

REPORT

TO

CAPITAL INSIGHT PTY LTD

ON

PRELIMINARY STAGE 1 ENVIRONMENTAL SITE ASSESSMENT

FOR

PROPOSED REFURBISHMENT OF BUILDINGS W6A, AND W6B AND CONSTRUCTION OF AN ADDITIONAL NEW BUILDING AT MACQUARIE UNIVERSITY

AT

WESTERN ROAD, MACQUARIE UNIVERSITY, MACQUARIE PARK

6 JUNE 2017 REF: E29807KRrpt rev1

Postal Address: PO Box 976, North Ryde BC NSW 1670

Tel: 02 9888 5000 • Fax: 9888 5004

EIS is a division of Jeffery and Katauskas Pty Ltd • ABN 17 003 550 801

Document Distribution Record		
Report Reference	Distribution	Report Date
E29807KRrpt	Capital Insight Pty Ltd	11 November 2016
E29807KRrpt rev1	Capital Insight Pty Ltd	6 June 2017

Report prepared by:

Priya Dass

Senior Environmental Scientist

Report reviewed by:

Adrian Kingswell

Principal Environmental Scientist

© Document Copyright of Environmental Investigation Services (EIS)

This Report (which includes all attachments and annexures) has been prepared by EIS for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between EIS and the Client and is therefore subject to:

- a) EIS proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to EIS; and
- c) The terms of contract between EIS and the Client, including terms limiting the liability of EIS.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of EIS which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of EIS does so entirely at their own risk and to the fullest extent permitted by law, EIS accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

TABLE OF CONTENTS

1	INTRODUCTION 1		
	1.1	Proposed Development Details	1
	1.2	Aim and Objectives	2
	1.3	Scope of Work	3
2	SITE INFOR	RMATION	4
_	2.1	Site Identification	4
	2.2	Site Location and Regional Setting	4
	2.3	Topography	4
	2.4	Site Inspection	4
	2.5	Surrounding Land Use	6
	2.6	Underground Services	7
	2.7	Section 149 Planning Certificate	7
3	GEOLOGY	AND HYDROGEOLOGY	8
•	3.1	Regional Geology	8
	3.2	JK / EIS Jobs Database	8
	3.3	Acid Sulfate Soil Risk and Planning	8
	3.4	Hydrogeology	8
	3.5	Receiving Water Bodies	8
4	SITE HISTO	PRY INFORMATION	9
•	4.1	Review of Historical Aerial Photographs	9
	4.2	NSW EPA Records	12
	4.3	Historical Business Directory and Additional Lotsearch Information	12
	4.4	Summary of Site History Information	13
	4.5	Integrity of Site History Information	13
5	CONCEDTI	JAL SITE MODEL	14
,	5.1	Potential Contamination Sources/AEC and CoPC	14
	5.2	Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways	15
	5.3	Assessment of Data Gaps	16
6	SAMPLING	, ANALYSIS AND QUALITY PLAN	18
U	6.1	Data Quality Objectives (DQO)	18
	6.2	Soil Sampling Plan and Methodology	20
	6.3	Analytical Schedule	22
_			
7	SITE ASSES	SMENT CRITERIA (SAC)	24
8	INVESTIGA	TION RESULTS	25
	8.1	Subsurface Conditions	25
	8.2	Field Screening	26
	8.3	Soil Laboratory Results	26
9	DATA QUA	ALITY ASSESSMENT	28
10	WASTE CL	ASSIFICATION OF SOIL FOR OFF-SITE DISPOSAL	31
11	TIED 1 DICK	C ASSESSMENT AND REVIEW OF PCSM	32
11	11.1		32
	11.1	Data Gaps	32
12	CONCLUSION		33
	12.1	Regulatory Requirement	33
13	LIMITATIO	NS	35
_	In-Text Tab		

Important Information About The Site Assessment Report

TABLE OF CONTENTS

REPORT FIGURES:

Figure 1: Site Location Plan
Figure 2: Sample Location Plan

LABORATORY SUMMARY TABLES:

Table A: Soil Laboratory Results Compared to HILs D
Table B: Soil Laboratory Results Compared to HSLs D

Table C: Soil Laboratory Results Compared to Waste Classification Guidelines

Table D: Summary of Laboratory TCLP Results

Table E: Soil Intra-Laboratory Duplicate Results & RPD Calculations
Table F: Soil Intra-Laboratory Duplicate Results & RPD Calculations
Table G: Soil Inter-Laboratory Duplicate Results & RPD Calculations
Table H: Summary of QA/QC – Trip Spike and Trip Blank Results

APPENDICES:

Appendix A: Site Information including Site History

Appendix B: Borehole Logs

Appendix C: Laboratory Report/s & COC Documents

Appendix D: Report Explanatory Notes
Appendix E: Fieldwork Documents

ABBREVIATIONS

Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Asbestos Health Screening Levels	ASL
Acid Sulfate Soil	ASS
Above-Ground Storage Tank	AST
Below Ground Level	BGL
Bureau of Meteorology	ВОМ
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Benzene, Toluene, Ethylbenzene, Xylene, Naphthalene	BTEXN
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Construction Management Plan	CMP
Contaminant(s) of Potential Concern	СоРС
Chain of Custody	COC
Conceptual Site Model	CSM
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Assessment Criteria	EAC
Ecological Investigation Levels	EILs
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environmental Protection Agency	EPA
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Fibre Cement Fragments	FCF
General Approvals of Immobilisation	GAI
General Solid Waste	GSW
Health Investigation Level	HILs
Hardness Modified Trigger Values	HMTV
Health Screening Level	HSLs
International Organisation of Standardisation	ISO
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Local Government Authority	LGA
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	ОСР
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН

ABBREVIATIONS

Photo-ionisation Detector	PID
Practical Quantitation Limit	PQL
Preliminary Site Investigation	PSI
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Restricted Solid Waste	RSW
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Specific Contamination Concentration	scc
Standard Penetration Test	SPT
Semi-Volatile Organic Compounds	sVOC
Standard Sampling Procedure	SSP
Standard Water Level	SWL
Standard Sampling Procedure	SSP
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
Work Health and Safety	WHS

1 INTRODUCTION

Woolacotts Consulting Engineers (Woolacotts), on behalf of Capital Insight Pty Limited ('the client') commissioned Environmental Investigation Services (EIS)¹ to undertake a Preliminary Stage 1 Environmental Site Assessment (ESA) for the proposed refurbishment of Buildings W6A and W6B and construction of an additional new building at Western Road, Macquarie University, Macquarie Park. The site location is shown on Figure 1 and the assessment was confined to the site boundaries/proposed development area as shown on Figure 2. The proposed development area is referred to as 'the site' in this report.

This report has been prepared to support the lodgement of a Development Application (DA) for the proposed refurbishment of Buildings W6A and W6B and construction of additional new building, at the Macquarie University campus.

A geotechnical investigation was undertaken in conjunction with this assessment by JK Geotechnics². The results of the investigation are presented in a separate report (Ref. 29807ZRrpt, dated 4 November 2016³). This report should be read in conjunction with the JK report.

1.1 Proposed Development Details

We have been provided with the following information:

- Architectural plans (Drawing Numbers SSDA-01 to 16 Issue 1, dated 18 May 2017) prepared by Budden Nangle Micheal & Hudson Architects.
- Architectural plans (SK-MU3 and SK-MU4, dated 1 September 2016) annotated by Woolacotts
 Consulting Engineers Pty Ltd (Woolacotts) and attached to their 'Geotechnical and Environmental
 Investigation Brief (Ref. 16-058).
- Survey plan (Project No. 30431, Job Ref. 34174, dated 13 July 2011) prepared by Lockley Land Title
 Solutions.
- Original structural drawings for the Arts and Social Sciences Building, now Buildings W6A & W6B (Drawing Numbers 1E, dated 10/8/66, 2E, dated 15/8/66, 3E, dated 25/7/66, 4E & 5E, dated 20/7/66, 6E, dated 29/7/66, 7E, dated 9/6/66, 8E, dated 16/6/66, 9E, dated 3/8/66, 10E, dated 29/9/66 and 21E/A, dated 21/2/67) prepared by Woolacott, Hale, Bond & Corlett.
- Structural drawings for stair access to Building W6A (Drawing Numbers S1 and S2, dated 5/8/87)
 prepared by Randall Jones & Associates Pty Ltd.
- Rail Corridor Impact Study drawing (Drawing Number SK0010 Rev. A, dated 28 April 2017)
 attached to a letter dated 28 April 2017, both prepared by Taylor Lauder Bersten Pty Ltd (TLB).

¹ Environmental consulting division of Jeffery & Katauskas Pty Ltd (J&K)

 $^{^{\}rm 2}$ Geotechnical consulting division of J&K

³ Referred to as JK 2016 Report

Based on a review of the provided information, we understand that the proposed works will include:

- Reconfiguration of Building W6A, including nine storey plant room extensions to the eastern and western ends of the building and a new nine storey central core that will accommodate the relocation of the lifts and stairs. Maximum vertical loads are expected to be 2,500kN (in compression) with tension loads of between 200kN and 700kN over the eastern and western ends of the building and the new lift core. New pile footings will be required, together with additional loads transferred to existing footings. Rock bolts are envisaged to be required to support tension loads acting on selected walls.
- Reconfiguration of Building W6B (comprising three buildings, each of three levels) and relocation
 of selected columns. Maximum vertical loads are expected to be 1,100kN (in compression) with
 tension loads of 150kN below new walls. New pile footings will be required. Rock bolts are
 envisaged to be required to support tension loads acting on selected walls.
- A new museum building to the south of W6A. The floor level of the new building will be at the same level as Building W6A (RL64.878m). Excavations to a maximum depth of about 5m will therefore be required to achieve design subgrade levels. A bridge link will be provided to connect the new Building to Building W6A. No structural loads have been provided for the new building and typical loads for this type of development have been assumed.

1.2 <u>Aim and Objectives</u>

EIS Ref: E29807KRrpt rev1

The primary aims of the assessment were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil contamination conditions. The assessment objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether further intrusive investigation and/or remediation is required; and
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint).

1.3 Scope of Work

The assessment was undertaken generally in accordance with an EIS proposal (Ref: EP43348KR) of 19 September 2016 and written acceptance from the client of 4 October 2016. The scope of work included the following:

- Review of site information, including background and site history information from a Lotsearch Pty Ltd *Environmental Risk and Planning Report* and other sources;
- A walkover site inspection;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted site assessment criteria (SAC);
- Assessment of data quality; and
- Preparation of an ESA report presenting the results of the assessment, including a CSM and Tier
 1 risk assessment.

The report was prepared with reference to regulations/guidelines outlined in the table below. Individual guidelines are also referenced within the text of the report.

Table 1-1: Guidelines

Guidelines/Regulations/Documents
Contaminated Land Management Act (1997) ⁴
State Environmental Planning Policy No.55 – Remediation of Land (1998) ⁵
Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998) ⁶
Guidelines for Consultants Reporting on Contaminated Sites (2011) ⁷
Guidelines for the NSW Site Auditor Scheme, 2nd Edition (2006) ⁸
National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) ⁹

⁴ NSW Government Legislation, (1997). Contaminated Land Management Act 1997. (referred to as CLM Act 1997)

⁵ NSW Government, (1998). State Environmental Planning Policy No. 55 – Remediation of Land. (referred to as SEPP55)

⁶ Department of Urban Affairs and Planning, and Environment Protection Authority, (1998). *Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land*. (SEPP55 Planning Guidelines)

⁷ NSW Office of Environment and Heritage (OEH), (2011). *Guidelines for Consultants Reporting on Contaminated Sites*. (referred to as Reporting Guidelines 2011)

⁸ NSW DEC, (2006). Guidelines for the NSW Site Auditor Scheme, 2nd ed. (referred to as Site Auditor Guidelines 2006)

⁹ National Environment Protection Council, (2013). *National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999* (as amended 2013). (referred to as NEPM 2013)

2 SITE INFORMATION

2.1 Site Identification

Table 2-1: Site Identification

Site Address:	Buildings W6A and W6B, Western Road, Macquarie University,
	Macquarie Park
Lot & Deposited Plan:	Lot 191 in DP1157041
Current Land Use:	Tertiary Institution Premises
Proposed Land Use:	Tertiary Institution Premises
Local Government Authority (LGA):	City of Ryde Council
Current Zoning:	B4 – Mixed Use
Site Area (ha):	Approximately 1.3
RL (AHD in m) (approx.):	62
Geographical Location (decimal degrees) (approx.):	Latitude: - 33.774900 ⁰
	Longitude: 151.110936 ⁰

2.2 Site Location and Regional Setting

The site is located over the central western section of the Macquarie University campus, at Macquarie Park. The site is bounded by park and walkways to the north, other university buildings to the east and west and a carpark to the south, within the campus. The site is located approximately 60m to the south of Mars Creek.

2.3 Topography

The site was located within gently undulating topography on a hillside that sloped down to the northwest at about 6°.

2.4 Site Inspection

A walkover inspection of the site was undertaken by EIS on 6 October 2016. The inspection was limited to accessible areas of the site and immediate surrounds. An internal inspection of buildings was not undertaken and the upper floors of the buildings were not inspected. Selected site photographs obtained during the inspection are attached in the appendices. A summary of the findings are outlined in the following subsections:

2.4.1 <u>Buildings, Structures and Roads</u>

EIS Ref: E29807KRrpt rev1

At the time of fieldwork the site was occupied by Buildings W6A and W6B, with respective northern and eastern frontages onto the concrete paved, tree lined Wally's Walk and the asphaltic concrete (AC) paved Western Road (see Figures 1 and 2). The roads sloped down to the north at between about 2° and 6°. To the north of the western end of Wally's Walk a grass surfaced area sloped down to the north-west at between about 3° and 5°

Building W6A comprised a nine storey building and W6B comprised three buildings (each three storey) arranged in a 'horseshoe' shape in plan. The buildings were of concrete frame and brick masonry construction with gravel surfaced courtyard surrounds containing stepped concrete paved walkways.

A concrete pedestrian walkway bridged over Western Road from the north eastern corner of W6B eastwards to the nearby multi-level concrete frame and brick masonry Building W5A.

To the west of Building W6B and to the north of the western end of Building W6A, was a single level framed building with synthetic walls and roof.

An AC paved walkway lined the southern side of Building W6A and sloped down to the west at about 2°. Two grass surfaced fill mounds, orientated east-west and bisected by a concrete paved walkway (orientated north-south) were located immediately to the south of the walkway. The toe of the northern side of the western fill mound was supported by a timber retaining wall about 0.5m high with a bicycle shed immediately to the north.

An AC surfaced car park was situated to the south of the fill mounds and sloped down to the north-west at about 6°. The car park extended west to a two level concrete framed car park and extended south to Macquarie Drive (see Figure 1).

Based on a cursory inspection from within the site, the buildings, structures and paved surfaces within and adjoining the site generally appeared to be in good condition.

2.4.2 <u>Boundary Conditions, Soil Stability and Erosion</u>

There was no fencing located on the site boundaries for this assessment and the site area was easily accessible. There was minimal exposed soils as the area around the buildings was landscaped.

No signs of erosion was observed.

2.4.3 Visible or Olfactory Indicators of Contamination

No staining was observed on the ground surface or the paved surfaces. No odours were noted. Suspected ACM may potentially be present within the buildings, however a hazardous building material survey was outside the scope of the investigation

There were no above ground storage tanks (ASTs) or indications of underground storage tanks (USTs) observed on site.

2.4.4 Presence of Drums/Chemicals, Waste and Fill Material

No drums were observed to be stored on site. A closed room, with a notice on the door, stating Chemical Storage Area, was located at the ground floor of Building W6B.

Two grass surfaced fill mounds, orientated east-west and bisected by a concrete paved walkway (orientated north-south) were located immediately to the south of the walkway, which lined the southern side of Building W6A. The fill mounds were a maximum of about 5m high (western mound) and 4.3m high (eastern mound), and had side slopes between about 14° and 18°.

Small waste bins were located at the site, for general refuse and waste from the buildings. Some cleaning agents and graffiti removing solutions etc. were noted to be present on site.

No other waste material was observed on site.

2.4.5 <u>Drainage and Services</u>

Surface water flows and run off from the soil mounds are likely to flow into drainage pits observed at the northern toe of the mounds. Water taps were observed at the top of the soil mounds. Site surface run off is likely to flow into drainage pits and/or sewer pits, observed at the perimeters of building W6A and building W6B. Other services were also noted in these areas.

2.4.6 <u>Sensitive Environments</u>

Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified on site. However, Mars Creek was located approximately 60m to the north of the site.

2.4.7 <u>Landscaped Areas and Visible Signs of Plant Stress</u>

A number of garden beds were also located around Buildings W6A and W6B and were supported by timber, brick and concrete retaining walls ranging in height from approximately 0.3m to 1.2m. Numerous medium to large sized trees were present within the landscaped surrounds.

No visible signs of plant and vegetation stress were observed on site.

2.5 Surrounding Land Use

During the site inspection, EIS observed the following land uses in the immediate surrounds:

- North Park and pathways/walkways (including Wally's Walk) and Mars Creek, with Sports and Aquatic Centre (Building W10A beyond)
- South the West 3 (X3 and W4) carpark, with part of Macquarie Walk, Balaclava Road, Australian Hearing Hub (Building S2.6) and University Avenue beyond
- East Buildings W5A, W5C and W2.4A (Macquarie Theatre), with other university buildings beyond

West – Building W6D (Lotus Theatre), Building X5B (Mia Mia) and Building X5A, with part of Mars
 Creek and West 5 (X8) carpark beyond

EIS did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.6 Underground Services

The 'Dial Before You Dig' (DBYD) plans were reviewed for the assessment in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. No major services were identified that would be expected to act as preferential pathway for contamination migration.

However, it should be noted that the Chatswood to Epping Rail Link Tunnel is located directly beneath Building W6B, in the northern section of the site.

2.7 <u>Section 149 Planning Certificate</u>

The s149 (2 and 5) planning certificates were reviewed for the assessment. Copies of the certificates are attached in the appendices. EIS note that the s149 certificate applies to the entire Macquarie University campus and some sections may not be relevant for this specific area being investigated. A summary of the relevant information is outlined below:

- The site is not located in an area of ecological significance;
- The site is not deemed to be: significantly contaminated; subject to a management order; subject of an approved voluntary management proposal; or subject to an on-going management order under the provisions of the CLM Act 1997;
- The site is not subject to a Site Audit Statement (SAS);
- The site is not located within an ASS risk area;
- The site is not located in a heritage conservation area. However, an item of environmental heritage is located on the land of the university;
- The university campus is within bushfire prone land. However, the Lotsearch report indicates that Bushfire Prone Areas are located approximately 300m to the north-east, north and north-west of the investigation site; and

3 GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology

Regional geological information presented in the Lotsearch report (attached in the appendices) indicated that the site is underlain by Ashfield Shale of the Wianamatta Group, which typically consists of black to dark grey shale and laminite. Medium to coarse grained quartz sandstone, very minor shale and laminate lenses were also located to the north and east of the site.

3.2 JK / EIS Jobs Database

EIS/JK have previously drilled at one location within 100m of the site. The drilling identified imported fill to depths of 3.0m, underlain by clayey soil and sandstone bedrock. However, the majority of EIS/JK investigations across the university have encountered shallow fill.

3.3 Acid Sulfate Soil Risk and Planning

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation.

3.4 <u>Hydrogeology</u>

Hydrogeological information presented in the Lotsearch report (attached in the appendices) indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There were a total of 19 registered bores within the report buffer of 2,000m. In summary:

- The nearest registered bore was located approximately 337m from the site. This was utilised for irrigation purposes;
- The majority of the bores were registered for monitoring purposes;
- There were two nearby bores (i.e. within 400m) registered for irrigation use; and
- The drillers log information from the closest registered bores typically identified fill and/or sand or clay to depths of 0.0-6.0m, underlain by sandstone and/or shale bedrock.

The information reviewed for this assessment indicated that the subsurface conditions at the site are likely to consist of erosional soils overlying relatively shallow bedrock. The potential for viable groundwater abstraction and use of groundwater under these conditions is considered to be low.

3.5 Receiving Water Bodies

Surface water body was identified in the immediate vicinity of the site. The closest surface water body is Mars Creek located approximately 60m to the north of the site. This is down-gradient from site and is considered to be a potential receptor.

4 SITE HISTORY INFORMATION

4.1 Review of Historical Aerial Photographs

Historical aerial photographs were included in the Lotsearch report (attached in the appendices). EIS has reviewed the photographs and summarised relevant information in the following table:

Table 4-1: Summary of Historical Aerial Photographs

Year	Details
1943	The site appeared to be used for farming purposes. Ploughing furrows were visible in this area
	A residential building was located in the central-western section of the site. A number of small
	sheds were located in the north-eastern section and the south-eastern corner of the site.
	The surrounds appeared similar to the site and were most likely used for farming, grazing
	and/or market garden purposes. A lot of buildings and sheds were located to the south-eas
	and south-west of the site. A few buildings and sheds were also located to the north, north
	east and south of the site. A few shed-type structures were located to the north-west of the
	site, surrounded by ploughed land. Mars Creek was located to the north of the site.
1956	The sheds that had been located in the south-eastern corner appeared to have been demolished.
	The sheds and some of the buildings located to the south-east and south of the site appeared
	to have been demolished.
1961	A number of sheds in the north-eastern section of the site appeared to have been demolished
	A number of sheds located to the immediate north-east of the site appeared to have bee
	demolished. Additional buildings appeared to have been constructed to the south-east an
	south of the site, with some new sheds also noted to the south of the site. A number of lon
	buildings had been constructed to the south-west of the site. An area of disturbed ground wa
	noted to the south of the site.
1965	No apparent changes were noted on the site.
	One of the sheds located to the immediate north-east of the site appeared to have bee
	demolished. Additional buildings appeared to have been built to the south-east and sout
	(within the area of disturbed ground seen in the 1961 photograph) of the site.
1970	The residential building located in the central-western section of the site had bee
	demolished. The Macquarie University buildings, the current W6A and W6B, including the
	landscaped soil mounds to the south of the current building W6A had been built within th
	site.
	Much of the land surrounding the site appeared to be no longer used for farming purpose
	and almost all the former buildings and structures located in the surrounding land had bee
	demolished. This could be the period when Macquarie University campus began to b
	established. A large carpark was built to the immediate south and south-west of the site an

Year	Details
	a part of the car park was located within the south-western corner of the site. A building (potentially the current building W5A) had been constructed to the immediate north-east of the site, and other buildings erected further north-east. Areas of disturbed ground were observed to the immediate north-west, south-east and further south-west of the site. A pathway and some roadways had been formed to the north of the site. The pathway appeared to extend from the site, cut across Mars Creek and lead up to a small building (located at the current large Sport and Aquatic Centre (Building W10A) location). A cleared rectangular area was located to the immediate south-west of this building. A circular feature was observed on the ground, further north-east of the site, at the current Amphitheatre location. The land further to the south-east of the site appeared to have been developed.
1982	Part of the carpark located in the south-western corner of the site appeared to have been further developed.
	The large carpark located to the immediate south and south-west of the site appeared to have been further developed and also extended further to the west. An area further to the southeast of the site appeared to have been developed into a large carpark as well. Some roadways had been formed and/or further developed to the north-east and south-east of the site. The configuration of the current Balaclava Road appeared to have been changed slightly, to the south of the site. A structure was noted on the current Balaclava Road, to the south of the site. Other buildings i.e. the current Building X5A (to the immediate west of the site), current Building W5C (to the immediate east of the site and adjacent to the south of current Building W5A), current Macquarie Theatre Building (W2.4A) (further east of the site), current buildings Muse (C7A), C9A and Campus Hub (C10A) (to the north-east of the site) and current buildings W3A, C3A, C3B, C5A and C5B (to the south-east of the site) had been built. Some small buildings and a small carpark were located to the north-west of the current Buildings C9A and Campus Hub (C10A). The current Sport and Aquatic Centre (W10A), located to the north of the site, appeared to have been further developed and extended, and a carparking area was noted to the north and north west of it. The current Lighthouse Theatre (W11A) appeared to have been built to the further north-east of the site.
1991	A building structure was noted in the north-western section of the site, immediately adjacent to the west of current Building W6B and north of W6A.
	The current Building C5C (further east of the site) and Building Y3A (further south-west of the site) had been built. Additional roadways and associated landscaping had been developed to the south-west of the site. The current Sport and Aquatic Centre (W10A), located to the north of the site, appeared to have been further developed and extended, including the carparking areas to the north and west of it.
2003	The current Mia Mia Building (X5B) had been built to the immediate north-west of the site, part of which was within the north-western end of the site. Wally's Walk was noted within the northern boundary of the site.
	The current Banksia Cottage (Building X6A) had been built to the south-west of the site. Further extensions appeared to have occurred to the current Muse Building (C7A) to the

Year	Details
	north-east and the current Sport and Aquatic Centre (W10A) to the north of the site. Another building was noted to the north of the current C9A and Campus Hub (C10A) building. The pathway located to the north of the site appeared to have been further developed and appeared to now extend further north-west of the site. A multi-storey carpark appeared to have been built in place of the on-grade carpark located to the south-east of the site. The roads/roadways to the south and south-west of the site appeared to have been further developed. Some building development appeared to have occurred further south-west of the site.
2009	Some trees and vegetation appeared to be growing on the soil mounds located to the south of the current Building W6A. The open 'courtyard' type of area at the central section of the current Building W6B appeared to have been developed, with two structures noted within the north-eastern section.
	Further infrastructural developments appeared to have occurred further east and south-east of the site. An area of disturbed ground was located to the south of the current Building W3A south-east of the site. A large building with auxiliary units, located further south of the sit had been demolished and the area redeveloped with new building and landscaping in place. The current Sport and Aquatic Centre (W10A) to the north of the site, appeared to have bee further developed and extended, with a swimming pool built in the location of a rectangula area (as seen in the previous photographs) to the immediate south-west of the building. A rectangular green area was built to the south-east of the current Sport and Aquatic Centre (W10A). The roads and roadways appeared to have been further developed in the sit surrounds.
2014	Further landscaping appeared to have taken place in the area to the immediate south of the current Building W6A, and the current bike hub had been built. The current Lotus Theatr (Building W6D) had been built to the immediate west of the current Building W6B, in place of the former building that had been located at this spot (initially seen in the 1991 photograph)
	Further infrastructural developments had occurred:
	 to the east (Macquarie Theatre (W2.4A)); to the south-east (new buildings and a circular structure in the area of disturbed
	ground as seen in the 2009 photograph), construction of the Library (C3C) building and construction of the Australian Hearing Hub (S2.6) building in place of the former multi-storey carpark in this location);
	 to the north-west (establishment of a new large carpark (West 5, X8) with a new roadway extending to it from the north-east); and
	• to the north (further extension of the current Sport and Aquatic Centre (W10A).

4.2 NSW EPA Records

The Lotsearch report (attached in the appendices) included information from the NSW EPA databases for the following:

- Records maintained in relation to contaminated land under Section 58 of the CLM Act 1997;
- Records of notified sites under Section 60 of the CLM Act 1997 (Duty to Report Contamination);
 and
- Licensed activities under the Protection of the Environment Operations Act (1997¹⁰).

The search included the site area and surrounding areas in the report buffer of 1000m. The search indicated the following:

- There were no records for the site or any properties in the report buffer under Section 58 of the CLM Act 1997;
- The site has not been notified under Section 60 of the CLM Act 1997. There was one notified property in the report buffer. This was for the Coles Express Marsfield service station located approximately 425m to the west of the site, at Epping Road;
- There was one record (EPL 12208) for licenced activity at the site under the POEO Act 1997. This was for the Railway Systems Activities pertaining to the underground Chatswood to Epping Rail Link tunnel at the site. Historical licenses were identified for the site and several properties within the report buffer, however these activities are considered unlikely to pose a contamination risk to the site.

4.3 Historical Business Directory and Additional Lotsearch Information

Historical business records for the site and surrounding areas in the report buffer were included in the Lotsearch report (attached in the appendices). The records indicated the following:

- There was one motor garage and/or engineer's business registered within the report buffer during the 1950s. This was located over 900m up-gradient of the site; and
- There was one motor service stations-petrol, oil etc. business registered within the report buffer during the 1970s. This business was located approximately 460m up-gradient of the site.

EIS are of the opinion that the historical businesses in the report buffer could potentially represent potential off-site sources of site contamination.

In addition to the above, EIS have reviewed additional information contained within the Lotsearch report and note the following:

- There were no state heritage items at the site or in the immediate surrounds. However, a local heritage item (Macquarie University ruins) was located on Macquarie University campus;
- The presence of native vegetation is noted to be present on the university campus. An ecologist should be contacted to assess any ecological constraints to the site;

¹⁰ NSW Government Legislation, (1997). Protection of the Environment Operations Act 1997. (referred to as POEO Act 1997)

- There was no natural occurring asbestos potential at the site or in the immediate surrounds;
- There were no State Environmental Planning Policy Protected Areas at the site or in the immediate surrounds;
- The site was under the State Environmental Policy Major Developments (2005); and
- There was no dryland salinity data available for the site or for the immediate surrounds.

