 RPD:1	165477-2	97%	

		Client Referenc	e: 84944.01, Bellevue	HIII	
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	_	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Arsenic	mg/kg	165477-21	<4 <4	165477-2	99%
Cadmium	mg/kg	165477-21	<0.4 <0.4	165477-2	104%
Chromium	mg/kg	165477-21	8 14 RPD:55	165477-2	107%
Copper	mg/kg	165477-21	4 5 RPD:22	165477-2	104%
Lead	mg/kg	165477-21	6 5 RPD:18	165477-2	101%
Mercury	mg/kg	165477-21	<0.1 <0.1	165477-2	108%
Nickel	mg/kg	165477-21	8 12 RPD:40	165477-2	103%
Zinc	mg/kg	165477-21	7 10 RPD:35	165477-2	102%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Misc Soil - Inorg	5.410		Base + Duplicate + %RPD	Spino Oniii	Spine / Troopvory
Date prepared	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Total Phenolics (as Phenol)	mg/kg	165477-21	<5 <5	165477-2	93%
QUALITY CONTROL Misc Inorg - Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD		
 Date prepared	_	165477-21	22/04/2017 22/04/2017		
Date analysed	_	165477-21	22/04/2017 22/04/2017		
pH 1:5 soil:water	pH Units	165477-21	6.6 6.6 RPD:0		
Electrical Conductivity 1:5 soil:water	μS/cm	165477-21	18 18 RPD:0		
QUALITYCONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017
TRHC6 - C9	mg/kg	[NT]	[NT]	165477-22	101%
TRHC6 - C10	mg/kg	[NT]	[NT]	165477-22	101%
Benzene	mg/kg	[NT]	[NT]	165477-22	106%
Toluene	mg/kg	[NT]	[NT]	165477-22	92%
Ethylbenzene	mg/kg	[NT]	[NT]	165477-22	100%
m+p-xylene	mg/kg	[NT]	[NT]	165477-22	103%
o-Xylene	mg/kg	[NT]	[NT]	165477-22	100%
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	165477-22	96%

		Client Reference	e: 84944.01, Bellevue	e Hill	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	21/04/2017
TRHC10 - C14	mg/kg	[NT]	[NT]	165477-22	105%
TRHC15 - C28	mg/kg	[NT]	[NT]	165477-22	98%
TRHC29 - C36	mg/kg	[NT]	[NT]	165477-22	103%
TRH>C10-C16	mg/kg	[NT]	[NT]	165477-22	105%
TRH>C16-C34	mg/kg	[NT]	[NT]	165477-22	98%
TRH>C34-C40	mg/kg	[NT]	[NT]	165477-22	103%
Surrogate o-Terphenyl	%	[NT]	[NT]	165477-22	93%
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Spike Sm#	Spike % Recovery	
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	21/04/2017
Naphthalene	mg/kg	[NT]	[NT]	165477-22	84%
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	165477-22	78%
Phenanthrene	mg/kg	[NT]	[NT]	165477-22	77%
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	165477-22	73%
Pyrene	mg/kg	[NT]	[NT]	165477-22	74%
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	165477-22	67%
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	165477-22	77%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	165477-22	117%

		e: 84944.01, Bellevu	e Hill		
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	165477-22	109%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	165477-22	98%
Heptachlor	mg/kg	[NT]	[NT]	165477-22	101%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	165477-22	94%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	165477-22	106%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	165477-22	116%
Dieldrin	mg/kg	[NT]	[NT]	165477-22	113%
Endrin	mg/kg	[NT]	[NT]	165477-22	104%
pp-DDD	mg/kg	[NT]	[NT]	165477-22	110%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	165477-22	78%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	165477-22	116%

		Client Referenc	e: 84944.01, Bellevue	e Hill			
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
Organophosphorus Pesticides			Base + Duplicate + %RPD				
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017		
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017		
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	[NR]	[NR]		
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]		
Chlorpyriphos	mg/kg	[NT]	[NT]	165477-22	93%		
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]		
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]		
Dichlorvos	mg/kg	[NT]	[NT]	165477-22	84%		
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]		
Ethion	mg/kg	[NT]	[NT]	165477-22	113%		
Fenitrothion	mg/kg	[NT]	[NT]	165477-22	75%		
Malathion	mg/kg	[NT]	[NT]	165477-22	77%		
Parathion	mg/kg	[NT]	[NT]	165477-22	86%		
Ronnel	mg/kg	[NT]	[NT]	165477-22	83%		
Surrogate TCMX	%	[NT]	[NT]	165477-22	98%		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
PCBs in Soil			Base + Duplicate + %RPD				
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017		
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017		
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aroclor 1254	mg/kg	[NT]	[NT]	165477-22	110%		
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]		
Surrogate TCLMX	%	[NT]	[NT]	165477-22	98%		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
Acid Extractable metals in soil			Base + Duplicate + %RPD				
Date prepared	-	[NT]	[NT]	165477-22	20/04/2017		
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017		
Arsenic	mg/kg	[NT]	[NT]	165477-22	97%		
Cadmium	mg/kg	[NT]	[NT]	165477-22	100%		
Chromium	mg/kg	[NT]	[NT]	165477-22	100%		
Copper	mg/kg	[NT]	[NT]	165477-22	104%		
Lead	mg/kg	[NT]	[NT]	165477-22	100%		
Mercury	mg/kg	[NT]	[NT]	165477-22	116%		
Nickel	mg/kg	[NT]	[NT]	165477-22	98%		
Zinc	mg/kg	[NT]	[NT]	165477-22	101%		
	•	•					

QUALITY CONTROL Misc Soil - Inorg	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	165477-22	96%

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 165477-1 for Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 165477-31.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 165477-11 for Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 165477-32.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 165477-21 for Cr. Therefore a triplicate result has been issued as laboratory sample number 165477-33.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 165477-11, 19, 23, 24 were sub-sampled from jars and Samples 165477-1 to 10, 12 to 18, 20 to 22, 25 to 30 were sub-sampled from bags provided by the client.

Asbestos ID was analysed by Approved Identifier: Lucy Zhu
Asbestos ID was authorised by Approved Signatory: Paul Ching

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

Page 56 of 57

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 165477 Page 57 of 57

Revision No: R 00

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Peter Oitmaa

Sample Login Details	
Your Reference	84944.01, Bellevue Hill
Envirolab Reference	165477
Date Sample Received	19/04/2017
Date Instructions Received	19/04/2017
Date Results Expected to be Reported	27/04/2017

Sample Condition							
Samples received in appropriate condition for analysis	YES						
No. of Samples Provided	30 soils						
Turnaround Time Requested	Standard						
Temperature on receipt (°C)	16.0						
Cooling Method	Ice						
Sampling Date Provided	YES						

Comments
Samples will be held for 1 month for water samples and 2 months for soil samples from date of
receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst				
Phone: 02 9910 6200	Phone: 02 9910 6200				
Fax: 02 9910 6201	Fax: 02 9910 6201				
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au				

Sample and Testing Details on following page

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

Sample Id	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Total Phenolics (as Phenol)	Asbestos ID - soils	Electrical Conductivity 1:5 soil:water	pH 1:5 soil:water
BH101-0.5	✓	√	✓	√	√	√	√	✓	✓	√	√
BH101-4.0	√	√	√	√	√	√	√	√	✓	√	√
BH102-0.5	√	√	✓	√	√	√	√	√	√	✓	√
BH102-2.0	√	√		√	✓		√	√	√	✓	√
BH103-0.1	✓	√	√	✓	√	✓	√	<	√	√	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
BH103-1.0	√	\	✓	\	\	\	√	\	\checkmark	✓	\
BH104-1.0	✓	√	✓	√	√	✓	√	√	√	√	√
BH105-1.0	✓	√	√	√	✓	√	√	√	√	√	✓
BH111-0.45- 0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH111-2.9-3.0	√	✓	√	✓	✓	✓	✓	✓	✓	✓	✓
BH112-0.5	√	√	√	√	√	√	\	√	√	✓	√
BH113-1.0- 1.05	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH114-1.0	✓	√	√	√	√	✓	√	✓	√	√	√
BH115-0.1	√	✓	✓	✓	√	√	√	√	√	√	√
BH116-1.0	√	✓	√	✓	√	√	√	✓	√	√	√
BH117-1.95- 2.0	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH118-0.1- 0.15	✓	✓	\	✓	✓	✓	✓	\	\	✓	✓
BH119-0.5	✓	√	√	√	√	√	√	√	√	√	√
BH120-0.5	✓	✓	√	✓	√	√	✓	√	√	✓	✓
BH121-1.0	✓	✓	\	✓	✓	✓	✓	✓	✓	✓	√
BH122-1.0	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH123-0.5	✓	✓	√	√	√	✓	✓	√	✓	✓	✓
BH124-0.1	✓	√	√	√	√	√	✓	√	✓	✓	✓
BH125-0.5	✓	√	√	√	√	√	√	√	√	√	✓
BH126-2.0	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓
BH127-0.5	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓ ✓ ✓
BH128-1.0	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	√
BH129-0.5	✓	√	✓	√	✓	✓	✓	✓	✓	✓	√
BH129-2.0	✓	√	√	√	√	√	√	√	√	√	√
BH130-0.1	✓	\checkmark	✓	\checkmark	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark

