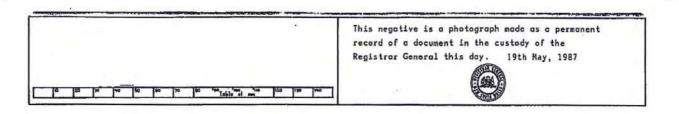

מסידומנים ממיייים און הסדומססמיייים



Delete whichever is inconficable

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 Table of mm 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 380 370 380 390

Appendix F City of Sydney Section 149 Certificate

Sydney2030/Green/Global/Connected

City of Sydney Town Hall House

Town Hall House 456 Kent Street Sydney NSW 2000

Telephone +61 2 9265 9333 Fax +61 2 9265 9222 council@cityofsydney.nsw.gov.au GPO Box 1591 Sydney NSW 2001 cityofsydney.nsw.gov.au

JULIA NICHOLSON JBS ENVIRONMENTAL PTY LTD LEVEL 1 50 MARGARET ST SYDNEY NSW 2000

PLANNING CERTIFICATE

Under Section 149 of the Environmental Planning and Assessment Act, 1979

Applicant:

JBS ENVIRONMENTAL PTY LTD

Applicant's reference:

JBS & G

Address of property:

13A Hickson Road, DAWES POINT NSW 2000

Owner:

MARITIME AUTHORITY of NSW

Description of land:

Lot 11 DP 1138931

Certificate No.:

2014300871

Certificate Date:

14/02/14

Receipt No:

5018824

Fee:

\$80.00

Paid:

14/02/14

Title information, description, dimensions and area of land are provided from data supplied by the Valuer General and shown where available.

Issuing Officer \sqrt{n} per **Monica Barone**Chief Executive Officer

CERTIFICATE ENQUIRIES:

Ph:

9265 9333

Fax:

9265 9415

city of villages

PLANNING CERTIFICATE UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

MATTERS AFFECTING THE LAND AS PRESCRIBED BY SCHEDULE 4 - ENVIRONMENTAL PLANNING & ASSESSMENT REGULATION, 2000, CLAUSES (1) - (2).

DEVELOPMENT CONTROLS

The following information must be read in conjunction with and subject to all other provisions of the environmental planning instruments specified in this certificate.

ZONING

Zone 1 - Walsh Bay Conservation Zone - Sydney Regional Environmental Plan 16.

(1) The objectives of this zone are:

- (a) To allow an appropriate range of uses to encourage the adaptive re-use of existing structures while not required for commercial port uses;
- (b) To ensure that development is consistent with the heritage significance, the scale, the built form and the materials of existing structures in the zone and adjoining areas;
- (c) To ensure that development is compatible with and does to detract from the financial, commercial and retail functions of the existing city central business district functions and the Sydney Cove Redevelopment Area; and
- (d) To ensure that development is compatible with and does not adversely impact on the residential amenity and function of the adjoining areas.
- (2) Without Development Consent Nil
- (3) Only with Development Consent

 Any purpose other than a purpose included in item (2) or (4)

(4) Prohibited

Bus depots, bus stations, car repair stations, gas holders, generating works, helipads, heliports, industries (other than home industries and light industries), institutions, junk yards, liquid fuel depots, marinas, mines, roadside stalls, road transport terminals, sawmills.

Zone 2 - Walsh Bay Waterway Zone - Sydney Regional Environmental Plan No 16.

(1) The objectives of the zone are:

- (a) To control the use of the waterway between the wharves to ensure that any activities associated with any development are compatible with the commercial shipping and navigational requirements in Sydney Harbour;
- (b) To ensure that the Harbour and Harbour Foreshore is recognised as a community asset; and
- (c) To limit mooring facilities for private vessels used by the lessees and tenants of property in Zone 1 – Walsh Bay Conservation Zone.

(2) Without Development Consent

Aids to navigation, maintenance dredging, maintenance of mooring facilities, mooring of vessels owned by the Maritime Services Board.

(3) Only with Development Consent

Boating or waterway access stairs, dredging, emergency vehicle accessways, floating restaurants or entertainment facilities, flora and fauna enclosures, mooring facilities, mooring of fishing and charter vessels, pontoons, public walkways, utility installations (other than gas holders and generating works).

(4) Prohibited

Any purpose other than a purpose included in item (2) or (3).

PROPOSED ZONING

This property is not affected by a draft zone.

LOCAL PLANNING CONTROLS

Sydney Harbour Foreshores and Waterways Area Development Control Plan 2005 (commenced 28.09.2005) – This DCP applies to all development proposals within the Foreshores and Waterways Area identified in SREP (Sydney Harbour Catchment) 2005 (refer to the Foreshores and Waterways Area map)

Sydney Development Control Plan 2012 (as amended) - (commenced 14.12.2012)

HERITAGE

Walsh Bay Conservation Zone

A person shall not, in respect of the Walsh Bay Conservation Zone: demolish or alter a building or work within the Zone; damage or remove a relic, including excavation for the purpose of exposing or removing a relic, within the Zone; damage or despoil a place within the Zone; erect a building on or subdivide land within the Zone; or damage any tree within the Zone, except with the consent of the consent authority.

State Heritage Register (Amendment to Heritage Act, 1977, gazetted 2/4/99)

This property is identified as being of state significance and has been entered on the State Heritage Register. Unless the proposed work is exempt under the Heritage Office Standard Exemptions or is covered by site specific exemptions, an applicant must seek an integrated development approval from Council and as such the proposal will be referred to the Heritage Council. If major changes are proposed the Heritage Council may require the applicant to prepare a conservation management plan in accordance with the NSW Heritage Manual Guidelines. For further information please contact the Heritage Office (02) 9873 8500 or alternatively online www.heritage.nsw.gov.au.

STATE PLANNING INSTRUMENTS

Full copies of State Environmental Planning Policies are available online at www.planning.nsw.gov.au.

State Environmental Planning Policy No. 1 – Development Standards

This policy makes development standards more flexible. It allows Council to approve a development proposal that does not comply with a set standard where this can be shown to be unreasonable or unnecessary.

State Environmental Planning Policy No. 4 – Development without Consent and Miscellaneous Complying Development

This policy allows relatively simple or minor changes of land or building use and certain types of development by public authorities without the need for formal development applications. The types of development covered are outlined in the policy.

SREP 16 - Walsh Bay

Clauses 9 & 10 of State Environmental Planning Policy No. 4 do not apply to the land within Sydney Regional Environmental Plan No. 16 – Walsh Bay.

State Environmental Planning Policy No. 6 - Number of Storeys in a Building

This policy sets out a method for determining the number of storeys in a building, to prevent possible confusion arising from the interpretation of various environmental planning instruments.

State Environmental Planning Policy No. 10 – Retention of Low-Cost Accommodation This policy aims to provide a mechanism for the retention of low-cost rental accommodation. The policy establishes criteria for determining a low-cost rental residential building (including boarding houses, hostels and low rental residential flat buildings), matters for Council consideration and requirements for development proposed under the policy.

State Environmental Planning Policy No. 19 - Bushland in Urban Areas

This is a policy to protect and preserve bushland within certain urban areas, as part of the natural heritage or for recreational, educational and scientific purposes. This policy is designed to protect bushland in public open space zones and reservations, and to ensure that bush preservation is given a high priority when local environmental plans for urban development are prepared.

State Environmental Planning Policy No. 22 - Shops and Commercial Premises

This policy allows, with the consent of Council, a change of use from a shop to another kind of shop or commercial premises, where the new use is prohibited under an environmental planning instrument.

State Environmental Planning Policy No. 32 - Urban Consolidation

This policy implements the principles of urban consolidation, including the orderly, economic use and development of land. The policy enables urban land which is no longer required for the purpose for which it is currently zoned or used to be redeveloped for multi-unit housing and related development.

State Environmental Planning Policy No. 33 – Hazardous and Offensive Development This policy aims to amend the definitions of hazardous and offensive industries; to render ineffective any environmental planning instruments not defining hazardous or offensive as per this policy; to control development of hazardous and offensive industries.

State Environmental Planning Policy No. 55 - Remediation of Land

This policy provides planning controls for the remediation of contaminated land. The policy states that land must not be developed if it is unsuitable for a proposed use because it is contaminated. If the land is unsuitable, remediation must take place before the land is developed. The policy makes remediation permissible across the State, defines when consent is required, requires all remediation to comply with standards, ensures land is investigated if contamination is suspected, and requires councils to be notified of all remediation proposals. To assist councils and developers, the Department, in conjunction with the Environment Protection Authority, has prepared Managing Land Contamination: Planning Guidelines.

State Environmental Planning Policy No 60 - Exempt and Complying Development (Gazetted 3.03.00)

Specifies exempt and complying development in certain areas that have not provided for those types of development through a Local Environmental Plan. This is achieved by identifying the development of minimal environmental impact that is to be exempt and identifying development that is to be complying development. The policy also specifies standards for that development, identify complying development separately for metropolitan Sydney and regional areas of New South Wales, specifies conditions for complying development certificates and ensures that development consent is required for the subdivision of land, and the erection of a building or for demolition.

State Environmental Planning Policy No. 64 - Advertising and Signage

This policy aims to ensure that signage (including advertising):

Is compatible with the desired amenity and visual character of an area, and

- · Provides effective communications in suitable locations, and
- Is of a high quality design and finish.

To this end the policy regulates signage (but not content) under Part 4 of the Act and provides limited time consents for the display of certain advertisements. The policy does not apply to signage that is exempt development under an environmental planning instrument. It does apply to all signage that can be displayed with or without consent and is visible from any public place or reserve, except as provided by the policy.

This policy should be read in conjunction with the Sydney Local Environmental Plan 2005, the City of Sydney Signage and Advertising Structures Development Control Plan 2005 and State Environmental Planning Policy No. 60 where these apply.

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Buildings

This policy aims to improve the design quality of flats of three or more storeys with four or more self contained dwellings. The policy sets out a series of design principles for local councils to consider when assessing development proposals for residential flat development. The policy also creates a role for an independent design review panel and requires the involvement of a qualified designer in the design and approval process.

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

This Policy does not apply to land described in Schedule 1 (Environmentally sensitive land), or land that is zoned for industrial purposes, or land to which an interim heritage order made under the *Heritage Act 1997* by the Minister administering that Act applies, or land to which a listing on the State Heritage Register kept under the *Heritage Act 1997* applies.

The Policy aims to encourage the provision of housing (including residential care facilities) that will increase the supply and diversity of residences that meet the needs of seniors or people with a disability, and make efficient use of existing infrastructure and services, and be of good design.

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004
Aims to ensure consistency in the implementation of the BASIX scheme throughout the State.
This Policy achieves its aim by overriding provisions of other environmental planning instruments and development control plans that would otherwise add to, subtract from or modify any obligations arising under the BASIX scheme.

State Environmental Planning Policy (Major Development) 2005

This Policy aims to identify development of economic, social or environmental significance to the State or regions of the State so as to provide a consistent and comprehensive assessment and decision making process for that development.

NB: This SEPP also contains exempt & complying provisions

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

This Policy aims to provide for the proper management and development of mineral, petroleum and extractive material resources for the social and economic welfare of the State.

State Environmental Planning Policy (Temporary Structures and Places of Public Entertainment) 2007

This Policy aims to ensure that suitable provision is made for ensuring the safety of persons using temporary structures or places of public entertainment.

State Environmental Planning Policy (Infrastructure) 2007

This Policy aims to facilitate the effective delivery of infrastructure across the state. NB: This SEPP also contains exempt & complying provisions

State Environmental Planning Policy (Repeal of Concurrence and Referral Provisions) 2008

This Policy is an 'amending instrument' that removes or modifies referral and concurrence clauses within local environmental plans (LEPs), regional environmental plans (REPs) and State environmental planning policies (SEPPs).

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

This Policy Streamlines assessment processes for development that complies with specified development standards. The policy provides exempt and complying development codes that have State-wide application, identifying, in the General Exempt Development Code, types of development that are of minimal environmental impact that may be carried out without the need for development consent; and, in the General Housing Code, types of complying development that may be carried out in accordance with a complying development certificate as defined in the Environmental Planning and Assessment Act 1979.

State Environmental Planning Policy (Affordable Rental Housing) 2009

Establishes a consistent planning regime for the provision of affordable rental housing. The policy provides incentives for new affordable rental housing, facilitates the retention of existing affordable rentals, and expands the role of not-for-profit providers. It also aims to support local centres by providing housing for workers close to places of work, and facilitate development of housing for the homeless and other disadvantaged people. NOTE: Does not apply to land at Green Square or at Ultimo Pyrmont

State Environmental Planning Policy (Urban Renewal) 2010

The aims of this Policy are as follows:

- (a) to establish the process for assessing and identifying sites as urban renewal precincts,
- (b) to facilitate the orderly and economic development and redevelopment of sites in and around urban renewal precincts,
- (c) to facilitate delivery of the objectives of any applicable government State, regional or metropolitan strategies connected with the renewal of urban areas that are accessible by public transport.

State Environmental Planning Policy (State and Regional Development) 2011

The aims of this Policy are as follows:

- (a) to identify development that is State significant development,
- (b) to identify development that is State significant infrastructure and critical State significant infrastructure.
- (c) to confer functions on joint regional planning panels to determine development applications.

Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005

This plan applies to land within the Sydney Harbour Catchment, as shown edged heavy black on the Sydney Harbour Catchment Map, being part of the Sydney Region declared by order published in Gazette No 38 of 7 April 1989 at page 1841.

This plan has the following aims with respect to the Sydney Harbour Catchment: to ensure that the catchment, foreshores, waterways and islands of Sydney Harbour are recognised, protected and maintained: as outstanding natural asset, and as a public asset of national and heritage significance, for existing and future generations; to ensure a healthy, sustainable environment on land and water; to achieve a high quality urban environment; to ensure a prosperous working waterfront and an effective transport corridor, to encourage a culturally rich and vibrant place for people; to ensure accessibility to and along Sydney Harbour and its foreshores; to ensure the protection, maintenance and rehabilitation of watercourses, wetlands, riparian lands, remnant vegetation and ecological connectivity, to provide a consolidated, simplified and updated legislative framework for future planning.

Sydney Regional Environmental Plan No.16 Walsh Bay (Gazetted 16/06/89, as amended)

This plan provides for the redevelopment of Walsh Bay by encouraging re-use of existing structures, protection of heritage items, control use of waterways & provision of public access to waterfront.

OTHER MATTERS AFFECTING THE LAND AS PRESCRIBED BY SCHEDULE 4 - E. P. & A. REGULATION, 2000. CLAUSES (3) - (10)

(3) Complying Development

- (1) Whether or not the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clause 1.17A and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.
- (2) If complying development may not be carried out on that land because of the provisions of clause 1.17A and 1.19 of that Policy, the reasons why it may not be carried out under that clause.

Note: All Exempt and Complying Development Codes: Clause 1.17A(a) Development that requires concurrence of a person other than the consent authority, or the Director General of the Department of Environment, Climate Change and Water is **not** complying development.

General Housing Code

Complying development **may not** be carried out on the land under the General Housing Code if because of the provisions of clause 1.17A & 1.19 (Land-based requirements for exempt and complying development) any of the following statements are **YES**

NO
YES
NO
NO
NO
YES
NO
YES
NO
NO
YES
NO
NO
NO

Housing Alterations Code

Complying development under the Housing Alterations Code **may not** be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

General Commercial and Industrial Code

Complying development under the General Commercial and Industrial Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Subdivisions Code

Complying development under the Subdivisions Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Rural Housing Code

The Rural Housing Code does not apply to this Local Government Area.

General Development Code

Complying development under the General Development Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Demolition Code

Complying development under the Demolition Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

(4) Coastal Protection Act, 1979

The council has not been notified by the department of public works that the land is affected by the operation of section 38 or 39 of the coastal protection act, 1979.

- (4A) Certain information relating to beaches and coasts
- (1) In relation to a coastal council an order has **not** been made under Part 4D of the coastal Protection Act 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land).
- (2) In relation to a coastal council: Council has **not** been notified under section 55X of the Coastal Protection Act 1979 that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land)
- (4B) Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

In relation to a coastal council: The owner (or any previous owner) of the land has not consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Note. "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

(5) Mine Subsidence District

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of the mine subsidence compensation act, 1961.

(6) Road Widening and/or Road Realignment affected by (a) Division 2 of Part 3 of the Roads act 1993 or (c) any resolution of council or other authority.

This land is not affected by road widening and/or road realignment under section 25 of the Roads Act, 1993 and/or resolution of Council or any other authority.

(6) Road Widening and/or Road Realignment Affected by (b) any environmental planning instrument.

This land **is not** affected by any road widening or road realignment under any planning instrument.

- (7) Council and other public authorities policies on hazard risk restrictions:
- (a) The land **is not** affected by a policy adopted by the Council that that restricts the development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk; and
- (b) The land is not affected by a policy adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to on planning certificate issued by Council, that restricts the development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk.

(7A) Flood related development controls information.

The development on this land or part of this land is not subject to flood related development controls.

(8) Land reserved for acquisition

No environmental planning instrument, or proposed environmental planning instrument applying to the land, provides for the acquisition of the land by a public authority, as referred to in section 27 of the Act.

(9) Contribution plans

The following Contributions Plans apply to properties within the City of Sydney local government area. Contributions plans marked **YES** may apply to this property:

 Central Sydney Contributions (Amendment) Plan 2002 – in operation 16th June 2003 	NO
 Ultimo Pyrmont Section 94 Contributions Plan (approved C.S.P.C 15th December 1994 and Council 19th December 1994) 	NO
 City of Sydney Development Contributions Plan 2006 – in operation 7th April 2007 	NO
 Redfern Waterloo Authority Contributions Plan 2006 – in operation 16th May 2007 Redfern Waterloo Authority Affordable Housing Contributions Plan – in operation 16th May 2007 	NO

(9A) Biodiversity certified land

The land has not been certified as biodiversity certified land.

(10) Biobanking Agreement

Council has not been notified of a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995.

(11) Bush fire prone land

The land has not been identified as Bush fire prone land.

(12) Property vegetation plans

Not Applicable.

(13) Orders under Trees (Disputes Between Neighbours) Act 2006

Council has not been notified of an order which as been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land.

(14) Directions under Part 3A

Not Applicable.

- (15) Site compatibility certificates and conditions for seniors housing
- (a) The land to which the certificate relates is not subject to a current site compatibility certificate (seniors housing), of which Council is aware, in respect of proposed development on the land.
- (b) The land to which the certificate relates is not subject to any condition of consent to a development application granted after 11 October 2007 required by State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004.
- (16) Site compatibility certificates for infrastructure

The land to which the certificate relates is not subject to a valid site compatibility certificate (infrastructure), of which Council is aware, in respect of proposed development on the land.

- (17) Site compatibility certificates and conditions for affordable rental housing
- (a)The land to which the certificate relates is not subject to a current site compatibility certificate (affordable rental housing), of which Council is aware, in respect of proposed development on the land.
- (b) The land to which the certificate relates is not subject to any terms of a kind referred to in clause 17(1) or 37(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.
- (18) Paper subdivision information

Not Applicable.

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

- (a) The land to which the certificate relates is not declared to be significantly contaminated land within the meaning of that act as at the date when the certificate is issued.
- (b) The land to which the certificate relates is not subject to a management order within the meaning of that act as at the date when the certificate is issued.
- (c) The land to which the certificate relates is not the subject of an approved voluntary management proposal within the meaning of that act at the date the certificate is issued.
- (d) The land to which the certificate relates **is not** the subject of an **ongoing maintenance order** within the meaning of that act as at the date when the certificate is issued.
- (e) As at the date when the certificate is issued, Council has not identified that a site audit statement within the meaning of that act has been received in respect of the land the subject of the certificate.

PLANNING CERTIFICATE SECTION 149(2) INFORMATION:

Information provided in accordance with planning certificate section 149 (2) has been taken from council's records and advice from other authorities but council disclaims all liability for any omission or inaccuracy in the information. Specific inquiry should be made where doubt exists.

PLANNING CERTIFICATE UNDER SECTION 149 (5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

PLANNING CERTIFICATE SECTION 149 (5) ADVICE is current as at 12:00 noon two working days prior to the date of issue of this certificate. The following matters have been considered & details provided where information exists: easements in favour of council; parking permit scheme; heritage floor space restrictions; low-rental residential building; foreshore building line; tree preservation order.

Contaminated Land Potential:

Council records do not have sufficient information about the uses (including previous uses) of the land which is the subject of this section 149 certificate to confirm that the land has not been used for a purpose which would be likely to have contaminated the land. Parties should make their own enquiries as to whether the land may be contaminated.

Hazard Risk Restriction:

The City of Sydney Local Environmental Plan 2012 incorporates Acid Sulfate soil maps. Development on the land identified in those maps should have regard to Division 4 clause 7.16 of the LEP.

Construction Noise and View Loss Advice:

Intending purchasers are advised that the subject property may be affected by construction noise and loss or diminution of views as a result of surrounding development.

City of Sydney Tree Preservation Order 2004 (TPO)

This order applies to all land where South Sydney Local Environmental Plan 1998 applies and the City of Sydney Council or the Central Sydney Planning Committee is the relevant consent authority under the *Environmental Planning & Assessment* Act 1979. Contact Council's Contract and Asset Management section for more information.

Outstanding Notice & Order information

In relation to this property, there **is not** an outstanding Order or Notice of Intention to issue an Order relating to Fire Safety (being an Order or Notice of Intention to issue an Order of type 6, 10, 11 under Section 121B of the Environmental Planning and Assessment Act, 1979). Further information about the Order or Notice of Intention to issue an Order may be obtained by applying for a certificate under Section 121ZP of the Environmental Planning and Assessment Act and Section 735A of the Local Government Act.

In relation to this property, there **is not** an outstanding Order or Notice of Intention to issue an Order (being an Order or Notice of Intention to issue an Order of a type other than relating to fire safety). Further information about the Order or Notice of Intention to issue an Order may be obtained by applying for a certificate under Section 121ZP of the Environmental Planning and Assessment Act and Section 735A of the Local Government Act.

Resident & Visitor Parking Permit Schemes Restriction

Owners and occupiers of this address are **not eligible** to participate in the resident and visitor permit parking schemes.

The Minister is the Consent Authority

The Minister is the consent authority where development has a capital investment value of more than \$10 million. (State Environmental Planning Policy (Major Projects)

Sydney Harbour Foreshore Authority Act 1998

The provisions of the Sydney Harbour Foreshore Authority Act 1998 apply to the subject land.

For more information, contact the Property Officer at Sydney Harbour Foreshore Authority on telephone (02) 9240 8500.

ADVICE FROM OTHER BODIES

Sydney Ports Corporation Advice

Some land in the City of Sydney located in the vicinity of the White Bay, Glebe Island and Darling Harbour ports may be affected by noise from port operations.

Advice provided in accordance with planning certificate section 149 (5) is supplied in good faith. Council accepts no liability for the validity of the advice given. (see section 149 (6) of the Environmental Planning and Assessment Act, 1979).

For information regarding outstanding notices and orders a CERTIFICATE FOR OUTSTANDING NOTICES OF INTENTION AND/OR AN ORDER UNDER SECTION 735A OF THE LOCAL GOVERNMENT ACT, 1993 AND SECTION 121ZP OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 may be applied for at Sydney City Council.

Planning certificate section 149 (2), local planning controls are available for inspection at the following locations:

General Enquiries:

Telephone: 02 9265 9333 Facsimile: 02 9265 9415

Town Hall House

Level 2, Town Hall House, 456 Kent Street, Sydney. 8am – 6pm, Monday - Friday

Glebe Customer Service Centre

Glebe Library, 186 Glebe Point Road, Glebe 9am – 5pm, Monday – Friday

Neighbourhood Service Centre Kings Cross

50 Darlinghurst Road, Potts Point 9am – 5pm, Monday – Friday 9am – 12pm, Saturday

Neighbourhood Service Centre Redfern

158 Redfern Street Redfern 9am-5pm Monday – Friday 9am – 12 Noon Saturday

Green Square Customer Service Centre

The Tote, 100 Joynton Avenue, Zetland 10am-6pm Monday – Friday State planning controls are available for inspection at the following locations:

Sydney Harbour Foreshore Authority (former Sydney Cove Authority and Darling Harbour Authority), Level 6, 66 Harrington Street, The Rocks.

Department of Planning & Infrastructure Information Centre 23-33 Bridge Street, Sydney NSW 2000

Where planning certificate section 149 (5) matters are supplied, complete details are available by writing to:
Chief Executive Officer,
City of Sydney,
G.P.O. Box 1591,
Sydney, NSW 2000

End of Document

Sydney2030/Green/Global/Connected

City of Sydney Town Hall House **456 Kent Street** Sydney NSW 2000

Telephone +61 2 9265 9333 Fax +61 2 9265 9222 council@cityofsydney.nsw.gov.au GPO Box 1591 Sydney NSW 2001 cityofsydney.nsw.gov.au

JULIA NICHOLSON JBS ENVIRONMENTAL PTY LTD LEVEL 1 50 MARGARET ST SYDNEY NSW 2000

PLANNING CERTIFICATE

Under Section 149 of the Environmental Planning and Assessment Act, 1979

Applicant:

JBS ENVIRONMENTAL PTY LTD

Applicant's reference:

JBS & G

Address of property:

13 Hickson Road , DAWES POINT NSW 2000

Owner:

THE OWNERS - STRATA PLAN NO 73989

Description of land:

Lot 24 DP 1071597, Lots 1-22 SP 73989

Certificate No.:

2014300873

Certificate Date:

14/02/14

Receipt No:

5018824

Fee:

\$80.00

Paid:

14/02/14

Title information, description, dimensions and area of land are provided from data supplied by the Valuer General and shown where available.

Issuing Officer V per Monica Barone Chief Executive Officer

CERTIFICATE ENQUIRIES:

Ph:

9265 9333

Fax:

9265 9415

city of Villages

PLANNING CERTIFICATE UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

MATTERS AFFECTING THE LAND AS PRESCRIBED BY SCHEDULE 4 - ENVIRONMENTAL PLANNING & ASSESSMENT REGULATION, 2000, CLAUSES (1) - (2).

DEVELOPMENT CONTROLS

The following information must be read in conjunction with and subject to all other provisions of the environmental planning instruments specified in this certificate.

ZONING

Zone 1 – Walsh Bay Conservation Zone – Sydney Regional Environmental Plan 16.

(1) The objectives of this zone are:

- (a) To allow an appropriate range of uses to encourage the adaptive re-use of existing structures while not required for commercial port uses;
- (b) To ensure that development is consistent with the heritage significance, the scale, the built form and the materials of existing structures in the zone and adjoining areas;
- (c) To ensure that development is compatible with and does to detract from the financial, commercial and retail functions of the existing city central business district functions and the Sydney Cove Redevelopment Area; and
- (d) To ensure that development is compatible with and does not adversely impact on the residential amenity and function of the adjoining areas.
- (2) Without Development Consent Nil
- (3) Only with Development Consent

 Any purpose other than a purpose included in item (2) or (4)

(4) Prohibited

Bus depots, bus stations, car repair stations, gas holders, generating works, helipads, heliports, industries (other than home industries and light industries), institutions, junk yards, liquid fuel depots, marinas, mines, roadside stalls, road transport terminals, sawmills.

PROPOSED ZONING

This property is not affected by a draft zone.

LOCAL PLANNING CONTROLS

Sydney Harbour Foreshores and Waterways Area Development Control Plan 2005 (commenced 28.09.2005) – This DCP applies to all development proposals within the Foreshores and Waterways Area identified in SREP (Sydney Harbour Catchment) 2005 (refer to the Foreshores and Waterways Area map)

Sydney Development Control Plan 2012 (as amended) - (commenced 14.12.2012)

HERITAGE

Walsh Bay Conservation Zone

A person shall not, in respect of the Walsh Bay Conservation Zone: demolish or alter a building or work within the Zone; damage or remove a relic, including excavation for the purpose of exposing or removing a relic, within the Zone; damage or despoil a place within the Zone; erect a building on or subdivide land within the Zone; or damage any tree within the Zone, except with the consent of the consent authority.

State Heritage Register (Amendment to Heritage Act, 1977, gazetted 2/4/99)

This property is identified as being of state significance and has been entered on the State Heritage Register. Unless the proposed work is exempt under the Heritage Office Standard Exemptions or is covered by site specific exemptions, an applicant must seek an integrated development approval from Council and as such the proposal will be referred to the Heritage Council. If major changes are proposed the Heritage Council may require the applicant to prepare a conservation management plan in accordance with the NSW Heritage Manual Guidelines. For further information please contact the Heritage Office (02) 9873 8500 or alternatively online www.heritage.nsw.gov.au

STATE PLANNING INSTRUMENTS

Full copies of State Environmental Planning Policies are available online at www.planning.nsw.gov.au.

State Environmental Planning Policy No. 1 - Development Standards

This policy makes development standards more flexible. It allows Council to approve a development proposal that does not comply with a set standard where this can be shown to be unreasonable or unnecessary.

State Environmental Planning Policy No. 4 – Development without Consent and Miscellaneous Complying Development

This policy allows relatively simple or minor changes of land or building use and certain types of development by public authorities without the need for formal development applications. The types of development covered are outlined in the policy.

SREP 16 - Walsh Bay

Clauses 9 & 10 of State Environmental Planning Policy No. 4 do not apply to the land within Sydney Regional Environmental Plan No. 16 – Walsh Bay.

State Environmental Planning Policy No. 6 – Number of Storeys in a Building
This policy gots out a method for determining the number of storeys in a building, it

This policy sets out a method for determining the number of storeys in a building, to prevent possible confusion arising from the interpretation of various environmental planning instruments.

State Environmental Planning Policy No. 10 – Retention of Low-Cost Accommodation This policy aims to provide a mechanism for the retention of low-cost rental accommodation. The policy establishes criteria for determining a low-cost rental residential building (including boarding houses, hostels and low rental residential flat buildings), matters for Council consideration and requirements for development proposed under the policy.

State Environmental Planning Policy No. 19 – Bushland in Urban Areas

This is a policy to protect and preserve bushland within certain urban areas, as part of the natural heritage or for recreational, educational and scientific purposes. This policy is designed to protect bushland in public open space zones and reservations, and to ensure that bush preservation is given a high priority when local environmental plans for urban development are prepared.

State Environmental Planning Policy No. 22 - Shops and Commercial Premises

This policy allows, with the consent of Council, a change of use from a shop to another kind of shop or commercial premises, where the new use is prohibited under an environmental planning instrument.

State Environmental Planning Policy No. 32 - Urban Consolidation

This policy implements the principles of urban consolidation, including the orderly, economic use and development of land. The policy enables urban land which is no longer required for the purpose for which it is currently zoned or used to be redeveloped for multi-unit housing and related development.

State Environmental Planning Policy No. 33 – Hazardous and Offensive Development This policy aims to amend the definitions of hazardous and offensive industries; to render ineffective any environmental planning instruments not defining hazardous or offensive as per this policy; to control development of hazardous and offensive industries.

State Environmental Planning Policy No. 55 - Remediation of Land

This policy provides planning controls for the remediation of contaminated land. The policy states that land must not be developed if it is unsuitable for a proposed use because it is contaminated. If the land is unsuitable, remediation must take place before the land is developed. The policy makes remediation permissible across the State, defines when consent is required, requires all remediation to comply with standards, ensures land is investigated if contamination is suspected, and requires councils to be notified of all remediation proposals. To assist councils and developers, the Department, in conjunction with the Environment Protection Authority, has prepared Managing Land Contamination: Planning Guidelines.

State Environmental Planning Policy No 60 - Exempt and Complying Development (Gazetted 3.03.00)

Specifies exempt and complying development in certain areas that have not provided for those types of development through a Local Environmental Plan. This is achieved by identifying the development of minimal environmental impact that is to be exempt and identifying development that is to be complying development. The policy also specifies standards for that development, identify complying development separately for metropolitan Sydney and regional areas of New South Wales, specifies conditions for complying development certificates and ensures that development consent is required for the subdivision of land, and the erection of a building or for demolition.

State Environmental Planning Policy No. 64 - Advertising and Signage

This policy aims to ensure that signage (including advertising):

Is compatible with the desired amenity and visual character of an area, and

- · Provides effective communications in suitable locations, and
- Is of a high quality design and finish.

To this end the policy regulates signage (but not content) under Part 4 of the Act and provides limited time consents for the display of certain advertisements. The policy does not apply to signage that is exempt development under an environmental planning instrument. It does apply to all signage that can be displayed with or without consent and is visible from any public place or reserve, except as provided by the policy.

This policy should be read in conjunction with the Sydney Local Environmental Plan 2005, the City of Sydney Signage and Advertising Structures Development Control Plan 2005 and State Environmental Planning Policy No. 60 where these apply.

State Environmental Planning Policy No. 65 – Design Quality of Residential Flat Buildings

This policy aims to improve the design quality of flats of three or more storeys with four or more self contained dwellings. The policy sets out a series of design principles for local councils to consider when assessing development proposals for residential flat development. The policy also creates a role for an independent design review panel and requires the involvement of a qualified designer in the design and approval process.

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

This Policy does not apply to land described in Schedule 1 (Environmentally sensitive land), or land that is zoned for industrial purposes, or land to which an interim heritage order made under the *Heritage Act 1997* by the Minister administering that Act applies, or land to which a listing on the State Heritage Register kept under the *Heritage Act 1997* applies.

The Policy aims to encourage the provision of housing (including residential care facilities) that will increase the supply and diversity of residences that meet the needs of seniors or people with a disability, and make efficient use of existing infrastructure and services, and be of good design.

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 Aims to ensure consistency in the implementation of the BASIX scheme throughout the State. This Policy achieves its aim by overriding provisions of other environmental planning instruments and development control plans that would otherwise add to, subtract from or modify any obligations arising under the BASIX scheme.

State Environmental Planning Policy (Major Development) 2005

This Policy aims to identify development of economic, social or environmental significance to the State or regions of the State so as to provide a consistent and comprehensive assessment and decision making process for that development.

NB: This SEPP also contains exempt & complying provisions

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

This Policy aims to provide for the proper management and development of mineral, petroleum and extractive material resources for the social and economic welfare of the State.

State Environmental Planning Policy (Temporary Structures and Places of Public Entertainment) 2007

This Policy aims to ensure that suitable provision is made for ensuring the safety of persons using temporary structures or places of public entertainment.

State Environmental Planning Policy (Infrastructure) 2007

This Policy aims to facilitate the effective delivery of infrastructure across the state.

NB: This SEPP also contains exempt & complying provisions

State Environmental Planning Policy (Repeal of Concurrence and Referral Provisions) 2008

This Policy is an 'amending instrument' that removes or modifies referral and concurrence clauses within local environmental plans (LEPs), regional environmental plans (REPs) and State environmental planning policies (SEPPs).

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

This Policy Streamlines assessment processes for development that complies with specified development standards. The policy provides exempt and complying development codes that have State-wide application, identifying, in the General Exempt Development Code, types of development that are of minimal environmental impact that may be carried out without the need for development consent; and, in the General Housing Code, types of complying development that may be carried out in accordance with a complying development certificate as defined in the Environmental Planning and Assessment Act 1979.

State Environmental Planning Policy (Affordable Rental Housing) 2009

Establishes a consistent planning regime for the provision of affordable rental housing. The policy provides incentives for new affordable rental housing, facilitates the retention of existing affordable rentals, and expands the role of not-for-profit providers. It also aims to support local centres by providing housing for workers close to places of work, and facilitate development of housing for the homeless and other disadvantaged people. NOTE: Does not apply to land at Green Square or at Ultimo Pyrmont

State Environmental Planning Policy (Urban Renewal) 2010

The aims of this Policy are as follows:

- (a) to establish the process for assessing and identifying sites as urban renewal precincts,
- (b) to facilitate the orderly and economic development and redevelopment of sites in and around urban renewal precincts,
- (c) to facilitate delivery of the objectives of any applicable government State, regional or metropolitan strategies connected with the renewal of urban areas that are accessible by public transport.

State Environmental Planning Policy (State and Regional Development) 2011

The aims of this Policy are as follows:

- (a) to identify development that is State significant development,
- (b) to identify development that is State significant infrastructure and critical State significant infrastructure,
- (c) to confer functions on joint regional planning panels to determine development applications.

Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005

This plan applies to land within the Sydney Harbour Catchment, as shown edged heavy black on the Sydney Harbour Catchment Map, being part of the Sydney Region declared by order published in Gazette No 38 of 7 April 1989 at page 1841.