4.4 <u>Summary of Site History Information</u>

A summary of the historical land uses and activities is presented in the table below. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by EIS.

Table 4-2: Summary of Historical Land Uses

Year(s)	Potential Land Use / Activities	Supporting Evidence
Pre-1970	Agricultural (grazing)/Market Gardens	The aerial photographs dated prior to 1970 indicated the site and surrounds were used for farming or market garden purposes.
1970-Present	Macquarie University Campus	The aerial photographs from 1970 onwards identified the site being progressively developed with buildings, infrastructure and landscaping of the present day Macquarie University campus.

4.5 <u>Integrity of Site History Information</u>

The majority of the site history information has been obtained from government organisations as outlined and the relevant sections of this report. The veracity of the information from these sources is considered to be relatively high. A certain degree of information loss can be expected given the lack of specific land use details over time. EIS has relied upon the Lotsearch report and has not independently verified any information contained within. However, it is noted that the Lotsearch report is generated based on databases maintained by various government agencies and is expected to be reliable.

5 <u>CONCEPTUAL SITE MODEL</u>

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

5.1 <u>Potential Contamination Sources/AEC and CoPC</u>

The potential contamination sources/AEC and CoPC are presented in the following table:

Table 5-1: Potential Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	CoPC
Fill material - The site appears to have been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
Historical agricultural use — The site appears to have been used for grazing and/or market garden purposes historically. This could have resulted in contamination across the site via use of machinery, application of pesticides and building/demolition of various structures. The remains of asbestos cement irrigation pipes may be present.	Heavy metals, TRH, PAHs, OCPs, PCBs and asbestos
<u>Use of pesticides</u> – Pesticides may have been used beneath the buildings and/or around the site.	Heavy metals, OCPs and OPPs
Hazardous Building Material – Hazardous building materials may be present as a result of former building and demolition activities. These materials may also be present in the existing buildings/ structures on site.	Asbestos, lead and PCBs
Soil Mounds – Landscaped soil mounds were located to the south of Building W6A. These	Heavy metals, TRH, BTEXN, PAHs, OCPs, OPPs, PCBs and asbestos

Source / AEC	СоРС
could contain potential contaminated fill material within them.	
Off-site area — A service station is located upgradient of the site Historical service station/garage businesses were also located upgradient of the site. However, the distance of these facilities from the site (greater than 500m) suggests that the potential risk of migration is very low	Heavy metals (lead), TRH and BTEXN

5.2 <u>Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways</u>

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 5-2: CSM

Potential mechanism for	Potential mechanisms for contamination include:
contamination	 Fill material – importation of impacted material, 'top-down' impacts (e.g. leaching from surficial material), or sub-surface release (e.g. impacts from buried material); Historical agricultural use – 'top-down' and spills (e.g. application of pesticides, refuelling or repairing machinery, and other activities at the ground surface level); Use of pesticides – 'top-down' and spills (e.g. during normal use, application and/or improper storage); Hazardous building materials – 'top-down' (e.g. demolition resulting in surficial impacts in unpaved areas); Soil Mounds - importation of impacted material, 'top-down' impacts (e.g. leaching from surficial material), or sub-surface release (e.g. impacts from buried material); and Off-site land uses – 'top-down', spill or sub-surface release. Impacts to the site could occur via migration of contaminated groundwater.
Affected media	Soil/soil vapour, surface water and groundwater have been identified as potentially affected media.
Receptor identification	Human receptors include site occupants/users, construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users, groundwater users and recreational water users within Mars Creek.
	Ecological receptors include terrestrial organisms and plants within unpaved areas (including the current and proposed landscaped areas), and freshwater/marine ecology in Mars Creek.

Potential Exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and use of unpaved areas (i.e. the gardens) and basement (i.e. vapour inhalation or incidental contact with groundwater seepage and groundwater at Mars Creek). Potential exposure pathways for ecological receptors include primary contact and ingestion.
	Exposure to groundwater is unlikely to occur in the Mars Creek through direct migration, however groundwater has the potential to enter the creek via the stormwater system (which is expected to discharge into the creek) in a drained basement scenario.
Presence of preferential pathways for contaminant movement	The underground railway tunnel and the associated trench(es) and backfill is a potential preferential pathway for contaminant migration. This could occur via groundwater/seepage if present, or via soil/vapour migration through the cavities and/or backfill.

5.3 <u>Assessment of Data Gaps</u>

EIS has undertaken a preliminary data gap analysis based on the findings of assessment. The data gaps and our comments are outlined in the following table:

Table 5-3: Data Gap Assessment

Data Gap	EIS Comments
Historical land titles search	Historical land titles records were not obtained for the site and aerial photographs and other information from the Lotsearch document was relied upon. EIS are of the opinion that the aerial photographs within the Lotsearch document are likely to be representative of the site.
Council Records	The review of council records was limited to planning-related information within the section 149 certificate and/or within the Local Environmental Plan (as outlined in the Lotsearch report attached in the appendices). EIS are of the opinion that further review of council records such as building approval and development application records is unlikely to identify any information that would alter the outcome of the assessment at this stage.
SafeWork NSW	SafeWork NSW records were not obtained for this assessment. Dangerous goods licences are most likely to be associated with

Preliminary Stage 1 Environmental Site Assessment Buildings W6A and W6B, Western Road, Macquarie University, Macquarie Park EIS Ref: E29807KRrpt rev1

Data Gap	EIS Comments	
	small scale storage and use of chemicals in the various University laboratories.	
Groundwater Sampling	Groundwater sampling and analysis was outside the scope of this assessment.	

6 SAMPLING, ANALYSIS AND QUALITY PLAN

6.1 Data Quality Objectives (DQO)

The NEPM 2013 defines the DQO process as a seven step iterative planning tool used to define the type, quantity and quality of data needed to inform decisions relating to the environmental condition of the site. The DQO process is detailed in the Site Auditor Guidelines 2006 and the USEPA documents Data Quality Objectives Processes for Hazardous Waste Site Investigations (2000) and Guidance on Systematic Planning Using the Data Quality Objectives Process (2006). These seven steps are applicable to this assessment as summarised in the table below:

Table 6-1: DQOs – Seven Steps

Step	Input		
State the Problem	The CSM has identified AEC at the site which may pose a risk to the site receptors. A preliminary intrusive investigation was required to assess the risk and comment on the suitability of the site for the proposed development or intended landuse. The assessment also aims to meet the requirements of SEPP55 in order to address the counci DA process.		
Identify the Decisions/ Goal of the Study	 The data collection is project specific and has been designed based on the following information: Review of site information including site history; AEC, CoPC, receptors, pathways and medium identified in the CSM; Development of SAC for each media; and The use of decision statements outlined below: a) Are there elevated concentrations of contaminants above the SAC present in the soil samples? b) Was asbestos containing material identified in sub-surface samples? c) Is further investigation required? d) Is the site suitable for the proposed use? 		
	 The data will be assessed in the following way: 1) Statistical analysis will be used to assess the laboratory data against the SAC. The following criteria will be adopted: The 95%/99% Upper Confidence Limit (UCL) value of the arithmetic mean concentration of each contaminant should be less than the SAC; The standard deviation (SD) of the results must be less than 50% of the SAC; and No single value exceeds 250% of the relevant SAC. 2) Statistical calculations will not be undertaken if all results are below the SAC; and 		
	 3) Statistical calculations will not be undertaken on the following: Health Screening Levels (HSLs) – elevated point source contamination associated with petroleum hydrocarbons can pose a vapour risk to receptors; 		

Step	Input		
	 Ecological Investigation Levels (EILs) – elevated EILs can pose a potential point source ecological risk; and Groundwater Investigation Levels (GILs) – elevated GILs can indicate a wider groundwater contamination risk. 		
Identify Information Inputs	 The following information will be collected: Soil samples based on subsurface conditions; The SAC will be designed based on the criteria outlined in NEPM 2013. Other criteria will be used as required and detailed in this report; The samples will be analysed in accordance with the analytical methods outlined in NEPM 2013; Field screening information (i.e. PID data, presence of hydrocarbons etc.) will be taken into consideration in selecting the analytical schedule; and Any additional information that may arise during the field work will also be used as data inputs. 		
Define the Study Boundary	The sampling will be confined to the site boundaries as shown in Figure 1. Fill has been identified as an AEC. The source of fill has not been established. Fill is considered to be heterogeneous material with PCC occurring in random pockets or layers. The presence of PCC in between sampling points cannot be measured. The areas excluded from the investigation are outlined in the data gaps.		
Develop the analytical approach (or decision rule)	The following acceptable limits will be adopted for the data quality assessment: The following acceptance criteria will be used to assess the RPD results: results > 10 times the practical quantitation limit (PQL), RPDs < 50% are acceptable; results between 5 and 10 times PQL, RPDs < 75% are acceptable; results < 5 times PQL, RPDs < 100% are acceptable; and An explanation is provided if RPD results are outside the acceptance criteria. Acceptable concentrations in Trip Spike (TS), Trip Blank (TB) and Field Rinsate (FR) samples Non-compliance to be documented in the report; The following acceptance criteria will be used to assess the primary laboratory QA/QC results. Non-compliance to be documented: RPDs: Results that are < 5 times the PQL, any RPD is acceptable; and Results > 5 times the PQL, RPDs between 0-50% are acceptable; CCS recovery and matrix spikes: 70-130% recovery acceptable for metals and inorganics; 60-140% recovery acceptable for organics; and 10-140% recovery acceptable for VOCs; Surrogate spike recovery: 60-140% recovery acceptable for general organics; and		

Step	Input	
	Blanks: All less than PQL.	
Specify the performance or acceptance criteria	NEPM 2013 defines decision errors as 'incorrect decisions caused by using data which is not representative of site conditions'. This can arise from errors during sampling or analytical testing. A combination of these errors is referred to as 'total study error'. The study error can be managed through the correct choice of sample design and measurement.	
	Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false.	
	The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. In this case, for example, the PCC identified in the PCSM is considered to pose a risk to receptors unless proven not to. The null hypothesis has been adopted for this assessment.	
Optimise the design for obtaining data	The most resource-effective design will be used in an optimum manner to achieve the assessment objectives.	

6.2 <u>Soil Sampling Plan and Methodology</u>

The soil sampling plan and methodology adopted for this assessment is outlined in the table below:

Table 6-2: Soil Sampling Plan and Methodology

Aspect	Input
Sampling	The NSW EPA Contaminated Sites Sampling Design Guidelines (1995 ¹¹) recommend a sampling
Density	density for an environmental assessment based on the size of the investigation area. The guideline provides a minimum number of sampling points required for the investigation on a systematic sampling pattern.
	The guidelines recommend sampling from a minimum of 25 evenly spaced sampling points for this site with an area of approximately 1.3 ha.
	Samples for this investigation were obtained from 11 sampling points (excluding the 2 sampling points on the soil mounds) as shown on the attached Figure 2. This density (is approximately 44% of) the minimum sampling density recommended by the EPA.
	The soil mounds at the southern boundary of the site (south of Building W6A) were estimated to be approximately 9,000m ³ . Three samples were obtained from two sample locations from the soil mounds. This meets the density recommended in the NEPM 2013.

¹¹ NSW EPA, (1995), Contaminated Sites Sampling Design Guidelines. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
Sampling Plan	The sampling locations were placed on a systematic plan with a grid spacing of approximately 20m between sampling locations. A systematic plan was considered suitable to address potential contaminants associated with the fill material. Two fill mounds are located at the southern boundary of the site. Distribution of contamination in the soil mounds is considered to be random. One sample location each had been chosen for the soil mounds, as a preliminary assessment.
Exclusion Areas (Data Gaps)	Sampling was not undertaken in inaccessible areas of the site such as beneath existing buildings. These areas have been excluded from the investigation.
Sampling Equipment	Soil samples were obtained on 27 September 2016, 28 September 2016, 30 September 2016 and 6 October 2016 in accordance with the standard sampling procedure (SSP) attached in the appendices.
	In-situ sampling locations were cleared for underground services by an external contractor prior to sampling as outlined in the SSP.
	The sample locations were drilled using the following equipment as shown on the borehole logs attached in the appendices:
	 Hydraulically operated drill rig equipped with spiral flight augers. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger when conditions did not allow use of the SPT sampler; and
	Hand equipment in hard to access areas i.e. the soil mounds.
Sampling Collection and	Soil samples were collected from the fill and natural profiles based on field observations. The sampling depths are shown on the logs attached in the appendices.
Field QA/QC	Additional samples were obtained when relatively deep fill (>0.5m) was encountered. Samples were also obtained when there was a distinct change in lithology or based on the observations made during the investigation.
	During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis.
	Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags.
	Sampling personnel used disposable nitrile gloves during sampling activities. The samples were labelled with the job number, sampling location, sampling depth and date in accordance with the SSP.
Field PID Screening for VOCs	A portable Photoionisation Detector (PID) was used to screen the samples for the presence of VOCs and to assist with selection of samples for hydrocarbon analysis.

Aspect	Input		
	The sensitivity of the PID is dependent on the organic compound and varies for different mixtures of hydrocarbons. Some compounds give relatively high readings and some can be undetectable even though present in identical concentrations. The portable PID is best used semi-quantitatively to compare samples contaminated by the same hydrocarbon source.		
	The PID is calibrated before use by measurement of an isobutylene standard gas. All the PID measurements are quoted as parts per million (ppm) isobutylene equivalents. PID calibration records are attached in the appendices.		
	PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases.		
Decontami-	The decontamination procedure adopted during sampling is outlined in the SSP.		
Sample Preservation	Where applicable, the sampling equipment was decontaminated using a scrubbing brush and potable water and Decon 90 solution (phosphate free detergent) followed by rinsing with potable water. Rinsate sample was obtained during the decontamination process as part of the field QA/QC.		
	Soil samples were preserved by immediate storage in an insulated sample container with ice in accordance with the SSP.		
	On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.		

6.3 <u>Analytical Schedule</u>

The analytical schedule is outlined in the following table:

Table 6-3: Analytical Schedule

PCC/CoPC	Fill Samples	Natural Soil Samples
Heavy Metals	12	6
TRH/BTEXN	12	6
PAHs	12	6
OCPs/OPPs	11	2
PCBs	11	2

PCC/CoPC	Fill Samples	Natural Soil Samples
Asbestos	11	2
TCLP Metals	3	-

6.3.1 <u>Laboratory Analysis</u>

The samples were analysed by the NATA Accredited laboratory/s using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 6-4: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blank, trip spike and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	154919 & 154919-A
Inter-laboratory duplicates	SGS Alexandria Environmental NSW NATA Accreditation Number – 2562(4354) (ISO/IEC 17025 compliance)	SE158009

7 <u>SITE ASSESSMENT CRITERIA (SAC)</u>

The SAC adopted for the assessment is outlined in the table below. The SAC has been derived from the NEPM 2013 and other guidelines as applicable. The guideline values for individual contaminants are presented in the attached report tables.

Table 7-1: SAC Adopted for this Investigation

Guideline	Applicability	
Health Investigation	The HIL-D criteria for 'commercial/industrial' have been adopted for this assessment.	
Levels (HILs)		
(NEPM 2013)		
Health Caronina	The USL Devitorie for 'commercial'industrial' have been adopted for this assessment	
Health Screening Levels (HSLs)	The HSL-D criteria for 'commercial/industrial' have been adopted for this assessment.	
(NEPM 2013)		
(1421 141 2013)		
Asbestos in Soil	The 'presence/absence' of asbestos in soil has been adopted as the assessment	
	criterion for the Preliminary Site Investigation (PSI).	
Waste Classification	The criteria outlined in the NSW EPA Waste Classification Guidelines - Part 1: Classifying	
(WC) Criteria	Waste (2014 ¹²) has been adopted to classify the material for off-site disposal.	
_		

¹² NSW EPA, (2014), *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

8 <u>INVESTIGATION RESULTS</u>

8.1 <u>Subsurface Conditions</u>

A summary of the subsurface conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in the appendices for further details.

Table 8-1: Summary of Subsurface Conditions

Profile	Description (m in bgl)
Pavement	Asphaltic Concrete (AC)/Concrete pavement was encountered in BH4, BH5, BH6, BH7, BH8, BH9, BH10 and BH11.
Fill	Fill material was encountered at the surface or beneath the pavement in all boreholes, except in BH11, and extended to depths of approximately 0.1 to 0.6 mBGL in the ground and more than 1 mBGL in the soil mounds. BH12 and BH13 were terminated in the fill in the soil mounds at a maximum depth of approximately 1 mBGL.
	The fill typically comprised of: silty clay; sandy gravel; clayey gravel; and gravelly sand. The fill contained inclusions of: ironstone gravel (BH1 and BH11); sandstone gravel (BH1); trace of root fibres (BH2); trace silt and brick fragments (BH9); and plastic fragments (BH13).
	No hydrocarbon odours were encountered in the fill in the boreholes drilled. No asbestos containing material (ACM) was observed in the fill in the boreholes drilled.
Natural Soil	Natural soil was encountered at the surface or beneath the fill in all boreholes, except in BH12 and BH13 in the soil mounds, and extended to depths of approximately 0.8 to 4.3 mBGL.
	The natural soil typically comprised of: silty clay; and sandy clay (BH6, BH8, and BH9). The natural soils contained inclusions of: ironstone gravel (BH1, BH2, BH3, BH4, BH6, BH7, BH9, BH10 and BH11); sand (BH1 and BH2); trace of root fibres (BH2 and BH7); and trace roots and root fibres (BH10). Sandstone bands and iron indurated bands were observed in BH5.
	No hydrocarbon odours were encountered in the natural soils in the boreholes drilled. No ACM was observed in the natural soils in the boreholes drilled.
Bedrock	Bedrock was encountered beneath the natural soils in all boreholes (except for BH12 and BH13 in the soil mounds), and extended to depths of approximately 5.2 to 8.78 mBGL upon termination of the boreholes.
	The bedrock typically comprised of sandstone. The bedrock contained: grey laminae (BH1, BH2, BH4, BH6, and BH7); iron indurated bands (BH2, BH3, BH4, BH5, BH6, BH7, BH8, BH9, BH10 and BH11); and clay bands/seams (BH4, BH7, BH9 and BH11). Interbedded sandstone and shale was observed at BH9 at depths of 5.6 and 7.52 mBGL.
	No hydrocarbon odours were encountered in the bedrock in the boreholes drilled.

Profile	Description (m in bgl)	
Groundwater	Groundwater seepage was not encountered in the boreholes during drilling, except in BH3, BH5, BH8 and BH11. All boreholes remained dry on completion of drilling and a short time after, except BH3, BH4, BH5, BH6, BH7, BH8 and BH11.	

8.2 Field Screening

A summary of the field screening results are presented in the table below.

Table 8-2: Summary of Field Screening

Aspect	Details (m in bgl)	
PID Screening of Soil Samples for VOCs	oil PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. The results ranged from 0.0ppm to 0.5ppm equivalent isobutylene. These results indicate minor PID detectable VOCs.	
Groundwater Depth & Flow	Groundwater seepage was encountered in boreholes BH3, BH5, BH8 and BH11 during drilling at depths of approximately 5.1 to 6.8 mBGL. A standing water level (SWL) was measured in boreholes BH3, BH4, BH5, BH6, BH7, BH8 and BH11 at depths ranging from 3.0 to 6.8 mBGL a short time after completion of drilling. The remaining boreholes were dry during and a short time after completion of drilling.	
	SWL measured in the monitoring wells installed at the site (for the geotechnical investigation) ranged from 3.4 to 6.8 mBGL. Groundwater RLs calculated on these measurements ranged from 59.7 to 57.8. The groundwater RLs indicate that excavation for the proposed excavation for the new building may intercept groundwater.	

8.3 <u>Soil Laboratory Results</u>

The soil laboratory results are compared to the relevant SAC in the attached report tables. A summary of the results assessed against the SAC is presented below.

Table 8-3: Summary of Soil Laboratory Results

Analyte	Results Compared to SAC
Heavy Metals	HILS:
	All heavy metal results were below the HIL-D criteria.
	WC:
	All heavy metal results were less than the CT1 criteria, except for nickel in samples BH4 0.05-
	0.15, BH6 0.1-0.2 and BH9 0.2-0.3. TCLP leachates were prepared from the three samples and
	analysed for nickel. The results were less than the TCLP1 criteria.

Analyte	Results Compared to SAC
TRH	HSLs: All TRH results were below the HSL-D criteria.
	WC: All TRH results were less than the relevant CT1 and SCC1 criteria.
BTEXN	HSLs: All BTEXN results were below the HSL-D criteria.
	WC: All BTEX results were less than the relevant CT1 and SCC1 criteria.
PAHs	HILs: All PAH results were below the HIL-D criteria.
	HSLs: All naphthalene results were below the HSL-D criteria.
	WC: All PAH results were less than the relevant CT1 and SCC1 criteria.
OCPs & OPPs	HILs: All OCP and OPP results were below the HIL-D criteria.
	WC: All OCP and OPP results were less than the relevant CT1 and SCC1 criteria.
PCBs	HILs: All PCB results were below the HIL-D criterion.
	WC: All PCB results were less than the SCC1 criterion.
Asbestos	Asbestos was not detected in the samples analysed for the investigation.

9 DATA QUALITY ASSESSMENT

As part of the data quality assessment the following data quality indicators (DQIs) were assessed: precision, accuracy, representativeness, completeness and comparability as outlined in the table below. Reference should be made to the appendices for an explanation of the individual DQI.

Table 9-1: Assessment of DQIs

EIS Ref: E29807KRrpt rev1

Completeness

Field Considerations:

- The investigation was designed as a preliminary screening and sampling was confined to accessible areas of the site (see Figure 2);
- Samples were obtained from various depths based on the subsurface conditions encountered at the sampling locations. All samples were recorded on the borehole logs. All sampling points are shown on the attached Figure 2;
- The investigation was undertaken by trained staff in accordance with the SSP; and
- Documentation maintained during the field work is attached in the appendices where applicable.

Laboratory Considerations:

- Selected samples were analysed for a range of PCC/CoPC. For the preliminary screening samples were not analysed for VOCs;
- All samples were analysed by NATA registered laboratory/s in accordance with the analytical methods outlined in NEPM 2013;
- Appropriate analytical methods and PQLs were used by the laboratory/s; and
- Appropriate sample preservation, handling, holding time and COC procedures were adopted for the investigation;

Comparability

Field Considerations:

- The investigation was undertaken by trained staff in accordance with the SSP;
- The climate conditions encountered during the field work were noted on the site description record maintained in the job file; and
- Consistency was maintained during sampling in accordance with the SSP.

Laboratory Considerations:

- All samples were analysed in accordance with the analytical methods outlined in NEPM 2013;
- Appropriate PQLs were used by the laboratory/s for all analysis (other than those outlined above);
- All primary, intra-laboratory duplicate/s and other QA/QC samples were analysed by the same laboratory; and
- The same units were used by the laboratory/s for all of the analysis.

Representativeness

Field Considerations:

- EIS Ref: E29807KRrpt rev1
 - The investigation was designed to obtain appropriate media encountered during the field work as outlined in the SAQP. Dust and/or vapour sampling was outside the scope of this assessment; and
 - All media identified in the SAQP was sampled.

Laboratory Considerations:

All samples were analysed in accordance with the SAQP.

Precision

Field Considerations:

• The investigation was undertaken in accordance with the SSP.

Laboratory Considerations:

- Analysis of field QA/QC samples including inter and intra-laboratory duplicates, trip blank (TB), field rinsate (FR) and trip spike (TS) as outlined below;
- The field QA/QC frequency adopted for the investigation is outlined below;
- Calculation of the Relative Percentage Difference (RPD) from the primary and duplicate results (the RPD calculation equation is outlined in the attached appendices);
- Assessment of RPD results against the acceptance criteria outlined in **Section 6.1.**

Intra-laboratory RPD Results:

Soil Samples at a frequency of 11% of the primary samples:

- Dup A is a soil duplicate of primary sample BH7 0.15-0.25
- Dup B is a soil duplicate of primary sample BH11 0.1-0.2

The intra-laboratory results are presented in the attached report tables. The results indicated that field precision was acceptable.

The RPD values for a range of individual heavy metals were outside the acceptance criteria. Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogenous matrices.

As both the primary and duplicate sample results were less than the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole.

Inter-laboratory RPD Results:

Soil Samples at a frequency of 6% of the primary samples:

Dup C is a soil duplicate of primary sample BH8 0.1-0.2

The inter-laboratory results are presented in the attached report tables. The results indicated that field precision was acceptable.

Trip Spike (TS):

One soil TS was analysed for BTEX at a frequency of one spike per batch of volatiles. The results are presented in the attached report tables.

Preliminary Stage 1 Environmental Site Assessment Buildings W6A and W6B, Western Road, Macquarie University, Macquarie Park

EIS

The results ranged from 98% to 100% and indicated that field preservation methods were appropriate.

Field Rinsate (FR):

EIS Ref: E29807KRrpt rev1

One FR samples obtained from the field equipment decontamination process was analysed for BTEXN. The results are presented in the attached report tables.

All results were below the PQL which indicates that cross-contamination artefacts associated with sampling equipment was not present.

Trip Blank (TB):

One soil TB was analysed for BTEX at a frequency of one blank per batch of volatiles. The results are presented in the attached report tables.

The results were all less than the PQLs.

Accuracy

Field Considerations:

• The investigation was undertaken in accordance with the SSP.

Laboratory Considerations:

- The analytical quality assessment adopted by the laboratory/s was in accordance with the NATA and NEPM 2013 requirements as outlined in the analytical report/s;
- A review of the report/s indicates the following comments noted by the laboratory/s:

<u>Envirolab Report 154919</u> – The laboratory RPD acceptance criteria was exceeded in one sample for nickel. A triplicate result was issued to account for this. Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to the laboratory's internal procedures.

<u>SGS Report SE158009</u> – The laboratory matrix spikes acceptance criteria failed in two samples for select TRH compounds. The report stated that the recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).

10 WASTE CLASSIFICATION OF SOIL FOR OFF-SITE DISPOSAL

The waste classification of soil for off-site disposal is summarised in the following table:

Table 10-1: Waste Classification

Site Extent / Material Type	Classification	Disposal Option
Fill material at the site	General Solid Waste (non-putrescible) (GSW) subject to further testing of the soil mounds. (The soil mounds were further assessed on 20 April 2017 as GSW (Ref: E29807KR2let-WC, dated 10 May 2017))	A NSW EPA landfill licensed to receive the waste stream. The landfill should be contacted to obtain the required approvals prior to commencement of excavation. Alternatively, the fill material is considered to be suitable for re-use on the subject site (only) provided it meets geotechnical and earthwork requirements.
Natural silty clay and sandy clay soil and sandstone/shale bedrock	Virgin excavated natural material (VENM)	VENM is considered suitable for re-use on-site, or alternatively, the information included in this report may be used to assess whether the material is suitable for beneficial reuse at another site as fill material. Alternatively, the natural material can be disposed of as VENM to a facility licensed by the NSW EPA to receive the waste stream.

11 TIER 1 RISK ASSESSMENT AND REVIEW OF PCSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

The assessment identified the following:

- Elevated concentrations of contaminants were not encountered in the soil samples analysed for the investigation;
- All results were below the SAC adopted for this assessment; and
- EIS consider the risk posed by the AEC to the receptors to be relatively low.

11.1 Data Gaps

The assessment has identified the following data gaps:

- Areas beneath the existing buildings have not been included in the assessment;
- The presence of hazardous building materials in the existing buildings has not been assessed;
- The current investigation did not include groundwater assessment; and
- Limited sampling was undertaken of the soil mounds located at the site. The soil mounds were further assessed on 20 April 2017 for waste classification (Ref: E29807KR2let-WC, dated 10 May 2017).

12 CONCLUSION

EIS consider that the report objectives outlined in **Section 1.2** have been addressed.

The decision statements specified in section 6.1 are addressed below:

- a) Are there elevated concentrations of contaminants above the SAC present in the soil samples? No.
- b) Is there asbestos containing material in the soil samples? No.
- c) Is further investigation required? Yes. Additional assessment of the soil mounds is required to better confirm the waste classification. This was done on 20 April 2017 (Ref: E29807KR2let-WC, dated 10 May 2017)
- d) Is the site suitable for the proposed development? EIS are of the opinion that the site can be made suitable for the proposed development subject to the recommendations below:
- 1. After the soil mounds have been classified and removed from site, the footprint of the mounds should be inspected by an environmental consultant or licenced asbestos assessor, and a surface clearance provided prior to any excavation works beneath it;
- 2. Undertake a Hazardous Materials Assessment (Hazmat) for the existing buildings prior to the commencement of demolition work.
- 3. An unexpected finds protocol, that can be implemented during earthworks, should be prepared.