12 Ashley Street, Chatswood NSW 2068 Email: tnotaras@envirolabservices.com.au Phone: 02 9910 6200 Fax: 02 9910 6201 Attn: Tania Notaras **Envirolab Services** <u>ان</u> Bellevue Hill 84944.01.....Sampler:R Wong..... Peter.Oitmaa@DouglasPartners.com.au...... Standard t/a Lab Quote No. Date Required: Project Name: Project Mgr: Project No: Email:

12 Ashley Street, Chatswood NSW 2068 Phone: 02 9910 6200 Fax: 02 9910 6201 Attn: Tania Notaras **Envirolab Services** Bellevue Hill Standard t/a Lab Quote No. 84944.01......Sampler:R Wong..... Peter.Oitmaa@DouglasPartners.com.au...... Date Required: Project Name: Project Mgr: Project No: Email:

Email: tnotaras@envirolabservices.com.au

	S															(500	
	Notes													(02) 9809 0666	(02) 9809 4095	Date & Time: 19/4	ime:
														Phone: (02)	Fax: (0	Date & T	Date & Time:
															de 2114	ers	
Analytes															96 Hermitage Road, West Ryde 2114	Received By:	Received By:
	bH' EC	×	×	×	×	×	×	×	×	×	×	×	×		Address: 96 h	Date & Time:	Date & Time:
	Combo 8a	×	×	×	×	×	×	×	×	×	×	×	×		com.au		
	Container type	Jar/bag	Jar/bag	Jar/bag	Jar/bag	Jar/bag	Jar/bag	Jar/hag.	Jar/bag	Jar/bag	Jar/bag	Jar/bag	Jar/bag		Peter.Oitmaa@DouglasPartners.com.au		
Sample Type	S - soil W - water	S	S	S	S	S	S	S	S	S	S	S	S		Douglas	Signed:	Signed:
	Sampling Date	11/4	11/4	11/4	13/4	13/4	10/4	11/4	12/4	11/4	11/4	10/4	10/4		itmaa@	Siç	Sig
	D Pa	B	14	15.	91	ŁJ	18	6)	20	I	な	73	74		eter.0		
	Sample Depth (m)	1.0	0.1	1.0	1.95-2.0	0.1-0.15	0.5	9.0	1.0	1.0	0.5	0.1	0.5	t No		ed by:	d by:
	Sample Sai ID De (m)	BH114	BH115	BH116	BH117	BH118	BH119	BH120	BH121	BH122	BH123	BH124	BH125	Lab Report No.	Send Results to:	Relinquished by:	Relinquished by:

Page 2 of

12 Ashley Street, Chatswood NSW 2068 Email: tnotaras@envirolabservices.com.au Phone: 02 9910 6200 Fax: 02 9910 6201 Attn: Tania Notaras **Envirolab Services** <u>ان</u> Standard t/a Lab Quote No. 84944.01......Sampler:R Wong..... Peter.Oitmaa@DouglasPartners.com.au...... Bellevue Hill Date Required: Project Name: Project Mgr: Project No: Email:

				Sample					Ana	Analytes			
Sample Sam ID Dept (m) // 1654 77	Sample Depth (m)	Lab ID	Sampling Date	S - soil W - water	Container type	Combo 8a	pH, EC						Notes
BH126	2.0	52	12/4	S	Jar/bag	×	×						
BH127	0.5	37	11/4	S	Jar/bag	×	×						
BH128	1.0	77	12/4	S	Jar/bag	×	×						
BH129	0.5	28	10/4	S	Jar/bag	×	×						
BH129	2.0	म्	10/4	S	Jar/bag	×	×						
BH130	0.1	30	10/4	S	Jar/bag	×	×		nia				

Signed:	
Relinquished by:	
R	

Form COC Rev0/November 2006

2000

Phone: Fax:

96 Hermitage Road, West Ryde 2114

Address:
Date & Time:
Date & Time:

Peter.Oitmaa@DouglasPartners.com.au

Lab Report No. Send Results to:

Relinquished by:

Signed:

Received By:

Date & Time: Date & Time:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 130980

Client:

Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

Sample log in details:

Your Reference: 84944.00, Bellevue Hill

No. of samples: 10 Soils

Date samples received / completed instructions received 10/07/2015 / 10/07/2015

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 17/07/15 / 17/07/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

	1	T	T	T		T
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 lessBTEX(F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	111	112	111	117

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	121	106	117	120

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	14/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	81	72	79	76	117

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled Type of sample		3/07/2015 Soil	3/07/2015 Soil	3/07/2015 Soil	6/07/2015 Soil	6/07/2015 Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	80	76	78	82	78

PAHs in Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	14/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	14/07/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.4
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.9
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.9
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.5
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.3
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	5.8
Surrogate p-Terphenyl-d14	%	95	84	101	96	95

PAHs in Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	0.7	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.5	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	6.5	0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	1.8	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	5.0	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	4.7	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	2.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	1.8	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	2.4	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	1.6	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.9	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.7	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	2.3	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	2.3	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	2.3	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	29	0.10
Surrogate p-Terphenyl-d14	%	95	95	104	105	96

Organochlorine Pesticides in soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	79	88	83	87

Organochlorine Pesticides in soil						
Our Reference: Your Reference	UNITS	130980-6 BH4	130980-7 BH4	130980-8 BH4	130980-9 BH10	130980-10 BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	79	86	85	83	84

Organophosphorus Pesticides						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	79	88	83	87

Organophosphorus Pesticides						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	79	86	85	83	84

PCBs in Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	89	79	88	83	87

PCBs in Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	79	86	85	83	84

Acid Extractable metals in soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Arsenic	mg/kg	41	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	2	1	2	2
Copper	mg/kg	5	1	<1	<1	2
Lead	mg/kg	3	3	1	1	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	<1
Zinc	mg/kg	36	3	1	<1	3

Acid Extractable metals in soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	1	2	2	2
Copper	mg/kg	1	<1	1	22	<1
Lead	mg/kg	9	4	14	10	2
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	1	1
Zinc	mg/kg	3	2	4	10	1

Acid Extractable metals in soil		
Our Reference:	UNITS	130980-11
Your Reference		BH2 - TRIPLICATE
Depth		1.0
Date Sampled		07/07/2015
Type of sample		Soil
Date digested	-	13/07/2015
Date analysed	-	13/07/2015
Arsenic	mg/kg	20
Cadmium	mg/kg	<0.4
Chromium	mg/kg	2
Copper	mg/kg	4
Lead	mg/kg	5
Mercury	mg/kg	<0.1
Nickel	mg/kg	1

Acid Extractable metals in soil		
Our Reference:	UNITS	130980-11
Your Reference		BH2 - TRIPLICATE
Depth		1.0
Date Sampled Type of sample		07/07/2015 Soil
Zinc	mg/kg	25

Misc Soil - Inorg						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
		.	T		.	T
Misc Soil - Inorg						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Inorg - Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
pH 1:5 soil:water	pH Units	6.3	6.5	6.5	5.8	6.3
Electrical Conductivity 1:5 soil:water	μS/cm	21	13	13	14	14
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	<10	<10	<10	<10	<10

Misc Inorg - Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
pH 1:5 soil:water	pH Units	6.1	6.0	6.2	9.9	7.2
Electrical Conductivity 1:5 soil:water	μS/cm	12	11	14	87	36
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	<10	<10	<10	38	31

Moisture						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Moisture	%	7.7	4.0	4.6	5.5	4.4
Moisture						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Moisture	%	7.4	6.3	20	1.5	1.9

	Client Refere	nce: 8494	4.00, Bellevue	HIII		
Asbestos ID - soils Our Reference: Your Reference	UNITS	130980-1 BH2	130980-2 BH2	130980-3 BH2	130980-4 BH2	130980-5 BH4
Depth Date Sampled Type of sample		1.0 7/07/2015 Soil	2.0 7/07/2015 Soil	3.0 7/07/2015 Soil	4.0 7/07/2015 Soil	1.0 3/07/2015 Soil
Date analysed	-	16/07/2015	16/07/2015	16/07/2015	16/07/2015	16/07/2015
Sample mass tested	g	Approx 60g	Approx 70g	Approx 70g	Approx 75g	Approx 65g
Sample Description	-	Brown coarse- grained sandy soil				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Asbestos ID - soils						7
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	
Your Reference		BH4	BH4	BH4	BH10	
Depth		2.0	3.0	4.0	1.0	
Date Sampled Type of sample		3/07/2015 Soil	3/07/2015 Soil	3/07/2015 Soil	6/07/2015 Soil	
Date analysed	-	16/07/2015	16/07/2015	16/07/2015	16/07/2015	
Sample mass tested	g	Approx 75g	Approx 75g	Approx 60g	Approx 40g	
Sample Description	-	Brown coarse- grained sandy soil	Brown coarse- grained sandy soil	Grey coarse- grained sandy soil	Brown coarse- grained sandy soil	
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				

detected

No asbestos

detected

detected

No asbestos

detected

detected

No asbestos

detected

detected

No asbestos

detected

Envirolab Reference: 130980 Revision No: R 00

Trace Analysis

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" can="" conservative="" contribute="" false="" give="" given="" is="" most="" pahs="" positive="" pql.="" td="" teq<="" teqs="" that="" the="" this="" to=""></pql>
	calculation may not be present. 2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql 'teq="" +ve="" 3.="" <pql="" a="" above.="" all="" and="" approach="" approaches="" are="" as="" assuming="" below="" between="" but="" calculation="" conservative="" contribute="" contributing="" false="" half="" hence="" individual="" is="" least="" lowest="" mid-point="" more="" most="" negative="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'="" pql.="" present="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore"="" this="" to="" total="" values="" when="" zero.=""></pql>
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