This plan has the following aims with respect to the Sydney Harbour Catchment: to ensure that the catchment, foreshores, waterways and islands of Sydney Harbour are recognised, protected and maintained: as outstanding natural asset, and as a public asset of national and heritage significance, for existing and future generations; to ensure a healthy, sustainable environment on land and water; to achieve a high quality urban environment; to ensure a prosperous working waterfront and an effective transport corridor, to encourage a culturally rich and vibrant place for people; to ensure accessibility to and along Sydney Harbour and its foreshores; to ensure the protection, maintenance and rehabilitation of watercourses, wetlands, riparian lands, remnant vegetation and ecological connectivity, to provide a consolidated, simplified and updated legislative framework for future planning.

Sydney Regional Environmental Plan No.16 Walsh Bay (Gazetted 16/06/89, as amended)

This plan provides for the redevelopment of Walsh Bay by encouraging re-use of existing structures, protection of heritage items, control use of waterways & provision of public access to waterfront.

OTHER MATTERS AFFECTING THE LAND AS PRESCRIBED BY SCHEDULE 4 - E. P. & A. REGULATION, 2000. CLAUSES (3) - (10)

(3) Complying Development

(1) Whether or not the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clause 1.17A and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

(2) If complying development may not be carried out on that land because of the provisions of clause 1.17A and 1.19 of that Policy, the reasons why it may not be carried out under

that clause.

Note: All Exempt and Complying Development Codes: Clause 1.17A(a) Development that requires concurrence of a person other than the consent authority, or the Director General of the Department of Environment, Climate Change and Water is **not** complying development.

General Housing Code

Complying development **may not** be carried out on the land under the General Housing Code if because of the provisions of clause 1.17A & 1.19 (Land-based requirements for exempt and complying development) any of the following statements are **YES**

•	Clause 1.17A(b). Has been identified as land that is a critical habitat.	NO
•	Clause 1.17A(d). Has been identified as a property that comprises, or on which there is, an item that is listed on the State Heritage Register under the <i>Heritage Act 1977</i> or that is subject to an interim heritage order under the <i>Heritage Act 1977</i> .	YES
•		NO
•	Clause 1.17A(c). Has been identified as being within a wilderness area (identified under the <i>Wilderness Act 1987</i> .	NO
•	Clause 1.17A(e) & 1.19(1). Has been identified as land that is within an environmentally sensitive area.	NO
•	Clause 1.19(6)a. Has been identified as being within a heritage conservation area or a draft heritage conservation area.	YES
•	Clause 1.19(6)b. Has been identified as being land that is reserved for a public purpose in an environmental planning instrument.	NO
•	Clause 1.19(6)c. Has been identified as being on an Acid Sulfate Soils Map as being Class 1 or Class 2.	YES
•	Clause 1.19(6)d. Has been identified as land that is subject to a biobanking agreement under part 7A of the threatened Species Conservation Act 1995 or a property vegetation plan under the Native Vegetation Act 2003.	NO
•	Clause 1.19 (6)e. Has been identified as being excluded land identified by an environmental planning instrument.	NO
•	Clause 1.19(6)f. Has been identified as being land in a foreshore area.	YES
•	Clause 1.19(6)g. Has been identified as land that is in the 25 ANEF contour or a higher ANEF contour.	NO
•	Clause 1.19(6)h. Has been identified as unsewered land within a drinking water catchment.	NO
•	Clause 1.19(6)i. Has been identified as land that is declared to be a special area under the Sydney Water Catchment Management Act 1998.	NO

Housing Alterations Code

Complying development under the Housing Alterations Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

General Commercial and Industrial Code

Complying development under the General Commercial and Industrial Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Subdivisions Code

Complying development under the Subdivisions Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Rural Housing Code

The Rural Housing Code does not apply to this Local Government Area.

General Development Code

Complying development under the General Development Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Demolition Code

Complying development under the Demolition Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

(4) Coastal Protection Act, 1979

The council has not been notified by the department of public works that the land is affected by the operation of section 38 or 39 of the coastal protection act, 1979.

- (4A) Certain information relating to beaches and coasts
- (1) In relation to a coastal council an order has **not** been made under Part 4D of the coastal Protection Act 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land).
- (2) In relation to a coastal council: Council has **not** been notified under section 55X of the Coastal Protection Act 1979 that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land)
- (4B) Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

In relation to a coastal council: The owner (or any previous owner) of the land has not consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Note. "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

(5) Mine Subsidence District

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of the mine subsidence compensation act, 1961.

(6) Road Widening and/or Road Realignment affected by (a) Division 2 of Part 3 of the Roads act 1993 or (c) any resolution of council or other authority.

This land **is not** affected by road widening and/or road realignment under section 25 of the Roads Act, 1993 and/or resolution of Council or any other authority.

(6) Road Widening and/or Road Realignment Affected by (b) any environmental planning instrument.

This land is not affected by any road widening or road realignment under any planning instrument.

- (7) Council and other public authorities policies on hazard risk restrictions:
- (a) The land is not affected by a policy adopted by the Council that that restricts the development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk; and
- (b) The land **is not** affected by a policy adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to on planning certificate issued by Council, that restricts the development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk.

(7A) Flood related development controls information.

The development on this land or part of this land is not subject to flood related development controls.

(8) Land reserved for acquisition

No environmental planning instrument, or proposed environmental planning instrument applying to the land, provides for the acquisition of the land by a public authority, as referred to in section 27 of the Act.

(9) Contribution plans

The following Contributions Plans apply to properties within the City of Sydney local government area. Contributions plans marked **YES** may apply to this property:

•	Central Sydney Contributions (Amendment) Plan 2002 – in operation 16 th June 2003	NO
•	Ultimo Pyrmont Section 94 Contributions Plan (approved C.S.P.C 15 th December 1994 and Council 19 th December 1994)	NO
•	City of Sydney Development Contributions Plan 2006 – in operation 7 th April 2007	NO
•	Redfern Waterloo Authority Contributions Plan 2006 – in operation 16th May 2007 Redfern Waterloo Authority Affordable Housing Contributions Plan – in operation 16 th May 2007	NO

(9A) Biodiversity certified land

The land has not been certified as biodiversity certified land.

(10) Biobanking Agreement

Council has not been notified of a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995.

(11) Bush fire prone land

The land has not been identified as Bush fire prone land.

(12) Property vegetation plans

Not Applicable.

(13) Orders under Trees (Disputes Between Neighbours) Act 2006

Council has not been notified of an order which as been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land.

(14) Directions under Part 3A

Not Applicable.

- (15) Site compatibility certificates and conditions for seniors housing
- (a) The land to which the certificate relates is not subject to a current site compatibility certificate (seniors housing), of which Council is aware, in respect of proposed development on the land.
- (b) The land to which the certificate relates is not subject to any condition of consent to a development application granted after 11 October 2007 required by State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004.
- (16) Site compatibility certificates for infrastructure

The land to which the certificate relates is not subject to a valid site compatibility certificate (infrastructure), of which Council is aware, in respect of proposed development on the land.

- (17) Site compatibility certificates and conditions for affordable rental housing
- (a)The land to which the certificate relates is not subject to a current site compatibility certificate (affordable rental housing), of which Council is aware, in respect of proposed development on the land.
- (b) The land to which the certificate relates is not subject to any terms of a kind referred to in clause 17(1) or 37(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.
- (18) Paper subdivision information

Not Applicable.

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land</u>
Management Act 1997 as additional matters to be specified in a planning certificate:

- (a) The land to which the certificate relates is not declared to be significantly contaminated land within the meaning of that act as at the date when the certificate is issued.
- (b) The land to which the certificate relates **is not** subject to a **management order** within the meaning of that act as at the date when the certificate is issued.
- (c) The land to which the certificate relates is not the subject of an approved voluntary management proposal within the meaning of that act at the date the certificate is issued.
- (d) The land to which the certificate relates **is not** the subject of an **ongoing maintenance order** within the meaning of that act as at the date when the certificate is issued.
- (e) As at the date when the certificate is issued, Council **has not** identified that a **site audit statement** within the meaning of that act has been received in respect of the land the subject of the certificate.

PLANNING CERTIFICATE SECTION 149(2) INFORMATION:

Information provided in accordance with planning certificate section 149 (2) has been taken from council's records and advice from other authorities but council disclaims all liability for any omission or inaccuracy in the information. Specific inquiry should be made where doubt exists.

PLANNING CERTIFICATE UNDER SECTION 149 (5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

PLANNING CERTIFICATE SECTION 149 (5) ADVICE is current as at 12:00 noon two working days prior to the date of issue of this certificate. The following matters have been considered & details provided where information exists: easements in favour of council; parking permit scheme; heritage floor space restrictions; low-rental residential building; foreshore building line; tree preservation order.

Contaminated Land Potential:

Council records do not have sufficient information about the uses (including previous uses) of the land which is the subject of this section 149 certificate to confirm that the land has not been used for a purpose which would be likely to have contaminated the land. Parties should make their own enquiries as to whether the land may be contaminated.

Hazard Risk Restriction:

The City of Sydney Local Environmental Plan 2012 incorporates Acid Sulfate soil maps. Development on the land identified in those maps should have regard to Division 4 clause 7.16 of the LEP.

Construction Noise and View Loss Advice:

Intending purchasers are advised that the subject property may be affected by construction noise and loss or diminution of views as a result of surrounding development.

City of Sydney Tree Preservation Order 2004 (TPO)

This order applies to all land where South Sydney Local Environmental Plan 1998 applies and the City of Sydney Council or the Central Sydney Planning Committee is the relevant consent authority under the *Environmental Planning & Assessment* Act 1979. Contact Council's Contract and Asset Management section for more information.

Outstanding Notice & Order information

In relation to this property, there **is not** an outstanding Order or Notice of Intention to issue an Order relating to Fire Safety (being an Order or Notice of Intention to issue an Order of type 6, 10, 11 under Section 121B of the Environmental Planning and Assessment Act, 1979). Further information about the Order or Notice of Intention to issue an Order may be obtained by applying for a certificate under Section 121ZP of the Environmental Planning and Assessment Act and Section 735A of the Local Government Act.

In relation to this property, there **is not** an outstanding Order or Notice of Intention to issue an Order (being an Order or Notice of Intention to issue an Order of a type other than relating to fire safety). Further information about the Order or Notice of Intention to issue an Order may be obtained by applying for a certificate under Section 121ZP of the Environmental Planning and Assessment Act and Section 735A of the Local Government Act.

Resident & Visitor Parking Permit Schemes Restriction

Owners and occupiers of this address are **not eligible** to participate in the resident and visitor permit parking schemes.

The Minister is the Consent Authority

The Minister is the consent authority where development has a capital investment value of more than \$10 million. (State Environmental Planning Policy (Major Projects)

Sydney Harbour Foreshore Authority Act 1998

The provisions of the Sydney Harbour Foreshore Authority Act 1998 apply to the subject land.

For more information, contact the Property Officer at Sydney Harbour Foreshore Authority on telephone (02) 9240 8500.

ADVICE FROM OTHER BODIES

Sydney Ports Corporation Advice

Some land in the City of Sydney located in the vicinity of the White Bay, Glebe Island and Darling Harbour ports may be affected by noise from port operations.

Advice provided in accordance with planning certificate section 149 (5) is supplied in good faith. Council accepts no liability for the validity of the advice given. (see section 149 (6) of the Environmental Planning and Assessment Act, 1979).

For information regarding outstanding notices and orders a CERTIFICATE FOR OUTSTANDING NOTICES OF INTENTION AND/OR AN ORDER UNDER SECTION 735A OF THE LOCAL GOVERNMENT ACT, 1993 AND SECTION 121ZP OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 may be applied for at Sydney City Council.

Planning certificate section 149 (2), local planning controls are available for inspection at the following locations:

General Enquiries:

Telephone: 02 9265 9333 Facsimile: 02 9265 9415

Town Hall House

Level 2, Town Hall House, 456 Kent Street, Sydney. 8am – 6pm, Monday - Friday

Glebe Customer Service Centre

Glebe Library, 186 Glebe Point Road, Glebe 9am – 5pm, Monday – Friday

Neighbourhood Service Centre Kings Cross

50 Darlinghurst Road, Potts Point 9am – 5pm, Monday – Friday 9am – 12pm, Saturday

Neighbourhood Service Centre Redfern

158 Redfern Street Redfern 9am-5pm Monday – Friday 9am – 12 Noon Saturday

Green Square Customer Service Centre

The Tote, 100 Joynton Avenue, Zetland 10am-6pm Monday – Friday State planning controls are available for inspection at the following locations:

Sydney Harbour Foreshore Authority (former Sydney Cove Authority and Darling Harbour Authority), Level 6, 66 Harrington Street, The Rocks.

Department of Planning & Infrastructure Information Centre 23-33 Bridge Street, Sydney NSW 2000

Where planning certificate section 149 (5) matters are supplied, complete details are available by writing to:
Chief Executive Officer,
City of Sydney,
G.P.O. Box 1591,
Sydney, NSW 2000

End of Document

City of Sydney Town Hall House

Town Hall House 456 Kent Street Sydney NSW 2000

Telephone +61 2 9265 9333 Fax +61 2 9265 9222 council@cityofsydney.nsw.gov.au GPO Box 1591 Sydney NSW 2001 cityofsydney.nsw.gov.au

JULIA NICHOLSON JBS ENVIRONMENTAL PTY LTD LEVEL 1 50 MARGARET ST SYDNEY NSW 2000

PLANNING CERTIFICATE

Under Section 149 of the Environmental Planning and Assessment Act, 1979

Applicant:

JBS ENVIRONMENTAL PTY LTD

Applicant's reference:

JBS & G

Address of property:

15 Hickson Road, DAWES POINT NSW 2000

Owner:

WATERWAYS AUTHORITY

Description of land:

Lot 65 DP 1048377

Certificate No.:

2014300874

Certificate Date:

14/02/14

Receipt No:

5018824

Fee:

\$80.00

Paid:

14/02/14

Title information, description, dimensions and area of land are provided from data supplied by the Valuer General and shown where available.

Issuing Officer per Monica Barone Chief Executive Officer

CERTIFICATE ENQUIRIES:

Ph:

9265 9333

Fax:

9265 9415

PLANNING CERTIFICATE UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

MATTERS AFFECTING THE LAND AS PRESCRIBED BY SCHEDULE 4 - ENVIRONMENTAL PLANNING & ASSESSMENT REGULATION, 2000, CLAUSES (1) - (2).

DEVELOPMENT CONTROLS

The following information must be read in conjunction with and subject to all other provisions of the environmental planning instruments specified in this certificate.

ZONING

Zone 1 - Walsh Bay Conservation Zone - Sydney Regional Environmental Plan 16.

(1) The objectives of this zone are:

- (a) To allow an appropriate range of uses to encourage the adaptive re-use of existing structures while not required for commercial port uses;
- (b) To ensure that development is consistent with the heritage significance, the scale, the built form and the materials of existing structures in the zone and adjoining areas;
- (c) To ensure that development is compatible with and does to detract from the financial, commercial and retail functions of the existing city central business district functions and the Sydney Cove Redevelopment Area; and
- (d) To ensure that development is compatible with and does not adversely impact on the residential amenity and function of the adjoining areas.
- (2) Without Development Consent
- (3) Only with Development Consent

 Any purpose other than a purpose included in item (2) or (4)
- (4) Prohibited

Bus depots, bus stations, car repair stations, gas holders, generating works, helipads, heliports, industries (other than home industries and light industries), institutions, junk yards, liquid fuel depots, marinas, mines, roadside stalls, road transport terminals, sawmills.

PROPOSED ZONING

This property is not affected by a draft zone.

LOCAL PLANNING CONTROLS

Sydney Harbour Foreshores and Waterways Area Development Control Plan 2005 (commenced 28.09.2005) – This DCP applies to all development proposals within the Foreshores and Waterways Area identified in SREP (Sydney Harbour Catchment) 2005 (refer to the Foreshores and Waterways Area map)

Sydney Development Control Plan 2012 (as amended) - (commenced 14.12.2012)

HERITAGE

Walsh Bay Conservation Zone

A person shall not, in respect of the Walsh Bay Conservation Zone: demolish or alter a building or work within the Zone; damage or remove a relic, including excavation for the purpose of exposing or removing a relic, within the Zone; damage or despoil a place within the Zone; erect a building on or subdivide land within the Zone; or damage any tree within the Zone, except with the consent of the consent authority.

State Heritage Register (Amendment to Heritage Act, 1977, gazetted 2/4/99)

This property is identified as being of state significance and has been entered on the State Heritage Register. Unless the proposed work is exempt under the Heritage Office Standard Exemptions or is covered by site specific exemptions, an applicant must seek an integrated development approval from Council and as such the proposal will be referred to the Heritage Council. If major changes are proposed the Heritage Council may require the applicant to prepare a conservation management plan in accordance with the NSW Heritage Manual Guidelines. For further information please contact the Heritage Office (02) 9873 8500 or alternatively online www.heritage.nsw.gov.au .

STATE PLANNING INSTRUMENTS

Full copies of State Environmental Planning Policies are available online at www.planning.nsw.gov.au.

State Environmental Planning Policy No. 1 - Development Standards

This policy makes development standards more flexible. It allows Council to approve a development proposal that does not comply with a set standard where this can be shown to be unreasonable or unnecessary.

State Environmental Planning Policy No. 4 – Development without Consent and Miscellaneous Complying Development

This policy allows relatively simple or minor changes of land or building use and certain types of development by public authorities without the need for formal development applications. The types of development covered are outlined in the policy.

SREP 16 - Walsh Bay

Clauses 9 & 10 of State Environmental Planning Policy No. 4 do not apply to the land within Sydney Regional Environmental Plan No. 16 – Walsh Bay.

State Environmental Planning Policy No. 6 - Number of Storeys in a Building

This policy sets out a method for determining the number of storeys in a building, to prevent possible confusion arising from the interpretation of various environmental planning instruments.

State Environmental Planning Policy No. 10 – Retention of Low-Cost Accommodation This policy aims to provide a mechanism for the retention of low-cost rental accommodation. The policy establishes criteria for determining a low-cost rental residential building (including boarding houses, hostels and low rental residential flat buildings), matters for Council consideration and requirements for development proposed under the policy.

State Environmental Planning Policy No. 19 – Bushland in Urban Areas

This is a policy to protect and preserve bushland within certain urban areas, as part of the natural heritage or for recreational, educational and scientific purposes. This policy is designed to protect bushland in public open space zones and reservations, and to ensure that bush preservation is given a high priority when local environmental plans for urban development are prepared.

State Environmental Planning Policy No. 22 - Shops and Commercial Premises

This policy allows, with the consent of Council, a change of use from a shop to another kind of shop or commercial premises, where the new use is prohibited under an environmental planning instrument.

State Environmental Planning Policy No. 32 - Urban Consolidation

This policy implements the principles of urban consolidation, including the orderly, economic use and development of land. The policy enables urban land which is no longer required for the purpose for which it is currently zoned or used to be redeveloped for multi-unit housing and related development.

State Environmental Planning Policy No. 33 – Hazardous and Offensive Development This policy aims to amend the definitions of hazardous and offensive industries; to render ineffective any environmental planning instruments not defining hazardous or offensive as per this policy; to control development of hazardous and offensive industries.

State Environmental Planning Policy No. 55 - Remediation of Land

This policy provides planning controls for the remediation of contaminated land. The policy states that land must not be developed if it is unsuitable for a proposed use because it is contaminated. If the land is unsuitable, remediation must take place before the land is developed. The policy makes remediation permissible across the State, defines when consent is required, requires all remediation to comply with standards, ensures land is investigated if contamination is suspected, and requires councils to be notified of all remediation proposals. To assist councils and developers, the Department, in conjunction with the Environment Protection Authority, has prepared Managing Land Contamination: Planning Guidelines.

State Environmental Planning Policy No 60 - Exempt and Complying Development (Gazetted 3.03.00)

Specifies exempt and complying development in certain areas that have not provided for those types of development through a Local Environmental Plan. This is achieved by identifying the development of minimal environmental impact that is to be exempt and identifying development that is to be complying development. The policy also specifies standards for that development, identify complying development separately for metropolitan Sydney and regional areas of New South Wales, specifies conditions for complying development certificates and ensures that development consent is required for the subdivision of land, and the erection of a building or for demolition.

State Environmental Planning Policy No. 64 - Advertising and Signage

This policy aims to ensure that signage (including advertising):

Is compatible with the desired amenity and visual character of an area, and

- Provides effective communications in suitable locations, and
- Is of a high quality design and finish.

To this end the policy regulates signage (but not content) under Part 4 of the Act and provides limited time consents for the display of certain advertisements. The policy does not apply to signage that is exempt development under an environmental planning instrument. It does apply to all signage that can be displayed with or without consent and is visible from any public place or reserve, except as provided by the policy.

This policy should be read in conjunction with the Sydney Local Environmental Plan 2005, the City of Sydney Signage and Advertising Structures Development Control Plan 2005 and State Environmental Planning Policy No. 60 where these apply.

State Environmental Planning Policy No. 65 – Design Quality of Residential Flat Buildings

This policy aims to improve the design quality of flats of three or more storeys with four or more self contained dwellings. The policy sets out a series of design principles for local councils to consider when assessing development proposals for residential flat development. The policy also creates a role for an independent design review panel and requires the involvement of a qualified designer in the design and approval process.

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

This Policy does not apply to land described in Schedule 1 (Environmentally sensitive land), or land that is zoned for industrial purposes, or land to which an interim heritage order made under the *Heritage Act 1997* by the Minister administering that Act applies, or land to which a listing on the State Heritage Register kept under the *Heritage Act 1997* applies.

The Policy aims to encourage the provision of housing (including residential care facilities) that will increase the supply and diversity of residences that meet the needs of seniors or people with a disability, and make efficient use of existing infrastructure and services, and be of good design.

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004
Aims to ensure consistency in the implementation of the BASIX scheme throughout the State.
This Policy achieves its aim by overriding provisions of other environmental planning instruments and development control plans that would otherwise add to, subtract from or modify any obligations arising under the BASIX scheme.

State Environmental Planning Policy (Major Development) 2005

This Policy aims to identify development of economic, social or environmental significance to the State or regions of the State so as to provide a consistent and comprehensive assessment and decision making process for that development.

NB: This SEPP also contains exempt & complying provisions

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

This Policy aims to provide for the proper management and development of mineral, petroleum and extractive material resources for the social and economic welfare of the State.

State Environmental Planning Policy (Temporary Structures and Places of Public Entertainment) 2007

This Policy aims to ensure that suitable provision is made for ensuring the safety of persons using temporary structures or places of public entertainment.

State Environmental Planning Policy (Infrastructure) 2007

This Policy aims to facilitate the effective delivery of infrastructure across the state. NB: This SEPP also contains exempt & complying provisions

State Environmental Planning Policy (Repeal of Concurrence and Referral Provisions) 2008

This Policy is an 'amending instrument' that removes or modifies referral and concurrence clauses within local environmental plans (LEPs), regional environmental plans (REPs) and State environmental planning policies (SEPPs).

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

This Policy Streamlines assessment processes for development that complies with specified development standards. The policy provides exempt and complying development codes that have State-wide application, identifying, in the General Exempt Development Code, types of development that are of minimal environmental impact that may be carried out without the need for development consent; and, in the General Housing Code, types of complying development that may be carried out in accordance with a complying development certificate as defined in the Environmental Planning and Assessment Act 1979.

State Environmental Planning Policy (Affordable Rental Housing) 2009

Establishes a consistent planning regime for the provision of affordable rental housing. The policy provides incentives for new affordable rental housing, facilitates the retention of existing affordable rentals, and expands the role of not-for-profit providers. It also aims to support local centres by providing housing for workers close to places of work, and facilitate development of housing for the homeless and other disadvantaged people. NOTE: Does not apply to land at Green Square or at Ultimo Pyrmont

State Environmental Planning Policy (Urban Renewal) 2010

The aims of this Policy are as follows:

- (a) to establish the process for assessing and identifying sites as urban renewal precincts,
- (b) to facilitate the orderly and economic development and redevelopment of sites in and around urban renewal precincts,
- (c) to facilitate delivery of the objectives of any applicable government State, regional or metropolitan strategies connected with the renewal of urban areas that are accessible by public transport.

State Environmental Planning Policy (State and Regional Development) 2011

The aims of this Policy are as follows:

- (a) to identify development that is State significant development,
- (b) to identify development that is State significant infrastructure and critical State significant infrastructure,
- (c) to confer functions on joint regional planning panels to determine development applications.

Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005

This plan applies to land within the Sydney Harbour Catchment, as shown edged heavy black on the Sydney Harbour Catchment Map, being part of the Sydney Region declared by order published in Gazette No 38 of 7 April 1989 at page 1841.

This plan has the following aims with respect to the Sydney Harbour Catchment: to ensure that the catchment, foreshores, waterways and islands of Sydney Harbour are recognised, protected and maintained: as outstanding natural asset, and as a public asset of national and heritage significance, for existing and future generations; to ensure a healthy, sustainable environment on land and water; to achieve a high quality urban environment; to ensure a prosperous working waterfront and an effective transport corridor, to encourage a culturally rich and vibrant place for people; to ensure accessibility to and along Sydney Harbour and its foreshores; to ensure the protection, maintenance and rehabilitation of watercourses, wetlands, riparian lands, remnant vegetation and ecological connectivity, to provide a consolidated, simplified and updated legislative framework for future planning.

Sydney Regional Environmental Plan No.16 Walsh Bay (Gazetted 16/06/89, as amended)

This plan provides for the redevelopment of Walsh Bay by encouraging re-use of existing structures, protection of heritage items, control use of waterways & provision of public access to waterfront.

OTHER MATTERS AFFECTING THE LAND AS PRESCRIBED BY SCHEDULE 4 - E. P. & A. REGULATION, 2000. CLAUSES (3) - (10)

(3) Complying Development

- (1) Whether or not the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clause 1.17A and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.
- (2) If complying development may not be carried out on that land because of the provisions of clause 1.17A and 1.19 of that Policy, the reasons why it may not be carried out under that clause.

Note: All Exempt and Complying Development Codes: Clause 1.17A(a) Development that requires concurrence of a person other than the consent authority, or the Director General of the Department of Environment, Climate Change and Water is **not** complying development.

General Housing Code

Complying development **may not** be carried out on the land under the General Housing Code if because of the provisions of clause 1.17A & 1.19 (Land-based requirements for exempt and complying development) any of the following statements are **YES**

•	Clause 1.17A(b). Has been identified as land that is a critical habitat.	NO
•	Clause 1.17A(d). Has been identified as a property that comprises, or on which there is, an item that is listed on the State Heritage Register under the <i>Heritage Act 1977</i> or that is subject to an interim heritage order under the <i>Heritage Act 1977</i> .	YES
•	Clause 1.17A(d) & 1.19(3). Has been identified as a property that comprises, or on which there is, a heritage item or draft heritage item.	NO
•	Clause 1.17A(c). Has been identified as being within a wilderness area (identified under the <i>Wilderness Act 1987</i> .	NO
•	Clause 1.17A(e) & 1.19(1). Has been identified as land that is within an environmentally sensitive area.	NO
•	Clause 1.19(6)a. Has been identified as being within a heritage conservation area or a draft heritage conservation area.	YES
•	Clause 1.19(6)b. Has been identified as being land that is reserved for a public purpose in an environmental planning instrument.	NO
•	Clause 1.19(6)c. Has been identified as being on an Acid Sulfate Soils Map as being Class 1 or Class 2.	YES
	Clause 1.19(6)d. Has been identified as land that is subject to a biobanking agreement under part 7A of the threatened Species Conservation Act 1995 or a property vegetation plan under the Native Vegetation Act 2003.	NO
•	Clause 1.19 (6)e. Has been identified as being excluded land identified by an environmental planning instrument.	NO
•	Clause 1.19(6)f. Has been identified as being land in a foreshore area.	YES
•	Clause 1.19(6)g. Has been identified as land that is in the 25 ANEF contour or a higher ANEF contour.	NO
•	Clause 1.19(6)h. Has been identified as unsewered land within a drinking water catchment.	NO
•	Clause 1.19(6)i. Has been identified as land that is declared to be a special area under the Sydney Water Catchment Management Act 1998.	NO
		I

Housing Alterations Code

Complying development under the Housing Alterations Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

General Commercial and Industrial Code

Complying development under the General Commercial and Industrial Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Subdivisions Code

Complying development under the Subdivisions Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Rural Housing Code

The Rural Housing Code does not apply to this Local Government Area.

General Development Code

Complying development under the General Development Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

Demolition Code

Complying development under the Demolition Code may not be carried out on the land.

Reason why:

Refer to 1.17A State Environmental Planning Policy (Except and Complying Development Codes) 2008:

clause 1.17A(d) applies

(4) Coastal Protection Act, 1979

The council has not been notified by the department of public works that the land is affected by the operation of section 38 or 39 of the coastal protection act, 1979.

- (4A) Certain information relating to beaches and coasts
- (1) In relation to a coastal council an order has **not** been made under Part 4D of the coastal Protection Act 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land).
- (2) In relation to a coastal council: Council has **not** been notified under section 55X of the Coastal Protection Act 1979 that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land)
- (4B) Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

In relation to a coastal council: The owner (or any previous owner) of the land has not consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Note. "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

(5) Mine Subsidence District

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of the mine subsidence compensation act, 1961.

(6) Road Widening and/or Road Realignment affected by (a) Division 2 of Part 3 of the Roads act 1993 or (c) any resolution of council or other authority.

This land is not affected by road widening and/or road realignment under section 25 of the Roads Act, 1993 and/or resolution of Council or any other authority.

(6) Road Widening and/or Road Realignment Affected by (b) any environmental planning instrument.

This land is not affected by any road widening or road realignment under any planning instrument.

- (7) Council and other public authorities policies on hazard risk restrictions:
- (a) The land is not affected by a policy adopted by the Council that that restricts the development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk; and
- (b) The land is not affected by a policy adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to on planning certificate issued by Council, that restricts the development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk.

(7A) Flood related development controls information.

The development on this land or part of this land is not subject to flood related development controls.

(8) Land reserved for acquisition

No environmental planning instrument, or proposed environmental planning instrument applying to the land, provides for the acquisition of the land by a public authority, as referred to in section 27 of the Act.

(9) Contribution plans

The following Contributions Plans apply to properties within the City of Sydney local government area. Contributions plans marked YES may apply to this property:

 Central Sydney Contributions (Amendment) Plan 2002 – in operation 16th June 2003 	NO
 Ultimo Pyrmont Section 94 Contributions Plan (approved C.S.P.C 15th December 1994 and Council 19th December 1994) 	NO
 City of Sydney Development Contributions Plan 2006 – in operation 7th April 2007 	NO
 Redfern Waterloo Authority Contributions Plan 2006 – in operation 16th May 2007 Redfern Waterloo Authority Affordable Housing Contributions Plan – in operation 16th May 2007 	NO

(9A) Biodiversity certified land

The land has not been certified as biodiversity certified land.

(10) Biobanking Agreement

Council has not been notified of a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995.

(11) Bush fire prone land

The land has not been identified as Bush fire prone land.

(12) Property vegetation plans

Not Applicable.

(13) Orders under Trees (Disputes Between Neighbours) Act 2006

Council has not been notified of an order which as been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land.

(14) Directions under Part 3A

Not Applicable.

- (15) Site compatibility certificates and conditions for seniors housing
- (a) The land to which the certificate relates is not subject to a current site compatibility certificate (seniors housing), of which Council is aware, in respect of proposed development on the land.
- (b) The land to which the certificate relates is not subject to any condition of consent to a development application granted after 11 October 2007 required by State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004.
- (16) Site compatibility certificates for infrastructure

The land to which the certificate relates is not subject to a valid site compatibility certificate (infrastructure), of which Council is aware, in respect of proposed development on the land.

- (17) Site compatibility certificates and conditions for affordable rental housing
- (a) The land to which the certificate relates is not subject to a current site compatibility certificate (affordable rental housing), of which Council is aware, in respect of proposed development on the land.
- (b) The land to which the certificate relates is not subject to any terms of a kind referred to in clause 17(1) or 37(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.
- (18) Paper subdivision information

Not Applicable.

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

- (a) The land to which the certificate relates is not declared to be significantly contaminated land within the meaning of that act as at the date when the certificate is issued.
- (b) The land to which the certificate relates is not subject to a management order within the meaning of that act as at the date when the certificate is issued.
- (c) The land to which the certificate relates is not the subject of an approved voluntary management proposal within the meaning of that act at the date the certificate is issued.
- (d) The land to which the certificate relates is not the subject of an ongoing maintenance order within the meaning of that act as at the date when the certificate is issued.
- (e) As at the date when the certificate is issued, Council has not identified that a site audit statement within the meaning of that act has been received in respect of the land the subject of the certificate.

PLANNING CERTIFICATE SECTION 149(2) INFORMATION: Information provided in accordance with planning certificate section 149 (2) has been taken from council's records and advice from other authorities but council disclaims all liability for any omission or inaccuracy in the information. Specific inquiry should be made where doubt exists.

PLANNING CERTIFICATE UNDER SECTION 149 (5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT. 1979

PLANNING CERTIFICATE SECTION 149 (5) ADVICE is current as at 12:00 noon two working days prior to the date of issue of this certificate. The following matters have been considered & details provided where information exists: easements in favour of council; parking permit scheme; heritage floor space restrictions; low-rental residential building; foreshore building line; tree preservation order.

Contaminated Land Potential:

Council records do not have sufficient information about the uses (including previous uses) of the land which is the subject of this section 149 certificate to confirm that the land has not been used for a purpose which would be likely to have contaminated the land. Parties should make their own enquiries as to whether the land may be contaminated.

Hazard Risk Restriction:

The City of Sydney Local Environmental Plan 2012 incorporates Acid Sulfate soil maps. Development on the land identified in those maps should have regard to Division 4 clause 7.16 of the LEP.

Construction Noise and View Loss Advice:

Intending purchasers are advised that the subject property may be affected by construction noise and loss or diminution of views as a result of surrounding development.

City of Sydney Tree Preservation Order 2004 (TPO)

This order applies to all land where South Sydney Local Environmental Plan 1998 applies and the City of Sydney Council or the Central Sydney Planning Committee is the relevant consent authority under the *Environmental Planning & Assessment* Act 1979. Contact Council's Contract and Asset Management section for more information.

Outstanding Notice & Order information

In relation to this property, there is not an outstanding Order or Notice of Intention to issue an Order relating to Fire Safety (being an Order or Notice of Intention to issue an Order of type 6, 10, 11 under Section 121B of the Environmental Planning and Assessment Act, 1979). Further information about the Order or Notice of Intention to issue an Order may be obtained by applying for a certificate under Section 121ZP of the Environmental Planning and Assessment Act and Section 735A of the Local Government Act.

In relation to this property, there **is not** an outstanding Order or Notice of Intention to issue an Order (being an Order or Notice of Intention to issue an Order of a type other than relating to fire safety). Further information about the Order or Notice of Intention to issue an Order may be obtained by applying for a certificate under Section 121ZP of the Environmental Planning and Assessment Act and Section 735A of the Local Government Act.

Resident & Visitor Parking Permit Schemes Restriction

Owners and occupiers of this address are **not eligible** to participate in the resident and visitor permit parking schemes.

Sydney Harbour Foreshore Authority Act 1998

The provisions of the Sydney Harbour Foreshore Authority Act 1998 apply to the subject land. For more information, contact the Property Officer at Sydney Harbour Foreshore Authority on telephone (02) 9240 8500.

ADVICE FROM OTHER BODIES

Sydney Ports Corporation Advice

Some land in the City of Sydney located in the vicinity of the White Bay, Glebe Island and Darling Harbour ports may be affected by noise from port operations.

Advice provided in accordance with planning certificate section 149 (5) is supplied in good faith. Council accepts no liability for the validity of the advice given. (see section 149 (6) of the Environmental Planning and Assessment Act, 1979).

For information regarding outstanding notices and orders a CERTIFICATE FOR OUTSTANDING NOTICES OF INTENTION AND/OR AN ORDER UNDER SECTION 735A OF THE LOCAL GOVERNMENT ACT, 1993 AND SECTION 121ZP OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 may be applied for at Sydney City Council.