In the event unexpected conditions are encountered during development work or between sampling locations that may pose a contamination risk, all works should stop and an environmental consultant should be engaged to inspect the site and address the issue.

12.1 Regulatory Requirement

The regulatory requirements applicable for the site are outlined in the following table:

Table 12-1: Regulatory Requirement

Guideline	Applicability
Duty to Report Contamination 2015 ¹³	At this stage, EIS consider that there is no requirement to notify the NSW EPA of the site contamination.
POEO Act 1997	Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner.

¹³ NSW Environment Protection Agency, (2015), *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.* (referred to as Duty to Report Contamination 2015)

Guideline	Applicability
Dewatering Consent	In the event groundwater is intercepted during excavation works, dewatering may be required. Council, NSW Office of Water (NOW) and other relevant approvals (from discharge authorities like Sydney Water etc.) should be obtained prior to the commencement of dewatering.

13 LIMITATIONS

The report limitations are outlined below:

- EIS accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the EIS proposal; and terms of contract between EIS and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, EIS has not undertaken any verification process, except where specifically stated in the report;
- EIS has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- EIS accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- EIS have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. EIS should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

LIST OF IN-TEXT TABLES

Table 1-1: Guidelines	3
Table 2-1: Site Identification	4
Table 4-1: Summary of Historical Aerial Photographs	9
Table 4-2: Summary of Historical Land Uses	13
Table 5-1: Potential Contamination Sources/AEC and Contaminants of Potential Concern	14
Table 5-2: CSM	15
Table 5-3: Data Gap Assessment	16
Table 6-1: DQOs – Seven Steps	18
Table 6-2: Soil Sampling Plan and Methodology	20
Table 6-3: Analytical Schedule	22
Table 6-4: Laboratory Details	23
Table 7-1: SAC Adopted for this Investigation	24
Table 8-1: Summary of Subsurface Conditions	25
Table 8-2: Summary of Field Screening	26
Table 8-3: Summary of Soil Laboratory Results	26
Table 9-1: Assessment of DQIs	28
Table 10-1: Waste Classification	31
Table 12-1: Regulatory Requirement	33

IMPORTANT INFORMATION ABOUT THIS REPORT

These notes have been prepared by EIS to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the EIS proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

EIS/J&K will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by EIS to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

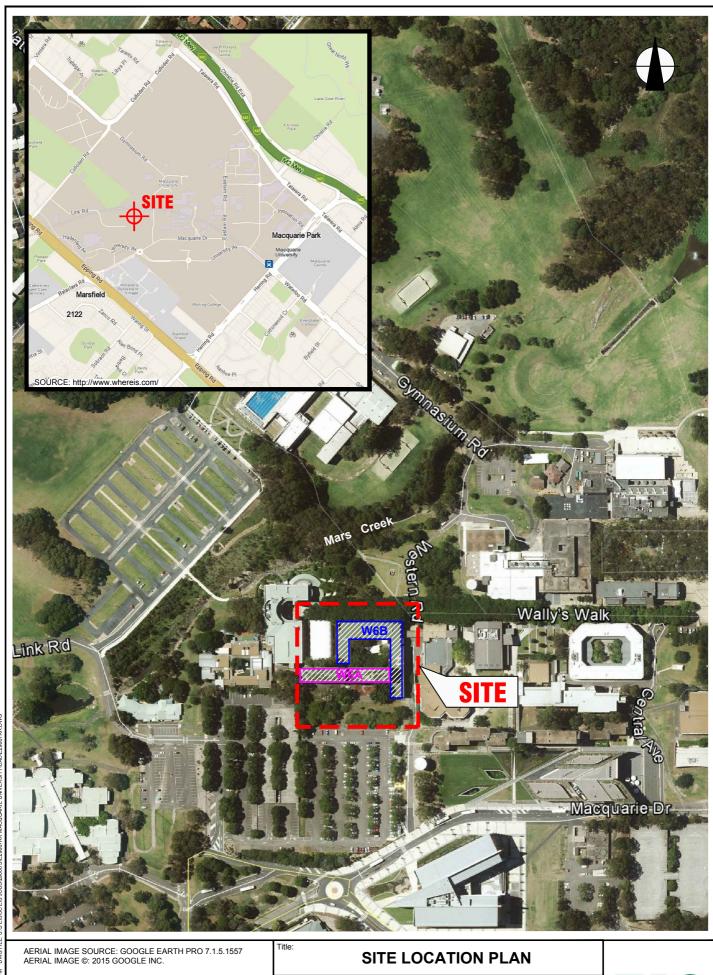
Although information provided by a site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Assessment Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.


To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

REPORT FIGURES

Location: BUILDING W6A & 6B
MACQUARIE UNIVERSITY, MACQUARIE PARK, NSW

ENVIRONMENTAL INVESTIGATION SERVICES

Report No: E29807KR

gure No:

This plan should be read in conjunction with the EIS report.

LABORATORY SUMMARY TABLES

TABLE A SOIL LABORATORY RESULTS COMPARED TO HILs D All data in mg/kg unless stated otherwise

						HEAVY N	1ETALS				P.A	AHs			ORGANOCHLO	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		
			Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P TEQ ³	НСВ	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolat	Services		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessmer	nt Criteria (SAC)	1	3000	900	3600	240000	1500	730	6000	400000	4000	40	80	2000	2500	45	530	3600	50	2000	7	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description		•													•					
BH1	0.0-0.1	Fill	11	LPQL	41	13	29	0.1	2	49	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH2	0.0-0.1	Fill	9	LPQL	35	16	40	0.1	3	57	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH2	0.4-0.5	Silty Clay	7	LPQL	21	9	18	LPQL	1	11	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
вн3	0.1-0.2	Fill	LPQL	LPQL	4	190	6	LPQL	13	36	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH4	0.05-0.15	Fill	6	LPQL	63	19	12	LPQL	54	43	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH5	0.05-0.15	Fill	LPQL	LPQL	19	36	2	LPQL	39	29	0.32	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
вн6	0.1-0.2	Fill	LPQL	LPQL	18	67	3	LPQL	49	32	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
ВН7	0.15-0.25	Silty Clay	8	LPQL	30	4	22	LPQL	7	36	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
ВН7	0.4-0.5	Silty Clay	10	LPQL	34	LPQL	22	LPQL	1	4	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH8	0.1-0.2	Fill	4	LPQL	12	81	10	LPQL	7	30	0.17	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
ВН9	0.2-0.3	Fill	LPQL	LPQL	29	71	49	0.1	61	82	5.7	0.8	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
ВН9	0.5-0.6	Sandy Clay	6	LPQL	28	LPQL	9	LPQL	1	1	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH10	0.15-0.25	Fill	10	LPQL	77	16	30	0.2	29	61	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH10	0.9-1.0	Silty Clay	8	LPQL	26	1	15	LPQL	LPQL	4	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH11	0.1-0.2	Silty Clay	8	LPQL	21	7	19	LPQL	4	24	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH12	0.0-0.2	Fill	11	LPQL	38	11	34	0.1	2	69	0.4	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH12	0.9-1.0	Fill	9	LPQL	37	16	40	0.2	3	92	0.11	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH13	0.5-0.6	Fill	8	LPQL	29	9	28	LPQL	3	52	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
Total Numbe	r of Samples		18	18	18	18	18	18	18	18	18	18	13	13	13	13	13	13	13	13	13	13
Maximum Va	lue		11	LPQL	77	190	49	0.2	61	92	5.7	0.8	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NC

Explanation:

- L Site Assessment Criteria (SAC): NEPM 2013, HIL-D: 'Commercial/Industrial'
- 2 The results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- 3 B(a)P TEQ Benzo(a)pyrene Toxicity Equivalence Quotient has been calculated based on 8 carcinogenic PAHs and their Toxic Equivalence Factors (TEFs) outlined in NEPM 2013

Concentration above the SAC

VALUE

Standard deviation exceeds data assessment criteria

VALUE

Abbreviations:

PAHs: Polycyclic Aromatic Hydrocarbons UCL: Upper Level Confidence Limit on Mean Value

B(a)P: Benzo(a)pyrene HILs: Health Investigation Levels

PQL: Practical Quantitation Limit

LPQL: Less than PQL

OPP: Organophosphorus Pesticides

NA: Not Analysed

NC: Not Calculated

NSL: No Set Limit

OCP: Organochlorine Pesticides SAC: Site Assessment Criteria

PCBs: Polychlorinated Biphenyls NEPM: National Environmental Protection Measure

TABLE B SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

				T							1	
					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID ²
PQL - Envirola	b Services				25	50	0.2	0.5	1	3	1	
HSL Land Use	Category ¹						CON	MMERCIAL/INDUS	TRIAL		•	
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH1	0.0-0.1	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1
BH2	0.0-0.1	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.3
BH2	0.4-0.5	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.5
вн3	0.1-0.2	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2
BH4	0.05-0.15	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1
BH5	0.05-0.15	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
вн6	0.1-0.2	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2
BH7	0.15-0.25	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.3
BH7	0.4-0.5	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2
вн8	0.1-0.2	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.3
вн9	0.2-0.3	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1
вн9	0.5-0.6	Sandy Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1
BH10	0.15-0.25	Fill	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH10	0.9-1.0	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH11	0.1-0.2	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2
BH12	0.0-0.2	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.3
BH12	0.9-1.0	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2
BH13	0.5-0.6	Fill	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1
Total Numbe	r of Samples				18	18	18	18	18	18	18	18
Maximum Va	alue				LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.5

Explanation:

1 - Site Assessment Criteria (SAC): NEPM 2013

2 - Field PID values obtained during the investigation

Concentration above the SAC

VALUE

The guideline corresponding to the elevated value is highlighted in grey in the Site Assessment Criteria Table below

Abbreviations:

UCL: Upper Level Confidence Limit on Mean Value NC: Not Calculated

PQL: Practical Quantitation Limit

HSLs: Health Screening Levels

NL: Not Limiting

LPQL: Less than PQL

NA: Not Analysed

SAC: Site Assessment Criteria NEPM: National Environmental Protection Measure

SITE ASSESSMENT CRITERIA

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
PQL - Envirola	ab Services				25	50	0.2	0.5	1	3	1
HSL Land Use	Category 1						CON	MMERCIAL/INDUST	RIAL		
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category							
BH1	0.0-0.1	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH2	0.0-0.1	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH2	0.4-0.5	Silty Clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
внз	0.1-0.2	Fill	0m to < 1m	Sand	260	NL	3	NL	NL	230	NL
BH4	0.05-0.15	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH5	0.05-0.15	Fill	0m to < 1m	Sand	260	NL	3	NL	NL	230	NL
вн6	0.1-0.2	Fill	0m to < 1m	Sand	260	NL	3	NL	NL	230	NL
BH7	0.15-0.25	Silty Clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH7	0.4-0.5	Silty Clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH8	0.1-0.2	Fill	0m to < 1m	Sand	260	NL	3	NL	NL	230	NL
ВН9	0.2-0.3	Fill	0m to < 1m	Sand	260	NL	3	NL	NL	230	NL
вн9	0.5-0.6	Sandy Clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH10	0.15-0.25	Fill	0m to < 1m	Sand	260	NL	3	NL	NL	230	NL
BH10	0.9-1.0	Silty Clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH11	0.1-0.2	Silty Clay	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH12	0.0-0.2	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH12	0.9-1.0	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL
BH13	0.5-0.6	Fill	0m to < 1m	Clay	310	NL	4	NL	NL	NL	NL

TABLE C SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES (2014) All data in mg/kg unless stated otherwise

						HEAVY	METALS				P.A	Hs		OC/OP	PESTICIDES		Total			TRH				BTEX CON	/IPOUNDS		
			Arsenic	Cadmium	Chromium	Connor	Lead	Mercury	Nickel	Zinc	Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
			Arsenic	Caumium	Chromium	Copper	Leau	iviercury	Nickei	ZITIC	PAHs		Endosulfans		Harmful ²	Scheduled ³						C ₁₀ -C ₃₆			benzene	Xylenes	
QL - Envirolat	Services		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	250	0.2	0.5	1	3	100
General Solid \	Vaste CT1 1		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	<50	<50	650		NSL		10,000	10	288	600	1,000	-
General Solid \	Vaste SCC1 1		500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	<50	<50	650		NSL		10,000	18	518	1,080	1,800	-
estricted Soli	d Waste CT2 ¹		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	<50	<50	2600		NSL		40,000	40	1,152	2,400	4,000	-
estricted Soli	Waste SCC2 1	1	2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	<50	<50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									
BH1	0.0-0.1	Fill	11	LPQL	41	13	29	0.1	2	49	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH2	0.0-0.1	Fill	9	LPQL	35	16	40	0.1	3	57	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH2	0.4-0.5	Silty Clay	7	LPQL	21	9	18	LPQL	1	11	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH3	0.1-0.2	Fill	LPQL	LPQL	4	190	6	LPQL	13	36	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH4	0.05-0.15	Fill	6	LPQL	63	19	12	LPQL	54	43	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH5	0.05-0.15	Fill	LPQL	LPQL	19	36	2	LPQL	39	29	0.32	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	240	240	LPQL	LPQL	LPQL	LPQL	Not Detected
вн6	0.1-0.2	Fill	LPQL	LPQL	18	67	3	LPQL	49	32	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH7	0.15-0.25	Silty Clay	8	LPQL	30	4	22	LPQL	7	36	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH7	0.4-0.5	Silty Clay	10	LPQL	34	LPQL	22	LPQL	1	4	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH8	0.1-0.2	Fill	4	LPQL	12	81	10	LPQL	7	30	0.17	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	200	710	910	LPQL	LPQL	LPQL	LPQL	Not Detected
BH9	0.2-0.3	Fill	LPQL	LPQL	29	71	49	0.1	61	82	5.7	0.5	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH9	0.5-0.6	Sandy Clay	6	LPQL	28	LPQL	9	LPQL	1	1	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH10	0.15-0.25	Fill	10	LPQL	77	16	30	0.2	29	61	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH10	0.9-1.0	Silty Clay	8	LPQL	26	1	15	LPQL	LPQL	4	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH11	0.1-0.2	Silty Clay	8	LPQL	21	7	19	LPQL	4	24	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH12	0.0-0.2	Fill	11	LPQL	38	11	34	0.1	2	69	0.4	0.07	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH12	0.9-1.0	Fill	9	LPQL	37	16	40	0.2	3	92	0.11	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA .
BH13	0.5-0.6	Fill	8	LPQL	29	9	28	LPQL	3	52	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
Total Numbe	r of samples	1	18	18	18	18	18	18	18	18	18	18	13	13	13	13	13	18	18	18	18	18	18	18	18	18	13
Maximum Va	lue		11	LPQL	77	190	49	0.2	61	92	5.7	0.5	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	200	710	910	LPQL	LPQL	LPQL	LPQL	NC

Explanation:

- NSW EPA Waste Classification Guidelines (2014)

² - Assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion

³ - Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde

Concentration above the CT1

Concentration above SCC1

Concentration above the SCC2

VALUE

VALUE

Abbreviations:

PAHs: Polycyclic Aromatic Hydrocarbons UCL: Upper Level Confidence Limit on Mean Value B(a)P: Benzo(a)pyrene NA: Not Analysed

PQL: Practical Quantitation Limit NC: Not Calculated LPQL: Less than PQL NSL: No Set Limit

PID: Photoionisation Detector SAC: Site Assessment Criteria
PCBs: Polychlorinated Biphenyls TRH: Total Recoverable Hydrocarbons

CT: Contaminant Threshold

SCC: Specific Contaminant Concentration
HILs: Health Investigation Levels

NEPM: National Environmental Protection Measure

BTEX: Monocyclic Aromatic Hydrocarbons

TABLE D SOIL LABORATORY TCLP RESULTS All data in mg/L unless stated otherwise

	<u> </u>	_	Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	B(a)P
PQL - Envirolab	Services		0.05	0.01	0.01	0.03	0.0005	0.02	0.001
TCLP1 - Genera	l Solid Waste 1	l .	5	1	5	5	0.2	2	0.04
TCLP2 - Restric	ted Solid Wast	e ¹	20	4	20	20	0.8	8	0.16
TCLP3 - Hazard	ous Waste ¹		>20	>4	>20	>20	>0.8	>8	>0.16
Sample Reference	Sample Depth	Sample Description							
BH4	0.05-0.15	Fill	NA	NA	NA	NA	NA	LPQL	NA
вн6	0.1-0.2	Fill	NA	NA	NA	NA	NA	0.06	NA
вн9	0.2-0.3	Fill	NA	NA	NA	NA	NA	0.04	NA
Total Numbe	Total Number of samples			0	0	0	0	3	0
Maximum Va	Maximum Value			LPQL	LPQL	LPQL	LPQL	0.06	LPQL

Explanation:

1 - NSW EPA Waste Classification Guidelines (2014)

General Solid Waste

Restricted Solid Waste

Hazardous Waste

VALUE

VALUE

VALUE

Abbreviations:

PQL: Practical Quantitation Limit

LPQL: Less than PQL B(a)P: Benzo(a)pyrene NC: Not Calculated NA: Not Analysed

TCLP: Toxicity Characteristics Leaching Procedure

TABLE E SOIL INTRA-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in mg/kg unless stated otherwise

SAMPLE	ANALYSIS	Envirolab	INITIAL	REPEAT	MEAN	RPD
		PQL				%
Sample Ref = BH7 0.15-0.25	Arsenic	4	8	8	8.0	0
Dup Ref = DUP A	Cadmium	0.4	LPQL	LPQL	NC	NC
	Chromium	1	30	44	37.0	38
Envirolab Report: 154919	Copper	1	4	10	7.0	86
	Lead	1	22	19	20.5	15
	Mercury	0.1	LPQL	LPQL	NC	NC
	Nickel	1	7	23	15.0	107
	Zinc	1	36	26	31.0	32
	Naphthalene	0.1	LPQL	LPQL	NC	NC
	Acenaphthylene	0.1	LPQL	LPQL	NC	NC
	Acenaphthene	0.1	LPQL	LPQL	NC	NC
	Fluorene	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	LPQL	LPQL	NC	NC
	Anthracene	0.1	LPQL	LPQL	NC	NC
	Fluoranthene	0.1	LPQL	LPQL	NC	NC
	Pyrene	0.1	LPQL	LPQL	NC	NC
	Benzo(a)anthracene	0.1	LPQL	LPQL	NC	NC
	Chrysene	0.1	LPQL	LPQL	NC	NC
	Benzo(b,j+k)fluoranthene	0.2	LPQL	LPQL	NC	NC
	Benzo(a)pyrene	0.05	LPQL	LPQL	NC	NC
	Indeno(123-cd)pyrene	0.1	LPQL	LPQL	NC	NC
	Dibenzo(ah)anthracene	0.1	LPQL	LPQL	NC	NC
	Benzo(ghi)perylene	0.1	LPQL	LPQL	NC	NC
	Total OCPs	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	LPQL	LPQL	NC	NC
	TRH C ₆ -C ₁₀ (F1)	25	LPQL	LPQL	NC	NC
	TRH >C ₁₀ -C ₁₆ (F2)	50	LPQL	LPQL	NC	NC
	TRH >C ₁₆ -C ₃₄ (F3)	100	LPQL	LPQL	NC	NC
	TRH >C ₃₄ -C ₄₀ (F4)	100	LPQL	LPQL	NC	NC
	Benzene	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	LPQL	LPQL	NC	NC
	o-xylene	1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value \leq 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

PQL: Practical Quantitation Limit OCP: Organochlorine Pesticides
LPQL: Less than PQL OPP: Organophosphorus Pesticides
NA: Not Analysed PCBs: Polychlorinated Biphenyls
NC: Not Calculated TRH: Total Recoverable Hydrocarbons

TABLE F SOIL INTRA-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in mg/kg unless stated otherwise

SAMPLE	ANALYSIS	Envirolab	INITIAL	REPEAT	MEAN	RPD
3711711 EE	7117121313	PQL				%
Sample Ref = BH11 0.1-0.2	Arsenic	4	8	8	8.0	0
Oup Ref = DUP B	Cadmium	0.4	LPQL	LPQL	NC	NC
	Chromium	1	21	24	22.5	13
nvirolab Report: 154919	Copper	1	7	8	7.5	13
	Lead	1	19	24	21.5	23
	Mercury	0.1	LPQL	LPQL	NC	NC
	Nickel	1	4	3	3.5	29
	Zinc	1	24	32	28.0	29
	Naphthalene	0.1	LPQL	LPQL	NC	NC
	Acenaphthylene	0.1	LPQL	LPQL	NC	NC
	Acenaphthene	0.1	LPQL	LPQL	NC	NC
	Fluorene	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	LPQL	LPQL	NC	NC
	Anthracene	0.1	LPQL	LPQL	NC	NC
	Fluoranthene	0.1	LPQL	LPQL	NC	NC
	Pyrene	0.1	LPQL	LPQL	NC	NC
	Benzo(a)anthracene	0.1	LPQL	LPQL	NC	NC
	Chrysene	0.1	LPQL	LPQL	NC	NC
	Benzo(b,j+k)fluoranthene	0.2	LPQL	LPQL	NC	NC
	Benzo(a)pyrene	0.05	LPQL	LPQL	NC	NC
	Indeno(123-cd)pyrene	0.1	LPQL	LPQL	NC	NC
	Dibenzo(ah)anthracene	0.1	LPQL	LPQL	NC	NC
	Benzo(ghi)perylene	0.1	LPQL	LPQL	NC	NC
	Total OCPs	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	LPQL	LPQL	NC	NC
	TRH C6-C10 (F1)	25	LPQL	LPQL	NC	NC
	TRH >C10-C16 (F2)	50	LPQL	LPQL	NC	NC
	TRH >C16-C34 (F3)	100	LPQL	LPQL	NC	NC
	TRH >C34-C40 (F4)	100	LPQL	LPQL	NC	NC
	Benzene	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	LPQL	LPQL	NC	NC
	o-xylene	1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value \leq 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

PQL: Practical Quantitation Limit OCP: Organochlorine Pesticides
LPQL: Less than PQL OPP: Organophosphorus Pesticides
NA: Not Analysed PCBs: Polychlorinated Biphenyls
NC: Not Calculated TRH: Total Recoverable Hydrocarbons

TABLE G SOIL INTER-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in mg/kg unless stated otherwise

SAMPLE	ANALYSIS	Envirolab	SGS	INITIAL	REPEAT	MEAN	RPD
		PQL	PQL				%
Sample Ref = BH8 0.1-0.2	Arsenic	4	3	4	LPQL	2.8	91
Dup Ref = DUP C	Cadmium	0.4	0.3	LPQL	LPQL	NC	NC
	Chromium	1	0.3	12	6.7	9.4	57
Envirolab Report: 154919	Copper	1	0.5	81	130	105.5	46
SGS Report: SE158009	Lead	1	1	10	9	9.5	11
	Mercury	0.1	0.05	LPQL	LPQL	NC	NC
	Nickel	1	0.5	7	6.6	6.8	6
	Zinc	1	0.5	30	36	33.0	18
	Naphthalene	0.1	0.1	LPQL	LPQL	NC	NC
	Acenaphthylene	0.1	0.1	LPQL	LPQL	NC	NC
	Acenaphthene	0.1	0.1	LPQL	LPQL	NC	NC
	Fluorene	0.1	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	0.1	0.2	0.1	0.2	67
	Anthracene	0.1	0.1	LPQL	LPQL	NC	NC
	Fluoranthene	0.1	0.1	LPQL	LPQL	NC	NC
	Pyrene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(a)anthracene	0.1	0.1	LPQL	LPQL	NC	NC
	Chrysene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(b,j+k)fluoranthene	0.2	0.2	LPQL	LPQL	NC	NC
	Benzo(a)pyrene	0.05	0.05	LPQL	LPQL	NC	NC
	Indeno(123-cd)pyrene	0.1	0.1	LPQL	LPQL	NC	NC
	Dibenzo(ah)anthracene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(ghi)perylene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(a)pyrene TEQ	0.5	0.5	LPQL	LPQL	NC	NC
	Total OCPs	0.1	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	0.1	LPQL	LPQL	NC	NC
	TRH C6-C10 (F1)	25	25	LPQL	LPQL	NC	NC
	TRH >C10-C16 (F2)	50	50	LPQL	LPQL	NC	NC
	TRH >C16-C34 (F3)	100	100	670	530	600.0	23
	TRH >C34-C40 (F4)	100	100	870	430	650.0	68
	Benzene	0.5	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	2	LPQL	LPQL	NC	NC
	o-xylene	1	1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and repeat results divided by the average value expressed as a percentage. The following acceptance criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

PQL: Practical Quantitation Limit

OCP: Organochlorine Pesticides

LPQL: Less than PQL

OPP: Organophosphorus Pesticides

NA: Not Analysed

PCBs: Polychlorinated Biphenyls

NC: Not Calculated

TRH: Total Recoverable Hydrocarbons

TABLE H SUMMARY OF FIELD QA/QC RESULTS

	Envirolab PQL		TB ^s	FR ^w	TS ^s
ANALYSIS			27/09/2016	30/09/2016	27/09/2016
ANALISIS	mg/kg μg/L	154919	154919	154919	
111g/ Ng μg/ L		mg/kg	ug/L	% Recovery	
Benzene	1	1	LPQL	LPQL	98
Toluene	1	1	LPQL	LPQL	98
Ethylbenzene	1	1	LPQL	LPQL	99
m+p-xylene	2	2	LPQL	LPQL	99
o-xylene	1	1	LPQL	LPQL	100

Explanation:

BTEX concentrations in trip spikes are presented as % recovery

Values above PQLs/Acceptance criteria

VALUE

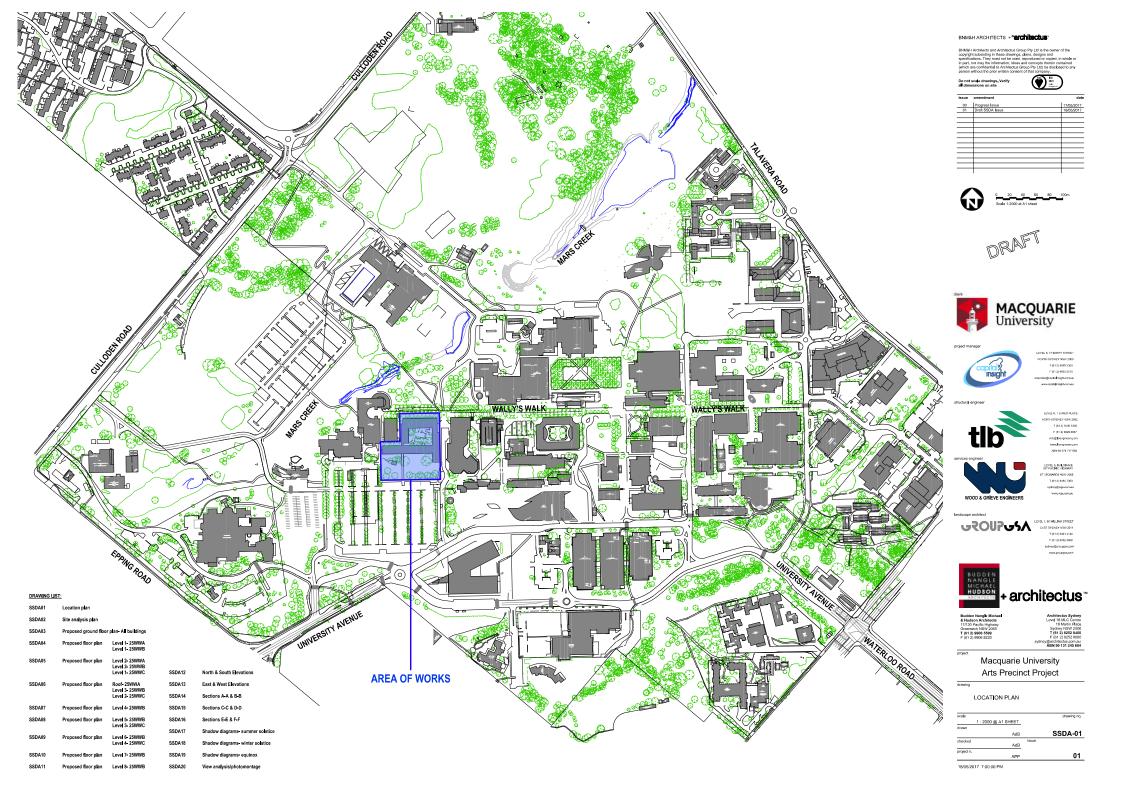
Abbreviations:

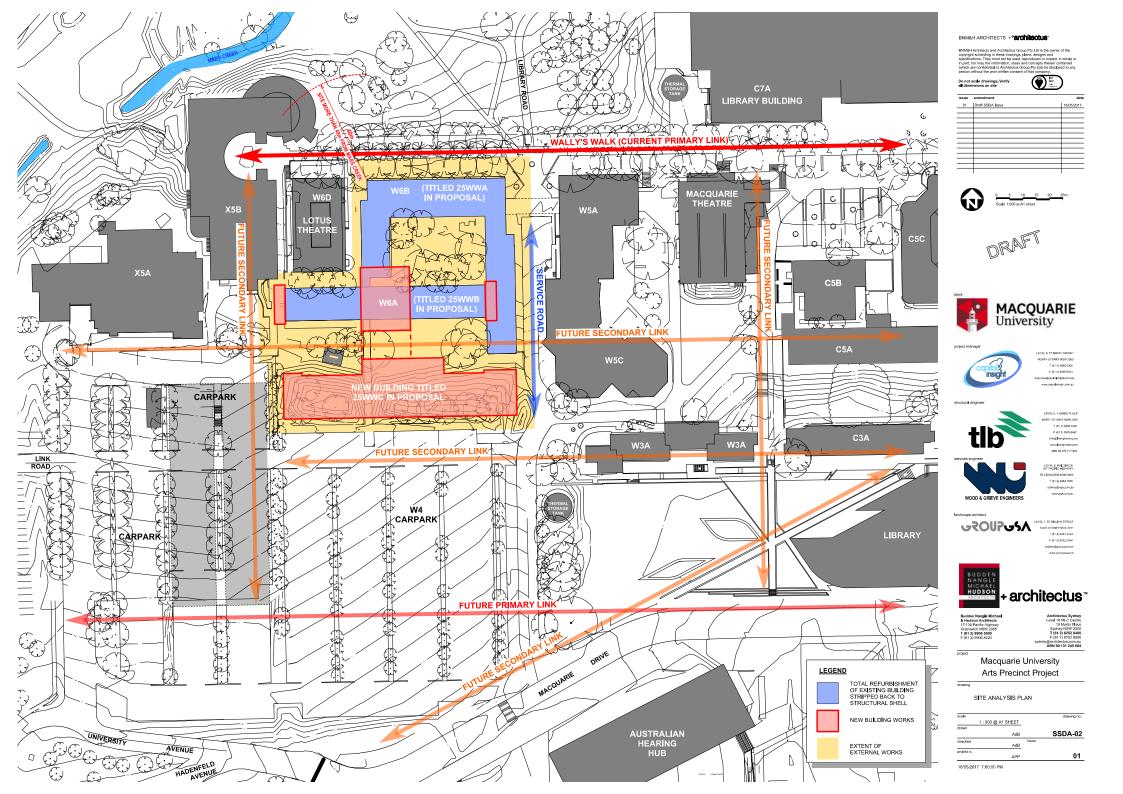
PQL: Practical Quantitation Limit TB: Trip Blank
LPQL: Less than PQL TS: Trip Spike
NA: Not Analysed RS: Rinsate Sample

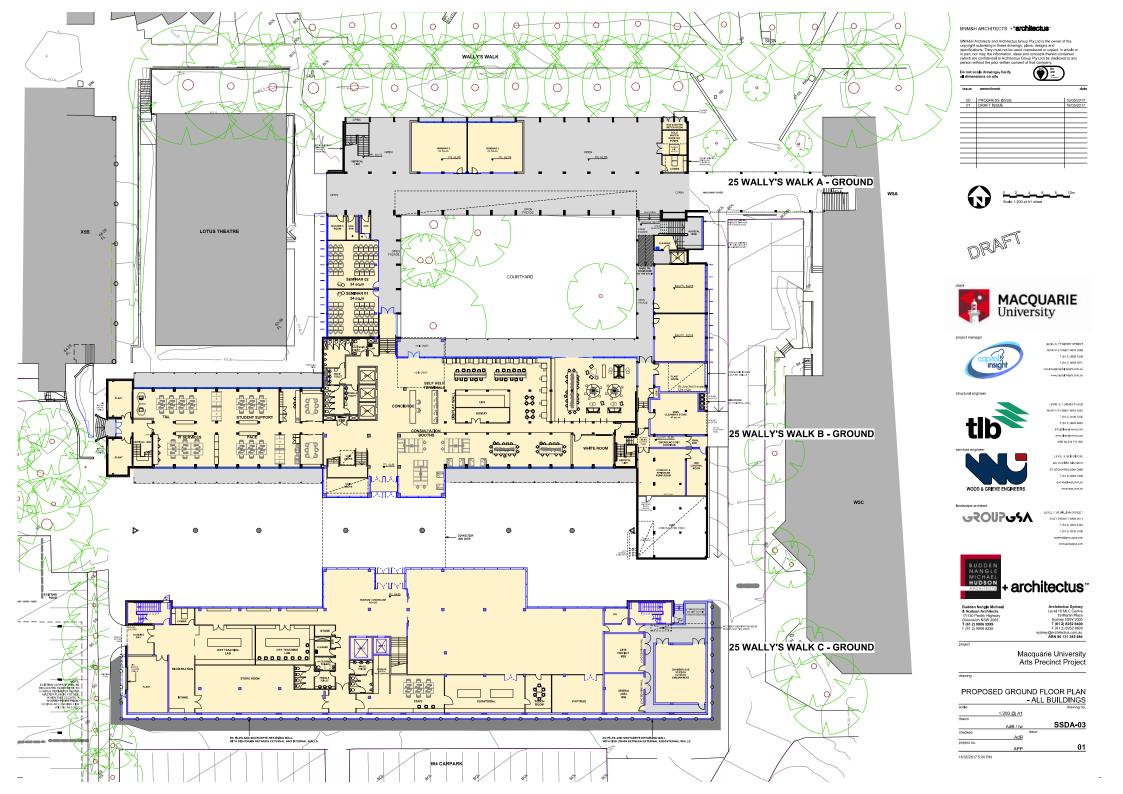
NC: Not Calculated TRH: Total Recoverable Hydrocarbons

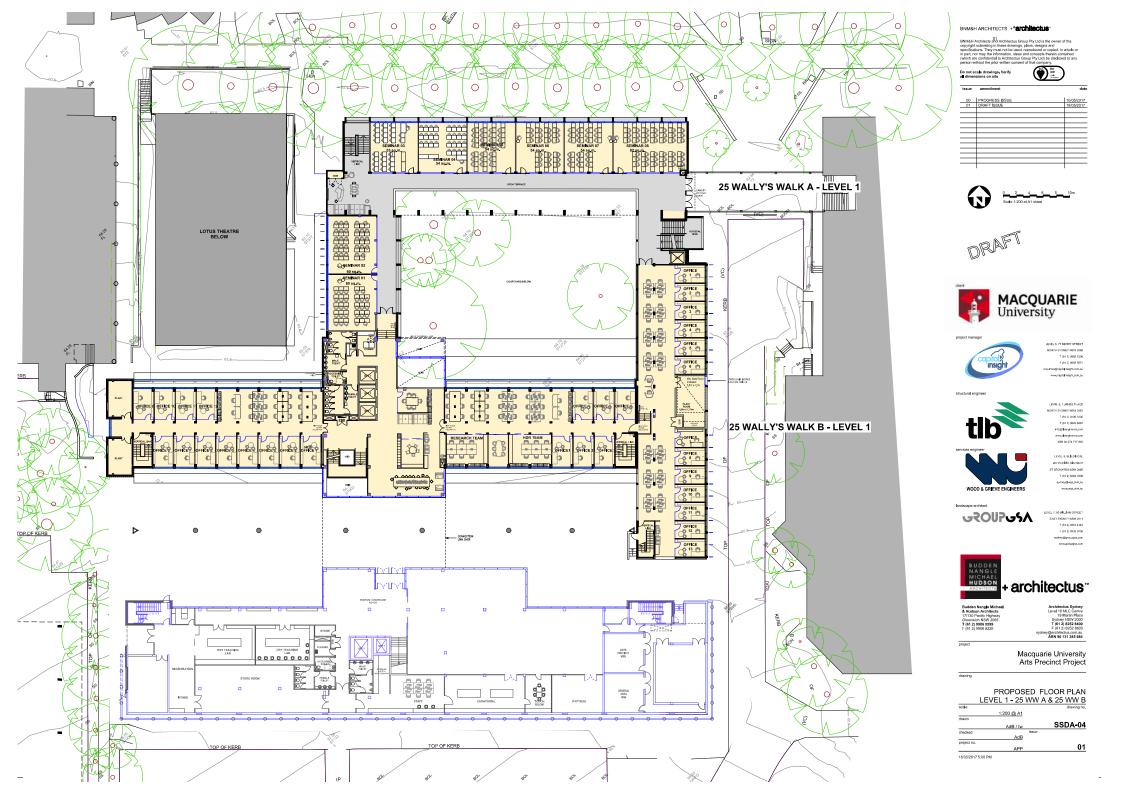
^wSample type (water)

^SSample type (sand)

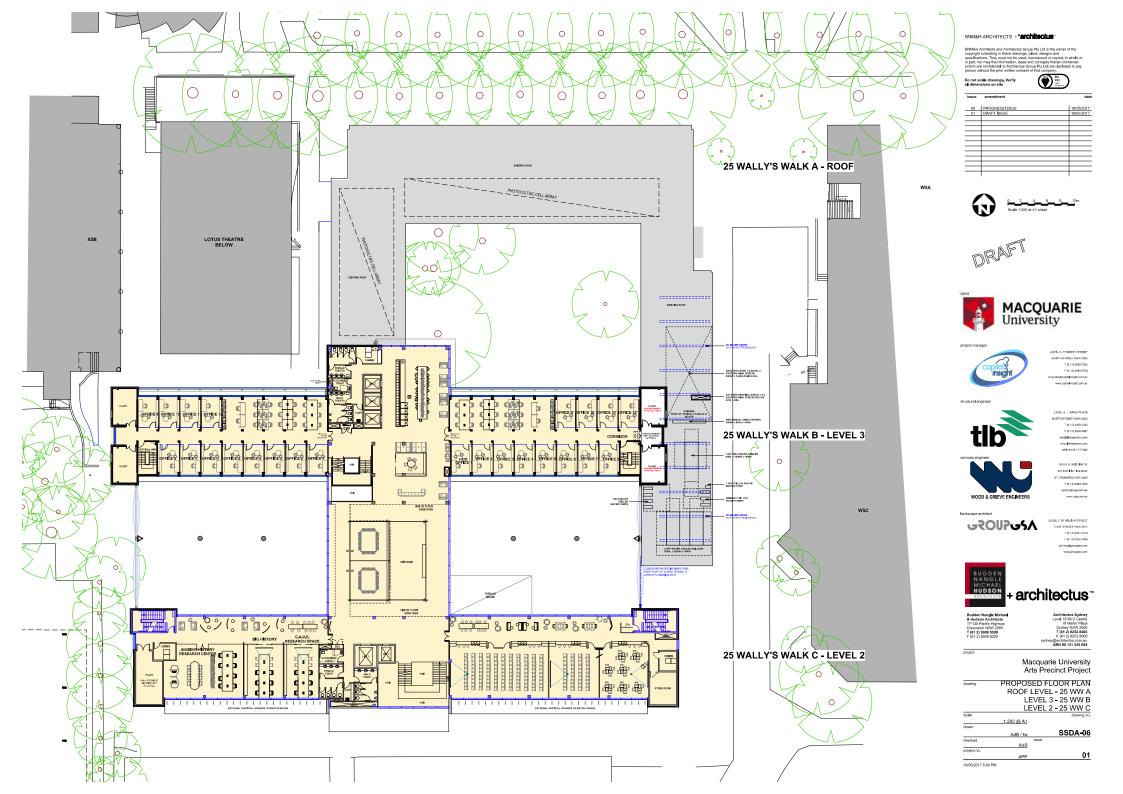

REPORT APPENDICES

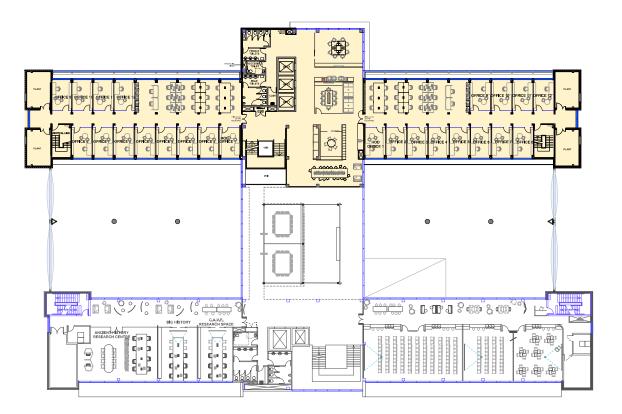



Appendix A: Site Information including Site History



Proposed Development Plans





25 WALLY'S WALK B - LEVEL 4

BNM&H ARCHITECTS + *architectus*

13300	amenament	- Can
00	PROGRESS ISSUE	16/05/2017
01	DRAFT ISSUE	18/05/2017

T (61 2) 9955 2300 F (61 2) 9955 6574 www.capitalnsight.com.au

T (61 2) 9409 3300 F (612) 9929 6667 info@bengireers.com

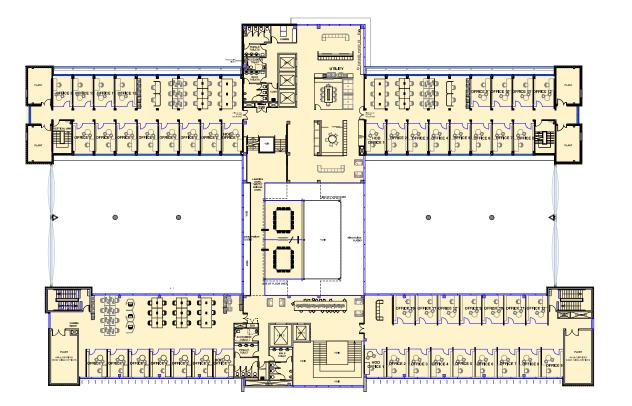
LEVEL 6, BUILDING B,

www.wgecoomuse

237 PACHIC HIGHWAY T (61 2) 8484 7000 sydney@xgo.com.au

LEVEL 7, 80 WILLIAM STREET EAST SYDNEY NSW 2011 T (61 Z) 9361 4144

F (61.2) 9332-3458 sychroy@groupges.com



Macquarie University Arts Precinct Project

PROPOSED FLOOR PLAN

1:200 @ A1 AdB project no. 01

LEVEL 4 - 25 WW B

25 WALLY'S WALK B - LEVEL 5

25 WALLY'S WALK C - LEVEL 3

BNM&H ARCHITECTS + *architectus*

13300	amenament	- Can
00	PROGRESS ISSUE	16/05/2017
01	DRAFT ISSUE	18/05/2017
_		

T (61 2) 9955 2300 F (61 2) 9955 6574 www.capitalnsight.com.au

T (61 2) 9409 3300 F (612) 9929 6667 info@dbengireers.com

LEVEL 6, BUILDING B, 237 PACHIC HIGHWAY

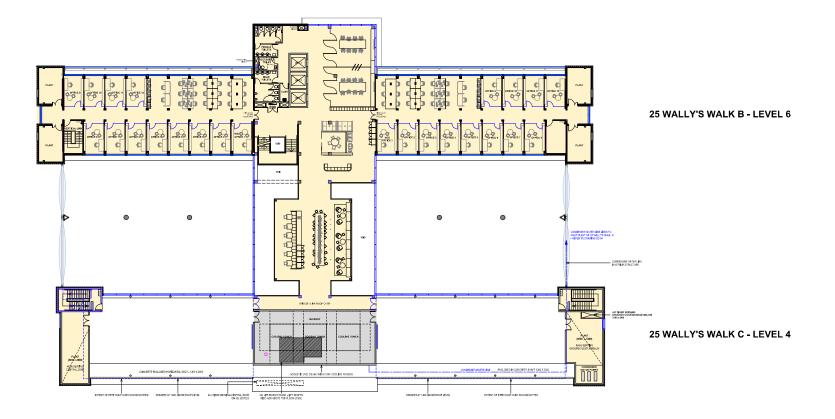
T (01.2) 8484 7000 sydney@wge.com.au

WOOD & GRIEVE ENGINEERS

LEVEL 7, 80 WILLIAM STREET EVEL 7, 80 WILLIAM STREET

EAST SYDNEY NSW 2011

T (61 2) 9382 3459


sydray/@groupgas.com

Macquarie University Arts Precinct Project

PROPOSED FLOOR PLAN LEVEL 5 - 25 WW B LEVEL 3 - 25 WW C

1:200 @ A1 AdB project no. 01

BNM&H ARCHITECTS + *architectus*

issue	amendment	date
00	PROGRESS ISSUE	16/05/2017
01	DRAFT ISSUE	18/05/2017
		-
	l	

T (61 2) 9955 2300 F (61 2) 9955 6574 www.capitalnsight.com.au

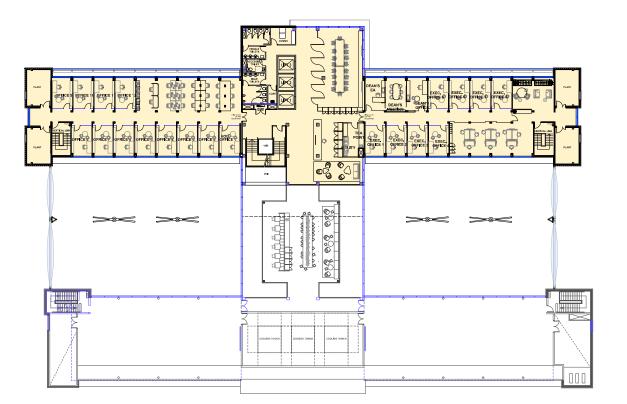
LEVEL 6, 1 JAMES PLACE NORTH SYDNEY NSW 2062 T (61.2) 9499 3300 F (612) 9929 6667 info@dbengireers.com

LEVEL 6, BUILDING B, 237 PACHIC HIGHWAY

T (01.2) 8484 7000 sydney@wge.com.au

LEVEL 7, 80 WILLIAM STREET EAST SYDNEY NSW 2011 T (61 Z) 9361 4144

F (61.2) 9332-3458 sycholy@groupges.com



01

Macquarie University Arts Precinct Project

PROPOSED FLOOR PLAN LEVEL 6 - 25 WW B LEVEL 4 - 25 WW C

1:200 @ A1 AdB project no.

25 WALLY'S WALK B - LEVEL 7

BNM&H ARCHITECTS + *architectus*

13300	amenament	- Can
00	PROGRESS ISSUE	16/05/2017
01	DRAFT ISSUE	18/05/2017
	-	
_		

T (61 2) 9955 2300 F (61 2) 9955 6574 enquirles@copite(might.com.au www.copite(might.com.au

LEVEL 6, 1 JAMES PLACE NORTH SYDNEY NSW 2002 T (61 2) 9499 3390 F (61 2) 9899 6667 info@bengireers.com

LEVEL 6, BUILDING B, 237 PACHIC HIGHWAY

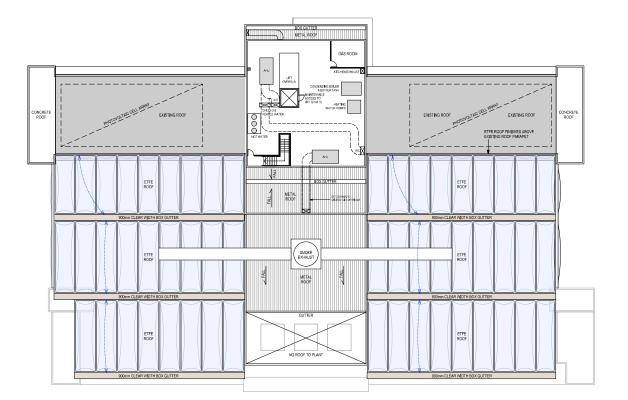
T (61.2) 8484 7000 sydney@wge.com.au www.wge.com.au

LEVEL 7, 80 WILLIAM STREET EVEL 7, 80 WILLIAM STREET

EAST SYDNEY NSW 2011

T (61 2) 9382 3459

sydray/@groupgas.com



Macquarie University

Arts Precinct Project

PROPOSED FLOOR PLAN LEVEL 7 - 25 WW B

1:200 @ A1 AdB project no. 01

25 WALLY'S WALK B - ROOF / LEVEL 8

BNM&H ARCHITECTS + *architectus*

issue	amendment	date
00	PROGRESS ISSUE	16/05/2017
01	DRAFT ISSUE	18/05/2017
_		
_		
	1	1

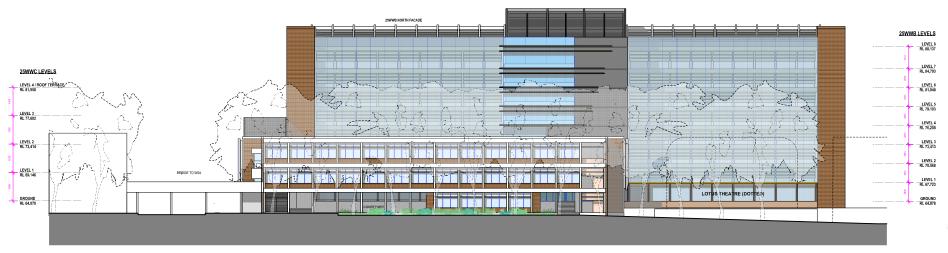
LEVEL 6, 77 BERRY STREET NORTH SYDNEY NSW 2090 T (61 2) 9955 2300 F (61 2) 9955 6574 enquiries@capite(might.com.as www.capite(might.com.as

LEYEL 6, 1 JAMES PLACE,
NORTH SYDNEY NSW 2002

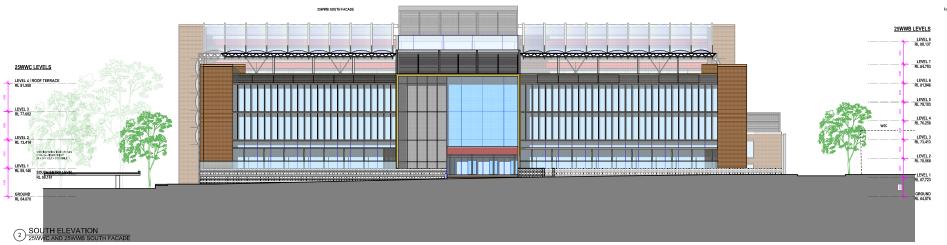
T (91 2) 9490 3000
F (91 2) 9429 0007
info@dengineers zeer
vaux thangiteers zeer
ABN 94 074 717 892

LEVEL 6, BUILDING B, 207 PACIFIC HIGHWAY

ST LEONARDS NSW 2065
T (61.2) 8454 7000
sydney@ngc.com.au


LEVEL 7, 80 WILLIAM STREET EVEL 7, 80 WILLIAM STREET
EAST SYDNEY NSW 2011
T (61 2) 9382 4144
F (61 2) 9332 3458
sydney@groupges.com

Macquarie University Arts Precinct Project


PROPOSED ROOF PLAN LEVEL 8 - 25 WW B 1:200 @ A1

AdB project no.

NORTH ELEVATION
25WWA AND 25WWB NORTH FACADE

BNM&H ARCHITECTS + *architectus*

BNMMH Architects and Architectus Group Pty Ltd is the owner of the copyright subsisting in these drawings, plans, designs and spacifications. They must not be used, reproduced or copied, in whole in part, nor may the information, ideas and concepts therein contained (which are confidential to Architectus Group Pty Ltd) be disclosed to an

not scale drawings. Verify imensions on site

issue	amendment	date
APP. 00	PROGRESS ISSUE	16-05-2017 18-05-2017
APP. 01	DRAFT ISSUE	18-06-2017
_		
	l	1

LEVEL 6, 77 BERRY STREET
NORTH SYDNEY NSW 2000
T (61 2) 9955 2300
F (61 2) 9965 6574
enquine@capiblinolyitzon uu

ctural engineer

NORTH SYDNEY NSW 2002 T (61 2) 9499 3300 F (61 2) 9829 EBET info@tbengineers.com sws/#swrgineers.com

LEVEL 6, BUILDING B, 207 PACIFIC INCHWAY ST LECNARDS NSW 2005 T (81.2) 8484 7000

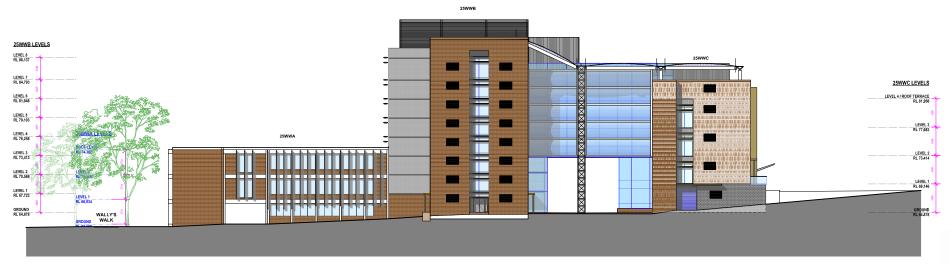
ndscape architect

EVEL 7, 80 WILL IAM STREET

EAST SYDNEY NSW 2011

T (61 2) 9391 4144

F (61 2) 9332 3459



Budden Nangle Mi & Hudson Architec 17/130 Pacific High Greenwich NSW 20 T (61 2) 9906 5599 Architectus Sydni Level 18 MLC Cent 19 Martin Pla Sydney NSW 201 T (61 2) 8252 841 F (81 2) 8252 881 voney@architectus.com.s ABN 90 131 245 61

Macquarie University

Arts Precinct Project

NORTH ELEVATION SOUTH ELEVATION

EAST ELEVATION
25WWA - 25WWB - BRIDGE - 25WWC

WEST ELEVATION 25WWC - BRIDGE - 25WWB - 25WWA

BNM&H ARCHITECTS + *architectus*

issue	amendment	dat
APP. 00	PROGRESS ISSUE	16-05-2017
APP, 01	DRAFT ISSUE	18-06-2017

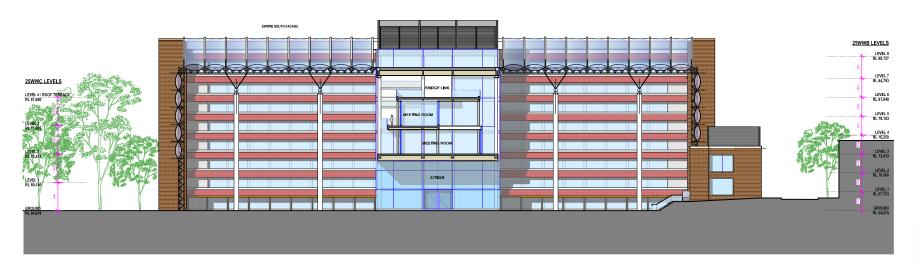
T (61 2) 9955 2300 F (61 2) 9955 5574

T (61 2) 9409 3300 F (61 2) 9829 6667 New Joergineers com ABN 94 074 717 892 LEVEL 6, BUILDING B.

207 PACIFIC HICHWAY T (61.2) 8484 7000

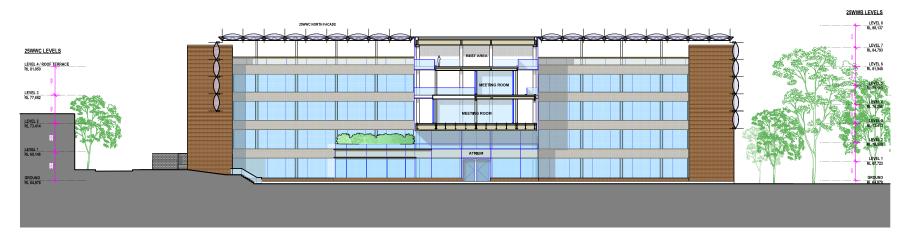
GROUPGSA

EAST SYDNEY NSW 2011 T (01 2) 9301 4144 F (61 2) 9332 3456



Macquarie University

Arts Precinct Project


EAST ELEVATION WEST ELEVATION

1:200 @ A1 SHEET SSDA-13 Ad'B project no. 16/05/2017 18:00

SECTION AA
THROUGH BRIDGE LINK - 25WWA SOUTH ELEVATION

2 SECTION BB THROUGH BRIDGE LINK - 25WWC NORTH ELEVATION

BNM&H ARCHITECTS + "architectus"

issue	amendment	dai
APP. 00	PROGRESS ISSUE DRAFT ISSUE	18-05-2017
APP, 01	DRAFT ISSUE	18-05-2017
	l	l l

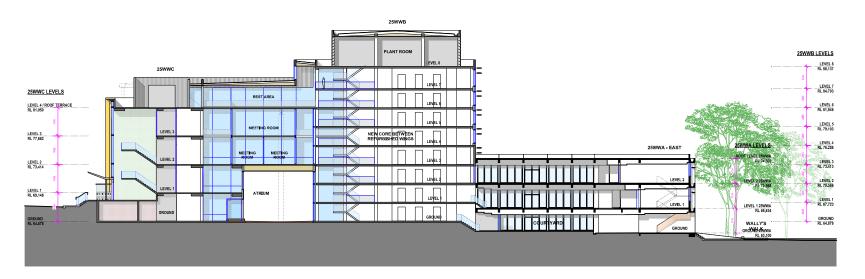
LEVEL 6, 77 BERRY STREET
NORTH SYDNEY NEW 2000
T (81 2) 9665 2300
F (81 2) 9065 5574
enquirougup tulmights concur www.capitalinaight.com.au

LEVEL 6, 1 JAMES PLACE
NORTH SYDNEY NSW 2062
T (81 2) 9409 3300
F (61 2) 9629 6967
Into@45erghosmucom www.litengineers.com ABN 94 074 717 882

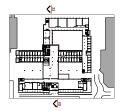
207 PACHIC HIGHWAY
ST LEONARDS NEW 2665
T (612) B484 7000
sythey@wgo.com.au

EAST SYDNEY NSW 2011 T (61.2) 0061 4144 F (61.2) 5032 3468

Architectus Sydney Level 18 MLC Centre 19 Martin Place Sydney NSW 2000 T (61 2) 8252 8400 F (61 2) 8252 8600


Macquarie University Arts Precinct Project

SECTION A-A SECTION B-B


SSDA-14 Ad'B project no.