Client Reference: 84944.00, Bellevue Hill QUALITYCONTROL **UNITS** PQL **METHOD** Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II %RPD Soil 13/07/2 130980-1 13/07/2015 || 13/07/2015 LCS-3 13/07/2015 Date extracted 015 Date analysed 14/07/2 130980-1 14/07/2015 || 14/07/2015 LCS-3 14/07/2015 015 TRHC6 - C9 mg/kg 25 Org-016 <25 130980-1 <25||<25 LCS-3 124% 130980-1 25 Org-016 <25 <25||<25 LCS-3 124% TRHC6 - C10 mg/kg Org-016 130980-1 125% Benzene 0.2 < 0.2 <0.2||<0.2 LCS-3 mg/kg Toluene mg/kg 0.5 Org-016 < 0.5 130980-1 <0.5||<0.5 LCS-3 122% Ethylbenzene 1 Org-016 <1 130980-1 <1||<1 LCS-3 122% mg/kg 2 Org-016 130980-1 125% m+p-xylene <2 <2||<2 LCS-3 mg/kg o-Xylene mg/kg 1 Org-016 <1 130980-1 <1||<1 LCS-3 120% naphthalene 1 Org-014 <1 130980-1 <1||<1 [NR] [NR] mg/kg 130980-1 % Org-016 119 110 || 115 || RPD: 4 LCS-3 117% Surrogate aaa-Trifluorotoluene QUALITYCONTROL **UNITS** PQL Blank METHOD Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II %RPD 13/07/2 130980-1 13/07/2015 || 13/07/2015 LCS-3 13/07/2015 Date extracted 015 14/07/2 130980-1 14/07/2015 || 14/07/2015 LCS-3 14/07/2015 Date analysed 015 TRHC10 - C14 mg/kg 50 Org-003 <50 130980-1 <50 | | <50 LCS-3 90% TRHC15 - C28 mg/kg 100 Org-003 <100 130980-1 <100 || <100 LCS-3 95% Org-003 130980-1 LCS-3 77% TRHC29 - C36 mg/kg 100 <100 <100 || 210 TRH>C10-C16 mg/kg 50 Org-003 <50 130980-1 <50 | | <50 LCS-3 90% TRH>C16-C34 mg/kg 100 Org-003 <100 130980-1 <100 || 160 LCS-3 95% Org-003 <100 130980-1 LCS-3 77% TRH>C34-C40 mg/kg 100 <100 || 210 Surrogate o-Terphenyl % Org-003 82 130980-1 81 || 87 || RPD: 7 LCS-3 89% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD Date extracted 13/07/2 130980-1 13/07/2015 || 13/07/2015 LCS-3 13/07/2015 015 13/07/2 13/07/2015 || 13/07/2015 Date analysed 130980-1 LCS-3 13/07/2015 015 Org-012 Naphthalene 0.1 <0.1 130980-1 <0.1||<0.1 LCS-3 113% mg/kg subset Org-012 130980-1 Acenaphthylene <0.1 <0.1||<0.1 [NR] [NR] mg/kg 0.1 subset Org-012 Acenaphthene 0.1 <0.1 130980-1 <0.1||<0.1 [NR] [NR] mg/kg subset Org-012 Fluorene mg/kg 0.1 <0.1 130980-1 <0.1||<0.1 LCS-3 95% subset Org-012 LCS-3 105% Phenanthrene <0.1 130980-1 <0.1||<0.1 mg/kg 0.1 subset Anthracene 0.1 Org-012 <0.1 130980-1 <0.1||<0.1 [NR] [NR] mg/kg subset Fluoranthene mg/kg 0.1 Org-012 <0.1 130980-1 <0.1||<0.1 LCS-3 98% subset

Client Reference: 84944.00, Bellevue Hill PQL QUALITYCONTROL **UNITS** METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD Org-012 <0.1 130980-1 <0.1||<0.1 LCS-3 103% Pyrene mg/kg 0.1 subset Org-012 130980-1 Benzo(a)anthracene mg/kg 0.1 <0.1 <0.1||<0.1 [NR] [NR] subset Org-012 97% Chrysene mg/kg 0.1 <0.1 130980-1 <0.1||<0.1 LCS-3 subset Org-012 Benzo(b,j+k) 0.2 <0.2 130980-1 <0.2||<0.2 [NR] [NR] mg/kg fluoranthene subset 0.05 Org-012 <0.05 130980-1 <0.05||<0.05 LCS-3 105% Benzo(a)pyrene mg/kg subset Org-012 Indeno(1,2,3-c,d)pyrene 0.1 <0.1 130980-1 <0.1||<0.1 [NR] [NR] mg/kg subset Org-012 Dibenzo(a,h)anthracene mg/kg 0.1 <0.1 130980-1 <0.1||<0.1 [NR] [NR] subset Org-012 <0.1 Benzo(g,h,i)perylene 0.1 130980-1 <0.1||<0.1 [NR] [NR] mg/kg subset % Org-012 101 130980-1 95 || 125 || RPD: 27 LCS-3 104% Surrogate p-Terphenylsubset QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Organochlorine Base II Duplicate II %RPD Pesticides in soil 13/07/2 130980-1 LCS-3 13/07/2015 Date extracted 13/07/2015 || 13/07/2015 015 14/07/2 14/07/2015 || 14/07/2015 Date analysed 130980-1 LCS-3 14/07/2015 015 **HCB** mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 [NR] [NR] Org-005 130980-1 LCS-3 88% alpha-BHC mg/kg 0.1 <0.1 <0.1||<0.1 gamma-BHC mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 [NR] [NR] beta-BHC 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 LCS-3 85% mg/kg 88% Heptachlor mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 LCS-3 delta-BHC mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 [NR] [NR] Aldrin 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 LCS-3 96% mg/kg Heptachlor Epoxide mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 LCS-3 86% gamma-Chlordane mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 [NR] [NR] 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 [NR] alpha-chlordane mg/kg [NR] 0.1 Endosulfan I mg/kg Org-005 <0.1 130980-1 <0.1||<0.1 [NR] [NR] pp-DDE 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 LCS-3 87% mg/kg Dieldrin 0.1 Org-005 <0.1 130980-1 LCS-3 89% mg/kg <0.1||<0.1 Endrin mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 LCS-3 97% pp-DDD 0.1 Org-005 <0.1 130980-1 LCS-3 94% mg/kg <0.1||<0.1 Org-005 [NR] Endosulfan II mg/kg 0.1 <0.1 130980-1 <0.1||<0.1 [NR] pp-DDT mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 [NR] [NR] Endrin Aldehyde 0.1 Org-005 <0.1 130980-1 [NR] mg/kg <0.1||<0.1 [NR] Endosulfan Sulphate mg/kg 0.1 Org-005 <0.1 130980-1 <0.1||<0.1 LCS-3 86%

Envirolab Reference: 130980 Revision No: R 00

mg/kg

%

0.1

Org-005

Org-005

<0.1

87

130980-1

130980-1

<0.1||<0.1

89||96||RPD:8

Methoxychlor

Surrogate TCMX

[NR]

82%

[NR]