Planning certificate section 149 (2), local planning controls are available for inspection at the following locations:

General Enquiries:

Telephone: 02 9265 9333 Facsimile: 02 9265 9415

Town Hall House

Level 2, Town Hall House, 456 Kent Street, Sydney. 8am – 6pm, Monday - Friday

Glebe Customer Service Centre

Glebe Library, 186 Glebe Point Road, Glebe 9am – 5pm, Monday – Friday

Neighbourhood Service Centre Kings Cross

50 Darlinghurst Road, Potts Point 9am – 5pm, Monday – Friday 9am – 12pm, Saturday

Neighbourhood Service Centre Redfern

158 Redfern Street Redfern 9am-5pm Monday – Friday 9am – 12 Noon Saturday

Green Square Customer Service Centre

The Tote, 100 Joynton Avenue, Zetland 10am-6pm Monday -- Friday

State planning controls are available for inspection at the following locations:

Sydney Harbour Foreshore Authority (former Sydney Cove Authority and Darling Harbour Authority), Level 6, 66 Harrington Street, The Rocks.

Department of Planning & Infrastructure Information Centre 23-33 Bridge Street, Sydney NSW 2000

Where planning certificate section 149 (5) matters are supplied, complete details are available by writing to:
Chief Executive Officer,
City of Sydney,
G.P.O. Box 1591,
Sydney, NSW 2000

End of Document

Dangerous Goods Licensing WorkCover NSW Locked Bag 2906 LISAROW NSW 2252

To whom it may concern

I, Marianna Preston of Arts NSW (current property owner), hereby authorise JBS&G to undertake a 'Site Search for License to Keep Dangerous Goods' for the property located at Pier 2/3 - Lot 11 DP 1138931, Pier 2/3 Shore Sheds – Lot 24 DP 1071597 and Wharf 4/5 - Lot 65 in DP 1048377. The information is required by JBS&G in the preparation of an Environmental Site Assessment report for the property.

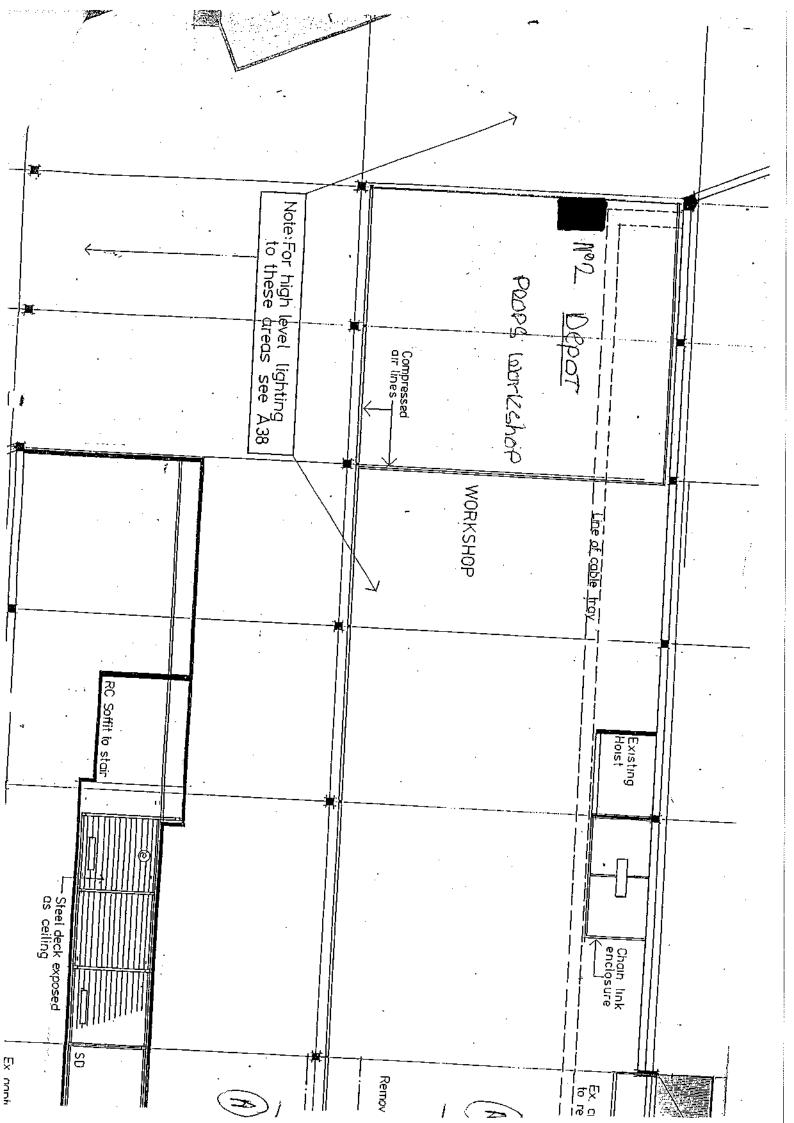
If you have any queries relating to the property or require further information please do not hesitate to contact me on marianna.preston@arts.nsw.gov.au or by phone on 02 9995 0502.

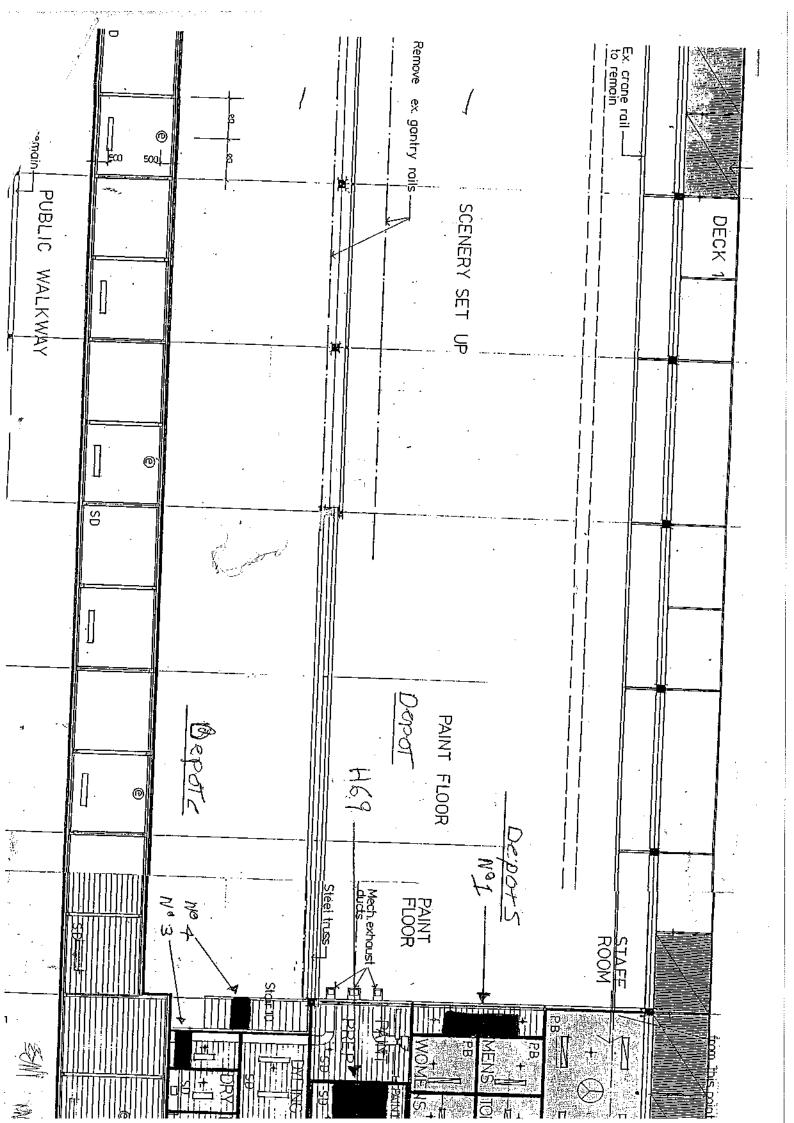
Kind regards

Marianna Preston
Director, Infrastructure

Date: 11 Feb 2014.

CONTACT FOR NOTIFICATION INQUIRIES		
Title: Mr / Miss / Ms / Mrs / Other (please specify) MR Famil	ly name PRESTON	
Given name JOHN Other names	EDWARD	
Gender(Male)/ Female (please circle) Date of birth 6) / 03 / 4	6 Place of birth Griffith	
Postal address P-0-Bax 777		
	ate NSW Postcode 2000	
· · · · · · · · · · · · · · · · · · ·	fax number <u>02 925017-82</u>	
Business email address <u>JPCKSTON a) Sydney Heatre</u>	· Com- RV	
Previous Licence Number or Acknowledgement Number (if known)		
35/02-97888 Villol.		
Previous Occupier (if known)	100.00	
Trevious occupies (a Kilowii)	- 3 E O	()
		1
Site on which dangerous goods are to be kept		
Number Street		
4/5 Hickson Road warsh Bo	ay	
Nearest cross Street	1	
Pointinger Street		
•		ئـــــ
Lot and DP if no street number		
Is the site staffed? If yes state number of employees 700		
Site staffing: Hours per day 7 Days per week 6]	
• •	1	
Site Emergency Contact		
Phone number Name		
(102) 0414313765 MARTYN NIGHTINGO	a16	
Nature of site (eg petrol station, warehouse etc)		
PERFORMING ARTS LIENUES		
Nahus of constant to the second secon		
Nature of your primary business activity		_
NIVE PERFORMANCE PRODUCTION		
ABN Number (if any) Website details (if any)		
87001667983 WWW. SYDNEYTI	AGNTRE . COM . AV	
What is the ANSZIC code most applicable to you business? (see guide	for list of codes and further information)	
Code Description	. The street and tartici information	
925 We performance Broduc	Thank	
TWO TON ONTHE TO TAOM	anta z	
Attach a site skatch(s) of the promises. Defer to the Child for informa	ation on the commission and for the alternative	


Attach a site sketch(s) of the premises. Refer to the Guide for information on the requirements for the site sketch.


Attach a photocopy page from a local Street Directory or other map showing the locality of the premises. Mark the location of the premises with an X

< notifiable and

List the dangerous goods that will be stored and/or processed on these premises. Copy this page and attach additional sheets if there is insufficient space.

Identifier	Type of storage location			Class	Maximum Stora	ige Capacity	(L, kg, 1	/ 1 ³)	
, 2	FLAMMAbk Goo	તર હ	ibinet	多马	2.50) [] "
IIM M	Daniel Chinair - No.	Cl	PG	Dunderst	w Commerce No.	HazChem	Typical	Unit	492
UN Number	Proper Shipping Name	Class	(1, 11, 111)		r Common Name	Symbol	Qty	eg L, kg, M³/	
VN 1193		10		ETHYL	M6THYL Kea	dr.	5	<u> </u>] / //
UN 1219]h		150PM	20PANOL		2_	<u></u>	
UN 1263	, ,	111		Paint 1	related mater	d1	8	<i>i</i>] \/,\
VN1300		14			entinue Substit		20	4-] ()
				•	-				\mathcal{F}^{\cup}
			_	.,				.3.	/
Identifier	Type of storage locatio			Class	Maximum Stora		(L, kg, N	(1")	
2	Flammable Goo	ત્રક (ત	bire!	32	150L				1
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	r Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M³	
UN18 66		In	<u> </u>	Resim	1 Solution		81	L 4	
		 					<u> </u>		1
									1
		<u> </u>	1						1
		•		- 1	•	•	'		
				3			_	3.	
Identifier	Type of storage locatio		cess C	lass	Maximum Stora		(L, kg, N	l³)	i\
469	LOOTed STOR	ϵ_{-}		× 12	<u> 850</u>	<u> </u>] /
UN Number	Proper Shipping Name	Class	PG (I, II, IJI)	Product or	Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M³)
VN1170		T : \(\)		ETHA	NO ^z -	Ī	20	- i	1 / /:
NN 12-63		<u>`</u>		PAINT	• •		24	<i>i</i>	/ 4
UN1263				PRINT			40	1_	1
VN 1300	- ·· ·	 			Mine Substitu	1	250	L.	\\.
V - 55		·	· · · · · · · · · · · · · · · · · · ·	<u>ц, р қ-</u>	<u> </u>	2.7	, , , , , , , , , , , , , , , , , , ,		MIC
								_	/ R
Identifier	Type of storage location		cess C	lass /	Maximum Stora		(L, kg, N	l ³)	
1469	Roofed STO	me_		3-1/2	8901				1
UN Number	Proper Shipping Name	Class	PG (I, II, III)	'/ Product or	Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M³	
NH 1300			<u> </u>	TURENT	Prive Substitue	•	20	<u></u>	
V1.1300		 		10,000	HAN JODSHIP	 -	V~V		}
				. <u></u> <u> </u>			•••		1
							l		
	<u> </u>	L		<u> </u>			-		
								3	409.
Identifier	Type of storage location	or pro	cess C	lass	Maximum Storag	ge Capacity	(L, kg, M	³)	
						HazChem			
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	Common Name	Symbol	Typical Qty	Unit eg L, kg, M ³	
UN Number	Proper Shipping Name	Class		Product or	Common Name				
UN Number	Proper Shipping Name	Class		Product or	Common Name				
UN Number	Proper Shipping Name	Class		Product or	Common Name				

List the dangerous goods that will be stored and/or processed on these premises. Copy this page and attach additional sheets if there is insufficient space.

sneets if ther	e is insumcient space.							
Identifier	Type of storage locat			Class	Maximum Sto	rage Capacit	y (L, kg,	M³)
No.	FLAMMRble L	iguids ("ADINT	3	T 950	L		
-				- <i>T</i>				
UN Number	Proper Shipping Name	Class	P G (I, II, III)	Product o	r Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M³
1170	ETHYL NICOHO		11	ि रिग	ANOL		20	1 1
1263	ZINC RICH KIT	·	II.	Pair	্যা		64	L_
1300	TUVPS SUBSTITU	16	11	Turpe	Mine		270	L
					·	<u> </u>	7. / -	 -
					·	<u> </u>		
Identifier	Type of storage locati	-		Class	Maximum Stor	age Capacity	(L, kg, I	M³)
Nº2_	FLAMMABLE	<u> </u>	Cabiri	3	250	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		•	50					
UN Number	Proper Shipping Name	Class	PG (i, ii, iii)	Product or	Common Name	HazChem-	- •	Unit
1102	ETHYL KETONE	7]——	13 117	mortali	رمبرينين حماآ (دسيسا ا	Symbol	Qty	eg L, kg, M ³
1018	150 Propanol	1 –	 ':		ETHY FOR		5	4
12/2		- - -	17	190120	DYL Mcoilel	-	2	<i> -</i>
1263	F 1 1 1 V 1	- -	11	PRIN	<u>/</u>	<u> </u>	8	L
1300	LTURDS	ᄔ _	<u>। त</u>	<u> 1777,0</u>	Wine	<u> </u>	20	$\lfloor \nu \rfloor$
	·			-				
Identifier	Type of storage location	n or nro	cess C	lass	Maximum Stora	vac Canacibu	/1 h- 1	#31
Nº1_	Flammable Ha			-3	250L		(L, Kg, K	<u>") </u>
	It att my solic Md	<u> 191013 (</u>	<u> </u>		<u> </u>	-		
UN Number	Proper Shipping Name	Class	PG	Draduat au	Comment Name	HazChem	Typical	Unit
		4	(1, 11, 111)	Product of	Common Name	Symbol	Qty	eg L, kg, M ³
1866	RESINGUINI	/ :	11	RESI	\mathcal{N}		81	
			_			<u> </u>		<u> </u>
1.1	-							
Identifier				lass	Maximum Stora		(L, kg, M	l ³)
H69	ROOFED 31	ors		<u>3:1/2</u>	<u>4001</u>	<u>-</u>		
			PG	•			<u> </u>	
UN Number	Proper Shipping Name	Class	(1, 11, 111)	Product or (Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M³
1263	PaiN		7/	Water	Daiced	7	150	/ / / / / / / / / / / / / / / / / / /
1263	PAINI		11 -	MEOS		┝╶╌┼	20	<u> </u>
1-0-				NIZ CO SK	<u></u>		210	Lea
· · · · · ·	<u> </u>							
			<u> </u>					
ldentifier	Type of storage location	or proc	ess Cla	ass	Maximum Storag	ge Capacity (L. kg. M	³)
Nº3	Flammable liqu	ds Cal) Feel (3	160 tr	1 *****		·
			<u> </u>					
UN Number	Proper Shipping Name		PG	Product or C	ommon Name		Typical	Unit
		,	(1, 11, 111)				Qty	eg L, kg, M ³
··	Paint		jį į	176212N	Annster Minster		10	<u></u>
1950	PAINT	2	in	Design	Moster		10	<u></u>
	·—-						7	

List the dangerous goods that will be stored and/or processed on these premises. Copy this page and attach additional sheets if there is insufficient space.

Identifier	Type of storage location			Class	Maximum Stora	ge Capacity	(L, kg, N	13)
Nº 4	Flammabe Ligu	ids Co	ibit el	3	80	<u></u>		
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M³
		2_	31	OPTION 1	1110575	Jinou	8	<u></u>
19 50	Design Master			Pair			4	
1263	paint		11	Panvi	<u> </u>		<u> </u>	<u> </u>
			<u> </u>		<u> </u>	<u> </u>	<u> </u>	
			<u> </u>		<u> </u>	L	L	l
Identifier	Type of storage location	or pro	cess (Class	Maximum Stora	ge Capacity	(L, kg, N	1 ³)
				;				
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M ³
						<u> </u>		
				<u> </u>				
Identifier	Type of storage location	or pro	race (Class	Maximum Stora	ge Canacity	(L. kg. N	1 ³)
rdentine	Type of storage rocation	· or pro-				<u> </u>		
UN Number	Proper Shipping Name	Class	PG	Product or	Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M ³
			(1, 11, 111)	-		Symbol	Gity	eg L, Ag, W
			<u></u>	ļ <u> </u>		<u> </u>		-
				<u> </u>			_	-
			ļ <u> </u>			-	<u> </u>	
			}				<u> </u>	L
								•
ldentifier	Type of storage location	or pro	cess (Class	Maximum Stora	ge Capacity	(L, kg, N	1°)
					<u> </u>	·		
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M ³
		ļ					<u> </u>	<u> </u>
							<u> </u>	
							<u> </u>	<u></u>
	_						ļ	
Identifier	Type of storage location	ı or pro	cess (Class	Maximum Stora	ge Capacity	(L, kg, N	η ³)
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	Common Name	HazChem Symbol	Typical Qty	Unit eg L, kg, M³
				<u> </u>		<u> </u>		
				ļ <u>.</u>				
					<u> </u>	<u> </u>		
	1		1				l	

Licence No. 35/027888

Add row fice Que

CKD - 2

RECEIVED SERVICE CENTRE

25 JUL 1995

WORKCOVER

APPLICATION FOR RENEWALEW SOUTH WALES

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION **THEREUNDER**

DECLARATION: Please renew licence number 35/027888 to 15/08/2004 . I confirm that all the licence details shown below are correct (amend if necessary).

for: SYDNEY THEATRE CO LTD

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales

Dangerous Goods Licensing Section

LOCKED BAG 2906 LISAROW NSW 2252 Enquiries:ph (02) 43215500

fax (02) 92875500

Details of licence on 27 June 2003

Licence Number 35/027888

Expiry Date 15/08/2003

Licensee SYDNEY THEATRE CO LTD ACN 001 667 983

Postal Address: P O BOX 777 MILLERS POINT NSW 2000

Licensee Contact JOHN EDWARD PRESTON Ph. 9250 1700 Fax. 9251 3687

Premises Licensed to Keep Dangerous Goods PIER 4

SYDNEY THEATRE CO LTD HICKSON RD WALSH BAY 2000

Nature of Site PERFORMING ARTS VENUES

Major Supplier of Dangerous Goods NOT APPLICABLE

Emergency Contact for this Site JOHN-ED-PRESTON(0414-907734) Ph.-9250-1730

Site staffing 17 HRS 6 DAYS

MARTYN NIGHTINGALE 041 4313765 0292501724
92501700

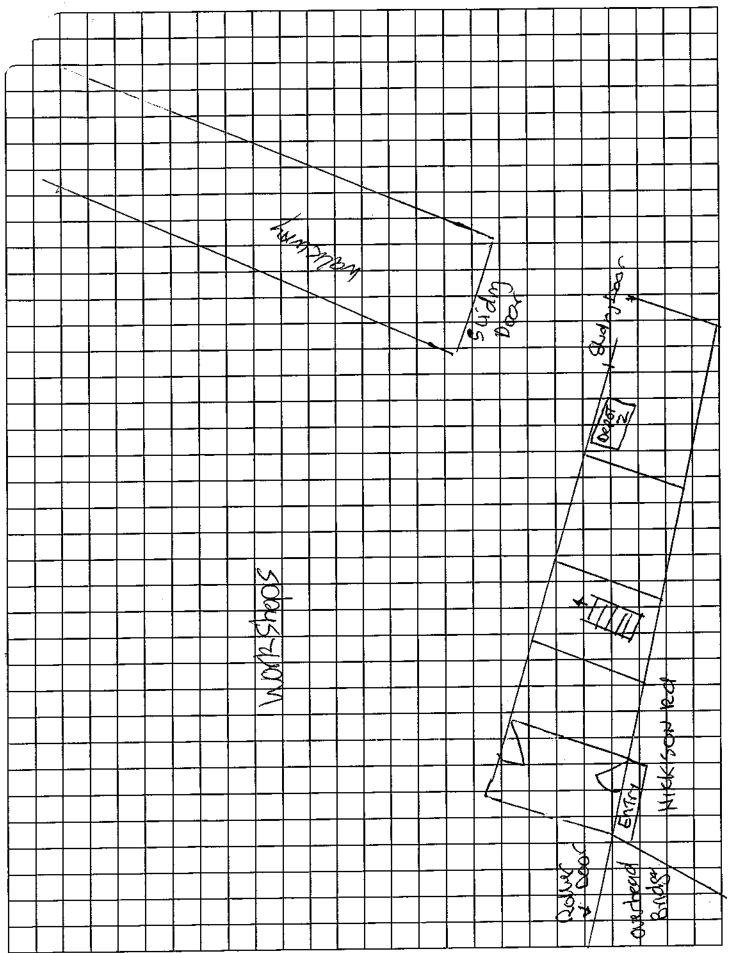
Details of Depots

Depot No. Depot Type

Goods Stored in Depot

Qty

H69	ROOFED STORE	Class 3	850 L
	UN 1170 ETHANOL (ETHY	'L ALCOHOL)	20 L
	UN 1263 PAINT, (ZINC RIC	CH KIT)	24 L
	UN 1263 PAINT, (ZINC RIC		40 L
	UN 1300 TURPENTINE SU		250 L
	UN 1300 TURPENTINE SU	BSTITUTE	20 L


ation for Licence to Keep

angerous Goods

Appli	cation for: New Licence 🗹 Amendment 🔲 Transfer 🔲 Renewal of expired licence ্রিশী
1 N	ATA-Applicant and site information (See page 2 of Guidance Notes) ame of applicant ACN SYDNEYTHEATTE COMPANY IND 001 667 983
2 P	ostal Address of Applicant Suburb/Town Postcode O. BOX 777 MILLES POINT 2000
3 T	SYDN6Y THEORY COMPANY
_	Contact for Licence Inquiries Phone Fax Name (3) 92501730 (3) 92501732 JOHN PRESTON
5 P	Previous Licence Number (if known) 35/
6 F	Previous Occupier (if known)
	Site to be Licensed No Street PLEN 4 HICKSON RD WALSH BAY
_	Main Business of Site Performing ARTS VENUES
9 \$	Site staffing: Hours per day 7 Days per week 6
[[Site Emergency Contact Phone Name 1021 9250 1724-9250-1700 MARTYN NISHTIN 5914
11	Major Supplier of Dangerous Goods iv/fl
12	If a new site or for amendments to depots - see page 4 of Guidance Notes. Plans Stamped by: Signature of Competent Person Printed Name Date stamped んプス
l ce lice	rtify that the details in this application (including any accompanying computer disk) are correct and cover all nsable quantities of dangerous goods kept on the premises.
13	Signature of Applicant Printed Name John EDWAY OF PRESTON
	Dangerous Goods Licensing,

WorkCover NSW, Locked Bag 2906, LISAROW NSW 2252

attitude and the second of the second

ot? See page 5 of the Guidance Notes

- Dangerous Goods Storage Complete one section per depot

a have more depots than that space provided, photocopy sufficient sheets first

Depot Number	Type of Depot (s	see page 5	5)	Depot Class	Maximum \$	Storage Ca	pacity
2	Flammable liquids		<u></u>	3	250		
			PG			Typical	Unit eg
UN Number	Proper Shipping Name	Class	(I, II, III)	Product or	Common Name		L, kg, m ³
UN1300	Myeral Turputine	3	ut	Topen	Time	20	口口
1263 LAP	Paints Thinners	3	11	Brush	Wash	95	Lit
极。	Resin	6.16	[1	Casting	Resin Bot A	16	K9
1760	n	G	tis	~	* PARTD	8	Kg
1866	POLYVINY LALIBO	3	พา	PYAR		4	Kg
Free	PORIN	2	11	Poly Foci	mmy Resin A	4-	12
2207	h	6	11)	~ 1	m m B	4	L#_
	Foam	3		Plast.	form A	1	Kg
<u> </u>	~	٧	-	ν	~ <u>B</u>	1	K9'
1219	AlcHohol Gel	4		130 Pro ALCONOL Keyto	pyl ger	2	Lt
3105	MethyL Ethyl Key Tork					15	129
1866	Gallat	3	<i>(</i> 11	Polyest	coat	4	4
	Hydrochloric		<u>. </u>	AGA		8	4
1866	Flowcoat	3_	/11	Polyest		4	LT
1866	Fiber Sless Resin	3	m	Resin		22299	K9
1866	FLOWCOGT	3	3		Lowecat	25	K9
	MUTI-PURPOSE	3_	·	Hinne	ঠ	20	U
	Foam			7AXIDEM	IST FORMA	5	k5
	m	<u></u> .		~	·	7	K5
		_					
			<u></u>				
					·		

New South Wales, 400 Kent Street, Sydney 2000. Telephone 9370 5000 ALL MAIL TO G.P.O. BOX 5364 SYDNEY 2001

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/027888 to 16/08/2000 . I confirm that all the licence details shown below are correct (amend if necessary).

(Signature) for: SYDNEY THEATRE CO LTD

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales Dangerous Goods Licensing Section **GPO BOX 5364** SYDNEY 2001

Enquiries: ph (02) 9370 5187

fax (02) 9370 6105

Details of licence on 14 July 1999

Licence Number 35/027888

Expiry Date 16/08/1999

Licensee

SYDNEY THEATRE CO LTD

ACN 001 667 983

Postal Address: BOX 777 P O MILLERS POINT NSW 2000

Licensee Contact JOHN EDWARD PRESTON Ph. 9250 1700 Fax. 9251 3687

Premises Licensed to Keep Dangerous Goods PIER 4

SYDNEY THEATRE CO LTD HICKSON RD WALSH BAY 2000

Nature of Site PERFORMING ARTS VENUES

Major Supplier of Dangerous Goods NOT APPLICABLE

Emergency Contact for this Site JOHN EDWARD PRESTON Ph9250 1730 MOB 0414 907734

Site staffing 17 HRS 6 DAYS

Details of Depots

Depot No. **Depot Type** H69 ROOFED STORE

Goods Stored in Depot

Class 3

Qty

850 L

20 L

24 L

40 L

250 L

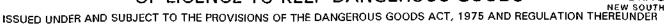
20 L

UN 1170 ETHANOL (ETHYL ALCOHOL) UN 1263 PAINT, (ZINC RICH KIT) UN 1263 PAINT, (ZINC RICH KIT) UN 1300 TURPENTINE SUBSTITUTE UN 1300 TURPENTINE SUBSTITUTE

RECEIVED

2 3 JUL 1999

SCIENTIFIC SERVICES


Form DG10

WorkCover New South Wales, 400 Kent Street, Sydney 2000, Tel: 9370 5000 Fax: 9370 5999 ALL MAIL TO G.P.O. BOX 5364 SYDNEY 2001

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

DECLARATION: Please renew licence number 35/027888 to 15/08/2001 . I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

for: SYDNEY THEATRE CO LTD

(Please print name)

Date signed)

Enquiries: ph (02) 9370 5187

fax (02) 9370 6104

THIS SIGNED DECLARATION SHOULD BE RETURNED TO: (please do not fax)

WorkCover New South Wales

Dangerous Goods Licensing Section

GPO BOX 5364 SYDNEY 2001

Details of licence on 27 June 2000

Licence Number 35/027888

Expiry Date 15/08/2000

Licensee

SYDNEY THEATRE CO LTD

ACN 001 667 983

Postal Address: BOX 777 P O MILLERS POINT NSW 2000

Licensee Contact JOHN EDWARD PRESTON Ph. 9250 1700 Fax. 9251 3687

Premises Licensed to Keep Dangerous Goods PIER 4

SYDNEY THEATRE CO LTD HICKSON RD WALSH BAY 2000

Nature of Site PERFORMING ARTS VENUES

Major Supplier of Dangerous Goods NOT APPLICABLE

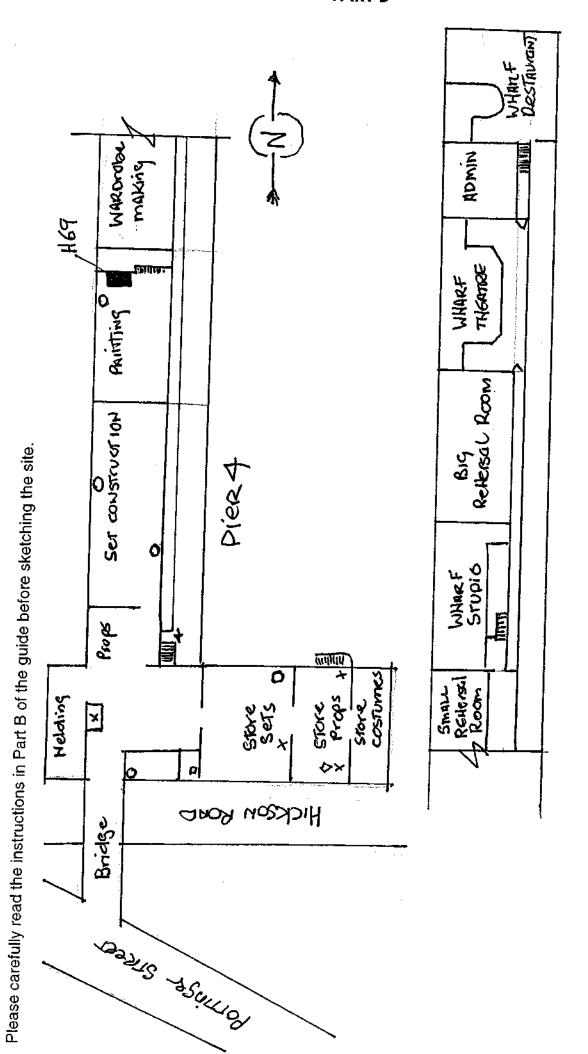
Emergency Contact for this Site JOHN ED, PRESTON(0414 907734) Ph. 9250 1730

Site staffing 17 HRS 6 DAYS

Details of Depots

Depot No.	Depot Type	Goods Stored in Depot	Qty
H69	ROOFED STORE	Class 3	850 L
	UN 1170 ETHAN	IOL (ETHYL ALCOHOL)	20 L
	UN 1263 PAINT	, (ZINC RICH KIT)	24 L
	UN 1263 PAINT	(ZINC RICH KIT)	40 L
	UN 1300 TURPE	NTINE SUBSTITUTE	250 L
	UN 1300 TURPE	NTINE SUBSTITUTE	20 L

AUTHORITY



LICENCE TO KEEP DANGEROUS GOODS

(Dangerous Goods Act 1975)

Application for new licence, amendment (Expiry: 16.8.94	or transfer
Name of applicant	ACN
THE SYDNEY THEATRE COMPANY	001 667 983.
2. Site to be licensed Pier 4 No Street	
PIGR (4) Hickson RD	DATA
Suburb/Town delete 4 from Street no. Postcode	2 9 JUN 1993
WALSH BAY 2000	ENTER
3. Previous licence number (if known) 35-02788	
4. Nature of site LIVE THEATTE CONSTRUCTION & PERFORMANCE	e × 9136.
5. Emergency contact on site: Phone Name	
* 250-1730 H.Hars. * John Edward Prestonia	
6. Site staffing: 70 Hours per day 17 Days per week 4	6
7. Major supplier of dangerous goods	
If new site or significant modification Plan stamped by: Accredited consultant's name:	Date stamped
9. Number of dangerous goods depots at site	
10.Trading name or occupier's name	
THE SYDNEY THEATTE COMPANY LTD (de	lete ctrl_L)
11.Postal address of applicant Suburb/Town	Postcode
* P.O. BOX 777 Millers Pa	2000 + JWic
12.Contact for licence enquiries: Phone Fax Name	
x 250-1700 > 251-3687 YomEoward	Prestorly
I certify that the details contained in this application (or the accompanying compu	ter disk) are true and correct
13. Signature of applicant 9 Descrip	Date 18/5/93

Just 30/6/92

35-027888

Site Sketch

0 -40% (rel-|X| -|X - 420

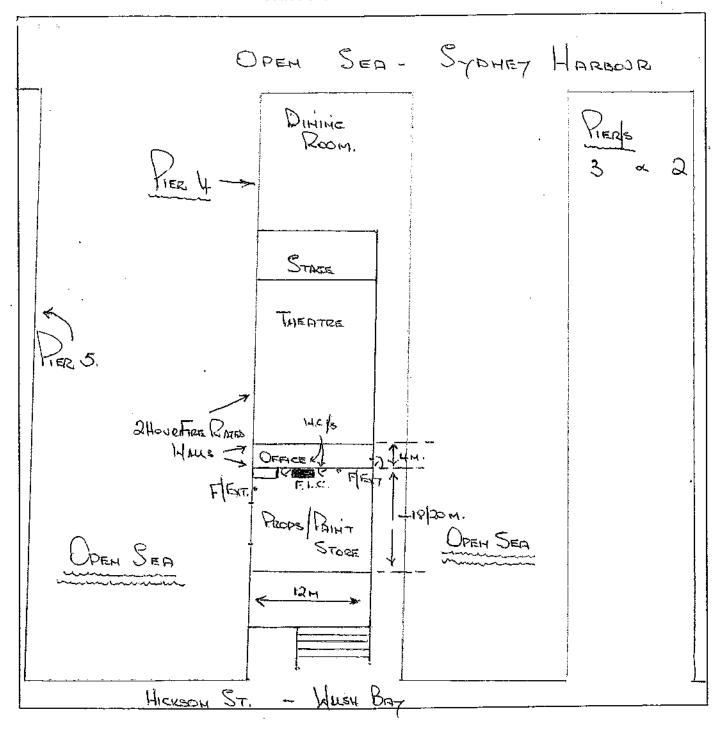
nave more depots than the space provided, photocopy sufficient sheets first.

). , ' ² .	Depot number	Type of depot		(Class	Licensed maxi storage capa	
¥	H69	FLAMMABLE LIQUIC)		•	850 LITRES	•
	UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical Uniteg quantity L,kg,m³
	<u 263	Paint Related Materia	/3	<i>1</i> 77_	<i>3</i> A1	mrotone	ALT
×	1300	Turpentine Substitute	3	11	3A1	Turps WASTR	44 9
>	1170	Ethanol	3		3A/	metho	204
×	1263	Paint	<u>3</u>	111	3c1	paving ppin	404
×	<u>/300</u>	Turpentine Substitute	3	<u>][</u>	3A1	TURPS	204
						SPING CONS	40'cons
	-						
			<u>.</u> ; ;				

್ರ್ಯm DGI

WORKCOVER AUTHORITY

DANGEROUS GOODS ACT, 1975


LICENCE No. 35 027888

APPLICATION FOR LICENCE (or AMENDME TO TRANSF FOR THE KEEPING OF DANGE OUS GOODS

			Plan No: 36	(* Delete wh	ichever is not required)
	nt in full (see ttem ory notes - page 4)		,		
Trading name or name (if any)	occupier's	5-	YDHEY THEATRE	E COMPANY LTD.	
Postal Address				(Postcode
Address of the professional Address of the profession (Including Street)	remises to be licensed. eet No.)]#	WHARE THEATRE	PIERLY HICKSON ST. WALSH	Ba Postcode 2000
Nature of premis Explanatory no	*		1	PAINT STORE	
Telephone numb	per of applicant	STOC	ode	Number	
Particulars of typ	oe of depots and maximur	n quant	ities of dangerous goods to b	e kept at any one time.	
Depot number	Type of depot (See item 3 - Expla notes - page 4)	natory	Storage capacity	Dangerous goods Product being stored	C & C Office use only
1	INT. FLAM. CAS	HIET	8501.	MixED PRODUCTS CLASS 3.	
2				, , , , , , , , , , , , , , , , , , ,	
3					
4					
5				DATA	
6					
7				- 6 AUG 1992	
8	·			ENTERD	
9					
10					
11					
12			<u> </u>		L-DA-
Has site plan bee Dangerous Goo	en approved by the ods Branch?	Yes	If yes, no plans If no, please atta <u>Checked</u>	required. ach site plan, or provide sketch plan overle by an accredited	at. which has b consultant
Have premises p	reviously been licensed?	Yes-	If, yes, state nam	ne of previous occupier, and licence No. (if	known)
Name of oil com	pany supplying flammabl	e liquid	(if applicable). UARAGE		
For external expl	osives magazine(s), pleas	se fill in p	Signature of applicant	Am Mala Date	0.7.92.
FOR OFFICE US			CERTIFICATE OF	INSPECTION	

being an Inspector under the Dangerous Goods Act, 1975, do hereby certify that the premises described above do comply with the requirements of the Dangerous Goods Act, 1975, and the Dangerous Goods Regulation with regard to their situation and construction for the keeping of dangerous goods of the nature and in the quantity specified.