1:200 @ A1 SHEET

16/05/2017 18:00

SECTION CC
THROUGH 25WWC - BRIDGE LINK - 25WWB CORE - 25WWA EAST WING

2 SECTION DD
THROUGH 25WWC - BRIDGE LINK - 25WWB CORE - COURT YARD - 25WWA NORTH WING

BNM&H ARCHITECTS + *architectus*

APP. 00	PROGRESS ISSUE DRAFT ISSUE	16-05-2017 18-05-2017
APP. 01	DRAFT ISSUE	18-05-2017

NORTH SYDNEY NSW 2060 T (61 2) 9655 2300 F (61 2) 9655 5574 encurrent/Constituted theory au

LEVEL 8, 1 JAMES PLACE NORTH SYDNEY NSW 2002 T (61 2) 9409 3350 F (61 2) 9929 6867 info@4tengineers.com www.4tengineers.com ABN 94 074 717 892

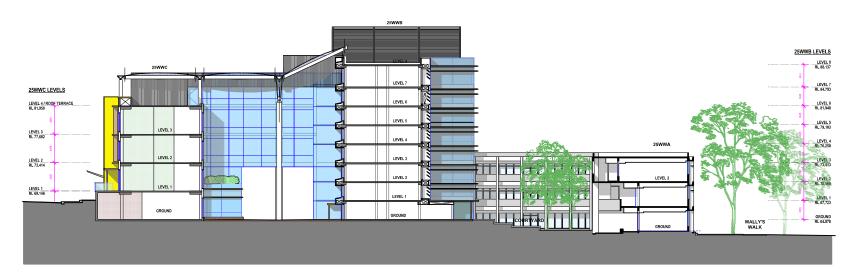
LEVEL 6, BUILDING B. 207 PACETO HIGHWAY ST LEONARDS NSW 2016 T (61.2) 5464 7000

LEVEL 7, 80 WILLIAM STREET

EAST SYDNEY NSW 2011

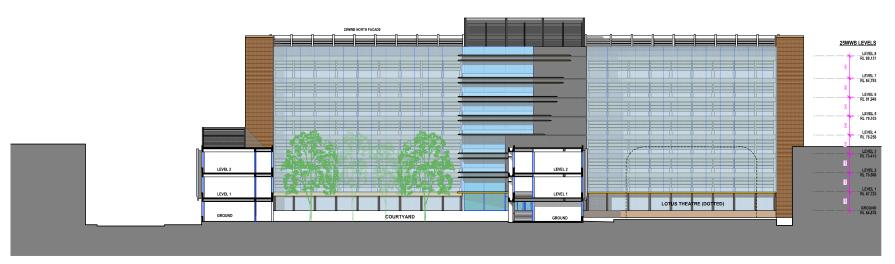
T (81 2) 5081 4144

F (61 2) 5032 3458


sydney@architectus.com.au ABN 90 131 245 684

project

Macquarie University Arts Precinct Project


SECTION C-C SECTION D-D

drawing no		00 @ A1 SHEET	scale
SSDA-15		MB / TW	drawn
	issue	Ad'B	checked
		APP	project no.

SECTION EE
THROUGH 25WWC - ATRIUM - 25WWB - COURT YARD - 25WWA NORTH WING

2 SECTION FF THROUGH 25WWA WEST WING - COURTYARD - 25WWA EAST WING

BNM&H ARCHITECTS + "architectus"

issue	amendment	date
APP. 00	PROGRESS ISSUE	16-05-2017 18-05-2017
APP. 01	DRAFT ISSUE	18-05-2017
=		
_		

LEVEL 6, 77 BERRY STREET NORTH SYDNEY NEW 2000 T (61 2) 9665 2300 F (61 2) 9665 6674 www.copitalnsight.com.eu

LEVEL 6, 1 JAMES PLACE NORTH SYDNEY NSW 2062 T (61 2) 0409 3300 F (61 2) 0929 0967 into@Bengineers.com www.Bengineers.com ABN 94 074 717 892

207 PACETIC HIGHWAY 8T LEONARDS NSW 2065 T (81 2) 8484 7000

EAST SYDNEY NSW 2011 T (81 2) 6081 4144 F (61 2) 8032 3488

Architectus Sydney Level 18 MLC Centre 19 Martin Place Sydney NSW 2000 T (61 2) 8252 8400 F (61 2) 8252 8500 embarchitectus cryp au

sydney@architectus.com.au ABN 90 131 245 684

Macquarie University Arts Precinct Project

SECTION E-E SECTION F-F

1:200 @ A1 SHEET

SSDA-16 project no.

16/05/2017 18:00

Selected Site Photos

Selected Site Photos taken on 6 October 2016

Photograph 1: Shows the southwestern boundary of the site, facing north. Note the grassed soil mounds, bisected by concrete paved walkway, with Building W6A in the background, in the southern section of the site, constructed of fill material.

Photograph 2: A closer view of the 'western' soil mound at the site, facing south-east. Note the bike hub to the immediate north of it (central western end of the photograph).

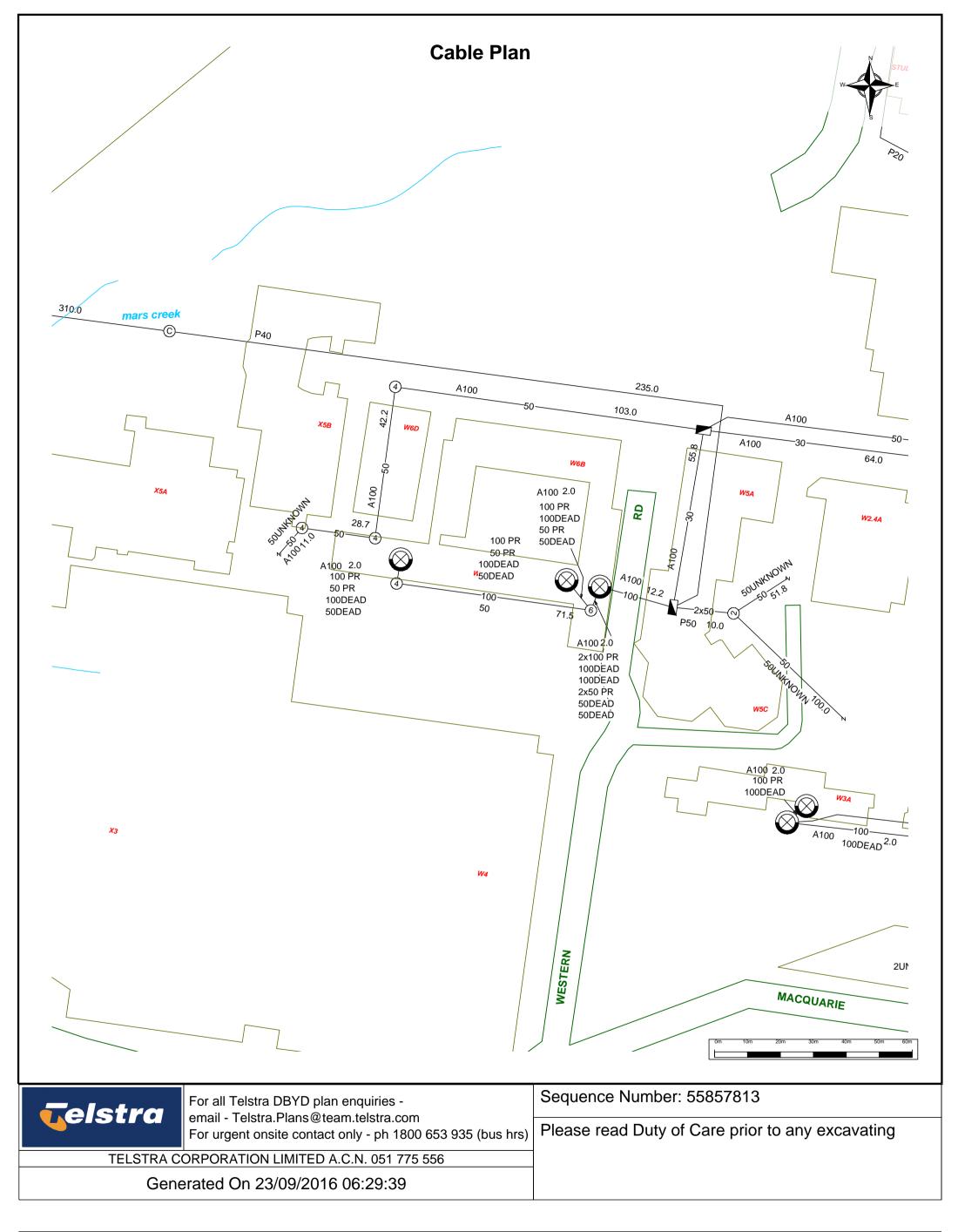
Photograph 3: A closer view of the 'eastern' soil mound at the site, facing east. Note the carpark located to the immediate south of it (right hand section of the photograph).

Photograph 4: Shows the back part of Building W6A, in the central section of the site, facing north.

Photograph 5: Shows the eastern 'builing' of Building W6B, in the eastern section of the site, facing north-west. Western Road is located to the immediate east of this building, as seen in this photograph. Note the concrete pedestrian walkway bridged over Western Road from the north-eastern corner of Building W6B eastwards to Building W5A (lower right hand section of the photograph).

Photograph 6: Shows the gravel surfaced courtyard, in the middle section of the buildings, in the northeastern section of the site, facing south-west. Note the waste bins for general refuse etc at the site (lower section of the photograph).

Photograph 7: Shows the Chemical Storage Room, located at the ground floor of Building W6B.


Photograph 8: Shows the northern 'building' of Building W6B, in the northern section of the site, facing south-west. Note the concrete paved, tree lined Wally's Walk to the immediate north of the building (lower right hand section of the photograph).

Photograph 9: Shows the western 'building' of Building W6B, in the northwestern section of the site, facing south-east. Note part of Building W6A in the foreground.

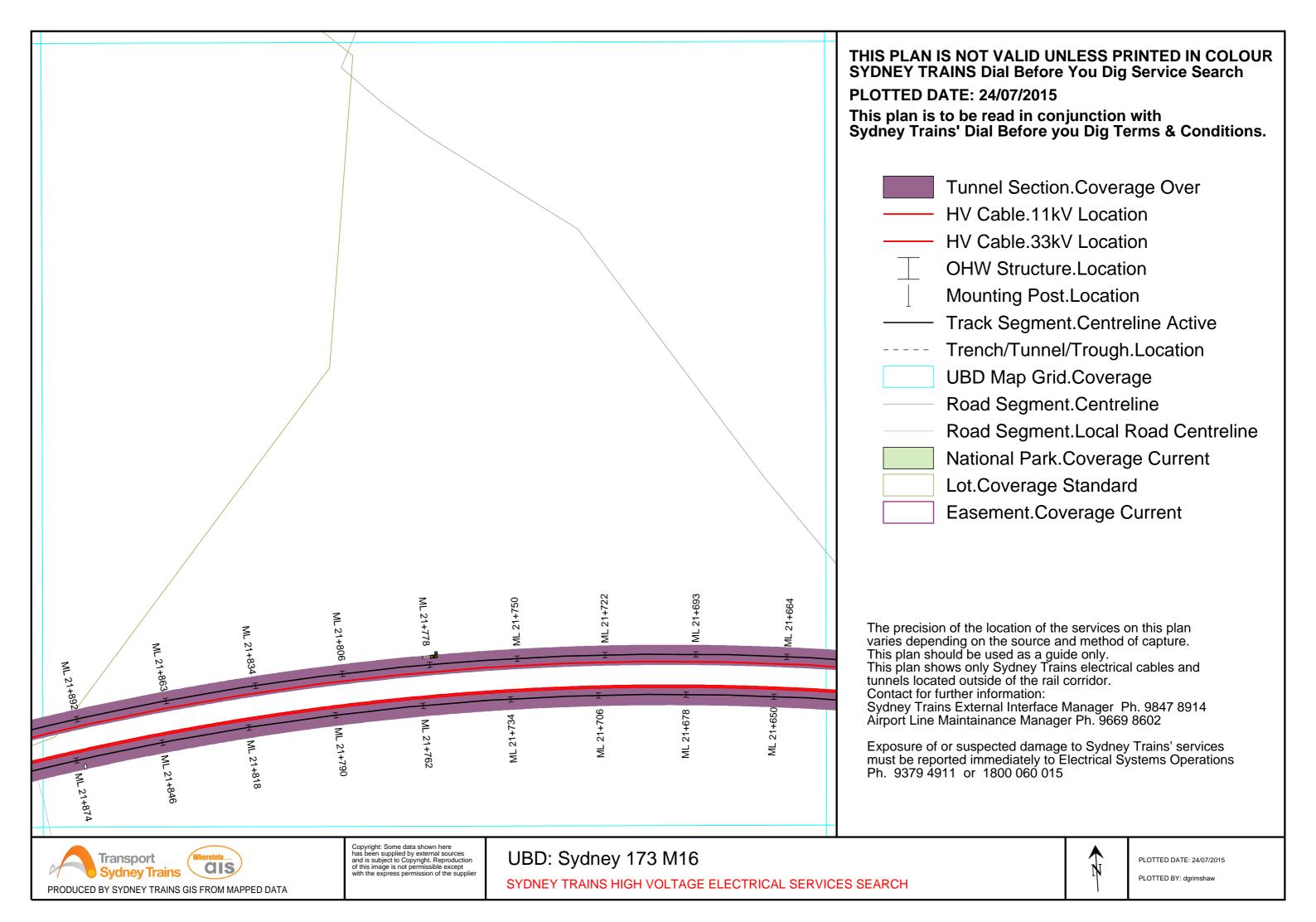
Selected Underground Services Plans

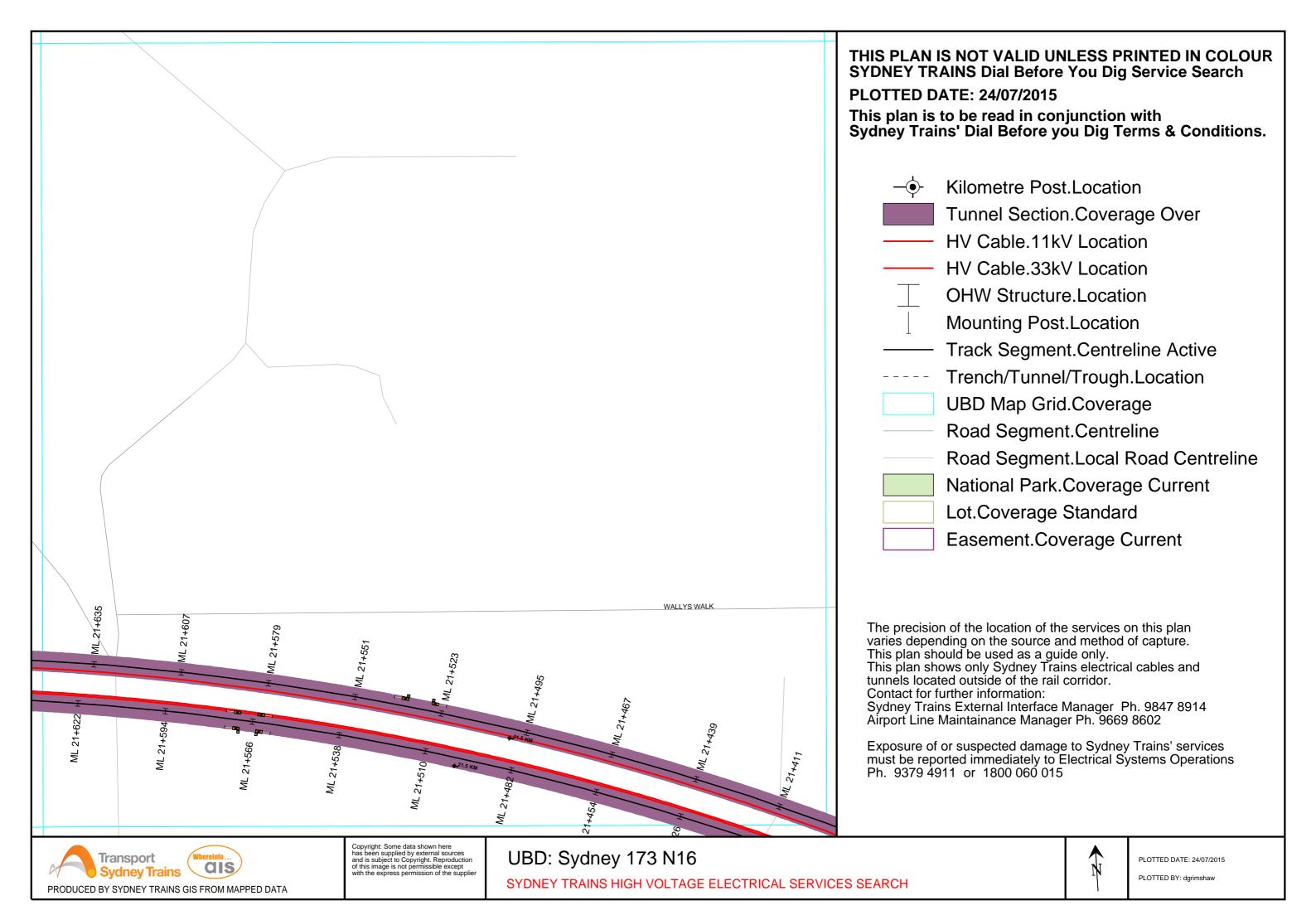
WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

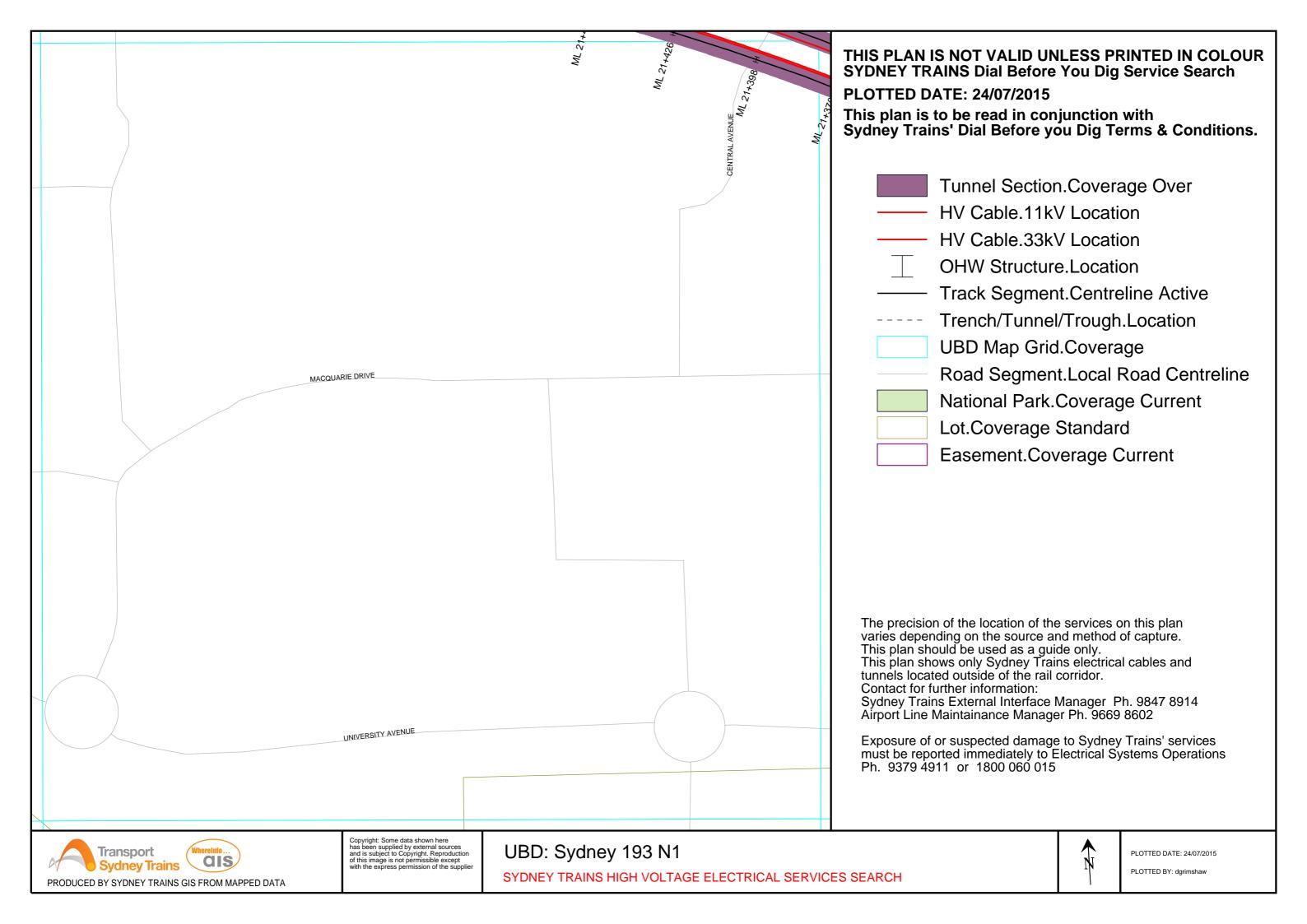
It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.


Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.




AARNet


Sequence Number: 55857816 Address:Balaclava Road, Macquarie Park, NSW, 2113

Lotsearch Environmental Risk and Planning Report

Environmental Risk and Planning Report

Western Road, Macquarie Park, NSW 2113

Report Buffer: 1000m

Report Date: 11 Oct 2016 12:17:13

Disclaimer

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

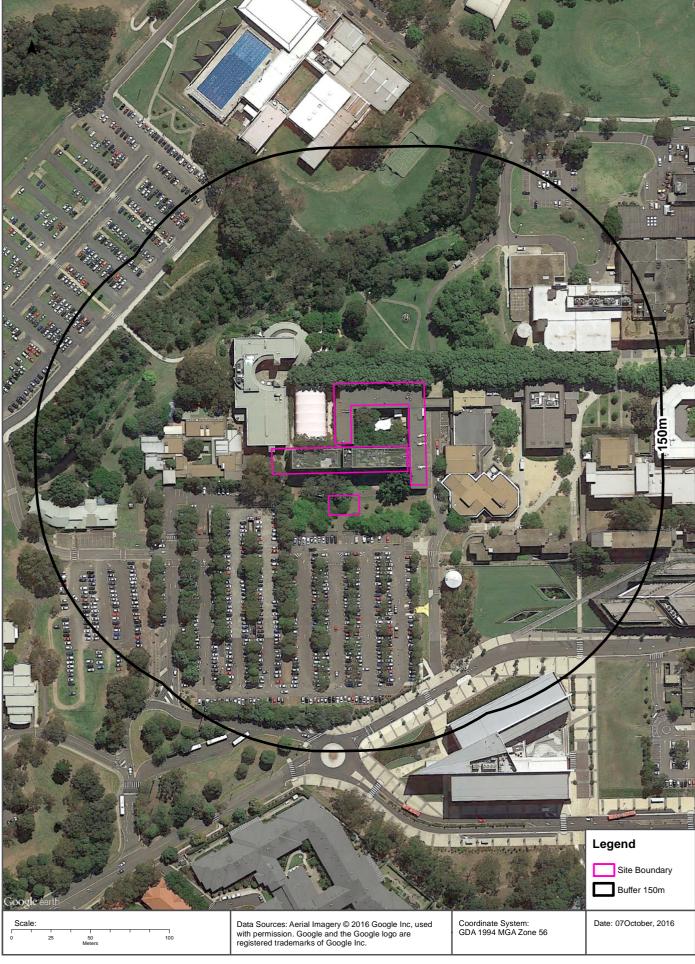
Table of Contents

Location Confidences	2
Dataset Listings	3
Site Location Aerial	5
Contaminated Land & Waste Management Facilities	6
EPA Current Licensed Activities	9
EPA Delicensed & Former Licensed Activities	11
UPSS Sensitive Zones	13
Historical Business Activities	14
Historical Aerial Imagery & Maps	16
Topographic Features	26
Elevation Contours	31
Hydrogeology & Groundwater	32
Geology	37
Naturally Occurring Asbestos Potential	39
Soil Landscapes	40
Acid Sulfate Soils	42
Dryland Salinity	43
Mining Subsidence Districts	44
State Environmental Planning	45
Local Environmental Planning	47
Heritage	52
Natural Hazards	54
Ecological Constraints	56
Terms & Conditions	62

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

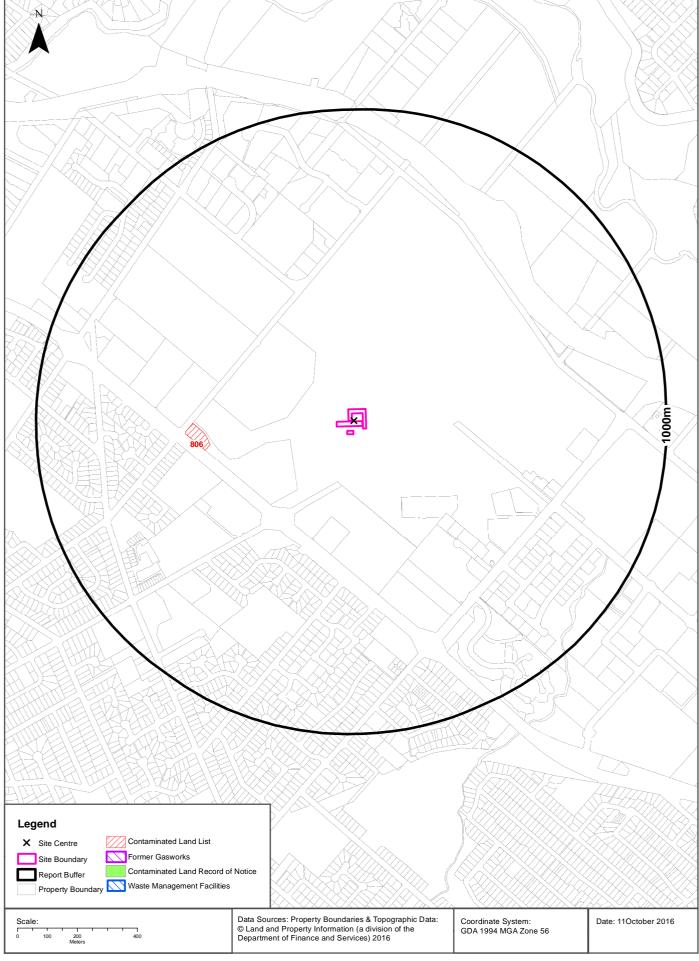
LC Code	Location Confidence
1	Georeferenced to the site location / premise or part of site
2	Georeferenced with the confidence of the general/approximate area
3	Georeferenced to the road or rail
4	Georeferenced to the road intersection
5	Feature is a buffered point
6	Land adjacent to Georeferenced Site
7	Georeferenced to a network of features


Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	Land and Property Information	11/10/2016	11/10/2016	Daily	-	-	-
Topographic Data	Land and Property Information	10/04/2015	01/04/2015	As required	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	10/10/2016	30/08/2016	Monthly	0	0	1
Contaminated Land: Records of Notice	Environment Protection Authority	10/10/2016	10/10/2016	Monthly	0	0	0
Former Gasworks	Environment Protection Authority	10/10/2016	10/05/2013	Monthly	0	0	0
National Waste Management Site Database	Geoscience Australia	06/07/2016	15/11/2012	Quarterly	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	20/09/2016	20/09/2016	Monthly	1	1	1
Delicensed POEO Activities still Regulated by the EPA	Environment Protection Authority	20/09/2016	20/09/2016	Monthly	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	20/09/2016	20/09/2016	Monthly	1	5	7
UPSS Environmentally Sensitive Zones	Department of Environment, Climate Change and Water (NSW)	14/04/2015	12/01/2010	As required	0	0	1
UBD Business to Business Directory 1991	Hardie Grant			Not required	0	0	0
UBD Business Directory 1991 Motor Garages/Service Stations	Hardie Grant			Not required	0	0	0
UBD Business Directory 1970	Hardie Grant			Not required	0	0	0
UBD Business Directory 1970 Drycleaners & Motor Garages/Service Stations	Hardie Grant			Not required	0	0	1
UBD Business Directory 1950	Hardie Grant			Not required	0	0	0
UBD Business Directory 1950 Drycleaners & Motor Garages/Service Stations	Hardie Grant			Not required	0	0	1
Points of Interest	Land and Property Information	10/04/2015	01/04/2015	Annually	0	1	58
Tanks (Areas)	Land and Property Information	10/04/2015	01/04/2015	Annually	0	0	0
Tanks (Points)	Land and Property Information	10/04/2015	01/04/2015	Annually	0	0	0
Major Easements	Land and Property Information	11/06/2014	11/06/2014	As required	0	0	5
State Forest	Land and Property Information	11/04/2016	23/01/2015	As required	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment and Heritage	11/04/2016	31/12/2015	Annually	0	0	1
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1	1	1
Groundwater Boreholes	NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation; Commonwealth of Australia (Bureau of Meteorology) 2015	21/03/2016	01/12/2015	Annually	0	0	19
Geological Units 1:100,000	NSW Department of Industry, Resources & Energy	20/08/2014		None planned	1	-	2
Geological Structures 1:100,000	NSW Department of Industry, Resources & Energy	20/08/2014		None planned	0	-	0
Naturally Occurring Asbestos Potential	NSW Department of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	0	0	0
Soil Landscapes	NSW Office of Environment and Heritage	12/08/2014		None planned	1	-	4
Standard Local Environmental Plan Acid Sulfate Soils	NSW Planning and Environment	07/10/2016	07/10/2016	As required	0	-	-
Dryland Salinity Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	0	0	0
Mining Subsidence Districts	Land and Property Information	11/10/2016	11/10/2016	As required	0	0	0
SEPP 14 - Coastal Wetlands	NSW Planning and Environment	17/12/2015	24/10/2008	Annually	0	0	0

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	No. Features Onsite	No. Features within 100m	No. Features within Buffer
SEPP 26 - Littoral Rainforest	NSW Planning and Environment	17/12/2015	05/02/1988	Annually	0	0	0
SEPP 71 - Coastal Protection	NSW Planning and Environment	17/12/2015	01/08/2003	Annually	0	0	0
SEPP Major Developments 2005	NSW Planning and Environment	09/03/2013	25/05/2005	Under Review	1	1	1
SEPP Strategic Land Use Areas	NSW Planning and Environment	06/07/2016	28/01/2014	Annually	0	0	0
Local Environmental Plan - Land Zoning	NSW Planning and Environment	03/10/2016	04/08/2016	Quarterly	1	1	64
Local Environmental Plan - Minimum Subdivision Lot Size	NSW Planning and Environment	03/10/2016	04/08/2016	Quarterly	0	-	-
Local Environmental Plan - Height of Building	NSW Planning and Environment	03/10/2016	04/08/2016	Quarterly	0	-	-
Local Environmental Plan - Floor Space Ratio	NSW Planning and Environment	03/10/2016	04/08/2016	Quarterly	0	-	-
Local Environmental Plan - Land Application	NSW Planning and Environment	03/10/2016	04/08/2016	Quarterly	1	-	-
Local Environmental Plan - Land Reservation Acquisition	NSW Planning and Environment	03/10/2016	04/08/2016	Quarterly	0	-	-
State Heritage Items	NSW Planning and Environment	03/10/2016	12/03/2015	Quarterly	0	0	0
Local Heritage Items	NSW Planning and Environment	03/10/2016	04/08/2016	Quarterly	1	1	4
Bushfire Prone Land	NSW Rural Fire Service	18/08/2016	12/08/2016	Quarterly	0	0	3
Native Vegetation of the Sydney Metropolitan Area	NSW Office of Environment and Heritage	08/10/2014	11/10/2013	As required	1	2	9
RAMSAR Wetlands	Commonwealth of Australia Department of the Environment	08/10/2014	24/06/2011	As required	0	0	0
ATLAS of NSW Wildlife	NSW Office of Environment and Heritage	11/10/2016	11/10/2016	Daily	-	-	-



Contaminated Land & Waste Management Facilities

Contaminated Land & Waste Management Facilities

Western Road, Macquarie Park, NSW 2113

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the report buffer:

Map Id	Site	Address	Suburb	Activity	EPA site management class	Status	Dist	Direction	LC
806	Coles Express Marsfield	189 Epping Road	Marsfield	Service Station	Under assessment	Current EPA List	425m	West	1

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land & Waste Management Facilities

Western Road, Macquarie Park, NSW 2113

Contaminated Land: Records of Notice

Record of Notices within the report buffer:

Map Id	Area No	Name	Address	Suburb	Notices	Distance	Direction	LC
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the report buffer:

Map Id	Location	Council	Further Info	Distance	Direction	LC
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

National Waste Management Site Database

Sites on the National Waste Management Site Database within the report buffer:

Site Id	Owner	Name	Address	Suburb	Postcode	Landfill	Reprocess	Transfer	Distance	Direction	LC
N/A	No records in buffer										

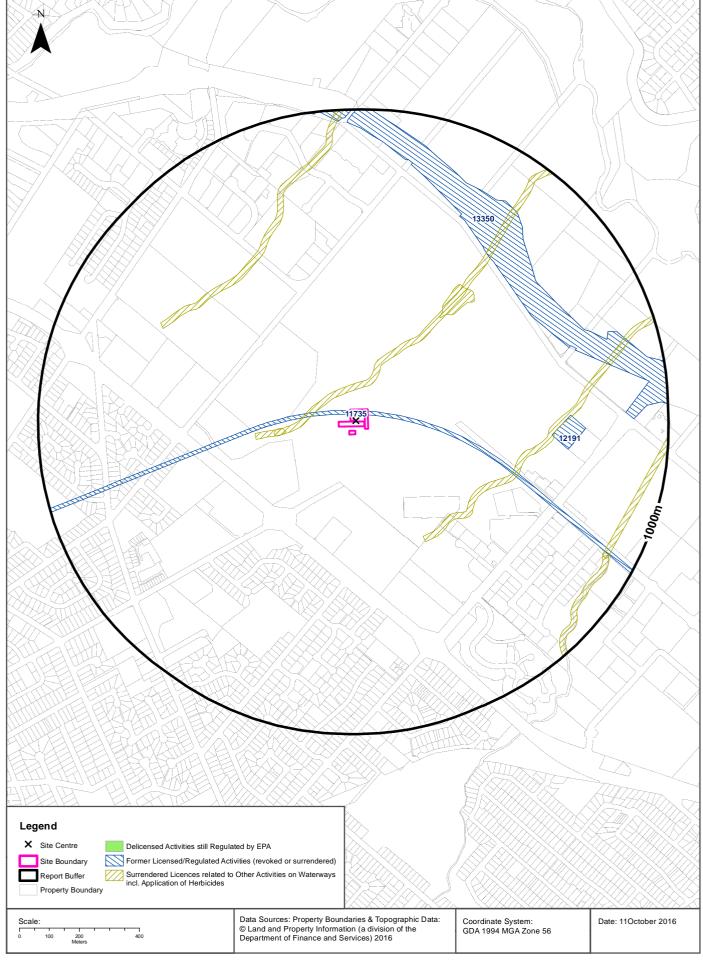
Wate Management Facilities Data Source: Australian Governement Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Current EPA Licensed Activities

EPA Activities

Western Road, Macquarie Park, NSW 2113

Licensed Activities under the POEO Act 1997


Licensed activities under the Protection of the Environment Operations Act 1997, within the report buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
12208	SYDNEY TRAINS		PO BOX K349, HAYMARKET, NSW 1238		Railway systems activities	3	Om	Onsite

POEO Licence Data Source: Environment Protection Authority
© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

Western Road, Macquarie Park, NSW 2113

Delicensed Activities still regulated by the EPA

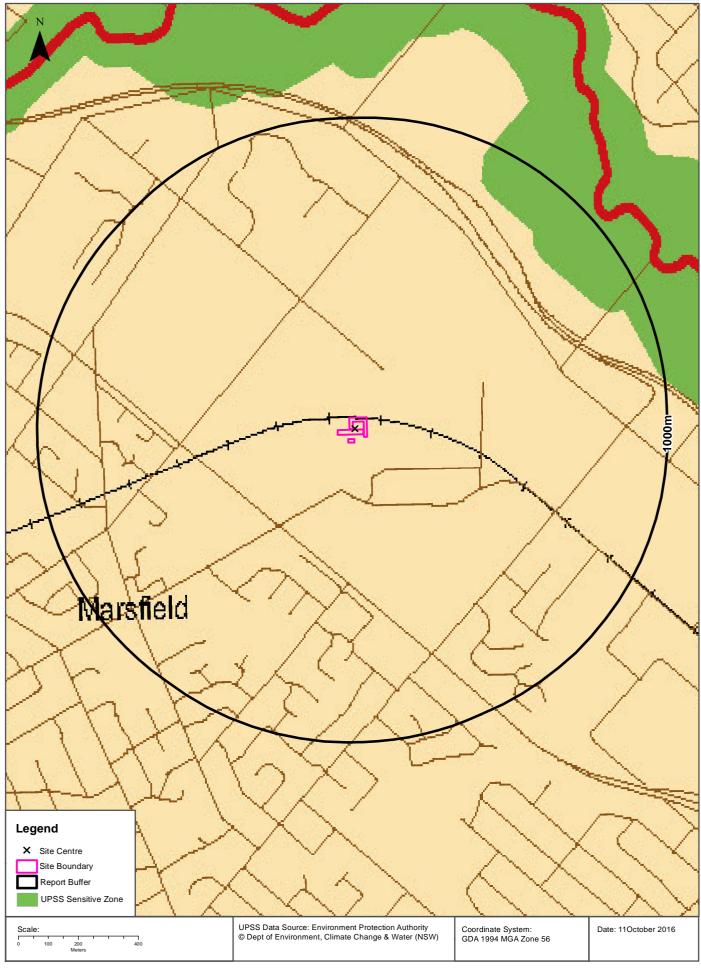
Delicensed activities still regulated by the EPA, within the report buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered


Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the report buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
11735	HOCHTIEF AG	-, MACQUARIE PARK, NSW 2113	Surrendered	04/09/2002 Railway systems activities		3	0m	Onsite
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered		Other Activities / Non Scheduled Activity - Application of Herbicides	7	56m	-
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered		Other Activities / Non Scheduled Activity - Application of Herbicides	7	56m	-
5030	CITY OF RYDE	AREAS REQUIRING MOSQUITO TREATMENT WITHIN THE LGA OF RYDE CITY COUNCIL - RYDE NSW 2112	Surrendered		Miscellaneous licensed discharge to waters (at any time) - Pesticide application in areas requiring mosquito treatment	7	56m	-
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered		Other Activities / Non Scheduled Activity - Application of Herbicides	7	56m	-
12191	12191 EIFFEL TECHNOLOGIES LIMITED 3 Innovation Road, NORTH RYDE, NSW 2113 Surrendered 25/11/2004 Hazardous, Industrial or Group A Waste Generation or Storage, Pharmaceutical and veterinary products p		25/11/2004	Pharmaceutical and veterinary	1	613m	East	
13350			Road construction	3	625m	West		

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

UPSS Sensitive Zones

Historical Business Directories

Western Road, Macquarie Park, NSW 2113

1991 Business to Business Directory Records

Records from the 1991 UBD Business to Business Directory within 150m of the site:

Business Activity	Organisation	Address	Ref No.	Location Confidence	Distance	Direction
N/A	No records in buffer					

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1991 Business Directory Motor Garages & Service Stations

Motor Garages & Service Stations from the 1991 UBD Business Directory within 1km of the site:

Business Activity	Organisation	Address	Ref No.	Location Confidence	Distance	Direction
N/A	No records in buffer					

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

Historical Business Directories

Western Road, Macquarie Park, NSW 2113

1970 Business Directory Records

Records from the 1970 UBD Business Directory within 150m of the site:

Business Activity	Organisation & Premise	Ref No.	Location Confidence	Distance	Direction
N/A	No records in buffer				

Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1970 Business Directory Drycleaners & Service Stations

Drycleaners, Motor Garages & Service Stations from the 1970 UBD Business Directory within 1km of the site:

Business Activity	Organisation & Premise	Ref No.	Location Confidence	Distance	Direction
MOTOR SERVICE STATIONS- PETROL,OIL,Etc. (M716)	Pollard,H. Service Station,179 Epping Rd.EASTWOOD	341401	Building Match	460m	West

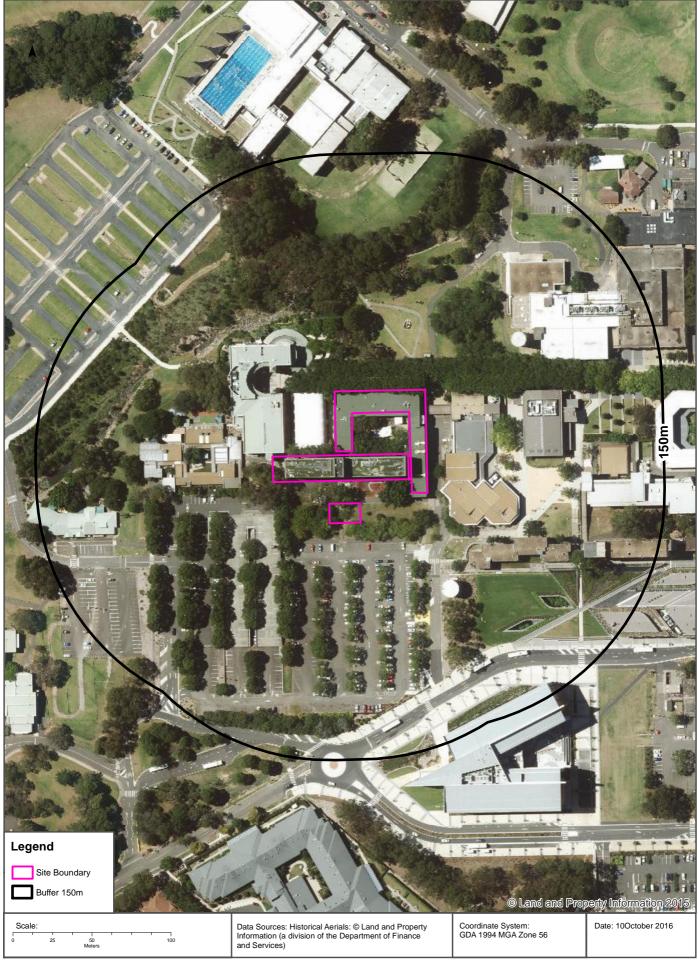
Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

1950 Business Directory Records

Records from the 1950 UBD Business Directory within 150m of the site:

Business Activity	Organisation & Premise	Ref No.	Location Confidence	Distance	Direction
N/A	No records in buffer				

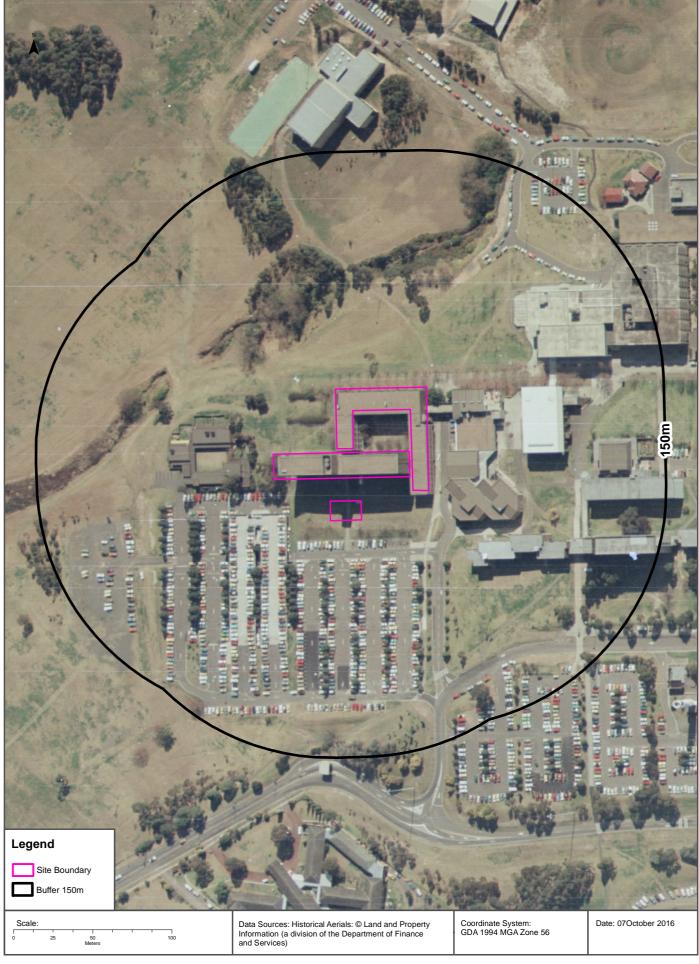
Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

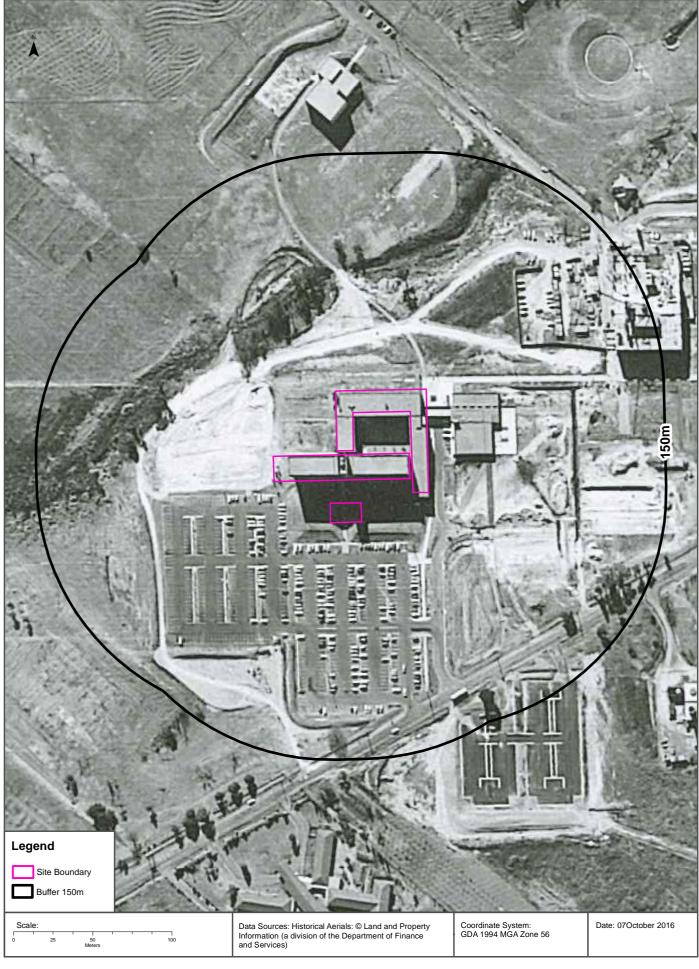

1950 Business Directory Drycleaners & Service Stations

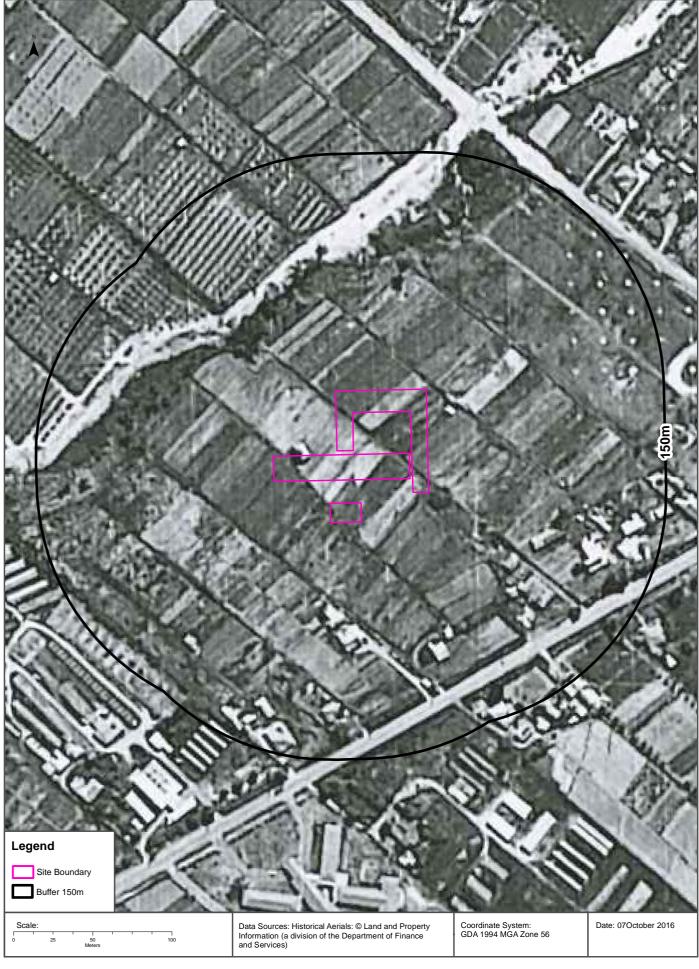
Drycleaners, Motor Garages & Service Stations from the 1950 UBD Business Directory within 1km of the site:

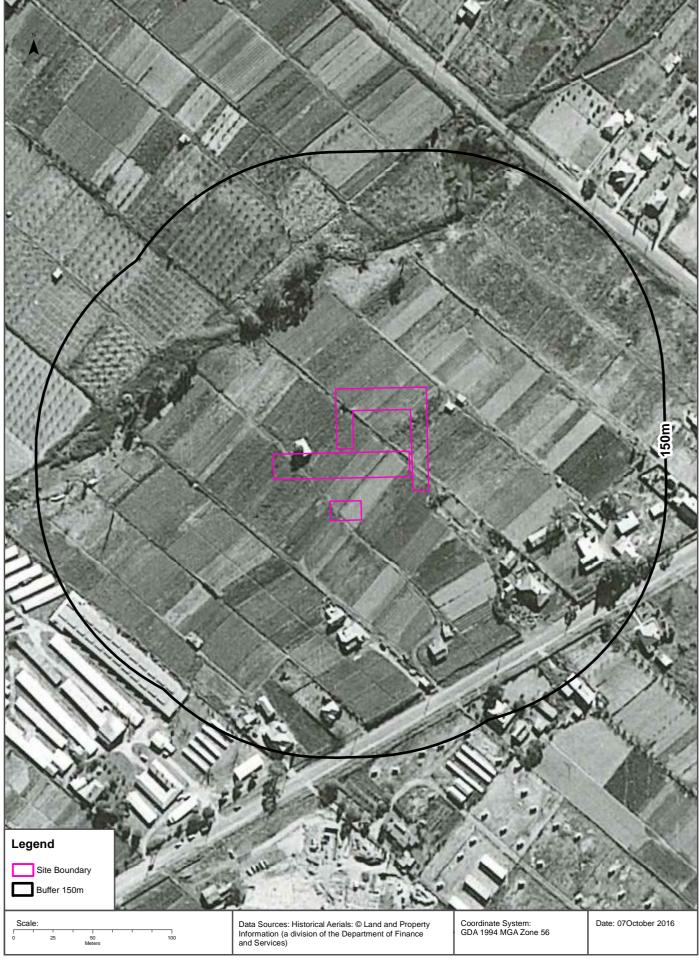
Activity	Organisation & Premise	Ref No.	Location Confidence	Distance	Direction
MOTOR GARAGES &/OR ENGINEERS	Jeffery, A., Agincourt Rd., Eastwood	83922	Road Match	917m	South West

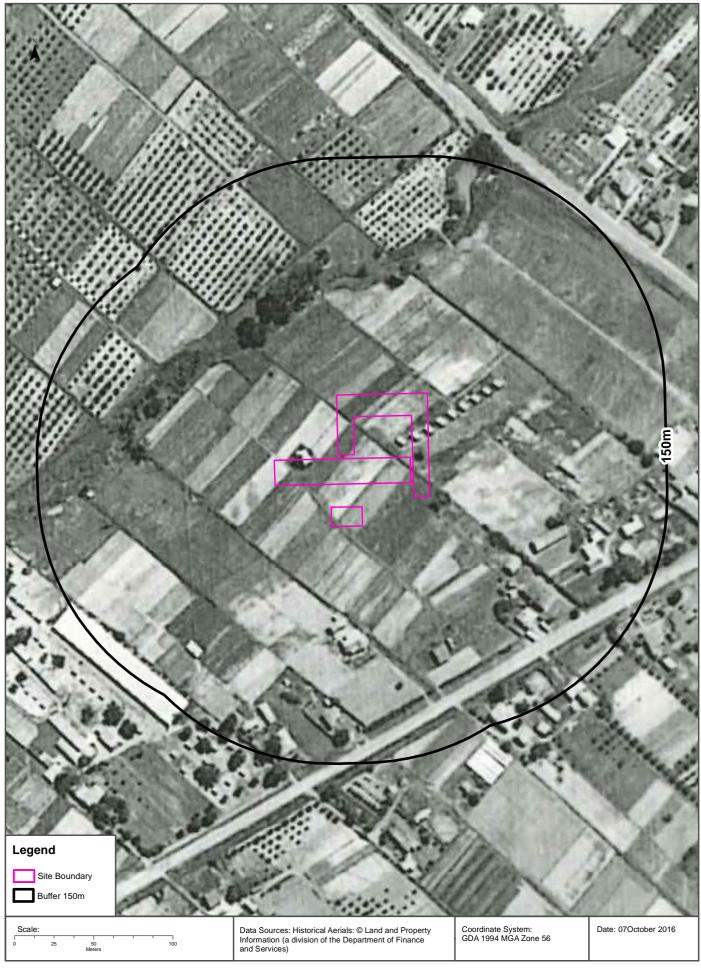
Business Directory Content Derived from Universal Business Directories (UBD) - Licensed from Hardie Grant

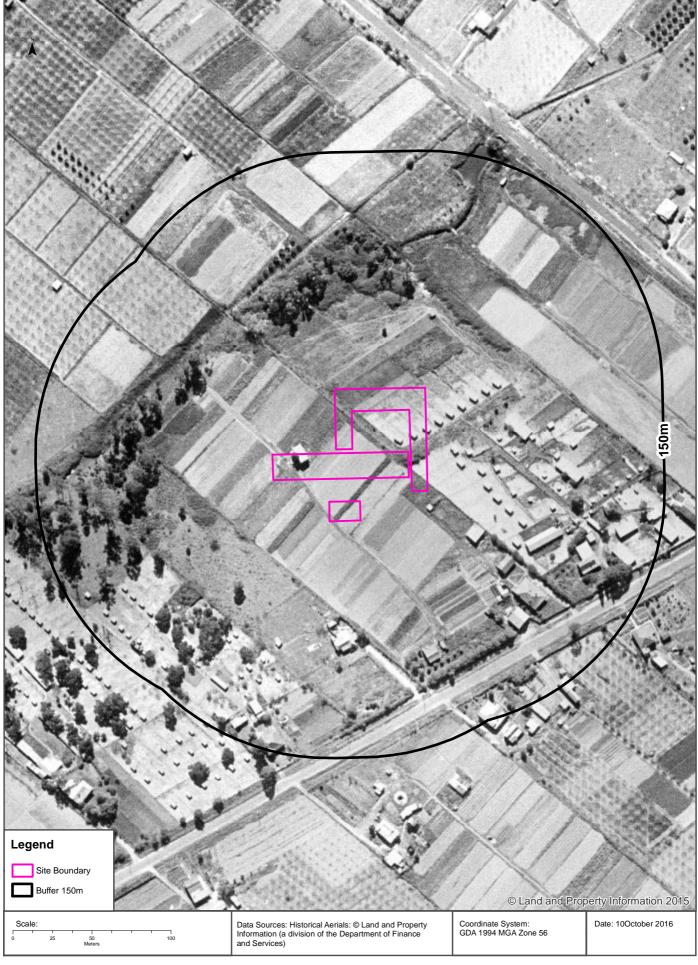


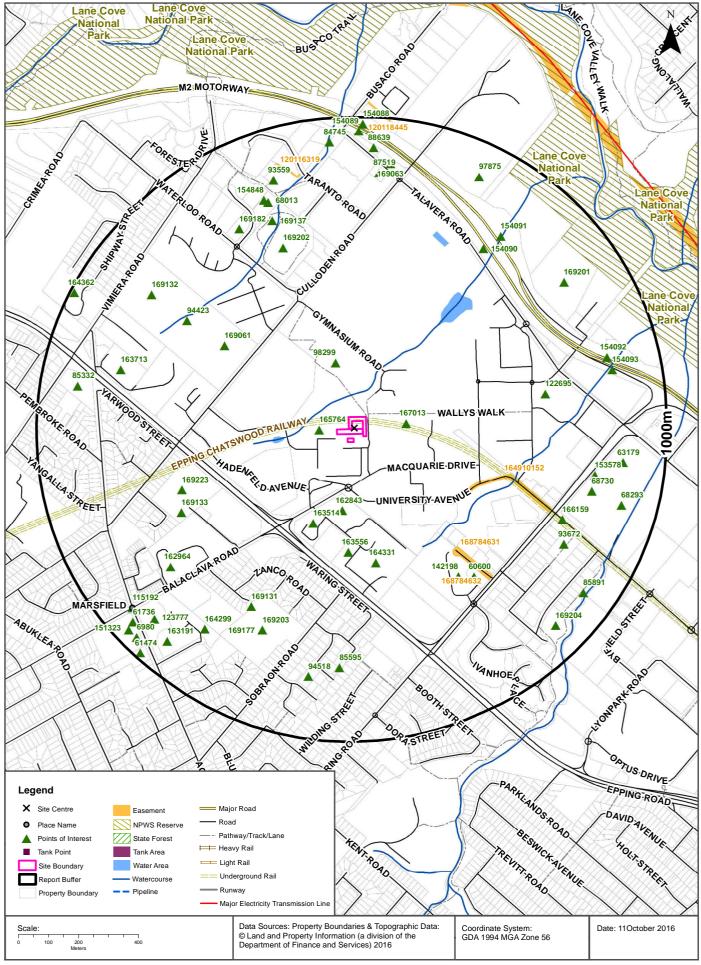












Topographic Features

Topographic Features

Western Road, Macquarie Park, NSW 2113

Points of Interest

What Points of Interest exist within the report buffer?