LCS-3

Client Reference: 84944.00, Bellevue Hill PQL QUALITYCONTROL **UNITS** METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Organophosphorus Base II Duplicate II %RPD Pesticides Date extracted 13/07/2 130980-1 13/07/2015 || 13/07/2015 LCS-3 13/07/2015 015 Date analysed 14/07/2 130980-1 14/07/2015 || 14/07/2015 LCS-3 14/07/2015 015 Org-008 Azinphos-methyl mg/kg 0.1 <0.1 130980-1 <0.1||<0.1 LCS-3 99% (Guthion) Org-008 Bromophos-ethyl mg/kg 0.1 <0.1 130980-1 <0.1||<0.1 [NR] [NR] Org-008 <0.1 130980-1 103% Chlorpyriphos mg/kg 0.1 <0.1||<0.1 LCS-3 Org-008 Chlorpyriphos-methyl mg/kg 0.1 <0.1 130980-1 <0.1||<0.1 [NR] [NR] Org-008 Diazinon mg/kg 0.1 <0.1 130980-1 <0.1||<0.1 [NR] [NR] Org-008 <0.1 130980-1 104% Dichlorvos mg/kg 0.1 <0.1||<0.1 LCS-3 Dimethoate mg/kg 0.1 Org-008 <0.1 130980-1 <0.1||<0.1 [NR] [NR] **Ethion** 0.1 Org-008 <0.1 130980-1 <0.1||<0.1 LCS-3 123% mg/kg 130980-1 LCS-3 101% Fenitrothion 0.1 Org-008 < 0.1 <0.1||<0.1 mg/kg Malathion mg/kg 0.1 Org-008 <0.1 130980-1 <0.1||<0.1 LCS-3 78% Parathion 0.1 Org-008 <0.1 130980-1 <0.1||<0.1 LCS-3 108% mg/kg <0.1 Ronnel 0.1 Org-008 130980-1 <0.1||<0.1 [NR] [NR] mg/kg % Org-008 87 130980-1 89 | 96 | RPD: 8 LCS-3 84% Surrogate TCMX QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PCBs in Soil Base II Duplicate II %RPD 13/07/2 Date extracted 130980-1 13/07/2015 || 13/07/2015 LCS-3 13/07/2015 015 14/07/2 14/07/2015 || 14/07/2015 Date analysed 130980-1 LCS-3 14/07/2015 015 Aroclor 1016 mg/kg 0.1 Org-006 <0.1 130980-1 <0.1||<0.1 [NR] [NR] Org-006 130980-1 Aroclor 1221 mg/kg 0.1 < 0.1 <0.1||<0.1 [NR] [NR] Aroclor 1232 mg/kg 0.1 Org-006 <0.1 130980-1 <0.1||<0.1 [NR] [NR] Aroclor 1242 0.1 Org-006 <0.1 130980-1 <0.1||<0.1 [NR] [NR] mg/kg

Envirolab Reference: 130980 Revision No: R 00

mg/kg

mg/kg

mg/kg % 0.1

0.1

0.1

Org-006

Org-006

Org-006

Org-006

<0.1

<0.1

<0.1

87

130980-1

130980-1

130980-1

130980-1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

89 | 96 | RPD: 8

[NR]

LCS-3

[NR]

LCS-3

[NR]

122%

[NR]

83%

Aroclor 1248

Aroclor 1254

Aroclor 1260

Surrogate TCLMX

Client Reference: 84944.00, Bellevue Hill								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-8	13/07/2015
Date analysed	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-8	13/07/2015
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	130980-1	41 14 RPD: 98	LCS-8	106%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	130980-1	<0.4 <0.4	LCS-8	94%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	3 2 RPD:40	LCS-8	103%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	5 5 RPD:0	LCS-8	104%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	3 7 RPD:80	LCS-8	98%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	130980-1	<0.1 <0.1	LCS-8	90%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	<1 1	LCS-8	100%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	36 21 RPD: 53	LCS-8	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Soil - Inorg						Base II Duplicate II %RPD		
Date prepared	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-1	13/07/2015
Date analysed	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-1	13/07/2015
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	130980-1	<5 <5	LCS-1	109%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Inorg - Soil						Base II Duplicate II %RPD		
Date prepared	-			14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-1	14/07/2015
Date analysed	-			14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-1	14/07/2015
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	130980-1	6.3 6.4 RPD:2	LCS-1	102%
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	130980-1	21 23 RPD: 9	LCS-1	100%
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	130980-1	<10 <10	LCS-1	95%
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	130980-1	<10 <10	LCS-1	98%

Client Reference: 84944.00, Bellevue Hill							
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
vTRH(C6-C10)/BTEXN in Soil			Base + Duplicate + %RPD				
3011							
Date extracted	-	[NT]	[NT]	130980-2	13/07/2015		
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015		
TRHC6 - C9	mg/kg	[NT]	[NT]	130980-2	118%		
TRHC6 - C10	mg/kg	[NT]	[NT]	130980-2	118%		
Benzene	mg/kg	[NT]	[NT]	130980-2	118%		
Toluene	mg/kg	[NT]	[NT]	130980-2	116%		
Ethylbenzene	mg/kg	[NT]	[NT]	130980-2	116%		
m+p-xylene	mg/kg	[NT]	[NT]	130980-2	120%		
o-Xylene	mg/kg	[NT]	[NT]	130980-2	114%		
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]		
<i>Surrogate</i> aaa- Trifluorotoluene	%	[NT]	[NT]	130980-2	115%		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD				
Date extracted	-	130980-5	14/07/2015 13/07/2015	130980-2	13/07/2015		
Date analysed	-	130980-5	14/07/2015 14/07/2015	130980-2	14/07/2015		
TRHC10 - C14	mg/kg	130980-5	<50 <50	130980-2	95%		
TRHC15 - C28	mg/kg	130980-5	<100 810	130980-2	98%		
TRHC29 - C36	mg/kg	130980-5	<100 310	130980-2	68%		
TRH>C10-C16	mg/kg	130980-5	<50 50	130980-2	95%		
TRH>C16-C34	mg/kg	130980-5	<100 1000	130980-2	98%		
TRH>C34-C40	mg/kg	130980-5	<100 140	130980-2	68%		
Surrogate o-Terphenyl	%	130980-5	117 105 RPD:11	130980-2	99%		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery		
PAHs in Soil			Base + Duplicate + %RPD				
Date extracted	-	130980-5	14/07/2015 13/07/2015	130980-2	13/07/2015		
Date analysed	-	130980-5	14/07/2015 13/07/2015	130980-2	13/07/2015		
Naphthalene	mg/kg	130980-5	0.2 0.4 RPD:67	130980-2	104%		
Acenaphthylene	mg/kg	130980-5	<0.1 0.3	[NR]	[NR]		
Acenaphthene	mg/kg	130980-5	0.1 5.6 RPD:193	[NR]	[NR]		
Fluorene	mg/kg	130980-5	<0.1 3.7	130980-2	90%		
Phenanthrene	mg/kg	130980-5	1.4 52 RPD: 190	130980-2	96%		
Anthracene	mg/kg	130980-5	0.3 14 RPD: 192	[NR]	[NR]		
Fluoranthene	mg/kg	130980-5	0.9 44 RPD: 192	130980-2	94%		
Pyrene	mg/kg	130980-5	0.9 42 RPD: 192	130980-2	99%		
Benzo(a)anthracene	mg/kg	130980-5	0.4 18 RPD:191	[NR]	[NR]		
Chrysene	mg/kg	130980-5	0.4 14 RPD:189	130980-2	88%		
Benzo(b,j+k)fluoranthene	mg/kg	130980-5	0.5 15 RPD:187	[NR]	[NR]		
Benzo(a)pyrene	mg/kg	130980-5	0.3 14 RPD: 192	130980-2	87%		
Indeno(1,2,3-c,d)pyrene	mg/kg	130980-5	0.2 6.2 RPD:188	[NR]	[NR]		
Dibenzo(a,h)anthracene	mg/kg	130980-5	<0.1 1.2	[NR]	[NR]		
Dibenzo(a,h)anthracene	mg/kg	130980-5	<0.1 1.2	[NR]	[NR]		

Client Reference: 84944.00, Bellevue Hill							
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery		
Benzo(g,h,i)perylene	mg/kg	130980-5	0.2 4.6 RPD:183	[NR]	[NR]		
Surrogate p-Terphenyl-d14	%	130980-5	95 104 RPD:9	130980-2	101%		
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	SpikeSm#	Spike % Recovery		
Date extracted	-	[NT]	[NT]	130980-2	13/07/2015		
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015		
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]		
alpha-BHC	mg/kg	[NT]	[NT]	130980-2	90%		
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]		
beta-BHC	mg/kg	[NT]	[NT]	130980-2	87%		
Heptachlor	mg/kg	[NT]	[NT]	130980-2	98%		
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]		
Aldrin	mg/kg	[NT]	[NT]	130980-2	88%		
Heptachlor Epoxide	mg/kg	[NT]	[NT]	130980-2	90%		
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]		
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]		
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]		
pp-DDE	mg/kg	[NT]	[NT]	130980-2	88%		
Dieldrin	mg/kg	[NT]	[NT]	130980-2	98%		
Endrin	mg/kg	[NT]	[NT]	130980-2	98%		
pp-DDD	mg/kg	[NT]	[NT]	130980-2	95%		
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]		
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]		
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]		
Endosulfan Sulphate	mg/kg	[NT]	[NT]	130980-2	86%		
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]		
Surrogate TCMX	%	[NT]	[NT]	130980-2	88%		