SKETCH PLAN OF SITE

Show positions of Depot(s) with:-

- (1) distances from public places and protected works;
- (2) street names;
- (3) nature and details of adjacent properties.

Metro East
SEEN
Date 19/6/92

WorkCover Authority

PASSED

suppose to carrie of the the Dangorous (1975).

Appendix H Laboratory Certificates of Analysis

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St Sydney NSW 2000 lac-MRA

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Rohan Hammond

Report531205-SProject nameWALSH BAYProject ID52304Received DateJan 20, 2017

Client Sample ID			JBH01_0.24- 0.25	JBH03_0.5-0.6	JBH06_0.75- 0.85	QA20170119
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja11505	S17-Ja11507	S17-Ja11508	S17-Ja11509
Date Sampled			Jan 19, 2017	Jan 19, 2017	Jan 19, 2017	Jan 19, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions	·				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	260	150
TRH C29-C36	50	mg/kg	< 50	< 50	66	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	326	150
BTEX	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	125	123	122	123
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	4.2	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			JBH01_0.24- 0.25	JBH03 0.5-0.6	JBH06_0.75- 0.85	QA20170119
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja11505	S17-Ja11507	S17-Ja11508	S17-Ja11509
, , ,						
Date Sampled	1.00		Jan 19, 2017	Jan 19, 2017	Jan 19, 2017	Jan 19, 2017
Test/Reference	LOR	Unit				
Volatile Organics						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane Description of the least state	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromonethane	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Iodomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride	0.5	mg/kg	0.5	< 0.5	0.8	< 0.5
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Fluorobenzene (surr.)	1	%	111	111	108	110
4-Bromofluorobenzene (surr.)	1	%	125	123	122	123
Total Recoverable Hydrocarbons - 2013 NEPM Frac						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	7.8	5.1
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	7.8	5.4
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	7.8	5.6
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Action	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	3.2	1.0
Benz(a)anthracene Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	6.6	4.3
	0.5	mg/kg	< 0.5	< 0.5	5.3	3.8

			ID1104 0 04		IDUOC 0.75	
Client Sample ID			JBH01_0.24- 0.25	JBH03_0.5-0.6	JBH06_0.75- 0.85	QA20170119
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja11505	S17-Ja11507	S17-Ja11508	S17-Ja11509
Date Sampled			Jan 19, 2017	Jan 19, 2017	Jan 19, 2017	Jan 19, 2017
Test/Reference	LOR	Unit	,	,	,	,
Polycyclic Aromatic Hydrocarbons	1 2011	- Onne				
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	2.6	2.1
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	4.0	2.1
Chrysene	0.5	mg/kg	< 0.5	< 0.5	5.1	3.2
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	16	6.6
Fluorene	0.5	mg/kg	< 0.5	< 0.5	1.1	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	2.3	1.8
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	14	1.0
Pyrene	0.5	mg/kg	< 0.5	< 0.5	13	6.8
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	79.6	37.2
2-Fluorobiphenyl (surr.)	1	%	92	92	89	91
p-Terphenyl-d14 (surr.)	1	%	94	89	86	89
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlorepoxide	0.05	mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene Methoxychlor	0.05	mg/kg mg/kg	< 0.05	< 0.05 < 0.2	< 0.05 < 0.2	< 0.05 < 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	57	59	80	116
Tetrachloro-m-xylene (surr.)	1	%	81	78	90	92
Organophosphorus Pesticides	'	/0	1 01	70	30	J
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			JBH01_0.24- 0.25	JBH03_0.5-0.6	JBH06_0.75- 0.85	QA20170119
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja11505	S17-Ja11507	S17-Ja11508	S17-Ja11509
Date Sampled			Jan 19, 2017	Jan 19, 2017	Jan 19, 2017	Jan 19, 2017
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	LOR	Offic				
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	84	93	83	80
Polychlorinated Biphenyls	<u> </u>					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	57	59	80	116
Tetrachloro-m-xylene (surr.)	1	%	81	78	90	92
Semivolatile Chlorinated Hydrocarbons		,,,	<u> </u>			""
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4.5-Tetrachlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobutadiene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorocyclopentadiene	1	mg/kg	< 1	< 1	< 1	< 1
Hexachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pentachlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Nitrobenzene-d5 (surr.)	1	%	85	89	85	87
p-Terphenyl-d14 (surr.)	1	%	94	89	86	89
2-Fluorobiphenyl (surr.)	1	%	92	92	89	91

Client Sample ID			JBH01_0.24- 0.25	JBH03_0.5-0.6	JBH06_0.75- 0.85	QA20170119
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S17-Ja11505	S17-Ja11507	S17-Ja11508	S17-Ja11509
Date Sampled			Jan 19, 2017	Jan 19, 2017	Jan 19, 2017	Jan 19, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions	·				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	330	200
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Heavy Metals						
Arsenic	2	mg/kg	3.7	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	17	< 5	5.0	6.8
Copper	5	mg/kg	52	21	89	26
Lead	5	mg/kg	120	14	42	170
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	14	< 5	7.9	< 5
Zinc	5	mg/kg	150	20	52	81
% Moisture	1	%	17	10.0	15	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 24, 2017	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 23, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 24, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Sydney	Jan 23, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Volatile Organics	Sydney	Jan 23, 2017	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Polycyclic Aromatic Hydrocarbons	Sydney	Jan 24, 2017	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Jan 24, 2017	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Organophosphorus Pesticides	Sydney	Jan 24, 2017	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Jan 24, 2017	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Semivolatile Chlorinated Hydrocarbons	Sydney	Jan 24, 2017	14 Day
- Method: E017 Semivolatile Chlorinated Hydrocarbons			
Metals M8	Sydney	Jan 23, 2017	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
% Moisture	Sydney	Jan 20, 2017	14 Day

Sydney Unit F3, Building F	16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217																ralia, 2066			
	Con	pany Name: Pess: ject Name:	JBS & G Aus Level 1, 50 M Sydney NSW 2000 WALSH BAN		& WA) P/L			Re	der N port # one: x:			31205 2 824	5 5 030	0			1, Lane Cove West, NSW, Aus	9900 8400	Received: Due: Priority: Contact Name:	Jan 20, 2017 5:05 PM Jan 25, 2017 3 Day Rohan Hammond services Manager : Nibha Vaidya
ourne ingston	Oak eigh VIC Phone: +61 NATA # 1461 Site # 1201 &	ject ID:	52304	'													, Lane C	Euro	ofins mgt Analytical S	ervices Manager : Nibha Vaidya
Meth 2-5	ABN-50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au			imple Detail			Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Semivolatile Chlorinated Hydrocarbons	Volatile Organics	tas annsiom Eurofins / mgt Unit F3, Building F, 16 Mars Roa			
			ory - NATA Site		271															
			- NATA Site # 1				Х	Х	Х	Х	X	Х	X	Х	Х	Х	X	Х	-	
			y - NATA Site #																_	
		Laboratory - N	IATA Site # 182	217																
	Tgo o	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
	==	BH01_0.24-	Jan 19, 2017	Time	Soil	S17-Ja11505	Х		Х	Х	Х	Х	Х	Х	Х	Х	х	Х		
		BH02_0.6-0.7	Jan 19, 2017		Soil	S17-Ja11506		Х												
S		BH03_0.5-0.6			Soil	S17-Ja11507	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	
ofins		= BH06_0.75- 0.85	Jan 19, 2017		Soil	S17-Ja11508	Х		Х	Х	Х	Х	Х	Х	Х	Х	х	Х		
0		QA20170119	Jan 19, 2017		Soil	S17-Ja11509	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	νX		

Χ

💸 eurofi

Jan 20, 2017

Jan 20, 2017

Jan 20, 2017

B20170120

S20170120

RB20170120

Water

Water

Water

S17-Ja11510

S17-Ja11511

S17-Ja11512

Date Reported:Jan 25

201

Х

Χ

Х

х х

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St

Sydney NSW 2000

WALSH BAY

52304

Order No.: Report #:

531205

02 8245 0300

Phone: Fax:

Received: Due:

Jan 20, 2017 5:05 PM Jan 25, 2017

Priority:

3 Day Rohan Hammond Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN = 50 005 085 521 Photographic Com NAT NATIONAL COM NA	. Elivii osales e euloiiiis.com www.eurofins.com.au	Sample Detail	Asbestos Absence / Presence	НОГД	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Semivolatile Chlorinated Hydrocarbons	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons
el	lbo	urne Laboratory - NATA Site # 1254 & 14271												
10	dne	y Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
is	sba	ne Laboratory - NATA Site # 20794												
<u>:r</u>	th	Laboratory - NATA Site # 18217												
s	st C	ounts	4	1	5	4	4	4	5	6	5	5	4	5
Same.														

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Accept Limi		Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5	0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5	0.5		
1.2-Dibromoethane	mg/kg	< 0.5	0.5		
1.2-Dichlorobenzene	mg/kg	< 0.5	0.5		
1.2-Dichloroethane	mg/kg	< 0.5	0.5		
1.2-Dichloropropane	mg/kg	< 0.5	0.5		
1.2.3-Trichloropropane	mg/kg	< 0.5	0.5		
1.2.4-Trimethylbenzene	mg/kg	< 0.5	0.5		
1.3-Dichlorobenzene	mg/kg	< 0.5	0.5		
1.3-Dichloropropane	mg/kg	< 0.5	0.5		
1.3.5-Trimethylbenzene	mg/kg	< 0.5	0.5		
1.4-Dichlorobenzene	mg/kg	< 0.5	0.5		
2-Butanone (MEK)	mg/kg	< 0.5	0.5		
2-Propanone (Acetone)	mg/kg	< 0.5	0.5		
4-Chlorotoluene	mg/kg	< 0.5	0.5		
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.5	0.5		
Allyl chloride	mg/kg	< 0.5	0.5		
Bromobenzene	mg/kg	< 0.5	0.5		
			0.5		
Bromochloromethane Bromodichloromethane	mg/kg	< 0.5	0.5		
	mg/kg	< 0.5	0.5		
Bromoform	mg/kg	< 0.5			
Bromomethane	mg/kg	< 0.5	0.5		
Carbon disulfide	mg/kg	< 0.5	0.5		
Carbon Tetrachloride	mg/kg	< 0.5	0.5		
Chlorophore	mg/kg	< 0.5	0.5		-
Chloroethane	mg/kg	< 0.5	0.5		
Chloroform	mg/kg	< 0.5	0.5		
Chloromethane	mg/kg	< 0.5	0.5		
cis-1.2-Dichloroethene	mg/kg	< 0.5	0.5		
cis-1.3-Dichloropropene	mg/kg	< 0.5	0.5		
Dibromochloromethane	mg/kg	< 0.5	0.5		
Dibromomethane	mg/kg	< 0.5	0.5		
Dichlorodifluoromethane	mg/kg	< 0.5	0.5		
lodomethane	mg/kg	< 0.5	0.5		
Isopropyl benzene (Cumene)	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Methylene Chloride	mg/kg	< 0.5	0.5	Pass	
Styrene	mg/kg	< 0.5	0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Trichloroethene	mg/kg	< 0.5	0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5	0.5	Pass	
Vinyl chloride	mg/kg	< 0.5	0.5	Pass	
Method Blank	, ,	,			
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	ing/kg	\ Z0	20	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
<u> </u>		< 0.5	0.5	Pass	
Anthracene	mg/kg				
Anthracene Panz (a) anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank	Ilig/kg	V 0.5	0.5	1 433	
Semivolatile Chlorinated Hydrocarbons 1.2-Dichlorobenzene	malka	< 0.5	0.5	Doco	
1.2-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2.4-Trichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2.4.5-Tetrachlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
Hexachlorobenzene	mg/kg	< 0.5	0.5	Pass	
Hexachlorobutadiene	mg/kg	< 0.5	0.5	Pass	
Hexachlorocyclopentadiene	mg/kg	< 1	1	Pass	
Hexachloroethane	mg/kg	< 0.5	0.5	Pass	
Pentachlorobenzene	mg/kg	< 0.5	0.5	Pass	
					1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9	%	91	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	122	70-130	Pass	
Toluene	%	115	70-130	Pass	
Ethylbenzene	%	119	70-130	Pass	
m&p-Xylenes	%	118	70-130	Pass	
o-Xylene	%	119	70-130	Pass	
Xylenes - Total	%	118	70-130	Pass	
LCS - % Recovery					
Volatile Organics					
1.1-Dichloroethane	%	126	70-130	Pass	
1.1-Dichloroethene	%	124	70-130	Pass	
1.1.1-Trichloroethane	%	114	70-130	Pass	
1.1.1.2-Tetrachloroethane	%	91	70-130	Pass	
1.1.2-Trichloroethane	%	116	70-130	Pass	
1.1.2.2-Tetrachloroethane	%	130	70-130	Pass	
1.2-Dibromoethane	%	113	70-130	Pass	
1.2-Dichlorobenzene	%	116	70-130	Pass	
1.2-Dichloroethane	%	122	70-130	Pass	
1.2-Dichloropropane	%	128	70-130	Pass	
1.2.3-Trichloropropane	%	127	70-130	Pass	
1.2.4-Trimethylbenzene	%	126	70-130	Pass	
1.3-Dichlorobenzene	%	116	70-130	Pass	
1.3-Dichloropropane	%	127	70-130	Pass	
1.3.5-Trimethylbenzene	%	125	70-130	Pass	
1.4-Dichlorobenzene	%	116	70-130	Pass	
2-Butanone (MEK)	%	109	70-130	Pass	
2-Propanone (Acetone)	%	124	70-130	Pass	
4-Chlorotoluene	%	123	70-130	Pass	
4-Methyl-2-pentanone (MIBK)	%	121	70-130	Pass	
Allyl chloride	%	124	70-130	Pass	
Bromobenzene	%	129	70-130	Pass	
Bromochloromethane	%	124	70-130	Pass	
Bromodichloromethane	%	113	70-130	Pass	
Bromoform	%	76	70-130	Pass	
Carbon disulfide	%	114	70-130	Pass	
Carbon Tetrachloride	%	91	70-130	Pass	
Chlorobenzene	%	112	70-130	Pass	
Chloroethane	%	89	70-130	Pass	
Chloroform	%	130	70-130	Pass	
Chloromethane	%	128	70-130	Pass	
cis-1.2-Dichloroethene	%	118	70-130	Pass	
cis-1.3-Dichloropropene	%	89	70-130	Pass	
Dibromochloromethane Dibromomethane	%	126	70-130	Pass	
Dibloromomethane Dichlorodifluoromethane	% %	126	70-130	Pass	
Dichlorodifluoromethane		106	70-130	Pass	
lodomethane Isopropyl benzene (Cumene)	% %	74 112	70-130 70-130	Pass Pass	
	%	112	70-130	Pass	
Methylene Chloride Styrene	%	110	70-130	Pass	
Tetrachloroethene	%	92	70-130	Pass	
trans-1.2-Dichloroethene	%	120	70-130	Pass	
trans-1.3-Dichloropropene	%	99	70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Trichloroethene			%	104			70-130	Pass	
Trichlorofluoromethane			%	118			70-130	Pass	
Vinyl chloride			%	78			70-130	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	tions							
Naphthalene			%	126			70-130	Pass	
TRH C6-C10			%	85			70-130	Pass	
LCS - % Recovery									
Polycyclic Aromatic Hydrocarbo	ns								
Acenaphthene			%	73			70-130	Pass	
Acenaphthylene			%	91			70-130	Pass	
Anthracene			%	85			70-130	Pass	
Benz(a)anthracene			%	84			70-130	Pass	
Benzo(a)pyrene			%	92			70-130	Pass	
Benzo(b&j)fluoranthene			%	91			70-130	Pass	
Benzo(g.h.i)perylene			%	85			70-130	Pass	
Benzo(k)fluoranthene			%	92			70-130	Pass	
Chrysene			%	94			70-130	Pass	
Dibenz(a.h)anthracene			%	81			70-130	Pass	
Fluoranthene			%	86			70-130	Pass	
Fluorene			%	84			70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	77			70-130	Pass	
Naphthalene			%	100			70-130	Pass	
Phenanthrene			%	77			70-130	Pass	
Pyrene			%	85			70-130	Pass	
LCS - % Recovery									
Polychlorinated Biphenyls									
Aroclor-1260			%	102			70-130	Pass	
LCS - % Recovery									
Semivolatile Chlorinated Hydroc	arbons								
1.2.4-Trichlorobenzene			%	77			70-130	Pass	
1.4-Dichlorobenzene			%	78			70-130	Pass	
Toot	Lah Campla ID	QA		Decult 1			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate				_	1				
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ja10323	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S17-Ja11217	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S17-Ja11217	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S17-Ja11217	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate					1				
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S17-Ja10323	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S17-Ja10323	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S17-Ja10323	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S17-Ja10323	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S17-Ja10323	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S17-Ja10323	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
				1	1		1	i	Ī
1.1.1-Trichloroethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S17-Ja10323 S17-Ja10323	NCP NCP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30%	Pass	

Duplicate									
Volatile Organics			1	Result 1	Result 2	RPD			
1.1.2.2-Tetrachloroethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trimethylbenzene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichlorobenzene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Butanone (MEK)	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone)	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chlorotoluene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Allyl chloride	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromobenzene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromochloromethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon disulfide	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorodifluoromethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Iodomethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Isopropyl benzene (Cumene)	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methylene Chloride	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Styrene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S17-Ja10323	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo	ns	ı	1	Result 1	Result 2	RPD			
Benz(a)anthracene	S17-Ja09858	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S17-Ja09858	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S17-Ja09858	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S17-Ja09858	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S17-Ja09858	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S17-Ja09858	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S17-Ja09858	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S17-Ja09858	NCP	mg/kg	0.7	0.8	12	30%	Pass	
Indeno(1.2.3-cd)pyrene	S17-Ja09858	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S17-Ja09858	NCP	mg/kg	1.2	1.2	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S17-Ja12840	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S17-Ja12840	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S17-Ja12840	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S17-Ja12840	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate			<u> </u>						
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S17-Ja12840	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S17-Ja12840	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S17-Ja12840	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S17-Ja12840	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S17-Ja12840	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S17-Ja12840	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S17-Ja12840	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	<u> </u>	110.		1 0.0	1 0.0	- 11	3070	1 . 0.00	
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S17-Ja11217	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S17-Ja11217	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S17-Ja11217	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	017 0411217	1101	ı mg/ng	1 100	1 100	7.1	0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S17-Ja10279	NCP	mg/kg	4.3	3.6	16	30%	Pass	
Cadmium	S17-Ja10279	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S17-Ja10279	NCP	mg/kg	6.6	7.5	13	30%	Pass	
Copper	S17-Ja10279	NCP	mg/kg	35	38	8.0	30%	Pass	
Lead	S17-Ja10279	NCP	mg/kg	100	110	8.0	30%	Pass	
Mercury	S17-Ja10279	NCP	mg/kg	0.2	0.3	18	30%	Pass	
Nickel	S17-Ja10279	NCP	mg/kg	5.0	5.2	4.0	30%	Pass	
Zinc	S17-Ja10279	NCP	mg/kg	78	92	16	30%	Pass	
Duplicate	1 017-0a10279	1401	i ilig/kg	, , 0	JZ	10	30 /0	1 000	
Dapiloate				Result 1	Result 2	RPD			
% Moisture	S17-Ja01412	NCP	%	6.8	6.9	1.0	30%	Pass	
Duplicate	1 017-0401412	1 101	/0	0.0	0.0	1.0	JU /0	1 433	
Polycyclic Aromatic Hydrocarbo	ne			Result 1	Result 2	RPD			
Acenaphthene		NCP	malka	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S17-Ja09848 S17-Ja09848	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
· · · ·	S17-Ja09848 S17-Ja09848	NCP	mg/kg	< 0.5		<1	30%	Pass	
Anthracene			mg/kg		< 0.5		i		
Fluorene	S17-Ja09848	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons		Result 1	Result 2	RPD					
Naphthalene	S17-Ja09848	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S17-Ja09848	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager Nibha Vaidva Senior Analyst-Asbestos (NSW) Ryan Hamilton Senior Analyst-Organic (NSW) Ryan Hamilton Senior Analyst-Volatile (NSW) Rvan Hamilton Senior Analyst-Metal (NSW) Ryan Hamilton Senior Analyst-Inorganic (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential changes including, but not limited to, lost profits, damages for relative to meet declarities and other production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St **Sydney NSW 2000**

Attention: Rohan Hammond

531205-AID Report **Project Name** WALSH BAY

Project ID 52304

Received Date Jan 20, 2017 Jan 25, 2017 **Date Reported**

Methodology:

Asbestos ID

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples

include building materials, soils and ores.

Subsampling Soil Samples

The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need

to be sub-sampled for trace analysis in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding $400 \pm 30^{\circ}$ C. The resultant material is then ground and examined in accordance with AS 4964-2004.

Limit of Reporting

Date Reported: Jan 25, 2017

The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins | mgt NATA accreditation as designated by an asterisk.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name WALSH BAY

Project ID 52304

Date Reported: Jan 25, 2017

Date SampledJan 19, 2017Report531205-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
JBH01_0.24-0.25	17-Ja11505	Jan 19, 2017	Approximate Sample 122g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
JBH03_0.5-0.6	17-Ja11507	Jan 19, 2017	Approximate Sample 60g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
JBH06_0.75-0.85	17-Ja11508	Jan 19, 2017	Approximate Sample 94g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
QA20170119	17-Ja11509	Jan 19, 2017	Approximate Sample 106g Sample consisted of: Brown fine grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.

Sample History

Date Reported: Jan 25, 2017

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJan 20, 2017Indefinite

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

Site # 1254 & 14271

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261

Sydney Unit F3, Building F Brisbane

16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: JBS & G Australia (NSW & WA) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name:

WALSH BAY

Project ID: 52304 Order No.: Report #:

531205

02 8245 0300

Phone: Fax:

Received: Jan 20, 2017 5:05 PM Due: Jan 25, 2017

Priority: 3 Day

Contact Name: Rohan Hammond

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Semivolatile Chlorinated Hydrocarbons	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons
	ourne Laborato			271			.,	.,	.,							.,	
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory																$\overline{}$
	h Laboratory - N rnal Laboratory		317														$\overline{}$
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID												$\overline{}$
	Cumpio 12	Gampio Bato	Sampling Time	Matrix	27(3.15												
1	JBH01_0.24- 0.25	Jan 19, 2017		Soil	S17-Ja11505	Х		х	х	Х	Х	Х	Х	Х	Х	Х	Х
2	JBH02_0.6-0.7	Jan 19, 2017		Soil	S17-Ja11506		Х										
3	JBH03_0.5-0.6	Jan 19, 2017		Soil	S17-Ja11507	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
4	JBH06_0.75- 0.85	Jan 19, 2017		Soil	S17-Ja11508	Х		х	х	Х	Х	Х	х	Х	Х	х	Х
5	QA20170119	Jan 19, 2017		Soil	S17-Ja11509	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
6	TB20170120	Jan 20, 2017		Water	S17-Ja11510								Х				
7	TS20170120	Jan 20, 2017		Water	S17-Ja11511								Х				
8	RB20170120	Jan 20, 2017		Water	S17-Ja11512			Х				Х		Х	Х		X

Page 4 of 7

Sydney

WALSH BAY

Project Name:

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au **Melbourne** 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

Due:

Priority:

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Jan 25, 2017

3 Day

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: JBS & G Australia (NSW & WA) P/L Order No.: Received: Jan 20, 2017 5:05 PM

Phone:

Address: Level 1, 50 Margaret St Report #: 531205

NSW 2000 Fax: Contact Name: Rohan Hammond

02 8245 0300

Now 2000 Tax. Contact Name. Rotal Hamiltonia

Project ID: 52304

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail	Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Semivolatile Chlorinated Hydrocarbons	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons	
Melbourne Laboratory - NATA Site # 1254 & 14271													1
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Brisbane Laboratory - NATA Site # 20794													
Perth Laboratory - NATA Site # 18217													
Test Counts	4	1	5	4	4	4	5	6	5	5	4	5	

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Jan 25, 2017

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.
COC Chain of custody
SRA Sample Receipt Advice

ISO International Stardards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Comments

The samples received were not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid sub-sampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Authorised by:

Nibha Vaidya Senior Analyst - Asbestos(NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Jan 25, 2017

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 7 of 7

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St Sydney NSW 2000

lac-MRA

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Rohan Hammond

Report531205-WProject nameWALSH BAYProject ID52304Received DateJan 20, 2017

Client Sample ID			TB20170120	TS20170120	RB20170120
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S17-Ja11510	S17-Ja11511	S17-Ja11512
Date Sampled			Jan 20, 2017	Jan 20, 2017	Jan 20, 2017
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 N	EPM Fractions	1			
TRH C6-C9	0.02	mg/L	-	-	< 0.02
TRH C10-C14	0.05	mg/L	-	-	< 0.05
TRH C15-C28	0.1	mg/L	-	-	< 0.1
TRH C29-C36	0.1	mg/L	-	-	< 0.1
TRH C10-36 (Total)	0.1	mg/L	-	-	< 0.1
BTEX	<u>'</u>				
Benzene	0.001	mg/L	< 0.001	103%	-
Toluene	0.001	mg/L	< 0.001	102%	-
Ethylbenzene	0.001	mg/L	< 0.001	98%	-
m&p-Xylenes	0.002	mg/L	< 0.002	96%	-
o-Xylene	0.001	mg/L	< 0.001	97%	-
Xylenes - Total	0.003	mg/L	< 0.003	96%	-
4-Bromofluorobenzene (surr.)	1	%	91	99	-
Volatile Organics		•			
1.1-Dichloroethane	0.001	mg/L	-	-	< 0.001
1.1-Dichloroethene	0.001	mg/L	-	-	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	-	-	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	-	-	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	-	-	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	-	-	< 0.001
1.2-Dibromoethane	0.001	mg/L	-	-	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	-	-	< 0.001
1.2-Dichloroethane	0.001	mg/L	-	-	< 0.001
1.2-Dichloropropane	0.001	mg/L	-	-	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	-	-	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	-	-	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	-	-	< 0.001
1.3-Dichloropropane	0.001	mg/L	-	-	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	-	-	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	-	-	< 0.001
2-Butanone (MEK)	0.001	mg/L	-	-	< 0.001
2-Propanone (Acetone)	0.001	mg/L	-	-	< 0.001
4-Chlorotoluene	0.001	mg/L	-	-	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	-	-	< 0.001
Allyl chloride	0.001	mg/L	-	-	< 0.001

		1		1	
Client Sample ID			TB20170120	TS20170120	RB20170120
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S17-Ja11510	S17-Ja11511	S17-Ja11512
Date Sampled			Jan 20, 2017	Jan 20, 2017	Jan 20, 2017
Test/Reference	LOR	Unit			
Volatile Organics	•	•			
Benzene	0.001	mg/L	-	-	< 0.001
Bromobenzene	0.001	mg/L	-	-	< 0.001
Bromochloromethane	0.001	mg/L	-	-	< 0.001
Bromodichloromethane	0.001	mg/L	-	-	< 0.001
Bromoform	0.001	mg/L	-	-	< 0.001
Bromomethane	0.001	mg/L	-	-	< 0.001
Carbon disulfide	0.001	mg/L	-	-	< 0.001
Carbon Tetrachloride	0.001	mg/L	-	-	< 0.001
Chlorobenzene	0.001	mg/L	-	-	< 0.001
Chloroethane	0.001	mg/L	-	-	< 0.001
Chloroform	0.005	mg/L	-	-	< 0.005
Chloromethane	0.001	mg/L	-	-	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	-	-	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	-	-	< 0.001
Dibromochloromethane	0.001	mg/L	-	-	< 0.001
Dibromomethane	0.001	mg/L	-	-	< 0.001
Dichlorodifluoromethane	0.001	mg/L	-	-	< 0.001
Ethylbenzene	0.001	mg/L	-	-	< 0.001
lodomethane	0.001	mg/L	-	-	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	-	-	< 0.001
m&p-Xylenes	0.002	mg/L	-	-	< 0.002
Methylene Chloride	0.001	mg/L	-	-	< 0.001
o-Xylene	0.001	mg/L	-	-	< 0.001
Styrene	0.001	mg/L	-	-	< 0.001
Tetrachloroethene	0.001	mg/L	-	-	< 0.001
Toluene	0.001	mg/L	-	-	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	-	-	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	-	-	< 0.001
Trichloroethene	0.001	mg/L	-	-	< 0.001
Trichlorofluoromethane	0.001	mg/L	-	-	< 0.001
Vinyl chloride	0.001	mg/L	-	-	< 0.001
Xylenes - Total	0.003	mg/L	-	-	< 0.003
Fluorobenzene (surr.)	1	%	-	-	126
4-Bromofluorobenzene (surr.)	1	%	-	-	105
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	1			
Naphthalene ^{N02}	0.01	mg/L	-	-	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	-	< 0.05
TRH C6-C10	0.02	mg/L	-	-	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	-	-	< 0.02
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	-	-	< 0.001
Acenaphthylene	0.001	mg/L	-	-	< 0.001
Anthracene	0.001	mg/L	-	-	< 0.001
Benz(a)anthracene	0.001	mg/L	-	-	< 0.001
Benzo(a)pyrene	0.001	mg/L	-	-	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	-	-	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	-	-	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	-	-	< 0.001
Chrysene	0.001	mg/L	-	-	< 0.001

Client Sample ID			TB20170120	TS20170120	RB20170120
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S17-Ja11510	S17-Ja11511	S17-Ja11512
Date Sampled			Jan 20, 2017	Jan 20, 2017	Jan 20, 2017
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons		1			
Dibenz(a.h)anthracene	0.001	mg/L	-	-	< 0.001
Fluoranthene	0.001	mg/L	-	-	< 0.001
Fluorene	0.001	mg/L	-	-	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	-	< 0.001
Naphthalene	0.001	mg/L	-	-	< 0.001
Phenanthrene	0.001	mg/L	-	-	< 0.001
Pyrene	0.001	mg/L	-	-	< 0.001
Total PAH*	0.001	mg/L	-	-	< 0.001
2-Fluorobiphenyl (surr.)	1	%	-	-	58
p-Terphenyl-d14 (surr.)	1	%	-	-	61
Semivolatile Chlorinated Hydrocarbons		•			
1.2-Dichlorobenzene	0.002	mg/L	-	-	< 0.002
1.2.4-Trichlorobenzene	0.002	mg/L	-	-	< 0.002
1.2.4.5-Tetrachlorobenzene	0.002	mg/L	-	-	< 0.002
1.3-Dichlorobenzene	0.002	mg/L	-	-	< 0.002
1.4-Dichlorobenzene	0.002	mg/L	-	-	< 0.002
Hexachlorobenzene	0.002	mg/L	-	-	< 0.002
Hexachlorobutadiene	0.002	mg/L	-	-	< 0.002
Hexachlorocyclopentadiene	0.004	mg/L	-	-	< 0.004
Hexachloroethane	0.002	mg/L	-	-	< 0.002
Pentachlorobenzene	0.002	mg/L	-	-	< 0.002
Nitrobenzene-d5 (surr.)	1	%	-	-	106
p-Terphenyl-d14 (surr.)	1	%	-	-	61
2-Fluorobiphenyl (surr.)	1	%	-	-	58
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
TRH >C10-C16	0.05	mg/L	-	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	-	< 0.1
TRH >C34-C40	0.1	mg/L	-	-	< 0.1
Heavy Metals					
Arsenic	0.001	mg/L	-	-	< 0.001
Cadmium	0.0002	mg/L	-	-	< 0.0002
Chromium	0.001	mg/L	-	-	< 0.001
Copper	0.001	mg/L	-	-	< 0.001
Lead	0.001	mg/L	-	-	< 0.001
Mercury	0.0001	mg/L	-	-	< 0.0001
Nickel	0.001	mg/L	-	-	< 0.001
Zinc	0.005	mg/L	-	-	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 24, 2017	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 20, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 20, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Sydney	Jan 20, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Volatile Organics	Sydney	Jan 20, 2017	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Polycyclic Aromatic Hydrocarbons	Sydney	Jan 20, 2017	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Semivolatile Chlorinated Hydrocarbons	Sydney	Jan 24, 2017	7 Day
- Method: E017 Semivolatile Chlorinated Hydrocarbons			
Metals M8	Sydney	Jan 20, 2017	28 Day

⁻ Method: LTM-MET-3040 Metals in Waters by ICP-MS

Sydney Unit F3, Building F	16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217																ralia, 2066			
	Con	pany Name: Pess: ject Name:	JBS & G Aus Level 1, 50 M Sydney NSW 2000 WALSH BAN		& WA) P/L			Re	der N port # one: x:			31205 2 824	5 5 030	0			1, Lane Cove West, NSW, Aus	9900 8400	Received: Due: Priority: Contact Name:	Jan 20, 2017 5:05 PM Jan 25, 2017 3 Day Rohan Hammond services Manager : Nibha Vaidya
ourne ingston	Oak eigh VIC Phone: +61 NATA # 1461 Site # 1201 &	ject ID:	52304	'													, Lane C	Euro	ofins mgt Analytical S	ervices Manager : Nibha Vaidya
Meth 2-5	ABN-50 005 085 521 e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au			imple Detail			Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Semivolatile Chlorinated Hydrocarbons	Volatile Organics	tas annsiom Eurofins / mgt Unit F3, Building F, 16 Mars Roa			
			ory - NATA Site		271															
			- NATA Site # 1				Х	Х	Х	Х	X	Х	X	Х	Х	Х	X	Х		
			y - NATA Site #																	
		Laboratory - N	NATA Site # 182	217																
	Tgo o	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
	= 3	BH01_0.24- 0.25	Jan 19, 2017	Time	Soil	S17-Ja11505	Х		Х	Х	Х	Х	Х	х	Х	Х	х	Х		
		BH02_0.6-0.7	Jan 19, 2017		Soil	S17-Ja11506		Х												
S		BH03_0.5-0.6			Soil	S17-Ja11507	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
ofins		= BH06_0.75- 0.85	Jan 19, 2017		Soil	S17-Ja11508	Х		Х	Х	Х	Х	Х	Х	Х	Х	х	Х		
-		QA20170119	Jan 19, 2017		Soil	S17-Ja11509	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	νX		

Χ

💸 eurofi

Jan 20, 2017

Jan 20, 2017

Jan 20, 2017

B20170120

S20170120

RB20170120

Water

Water

Water

S17-Ja11510

S17-Ja11511

S17-Ja11512

Date Reported:Jan 25

201

Х

Χ

Х

х х

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St

Sydney NSW 2000

WALSH BAY

52304

Order No.: Report #:

531205

02 8245 0300

Phone: Fax:

Received: Due:

Jan 20, 2017 5:05 PM Jan 25, 2017

Priority:

3 Day Rohan Hammond Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN = 50 005 085 521 Photographic Com NAT NATIONAL COM NA	. Elivii osales e euloiiiis.com www.eurofins.com.au	Sample Detail	Asbestos Absence / Presence	НОГД	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Semivolatile Chlorinated Hydrocarbons	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons
el	lbo	urne Laboratory - NATA Site # 1254 & 14271												
		y Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
is	sba	ne Laboratory - NATA Site # 20794												
r	th	Laboratory - NATA Site # 18217												
s	st C	ounts	4	1	5	4	4	4	5	6	5	5	4	5
100														