Map Id	Feature Type	Label	Distance	Direction
165764	Special School	MACQUARIE UNIVERSITY SPECIAL EDUCATION CENTRE	59m	West
167013	University	MACQUARIE UNIVERSITY	133m	East
98299	Sports Court	TENNIS COURTS	186m	North
162843	Community Home	BCS SHALOM CENTRE	228m	South
163514	Community Home	BCS DOROTHY HENDERSON LODGE	294m	South West
163556	Community Home	BCS COOINDA COURT	367m	South
164331	Retirement Village	WILLANDRA VILLAGE	409m	South
169061	Sports Centre	RIDING FOR THE DISABLED RYDE CENTRE	467m	North West
169223	Sports Field	PIONEER PARK	548m	West
142198	Education Facility	MORLING COLLEGE	559m	South East
169133	Picnic Area	PLAYGROUND	580m	South West
60600	Place Of Worship	BAPTIST CHURCH	590m	South East
122695	General Hospital	MACQUARIE UNIVERSITY HOSPITAL	602m	East
169202	Sports Field	WATERLOO PARK	606m	North
94423	Park	MARSFIELD PARK	617m	North West
169131	Park	PLAYGROUND	635m	South West
154090	Roadside Emergency Telephone	34	684m	North East
169203	Sports Field	DUNBAR PARK	688m	South West
169177	Athletics Track	Athletics Track	688m	South West
169137	Sports Court	BASKETBALL	703m	North
166159	Railway Station	MACQUARIE UNIVERSITY RAILWAY STATION	709m	South East
162964	Community Home	ST CATHERINE'S AGED CARE SERVICES	709m	South West
169182	Park	TRAFALGAR RESERVE	726m	North West
163713	Retirement Village	LEISURE LEA GARDENS	746m	West
93672	Park	ELOUERA RESERVE	749m	South East
154091	Roadside Emergency Telephone	33	751m	North East
85595	Park	LIBERTY PARK	753m	South
169132	Sports Field	TJ MILLNER FIELD	763m	North West
68013	Shopping Centre	TRAFALGAR SQUARE SHOPPING CENTRE	765m	North
68730	Sports Centre	MACQUARIE ICE RINK	772m	East
153578	Transport Interchange	MACQUARIE UNIVERSITY BUS INTERCHANGE	772m	East
154848	Medical Centre	MARSFIELD COMMUNITY HEALTH CENTRE	777m	North
164299	Retirement Village	SOUTHERN CROSS VILLAGE MARSFIELD	784m	South West

169201 Sp 87519 Pa	ark ports Field ark oadside Emergency Telephone	AUSTRALIA II PARK CHRISTIE PARK TALAVERA RESERVE	793m 798m 816m	South North East
87519 Pa	ark	TALAVERA RESERVE		North East
			916m	
154092 Ro	oadside Emergency Telephone		010111	North
		35	826m	East
93559 Pa	ark	Park	830m	North
154093 Ro	oadside Emergency Telephone	36	834m	East
169063 Cli	lub	MAQUARIE UNIVERISTY COMMUNITY GARDEN CLUB	850m	North
63179 Po	ost Office	MACQUARIE CENTRE POST OFFICE	858m	East
123777 Co	ommunity Facility	CURZON HALL	866m	South West
85332 Pa	ark	STEWART PARK	875m	West
68293 Sh	hopping Centre	MACQUARIE SHOPPING CENTRE	879m	East
97875 Sp	ports Court	TENNIS COURTS	885m	North East
85891 Pa	ark	QUANDONG RESERVE	890m	South East
169204 Pa	ark	WILGA RESERVE	891m	South East
163191 Co	ommunity Home	SOUTHERN CROSS APARTMENTS MARSFIELD	892m	South West
115192 Su	uburb	MARSFIELD	894m	South West
88639 Pa	ark	WEERONA RESERVE	899m	North
84745 Pa	ark	Park	920m	North
61736 Pla	lace Of Worship	CATHOLIC CHURCH	924m	South West
6980 Co	ommunity Facility	ST ANTHONYS PARISH HALL	951m	South West
151323 Pri	rimary School	ST ANTHONY'S CATHOLIC PRIMARY SCHOOL	952m	South West
154089 Ro	oadside Emergency Telephone	32	954m	North
154088 Ro	oadside Emergency Telephone	31	978m	North
61474 Pla	lace Of Worship	COMMUNITY CHURCH	980m	South West
164362 Re	etirement Village	VIMIERA VILLAGE	986m	North West

Topographic Data Source: © Land and Property Information (2015)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

Western Road, Macquarie Park, NSW 2113

Tanks (Areas)

What are the Tank Areas located within the report buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Capture Method	Feature Currency	Distance	Direction
N/A	No records in buffer						

Tanks (Points)

What are the Tank Points located within the report buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Capture Method	Feature Currency	Distance	Direction
N/A	No records in buffer						

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the report buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
164910152	Primary	Right of way		340m	South East
168784631	Primary	Right of way	16.105m & Var	474m	South East
168784632	Primary	Right of way	16.105m	563m	South East
120116319	Primary	Undefined		818m	North
120118445	Primary	Undefined		990m	North

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

Western Road, Macquarie Park, NSW 2113

State Forest

What State Forest exist within the report buffer?

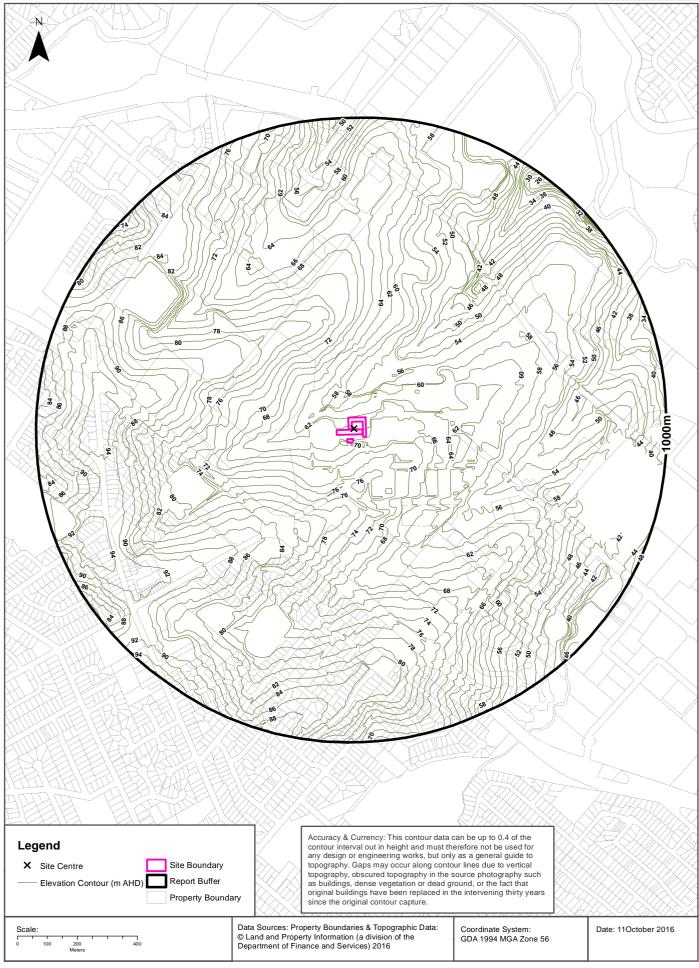
State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

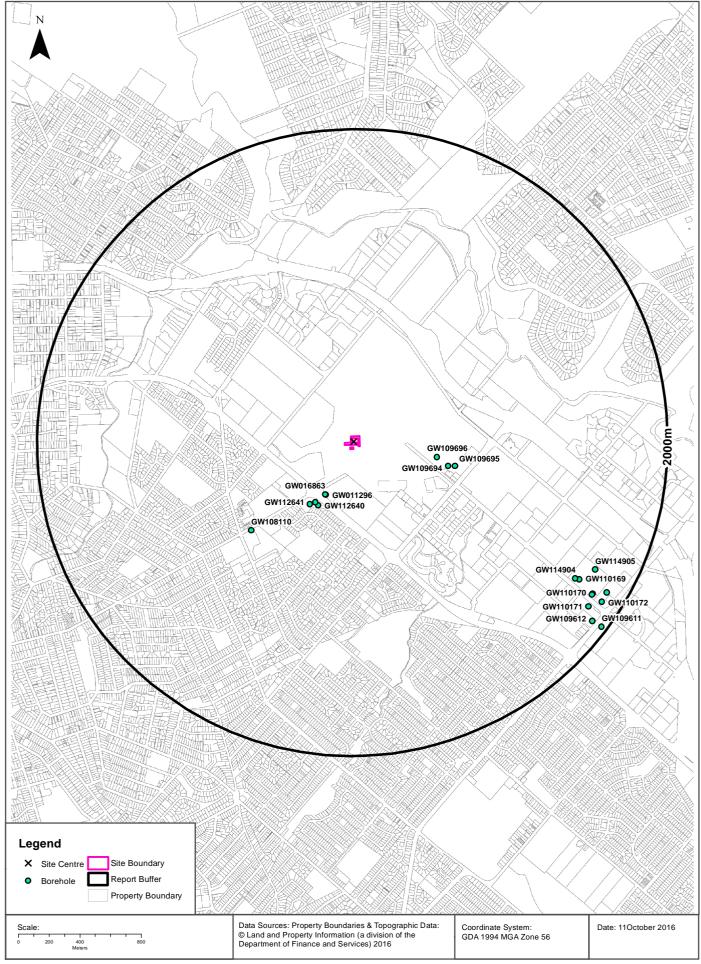
National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the report buffer?


Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N0083	NATIONAL PARK	Lane Cove National Park	24/04/1992	883m	North East

NPWS Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en


Elevation Contours (m AHD)

Groundwater Boreholes

Hydrogeology & Groundwater

Western Road, Macquarie Park, NSW 2113

Hydrogeology

Description of aquifers on-site:

Description

Porous, extensive aquifers of low to moderate productivity

Description of aquifers within the report buffer:

Description

Porous, extensive aquifers of low to moderate productivity

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Groundwater Boreholes

Boreholes within 2km of the site:

GW No.	Licence No	Work Type	Owner Type	Purpose	Contractor	Complete Date	Final Depth	Drilled Depth	Salinity	SWL	Yield	Elev	Dist	Dir
GW011296	10BL004479	Bore open thru rock	Private	Irrigation		01/09/1953	67.00	67.10	501- 1000 ppm				337m	South West
GW016863	10BL007238	Bore open thru rock	Private	Irrigation		01/01/1958	45.70	45.70	0-500 ppm				338m	South West
GW112642	10BL603208	Bore	Private	Monitoring	Numac Drilling Services	05/08/2009	8.00	8.00					413m	South West
GW112640	10BL603208	Bore	Private	Monitoring	Numac Drilling Services	05/08/2009	8.00	8.00					422m	South West
GW112641	10BL603208	Bore	Private	Monitoring	Numac Drilling Services	05/08/2009	8.00	8.00					444m	South West
GW109696	10BL161772	Bore	Other Govt	Monitoring	Reynolds Drilling	27/01/2000	35.50						507m	East
GW109694	10BL161772	Bore	Other Govt	Monitoring	Coffey Geosciences Pty Ltd	12/12/2001	46.40						590m	East
GW109695	10BL161772	Bore	Other Govt	Monitoring	Reynolds Drilling	18/01/2000	44.30						633m	East
GW108110	10BL164626, 10BL602106, 10WA109513	Bore		Recreation	Groundtek Drilling	01/02/2005	81.00	81.00	2500	7.30	2.500		823m	South West
GW114904	10BL605704	Bore	Other Govt	Monitoring bore	Terratest	29/01/2015	9.00	9.00					1646m	South East
GW110169	10BL161366	Bore	Private	Monitoring	Drilltest Pty Ltd	09/09/2002	6.50	6.50					1673m	South East
GW114905	10BL605704	Bore	Other Govt	Monitoring bore	Terratest	29/01/2015	10.50	10.50					1730m	South East
GW110170	10BL161366	Bore	Private	Monitoring	Intertec Drilling Services	31/01/2000	43.00	43.00					1794m	South East
GW114903	10BL605704	Bore	Other Govt	Monitoring bore	Terratest Pty Ltd	29/01/2015	9.00	9.00					1794m	South East
GW110171	10BL161366	Bore	Private	Monitoring		08/02/2000	36.10	36.10					1818m	South East

GW No.	Licence No	Work Type	Owner Type	Purpose	Contractor	Complete Date	Final Depth	Drilled Depth	Salinity	SWL	Yield	Elev	Dist	Dir
GW109837	10BL161221	Bore	Private	Monitoring		21/12/2002	36.60			18.0 0			1867m	South East
GW110172	10BL161366	Bore	Private	Monitoring		09/03/2000	36.00	36.00					1874m	South East
GW109612	10BL161773	Bore	Other Govt	Monitoring	Coffee Partners (International) Pty Ltd	18/12/2001	1.15						1893m	South East
GW109611	10BL161773	Bore	Other Govt	Monitoring	Coffee Partners (International) Pty Ltd	18/12/2001	1.00						1964m	South East

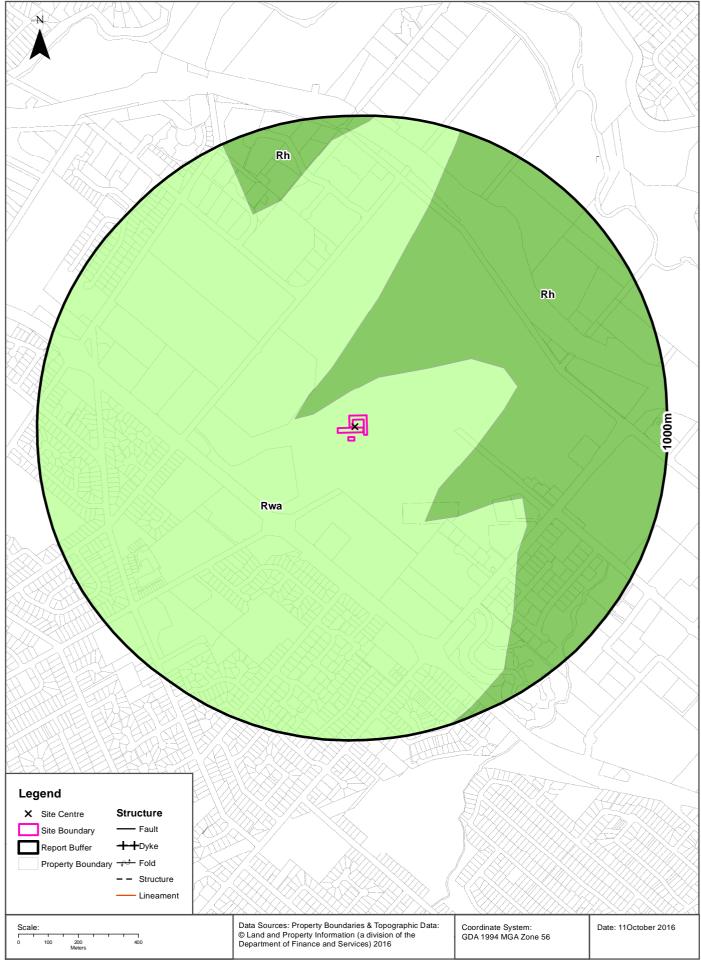
Borehole Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

Western Road, Macquarie Park, NSW 2113

Driller's Logs

Drill log data relevant to the boreholes within 2km of the site:


Groundwater No	Drillers Log	Distance	Direction
GW011296	0.00m-58.21m Sandstone 58.21m-65.22m Shale Water Supply 65.22m-67.05m Sandstone	337m	South West
GW016863	0.00m-2.43m Clay Hard Sandy 2.43m-3.96m Sandstone 3.96m-5.79m Sandstone Yellow 5.79m-7.31m Sandstone White 7.31m-15.24m Sandstone Yellow 15.24m-17.67m Shale Sandy Water Supply 17.67m-24.99m Sandstone Yellow 24.99m-26.51m Shale Sandy Water Supply 26.51m-45.72m Sandstone White Silty	338m	South West
GW112642	0.00m-2.00m FILL 2.00m-6.00m SAND 6.00m-8.00m SHALE	413m	South West
GW112640	0.00m-2.00m FILL 2.00m-6.00m SAND 6.00m-8.00m SHALE	422m	South West
GW112641	0.00m-2.00m FILL 2.00m-6.00m SAND 6.00m-8.00m SHALE	444m	South West
GW108110	0.00m-15.00m SHALE WEATHERED 15.00m-81.00m SANDSTONE GREY	823m	South West
GW114904	0.00m-1.80m FILL, GRAVELLY CLAY,BROWN FIRM 1.80m-2.00m IRONSTONE 2.00m-2.80m CLAY,GREY RED AND WHITE FIRM 2.80m-3.00m IRONSTONE 3.00m-3.20m CLAY GREY RED AND WHITE, FIRM 3.20m-3.40m IRONSTONE 3.40m-9.00m CLAY AND SHLAE,RED AND ORANGE, HARD	1646m	South East
GW110169	0.00m-0.10m GRASS 0.10m-1.80m TOPSOIL,SILT,SAND,FINE,MEDIUM GRAINED,BROWN,DRY,FIRM 1.80m-3.00m SILTY CLAY,LOW PLASTICITY,GREY WITH ORANGE/RED MOTTLE,SOME IRONSTONE GRAVEL 3.00m-6.50m WEATHERED SHALE,BROWN,DRY,HARD, NO IRONSTONE GRAVEL	1673m	South East
GW114905	0.00m-0.30m FILL, SANDY GRAVEL,BLACK 0.30m-2.20m CLAY AND SHALE ORANGE AND BROWN,SOFT 2.20m-10.50m SHALE GREY SOFT	1730m	South East
GW110170	0.00m-0.10m ASPHALTIC CONCRETE,(30mm thick) 0.10m-0.25m FILL,SANDY GRAVEL,MEDIUM GRAINED 0.25m-5.25m SILTY CLAY,RED/BROWN AND GREY,MEDIUM-HIGH PLASTICITY,IRONSTONE 5.25m-6.50m SHALE,DARK GREY 6.50m-15.00m SHALE,DARK GREY 15.00m-21.20m SHALE AND SANDSTONE,SHALE DRK GREY,SANDSTONE L/GREY 21.20m-25.85m SANDSTONE L/GREY,FINE GRAINED,LAMINATED,SHALE 25.85m-39.50m SANDSTONE L/GREY,FINE TO MEDIUM GRAINED 39.50m-42.20m SANDSTONE,L/GREY,MEDIUM GRAINED 42.20m-43.00m SANDSTONE L/GREY,FINE TO MEDIUM GRAINED	1794m	South East
GW114903	0.00m-0.30m FILL, SANDY GRAVEL, BLACK 0.30m-2.10m CLAY AND WEATHERED SHALE,RED,ORANGE,SOFT 2.10m-9.00m SHALE, RED AND GREY,SOFT	1794m	South East

Groundwater No	Drillers Log	Distance	Direction
GW110171	0.00m-1.00m FILL,SANDY CLAYEY GRAVEL,BROWN,FINE TO COARSE 1.00m-2.30m SILTY CLAY,LIGHT GREY AND BROWN,HIGH PLASTICITY. 2.30m-3.40m SHALE,GREY AND BROWN,FINE TO COARSE GRAINED IRONSTONE,GRAVEL BANDS 3.40m-4.65m SHALE,DARK GREY AND BROWN ,VERY LOW STRENGH 4.65m-5.75m SHALE DARK GREY AND BROWN 5.75m-6.20m CORE LOSS (5.75m-6.2m) 6.20m-8.50m SHALE DARK GREY 8.50m-9.20m CORE LOOS (8.5m-9.2m) 9.20m-10.90m SHALE DRK GREY 10.90m-12.50m CORE LOSS (10.9m-12.5m) 12.50m-13.00m SHALE DARK GREY 13.00m-15.30m SHALE DARK GREY 13.00m-15.30m SHALE AND SANDSTONE 18.00m-22.40m SANDSTONE L/GREY,FINE GRAINED 22.40m-35.70m SANDSTONE L/GREY,FINE GRAINED 35.70m-36.10m SANDSTONE L/GREY,FINE GRAINED	1818m	South East
GW109837	0.00m-3.60m FILL 3.60m-4.80m CLAY 4.80m-8.40m SHALE 8.40m-18.00m FINE SANDSTONE 18.00m-36.60m COARSE SANDSTONE	1867m	South East
GW110172	0.00m-0.10m SILTY SAND, BROWN,FINE GRAINED WITH ROOT,FIBRE 0.10m-0.40m FILL,(GRAVELLY SAND)BROWN,FINE TO MEDIUM GRAINED 0.40m-0.80m FILL,GRAVELLY SILTY CLAY,BROWN/GREY,MEDIUM PLASTICITY 0.80m-1.40m SILTY CLAY RED BROWN,MEDIUM TO HIGH PLASTICITY,RONSTONE 1.40m-2.75m SILTY CLAY,RED. BROWN GREY,TRACES OF IRONSTONE/GRAVEL 2.75m-3.20m CORE LOSS 0.45m 3.20m-3.75m SHALE,LIGHT GREY/RED-BROWN WITH BABNDS OF IRONSTAINED SHALE 3.75m-8.30m SHALE,DARK GREY/BROW, IRONSTAINED 8.30m-13.30m SHALE,DARK GREY,WITH FINE GRAINED LIGHT-GREY SANDSTONE 16.75m-20.20m SANDSTONE LIGHT GREY,FINE GRAINED,SHALE LAMINATIONS 20.20m-22.40m SANDSTONE L/GREY,FINE GRAINED 27.90m-30.10m SANDSTONE L/GREY,MEDIUM GRAINED 27.90m-30.10m SANDSTONE,L/GREY,MEDIUM COARSE GRAINED,GRAINED SHALE GRAVELS 30.10m-36.00m SANDSTONE LIGHT GREY,FINE TO MEDIUM GRAINED	1874m	South East

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology 1:100,000 Western Road, Macquarie Park, NSW 2113

Geology

Western Road, Macquarie Park, NSW 2113

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Rwa	Black to dark grey shale and laminate	Ashfield Shale	Wianamatta Group		Triassic		Sydney	1:100,000

What are the Geological Units within the report buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Rh	Medium to coarse grained quartz sandstone, very minor shale and laminate lenses				Triassic		Sydney	1:100,000
Rwa	Black to dark grey shale and laminate	Ashfield Shale	Wianamatta Group		Triassic		Sydney	1:100,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

What are the Geological Structures within the report buffer?

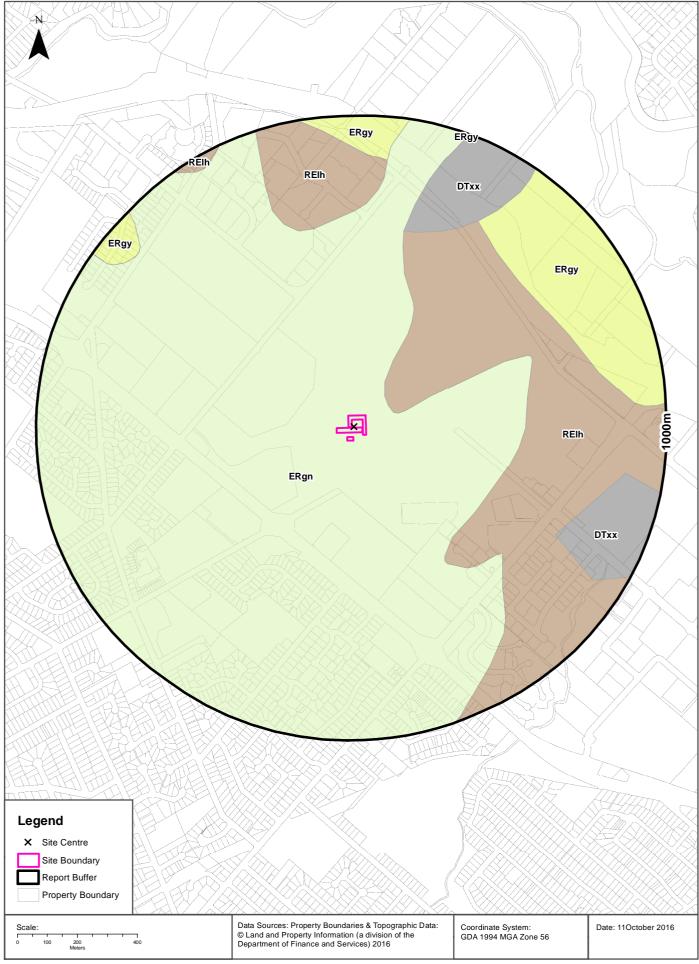
Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

Geological Data Source : NSW Department of Industry, Resources & Energy © State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

Western Road, Macquarie Park, NSW 2113

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the report buffer?

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

Soil Landscapes

Soils

Western Road, Macquarie Park, NSW 2113

Soil Landscapes

What are the onsite Soil Landscapes?

Soil Code	Name	Group	Process	Map Sheet	Scale
ERgn	GLENORIE		EROSIONAL	Sydney	1:100,000

What are the Soil Landscapes within the report buffer?

Soil Code	Name	Group	Process	Map Sheet	Scale
DTxx	DISTURBED TERRAIN		DISTURBED TERRAIN	Sydney	1:100,000
ERgn	GLENORIE		EROSIONAL	Sydney	1:100,000
ERgy	GYMEA		EROSIONAL	Sydney	1:100,000
REIh	LUCAS HEIGHTS		RESIDUAL	Sydney	1:100,000

Soils Landscapes Data Source : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Standard Local Environmental Plan Acid Sulfate Soils

Western Road, Macquarie Park, NSW 2113

Standard Local Environmental Plan Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	LEP
N/A		

If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	LEP	Distance	Direction
N/A				

Acid Sulfate Data Source Accessed 07/10/2016: NSW Crown Copyright - Planning and Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Western Road, Macquarie Park, NSW 2113

Dryland Salinity

Is there Dryland Salinity data onsite?

No

Is there Dryland Salinity data within the report buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A	N/A	N/A

Dryland Salinity Data Source: National Land and Water Resources Audit

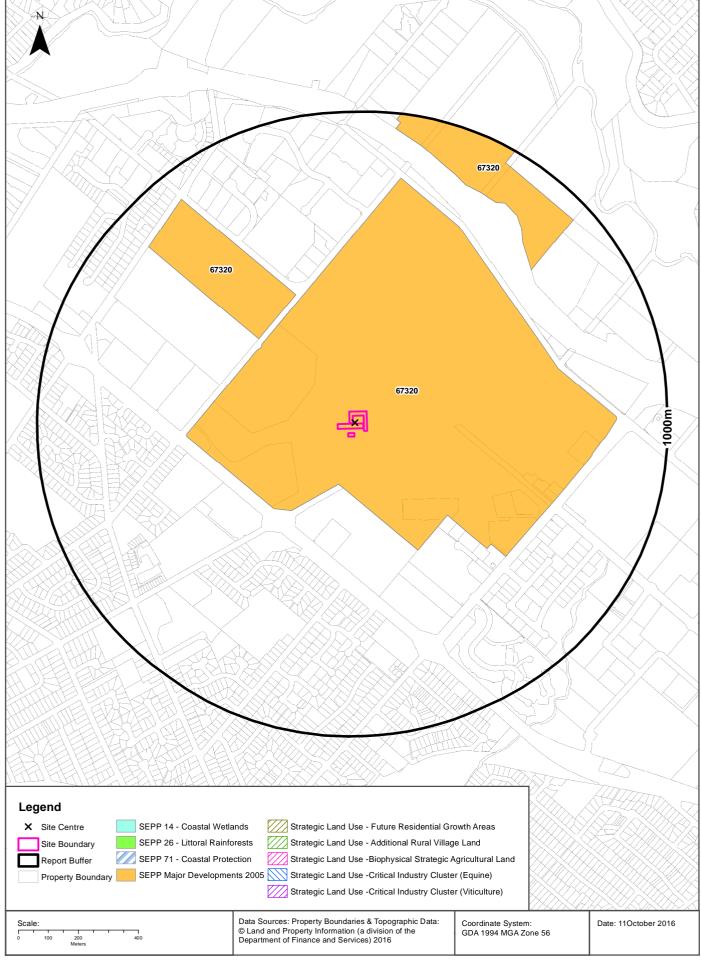
The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining Subsidence Districts

Western Road, Macquarie Park, NSW 2113

Mining Subsidence Districts


Mining Subsidence Districts within the report buffer?