		Client Referenc	e: 84944.00, Bellevue	HIII	
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	130980-2	91%
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	130980-2	106%
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	[NT]	[NT]	130980-2	123%
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	130980-2	120%
Fenitrothion	mg/kg	[NT]	[NT]	130980-2	100%
Malathion	mg/kg	[NT]	[NT]	130980-2	85%
Parathion	mg/kg	[NT]	[NT]	130980-2	100%
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	130980-2	74%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	[NT]	[NT]	130980-2	117%
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	130980-2	75%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	13/07/2015
Arsenic	mg/kg	[NT]	[NT]	130980-2	101%
Cadmium	mg/kg	[NT]	[NT]	130980-2	103%
Chromium	mg/kg	[NT]	[NT]	130980-2	105%
Copper	mg/kg	[NT]	[NT]	130980-2	110%
Lead	mg/kg	[NT]	[NT]	130980-2	105%
Mercury	mg/kg	[NT]	[NT]	130980-2	91%
Nickel	mg/kg	[NT]	[NT]	130980-2	105%
Zinc	mg/kg	[NT]	[NT]	130980-2	108%
					l

	Choine Rollofolio						
QUALITY CONTROL Misc Soil - Inorg	UNITS	Dup. Sm#	Duplicate Base+Duplicate+%RPD	Spike Sm#	Spike % Recovery		
Date prepared	-	[NT]	[NT]	130980-2	13/07/2015		
Date analysed	-	[NT]	[NT]	130980-2	13/07/2015		
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	130980-2	107%		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery		
Misc Inorg - Soil			Base + Duplicate + %RPD				
Date prepared	-	[NT]	[NT]	130980-2	14/07/2015		
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015		
pH 1:5 soil:water	pH Units	[NT]	[NT]	[NR]	[NR]		
Electrical Conductivity 1:5 soil:water	μS/cm	[NT]	[NT]	[NR]	[NR]		
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	130980-2	101%		
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	130980-2	103%		

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 130980-1 for As, Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 130980-11.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 130980-1 to 8 were sub-sampled from bags and 130980-9 from jar provided by the client.

sTRH/PAH in soil: The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

Asbestos ID was analysed by Approved Identifier: Paul Ching Asbestos ID was authorised by Approved Signatory: Paul Ching

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 130980 Page 25 of 26

Revision No: R 00

Client Reference: 84944.00, Bellevue Hill

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 130980 Page 26 of 26 Revision No: R 00

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Peter Oitmaa

Sample Login Details	
Your Reference	84944.00, Bellevue Hill
Envirolab Reference	130980
Date Sample Received	10/07/2015
Date Instructions Received	10/07/2015
Date Results Expected to be Reported	17/07/2015

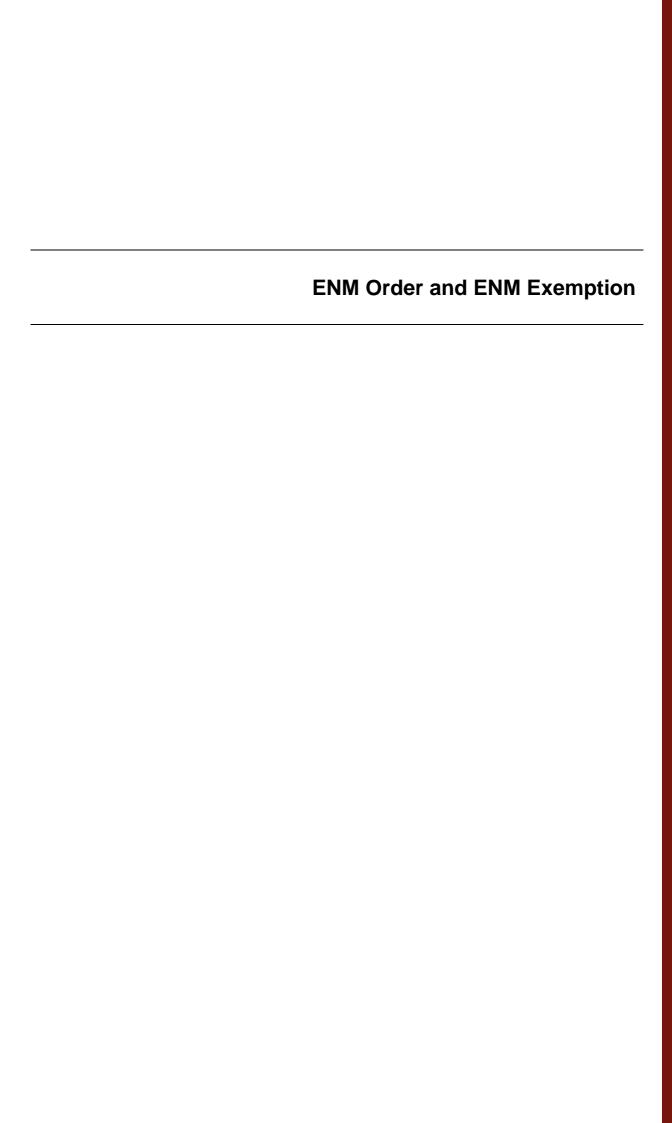
Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	10 Soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	4.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

Sample Id	Acid Extractable metals in soil	Asbestos ID - soils	Chloride, Cl 1:5 soil:water	Electrical Conductivity 1:5 soil:water	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PAHs in Soil	PCBs in Soil	pH 1:5 soil:water	Sulphate, SO4 1:5 soil:water	svTRH (C10-C40) in Soil	Total Phenolics (as Phenol)	vTRH(C6-C10)/BTEXN in Soil
BH2-1.0	1	1	1	✓	✓	✓	✓	✓	✓	1	1	1	✓
BH2-2.0	1	1	1	✓	✓	✓	✓	1	✓	✓	1	1	✓
BH2-3.0	1	1	1	✓	✓	✓	✓	✓	✓	✓	1	1	✓
									,	,	-	/	,
BH2-4.0	✓	1	1	✓	✓	✓	✓	✓	✓	1	/	/	✓
BH2-4.0 BH4-1.0	✓ ✓	✓ ✓	✓ ✓	√	√ ✓	√ ✓	√	✓ ✓	√	√	✓ ✓	1	1
BH4-1.0 BH4-2.0			√ √	√ √	√ √	-	✓ ✓	✓ ✓	√ √	1			√
BH4-1.0 BH4-2.0 BH4-3.0	1		\(\)	✓ ✓ ✓	\ \ \ \	-	✓ ✓ ✓	\ \ \		1	1	1	1
BH4-1.0 BH4-2.0 BH4-3.0 BH4-4.0	✓ ✓		\(\)	\frac{1}{\sqrt{1}}	\ \(\)	-	\ \ \ \	\ \ \ \		\(✓ ✓	√ ✓	√
BH4-1.0 BH4-2.0 BH4-3.0	✓ ✓ ✓		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \(\)	\(\sqrt{1} \)	-	\ \ \ \ \	\ \ \ \ \		√ √	✓ ✓ ✓	✓ ✓	✓ ✓

Date & Time:	D		ed By:	Received By:		34	Date & Time:			oigned:			a by.	remiquisited by.
Date & Time: (o/7/(5 (8:		7	d by:	Neceived by:	1200	+101	10 mile. 10/ +			2				Relinquishe
(02) 9809 4095	(02)	Fax:		Doopie	5	1114	late & Time	Date & Time: 10	A	Signed:	4	· Oitmas	-	Relinquished by:
(02) 9809 0666		Phone:					Most Bud	nitana Dana		Address	Douglas Partners	ouglas		Send Results to:
	1													
Security: Intercommonational	. д		346											
Cooling: Ice/Icepack				-	-	-	-		JOV	-		6		
Received by: JYH			-			-			1 -		-	5	0.0	-
Time Received: 18 25				6							42	0	1.0	BHIO
PIVA		+									-	×2-	4.0	-
												7	3.0	
ENVIROUND Chatswood NSW												7	2.0	
) Envirolat Serv			-								3/7	S	1.0	844
A		Ž.		i.							_	て	4.0	
										1	~	N	3.0	
												2	2.0	-
									Jar Bag	S	七七		1.0	BH2
Notes	10 0	立日	As besto	Phonol	PCB P	PAH "	Kars Har	Heavy metals	Container type	S - soil W – water	Sampling Date	<u> </u>	Depth	ם
	4			Analytes	A					Sample Type			Sample	Sample
Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au	tswood N Fax: 0 olabservic	vices eet, Chat lotaras 10 6200	Envirolab Services 12 Ashley Street, Cha Attn: Tania Notaras Phone: 02 9910 6200 Email: tnotaras@envi		То:		4 518	Sampler: MP Mob. Phone: 0412 574 518 aspartners.com.au Lab Quote No.	Bellevue Hill 84944.00 Sampler M F Peter Oitmaa Mob. Phone: 0412 peter oitmaa@douglaspartners.com.au S+d Lab Quote	Bellevue 1	Bellevae 84944.00 Peter Oitmaa peter oitmaa@do S+d	Pe : :	Project Name: Project No: Project Mgr: Email: Date Required:	Project Nam Project No: Project Mgr: Email: Date Requir

Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014

The excavated natural material order 2014

Introduction

This order, issued by the Environment Protection Authority (EPA) under clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 (Waste Regulation), imposes the requirements that must be met by suppliers of excavated natural material to which 'the excavated natural material exemption 2014' applies. The requirements in this order apply in relation to the supply of excavated natural material for application to land as engineering fill or for use in earthworks.