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per Kilogram ma/l: milligrams per litre ug/I: micrograms per litre ppm: Parts per million ppb: Parts per billion %: Percentage

ora/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within NCP

TFO Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Page 7 of 15

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank				1 3.00	
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Diblomoetriane 1.2-Diblomoetriane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
• •		1		Pass	
1.2.4-Trimethylbenzene 1.3-Dichlorobenzene	mg/L	< 0.001	0.001 0.001	Pass	
	mg/L	< 0.001		†	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Semivolatile Chlorinated Hydrocarbons					
1.2-Dichlorobenzene	mg/L	< 0.002	0.002	Pass	
1.2.4-Trichlorobenzene	mg/L	< 0.002	0.002	Pass	
1.2.4.5-Tetrachlorobenzene	mg/L	< 0.002	0.002	Pass	
1.3-Dichlorobenzene	mg/L	< 0.002	0.002	Pass	
1.4-Dichlorobenzene	mg/L	< 0.002	0.002	Pass	
Hexachlorobenzene	mg/L	< 0.002	0.002	Pass	
Hexachlorobutadiene	mg/L	< 0.002	0.002	Pass	
Hexachlorocyclopentadiene	mg/L	< 0.004	0.004	Pass	
Hexachloroethane	mg/L	< 0.002	0.002	Pass	
Pentachlorobenzene	mg/L	< 0.002	0.002	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1				
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	1

Test	Units	Result 1	Ac	ceptance Limits	Pass Limits	Qualifying Code
Chromium	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery	1 0					
Total Recoverable Hydrocarbons - 1999 NEPM Fi	ractions					
TRH C6-C9	%	85		70-130	Pass	
TRH C10-C14	%	102		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	99		70-130	Pass	
Toluene	%	103		70-130	Pass	
Ethylbenzene	%	104		70-130	Pass	
m&p-Xylenes	%	102		70-130	Pass	
o-Xylene	%	101		70-130	Pass	
Xylenes - Total	%	102		70-130	Pass	
LCS - % Recovery						
Volatile Organics						
1.1-Dichloroethane	%	113		70-130	Pass	
1.1-Dichloroethene	%	118		70-130	Pass	
1.1.1-Trichloroethane	%	98		70-130	Pass	
1.1.1.2-Tetrachloroethane	%	82		70-130	Pass	
1.1.2-Trichloroethane	%	99		70-130	Pass	
1.1.2.2-Tetrachloroethane	%	102		70-130	Pass	
1.2-Dibromoethane	%	96		70-130	Pass	
1.2-Dichlorobenzene	%	101		70-130	Pass	
1.2-Dichloroethane	%	127		70-130	Pass	
1.2-Dichloropropane	%	108		70-130	Pass	
1.2.3-Trichloropropane	%	111		70-130	Pass	
1.2.4-Trimethylbenzene	%	108		70-130	Pass	
1.3-Dichlorobenzene	%	101		70-130	Pass	
1.3-Dichloropropane	%	107		70-130	Pass	
1.3.5-Trimethylbenzene	%	109		70-130	Pass	
1.4-Dichlorobenzene	%	101		70-130	Pass	
2-Butanone (MEK)	%	84		70-130	Pass	
2-Propanone (Acetone)	%	94		70-130	Pass	
4-Chlorotoluene	%	106		70-130	Pass	
4-Methyl-2-pentanone (MIBK)	%	105		70-130	Pass	
Allyl chloride	%	115		70-130	Pass	
Bromobenzene	%	120		70-130	Pass	
Bromochloromethane	%	126		70-130	Pass	
Bromodichloromethane	%	98		70-130	Pass	
Bromoform	%	76		70-130	Pass	
Bromomethane	%	96		70-130	Pass	
Carbon disulfide	%	95		70-130	Pass	
Carbon Tetrachloride	%	83		70-130	Pass	
Chlorobenzene	%	98		70-130	Pass	
Chloroethane	%	116		70-130	Pass	
	%	108				
Chloromothana	% %			70-130	Pass	
Chloromethane		124		70-130	Pass	
cis-1.2-Dichloroethene cis-1.3-Dichloropropene	% %	99 82		70-130 70-130	Pass Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dibromochloromethane	%	80	70-130	Pass	
Dibromomethane	%	106	70-130	Pass	
Dichlorodifluoromethane	%	105	70-130	Pass	
lodomethane	%	102	70-130	Pass	
Isopropyl benzene (Cumene)	%	98	70-130	Pass	
Methylene Chloride	%	126	70-130	Pass	
Styrene	%	96	70-130	Pass	
Tetrachloroethene	%	84	70-130	Pass	
trans-1.2-Dichloroethene	%	114	70-130	Pass	
trans-1.3-Dichloropropene	%	90	70-130	Pass	
Trichloroethene	%	94	70-130	Pass	
Trichlorofluoromethane	%	114	70-130	Pass	
Vinyl chloride	%	124	70-130	Pass	
LCS - % Recovery		<u>'</u>			
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
Naphthalene	%	98	70-130	Pass	
TRH C6-C10	%	95	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	102	70-130	Pass	
Acenaphthylene	%	95	70-130	Pass	
Anthracene	%	109	70-130	Pass	
Benz(a)anthracene	%	92	70-130	Pass	
Benzo(a)pyrene	%	90	70-130	Pass	
Benzo(b&j)fluoranthene	%	77	70-130	Pass	
Benzo(g.h.i)perylene	%	95	70-130	Pass	
Benzo(k)fluoranthene	%	98	70-130	Pass	
Chrysene	%	102	70-130	Pass	
Dibenz(a.h)anthracene	%	83	70-130	Pass	
Fluoranthene	%	104	70-130	Pass	
Fluorene	%	103	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	83	70-130	Pass	
Naphthalene	%	102	70-130	Pass	
Phenanthrene	%	108	70-130	Pass	
Pyrene	%	106		Pass	
LCS - % Recovery					
Semivolatile Chlorinated Hydrocarbons					
1.2.4-Trichlorobenzene	%	100	70-130	Pass	
1.3-Dichlorobenzene	%	100	70-130	Pass	
1.4-Dichlorobenzene	%	100	70-130	Pass	
LCS - % Recovery	<u> </u>				
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
TRH >C10-C16	%	108	70-130	Pass	
LCS - % Recovery		•			
Heavy Metals					
Arsenic	%	104	70-130	Pass	
Cadmium	%	115	70-130	Pass	
Chromium	%	101	70-130	Pass	
Copper	%	96	70-130	Pass	
Lead	%	97	70-130	Pass	
Mercury	%	89	70-130	Pass	
Nickel	%	95	70-130	Pass	
Zinc	%	103	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
BTEX				Result 1			
Benzene	S17-Ja09604	NCP	%	97	70-130	Pass	
Toluene	S17-Ja09604	NCP	%	99	70-130	Pass	
Ethylbenzene	S17-Ja09604	NCP	%	99	70-130	Pass	
m&p-Xylenes	S17-Ja09604	NCP	%	99	70-130	Pass	
o-Xylene	S17-Ja09604	NCP	%	97	70-130	Pass	
Xylenes - Total	S17-Ja09604	NCP	%	98	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1			
TRH C6-C9	S17-Ja09604	NCP	%	84	70-130	Pass	
Spike - % Recovery							
Volatile Organics				Result 1			
1.1-Dichloroethane	S17-Ja07282	NCP	%	116	70-130	Pass	
1.1-Dichloroethene	S17-Ja07282	NCP	%	116	70-130	Pass	
1.1.1-Trichloroethane	S17-Ja07282	NCP	%	99	70-130	Pass	
1.1.1.2-Tetrachloroethane	S17-Ja07282	NCP	%	81	70-130	Pass	
1.1.2-Trichloroethane	S17-Ja07282 S17-Ja07282	NCP	%	106	70-130	Pass	
1.1.2-Trichioroethane	S17-Ja07282 S17-Ja07282	NCP	<u>%</u> %	118	70-130	Pass	
1.2-Dibromoethane	S17-Ja07282	NCP	%	100	70-130	Pass	
1.2-Dichlorobenzene	S17-Ja07282	NCP	%	101	70-130	Pass	
1.2-Dichloroethane	S17-Ja07282	NCP	%	121	70-130	Pass	
1.2-Dichloropropane	S17-Ja07282	NCP	%	112	70-130	Pass	
1.2.3-Trichloropropane	S17-Ja07282	NCP	%	122	70-130	Pass	
1.2.4-Trimethylbenzene	S17-Ja07282	NCP	%	105	70-130	Pass	
1.3-Dichlorobenzene	S17-Ja07282	NCP	%	99	70-130	Pass	
1.3-Dichloropropane	S17-Ja07282	NCP	%	112	70-130	Pass	
1.3.5-Trimethylbenzene	S17-Ja07282	NCP	%	106	70-130	Pass	
1.4-Dichlorobenzene	S17-Ja07282	NCP	%	100	70-130	Pass	
2-Butanone (MEK)	S17-Ja07282	NCP	%	95	70-130	Pass	
2-Propanone (Acetone)	S17-Ja07282	NCP	%	114	70-130	Pass	
4-Chlorotoluene	S17-Ja07282	NCP	%	106	70-130	Pass	
4-Methyl-2-pentanone (MIBK)	S17-Ja07282	NCP	%	128	70-130	Pass	
Allyl chloride	S17-Ja07282	NCP	%	107	70-130	Pass	
Bromobenzene	S17-Ja07282	NCP	%	118	70-130	Pass	
Bromochloromethane	S17-Ja07282	NCP	%	126	70-130	Pass	
Bromodichloromethane	S17-Ja07282	NCP	%	93	70-130	Pass	
Bromomethane	S17-Ja07282	NCP	%	77	70-130	Pass	
Carbon disulfide	S17-Ja07282	NCP	%	102	70-130	Pass	
Carbon Tetrachloride	S17-Ja07282	NCP	%	78	70-130	Pass	
Chlorobenzene	S17-Ja07282	NCP	%	104	70-130	Pass	
Chloroethane	S17-Ja07282	NCP	%	118	70-130	Pass	
Chloroform	S17-Ja07282	NCP	%	110	70-130	Pass	
Chloromethane	S17-Ja07282	NCP	%	109	70-130	Pass	
cis-1.2-Dichloroethene	S17-Ja07282	NCP	%	105	70-130	Pass	
cis-1.3-Dichloropropene	S17-Ja07282	NCP	%	82	70-130	Pass	
Dibromochloromethane	S17-Ja07282	NCP	//	74	70-130	Pass	
Dibromomethane	S17-Ja07282	NCP	<u> </u>	110	70-130	Pass	
Dichlorodifluoromethane	S17-Ja07282	NCP	%	121	70-130	Pass	
Isopropyl benzene (Cumene)	S17-Ja07282	NCP	% %	102	70-130	Pass	
· · · · · · · · · · · · · · · · · · ·							
Methylene Chloride	S17-Ja07282	NCP	%	128	70-130	Pass	
Styrene	S17-Ja07282	NCP	%	100	70-130	Pass	
Tetrachloroethene	S17-Ja07282	NCP	%	88	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
trans-1.3-Dichloropropene	S17-Ja07282	NCP	%	87			70-130	Pass	
Trichloroethene	S17-Ja07282	NCP	%	97			70-130	Pass	
Trichlorofluoromethane	S17-Ja07282	NCP	%	110			70-130	Pass	
Vinyl chloride	S17-Ja07282	NCP	%	100			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbon	ns - 2013 NEPM Fract	ions		Result 1					
Naphthalene	S17-Ja13149	NCP	%	91			70-130	Pass	
TRH C6-C10	S17-Ja09604	NCP	%	93			70-130	Pass	
Spike - % Recovery			,,,				12.122		
Heavy Metals				Result 1					
Arsenic	S17-Ja11512	СР	%	86			70-130	Pass	
Cadmium	S17-Ja11512	CP	%	88			70-130	Pass	
	S17-Ja11512	CP	<u> </u>	84			70-130	Pass	
Conner		CP	<u>%</u> %	83			70-130		
Copper	S17-Ja11512	1 1						Pass	
Lead	S17-Ja11512	CP	%	84			70-130	Pass	
Mercury	S17-Ja11512	CP	%	82			70-130	Pass	
Nickel	S17-Ja11512	CP	%	83			70-130	Pass	
Zinc	S17-Ja11512	CP	%	88			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				,	, , ,				
BTEX				Result 1	Result 2	RPD			
Benzene	S17-Ja09602	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S17-Ja09602	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S17-Ja09602	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S17-Ja09602	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S17-Ja09602	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S17-Ja09602	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbor	ns - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ja09602	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate				•					
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dibromoethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
• •		NCP		1					
1.2.3-Trichloropropane	\$17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S17-Ja07281	 	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Propanone (Acetone)	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Allyl chloride	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromochloromethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromomethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
		NCP							

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
cis-1.2-Dichloroethene	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
cis-1.3-Dichloropropene	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromochloromethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromomethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dichlorodifluoromethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iodomethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Isopropyl benzene (Cumene)	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Styrene	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichlorofluoromethane	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Vinyl chloride	S17-Ja07281	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C10	S17-Ja09602	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ja09381	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M17-Ja09381	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M17-Ja09369	NCP	mg/L	0.002	0.002	4.0	30%	Pass	
Copper	M17-Ja09369	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	M17-Ja09381	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	M17-Ja09381	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M17-Ja09381	NCP	mg/L	0.003	0.003	7.0	30%	Pass	

Report Number: 531205-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager Rvan Hamilton Senior Analyst-Organic (NSW) Ryan Hamilton Senior Analyst-Volatile (NSW) Ryan Hamilton Senior Analyst-Metal (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (NSW & WA) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

Com pany
Address:

Address WALSH BAY

52304

Order No.: Received: Jan 20, 2017 5:05 PM 531205 Jan 25, 2017

Report #: Due: Phone: 02 8245 0300 Priority:

3 Day Rohan Hammond Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN – 50 005 085 521 Phe e.mail : EnviroSales@eurofins.com NA' web : www.eurofins.com.au		Sa	mple Detail			Asbestos Absence /Presence	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Semivolatile Chlorinated Hydrocarbons	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons
elbe	urne Laborato	ory - NATA Site	# 1254 & 142	271													
d n	ey Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
isb	ne Laborator	y - NATA Site #	20794														
erth	Laboratory - N	IATA Site # 182	217														
	ral Laboratory																
mgt •	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
7	BH01_0.24- (.25	Jan 19, 2017		Soil	S17-Ja11505	Х		Х	Х	Х	Х	Х	Х	Х	Х	х	Х
	BH02_0.6-0.7	Jan 19, 2017		Soil	S17-Ja11506		Х										
	BH03_0.5-0.6	Jan 19, 2017		Soil	S17-Ja11507	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	SBH06_0.75- (.85	Jan 19, 2017		Soil	S17-Ja11508	Х		х	х	х	Х	х	х	х	х	х	Х
	QA20170119	Jan 19, 2017		Soil	S17-Ja11509	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	B20170120	Jan 20, 2017		Water	S17-Ja11510								Х				
	S20170120	Jan 20, 2017		Water	S17-Ja11511								Х				
	RB20170120	Jan 20, 2017		Water	S17-Ja11512			Х				Х		Х	Х		Х
																·	

Fax:

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St

Sydney NSW 2000

WALSH BAY

52304

Order No.: Report #:

531205

02 8245 0300

Phone: Fax:

Received: Due:

Jan 20, 2017 5:05 PM Jan 25, 2017

Priority:

3 Day Rohan Hammond Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

ABN = 50 005 085 521 Photographic Com NAT NATIONAL COM NA	. Elivii odales e euloiiiis.com www.eurofins.com.au	Sample Detail	Asbestos Absence / Presence	НОГД	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Semivolatile Chlorinated Hydrocarbons	Volatile Organics	Moisture Set	Total Recoverable Hydrocarbons
el	lbo	urne Laboratory - NATA Site # 1254 & 14271												
10	dne	y Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
is	sba	ne Laboratory - NATA Site # 20794												
<u>:r</u>	th	Laboratory - NATA Site # 18217												
s	st C	ounts	4	1	5	4	4	4	5	6	5	5	4	5
Same.														

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web

web : www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW & WA) P/L

Contact name: Rohan Hammond
Project name: WALSH BAY
Project ID: 52304

COC number: Not provided

Turn around time: 3 Day

Date/Time received: Jan 20, 2017 5:05 PM

Eurofins | mgt reference: 531205

Sample information

- ☑ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 15.5 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- ☑ Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Rohan Hammond - rhammond@jbsg.com.au.

010651

CHAIN OF CUSTODY

PROJECT NO.: 52304						LABO	RATO	RY BA	TCH N	O.:								
PROJECT NAME: Walshs	Bay					SAM	PLERS	N	4/	RH								
DATE NEEDED BY: Star A	777	12 hr	TAT			QCL	EVEL:	NEPM	(2013	}								
PHONE: Sydney: 02 8245 030	0 Perth: 0	8 9488 01	00 Brist	pane: 07 3112 2688								12						
SEND REPORT & INVOICE TO:	(1) adminn	sw@jbsg.	com.au; (2)	sg.com.	au; (3)	Sd	കരി	CO.J.		Djbsg.con	n.au	N	Je J		_	Com-ay	(1)
COMMENTS / SPECIAL HANDLING / STORA						1 34		2	1						TYPE (STOS		
						Heavy metal	E YEL	A HS	8	Assestas			!		IDENTIFICATION TO	NEPM/WA SISK	531205	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	I	- a	06	a	₹ 2					<u>5</u>		NOTES:	0.00
TBHO1 -0.24 -0.25	Soil	19.1	<u>-</u>	Jav + 1ce		X)	$\langle \rangle \langle$	$\times\!\!\!\times$	Y >	\mathcal{M}			-				JBHOZ	PIECES
TBH02-0.6-0.7	501	19.1		Jai tice		\bowtie	SX	XX	$ X\rangle$							Ĉ	Samply very small	4
TBH03-05-0.6	Soil	20.1		Jar + ice		$ \chi\rangle$	\propto	$\times\!\!\!/\!\!\!\times$		\$ <u>~</u> 1_	1 1		_				malyse	_
JBH06-0.75-085	Soil	19.1		For tice		\times	$\langle \times \rangle$	$\times\!\!\!\!/\!\!\!\times$	(X)		1 1							
QA20170119	Soil	19.1		Jart ice		\bowtie	$\leq \times$	$\times \!\!\! \times$	$\langle\!\!\langle \!\! \rangle\!\!\rangle$								- Publital Ic	_
TB20170110	Water_	20.1		vial + ve			$\bot X$		1 1		\perp	\perp	_				if possime	
TS 2017 0120	Noter	20.1		vial tice			\times											_
8320170120	Water	20.1		bottles t vi alstice		$ X _{\lambda}$	$\langle \times \rangle$	$\times \times$	$\langle \times \rangle$	\leq						\sqcup		-1
																	<u> </u>	_
		<u></u>																
						П												
																	-	
						1												
															1			
									\top									
RELINQUISHED BY:				METHOD OF SHIPMENT:				RECE	IVED BY						EIVING L			
NAME: NWells DATE:	0/1/11		IGNMENT I	NOTE NO.		NAM DATI	1	up	2	15:0	9	OLER SEA			Inta	act	Broken	
OF: JBS&G NAME: DATE:	, ,	114111	IGNMENT I	NOTE NO.		NAN	1E:	1		DATE:		OLER SEA	AL – Yes.	No	Int	act	Broken	
						OF:			0	10/01				(1)57-				
OF:	etie, I w Earl de	TRAM	SPORT CO	Acid Prsvd.; C = Sodlum Hydroxide Prsvd; VC	= Hydenchia	oric Acid f	Dreud Wi-	1: VS = S:			CO I: S = Sulfacio	OLER TEN	VIP 1: Z = 2in/	eg C	= EOTA Pre	vd: ST	Sterile Bottle: O = Other	-
Container & Preservative Codes: P = Pla	Suc; J = 300 Jar;	1100 SSP10 - 0	e, 14 - MILLIE	mula risva, 6 - sociali riyaroxide risva; ve	- rightoulk	ALIC MEIGH	. 3+0. V10	n, +3 = 21	arrante At	I I I I WILL AND	-,		-y no 1 de 1715					

IMSO FormsO13 - Chain of Custody - Generic

Alena Bounkeua

From: Nibha Vaidya

Sent: Friday, 20 January 2017 8:28 PM **To:** !AU04_CAU001_EnviroSampleNSW

Subject: FW: WALSHS BAY (52304) - Report 531205

Follow Up Flag: Follow up Flag Status: Flagged

FYI

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Sumi Dorairaj [mailto:Sdorairaj@jbsg.com.au]

Sent: Friday, 20 January 2017 8:18 PM

To: Nibha Vaidya; Nicola Wells

Cc: Rohan Hammond

Subject: Re: WALSHS BAY (52304) - Report 531205

Hi Nibha, thanks for the information. Please remove jbh02-0.6-0.7 from the requested analysis for this project. Thanks, Sumi

Sent from my Samsung GALAXY S5 on the Telstra 4G network

----- Original message -----

From: Nibha Vaidya

Date:20/01/2017 6:55 PM (GMT+10:00)

To: Nicola Wells

Cc: Rohan Hammond, Sumi Dorairaj

Subject: WALSHS BAY (52304) - Report 531205

Hi Nicola,

We have received the attached batch of samples. As indicated in the COC, 'JBH02-0.6-0.7' has a very limited sample and therefore, if we were to carry out all of the requested tests, the LORs may have to be raised. Will that be okay with you?

Further, if you would like this sample crushed and pulverised prior to analysis, it will have to be sent out and therefore, 3 day TAT will not be achievable. Please let me know how you would like us to proceed.

Kind Regards,

Nibha Vaidya

Analytical Services Manager

Eurofins | mgt

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 2 9900 8415 Mobile: +61 499 900 805 Fax: +61 2 9420 2977

Email: NibhaVaidya@eurofins.com

Website: www.eurofins.com.au/environmental-testing

Are you on TOP of PFASs? Find out more by reading Eurofins | mgt's Environote by clicking here

Click here to report this email as spam.

Scanned By Websense For Euro fins

Rupan Virk

From:

Nibha Vaidya

Sent: To: Tuesday, 24 January 2017 10:12 AM !AU04_CAU001_EnviroSampleNSW

Subject:

FW: WALSHS BAY (52304) - Report 531205

Inbary 10,15 bus

EYI

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: : NibhaVaidya@eurofins.com

From: Sumi Dorairaj [mailto:Sdorairaj@jbsg.com.au]
Sent: Tuesday, 24 January 2017 9:49 AM

To: Nibha Vaidya; Nicola Wells

Cc: Rohan Hammond

Subject: RE: WALSHS BAY (52304) - Report 531205

Hi Nibha,

Please go with TRH, heavy metals, PAHs and SVOCS if you can on the RB20170120 sample. We are not concerned iuf the LORs need to be raised as long as the reason is noted on the analysis certificate.

Thanks, Sumi

Sumi Dorairaj | Environmental Consultant | JBS&G Sydney | Melbourne | Adelaide | Perth | Brisbane Level 1, 50 Margaret Street Sydney NSW 2000

T: 02 8245 0300 | M: 0427 782 127 | www.jbsg.com.au

Contaminated Land | Groundwater Remediation | Auditing and Compliance | Assessments and Approvals | Occupational Hygiene and Monitoring

If you would like to send through large electronic files (>25MB), please use JBS&G's secure internet-based file delivery system located at http://dropbox.yousendit.com/JBS&G. Place 'Sumi Dorairaj - Sydney' in the subject.

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that this email or any attachments are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subject to <u>limitations</u>.

From: Nibha Vaidya [mailto:NibhaVaidya@eurofins.com]

Sent: Tuesday, January 24, 2017 9:36 AM

To: Sumi Dorairaj < Sdorairaj@jbsg.com.au >; Nicola Wells < NWells@jbsg.com.au >

Cc: Rohan Hammond < RHammond@jbsg.com.au > Subject: RE: WALSHS BAY (52304) - Report 531205

Hì Sumi,

JBS & G Australia (NSW & WA) P/L Level 1, 50 Margaret St Sydney NSW 2000 lac-MRA

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Rohan Hammond

Report531195-AProject nameWALSH BAYProject ID52304Received DateJan 20, 2017

Client Sample ID			QV01_FRONT	QV01_BACK	JBH06_AIR_F RONT	JBH06_AIR_B ACK
Sample Matrix			Air	Air	Air	Air
Eurofins mgt Sample No.			S17-Ja11438	S17-Ja11439	S17-Ja11440	S17-Ja11441
Date Sampled			Jan 20, 2017	Jan 20, 2017	Jan 20, 2017	Jan 20, 2017
Test/Reference	LOR	Unit				
VOCs in Ambient Air by GC/MS	•					
Naphthalene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloropropene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromo-3-chloropropane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
2-Chlorotoluene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
2.2-Dichloropropane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Dibromomethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
n-Butylbenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
n-Propylbenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
p-Isopropyltoluene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			QV01_FRONT	QV01_BACK	JBH06_AIR_F RONT	JBH06_AIR_B ACK
Sample Matrix			Air	Air	Air	Air
Eurofins mgt Sample No.			S17-Ja11438	S17-Ja11439	S17-Ja11440	S17-Ja11441
Date Sampled			Jan 20, 2017	Jan 20, 2017	Jan 20, 2017	Jan 20, 2017
Test/Reference	LOR	Unit				
VOCs in Ambient Air by GC/MS						
sec-Butylbenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Styrene	5	Total ug	< 5	< 5	< 5	< 5
tert-Butylbenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl chloride	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes - Total	1.5	Total ug	< 1.5	< 1.5	< 1.5	< 1.5
Fluorobenzene (surr.)	1	%	99	91	91	92
4-Bromofluorobenzene (surr.)	1	%	99	95	92	92
Dibromofluoromethane (surr.)	1	%	101	90	94	92
1.2-Dichlorobenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichlorobenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trichlorobenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobutadiene	0.5	Total ug	< 0.5	< 0.5	< 0.5	< 0.5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeVOCs in Ambient Air by GC/MSMelbourneJan 20, 201714 Day

- Method: LTM-ORG-2030 VOCs in Ambient Air by GC/MS

💸 eurofi	2,	S		Ε	mgt					ABN-50 05 085 521		Town Close 5.3166 3.8564 5000	Sydney Unit F3, Building F #6 Mars Road ane Cove West NSW 2066
	7	I A		(e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au		Con Add	Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
ounts	BH06_AIR_B	BH06_AIR_F	V01_BACK	V01_FRONT	Sample ID	al Laboratory						pany Name: ress: ect Name: ect ID:	
	Jan 20, 2017	Jan 20, 2017	Jan 20, 2017	Jan 20, 2017	Sample Date		NATA Site # 182	- NATA Site # 1 y - NATA Site #	ory - NATA Site	Sa		JBS & G Aus Level 1, 50 N Sydney NSW 2000 WALSH BAY 52304	
					Sampling Time	-17				mple Detail			
	Air	Air	Air	Air	Matrix				271			& WA) P/L	
	S17-Ja11441	S17-Ja11440	S17-Ja11439	S17-Ja11438	LAB ID								
4	Х	х	Х	Х					Х	Ambient Air by GC/MS	VOCs in Ambient A		
												Order No.: Report #: Phone: Fax:	
												531195 02 8245 0300	
Data Renorted: Jan 25, 2017										Eurofins mgt Unit F3, Building F, ABN : 50 005 086	Building F, 16 Mars Roa 50 005 085 521 Teleph	d, Lane Cove West, NSW, Aus one: +61 2 9900 8400	ralia, 2066
												Due: S Priority: S Contact Name: F	
												Jan 20, 2017 5:05 PM Jan 25, 2017 3 Day Rohan Hammond vices Manager : Nibha Vaidya	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water. $% \label{eq:case_eq} % \label{eq:case_eq}$

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
VOCs in Ambient Air by GC/MS					
Naphthalene	Total ug	< 0.5	0.5	Pass	
1.1-Dichloroethane	Total ug	< 0.5	0.5	Pass	
1.1-Dichloroethene	Total ug	< 0.5	0.5	Pass	
1.1-Dichloropropene	Total ug	< 0.5	0.5	Pass	
1.1.1-Trichloroethane	Total ug	< 0.5	0.5	Pass	
1.1.1.2-Tetrachloroethane	Total ug	< 0.5	0.5	Pass	
1.1.2-Trichloroethane	Total ug	< 0.5	0.5	Pass	
1.1.2.2-Tetrachloroethane	Total ug	< 0.5	0.5	Pass	
1.2-Dibromo-3-chloropropane	Total ug	< 0.5	0.5	Pass	
1.2-Dibromoethane	Total ug	< 0.5	0.5	Pass	
1.2-Dichloroethane	Total ug	< 0.5	0.5	Pass	
1.2-Dichloropropane	Total ug	< 0.5	0.5	Pass	
1.2.3-Trichloropropane	Total ug	< 0.5	0.5	Pass	
1.2.4-Trimethylbenzene	Total ug	< 0.5	0.5	Pass	
1.3-Dichloropropane	Total ug	< 0.5	0.5	Pass	
1.3.5-Trimethylbenzene	Total ug	< 0.5	0.5	Pass	
2-Chlorotoluene	Total ug	< 0.5	0.5	Pass	
2.2-Dichloropropane	Total ug	< 0.5	0.5	Pass	
4-Chlorotoluene	Total ug	< 0.5	0.5	Pass	
Benzene	Total ug	< 0.5	0.5	Pass	
Bromochloromethane	Total ug	< 0.5	0.5	Pass	
Bromodichloromethane	Total ug	< 0.5	0.5	Pass	
Bromoform	Total ug	< 0.5	0.5	Pass	
Carbon Tetrachloride	Total ug	< 0.5	0.5	Pass	
Chlorobenzene	Total ug	< 0.5	0.5	Pass	
Chloroform	Total ug	< 0.5	0.5	Pass	
cis-1.2-Dichloroethene	Total ug	< 0.5	0.5	Pass	
cis-1.3-Dichloropropene	Total ug	< 0.5	0.5	Pass	
Dibromochloromethane	Total ug	< 0.5	0.5	Pass	
Dibromomethane	Total ug	< 0.5	0.5	Pass	
Ethylbenzene	Total ug	< 0.5	0.5	Pass	
Isopropyl benzene (Cumene)	Total ug	< 0.5	0.5	Pass	
n-Butylbenzene	Total ug	< 0.5	0.5	Pass	
n-Propylbenzene	Total ug	< 0.5	0.5	Pass	
p-Isopropyltoluene	Total ug	< 0.5	0.5	Pass	
sec-Butylbenzene	Total ug	< 0.5	0.5	Pass	
Styrene	Total ug	< 5	5	Pass	
tert-Butylbenzene	Total ug	< 0.5	0.5	Pass	
Tetrachloroethene	Total ug	< 0.5	0.5	Pass	
Toluene	Total ug	< 0.5	0.5	Pass	
trans-1.3-Dichloropropene	Total ug	< 0.5	0.5	Pass	
Trichloroethene	Total ug	< 0.5	0.5	Pass	
Trichlorofluoromethane	Total ug	< 0.5	0.5	Pass	
Vinyl chloride	Total ug	< 0.5	0.5	Pass	
Xylenes - Total	Total ug	< 1.5	1.5	Pass	
1.2-Dichlorobenzene	Total ug	< 0.5	0.5	Pass	
1.2.3-Trichlorobenzene	Total ug	< 0.5	0.5	Pass	
1.2.4-Trichlorobenzene	Total ug	< 0.5	0.5	Pass	
1.3-Dichlorobenzene	Total ug	< 0.5	0.5	Pass	
1.4-Dichlorobenzene	Total ug	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobutadiene	Total ug	< 0.5	0.5	Pass	
LCS - % Recovery					
VOCs in Ambient Air by GC/MS					
Naphthalene	%	92	70-130	Pass	
1.1-Dichloroethene	%	89	70-130	Pass	
1.1-Dichloropropene	%	98	75-125	Pass	
1.1.1-Trichloroethane	%	96	70-130	Pass	
1.2-Dibromo-3-chloropropane	%	91	75-125	Pass	
1.2-Dichloroethane	%	86	70-130	Pass	
Benzene	%	91	70-130	Pass	
Ethylbenzene	%	97	70-130	Pass	
Toluene	%	94	70-130	Pass	
Trichloroethene	%	89	70-130	Pass	
Xylenes - Total	%	95	70-130	Pass	
1.2-Dichlorobenzene	%	87	70-130	Pass	
1.2.3-Trichlorobenzene	%	89	70-130	Pass	
1.2.4-Trichlorobenzene	%	90	70-130	Pass	
1.4-Dichlorobenzene	%	96	70-130	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Nibha Vaidya Analytical Services Manager
Joseph Edouard Senior Analyst-Organic (VIC)
Harry Bacalis Senior Analyst-Volatile (VIC)
Alex Petridis Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G Australia (NSW & WA) P/L

Level 1, 50 Margaret St

Sydney NSW 2000

WALSH BAY

52304

Order No.: Received: Jan 20, 2017 5:05 PM Report #: 531195

Fax:

Jan 25, 2017 Due: Phone: 02 8245 0300 Priority:

3 Day Rohan Hammond Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	ABN-50 005 085 521 Of a mail: EnviroSales@eurofins.com No web: www.eurofins.com.au Si								
	elb	ourne Laborato	ory - NATA Site	# 1254 & 142	?71		Х		
	/dn	ey Laboratory	- NATA Site # 1	8217					
	isk	ne Laborator	y - NATA Site #	20794					
	rth	Laboratory - N	NATA Site # 182	217					
	ter	ral Laboratory	,						
mgt	o	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
		QV01_FRONT	Jan 20, 2017		Air	S17-Ja11438	Х		
_		QV01_BACK	Jan 20, 2017		Air	S17-Ja11439	Х		
		JBH06_AIR_F RONT	Jan 20, 2017		Air	S17-Ja11440	Х		
		JBH06_AIR_B ACK	Jan 20, 2017		Air	S17-Ja11441	Х		
	st	Counts					4		

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW & WA) P/L

Contact name: Rohan Hammond
Project name: WALSH BAY
Project ID: 52304

COC number: Not provided Turn around time: 3 Day

Date/Time received: Jan 20, 2017 5:05 PM

Eurofins | mgt reference: 531195

Sample information

- ☑ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 28 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Rohan Hammond - rhammond@jbsg.com.au.