1. Waste to which this order applies

- 1.1. This order applies to excavated natural material. In this order, excavated natural material means naturally occurring rock and soil (including but not limited to materials such as sandstone, shale, clay and soil) that has:
 - a) been excavated from the ground, and
 - b) contains at least 98% (by weight) natural material, and
 - c) does not meet the definition of Virgin Excavated Natural Material in the Act.

Excavated natural material does not include material located in a hotspot; that has been processed; or that contains asbestos, Acid Sulfate Soils (ASS), Potential Acid Sulfate soils (PASS) or sulfidic ores.

2. Persons to whom this order applies

- 2.1. The requirements in this order apply, as relevant, to any person who supplies excavated natural material, that has been generated, processed or recovered by the person.
- 2.2. This order does not apply to the supply of excavated natural material to a consumer for land application at a premises for which the consumer holds a licence under the POEO Act that authorises the carrying out of the scheduled activities on the premises under clause 39 'waste disposal (application to land)' or clause 40 'waste disposal (thermal treatment)' of Schedule 1 of the POEO Act.

3. Duration

3.1. This order commences on 24 November 2014 and is valid until revoked by the EPA by notice published in the Government Gazette.

4. Generator requirements

The EPA imposes the following requirements on any generator who supplies excavated natural material.

Sampling requirements

- 4.1. On or before supplying excavated natural material, the generator must:
 - 4.1.1. Prepare a written sampling plan which includes a description of sample preparation and storage procedures for the excavated natural material.
 - 4.1.2. Undertake sampling and testing of the excavated natural material as required under clauses 4.2, 4.3, and 4.4 below. The sampling must be carried out in accordance with the written sampling plan.
- 4.2. The generator must undertake sampling and analysis of the material for ASS and PASS, in accordance with the NSW Acid Sulfate Soil Manual, Acid Sulfate Soils Management Advisory Council, 1998 and the updated Laboratory Methods Guidelines version 2.1 June 2004 where:
 - 4.2.1. the pH measured in the material is below 5, and/or
 - 4.2.2. the review of the applicable Acid Sulfate Soil Risk Maps (published by the former Department of Land and Water Conservation and available at http://www.environment.nsw.gov.au/acidsulfatesoil/riskmaps.htm) indicates the potential presence of ASS.
- 4.3. For stockpiled material, the generator must:
 - 4.3.1. undertake sampling in accordance with Australian Standard 1141.3.1-2012 Methods for sampling and testing aggregates – Sampling – Aggregates (or equivalent);
 - 4.3.2. undertake characterisation sampling by collecting the number of samples listed in Column 2 of Table 1 with respect to the quantity of the waste listed in Column 1 of Table 1 and testing each sample for the chemicals and other attributes listed in Column 1 of Table 4. For the purposes of characterisation sampling the generator must collect:
 - 4.3.2.1. composite samples for attributes 1 to 10 and 18 in Column 1 of Table 4.
 - 4.3.2.2. discrete samples for attributes 11 to 17 in Column 1 of Table 4.
 - 4.3.2.3. The generator must carry out sampling in a way that ensures that the samples taken are representative of the material from the entire stockpile. All parts of the stockpile must be equally accessible for sampling.
 - 4.3.2.4. for stockpiles greater than 4,000 tonnes the number of samples described in Table 1 must be repeated.
 - 4.3.3. store the excavated natural material appropriately until the characterisation test results are validated as compliant with the maximum average concentration or other value listed in Column 2 of Table 4 and the absolute maximum concentration or other value listed in Column 3 of Table 4.

Table 1

Sampling of Stockpiled Material						
Column 1	Column 2	Column 3				
Quantity (tonnes)	Number of samples	Validation				
<500	3					
500 – 1,000	4					
1,000 – 2,000	5	Required				
2,000 – 3,000	7					
3,000 – 4,000	10					

4.4. For in situ material, the generator must:

- 4.4.1. undertake sampling by collecting discrete samples. Compositing of samples is not permitted for in-situ materials.
- 4.4.2. undertake characterisation sampling for the range of chemicals and other attributes listed in Column 1 of Table 4 according to the requirements listed in Columns 1, 2 and 3 of Table 2. When the ground surface is not comprised of soil (e.g. concrete slab), samples must be taken at the depth at which the soil commences.
- 4.4.3. undertake sampling at depth according to Column 1 of Table 3.
- 4.4.4. collect additional soil samples (and analyse them for the range of chemicals and other attributes listed in Column 1 of Table 4), at any depth exhibiting discolouration, staining, odour or other indicators of contamination inconsistent with soil samples collected at the depth intervals indicated in Table 3.
- 4.4.5. segregate and exclude hotspots identified in accordance with Table 2, from material excavated for reuse.
- 4.4.6. subdivide sites larger than 50,000 m² into smaller areas and sample each area as per Table 2.
- 4.4.7. store the excavated natural material appropriately until the characterisation test results are validated as compliant with the maximum average concentration or other value listed in Column 2 of Table 4 and the absolute maximum concentration or other value listed in Column 3 of Table 4.

Table 2

	In S	<i>itu</i> Sampling at surfa	ce	
Column 1	Column 2	Column 3	Column 4	Column 5
Size of <i>in situ</i> area (m²)	Number of systematic sampling points recommended	Distance between two sampling points (m)	Diameter of the hot spot that can be detected with 95% confidence (m)	Validation
500	5	10.0	11.8	
1000	6	12.9	15.2	
2000	7	16.9	19.9	
3000	9	18.2	21.5	
4000	11	19.1	22.5	
5000	13	19.6	23.1	
6000	15	20.0	23.6	
7000	17	20.3	23.9	
8000	19	20.5	24.2	
9000	20	21.2	25.0	Required
10,000	21	21.8	25.7	
15,000	25	25.0	28.9	
20,000	30	25.8	30.5	
25,000	35	26.7	31.5	
30,000	40	27.5	32.4	
35,000	45	27.9	32.9	
40,000	50	28.3	33.4	
45,000	52	29.3	34.6	
50,000	55	30.2	35.6	

Table 2 has been taken from NSW EPA 1995, *Contaminated Sites Sampling Design Guidelines*, NSW Environment Protection Authority.

Table 3

<i>In Situ</i> Samp	oling at Depth
Column 1	Column 2
Sampling Requirements *	Validation
1 soil sample at 1.0 m bgl from each surface sampling point followed by 1 soil sample for every metre thereafter. From 1.0 m bgl, sample at the next metre interval until the proposed depth of excavation of the material is reached. If the proposed depth of	Required if the depth of excavation is equal to or greater than 1.0 m bgl
excavation is between 0.5 to 0.9 m after the last metre interval, sample at the base of the proposed depth of excavation.	

^{*} Refer to Notes for examples

4 <u>www.epa.nsw.gov.au</u>

Chemical and other material requirements

- 4.5. The generator must not supply excavated natural material waste to any person if, in relation to any of the chemical and other attributes of the excavated natural material:
 - 4.5.1. The chemical concentration or other attribute of any sample collected and tested as part of the characterisation of the excavated natural material exceeds the absolute maximum concentration or other value listed in Column 3 of Table 4:
 - 4.5.2. The average concentration or other value of that attribute from the characterisation of the excavated natural material (based on the arithmetic mean) exceeds the maximum average concentration or other value listed in Column 2 of Table 4.
- 4.6. The absolute maximum concentration or other value of that attribute in any excavated natural material supplied under this order must not exceed the absolute maximum concentration or other value listed in Column 3 of Table 4.

Table 4

Column 1	Column 2	Column 3
Chemicals and other attributes	Maximum average concentration for characterisation (mg/kg 'dry weight' unless otherwise specified)	Absolute maximum concentration (mg/kg 'dry weight' unless otherwise specified)
1. Mercury	0.5	1
2. Cadmium	0.5	1
3. Lead	50	100
4. Arsenic	20	40
5. Chromium (total)	75	150
6. Copper	100	200
7. Nickel	30	60
8. Zinc	150	300
9. Electrical Conductivity	1.5 dS/m	3 dS/m
10. pH *	5 to 9	4.5 to 10
11. Total Polycyclic Aromatic Hydrocarbons (PAHs)	20	40
12. Benzo(a)pyrene	0.5	1
13. Benzene	NA	0.5
14. Toluene	NA	65
15. Ethyl-benzene	NA	25
16. Xylene	NA	15
17. Total Petroleum Hydrocarbons C ₁₀ -C ₃₆	250	500
18. Rubber, plastic, bitumen, paper, cloth, paint and wood	0.05%	0.10%

^{*} The ranges given for pH are for the minimum and maximum acceptable pH values in the excavated natural material.

Test methods

- 4.7. The generator must ensure that any testing of samples required by this order is undertaken by analytical laboratories accredited by the National Association of Testing Authorities (NATA), or equivalent.
- 4.8. The generator must ensure that the chemicals and other attributes (listed in Column 1 of Table 4) in the excavated natural material it supplies are tested in accordance with the test methods specified below or other equivalent analytical methods. Where an equivalent analytical method is used the detection limit must be equal to or less than that nominated for the given method below.
 - 4.8.1. Test methods for measuring the mercury concentration.
 - 4.8.1.1. Analysis using USEPA SW-846 Method 7471B Mercury in solid or semisolid waste (manual cold vapour technique), or an equivalent analytical method with a detection limit < 20% of the stated absolute maximum concentration in Column 3 of Table 2 (i.e. < 0.20 mg/kg dry weight).
 - 4.8.1.2. Report as mg/kg dry weight.
 - 4.8.2. Test methods for measuring chemicals 2 to 8.
 - 4.8.2.1. Sample preparation by digesting using USEPA SW-846 Method 3051A Microwave assisted acid digestion of sediments, sludges, soils, and oils (or an equivalent analytical method).
 - 4.8.2.2. Analysis using USEPA SW-846 Method 6010C Inductively coupled plasma atomic emission spectrometry, or an equivalent analytical method with a detection limit < 10% of the stated absolute maximum concentration in Column 3 of Table 2, (e.g. 10 mg/kg dry weight for lead).
 - 4.8.2.3. Report as mg/kg dry weight.
 - 4.8.3. Test methods for measuring electrical conductivity and pH.
 - 4.8.3.1. Sample preparation by mixing 1 part excavated natural material with 5 parts distilled water.
 - 4.8.3.2. Analysis using Method 103 (pH) and 104 (Electrical Conductivity) in Schedule B (3): Guideline on Laboratory Analysis of Potentially Contaminated Soils, National Environment Protection (Assessment of Site Contamination) Measure 1999 (or an equivalent analytical method).
 - 4.8.3.3. Report electrical conductivity in deciSiemens per metre (dS/m).
 - 4.8.4. Test method for measuring Polynuclear Aromatic Hydrocarbons (PAHs) and benzo(a)pyrene.
 - 4.8.4.1. Analysis using USEPA SW-846 Method 8100 Polynuclear Aromatic Hydrocarbons (or an equivalent analytical method).
 - 4.8.4.2. Calculate the sum of all 16 PAHs for total PAHs.
 - 4.8.4.3. Report total PAHs as mg/kg dry weight.
 - 4.8.4.4. Report benzo(a)pyrene as mg/kg.

- 4.8.5. Test method for measuring benzene, toluene, ethylbenzene and xylenes (BTEX).
 - 4.8.5.1. Method 501 (Volatile Alkanes and Monocyclic Aromatic Hydrocarbons) in Schedule B (3): Guideline on Laboratory Analysis of Potentially Contaminated Soils, National Environment Protection (Assessment of Site Contamination) Measure 1999 (or an equivalent analytical method).
 - 4.8.5.2. Report BTEX as mg/kg.
- 4.8.6. Test method for measuring Total Petroleum Hydrocarbons (TPH).
 - 4.8.6.1. Method 506 (Petroleum Hydrocarbons) in Schedule B (3): Guideline on Laboratory Analysis of Potentially Contaminated Soils, National Environment Protection (Assessment of Site Contamination) Measure 1999 (or an equivalent analytical method).
 - 4.8.6.2. Report as mg/kg dry weight.
- 4.8.7. Test method for measuring rubber, plastic, bitumen, paper, cloth, paint and wood.
 - 4.8.7.1. NSW Roads & Traffic Authority Test Method T276 Foreign Materials Content of Recycled Crushed Concrete (or an equivalent method).
 - 4.8.7.2. Report as percent.

Notification

- 4.9. On or before each transaction, the generator must provide the following to each person to whom the generator supplies the excavated natural material:
 - a written statement of compliance certifying that all the requirements set out in this order have been met;
 - a copy of the excavated natural material exemption, or a link to the EPA website where the excavated natural material exemption can be found;
 - a copy of the excavated natural material order, or a link to the EPA website where the excavated natural material order can be found.

Record keeping and reporting

- 4.10. The generator must keep a written record of the following for a period of six years:
 - the sampling plan required to be prepared under clause 4.1.1;
 - all characterisation sampling results in relation to the excavated natural material supplied;
 - the volume of detected hotspot material and the location;
 - the quantity of the excavated natural material supplied; and
 - the name and address of each person to whom the generator supplied the excavated natural material.
- 4.11. The generator must provide, on request, the characterisation and sampling results for that excavated natural material supplied to the consumer of the excavated natural material.

5. Definitions

In this order:

application or apply to land means applying to land by:

- spraying, spreading or depositing on the land; or
- ploughing, injecting or mixing into the land; or
- filling, raising, reclaiming or contouring the land.

BgI means below ground level, referring to soil at depth beneath the ground surface.

composite sample means a sample that combines five discrete sub-samples of equal size into a single sample for the purpose of analysis.

consumer means a person who applies, or intends to apply excavated natural material to land.

discrete sample means a sample collected and analysed individually that will not be composited.

generator means a person who generates excavated natural material for supply to a consumer.

hotspot means a cylindrical volume which extends through the soil profile from the ground surface to the proposed depth of excavation, where the level of any contaminant listed in Column 1 of Table 2 is greater than the absolute maximum concentration in Column 3 of Table 2.

in situ material means material that exists on or below the ground level. It does not include stockpiled material.

in situ sampling means sampling undertaken on in situ material.

N/A means not applicable.

stockpiled material means material that has been excavated from the ground and temporarily stored on the ground prior to use.

systematic sampling means sampling at points that are selected at even intervals and are statistically unbiased.

transaction means:

- in the case of a one-off supply, the supply of a batch, truckload or stockpile of excavated natural material that is not repeated.
- in the case where the supplier has an arrangement with the recipient for more than one supply of excavated natural material, the first supply of excavated natural material as required under the arrangement.

Manager Waste Strategy and Innovation Environment Protection Authority (by delegation)

Notes

The EPA may amend or revoke this order at any time. It is the responsibility of each of the generator and processor to ensure it complies with all relevant requirements of the most current order. The current version of this order will be available on 'www.epa.nsw.gov.au

In gazetting or otherwise issuing this order, the EPA is not in any way endorsing the supply or use of this substance or guaranteeing that the substance will confer benefit.

The conditions set out in this order are designed to minimise the risk of potential harm to the environment, human health or agriculture, although neither this order nor the accompanying exemption guarantee that the environment, human health or agriculture will not be harmed.

Any person or entity which supplies excavated natural material should assess whether the material is fit for the purpose the material is proposed to be used for, and whether this use may cause harm. The supplier may need to seek expert engineering or technical advice.

Regardless of any exemption or order provided by the EPA, the person who causes or permits the application of the substance to land must ensure that the action is lawful and consistent with any other legislative requirements including, if applicable, any development consent(s) for managing operations on the site(s).

The supply of excavated natural material remains subject to other relevant environmental regulations in the POEO Act and Waste Regulation. For example, a person who pollutes land (s. 142A) or water (s. 120), or causes air pollution through the emission of odours (s. 126), or does not meet the special requirements for asbestos waste (Part 7 of the Waste Regulation), regardless of this order, is guilty of an offence and subject to prosecution.

This order does not alter the requirements of any other relevant legislation that must be met in supplying this material, including for example, the need to prepare a Safety Data Sheet. Failure to comply with the conditions of this order constitutes an offence under clause 93 of the Waste Regulation.

Examples

In situ sampling at depth

Example 1.

If the proposed depth of ENM excavation is between 1 m bgl and 1.4 m bgl, then:

- 1 sample on surface (as per the requirements of Table 2).
- 1 sample at 1 m bgl.
- No further depth sampling after 1 m bgl, unless required under section 4.4.4.

Example 2.

If the proposed depth of ENM excavation is at 1.75 m bgl, then:

- 1 sample on surface (as per the requirements of Table 2).
- 1 sample at 1 m bgl.
- 1 sample at 1.75 m bgl.
- No further depth sampling after 1.75 m bgl, unless required under section 4.4.4.

Example 3.

If the proposed depth of ENM excavation is at 2.25 m bgl, then:

- 1 sample on surface (as per the requirements of Table 2).
- 1 sample at 1 m bgl.
- 1 sample at 2 m bgl.
- No further depth sampling after 2 m bgl, unless required under section 4.4.4.

10 <u>www.epa.nsw.gov.au</u>

Resource Recovery Exemption under Part 9, Clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014

The excavated natural material exemption 2014

Introduction

This exemption:

- is issued by the Environment Protection Authority (EPA) under clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014 (Waste Regulation); and
- exempts a consumer of excavated natural material from certain requirements under the *Protection of the Environment Operations Act 1997* (POEO Act) and the Waste Regulation in relation to the application of that waste to land, provided the consumer complies with the conditions of this exemption.