010652

CHAIN OF CUSTODY

PROJECT NO.: 52304						LABORATORY BATCH NO.:											
PROJECT NAME: Walsh Bay							SAMPLERS: E Howley										
DATE NEEDED BY: SALVAPPA 12 hr							QC LEVEL: NEPM (2013)										
PHONE: Sydney: 02 8245 03	00 Perth: (08 9488 01	.00 Bris														
SEND REPORT & INVOICE TO	SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2)@jbsg.com.au; (3)@jbsg.com.au Nwclist@jbsg.com.au																
COMMENTS / SPECIAL HANDLING / STO	RAGE OR DISPOS	AL-				0928)										TYPE O ASBEST	ros
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	No						$\perp \perp$				1 60	NOTES:
784 QVOI	Air	20.1		Carbon tube		×	\perp										
TBH06-A11	L			1		\times											
-								\top									
						I		11									
						11					1 1 -						****
		1												77			" '
							7					11-	+ +	1			1
	1				+		1		+		+					-	+
		1					+	++	++		++-	+		-	$\rightarrow \rightarrow$	\rightarrow	
							+	+++	++	+			-		-++		
		-	1			╂╌┼	+						+++	-			
		 				++	+	-	+	+							
	1	-				-	+	-		+		+	++				
	ļ	ļ			_	-	4-		-	_		-	+	_		\rightarrow	
					\perp		_	\perp								\rightarrow	<u> </u>
							\perp	\perp		\perp		1	$\perp \perp$	\perp			
				_													
RELINQUISHED B	Y:	3124		METHOD OF SHIPMENT:				REC	EIVED B	Υ;		2200	and like				B USE ONLY:
OF: JBS&G	20/1/1	1	SIGNMENT I			NAN DAT OF:		fur	par	Y	1:05		ER SEAL ER TEM			Intac	rt Broken
NAME: DATE:			SIGNMENT			NAN			1	DATI	E:	COOL	ER SEAL	_ Yes	No	Inta	ct Broken
OF:		TRAN	ISPORT CO			OF:			51	2	dol	COOL	ER TEM	P c	ieg C		
Container & Preservative Codes: P = Plastic; J = Soll Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd, Val; S = Sulfuric Acid Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other																	

IMSO FormsO13 - Chain of Custody - Generic

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

160571

Client:

JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St Sydney NSW 2000

Attention: R Hammond, S Dorairaj

Sample log in details:

Your Reference: 52304, Walsh Bay

No. of samples: 1 soil

Date samples received / completed instructions received 20/01/17 / 20/01/17

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 25/01/17 / 25/01/17

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

General Manager

VOCs in soil		
Our Reference: Your Reference	UNITS	160571-1 QC20170119
Your Releience	-	QC20170119
Date Sampled		19/01/2017
Type of sample		soil
Date extracted	-	23/01/2017
Date analysed	-	24/01/2017
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane	mg/kg	<1
trans-1,3-dichloropropene	mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
1,1,2-trichloroethane	mg/kg	<1
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1
Ethylbenzene	mg/kg	<1
bromoform	mg/kg	<1
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	mg/kg	<1

VOCs in soil	LINITO	160574.4
Our Reference: Your Reference	UNITS	160571-1 QC20170119
Tour Reference	-	QC20170119
Date Sampled		19/01/2017
Type of sample		soil
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	97
Surrogate aaa-Trifluorotoluene	%	72
Surrogate Toluene-da	%	99
Surrogate 4-Bromofluorobenzene	%	120

SVOCs in Soil		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
Date Sampled	-	19/01/2017
Type of sample		soil
Date extracted	-	23/01/2017
Date analysed	-	23/01/2017
Phenol	mg/kg	<0.5
Bis-(2-chloroethyl) ether	mg/kg	<1
2-Chlorophenol	mg/kg	<0.5
1,3-Dichlorobenzene	mg/kg	<0.5
1,4-Dichlorobenzene	mg/kg	<0.5
2-Methylphenol	mg/kg	<0.5
1,2-Dichlorobenzene	mg/kg	<0.5
Bis (2-chloroisopropyl) ether	mg/kg	<1
3/4-Methylphenol	mg/kg	<1
N-nitrosodi-n-propylamine	mg/kg	<1
Hexachloroethane	mg/kg	<0.5
Nitrobenzene	mg/kg	<1
Isophorone	mg/kg	<1
2,4-Dimethylphenol	mg/kg	<0.5
2-Nitrophenol	mg/kg	<0.5
Bis(2-chloroethoxy)methane	mg/kg	<1
2,4-Dichlorophenol	mg/kg	<0.5
1,2,4-Trichlorobenzene	mg/kg	<0.5
Naphthalene	mg/kg	<0.5
4-Chloroaniline	mg/kg	<1
Hexachlorobutadiene	mg/kg	<0.5
4-Chloro-3-methylphenol	mg/kg	<5
2-Methylnaphthalene	mg/kg	<0.5
Hexachlorocyclopentadiene	mg/kg	<2
2,4,6-trichlorophenol	mg/kg	<0.5
2,4,5-trichlorophenol	mg/kg	<0.5
,		
2-Chloronaphthalene	mg/kg	<0.5
2-nitroaniline	mg/kg	<1
Dimethylphthalate	mg/kg	<1
2,6-Dinitrotoluene	mg/kg	<1
Acenaphthylene	mg/kg	<0.5
3-Nitroaniline	mg/kg	<1
Acenaphthene	mg/kg	<0.5
2,4-dinitrophenol	mg/kg	<10
4-nitrophenol	mg/kg	<10
Dibenzofuran	mg/kg	<1
diethylphthalate	mg/kg	<1
4-chlorophenylphenylether	mg/kg	<1
4-nitroaniline	mg/kg	<1
Fluorene	mg/kg	<0.5

SVOCs in Soil		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
Date Sampled		19/01/2017
Type of sample		soil
2-methyl-4,6-dinitrophenol	mg/kg	<10
azobenzene	mg/kg	<1
4-bromophenylphenylether	mg/kg	<1
hexachlorobenzene	mg/kg	<0.5
pentachlorophenol	mg/kg	<5
Phenanthrene	mg/kg	1
Anthracene	mg/kg	<0.5
carbazole	mg/kg	<1
di-n-butylphthalate	mg/kg	<1
Fluoranthene		5.0
	mg/kg	5.0
Pyrene	mg/kg	
butylbenzylphthalate	mg/kg	<1
bis(2-ethylhexyl)phthalate	mg/kg	<1
Benzo(a)anthracene	mg/kg	3
Chrysene	mg/kg	3
di-n-octylphthalate	mg/kg	<1 -
Benzo(b+j+k)fluoranthene	mg/kg	5
Benzo(a)pyrene	mg/kg	3
Indeno(1,2,3-c,d)pyrene	mg/kg	1
Dibenzo(a,h)anthracene	mg/kg	<0.5
Benzo(g,h,i)perylene	mg/kg	1
ethylmethanesulfonate	mg/kg	<1
aniline	mg/kg	<1
pentachloroethane	mg/kg	<0.5
benzyl alcohol	mg/kg	<1
acetophenone	mg/kg	<1
N-nitrosomorpholine	mg/kg	<1
N-nitrosopiperidine	mg/kg	<1
2,6-dichlorophenol	mg/kg	<0.5
hexachloropropene-1	mg/kg	<0.5
N-nitroso-n-butylamine	mg/kg	<1
safrole	mg/kg	<1
1,2,4,5-tetrachlorobenzene	mg/kg	<0.5
cis and trans iso-safrole	mg/kg	<1
1,3-dinitrobenzene	mg/kg	<1
pentachlorobenzene	mg/kg	<0.5
1-naphthylamine	mg/kg	<1
2,3,4,6-tetrachlorophenol	mg/kg	<0.5
2-naphthylamine	mg/kg	<1
5-nitro-o-toluidine	mg/kg	<1
diphenylamine	mg/kg	<1
phenacetin	mg/kg	<1

	·	
SVOCs in Soil		
Our Reference:	UNITS	160571-1
Your Reference	_	QC20170119
Date Sampled		19/01/2017
Type of sample		soil
pentachloronitrobenzene	mg/kg	<1
dinoseb	mg/kg	<1
methapyrilene	mg/kg	<1
p-dimethylaminoazobenzene	mg/kg	<1
2-acetylaminofluorene	mg/kg	<0.5
		<0.5
7,12-dimethylbenz(a)anthracene	mg/kg	
3-methylcholanthrene	mg/kg	<0.5
a-BHC	mg/kg	<0.5
b-BHC	mg/kg	<0.5
g-BHC	mg/kg	<0.5
d-BHC	mg/kg	<0.5
Heptachlor	mg/kg	<0.5
Aldrin	mg/kg	<0.5
Heptachlor Epoxide	mg/kg	<0.5
g-Chlordane	mg/kg	<0.5
a-Chlordane	mg/kg	<0.5
Endosulfan I	mg/kg	<0.5
p,p'-DDE	mg/kg	<0.5
Dieldrin	mg/kg	<0.5
Endrin	mg/kg	<0.5
p,p'-DDD	mg/kg	<0.5
Endosulfan II	mg/kg	<0.5
Endrin Aldehyde	mg/kg	<0.5
p,p'-DDT	mg/kg	<0.5
Endrin Ketone	mg/kg	<0.5
Endosulfan Sulphate	mg/kg	<0.5
Methoxychlor	mg/kg	<1
Surrogate 2-fluorophenol	%	75
Surrogate Phenol-de	%	50
Surrogate Nitrobenzene-ds	%	65
Surrogate 2-fluorobiphenyl	%	101
Surrogate 2,4,6-Tribromophenol	%	83
Surrogate p-Terphenyl-d ₁₄	%	94
Sarrogato p Torphonyi a 14	, 0	9.

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
	-	
Date Sampled		19/01/2017
Type of sample		soil
Date extracted	-	23/01/2017
Date analysed	-	24/01/2017
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	72

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
	-	
Date Sampled		19/01/2017
Type of sample		soil
Date extracted	-	23/01/2017
Date analysed	-	24/01/2017
TRHC10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	150
TRH>C34-C40	mg/kg	<100
Total+veTRH(>C10-C40)	mg/kg	150
Surrogate o-Terphenyl	%	93

PAHs in Soil		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
	-	
Date Sampled		19/01/2017 soil
Type of sample		SOII
Date extracted	-	23/01/2017
Date analysed	-	23/01/2017
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	0.7
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	0.1
Phenanthrene	mg/kg	1.8
Anthracene	mg/kg	0.9
Fluoranthene	mg/kg	5.7
Pyrene	mg/kg	5.4
Benzo(a)anthracene	mg/kg	3.1
Chrysene	mg/kg	3.7
Benzo(b,j+k)fluoranthene	mg/kg	3.5
Benzo(a)pyrene	mg/kg	3.0
Indeno(1,2,3-c,d)pyrene	mg/kg	1.9
Dibenzo(a,h)anthracene	mg/kg	0.7
Benzo(g,h,i)perylene	mg/kg	2.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	4.6
Benzo(a)pyrene TEQ calc(half)	mg/kg	4.6
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	4.6
Total +ve PAH's	mg/kg	33
Surrogate p-Terphenyl-d14	%	98

Organochlorine Pesticides in soil		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
	-	
Date Sampled		19/01/2017
Type of sample		soil
Date extracted	-	23/01/2017
Date analysed	-	23/01/2017
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	113

Organophosphorus Pesticides		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
	-	
Date Sampled		19/01/2017
Type of sample		soil
Date extracted	-	23/01/2017
Date analysed	-	23/01/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	113

PCBs in Soil				
Our Reference:	UNITS	160571-1		
Your Reference		QC20170119		
	-			
Date Sampled		19/01/2017		
Type of sample		soil		
Date extracted	-	23/01/2017		
Date analysed	-	23/01/2017		
Aroclor 1016	mg/kg	<0.1		
Aroclor 1221	mg/kg	<0.1		
Aroclor 1232	mg/kg	<0.1		
Aroclor 1242	mg/kg	<0.1		
Aroclor 1248	mg/kg	<0.1		
Aroclor 1254	mg/kg	<0.1		
Aroclor 1260	mg/kg	<0.1		
Total +ve PCBs (1016-1260)	mg/kg	<0.1		
Surrogate TCLMX	%	113		

Envirolab Reference: 160571

Revision No: R 00

Acid Extractable metals in soil			
Our Reference:	UNITS	160571-1	
Your Reference		QC20170119	
	-		
Date Sampled		19/01/2017	
Type of sample		soil	
Date prepared	-	23/01/2017	
Date analysed	-	24/01/2017	
Arsenic	mg/kg	<4	
Cadmium	mg/kg	<0.4	
Chromium	mg/kg	5	
Copper	mg/kg	45	
Lead	mg/kg	65	
Mercury	mg/kg	<0.1	
Nickel	mg/kg	5	
Zinc	mg/kg	57	

Moisture		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
	-	
Date Sampled		19/01/2017
Type of sample		soil
Date prepared	-	23/01/2017
Date analysed	-	24/01/2017
Moisture	%	19

Envirolab Reference: 160571

Revision No: R 00

52304, Walsh Bay Client Reference:

Asbestos ID - soils		
Our Reference:	UNITS	160571-1
Your Reference		QC20170119
	-	
Date Sampled		19/01/2017
Type of sample		soil
Date analysed	-	24/01/2017
Sample mass tested	g	Approx.75g
Sample Description	-	Beige coarse-
		grained soil &
		rocks
Asbestos ID in soil	-	No asbestos
		detected at
		reporting limit of
		0.1g/kg
		Organic fibres
		detected
Trace Analysis	-	No asbestos
		detected

Envirolab Reference: 160571

Revision No: R 00

MethodID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" td="" the="" therefore"="" total=""></pql>
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

Envirolab Reference: 160571 Page 17 of 31

Revision No: R 00

Client Reference: 52304, Walsh Bay											
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
VOCs in soil						Base II Duplicate II %RPD		,			
Date extracted	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017			
Date analysed	-			24/01/2 017	[NT]	[NT]	LCS-3	24/01/2017			
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Chloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Vinyl Chloride	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Bromomethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Chloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Trichlorofluoromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
1,1-Dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
1,1-dichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-3	91%			
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
bromochloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
chloroform	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-3	92%			
2,2-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-3	87%			
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-3	79%			
1,1-dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Cyclohexane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
carbon tetrachloride	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Benzene	mg/kg	0.2	Org-014	<0.2	[NT]	[NT]	[NR]	[NR]			
dibromomethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
trichloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-3	86%			
bromodichloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-3	89%			
trans-1,3- dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Toluene	mg/kg	0.5	Org-014	<0.5	[NT]	[NT]	[NR]	[NR]			
1,3-dichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
dibromochloromethane	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-3	93%			
1,2-dibromoethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
tetrachloroethene	mg/kg	1	Org-014	<1	[NT]	[NT]	LCS-3	90%			
1,1,1,2- tetrachloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
chlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Ethylbenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
bromoform	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
m+p-xylene	mg/kg	2	Org-014	2	[NT]	[NT]	[NR]	[NR]			
styrene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
1,1,2,2- tetrachloroethane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
o-Xylene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II %RPD		,
isopropylbenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
bromobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
n-propyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
2-chlorotoluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
4-chlorotoluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
tert-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
sec-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
n-butyl benzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate Dibromofluorometha	%		Org-014	93	[NT]	[NT]	LCS-3	111%
Surrogate aaa- Trifluorotoluene	%		Org-014	73	[NT]	[NT]	LCS-3	90%
Surrogate Toluene-ds	%		Org-014	100	[NT]	[NT]	LCS-3	117%
Surrogate 4- Bromofluorobenzene	%		Org-014	121	[NT]	[NT]	LCS-3	115%

Client Reference: 52304, Walsh Bay										
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
SVOCs in Soil						Base II Duplicate II %RPD		,		
Date extracted	-			23/01/2 017	160571-1	23/01/2017 23/01/2017	LCS-3	23/01/2017		
Date analysed	-			23/01/2 017	160571-1	23/01/2017 23/01/2017	LCS-3	23/01/2017		
Phenol	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	LCS-3	40%		
Bis-(2-chloroethyl) ether	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
2-Chlorophenol	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	LCS-3	78%		
1,3-Dichlorobenzene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
1,4-Dichlorobenzene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	LCS-3	70%		
2-Methylphenol	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
1,2-Dichlorobenzene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
Bis (2-chloroisopropyl) ether	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
3/4-Methylphenol	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
N-nitrosodi-n- propylamine	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
Hexachloroethane	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
Nitrobenzene	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
Isophorone	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
2,4-Dimethylphenol	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
2-Nitrophenol	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
Bis(2-chloroethoxy) methane	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
2,4-Dichlorophenol	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
1,2,4-Trichlorobenzene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
Naphthalene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
4-Chloroaniline	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
Hexachlorobutadiene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
4-Chloro-3-methylphenol	mg/kg	5	Org-012	<5	160571-1	<5 <5	[NR]	[NR]		
2-Methylnaphthalene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
Hexachlorocyclopentadi ene	mg/kg	2	Org-012	-2	160571-1	<2 <2	[NR]	[NR]		
2,4,6-trichlorophenol	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
2,4,5-trichlorophenol	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
2-Chloronaphthalene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
2-nitroaniline	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
Dimethylphthalate	mg/kg	1	Org-012	<1	160571-1	<1 <1	LCS-3	74%		
2,6-Dinitrotoluene	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
Acenaphthylene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]		
3-Nitroaniline	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
Acenaphthene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	LCS-3	78%		
2,4-dinitrophenol	mg/kg	10	Org-012	<10	160571-1	<10 <10	[NR]	[NR]		
4-nitrophenol	mg/kg	10	Org-012	<10	160571-1	<10 <10	LCS-3	83%		
Dibenzofuran	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		
diethylphthalate	mg/kg	1	Org-012	<1	160571-1	<1 <1	LCS-3	73%		
4- chlorophenylphenylether	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]		

Client Reference: 52304, Walsh Bay PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery SVOCs in Soil Base II Duplicate II % RPD 160571-1 4-nitroaniline mg/kg Org-012 <1 <1||<1 [NR] [NR] Fluorene mg/kg 0.5 Org-012 < 0.5 160571-1 <0.5||<0.5 [NR] [NR] Org-012 2-methyl-4,6mg/kg 10 <10 160571-1 <10||<10 [NR] [NR] dinitrophenol azobenzene mg/kg 1 Org-012 <1 160571-1 <1||<1 [NR] [NR] 1 Org-012 <1 160571-1 <1||<1 [NR] [NR] mg/kg bromophenylphenylether hexachlorobenzene mg/kg 0.5 Org-012 < 0.5 160571-1 <0.5||<0.5 [NR] [NR] 5 Org-012 <5 160571-1 <5||<5 [NR] [NR] pentachlorophenol mg/kg 1||1||RPD:0 Phenanthrene 0.5 Org-012 < 0.5 160571-1 [NR] [NR] mg/kg Anthracene 0.5 Org-012 < 0.5 160571-1 <0.5 || 0.7 [NR] [NR] mg/kg carbazole mg/kg 1 Org-012 <1 160571-1 <1||<1 [NR] [NR] di-n-butylphthalate 1 Org-012 160571-1 [NR] [NR] mg/kg <1 <1 || <1 Fluoranthene 0.5 Org-012 < 0.5 160571-1 5.0 | 8.6 | RPD: 53 [NR] [NR] mg/kg Pyrene 0.5 Org-012 <0.5 160571-1 5||8.8||RPD:55 LCS-3 79% mg/kg butylbenzylphthalate Org-012 160571-1 [NR] [NR] mg/kg 1 <1 <1 || <1 bis(2-ethylhexyl) 1 Org-012 160571-1 <1||<1 [NR] [NR] mg/kg <1 phthalate Benzo(a)anthracene 0.5 Org-012 <0.5 160571-1 3||6.2||RPD:70 [NR] mg/kg [NR] 0.5 Org-012 <0.5 160571-1 3||5.7||RPD:62 [NR] Chrysene mg/kg [NR] di-n-octylphthalate mg/kg 1 Org-012 <1 160571-1 <1||<1 [NR] [NR] Benzo(b+j+k) Org-012 160571-1 5||9||RPD:57 [NR] mg/kg 1 <1 [NR] fluoranthene [NR] Benzo(a)pyrene mg/kg 0.5 Org-012 < 0.5 160571-1 3||5||RPD:50 [NR] 0.5 Org-012 160571-1 1||2||RPD:67 Indeno(1,2,3-c,d)pyrene mg/kg < 0.5 [NR] [NR] Org-012 Dibenzo(a,h)anthracene 0.5 < 0.5 160571-1 <0.5 || 0.6 [NR] [NR] mg/kg 1||2||RPD:67 Benzo(g,h,i)perylene mg/kg 0.5 Org-012 < 0.5 160571-1 [NR] [NR] ethylmethanesulfonate Org-012 160571-1 mg/kg 1 <1 <1||<1 [NR] [NR] aniline 1 Org-012 160571-1 <1||<1 [NR] mg/kg <1 [NR] pentachloroethane mg/kg 0.5 Org-012 <0.5 160571-1 <0.5||<0.5 [NR] [NR] Org-012 160571-1 benzyl alcohol mg/kg 1 <1 <1 || <1 [NR] [NR] 160571-1 1 Org-012 [NR] acetophenone mg/kg <1 <1 || <1 [NR] N-nitrosomorpholine mg/kg 1 Org-012 <1 160571-1 <1||<1 [NR] [NR] Org-012 N-nitrosopiperidine mg/kg 1 <1 160571-1 <1||<1 [NR] [NR] 0.5 Org-012 [NR] 2,6-dichlorophenol mg/kg < 0.5 160571-1 <0.5||<0.5 [NR] hexachloropropene-1 mg/kg 0.5 Org-012 < 0.5 160571-1 <0.5||<0.5 [NR] [NR] N-nitroso-n-butylamine mg/kg 1 Org-012 <1 160571-1 <1||<1 [NR] [NR] [NR] safrole mg/kg 1 Org-012 <1 160571-1 <1||<1 [NR] 1,2,4,5mg/kg 0.5 Org-012 < 0.5 160571-1 <0.5||<0.5 [NR] [NR] tetrachlorobenzene cis and trans iso-safrole 1 Org-012 <1 160571-1 <1||<1 [NR] [NR] mg/kg Org-012 [NR] 1,3-dinitrobenzene mg/kg 1 <1 160571-1 <1||<1 [NR] pentachlorobenzene mg/kg 0.5 Org-012 <0.5 160571-1 <0.5||<0.5 [NR] [NR] mg/kg

Envirolab Reference: 160571 Revision No: R 00

mg/kg

mg/kg

mg/kg

1

0.5

1

1

Org-012

Org-012

Org-012

Org-012

<1

< 0.5

<1

<1

160571-1

160571-1

160571-1

160571-1

<1||<1

<0.5||<0.5

<1||<1

<1||<1

1-naphthylamine

2,3,4,6-tetrachlorophenol

2-naphthylamine

5-nitro-o-toluidine

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

[NR]

Client Reference: 52304, Walsh Bay											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
SVOCs in Soil						Base II Duplicate II %RPD					
diphenylamine	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]			
phenacetin	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]			
pentachloronitrobenzene	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]			
dinoseb	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]			
methapyrilene	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]			
p- dimethylaminoazobenzen e	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]			
2-acetylaminofluorene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
7,12-dimethylbenz(a) anthracene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
3-methylcholanthrene	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
a-BHC	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
b-BHC	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
g-BHC	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
d-BHC	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Heptachlor	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Aldrin	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	LCS-3	86%			
Heptachlor Epoxide	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
g-Chlordane	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
a-Chlordane	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Endosulfan I	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
p,p'-DDE	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Dieldrin	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	LCS-3	89%			
Endrin	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
p,p'-DDD	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Endosulfan II	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Endrin Aldehyde	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
p,p'-DDT	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Endrin Ketone	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Endosulfan Sulphate	mg/kg	0.5	Org-012	<0.5	160571-1	<0.5 <0.5	[NR]	[NR]			
Methoxychlor	mg/kg	1	Org-012	<1	160571-1	<1 <1	[NR]	[NR]			
Surrogate 2-fluorophenol	%		Org-012	76	160571-1	75 80 RPD:6	LCS-3	81%			
Surrogate Phenol-de	%		Org-012	53	160571-1	50 53 RPD:6	LCS-3	62%			
Surrogate Nitrobenzene-ds	%		Org-012	86	160571-1	65 60 RPD: 8	LCS-3	89%			
Surrogate 2- fluorobiphenyl	%		Org-012	87	160571-1	101 113 RPD:11	LCS-3	90%			
Surrogate 2,4,6- Tribromophenol	%		Org-012	59	160571-1	83 92 RPD:10	LCS-3	57%			
Surrogate p-Terphenyl- d ₁₄	%		Org-012	95	160571-1	94 95 RPD:1	LCS-3	93%			

Client Reference: 52304, Walsh Bay											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		,			
Date extracted	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017			
Date analysed	-			24/01/2 017	[NT]	[NT]	LCS-3	24/01/2017			
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	93%			
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	93%			
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-3	95%			
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-3	95%			
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	88%			
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-3	93%			
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	92%			
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]			
Surrogate aaa- Trifluorotoluene	%		Org-016	73	[NT]	[NT]	LCS-3	90%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %			
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II %RPD		Recovery			
Date extracted	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017			
Date analysed	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017			
TRHC10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	113%			
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	117%			
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	106%			
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	113%			
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	117%			
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	106%			
Surrogate o-Terphenyl	%		Org-003	96	[NT]	[NT]	LCS-3	101%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
PAHs in Soil						Base II Duplicate II %RPD					
Date extracted	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017			
Date analysed	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017			
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	98%			
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	99%			
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	107%			
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	97%			
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	97%			
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	102%			
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]			

Client Reference: 52304, Walsh Bay											
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery			
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-3	87%			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]			
Surrogate p-Terphenyl- d14	%		Org-012	86	[NT]	[NT]	LCS-3	124%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
Organochlorine Pesticides in soil						Base II Duplicate II %RPD					
Date extracted	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017			
Date analysed	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017			
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	102%			
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	110%			
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	107%			
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	102%			
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	107%			
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	110%			
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	114%			
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	110%			
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	100%			
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	107%			
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Surrogate TCMX	%		Org-005	110	[NT]	[NT]	LCS-3	126%			

		Clie	ent Referenc	e: 52	2304, Walsh	Bay		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II %RPD		
Date extracted	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017
Date analysed	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	103%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	76%
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	89%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	98%
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	104%
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	108%
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	122%
Surrogate TCMX	%		Org-008	110	[NT]	[NT]	LCS-3	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017
Date analysed	-			23/01/2 017	[NT]	[NT]	LCS-3	23/01/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-3	123%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	110	[NT]	[NT]	LCS-3	106%

Client Reference: 52304, Walsh Bay PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Acid Extractable metals Base II Duplicate II % RPD in soil Date prepared 23/01/2 [NT] [NT] LCS-3 23/01/2017 017 Date analysed 24/01/2 [NT] LCS-3 24/01/2017 [NT] 017 LCS-3 Arsenic mg/kg 4 Metals-020 <4 [NT] [NT] 91% Cadmium Metals-020 LCS-3 88% mg/kg 0.4 < 0.4 [NT] [NT] Chromium Metals-020 [NT] LCS-3 95% mg/kg <1 [NT] 1 Metals-020 LCS-3 Copper mg/kg 1 <1 [NT] [NT] 96% Metals-020 LCS-3 Lead mg/kg 1 <1 [NT] [NT] 88% Metals-021 LCS-3 99% Mercury mg/kg 0.1 < 0.1 [NT] [NT] Nickel mg/kg 1 Metals-020 <1 [NT] [NT] LCS-3 92% Zinc mg/kg 1 Metals-020 <1 [NT] [NT] LCS-3 88% UNITS QUALITYCONTROL Dup. Sm# Spike Sm# **Duplicate** Spike % Recovery SVOCs in Soil Base + Duplicate + %RPD Date extracted [NT] [NT] 160571-1 23/01/2017 Date analysed [NT] [NT] 160571-1 23/01/2017 [NT] 160571-1 45% Phenol [NT] mg/kg Bis-(2-chloroethyl) ether [NT] [NR] [NR] mg/kg [NT] 2-Chlorophenol [NT] 160571-1 26% mg/kg [NT] 1,3-Dichlorobenzene mg/kg [NT] [NT] [NR] [NR] 1,4-Dichlorobenzene mg/kg [NT] [NT] 160571-1 81% 2-Methylphenol mg/kg [NT] [NT] [NR] [NR] 1,2-Dichlorobenzene mg/kg [NT] [NT] [NR] [NR] Bis (2-chloroisopropyl) [NT] [NR] [NR] mg/kg [NT] ether 3/4-Methylphenol [NT] [NT] [NR] [NR] mg/kg N-nitrosodi-n-propylamine mg/kg [NT] [NT] [NR] [NR] [NT] [NT] [NR] Hexachloroethane [NR] mg/kg Nitrobenzene [NT] [NT] [NR] [NR] mg/kg Isophorone mg/kg [NT] [NT] [NR] [NR] 2,4-Dimethylphenol [NT] [NT] [NR] [NR] mg/kg 2-Nitrophenol mg/kg [NT] [NT] [NR] [NR] Bis(2-chloroethoxy) mg/kg [NT] [NT] [NR] [NR] methane 2,4-Dichlorophenol mg/kg [NT] [NT] [NR] [NR] 1,2,4-Trichlorobenzene [NT] [NR] [NR] [NT] mg/kg Naphthalene [NT] [NR] [NR] [NT] mg/kg 4-Chloroaniline mg/kg [NT] [NT] [NR] [NR] Hexachlorobutadiene [NT] mg/kg [NT] [NR] [NR] 4-Chloro-3-methylphenol mg/kg [NT] [NT] [NR] [NR] 2-Methylnaphthalene mg/kg [NT] [NT] [NR] [NR] Hexachlorocyclopentadiene mg/kg [NT] [NT] [NR] [NR]

Envirolab Reference: 160571 Revision No: R 00

mg/kg

[NT]

[NT]

[NR]

2,4,6-trichlorophenol

[NR]

		Client Reference	e: 52304, Walsh Bay		
QUALITY CONTROL SVOCs in Soil	UNITS	Dup. Sm#	Duplicate Base+Duplicate+%RPD	Spike Sm#	Spike % Recovery
2,4,5-trichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Chloronaphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethylphthalate	mg/kg	[NT]	[NT]	160571-1	76%
2,6-Dinitrotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
3-Nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	160571-1	76%
2,4-dinitrophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
4-nitrophenol	mg/kg	[NT]	[NT]	160571-1	102%
Dibenzofuran	mg/kg	[NT]	[NT]	[NR]	[NR]
diethylphthalate	mg/kg	[NT]	[NT]	160571-1	73%
4-chlorophenylphenylether	mg/kg	[NT]	[NT]	[NR]	[NR]
4-nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-methyl-4,6-dinitrophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
azobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-bromophenylphenylether	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
Phenanthrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
carbazole	mg/kg	[NT]	[NT]	[NR]	[NR]
di-n-butylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Pyrene	mg/kg	[NT]	[NT]	160571-1	140%
butylbenzylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
bis(2-ethylhexyl)phthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	[NR]	[NR]
di-n-octylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(b+j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
ethylmethanesulfonate	mg/kg	[NT]	[NT]	[NR]	[NR]
aniline	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
benzyl alcohol	mg/kg	[NT]	[NT]	[NR]	[NR]
acetophenone	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitrosomorpholine	mg/kg	[NT]	[NT]	[NR]	[NR]

		Client Reference	e: 52304, Walsh Bay		
QUALITY CONTROL SVOCs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
N-nitrosopiperidine	mg/kg	[NT]	[NT]	[NR]	[NR]
2,6-dichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachloropropene-1	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitroso-n-butylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
safrole	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4,5-tetrachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
cis and trans iso-safrole	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dinitrobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1-naphthylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
2,3,4,6-tetrachlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2-naphthylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
5-nitro-o-toluidine	mg/kg	[NT]	[NT]	[NR]	[NR]
diphenylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
phenacetin	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachloronitrobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
dinoseb	mg/kg	[NT]	[NT]	[NR]	[NR]
methapyrilene	mg/kg	[NT]	[NT]	[NR]	[NR]
p- dimethylaminoazobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-acetylaminofluorene	mg/kg	[NT]	[NT]	[NR]	[NR]
7,12-dimethylbenz(a) anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
3-methylcholanthrene	mg/kg	[NT]	[NT]	[NR]	[NR]
a-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
b-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
g-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
d-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Heptachlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	160571-1	88%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	[NR]	[NR]
g-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
a-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
p,p'-DDE	mg/kg	[NT]	[NT]	[NR]	[NR]
Dieldrin	mg/kg	[NT]	[NT]	160571-1	101%
Endrin	mg/kg	[NT]	[NT]	[NR]	[NR]
p,p'-DDD	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
p,p'-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Ketone	mg/kg	[NT]	[NT]	[NR]	[NR]

QUALITY CONTROL SVOCs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Endosulfan Sulphate	mg/kg	[NT]	[NT]	[NR]	[NR]
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate 2-fluorophenol	%	[NT]	[NT]	160571-1	99%
Surrogate Phenol-de	%	[NT]	[NT]	160571-1	70%
Surrogate Nitrobenzene- d₅	%	[NT]	[NT]	160571-1	91%
Surrogate 2-fluorobiphenyl	%	[NT]	[NT]	160571-1	90%
Surrogate 2,4,6- Tribromophenol	%	[NT]	[NT]	160571-1	90%
Surrogate p-Terphenyl- d ₁₄	%	[NT]	[NT]	160571-1	91%

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 160571-1 were sub-sampled from jars provided by the client.

SVOC_S_SCAN:

The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

Asbestos ID was analysed by Approved Identifier: Paul Ching Asbestos ID was authorised by Approved Signatory: Paul Ching

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested NR: Test not required **RPD: Relative Percent Difference** NA: Test not required

<: Less than >: Greater than

LCS: Laboratory Control Sample

Envirolab Reference: 160571 Page 30 of 31

Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

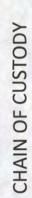
For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.


Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 160571 Page 31 of 31

Revision No: R 00

				THE RESIDENCE OF THE PARTY OF T	-						
PROJECT NO .: 57.304					LAB	LABORATORY BATCH NO.:	ATCH NO.:				
	Ban				SAN	SAMPLERS: N	NY/AH				
1	FAT 72	11	TAT		ac	QC LEVEL: NEPM (2013)	A (2013)			N.C. S.S.	
30	Perth: 08	9488 01	_	Brisbane: 07 3112 2688							
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) (2. Hammancl	L) adminns	w@jbsg.o	com.au; (@jbsg.com.au; (3)	Sdoraica		@jbsg.com.au	SWALL	1689	HO-WED.
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	OR DISPOSAL				ग्रह्मका भिर्द	IH XZ	(04540) (015/5) (1066)			ASBESTOS ANALYSIS ANALYSIS	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	Hd Hd	18	201		The same of the sa	-	NOTES:
QC20170119 S	ios	1.6		Jar	X	X	X X X			×	
			(Envirolab Services					1000000		
		-	SHIPPOLUB .	12 ASIME)							
		1	5.0	Chatswood 100 5200 ph; (02) 9910 6200							
		1	IN No: 16	60511			1				
		51		4							
	and the same of th	0	Date Received: 4	VIX					100		
		4	Time Received	TE 200							
			emp. Cod	Temp: Cool/Ambient (5							
			Cooling: Ice/Icepack	elicepack elicepack							
			Security:	Security: man							
	R										
RELINQUISHED BY:			N. S.	METHOD OF SHIPMENT:		100	RECEIVED BY:		FORF	FOR RECEIVING LAB USE ONLY:	USE ONLY:
DATE:		CONS	CONSIGNMENT NOTE NO.	IOTE NO.	NAN	NAME: JE		COOLER SI	COOLER SEAL - Yes No	o Intact	Broken
OF: JBS&G	111.00	TRAN	TRANSPORT CO.		DAT OF:	DATE: 20 .() FILS		COOLER TEMP	EMP deg C		
NAME: DATE:		CONS	CONSIGNMENT NOTE NO.	IOTE NO.	NAME:	AE:	DATE:	COOLER SI	COOLER SEAL - Yes No	o Intact	Broken
OF:		TRAN	TRANSPORT CO		5			COOLER TI	COOLER TEMP deg C		
Container & Preservative Codes; P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other	; J = Soil Jar; B	= Glass Bottle	; N = Nitric A	cid Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochloric Acid	Prsvd Vial; VS = S	ulfuric Acid Prsvd Vial	S = Sulfuric Acid Prs	d; Z = Zinc Prsvd	; E = EDTA Prsvd;	ST = Sterile Bottle; O = Other
TMSO FormsO13 - Chain of Custody - Gener	ric							The second second			

Appendix I Tabulated Quality Assurance/Quality Control

Ciald Dunli	22422 (COII	`	enc	E2420E	E2420E	
Filter: ALL	cates (SOIL	.)	SDG Field ID	531205	531205 QA20170119	DDD
Filler: ALL			Sampled Date/Time	JBH06_0.75-0.85 19/01/2017	19/01/2017	KPD
			Sampled Date/Time	19/01/2017	19/01/2017	
Method T	ChemNam	Units	EQL			T
OPP	EPN	mg/kg	0.2	<0.2	<0.2	0
0	Demeton-S		0.2	<0.2	<0.2	0
	20010		0.2	10.2	10.2	Ť
Heavy Met	Arsenic (To	ma/ka	2 (Primary): 4 (Interlab)	<2.0	<2.0	0
	Cadmium	mg/kg	0.4	<0.4	<0.4	0
	Chromium		5 (Primary): 1 (Interlab)	5.0	6.8	31
	Copper	mg/kg	5 (Primary): 1 (Interlab)	89.0	26.0	110
	Lead	mg/kg	5 (Primary): 1 (Interlab)	42.0	170.0	121
	Mercury (Ir		0.1	<0.1	<0.1	0
	Nickel	mg/kg	5 (Primary): 1 (Interlab)	7.9	<5.0	45
	Zinc	mg/kg	5 (Primary): 1 (Interlab)	52.0	81.0	44
al						
NA	Hexachlord	mg/kg	0.5	<0.5	<0.5	0
VOC	1,1,1,2-tetr	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,1,1-trichle		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,1,2-trichle	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,1,2,2-tetr		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,1-dichlore	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,2,3-trichle	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,2-dichlore	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,2-dichlore	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,3-dichlore	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Bromochlo	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Bromodich	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Carbon teti	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Chloroetha	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Chloroform	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Chlorometh	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	dibromochl	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Dichlorodif		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Dichlorome	mg/kg	0.5	0.8	<0.5	46
	Trichloroflu	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,1-Dichlor	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	3-chloropro	mg/kg	0.5	<0.5	<0.5	0
	4-chlorotol	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	cis-1,2-dich		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	cis-1,3-dich	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Tetrachloro		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	trans-1,2-d		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	trans-1,3-d		0.5 (Primary): 1 (Interlab		<0.5	0
	Trichloroet		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Vinyl Chlor	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
0	00.00.5		00 (D.:) 05 (t.:	00.0	00.0	<u> </u>
Organic	C6-C9 Fra	mg/kg	20 (Primary): 25 (Interlal	<20.0	<20.0	0
TPH	C10-C14 F	ma/ka	20 (Primary): 50 (Interlal	<20.0	~20 O	0
IFII	C15-C14 F		50 (Primary): 100 (Interla	260.0	<20.0 150.0	54
	C29-C36 F		50 (Primary): 100 (Interla	66.0	<50.0	28
-	C10-C36 F		50 (Primary). 100 (intena	326.0	150.0	74
	0 10-030 F	mg/kg	00	320.0	150.0	' ' '
Organic	>C10-C16	mg/kg	50	<50.0	<50.0	0
3.95.110		9		.50.0		<u> </u>

Filter: ALL Field ID Sampled Date/Time JBH06_0.75-0.85 19/01/2017 QA20 19/01/2017 >C16-C34 mg/kg 100 330.0 20/01/2017 >C34-C40 mg/kg 100 <100.0 <1 C6-C10 Fr.mg/kg 20 (Primary): 25 (Interlal <20.0 <20/02/2017 C6 - C10 lemg/kg 20 (Primary): 25 (Interlal <20.0 <20/02/2017 >C10 - C10 mg/kg 50 <50.0 <50.0	1205 170119 RPD 1/2017 00.0 49 00.0 0 20.0 0
Sampled Date/Time	00.0 49 00.0 0 20.0 0
>C16-C34 mg/kg 100 330.0 20 >C34-C40 mg/kg 100 <100.0	00.0 49 00.0 0 20.0 0
>C34-C40 mg/kg 100 <100.0 <1 C6-C10 Fr mg/kg 20 (Primary): 25 (Interlal <20.0 <2 C6 - C10 le mg/kg 20 (Primary): 25 (Interlal <20.0 <2 >C10 - C1 mg/kg 50 <50.0 <5	00.0 0
>C34-C40 mg/kg 100 <100.0	00.0 0
C6-C10 Framg/kg 20 (Primary): 25 (Interlal <20.0	20.0
C6 - C10 le mg/kg	
>C10 - C16 mg/kg 50 <50.0 <5	
	20.0
	50.0 0
1\/\C IPonzono Ima/ka IO 1 / (Primon/) + O 2 / Intorial - O 4	0.1 0
	0.1 0 0.1 0
	0.1 0
	0.2 0 0.1 0
Xylene (To mg/kg 0.3 (Primary): 1 (Interlab <0.3 <	0.3 0
Organic Naphthalermg/kg 0.5 (Primary): 1 (Interlab <0.5 <	0.5 0
Signification of the state of t	0
	0.5 33
Acenaphth mg/kg 0.5 (Primary): 0.1 (Interlated < 0.5	0.5 0
	1.0 105
Benz(a)ant mg/kg 0.5 (Primary): 0.1 (Interlated 6.6	1.3 42
\ // 3	3.8
\ // x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.1 42
\ /1 1 0 0	5.4 36
(// 3 0 0	5.6 33
(-1)/ 3- 3	1.5 13
19. 1 8 8 7 7	2.1 21
() - 3 - 3	2.1 62
	3.2 46
	0.5 18
Fluoranthe mg/kg 0.5 (Primary): 0.1 (Interlated 16.0	6.6 83
	0.5 75
() () () (1.8 24
1 00 \ 77 \	0.5 0
3 3 1 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0 173
	63
PAHs (Totamg/kg 0.5 79.6 3	7.2 73
NOO 40444 NOO 05 (Bin) 4 (6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.5
	0.5 0
	0.5 0
	0.5 0
1 17 0 0 1 77 1	0.5 0
	0.5 0
	0.5 0
	0.5 0
· · ·	0.5 0
	0.5 0
	0.5 0
	0.5 0
lodometha mg/kg 0.5 <0.5 <	0.5 0
NA 1,2,4,5-tetr mg/kg 0.5 <0.5 <	0.5 0
7 7 9 9	0.5 0
	0.5 0
	0.5 0
11,5 diomorphighty [5.6 (Finially). Finialida Co.6	<u> 0</u>

Field Dun	licates (SOIL)		SDG	531205	531205	
Filter: ALL			Field ID	JBH06_0.75-0.85	QA20170119	RPD
			Sampled Date/Time	19/01/2017	19/01/2017	
			•			
	1,4-dichlorer	mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Hexachlord	mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.5	0
	Pentachlor	mg/kg	0.5	<0.5	<0.5	0
OCP	Hexachlord	mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
VOC	1,2-Dichlor r	ma/ka	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
VOC	1,3-dichlorer		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,4-dichlorer		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Chlorobenz		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Officioscrizi	nig/kg	0.0 (i filliary). I (iliteriab	\0.0	\0.0	U
PCB	Aroclor 101r	ma/ka	0.5 (Primary): 0.1 (Interla	<0.5	<0.5	0
	Aroclor 122r		0.1	<0.1	<0.1	0
	Aroclor 123r		0.5 (Primary): 0.1 (Interla	<0.5	<0.5	0
	Aroclor 124r		0.5 (Primary): 0.1 (Interla		<0.5	0
	Aroclor 124r		0.5 (Primary): 0.1 (Interla	<0.5	<0.5	0
	Aroclor 125r		0.5 (Primary): 0.1 (Interla	<0.5	<0.5	0
	Aroclor 126 r		0.5 (Primary): 0.1 (Interla	<0.5	<0.5	0
	PCBs (Totar	mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.5	0
VOC	Carbon dis r	mg/kg	0.5	<0.5	<0.5	0
	1					
NA	Hexachlord		0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Hexachlord	mg/kg	1 (Primary): 2 (Interlab)	<1.0	<1.0	0
OCP	4,4-DDE r	ma/ka	0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
OCF		mg/kg mg/kg	0.05 (Primary): 0.5 (Intel	<0.05	<0.05	0
-	alpha-BHC r		0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	beta-BHC r		0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
		mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
		mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
		mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.05	0
	Chlordane r		0.1	<0.1	<0.1	0
	delta-BHC r		0.05 (Primary): 0.5 (Inter	< 0.05	<0.05	0
	Endosulfan		0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	Endosulfan	mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	Endosulfan		0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	_	mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	Endrin alder		0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	Endrin keter		0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	Heptachlor		0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	Heptachlor		0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
		mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.05	0
	Methoxych		0.2 (Primary): 1 (Interlab	<0.2	<0.2	0
	Toxaphener	mg/kg	1	<1.0	<1.0	0
OPP	Azinphos n	ma/ka	0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
OI F	Chlorfenvir		0.2 (Primary). 0.1 (intera	<0.2	<0.2	0
	Chlorpyrifo r		0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Chlorpyrifo r	0 0	0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Coumaphor		2	<2.0	<2.0	0
	Demeton-Cr		0.2	<0.2	<0.2	0
		mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
		<i>3</i> ··· <i>3</i>				

Field Dupli	cates (SOIL	.)	SDG	531205	531205	
Filter: ALL	`	,	Field ID	JBH06_0.75-0.85	QA20170119	RPD
			Sampled Date/Time	19/01/2017	19/01/2017	
			•			
	Dichlorvos	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Dimethoate		0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Disulfoton		0.2	<0.2	<0.2	0
	Ethion	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Ethopropho		0.2	<0.2	<0.2	0
	Fenitrothio		0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Fensulfothi		0.2	<0.2	<0.2	0
	Fenthion	mg/kg	0.2	<0.2	<0.2	0
	Malathion	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Merphos	mg/kg	0.2	<0.2	<0.2	0
	Mevinphos		0.2	<0.2	<0.2	0
	Monocroto		2	<2.0	<2.0	0
	Omethoate		2	<2.0	<2.0	0
	Parathion		0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Parathion r	mg/kg	0.2	<0.2	<0.2	0
	Phorate	mg/kg	0.2	<0.2	<0.2	0
	Pirimiphos	mg/kg	0.2	<0.2	<0.2	0
	Pyrazopho	mg/kg	0.2	<0.2	<0.2	0
	Ronnel	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.2	0
	Sulprofos	mg/kg	0.2	<0.2	<0.2	0
	Terbufos	mg/kg	0.2	<0.2	<0.2	0
	Tetrachlory		0.2	<0.2	<0.2	0
	Tokuthion	mg/kg	0.2	<0.2	<0.2	0
	Trichlorona	mg/kg	0.2	<0.2	<0.2	0
Asbestos	Approx. Sa	G		94.0	106.0	12
	Asbestos fi	%w/w		0.0	0.0	0
	Asbestos fi	%w/w		0.0	0.0	0
	Mass ACM	G		0.0	0.0	0
	Mass Asbe	G		0.0	0.0	0
	Mass FA	G		0.0	0.0	0
	Mass Asbe	G		0.0	0.0	0
	Mass AF	G	<u> </u>	0.0	0.0	0
	Mass Asbe		<u> </u>	0.0	0.0	0
	Mass Asbe			0.0	0.0	0
		COMMEN	<u> </u>	1.0	1.0	0
		COMMEN		1.0	1.0	0
		COMMEN		1.0	1.0	0
		COMMEN		1.0	1.0	0
		COMMEN		1.0	1.0	0
	Respirable	COMMEN		1.0	1.0	0
		0.1				
Inorganic	% Moisture	%	1	15.0	16.0	6
VOC	2-Propanoi	ma/ka	0.5	4.2	<0.5	157
			where a concentration is			131

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 80 (1-10 x EQL); 50 (10-

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. A

Field Dunli	cates (SOIL)	SDG	531205	ENVIROLAB 2017-01-20T00:00:00	
Filter: ALL	oalos (OOIL	.,	Field ID	JBH06_0.75-0.85	QC20170119	RPD
I III. ALL			Sampled Date/Time	19/01/2017	19/01/2017	IXI D
			Campica Bate, Time	13/01/2017	13/01/2011	
Method T	ChemNam	Units	EQL			1
OPP	EPN	mg/kg	0.2	<0.2		
OFF	Demeton-S		0.2	<0.2		
	Demeton-C	ilig/kg	0.2	₹0.2		
Heavy Met	Arsenic (To	ma/ka	2 (Primary): 4 (Interlab)	<2.0	<4.0	0
l leavy wet	Cadmium		0.4	<0.4	<0.4	0
	Chromium		5 (Primary): 1 (Interlab)	5.0	5.0	0
	Copper	mg/kg	5 (Primary): 1 (Interlab)	89.0	45.0	66
	Lead	mg/kg	5 (Primary): 1 (Interlab)	42.0	65.0	43
	Mercury (Ir		0.1	<0.1	<0.1	0
	Nickel	mg/kg	5 (Primary): 1 (Interlab)	7.9	5.0	45
	Zinc	mg/kg	5 (Primary): 1 (Interlab)	52.0	57.0	9
al	ZITIC	mg/kg	5 (Filliary). F (Interlab)	32.0	37.0	3
NA	Hexachlor	ma/ka	0.5	<0.5	<0.5	0
14/1	Пехастіот	ilig/kg	0.0	νο.σ	VO.0	
VOC	1,1,1,2-tetr	ma/ka	0.5 (Primary): 1 (Interlab	<0.5	<1.0	0
100	1,1,1,2-teti		0.5 (Primary): 1 (Interlab		<1.0	0
	1,1,2-trichle		0.5 (Primary): 1 (Interlab		<1.0	0
	1,1,2,11cm		0.5 (Primary): 1 (Interlab		<1.0	0
	1,1-dichlor		0.5 (Primary): 1 (Interlab		<1.0	0
	1,2,3-trichle		0.5 (Primary): 1 (Interlab		<1.0	0
	1,2-dichlor		0.5 (Primary): 1 (Interlab		<1.0	0
	1,2-dichlor		0.5 (Primary): 1 (Interlab		<1.0	0
	1,3-dichlor		0.5 (Primary): 1 (Interlab		<1.0	0
	Bromochlo		0.5 (Primary): 1 (Interlab	<0.5	<1.0	0
	Bromodich		0.5 (Primary): 1 (Interlab		<1.0	0
	Carbon teti		0.5 (Primary): 1 (Interlab	<0.5	<1.0	0
	Chloroetha		0.5 (Primary): 1 (Interlab		<1.0	0
	Chloroform		0.5 (Primary): 1 (Interlab		<1.0	0
	Chlorometh		0.5 (Primary): 1 (Interlab		<1.0	0
	dibromoch		0.5 (Primary): 1 (Interlab		<1.0	0
	Dichlorodif		0.5 (Primary): 1 (Interlab		<1.0	0
	Dichlorome		0.5	0.8	3110	-
	Trichloroflu		0.5 (Primary): 1 (Interlab		<1.0	0
	1,1-Dichlor		0.5 (Primary): 1 (Interlab		<1.0	0
	3-chloropro		0.5	<0.5	3110	Ŭ
	4-chlorotol		0.5 (Primary): 1 (Interlab		<1.0	0
	cis-1,2-dich	ma/ka	0.5 (Primary): 1 (Interlab	<0.5	<1.0	0
	cis-1,3-dich		0.5 (Primary): 1 (Interlab		<1.0	0
	Tetrachlor		0.5 (Primary): 1 (Interlab		<1.0	0
	trans-1,2-d		0.5 (Primary): 1 (Interlab		<1.0	0
	trans-1,3-d		0.5 (Primary): 1 (Interlab		<1.0	0
	Trichloroet		0.5 (Primary): 1 (Interlab		<1.0	0
	Vinyl Chlor		0.5 (Primary): 1 (Interlab		<1.0	0
	,. 001	-99	(2.0		
Organic	C6-C9 Fra	mg/ka	20 (Primary): 25 (Interlal	<20.0	<25.0	0
		JJ	(27). == (5.5	
TPH	C10-C14 F	ma/ka	20 (Primary): 50 (Interlal	<20.0	<50.0	0
	C15-C28 F	mg/ka	50 (Primary): 100 (Interla		<100.0	89
	C29-C36 F		50 (Primary): 100 (Interla		<100.0	0
	C10-C36 F		50	326.0		
		<i>y</i> .9				
Organic	>C10-C16	mg/ka	50	<50.0	<50.0	0
			-			

Field Dun	licates (SOIL)	SDG	531205	ENVIROLAB 2017-01-20T00:00:00	
Filter: ALI		Field ID	JBH06_0.75-0.85	QC20170119	RPD
i iitor. ALI	=	Sampled Date/Time	19/01/2017	19/01/2017	IXI D
		Campica Date/Time	10/01/2011	10/01/2011	
	>C16-C34 mg/kg	100	330.0	150.0	75
	>C34-C40 mg/kg	100	<100.0	<100.0	0
	C6-C10 Framg/kg	20 (Primary): 25 (Interlal	<20.0	<25.0	0
	C6 - C10 lemg/kg	20 (Primary): 25 (Interlal	<20.0	<25.0	0
	>C10 - C16 mg/kg	50	<50.0	<50.0	0
VOC	Benzene mg/kg	0.1 (Drimory): 0.2 (Interl	<0.1	<0.2	0
VOC		0.1 (Primary): 0.2 (Interla			0
	Ethylbenze mg/kg	0.1 (Primary): 1 (Interlab	<0.1 <0.1	<1.0 <0.5	
	Toluene mg/kg	0.1 (Primary): 0.5 (Interlation of the control of t	<0.1	<0.5 <2.0	0
	Xylene (m mg/kg			<2.0 <1.0	0
	Xylene (o) mg/kg	0.1 (Primary): 1 (Interlab			0
	Xylene (To mg/kg	0.3 (Primary): 1 (Interlab	<0.3	<1.0	U
Organic	Naphthaler mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.1	0
DALL	1.1	0.5 (D:) 0.4 (1.4)			-
PAH	Acenaphth mg/kg	0.5 (Primary): 0.1 (Interla	0.7	<0.1	33
	Acenaphth mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.5 - 0.7	33
-	Anthracene mg/kg	0.5 (Primary): 0.1 (Interla	3.2	<0.5 - 0.9	146
	Benz(a)ant mg/kg	0.5 (Primary): 0.1 (Interla	6.6	3.0 - 3.1	75
	Benzo(a)pymg/kg	0.5 (Primary): 0.05 (Inter	5.3	3.0	55
	Benzo(a)pymg/kg	0.5	7.8	4.6	52
	Benzo(a)pymg/kg	0.5	7.8	4.6	52
	Benzo(a)pymg/kg	0.5	7.8	4.6	52
	Benzo(b,j)f mg/kg	0.5	5.1	1000	
-	Benzo(g,h, mg/kg	0.5 (Primary): 0.1 (Interla		1.0 - 2.3	89
	Benzo(k)flumg/kg	0.5	4.0 5.1	20.27	
	Chrysene mg/kg	0.5 (Primary): 0.1 (Interla		3.0 - 3.7	52
	Dibenz(a,h mg/kg	0.5 (Primary): 0.1 (Interla	0.6 16.0	<0.5 - 0.7	18
	Fluoranthe mg/kg	0.5 (Primary): 0.1 (Interla		5.0 - 5.7	95 75
	Fluorene mg/kg Indeno(1,2 mg/kg	0.5 (Primary): 0.1 (Interla	1.1 2.3	<0.5 - 0.1	7 9
		0.5 (Primary): 0.1 (Interlated of the control of th	<0.5	1.0 - 1.9 <0.1	0
	Naphthaler mg/kg			<0.1 1.0 - 1.8	
	Phenanthremg/kg Pyrene mg/kg	0.5 (Primary): 0.1 (Interlated	14.0 13.0	5.0 - 5.4	173 89
	Pyrene mg/kg PAHs (Totamg/kg	0.5 (Primary). 0.1 (intend	79.6	5.0 - 5.4	09
	PALIS (Totalilg/kg	0.5	79.0		
VOC	1,2,4-trime mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<1.0	0
	1,3,5-trime mg/kg	0.5 (Primary): 1 (Interlab		<1.0	0
	Bromobenz mg/kg	0.5 (Primary): 1 (Interlab		<1.0	0
	Isopropylbemg/kg	0.5 (Primary): 1 (Interlab		<1.0	0
	Styrene mg/kg	0.5 (Primary): 1 (Interlab		<1.0	0
	1,2-dibrom mg/kg	0.5 (Primary): 1 (Interlab		<1.0	0
	2-Butanon mg/kg	0.5	<0.5		
	4-Methyl-2 mg/kg	0.5	<0.5		
	Bromoform mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<1.0	0
	Bromometl mg/kg	0.5 (Primary): 1 (Interlab		<1.0	0
	Dibromomemg/kg	0.5 (Primary): 1 (Interlab	<0.5	<1.0	0
	lodometha mg/kg	0.5	<0.5		
NA	1,2,4,5-tetr mg/kg	0.5	<0.5	<0.5	0
	1,2,4-trichlemg/kg	0.5 (Primary): 1 (Interlab		<0.5	0
	1,2-Dichlor mg/kg	0.5 (Primary): 1 (Interlab		<0.5	0
	1,3-dichlor mg/kg	0.5 (Primary): 1 (Interlab		<0.5	0

Field Du	plicates (SOIL)	SDG	531205	ENVIROLAB 2017-01-20T00:00:00	
Filter: AL		Field ID	JBH06_0.75-0.85	QC20170119	RPD
i iitei. AL	- L	Sampled Date/Time	19/01/2017	19/01/2017	IXI D
		Campica Date/Time	13/01/2017	13/01/2017	
	1,4-dichlor mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Hexachlord mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.1	0
	Pentachlor mg/kg	0.5	<0.5	<0.5	0
OCP	Hexachlordmg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.1	0
VOC	1,2-Dichlor mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,3-dichlor mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	1,4-dichlor mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Chlorobenzmg/kg	0.5 (Primary): 1 (Interlab	<0.5	<1.0	0
PCB	Aroclor 101 mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.1	0
	Aroclor 122 mg/kg	0.1	<0.1	<0.1	0
	Aroclor 123 mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.1	0
	Aroclor 124mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.1	0
	Aroclor 124 mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.1	0
	Aroclor 125 mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.1	0
	Aroclor 126 mg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.1	0
	PCBs (Totamg/kg	0.5 (Primary): 0.1 (Interla	<0.5	<0.1	0
VOC	Carbon dis mg/kg	0.5	<0.5		
NA	Hexachlord mg/kg	0.5 (Primary): 1 (Interlab	<0.5	<0.5	0
	Hexachlord mg/kg	1 (Primary): 2 (Interlab)	<1.0	<2.0	0
OCP	4,4-DDE mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.1	0
	Aldrin mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	alpha-BHC mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	beta-BHC mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	DDD mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	Dieldrin mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	DDT mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	Chlordane mg/kg	0.1	<0.1		
	delta-BHC mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	Endosulfar mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	Endosulfan mg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	Endosulfanmg/kg	0.05 (Primary): 0.5 (Inter	< 0.05	<0.1	0
	Endrin mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.1	0
	Endrin aldemg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.1	0
	Endrin ketdmg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.5	0
	Heptachlor mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.1	0
	Heptachlor mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.1	0
	Lindane mg/kg	0.05 (Primary): 0.5 (Inter	<0.05	<0.1	0
	Methoxych mg/kg	0.2 (Primary): 1 (Interlab	<0.2	<0.1	0
	Toxaphene mg/kg	1	<1.0		
OPP	Azinphos n mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.1	0
OF F	Chlorfenvir mg/kg	0.2 (Primary): 0.1 (intend	<0.2	< U.1	U
	Chlorpyrifo mg/kg	0.2 (Primary): 0.1 (Interla		<0.1	0
	Chlorpyrifo mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.1 <0.1	0
	Coumapho mg/kg	2	<2.0	\U. 1	-
	Demeton-Cmg/kg	0.2	<0.2		1
	Diazinon mg/kg	0.2 (Primary): 0.1 (Interla		<0.1	0
	Diazilion Ing/kg	Jo.z (Filmary). U.T. (Intend	₹ 0.∠	\U. 1	U

Field Duplicates (SOIL) Filter: ALL			SDG Field ID Sampled Date/Time	531205 JBH06_0.75-0.85 19/01/2017	ENVIROLAB 2017-01-20T00:00:00 QC20170119 19/01/2017	RPD
	Dichlorvos	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.1	0
	Dimethoate		0.2 (Primary): 0.1 (Interla	<0.2	<0.1	0
	Disulfoton	mg/kg	0.2	<0.2		1
		mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.1	0
	Ethopropho		0.2	<0.2		1
	Fenitrothio	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.1	0
	Fensulfothi	mg/kg	0.2	<0.2		1
	Fenthion	mg/kg	0.2	<0.2		
	Malathion	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.1	0
	Merphos	mg/kg	0.2	<0.2		
	Mevinphos	mg/kg	0.2	<0.2		
	Monocroto	mg/kg	2	<2.0		
	Omethoate	mg/kg	2	<2.0		
	Parathion	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.1	0
	Parathion r	mg/kg	0.2	<0.2		
	Phorate	mg/kg	0.2	<0.2		
	Pirimiphos		0.2	<0.2		
	Pyrazopho		0.2	<0.2		1
	Ronnel	mg/kg	0.2 (Primary): 0.1 (Interla	<0.2	<0.1	0
	Sulprofos	mg/kg	0.2	<0.2		
		mg/kg	0.2	<0.2		1
	Tetrachlory		0.2	<0.2		1
	Tokuthion	mg/kg	0.2	<0.2		
	Trichlorona	mg/kg	0.2	<0.2		
Asbestos	Approx. Sa	G		94.0		+
	Asbestos fi			0.0		1
	Asbestos fi	%w/w		0.0		1
	Mass ACM	G		0.0		1
	Mass Asbe	G		0.0		1
	Mass FA	G		0.0		1
	Mass Asbe	G		0.0		1
	Mass AF	G		0.0		1
	Mass Asbe	G		0.0		
	Mass Asbe	G		0.0		I
	Synthetic F	COMMEN		1.0		
	ACM - Con	COMMEN		1.0		
	AF - Comm	COMMEN		1.0		I
	FA - Comm			1.0		
	Organic Fit			1.0		
	Respirable	COMMEN		1.0		
Inorganic	% Moisture	%	1	15.0		+
			0.5			\Box
VOC	2-Propanoi		0.5 where a concentration is	4.2		<u> </u>

^{*}RPDs have only been considered where a concentration is
**High RPDs are in bold (Acceptable RPDs for each EQL m-30 x EQL); 30 (> 30 x EQL))
***Interlab Duplicates are matched on a per compound basiuny methods in the row header relate to those used in the primary la

Walsh Bay Precinct Infrastructure NSW / Walsh Bay Precinct

Field Blanks (WATER) Filter: ALL

SDG	531205	531205
Field ID	RB20170120	TB20170120
Sampled_Date/Time	20/01/2017	20/01/2017
Sample Type	Rinsate	Trip_B

Heavy Metal Arsenic (Total)	Mathad Tona	Chamblana	II India	IFOL		
Cadmum	Method_Type	ChemName	Units	EQL	-0.004	
Chromium (Total) mg 0.001 0.001	neavy ivietai					
Copper						
Lead						
Mercusy (norganic) mg/l 0.0001 <0.0001 Nickel mg/l 0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.						
Zinc		Mercury (Inorganic)		0.0001	< 0.0001	
NA		Nickel	mg/l	0.001	<0.001	
1.2.4.5-trichlorobenzene mg1 0.002 <0.002 1.2-bichlorobenzene mg1 0.002 <0.002 1.2-bichlorobenzene mg1 0.002 <0.002 1.3-bichlorobenzene mg1 0.002 <0.002 <0.002 1.3-bichlorobenzene mg1 0.002 <0.002 <0.002 <1.0002 <0.002 <1.0002 <0.002 <1.0002 <0.002 <1.0002 <1.0002 <0.002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002		Zinc	mg/l	0.005	< 0.005	
1.2.4.5-trichlorobenzene mg1 0.002 <0.002 1.2-bichlorobenzene mg1 0.002 <0.002 1.2-bichlorobenzene mg1 0.002 <0.002 1.3-bichlorobenzene mg1 0.002 <0.002 <0.002 1.3-bichlorobenzene mg1 0.002 <0.002 <0.002 <1.0002 <0.002 <1.0002 <0.002 <1.0002 <0.002 <1.0002 <1.0002 <0.002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002 <1.0002						
1,2.4-Infolorobenzene mg/l 0.002 <0.002 1,3-dichlorobenzene mg/l 0.002 <0.002 1,3-dichlorobenzene mg/l 0.002 <0.002 1,3-dichlorobenzene mg/l 0.002 <0.002 <0.002 1,4-dichlorobenzene mg/l 0.002 <0.002 <0.002 Mexachiorobenzene mg/l 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004	NA					
1,2-Dichlorobenzene mg/l 0.002 c.0.002 1,3-dichlorobenzene mg/l 0.002 c.0.002 1,4-dichlorobenzene mg/l 0.002 c.0.002 Pentachlorobenzene mg/l 0.002 c.0.002 Pentachlorobenzene mg/l 0.002 c.0.002 Pentachlorobenzene mg/l 0.002 c.0.002 Pentachlorobenzene mg/l 0.002 c.0.002 Hexachlorobenzene mg/l 0.002 c.0.002 Hexachlorobenzene mg/l 0.004 c.0.004 Hexachlorobenzene mg/l 0.004 c.0.004 Ge-GP Fraction mg/l 0.005 c.0.05 GF-GP Fraction mg/l 0.05 c.0.05 SCTG-CTA Fraction mg/l 0.05 c.0.05 SCTG-CTA Fraction mg/l 0.1 c.0.1 CG-CTO Fraction mg/l 0.1 c.0.1 CG-CTO Fraction mg/l 0.02 c.0.02 SCTG-CTA Fraction mg/l 0.02 c.0.02 SCTG-CTA Fraction mg/l 0.02 c.0.02 SCTG-CTA Fraction mg/l 0.05 c.0.05 Naphthalene mg/l 0.05 c.0.05 Naphthalene mg/l 0.01 c.0.01 Acenaphthere mg/l 0.01 c.0.01 Acenaphthylene mg/l 0.01 c.0.01 Acenaphthylene mg/l 0.001 c.0.001 Acenaphthylene mg/l 0.001 c.0.001 Benzolapyrene mg/l 0.001 c.0.001 Dibenzenabenzene mg/l 0.001 c.0.001 Dibenzenabenzene						
1,3-dichlorobenzene mg/l 0.002 c.0.002 1,4-dichlorobenzene mg/l 0.002 c.0.002 Hexachlorobenzene mg/l 0.002 c.0.002 Pertiachlorobenzene mg/l 0.002 c.0.002 Pertiachlorobenzene mg/l 0.002 c.0.002 Hexachlorobenzene mg/l 0.002 c.0.002 Hexachlorobenzene mg/l 0.004 c.0.004 Grganic trans-1_2-dichloroethene mg/l 0.004 c.0.004 Grganic trans-1_2-dichloroethene mg/l 0.001 c.0.005 C10-C16 Fraction mg/l 0.02 c.0.02 c.0.02 C10-C16 Fraction mg/l 0.01 c.0.05 c.0.05 C16-C34 Fraction mg/l 0.1 c.0.1 c.0.0 c						
1,4-dichlorobenzene mg1 0.002 c.0.002			mg/l			
Hexachlorobenzene						
Pentachlorobenzene mg/l 0.002 c.0.002 Hexachlorocyclopentadiene mg/l 0.004 c.0.004 Hexachlorocyclopentadiene mg/l 0.004 c.0.004 Grganic trans-1;2-dichloroethene mg/l 0.001 Cef-G-9 Fraction mg/l 0.02 c.0.02 >c.70-16-C34 Fraction mg/l 0.05 c.0.05 >c.71-6-C34 Fraction mg/l 0.1 c.0.1 >c.334-C40 Fraction mg/l 0.1 c.0.1 >c.34-C40 Fraction mg/l 0.1 c.0.0 >c.71-0-C16 less Naphthalene (F2) mg/l 0.05 c.0.05 >c.71-0-C16 less Naphthalene (F2) mg/l 0.01 c.0.001 Acenaphthylene mg/l 0.001 c.0.001 Acenaphthylene mg/l 0.001 c.0.001 Benz(a), anthracene mg/l 0.001 c.0.001 Benz(a), anthracene mg/l 0.001 c.0.001 Benz(a), fluoranthene mg/l 0.001 c.0.001 Dibenz(a, h)anthracene mg/l 0.001 c.0.001 Fluorene mg/l 0.001 c.0.001 Fluorene mg/l 0.001 c.0.001 Naphthalene mg/l 0.001 c.0.001 Naphthalene mg/l 0.001 c.0.001 Naphthalene mg/l 0.001 c.0.001 Pyrene mg/l 0.001 c.0.001						
Hexachlorobutadiene mg/l 0.002 c0.002						
Graphic Trans-1,2-dichloroethene mg/l 0.001 0.002 0.002 0.002 0.005				0.002	< 0.002	
GS-C9 Fraction mg/l 0.05		Hexachlorocyclopentadiene	mg/l	0.004	<0.004	
GS-C9 Fraction mg/l 0.05						
SC10-C34 Fraction mg/l 0.1 c0.1	Organic					
SC16-C34 Fraction mg/l 0.1 c0.1						
SC34-C40 Fraction						
GS-C10 Fraction						
SC10-10 less BTEX (F1) mg/l 0.05 c.0.05						
SCIO - C16 less Naphthalene (F2) mg/l 0.05 0.05 Naphthalene mg/l 0.01 -0.01 Acenaphthene mg/l 0.001 -4.0.001 Acenaphthylene mg/l 0.001 -4.0.001 Anthracene mg/l 0.001 -4.0.001 Banz(a)amthracene mg/l 0.001 -4.0.001 Benz(a)amthracene mg/l 0.001 -4.0.001 Benz(a)amthracene mg/l 0.001 -4.0.001 Benz(a)biffuoranthene mg/l 0.001 -4.0.001 Chrysene mg/l 0.001 -4.0.001 Dibenz(a h)anthracene mg/l 0.001 -4.0.001 Fluoranthene mg/l 0.001 -4.0.001 Naphthalene mg/l 0.001 -4.0.001 Naphthalene mg/l 0.001 -4.0.001 Pyrene mg/l 0.002 -4	-					
Naphthalene	-					
Acenaphthene						
Acenaphthylene		1	J.			
Acenaphthylene	PAH	Acenaphthene	mg/l	0.001	<0.001	
Anthracene		Acenaphthylene		0.001	< 0.001	
Benzo(a)pyrene		Anthracene	mg/l			
Berzo(b.) Iuoranthene mg/l 0.001 0.001 Berzo(s/fuoranthene mg/l 0.001 0.001 0.001 Berzo(s/fuoranthene mg/l 0.001 0.001 0.001 Chrysene mg/l 0.001 0.001 0.001 Dibenz(a,h)anthracene mg/l 0.001 0.001 0.001 Fluoranthene mg/l 0.001 0.0001 0.0001 Fluoranthene mg/l 0.001 0.0001 0.0001 Indeno(1,2,3-c,d)pyrene mg/l 0.001 0.0001 0.0001 Indeno(1,2,3-c,d)pyrene mg/l 0.001 0.0001 0.0001 Naphthalene mg/l 0.001 0.0001 0.0001 Phenanthrene mg/l 0.001 0.0001 0.0001 Pyrene mg/l 0.001 0.0001 0.0001 Pyrene mg/l 0.001 0.0001 0.0001 PAHs (Total) mg/l 0.002 0.001 0.0001 SVOC Hexachloroethane mg/l 0.002 0.002 0.12-d-tichlorobenzene mg/l 0.002 0.002 0.12-d-tichlorobenzene mg/l 0.002 0.002 0.12-d-tichlorobenzene mg/l 0.002 0.002 0.13-d-tichlorobenzene mg/l 0.002 0.002 0.14-d-tichlorobenzene mg/l 0.002 0.00						
Benzo(sh.l)perylene						
Benzo(k)fluoranthene						
Chrysene						
Dibenz(a,h)anthracene mg/l 0.001 <0.001 Fluoranthene mg/l 0.001 <0.001						
Fluorene			_			
Fluorene						
Indeno(1,2,3-c,0)pyrene mg/l 0.001 <0.001 Naphthalene mg/l 0.001 <0.001 Phenanthrene mg/l 0.001 <0.001 Pyrene mg/l 0.001 <0.001 Pyrene mg/l 0.001 <0.001 PAHs (Total) mg/l 0.001 <0.001 SVOC Hexachloroethane mg/l 0.002 1,2,4-st-tetrachlorobenzene mg/l 0.002 1,2,4-st-tichlorobenzene mg/l 0.002 1,2,4-st-tichlorobenzene mg/l 0.002 1,3-dichlorobenzene mg/l 0.002 1,3-dichlorobenzene mg/l 0.002 1,3-dichlorobenzene mg/l 0.002 Hexachlorobenzene mg/l 0.002 Hexachlorobenzene mg/l 0.002 Hexachlorobenzene mg/l 0.002 Pentachlorobenzene mg/l 0.002 Hexachlorobutadiene mg/l 0.002 Hexachlorobutadiene mg/l 0.002 Hexachlorobutadiene mg/l 0.004 Hexachlorobenzene mg/l 0.001 <0.01 C29-C36 Fraction mg/l 0.1 <0.1 C29-C36 Fraction mg/l 0.1 <0.1 C39-C36 Fraction (Total) mg/l 0.1 <0.1 C11-C26 Fraction (Total) mg/l 0.1 <0.01 1,1,1-tetrachloroethane mg/l 0.001 <0.001 1,1,1-tichloroethane mg/l 0.001 <0.001 1,1,2-dichloroethane mg/l 0.001 <0.001 1,1,2-dichloroethane mg/l 0.001 <0.001 1,2-dichloroptopane mg/l 0.001 <0.001 1,2-dichloroptopane mg/l 0.001 <0.001 Romodichloromethane mg/l 0.001 <0.001 Chloroform mg/l 0.001 <0.001 Chloroethane mg/l 0.001 <0.001 Chloroe						
Naphthalene						
Phenanthrene						
PAHs (Total)						
PAHs (Total)		Pyrene	mg/l	0.001	<0.001	
1.2.4.5-tetrachlorobenzene mg/l 0.002 1.2.4-trichlorobenzene mg/l 0.002 1.3-dichlorobenzene mg/l 0.002 1.3-dichlorobenzene mg/l 0.002 1.3-dichlorobenzene mg/l 0.002 1.3-dichlorobenzene mg/l 0.002 1.4-dichlorobenzene mg/l 0.002		PAHs (Total)	mg/l	0.001	<0.001	
1.2.4.5-tetrachlorobenzene mg/l 0.002 1.2.4-trichlorobenzene mg/l 0.002 1.3-dichlorobenzene mg/l 0.002 1.3-dichlorobenzene mg/l 0.002 1.3-dichlorobenzene mg/l 0.002 1.3-dichlorobenzene mg/l 0.002 1.4-dichlorobenzene mg/l 0.002						
1,2,4-trichlorobenzene mg/l 0.002 1,2-Dichlorobenzene mg/l 0.002 1,3-dichlorobenzene mg/l 0.002 1,4-dichlorobenzene mg/l 0.002 1,4-dichlorobenzene mg/l 0.002 1,4-dichlorobenzene mg/l 0.002	SVOC					
1.2-Dichlorobenzene						
1,3-dichlorobenzene						
1.4-dichlorobenzene mg/l 0.002						
Hexachlorobenzene mg/l 0.002						
Pentachlorobutadiene mg/l 0.002 Hexachlorobutadiene mg/l 0.002 Hexachlorobutadiene mg/l 0.002 Hexachlorobutadiene mg/l 0.004						
Hexachlorocyclopentadiene mg/l 0.004		Pentachlorobenzene		0.002		
TPH C10-C14 Fraction mg/l 0.05 <0.05		Hexachlorobutadiene	mg/l	0.002		
C15-C28 Fraction		Hexachlorocyclopentadiene	mg/l	0.004		
C15-C28 Fraction						
C29-C36 Fraction	TPH					
C10-C36 Fraction (Total) mg/l 0.1 <0.1						
VOC 1,1,1,2-tetrachloroethane mg/l 0.001 <0.001	———					
1.1,1-trichloroethane	-	CTO-C36 Fraction (Total)	mg/I	U. I	<0.1	
1.1,1-trichloroethane	VOC	1 1 1 2-tetrachloroethane	mg/l	0.001	<0.001	
1,1,2-trichloroethane	V 30					
1,1,2,2-tetrachloroethane						
1,1-dichloroethane						
1,2,3-trichloropropane mg/l 0.001 <0.001 1,2-dichloroethane mg/l 0.001 <0.001 1,3-dichloropropane mg/l 0.001 <0.001 1,3-dichloropropane mg/l 0.001 <0.001 1,3-dichloropropane mg/l 0.001 <0.001 Bromodichloromethane mg/l 0.001 <0.001 Bromodichloromethane mg/l 0.001 <0.001 Carbon tetrachloride mg/l 0.001 <0.001 Chlorofethane mg/l 0.001 <0.001 Chlorofethane mg/l 0.001 <0.001 Chloroform mg/l 0.005 <0.005 Chloromethane mg/l 0.001 <0.001 Dichlorodifluoromethane mg/l 0.001 <0.001 Dichloromethane mg/l 0.001 <0.001 Dichloromethane mg/l 0.001 <0.001 Dichloromethane mg/l 0.001 <0.001 Dichloromethane mg/l 0.001 <0.001 1,1-Dichloroethene mg/l 0.001 <0.001 3-chloropropene mg/l 0.001 <0.001 4-chlorotoluene mg/l 0.001 <0.001 dis-1,2-dichloroethene mg/l 0.001 <0.001 Tetrachloroethene mg/l 0.001 <0.001		1,1-dichloroethane				
1.2-dichloroethane			mg/l			
1.3-dichloropropane		1,2-dichloroethane	mg/l			
Bromochloromethane mg/l 0.001 <0.001						
Bromodichloromethane mg/l 0.001 <0.001 <0.001 Carbon tetrachloride mg/l 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001						
Carbon tetrachloride	-					
Chloroethane	-					
Chloroform mg/l 0.005 <0.005	 					
Chloromethane mg/l 0.001 <0.001 dlbromochloromethane mg/l						
dibromochloromethane mg/l 0.001 <0.001						
Dichlorodfluoromethane mg/l 0.001 <0.001						
Dichloromethane mg/l 0.001 <0.001 1,1-Dichloroethene mg/l 0.001 <0.001 3-chloropropene mg/l 0.001 <0.001 4-chlorotoluene mg/l 0.001 <0.001 cis-1,2-dichloroethene mg/l 0.001 <0.001 cis-1,3-dichloropropene mg/l 0.001 <0.001 Tetrachloroethene mg/l 0.001 <0.001 trans-1,2-dichloroethene mg/l 0.001 <0.001 trans-1,3-dichloropropene mg/l 0.001 <0.001 trans-1,3-dichloropropene mg/l 0.001 <0.001 trans-1,3-dichloropropene mg/l 0.001 <0.001 <0.001 trans-1,3-dichloropropene mg/l 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001						
1.1-Dichloroethene						
3-chloropropene mg/l 0.001 <0.001						
cis-1,2-dichloroethene mg/l 0.001 <0.001 cis-1,3-dichloropropene mg/l 0.001 <0.001			mg/l			
cis-1,3-dichloropropene mg/l 0.001 <0.001 Tetrachloroethene mg/l 0.001 <0.001 trans-1,2-dichloroethene mg/l 0.001 <0.001 trans-1,3-dichloropropene mg/l 0.001 <0.001						
Tetrachloroethene mg/l 0.001 <0.001 trans-1,2-dichloroethene mg/l 0.001 <0.001 trans-1,3-dichloropropene mg/l 0.001 <0.001						
trans-1,2-dichloroethene mg/l 0.001 <0.001 trans-1,3-dichloropropene mg/l 0.001 <0.001						
trans-1,3-dichloropropene mg/l 0.001 <0.001	l					
	 					