This exemption should be read in conjunction with 'the excavated natural material order 2014'.

1. Waste to which this exemption applies

- 1.1. This exemption applies to excavated natural material that is, or is intended to be, applied to land as engineering fill or for use in earthworks.
- 1.2. Excavated natural material is naturally occurring rock and soil (including but not limited to materials such as sandstone, shale, clay and soil) that has:
 - a) been excavated from the ground, and
 - b) contains at least 98% (by weight) natural material, and
 - c) does not meet the definition of Virgin Excavated Natural Material in the Act.

Excavated natural material does not include material located in a hotspot; that has been processed; or that contains asbestos, Acid Sulfate Soils (ASS), Potential Acid Sulfate soils (PASS) or sulfidic ores.

2. Persons to whom this exemption applies

2.1. This exemption applies to any person who applies or intends to apply excavated natural material to land as set out in 1.1.

3. Duration

3.1. This exemption commences on 24 November 2014 and is valid until revoked by the EPA by notice published in the Government Gazette.

4. Premises to which this exemption applies

4.1. This exemption applies to the premises at which the consumer's actual or intended application of excavated natural material is carried out.

5. Revocation

5.1. 'The excavated natural material exemption 2012' which commenced 19 October 2012 is revoked from 24 November 2014.

6. Exemption

- 6.1. Subject to the conditions of this exemption, the EPA exempts each consumer from the following provisions of the POEO Act and the Waste Regulation in relation to the consumer's actual or intended application of excavated natural material to land as engineering fill or for use in earthworks at the premises:
 - section 48 of the POEO Act in respect of the scheduled activities described in clauses 39 of Schedule 1 of the POEO Act;
 - Part 4 of the Waste Regulation;
 - section 88 of the POEO Act; and
 - clause 109 and 110 of the Waste Regulation.
- 6.2. The exemption does not apply in circumstances where excavated natural material is received at the premises for which the consumer holds a licence under the POEO Act that authorises the carrying out of the scheduled activities on the premises under clause 39 'waste disposal (application to land) or clause 40 'waste disposal' (thermal treatment) of Schedule 1 of the POEO Act.

7. Conditions of exemption

The exemption is subject to the following conditions:

- 7.1. At the time the excavated natural material is received at the premises, the material must meet all chemical and other material requirements for excavated natural material which are required on or before the supply of excavated natural material under 'the excavated natural material order 2014'.
- 7.2. The excavated natural material can only be applied to land as engineering fill or for use in earthworks.
- 7.3. The consumer must keep a written record of the following for a period of six years:
 - the quantity of any excavated natural material received; and
 - the name and address of the supplier of the excavated natural material received.
- 7.4. The consumer must make any records required to be kept under this exemption available to authorised officers of the EPA on request.
- 7.5. The consumer must ensure that any application of excavated natural material to land must occur within a reasonable period of time after its receipt.

8. Definitions

In this exemption:

application or apply to land means applying to land by:

- spraying, spreading or depositing on the land; or
- ploughing, injecting or mixing into the land; or
- filling, raising, reclaiming or contouring the land.

consumer means a person who applies, or intends to apply excavated natural material to land.

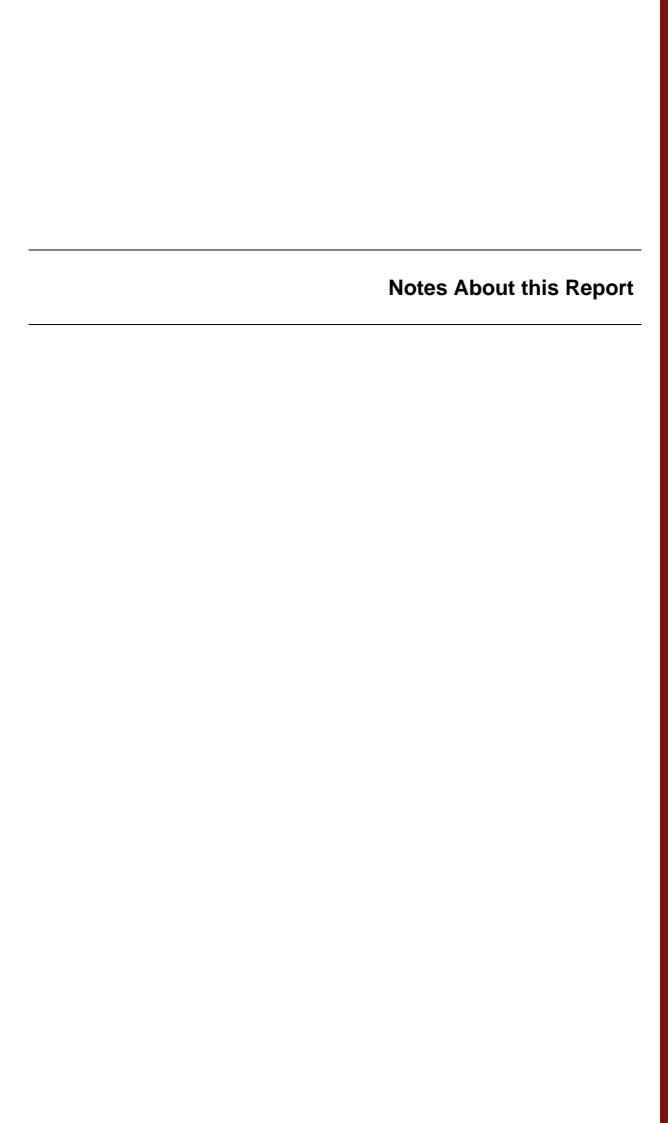
Manager Waste Strategy and Innovation Environment Protection Authority (by delegation)

Notes

The EPA may amend or revoke this exemption at any time. It is the responsibility of the consumer to ensure they comply with all relevant requirements of the most current exemption. The current version of this exemption will be available on www.epa.nsw.gov.au

In gazetting or otherwise issuing this exemption, the EPA is not in any way endorsing the use of this substance or guaranteeing that the substance will confer benefit.

The conditions set out in this exemption are designed to minimise the risk of potential harm to the environment, human health or agriculture, although neither this exemption nor the accompanying order guarantee that the environment, human health or agriculture will not be harmed.


The consumer should assess whether or not the excavated natural material is fit for the purpose the material is proposed to be used for, and whether this use will cause harm. The consumer may need to seek expert engineering or technical advice.

Regardless of any exemption provided by the EPA, the person who causes or permits the application of the substance to land must ensure that the action is lawful and consistent with any other legislative requirements including, if applicable, any development consent(s) for managing operations on the site(s).

The receipt of excavated natural material remains subject to other relevant environmental regulations in the POEO Act and the Waste Regulation. For example, a person who pollutes land (s. 142A) or water (s. 120), or causes air pollution through the emission of odours (s. 126), or does not meet the special requirements for asbestos waste (Part 7 of the Waste Regulation), regardless of having an exemption, is guilty of an offence and subject to prosecution.

This exemption does not alter the requirements of any other relevant legislation that must be met in utilising this material, including for example, the need to prepare a Safety Data Sheet (SDS).

Failure to comply with the conditions of this exemption constitutes an offence under clause 91 of the Waste Regulation.

About this Report Douglas Partners O

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners The sample of the samp

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners O

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)	
Boulder	>200	
Cobble	63 - 200	
Gravel	2.36 - 63	
Sand	0.075 - 2.36	
Silt	0.002 - 0.075	
Clay	<0.002	

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	20 - 63	
Medium gravel	6 - 20	
Fine gravel	2.36 - 6	
Coarse sand	0.6 - 2.36	
Medium sand	0.2 - 0.6	
Fine sand	0.075 - 0.2	

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose	1	4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	M	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

^{*} Assumes a ratio of 20:1 for UCS to Is(50)

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulde and classified as a soil but the texture of the original rock is still evident.	
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable	
Moderately weathered	MW	Staining and discolouration of rock substance has taken place	
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock	
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects	
Fresh	Fr	No signs of decomposition or staining	

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core Drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved ir irregular pl planar st stepped un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Graphic Symbols for Soil and Rock				
General		Sedimentary	Rocks	
	Asphalt	094	Boulder conglomerate	
	Road base		Conglomerate	
A. A. A. A.	Concrete		Conglomeratic sandstone	
	Filling		Sandstone	
Soils			Siltstone	
	Topsoil		Laminite	
	Peat		Mudstone, claystone, shale	
	Clay		Coal	
	Silty clay		Limestone	
//////	Sandy clay	Metamorphic	Rocks	
	Gravelly clay		Slate, phyllite, schist	
-/-/-/-/- -/- -/-	Shaly clay	+ + + + + +	Gneiss	
	Silt		Quartzite	
	Clayey silt	Igneous Roc	ks	
	Sandy silt	+ + + + + + + , + , +	Granite	
	Sand	<	Dolerite, basalt, andesite	
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote	
.	Silty sand	V V V	Tuff, breccia	
	Gravel		Porphyry	
	Sandy gravel			
	Cobbles, boulders			