	 	Trichloroethene	mg/l	0.001	<0.001	

Walsh Bay Precinct Infrastructure NSW / Walsh Bay Precinct

Field Blanks Filter: ALL	(WATER)	SDG Field ID	531205 RB20170120	531205 TB20170120		
			Sampled_Date/Time Sample Type	20/01/2017 Rinsate	20/01/2017 Trip_B	
	Trichlorofluoromethane	mg/l	0.001	< 0.001		
	Vinyl Chloride	mg/l	0.001	< 0.001		
	Benzene	mg/l	0.001	< 0.001		
	Ethylbenzene	mg/l	0.001	< 0.001		
	Toluene	mg/l	0.001	< 0.001		
	Xylene (m & p)	mg/l	0.002	< 0.002		
	Xylene (o)	mg/l	0.001	< 0.001		
	Xylene (Total)	mg/l	0.003	< 0.003		
	Naphthalene	mg/l	0.01			
	1,2,4-trimethyl benzene	mg/l	0.001	< 0.001		
	1,3,5-trimethyl benzene	mg/l	0.001	< 0.001		
	Bromobenzene	mg/l	0.001	< 0.001		
	Isopropylbenzene	mg/l	0.001	< 0.001		
	Styrene	mg/l	0.001	< 0.001		
	1,2-dibromoethane	mg/l	0.001	< 0.001		
	2-Butanone (MEK)	mg/l	0.001	< 0.001		
	4-Methyl-2-pentanone (MIBK)	mg/l	0.001	< 0.001		
	Bromoform	mg/l	0.001	< 0.001		
	Bromomethane	mg/l	0.001	< 0.001		
	Dibromomethane	mg/l	0.001	< 0.001		
	Iodomethane	mg/l	0.001	< 0.001		
	1,2-Dichlorobenzene	mg/l	0.001	< 0.001		
	1,3-dichlorobenzene	mg/l	0.001	< 0.001		
	1,4-dichlorobenzene	mg/l	0.001	< 0.001		
	Chlorobenzene	mg/l	0.001	< 0.001		
	Carbon disulfide	mg/l	0.001	< 0.001		
	2-Propanone (Acetone)	μg/l	1	<1		
Volatile	Benzene	mg/l	0.001		<0.001	
	Ethylbenzene	mg/l	0.001	1	< 0.001	
	Toluene	mg/l	0.001	1	< 0.001	
	Xylene (m & p)	mg/l	0.002		< 0.002	
	Xylene (o)	mg/l	0.001	1	< 0.001	
	Xylene (Total)	mg/l	0.003		< 0.003	

Appendix J Borelogs and Field Notes

JBH01

Project Number: 52304 Client: Infrastructure NSW

Project Name: Walsh Bay Arts Precinct SSDA **Site Address:** Walsh Bay Arts Precinct, NSW

Date: 19/01/2017
Logged By: Rohan Hammond
Contractor: Perfect Concrete
Total Hole Depth (mbgs): 0.25

Eastings (GDA 94): Northings (GDA 94): Zone/Area:

Reference Level: AHD

Bore Diameter (mm): 100 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Corer	_	0.05		Fill	Fill - ASPHALT Fill - CONCRETE		
Hand Auger	_	0.24 0.25		Fill	Fill - Clayey Sandy GRAVEL Borehole JBH01 terminated at 0.25m	JBH01 0.24-0.25 PID = 0 ppm	End of hole at 0.25m bgs. Refusal on sandstone bedrock.
	_						
	0.5						
	_						
	_						
	1.0						

JBH02

Project Number: 52304 Client: Infrastructure NSW

Project Name: Walsh Bay Arts Precinct SSDA **Site Address:** Walsh Bay Arts Precinct, NSW

Date: 19/01/2017
Logged By: Rohan Hammond
Contractor: Perfect Concrete
Total Hole Depth (mbgs): 0.7

Eastings (GDA 94): Northings (GDA 94):

Zone/Area: Reference Level: AHD

Bore Diameter (mm): 100 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Corer				Fill	Fill - CONCRETE - Slab 1		
		0.20		Fill	Fill - CONCRETE - Slab 2		
	0.5	0.40		Fill	Fill - CONCRETE - Slab 3		
DI 1/2/1 / Hand Auger		0.60		JBH02 0.6-0.7 PID = 0 ppm	End of hole at 0.7m has Refusal on sandstone		
BOKEHOLE JBSG BOKEHOLE.GPJ GIN I SID AUSTRALIA.GDT 712	_	0.70			Borehole JBH02 terminated at 0.7m		End of hole at 0.7m bgs. Refusal on sandstone bedrock.

JBH03

Project Number: 52304 Client: Infrastructure NSW

Project Name: Walsh Bay Arts Precinct SSDA **Site Address:** Walsh Bay Arts Precinct, NSW

Date: 20/01/2017
Logged By: Rohan Hammond
Contractor: Perfect Concrete
Total Hole Depth (mbgs): 0.6

Eastings (GDA 94): Northings (GDA 94):

Zone/Area:

Total Hole Depth (mbgs): 0.6 **Reference Level:** AHD

Bore Diameter (mm): 100 Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Corer				Fill	Fill - CONCRETE - Slab 1		
	_	0.15		Fill	Fill - CONCRETE - Slab 2		
	0.5	0.33		Fill	Fill - CONCRETE - Slab 3		
Hand Auger	9.0	0.50		SANDSTONE	SANDSTONE - Bedrock	JBH03 0.5-0.6 PID = 0 ppm	End of hole at 0.6m bgs. Refusal on sandsto bedrock.
	_	0.60			Borehole JBH03 terminated at 0.6m		bedrock.
	_						
	_						

JBH05

Project Number: 52304 Client: Infrastructure NSW

Project Name: Walsh Bay Arts Precinct SSDA **Site Address:** Walsh Bay Arts Precinct, NSW

Date: 19/01/2017
Logged By: Rohan Hammond
Contractor: Perfect Concrete
Total Hole Depth (mbgs): 0.75

Bore Diameter (mm): 100

Eastings (GDA 94): Northings (GDA 94): Zone/Area:

Reference Level: AHD

Elevation (m):

					Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Corer	_			Fill	Fill - CONCRETE - Slab 1		
	_	0.18			VOID		
	0.5	0.47		Fill	Fill - CONCRETE - Slab 2		
	_	0.75			Borehole JBH05 terminated at 0.75m		End of hole at 0.75m bgs. Equipment refusal - unable to penetrate slab at depth.

BOREHOLE JBSG BOREHOLE.GPJ GINT STD AUSTRALIA.GDT 1/2/17

JBH06

Project Number: 52304 Client: Infrastructure NSW

Project Name: Walsh Bay Arts Precinct SSDA **Site Address:** Walsh Bay Arts Precinct, NSW

Date: 19/01/2017
Logged By: Rohan Hammond
Contractor: Perfect Concrete
Total Hole Depth (mbgs): 0.9

Bore Diameter (mm): 100

Eastings (GDA 94): Northings (GDA 94): Zone/Area:

Reference Level: AHD

Elevation (m):

			Ì	1). 100	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Corer	_	0.18		Fill	Fill - CONCRETE - Slab 1 Subfloor VOID		
	_						
	0.5	0.47		Fill	Fill - CONCRETE - Slab 2		
Hand Auger	_	0.75		Fill	Fill - Gravelly SAND - Sandstone backfill, heterogeneous, damp, loose, coarse sand-boulders, well graded, no inclusions.	JBH06 0.75-0.85 PID = 0.3 ppm	
	1.0	0.90			Borehole JBH06 terminated at 0.9m		End of hole at 0.9m bgs. Refusal on sandstone bedrock.

BOREHOLE JBSG BOREHOLE.GPJ GINT STD AUSTRALIA.GDT 1/2/17

Gas Calibration Certificate

Instrument

MX6

Serial No.

15062D0-006

Sensors

O₂, LEL, PID

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass		Com	ments	
Battery	Charge Condition	/				
	Fuses	/	<u> </u>	-		
	Capacity	✓	T	·		
	Recharge OK?	V	7			
Switch/keypad	Operation	7	-	-	- -	
Display	Intensity					_
-	Operation (segments)	✓				<u>-</u>
Grill Filter	Condition	√	1			
	Seal					
Pump	Operation					
	Filter			-		_
	Flow					
	Valves, Diaphragm					
PCB	Condition					_
Connectors	Condition	··· ·· · ✓	-		-	
			Low	High	TWA	STEL
Sensor	02	√	19,5%	23.5%	N/A	N/Ä
	LEL	√	5%LEL	10%LEL	N/A	N/A
<u> </u>	PID	✓	50ppm	100ppm	10ppm	25ppm
						- NVL -

Alarms	Beeper	4			,	~
	Settings	√				
Software	Version			·		
Datalogger	Operation					
Download	Operation					
Other tests:					\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode	Aspirated mode	•			
Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
02		20.9% Vol O2	1	Fresh Air	20.9% O2
LEL PID		50% LEL (Mentane)	NATA	SY131	50% LEL Methane
PID		98ppm Isobutylene	NATA	SY137	97.4ppm
			<u> </u>		

Calibrated by:

Sophie Boler

Calibration date:

19-Jan-17

Next calibration due:

18-Jul-17

Project Number: 52204	Date: 20-1-17	Sampler/s. EA 1 NW
Site Address: Hick OSOn Rol	Sample Method: MX6 (300mL/min)	Weather: ‡ in

Field Measurements

		Carbon Dioxide		Methane	LEL	Leak Detection?
gam	20.9		0.0		0	
· · · · · · · · · · · · · · · · · · ·	20.9		0.3		0	
	20.8		0.3		0	
				-		
			-			
					-	
					-	
						
41						
	Time	9am 20.9 20.8	9cm 20.9 20.9 20.8	9am 20.9 0.0 20.9 0.3 20.8 0.3	9cm 20.9 0.0 20.9 20.8 0.3	9am 20.9 0.0 0 20.9 0.3 6 20.8 0.3 0

Appendix K Results Summary Tables

Table B - Soil Vapour Analytical Results Project Number: 52304 Project Name: Walsh Bay Precinct

	Polycyclic Aromatic Hydrocarbons			Mo	nocyclic A	romatic Hy	drocarbo	ns			Miscellan	eous Hydr	ocarbons			Chlorinated	Benzenes			Miscellaneous Industrial Chemicals
JBS&G	Nephthalene	1,2,4-trimethyl benzene	1,3,5-trimethyl benzene	4-isopropyl toluene	Isopropylbenzene	n-butyl benzene	n-propyl benzene	sec-butyl benzene	Styrene	Tert-butyl benzene	1,2-dibromoethane	Bromoform	. Dibromomethane	1,2,3-trichlorobenzene	1,2,4-trichlorobenzene	1,2-Dichlorobenzene	Chlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Hexach orobutadiene
	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3	mg/m3
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.83	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
ommercial/Industrial D Indoor Air (Attenuation Factor 0.001)																				
ommercial/Industrial D Indoor Air (Attenuation Factor 0.1)																				
ommercial/Industrial D Soil Vapour																				
apour HSL D - Sand 0 to <1m	3																			
apour HSL D - Sand 0 to <1m (Attenuation Factor 200)	0.015																			

Sample ID	Location	Orientation	Sample Date																				
JBH06_AIR_BACK	JBH06	BACK	20/01/2017	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.8333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333
JBH06_AIR_FRONT	JBH06	FRONT	20/01/2017		<0.08333																		
QV01_BACK	QV01	BACK	20/01/2017	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.8333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333
QV01_FRONT	QV01	FRONT	20/01/2017	<0.08333	<0.08333	< 0.08333	< 0.08333	< 0.08333	<0.08333	< 0.08333	<0.08333	<0.8333	< 0.08333	< 0.08333	< 0.08333	< 0.08333	< 0.08333	< 0.08333	< 0.08333	< 0.08333	< 0.08333	< 0.08333	<0.08333

Table B - Soil Vapour Analytical Results Project Number: 52304 Project Name: Walsh Bay Precinct

								Chlor	inated Alk	anes												Chlorinate	d Alkenes						BTEX	(
G	1,1,1,2-tetrachloroethane	1,1,1-trichloroethane	1,1,2-trichloroethane	1,1,2,2-tetrachloroethane	1,1-dichloroethane	1,2,3-trichloropropane	1,2-dibromo-3-chloropropane	1,2-dichloroethane	1,2-dichloropropane	L)3-dichloropropane	2,2-dichloropropane	Em/8 Bromochloromethane	Ew/gm Emodichloromethane	EW/8/2 Carbon tetrachloride	mg/m3	gu/gu dibromochloromethane	Ew/8w Trichlorofluoromethane	L,1-Dichloroethene	1,1-dichloropropene	Ew/8w 2-chlorotoluene	Em/8m Tetrachloroethene	wg/m3 4-chlorotoluene	cis-1,2-dichloroethene	cis-1,3-dichloropropene	trans-1,3-dichloropropene	EW/8 Trichloroethene	Vinyl Chloride	Benzene Benzene	Ethylbenzene	Toluene mg/m3	xylene (Total)
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.25
on Factor 0.001)		23000																			800		30			8	10				
on Factor 0.1)		23																			0.8		0.03			0.008	0.01				
		230																			8		0.3			0.08	0.1				
																												4	1300	4800	840
tor 200)																												0.02	6.5	24	4.2

Sample ID	Location	Orientation	Sample Date																															
JBH06_AIR_BACK	JBH06	BACK	20/01/2017	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.25
JBH06_AIR_FRONT	JBH06	FRONT	20/01/2017	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.25
QV01_BACK	QV01	BACK	20/01/2017	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.25
QV01_FRONT	QV01	FRONT	20/01/2017	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.08333	<0.25

			M	letals &	Metallo	ids										Chlorin	ated Alk	anes											Chlo	orinated	Alkene	s				Т	PHs (NEF	C 1999)		Т	RHs (NE	PC 2013	3)	=
\$JBS&G	Arsenic (Total)	Cadmium	Chromium (Total)	Copper	Lead	Mercury (Inorganic)	Nicke I 71 nc	1.1.2-tetrachloroethane	1,1,1-trichloroethane	1,1,2-trichloroethane	1,1,2,2-tetrachloroethane	1,1-dichloroethane	1,2,3-trichloropropane	1,2-dichloroethane	1,2-dichloropropane	L,3-dichioropropane Romochloromethane	Bromodichloromethane	Carbon tetrachlori de	Chloroethane	Chloroform	Chloromethane	dibromochloromethane	Dichlorodifluoromethane Dichloromethane	Hexachloroethane	Trichlorofluoromethane	1,1-Dichloroethene	3-chloropropene	Tetrachloroethene	4-chlorotoluene	cis-1,2-dichloroethene	cis-1,3-dichloropropene	trans-1,2-dichloroethene	trans-1,3-dichloropropene	rich F	Vinyl Chloride	6-69	C10-C14 Fraction	C29-C36 Fraction	C10-C36 Fraction (Total)	>C10-C16 Fraction	>C16-C34 Fraction	>G34-C40 Fraction	C6-C10 Fraction	C6 - C10 less BTEX (F1)	>C10 - C16 less Naphthalene (F2)
					mg/kg	mg/kg n	ng/kg mg,	kg mg/	kg mg/kg	mg/kg	mg/kg r		_	ng/kg m	ig/kg mg	g/kg mg	/kg mg/k	g mg/k	g mg/kg	mg/kg	mg/kg	mg/kg r	ng/kg mg	/kg mg/k	kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg n	ng/kg m	ng/kg m	ig/kg m			_	_	_		_	_	_	_	
EQL	2.00	0.40	5.00	5.00	5.00	0.10	5.00 5.0	0.5	0.50	0.50	0.50	0.50	0.50	0.50 0	0.50 0.	.50 0.5	0.50	0.50	0.50	0.50	0.50	0.50	0.50 0.5	50 0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50 0	0.50 0	0.50	20.00 20	0.00 50.0	00 50.0	50.00	50.00	100.00	100.00	20.00	20.00	50.00
NEPM 2013 EIL - Commercial Industrial (generic)	160		310	85	1800		55 11	0																																					
NEPM 2013 EIL - Urban Residential (generic)	100		190	60	1100		30 70)																																					
NEPM 2013 ESL Commercial and Industrial, Coarse Soil																																								170	1700	3300	215	215	170
NEPM 2013 Soil HIL D	3000	900	3600	240000	1500	730	5000 4000	000										Т																	Т										
NEPM 2013 Soil HSL D - Sensitive Setting																																												250	NL
NEPM 2013 Soil HSL D for Vapour Intrusion - Sand 0 to <1m																																												260	NL
Sample ID Location Sample Depth Sample Date Lithological Type Lab Report																																													
JBH01_0.24-0.25	3.7	<0.4	17	52	120	<0.1	14 15	0 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	:0.5 <0	0.5 <0	.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 0.	5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <	<0.5	<20 <	20 <51) <5	0 <50	<50	<100	<100	<20	<20	<50
JBH03_0.5-0.6 JBH03 0.5-0.6 19/01/2017 Fill 531205	<2	<0.4	<5	21	14	<0.1	<5 20	<0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	:0.5 <0	0.5 <0	.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0	.5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	<0.5 <	:0.5 <	<0.5	<20 <	20 <50	<51	0 <50	<50	<100	<100	<20	<20	<50
JBH06_0.75-0.85 JBH06 0.75-0.85 19/01/2017 Fill 531205	<2	<0.4	5	89	42	<0.1	7.9 5	. <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	:0.5 <0	0.5 <0	.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 0.	8 <0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	<0.5 <	(0.5 <	<0.5	<20 <	20 26) 66	326	<50	330	<100	<20	<20	<50

			BTEX										Polyc	yclic Aron	atic Hyd	rocarbo	ns							Mor	ocyclic /	Aromatic	Hydroca	arbons		Misce	llaneous	s Hydroc	arbons				Chlori	nated B	enzenes					Polych	lorinate	d Bipher	nyls		Organ	nic Sulfur Compounds
\$JBS&G	Benzene	Ethylbenzene		Xylene (m & p) Xylene (o)	Xylene (Total)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene Benzo(a)byrene TEO (lower bound)*	Benzo(a)pyrene TEQ (medium bound)*	Benzo(a)pyrene TEQ (upper bound)*	Benzo(b,j)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Carcinogenic PAHs as B(a)P TPE	Naphthalene	Phenanthrene	Pyrene PAHs (Total)	1,2,4-trimethyl benzene	1,3,5-trimethyl benzene	Bromobenzene	Isopropylbenzene	Styrene	1,2-dibromoethane	2-Butanone (MEK)	4-Methyl-2-pentanone (MIBK)	Bromotorm Bromomethane	Dibromomethane	lodomethane	1,2,4,5-tetrachlorobenzene	1,2,4-trichlorobenzene	1,2-Dichlorobenzene	Chlorobenzene	1,3-dichlorobenzene	T.y-dicinologicalie Hexachlorobenzene	Pentachlorobenzene	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260 PCBs (Total)		Carbon disufide
	mg/kg		mg/kg r	mg/kg mg/	kg mg/k	_			mg/kg m	g/kg mg/	kg mg/kg		mg/kg		/kg mg/	_	g mg/kg	_	mg/kg	mg/kg		_	mg/kg mg/	kg mg/k	_	_			mg/kg	mg/kg n	_	g/kg mg/	_	kg mg/kg	_		mg/kg n	_	ng/kg mg	_	_	_	_	_		mg/kg n		g/kg mg/k		mg/kg
EQL	0.10	0.10	0.10	0.20 0.1	0.30	0 0.50	0.50	0.50	0.50 0	0.50 0.5	0.50	0.50	0.50	0.50	50 0.5	0.50	0.50	0.50	0.50		0.50	0.50	0.50 0.5	0 0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50 0.	.50 0.5	0.50	0.50	0.50	0.50	0.50	0.50 0	0.50 0.5	50 0.0	0.5	0 0.50	0.10	0.50	0.50	0.50	0.50 0	.50 0.50		0.50
NEPM 2013 EIL - Commercial Industrial (generic)																					370																													
NEPM 2013 EIL - Urban Residential (generic)																					170																													
NEPM 2013 ESL Commercial and Industrial, Coarse Soil	75	165	135		180	D				1.4																									Т															
NEPM 2013 Soil HIL D																				40			400	10																80	D							7		
NEPM 2013 Soil HSL D - Sensitive Setting	3	NL	NL		230	D															NL																													
NEPM 2013 Soil HSL D for Vapour Intrusion - Sand 0 to <1m	3	NL	NL		230	D															NL																													
Sample ID Location Sample Depth Sample Date Lithological Type Lab Report																																																		
JBH01_0.24-0.25	<0.1	<0.1		<0.2 <0.3		3 <0.5		<0.5		0.5 <0.		1.2	<0.5		0.5 <0.	<0.5			<0.5	<1.21*5	<0.5	_	<0.5 <0	5 <0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 <0.	.5 <0.5		<0.5	<0.5			<0.5 <0		05 <0.							0.5 <0.5		<0.5
JBH03_0.5-0.6 JBH03 0.5-0.6 19/01/2017 Fill 531205	<0.1	<0.1		<0.2 <0.				<0.5	<0.5 <	0.5 <0.	5 0.6	1.2	<0.5	<0.5	0.5 <0.	<0.5	<0.5	<0.5	<0.5	<1.21 45	<0.5	<0.5	<0.5 <0			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <			5 <0.5			<0.5											0.5 <0.5		<0.5
JBH06_0.75-0.85 JBH06 0.75-0.85 19/01/2017 Fill 531205	<0.1	<0.1		<0.2 <0.3			<0.5	3.2	6.6	5.3 7.1	7.8	7.8	5.1	2.6	4 5.1			1.1	2.3	7.777*2	<0.5	14	13 79	6 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 <0.	.5 <0.5				<0.5		<0.5 <0				<0.1			<0.5		0.5 <0.5		<0.5
QA20170119 JBH06 0.75-0.85 19/01/2017 Fill 531205	<0.1	<0.1	<0.1	<0.2 <0.3	1 <0.3	3 <0.5	<0.5	1	4.3	3.8 5.:	5.4	5.6	4.5	2.1	.1 3.2	<0.5	6.6	<0.5	1.8	5.373*2	<0.5	1	6.8 37	2 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 <0.	.5 <0.5	5 <0.5	<0.5	<0.5	<0.5	<0.5 <	<0.5 <0	0.5 <0.0	05 <0.	5 <0.5	<0.1	<0.5	<0.5	<0.5	<0.5 <	0.5 <0.5		<0.5

																																										$\overline{}$
A	Miscellane	ous Industria	I Chemicals						Organoch	lorine Pesti	ides							Organophosphorus Pesticides										_														
\$JBS&G	exachlorobutadiene	-Propanone (Acetone)	exachlorocycl opentadiene	ldrin ,4-DDE	Idrin + Dieldrin (Sum of Total)	DD	ipha-BHC DT	DT+DDE+DDD (Sum of Total) eta-BHC	hlordane	ndosulfan alpha	ndosulfan beta ndosulfan sul phate	ndrin	ndrin aldehyde	narin ketone eptachlor	e ptachlor Epoxide	indane	reutoxycnior oxaphene	zinphos methyl	hlorfenvinphos hlorpyrifos	hlorpyrifos-methyl	oumaphos	eine toir - O ia zinon	ichlorvos	imethoate isulfoton	thion	thoprophos	enitrothion ensulfothion	enthion	la lathion	lerphos	levinphos Nonocrotophos	methoate	arathion	arathion methyl horate	irimiphos methyl	yrazophos	onnel	uiprofos erbufos	etrachlorvinphos	okuthion richloronate	NA	emeton-S
	mg/kg	mg/kg	mg/kg	mg/kg mg/k	kg mg/kg mg	z/kg mg/kg n	ng/kg mg/kg	mg/kg mg/k	g mg/kg mg	/kg mg/kg	mg/kg mg/	/kg mg/kg	mg/kg m	t/kg mg/kj	mg/kg	ng/kg mg	/kg mg/kg	mg/kg m	g/kg mg/kg	kg mg/kg	mg/kg mg	/kg mg/kg	mg/kg m	g/kg mg/kg	mg/kg	mg/kg m	g/kg mg/k	kg mg/kg	mg/kg r	mg/kg mg	g/kg mg/kg	g mg/kg	mg/kg n	ng/kg mg/	/kg mg/kg	mg/kg	mg/kg m	g/kg mg/ka	mg/kg n	ng/kg mg/	kg MG/KG	MG/KG
EQL	0.50	0.50	1.00	0.05 0.05	5 0.	.05 0.05	0.05 0.05	0.05	0.10 0.	05 0.05	0.05 0.0	0.05	0.05 0	05 0.05	0.05	0.05 0.	20 1.00	0.20 0	0.20 0.20	0.20	2.00 0.	20 0.20	0.20 0	.20 0.20	0.20	0.20 0	0.20 0.20	0.20	0.20	0.20 0.	.20 2.00	2.00	0.20	0.20 0.2	0.20	0.20	0.20 0	.20 0.20	0.20	0.20 0.2	0 0.20	
NEPM 2013 EIL - Commercial Industrial (generic)							640																																			
NEPM 2013 EIL - Urban Residential (generic)							180																																			
NEPM 2013 ESL Commercial and Industrial, Coarse Soil																																										
NEPM 2013 Soil HIL D					45			3600	530			100		50		25	00 160		2000	0																						
NEPM 2013 Soil HSL D - Sensitive Setting																																										
NEPM 2013 Soil HSL D for Vapour Intrusion - Sand 0 to <1m																																										
Sample ID Location Sample Depth Sample Date Lithological Type Lab Report																																										
JBH01_0.24-0.25 JBH01 0.24-0.25 19/01/2017 Fill 531205	<0.5	<0.5	<1	<0.05 <0.0			0.05 <0.05				<0.05 <0.0			.05 <0.05	<0.05	<0.05 <0	0.2 <1		:0.2 <0.2	2 <0.2	<2 <	0.2 <0.2	<0.2 <	0.2 <0.2	<0.2	<0.2 <	0.2 <0.2	2 <0.2	<0.2	<0.2 <0	0.2 <2	<2		<0.2 <0	.2 <0.2			0.2 <0.2	<0.2	<0.2 <0.	.2 <0.2	
JBH03_0.5-0.6 JBH03 0.5-0.6 19/01/2017 Fill 531205	<0.5	<0.5	<1			.05 <0.05 <																																	<0.2			
JBH06_0.75-0.85 JBH06 0.75-0.85 19/01/2017 Fill 531205	<0.5	4.2	<1			.05 <0.05 <															<2 <	0.2 <0.2					0.2 <0.2												<0.2			
QA20170119 JBH06 0.75-0.85 19/01/2017 Fill 531205	<0.5	<0.5	<1	<0.05 <0.0	05 <0.1 5 <0	.05 <0.05 <	0.05 <0.05	<0.05 <0.05	< 0.1 < 0	.05 <0.05	<0.05 <0.0	05 < 0.05	<0.05 <0	.05 < 0.05	< 0.05	<0.05 <0	0.2 <1	<0.2 <	0.2 <0.2	2 <0.2	<2 <	0.2 <0.2	<0.2 <	0.2 <0.2	< 0.2	<0.2 <	0.2 <0.2	2 <0.2	<0.2	<0.2 <0	0.2 <2	<2	<0.2	<0.2 <0	2 < 0.2	<0.2	<0.2	0.2 <0.2	<0.2	<0.2 <0.	2 <0.2	<0.2

Table A - Chemical Analytical Data Project Number: 52304 Project Name: Walsh Bay Precinct

															Asbest	os					
\$	JE	35	80	3		Approx. Sample Mass	Asbestos from ACM in Soil	m Mass ACM	Mass Asbestos in ACM	Asbestos from FA & AF in Soil	Mass FA	Mass Asbestos in FA	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	Synthetic Fibres - Comment	ACM - Comment	AF - Comment	FA - Comment	Organic Fibres - Comment	Respirable Fibres - Comment
QL																					
EPM 2013 EIL - Con	mercial Ind	ustrial (generic)																			
EPM 2013 EIL - Urb	an Residenti	al (generic)																			
EPM 2013 ESL Com	mercial and	Industrial, Coarse	Soil																		
EPM 2013 Soil HIL D)																				
EPM 2013 Soil HSL	D - Sensitive	Setting																			
EPM 2013 Soil HSL	D for Vapou	r Intrusion - Sand	0 to <1m																		
ample ID		Sample Depth		Lithological Type																	
H01_0.24-0.25	JBH01	0.24-0.25	19/01/2017	Fill	531205	122	0	0	0	0	0	0	0	0	0	1*6	1 86	1 **5	1*5	1*4	1*3

ı	JBH01_0.24-0.25	JBH01	0.24-0.25	19/01/2017	Fill	531205
ı	JBH03 0.5-0.6	ЈВН03	0.5-0.6	19/01/2017	Fill	531205

JBH01_0.24-0.25	JBH01	0.24-0.25	19/01/2017	Fill	531205	122	0	0	0	0	0	0	0	0	0	1**	1"	1"	1"0	1***	1"3
JBH03_0.5-0.6	JBH03	0.5-0.6	19/01/2017	Fill	531205	60	0	0	0	0	0	0	0	0	0	1"5	1 46	1 46	1*5	1*4	1*3
JBH06_0.75-0.85	JBH06	0.75-0.85	19/01/2017	Fill	531205	94	0	0	0	0	0	0	0	0	0	1"5	1 46	1 46	1*5	1*4	1*3
QA20170119	JBH06	0.75-0.85	19/01/2017	Fill	531205	106	0	0	0	0	0	0	0	0	0	1*6	1**5	1 86	1*5	1*4	1*3

© JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

Document Distribution

Rev No.	Copies	Recipient	Date
5	1 x Electronic Copy	Mr. Tom Kennedy, INSW	19/9/2017

Document Status

Day No.	A cold to the	Reviewer	Approved for Issue	Approved for Issue									
Rev No.	Author	Name	Name	Signature	Date								
0	Sumi Dorairaj	Joanne Rosner	Joanne Rosner		10/11/2016								
1	Sumi Dorairaj	Joanne Rosner	Joanne Rosner	Mount	14/11/2016								
2	Sumi Dorairaj	Joanne Rosner	Joanne Rosner	Many	2/2/2017								
3	Sumi Dorairaj	Joanne Rosner	Joanne Rosner	Thomas	6/2/2017								
4	Sumi Dorairaj	Joanne Rosner	Joanne Rosner	Thomas	29/8/2017								
5	Sumi Dorairaj	Sumi Dorairaj	Sumi Dorairaj	SD.	19/9/2017								