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

State Environmental Planning Policy

Environmental Zoning

Western Road, Macquarie Park, NSW 2113

State Environmental Planning Policy Protected Areas

Are there any State Environmental Planning Policy Protected Areas onsite or within the report buffer?

Dataset	Onsite	Within Site Buffer	Distance
SEPP14 - Coastal Wetlands	No	No	N/A
SEPP26 - Littoral Rainforests	No	No	N/A
SEPP71 - Coastal Protection Zone	No	No	N/A

SEPP Protected Areas Data Source: NSW Department of Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

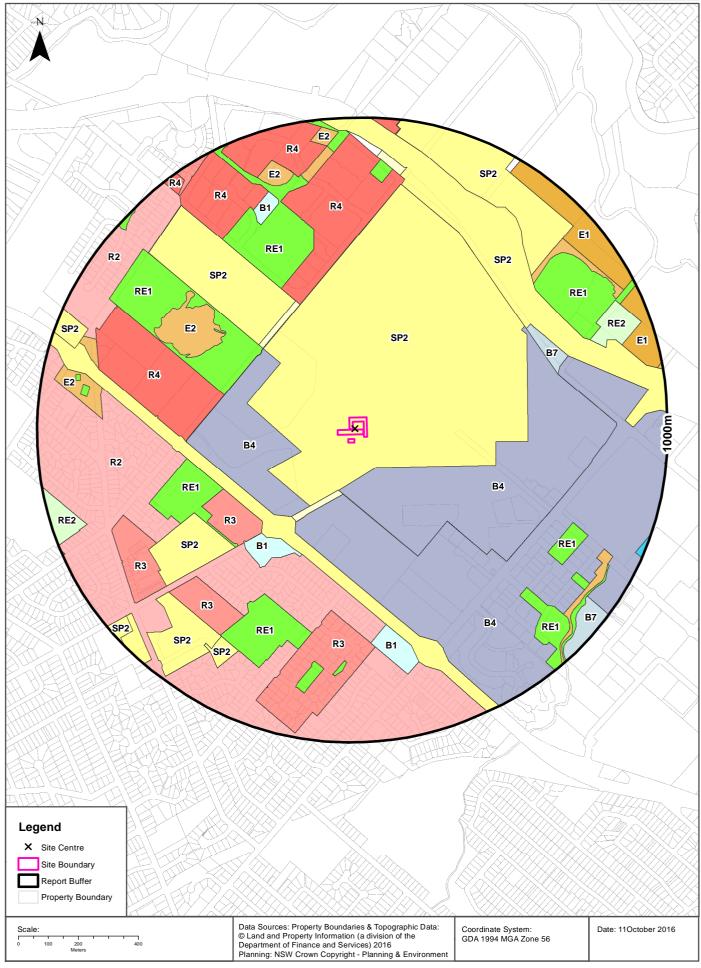
State Environmental Planning Policy Major Developments (2005)

State Environmental Planning Policy Major Developments within the report buffer?

Map Id	Feature	Effective Date	Distance	Direction
67320	Macquarie University	11/09/2009	0m	North East

SEPP Major Development Data Source: NSW Department of Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

State Environmental Planning Policy Strategic Land Use Areas


State Environmental Planning Policy Strategic Land Use Areas onsite or within the report buffer?

Strategic Land Use	SEPPNo	Effective Date	Amendment	Amendment Year	Distance	Direction
No records within buffer						

SEPP Strategic Land Use Data Source: NSW Department of Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

LEP Planning Zones

Local Environmental Plan

Western Road, Macquarie Park, NSW 2113

Land Zoning

What Local Environmental Plan Land Zones exist within the report buffer?

Zone	Description	Purpose	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
SP2	Infrastructure	Educational Establishment	State Environmental Planning Policy (State Significant Precincts) 2005	24/03/2016	24/03/2016	24/03/2016	State Environmental Planning Policy (Major Development) Amendment (State Significant Precincts) 2016	0m	Onsite
B4	Mixed Use		State Environmental Planning Policy (State Significant Precincts) 2005	24/03/2016	24/03/2016	24/03/2016	State Environmental Planning Policy (Major Development) Amendment (State Significant Precincts) 2016	105m	East
B4	Mixed Use		State Environmental Planning Policy (State Significant Precincts) 2005	24/03/2016	24/03/2016	24/03/2016	State Environmental Planning Policy (Major Development) Amendment (State Significant Precincts) 2016	133m	West
SP1	Special Activities		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		162m	South West
B4	Mixed Use		Ryde Local Environmental Plan 2014	10/04/2015	10/04/2015	11/09/2015	Amendment No 2	172m	South East
SP2	Infrastructure	Classified Road	Ryde Local Environmental Plan 2014	10/04/2015	10/04/2015	11/09/2015	Amendment No 2	312m	South East
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		362m	North West
SP1	Special Activities		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		370m	North West
R3	Medium Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		383m	South West
SP2	Infrastructure	Educational Establishment	State Environmental Planning Policy (State Significant Precincts) 2005	24/03/2016	24/03/2016	24/03/2016	State Environmental Planning Policy (Major Development) Amendment (State Significant Precincts) 2016	387m	North West
B1	Neighbourhood Centre		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		391m	South West
R4	High Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		396m	West
R2	Low Density Residential		Ryde Local Environmental Plan 2014	10/04/2015	10/04/2015	11/09/2015	Amendment No 2	404m	South
R4	High Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		414m	North
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		421m	West
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		484m	North West
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		489m	North

Zone	Description	Purpose	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
SP2	Infrastructure	Convent and Hospital	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		507m	South West
R3	Medium Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		561m	South
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		576m	South West
B7	Business Park		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		607m	North East
B1	Neighbourhood Centre		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		615m	South
R3	Medium Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		663m	South West
R3	Medium Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		703m	South West
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		705m	North East
B1	Neighbourhood Centre		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		709m	North
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		712m	North East
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		712m	South East
SP2	Infrastructure	Educational Establishment	State Environmental Planning Policy (State Significant Precincts) 2005	24/03/2016	24/03/2016	24/03/2016	State Environmental Planning Policy (Major Development) Amendment (State Significant Precincts) 2016	723m	North East
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		726m	South
R4	High Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		730m	North West
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		730m	South East
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		737m	South
SP2	Infrastructure	Place of Public Worship	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		764m	South West
SP2	Infrastructure	Educational Establishment	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		772m	South West
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		784m	West
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		784m	North
RE2	Private Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		785m	East
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		797m	North
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		809m	North
SP1	Special Activities	Educational Establishment	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		814m	North
R4	High Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		820m	North
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		822m	West
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		825m	South East
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		837m	West
R2	Low Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		842m	North West
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		862m	South East
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		872m	West
E1	National Parks and Nature Reserves		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		882m	East
E1	National Parks and Nature Reserves		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		883m	North

Zone	Description	Purpose	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RE2	Private Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		886m	West
SP2	Infrastructure	Educational Establishment	Ryde Local Environmental Plan 2014	10/04/2015	10/04/2015	11/09/2015	Amendment No 2	896m	North West
B7	Business Park		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		903m	South East
SP2	Infrastructure	Place of Public Worship	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		908m	South West
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		911m	North
SP2	Infrastructure	Educational Establishment	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		927m	South West
R3	Medium Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		932m	North West
R4	High Density Residential		Ryde Local Environmental Plan 2014	10/04/2015	10/04/2015	11/09/2015	Amendment No 2	938m	North West
R4	High Density Residential		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		950m	North
В3	Commercial Core		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		971m	South East
RE1	Public Recreation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		972m	North West
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	10/04/2015	10/04/2015	11/09/2015	Amendment No 2	979m	East
B7	Business Park		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		991m	East
E2	Environmental Conservation		Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	11/09/2015		999m	North West

Local Environment Plan Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Local Environmental Plan

Western Road, Macquarie Park, NSW 2113

Minimum Subdivision Lot Size

What are the onsite Local Environmental Plan Minimum Subdivision Lot Sizes?

Symbol	Minimum Lot Size	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Percentage of Site Area
No Data							

Maximum Height of Building

What are the onsite Local Environmental Plan Maximum Height of Buildings?

Symbol	Maximum Height of Building	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Percentage of Site Area
No Data							

Floor Space Ratio

What are the onsite Local Environmental Plan Floor Space Ratios?

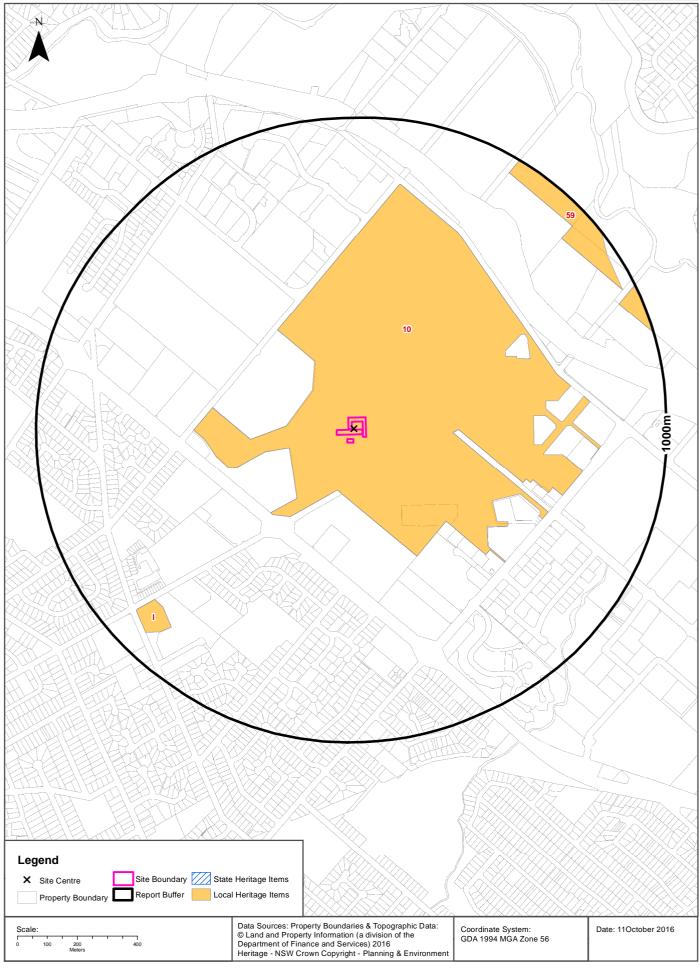
Symbol	Floor Space Ratio	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Percentage of Site Area
No Data							

Land Application

What are the onsite Local Environmental Plan Land Applications?

Application Type	LEP or SEPP	Published Date	Commenced Date	Currency Date	Amendment	Percentage of Site Area
Included	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	10/04/2015		100

Land Reservation Acquisition


What are the onsite Local Environmental Plan Land Reservation Acquisitions?

Reservation	LEP	Published Date	Commenced Date	Currency Date	Amendment	Comments	Percentage of Site Area
No Data							

Local Environment Plan Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Heritage Items

Heritage

Western Road, Macquarie Park, NSW 2113

State Heritage Items

What are the State Heritage Items located within the report buffer?

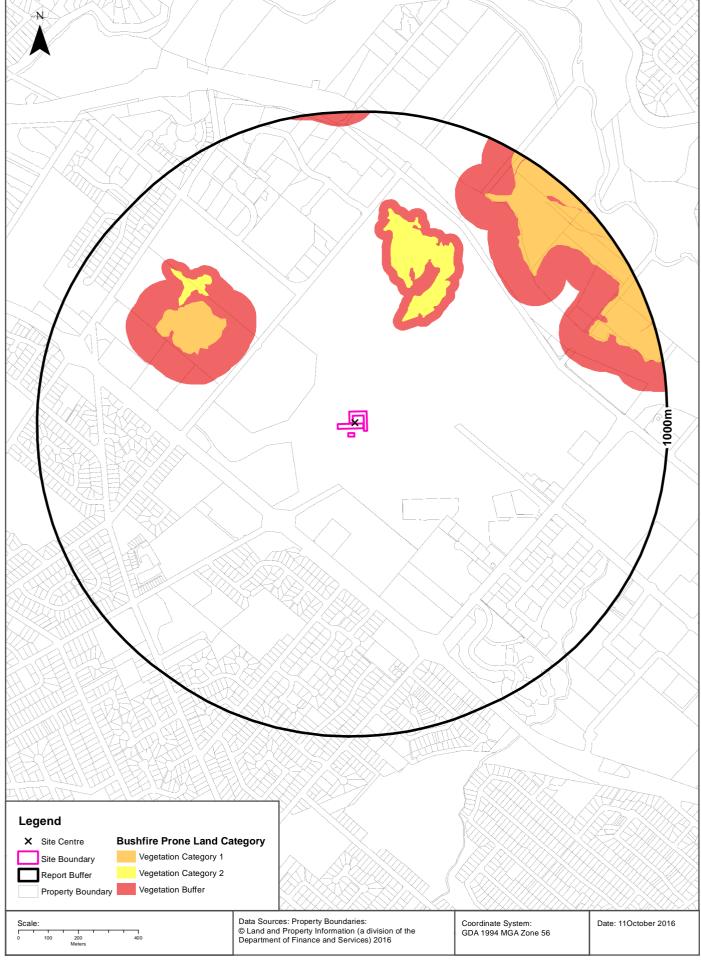
Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Local Heritage Items

What are the Local Heritage Items located within the report buffer?


Map Id	Name	Classification	Significance	LEP or Act	Published Date	Commenced Date	Currency Date	Distance	Direction
10	Macquarie University (ruins)	Item - General	Local	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	10/04/2015	0m	Onsite
I	Curzon Hall (restaurant)	Item - General	State	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	10/04/2015	815m	South West
59	9999	Item - General	State	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	10/04/2015	883m	North East
59	9999	Item - General	State	Ryde Local Environmental Plan 2014	12/09/2014	12/09/2014	10/04/2015	923m	East

Heritage Data Source: NSW Crown Copyright - Planning & Environment

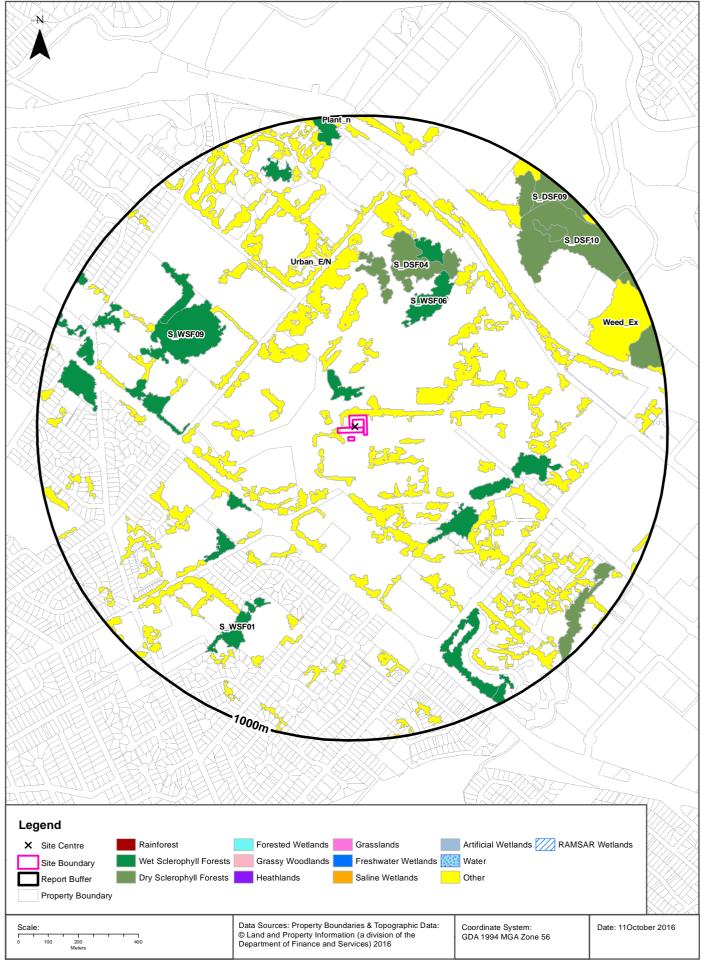
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Natural Hazards - Bushfire Prone Land

Natural Hazards

Western Road, Macquarie Park, NSW 2113

Bushfire Prone Land


What are the nearest Bushfire Prone Land Categories that exist within the report buffer?

Bushfire Prone Land Category	Distance	Direction
Vegetation Buffer	291m	North
Vegetation Category 2	321m	North
Vegetation Category 1	486m	North West

Bushfire Prone Land Data Reference - NSW RFS GIS Data Set

Ecological Constraints - Native Vegetation & RAMSAR Wetlands

Ecological Constraints

Western Road, Macquarie Park, NSW 2113

Native Vegetation

What native vegetation exists within the report buffer?

Map ID	Map Unit Name	Threatened Ecological Community NSW	Threatened Ecological Community EPBC Act	Understorey	Disturbance	Disturbance Index	Dominant Species	Dist	Direction
Urban_E/N	Urban_E/N: Urban Exotic/Native			00: Not assessed	00: Not assessed	0: Not assessed	Urban Exotic/ Native	0m	Onsite
S_WSF09	S_WSF09: Sydney Turpentine-Ironbark Forest	Sydney Turpentine Ironbark Forest	Turpentine Ironbark Forest (possible)	20: Weeds and exotics	20: Previously cleared 1943	3: High	S.glomulifera/ E.paniculata/ +/ - E.resinifera	48m	North
S_WSF06	S_WSF06: Coastal Shale- Sandstone Forest			13: Dry shrubs and grasses	15: Regrowth	1: Low	E.resinifera/ E.punctata	319m	North East
Weed_Ex	Weed_Ex: Weeds and Exotics			00: Not assessed	00: Not assessed	0: Not assessed	Exotic Species >90%cover	330m	North
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			15: Grassy natives and exotics	20: Previously cleared 1943	3: High	E.resinifera/ E.punctata	376m	North
S_WSF01	S_WSF01: Blue Gum High Forest	Blue Gum High Forest		15: Grassy natives and exotics	31: Parkland open understorey	4: Very high	E.saligna+/ - E.pilularis/ S.glomullifera/ E.paniculata/ A.costata	383m	South West
S_DSF10	S_DSF10: Hornsby Enriched Sandstone Exposed Woodland			19: Dense heath	22: Fire	1: Low	E.haemastoma/ A.littoralis/ E.piperita/ C.gummifera	710m	North East
S_DSF09	S_DSF09: Coastal Sandstone Gully Forest			11: Semi sheltered dry/mesic	13: Weeds	3: High	A.costata/ E.piperita/ +/ - C.gummifera/ S.glomulifera/ E.resinifera	838m	North East
Plant_n	Plant_n: Plantation (native and/or exotic)			00: Not assessed	00: Not assessed	0: Not assessed	Native or Exotic Plantations	918m	North

Native Vegetation of the Sydney Metropolitan Area: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

RAMSAR Wetlands

What RAMSAR Wetland areas exist within the report buffer?

Map Id	RAMSAR Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

RAMSAR Wetlands Data Source: © Commonwealth of Australia - Department of Environment

Ecological Constraints

Western Road, Macquarie Park, NSW 2113

ATLAS of NSW Wildlife

Endangered &Vulnerable Species on the ATLAS of NSW Wildlife database, within 10km of the site?

Class	Family	Scientific	Common	Exotic	NSW Status	Commonwealth Status
Amphibia	Hylidae	Litoria aurea	Green and Golden Bell Frog	No	Endangered, Protected	Vulnerable
Amphibia	Myobatrachidae	Heleioporus australiacus	Giant Burrowing Frog	No	Vulnerable, Protected	Vulnerable
Amphibia	Myobatrachidae	Pseudophryne australis	Red-crowned Toadlet	No	Vulnerable, Protected	
Aves	Accipitridae	Circus assimilis	Spotted Harrier	No	Vulnerable, Protected	
Aves	Accipitridae	Hieraaetus morphnoides	Little Eagle	No	Vulnerable, Protected	
Aves	Accipitridae	Lophoictinia isura	Square-tailed Kite	No	Vulnerable, Protected, Category 3 Sensitive Species	
Aves	Accipitridae	Pandion cristatus	Eastern Osprey	No	Vulnerable, Protected, Category 3 Sensitive Species	
Aves	Anatidae	Nettapus coromandelianus	Cotton Pygmy-Goose	No	Endangered, Protected	
Aves	Anatidae	Stictonetta naevosa	Freckled Duck	No	Vulnerable, Protected	
Aves	Ardeidae	Botaurus poiciloptilus	Australasian Bittern	No	Endangered, Protected	Endangered
Aves	Ardeidae	Ixobrychus flavicollis	Black Bittern	No	Vulnerable, Protected	
Aves	Artamidae	Artamus cyanopterus cyanopterus	Dusky Woodswallow	No	Vulnerable, Protected	
Aves	Burhinidae	Burhinus grallarius	Bush Stone-curlew	No	Endangered, Protected	
Aves	Cacatuidae	Callocephalon fimbriatum	Gang-gang Cockatoo	No	Vulnerable, Protected, Category 3 Sensitive Species	
Aves	Cacatuidae	Callocephalon fimbriatum	Gang-gang Cockatoo population in the Hornsby and Ku-ring-gai Local Government Areas	No	Endangered Population, Vulnerable, Protected, Category 3 Sensitive Species	
Aves	Cacatuidae	Calyptorhynchus lathami	Glossy Black-Cockatoo	No	Vulnerable, Protected, Category 2 Sensitive Species	
Aves	Charadriidae	Charadrius leschenaultii	Greater Sand-plover	No	Vulnerable, Protected	V,C,J,K
Aves	Ciconiidae	Ephippiorhynchus asiaticus	Black-necked Stork	No	Endangered, Protected	
Aves	Columbidae	Ptilinopus superbus	Superb Fruit-Dove	No	Vulnerable, Protected	
Aves	Falconidae	Falco hypoleucos	Grey Falcon	No	Endangered, Protected, Category 2 Sensitive Species	
Aves	Falconidae	Falco subniger	Black Falcon	No	Vulnerable, Protected	
Aves	Haematopodidae	Haematopus fuliginosus	Sooty Oystercatcher	No	Vulnerable, Protected	
Aves	Laridae	Sternula albifrons	Little Tern	No	Endangered, Protected	CAMBA, JAMBA, ROKAMBA
Aves	Meliphagidae	Anthochaera phrygia	Regent Honeyeater	No	Critically Endangered Species, Protected	Critically Endangered
Aves	Meliphagidae	Epthianura albifrons	White-fronted Chat	No	Vulnerable, Protected	J
Aves	Meliphagidae	Epthianura albifrons	White-fronted Chat population in the Sydney Metropolitan Catchment Management Area	No	Endangered Population, Vulnerable, Protected	
Aves	Neosittidae	Daphoenositta chrysoptera	Varied Sittella	No	Vulnerable, Protected	
Aves	Petroicidae	Petroica boodang	Scarlet Robin	No	Vulnerable, Protected	
Aves	Petroicidae	Petroica phoenicea	Flame Robin	No	Vulnerable, Protected	

Class	Family	Scientific	Common	Exotic	NSW Status	Commonwealth Status
Aves	Psittacidae	Glossopsitta pusilla	Little Lorikeet	No	Vulnerable, Protected	
Aves	Psittacidae	Lathamus discolor	Swift Parrot	No	Endangered, Protected, Category 3 Sensitive Species	Critically Endangered
Aves	Psittacidae	Polytelis swainsonii	Superb Parrot	No	Vulnerable, Protected, Category 3 Sensitive Species	Vulnerable
Aves	Rostratulidae	Rostratula australis	Australian Painted Snipe	No	Endangered, Protected	Endangered
Aves	Scolopacidae	Calidris ferruginea	Curlew Sandpiper	No	Endangered, Protected	CE,C,J,K
Aves	Scolopacidae	Calidris tenuirostris	Great Knot	No	Vulnerable, Protected	CE,C,J,K
Aves	Scolopacidae	Limicola falcinellus	Broad-billed Sandpiper	No	Vulnerable, Protected	CAMBA, JAMBA, ROKAMBA
Aves	Scolopacidae	Limosa limosa	Black-tailed Godwit	No	Vulnerable, Protected	CAMBA, JAMBA, ROKAMBA
Aves	Scolopacidae	Xenus cinereus	Terek Sandpiper	No	Vulnerable, Protected	CAMBA, JAMBA, ROKAMBA
Aves	Strigidae	Ninox connivens	Barking Owl	No	Vulnerable, Protected, Category 3 Sensitive Species	
Aves	Strigidae	Ninox strenua	Powerful Owl	No	Vulnerable, Protected, Category 3 Sensitive Species	
Aves	Tytonidae	Tyto longimembris	Eastern Grass Owl	No	Vulnerable, Protected, Category 3 Sensitive Species	
Aves	Tytonidae	Tyto novaehollandiae	Masked Owl	No	Vulnerable, Protected, Category 3 Sensitive Species	
Aves	Tytonidae	Tyto tenebricosa	Sooty Owl	No	Vulnerable, Protected, Category 3 Sensitive Species	
Mammalia	Burramyidae	Cercartetus nanus	Eastern Pygmy-possum	No	Vulnerable, Protected	
Mammalia	Dasyuridae	Dasyurus maculatus	Spotted-tailed Quoll	No	Vulnerable, Protected	Endangered
Mammalia	Emballonuridae	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	No	Vulnerable, Protected	
Mammalia	Molossidae	Mormopterus norfolkensis	Eastern Freetail-bat	No	Vulnerable, Protected	
Mammalia	Peramelidae	Isoodon obesulus obesulus	Southern Brown Bandicoot (eastern)	No	Endangered, Protected	Endangered
Mammalia	Peramelidae	Perameles nasuta	Long-nosed Bandicoot population in inner western Sydney	No	Endangered Population, Protected	
Mammalia	Petauridae	Petaurus australis	Yellow-bellied Glider	No	Vulnerable, Protected	
Mammalia	Phascolarctidae	Phascolarctos cinereus	Koala	No	Vulnerable, Protected	Vulnerable
Mammalia	Pteropodidae	Pteropus poliocephalus	Grey-headed Flying-fox	No	Vulnerable, Protected	Vulnerable
Mammalia	Vespertilionidae	Chalinolobus dwyeri	Large-eared Pied Bat	No	Vulnerable, Protected	Vulnerable
Mammalia	Vespertilionidae	Falsistrellus tasmaniensis	Eastern False Pipistrelle	No	Vulnerable, Protected	
Mammalia	Vespertilionidae	Miniopterus australis	Little Bentwing-bat	No	Vulnerable, Protected	
Mammalia	Vespertilionidae	Miniopterus schreibersii oceanensis	Eastern Bentwing-bat	No	Vulnerable, Protected	
Mammalia	Vespertilionidae	Myotis macropus	Southern Myotis	No	Vulnerable, Protected	
Mammalia	Vespertilionidae	Scoteanax rueppellii	Greater Broad-nosed Bat	No	Vulnerable, Protected	
Reptilia	Varanidae	Varanus rosenbergi	Rosenberg's Goanna	No	Vulnerable, Protected	
Flora	Convolvulaceae	Wilsonia backhousei	Narrow-leafed Wilsonia	No	Vulnerable, Protected	
Flora	Dilleniaceae	Hibbertia superans		No	Endangered, Protected	
Flora	Elaeocarpaceae	Tetratheca glandulosa		No	Vulnerable, Protected	
Flora	Elaeocarpaceae	Tetratheca juncea	Black-eyed Susan	No	Vulnerable, Protected	Vulnerable
Flora	Ericaceae	Epacris purpurascens var. purpurascens		No	Vulnerable, Protected	

Class	Family	Scientific	Common	Exotic	NSW Status	Commonwealth Status
Flora	Fabaceae (Faboideae)	Dillwynia tenuifolia		No	Vulnerable, Protected	
Flora	Fabaceae (Mimosoideae)	Acacia bynoeana	Bynoe's Wattle	No	Endangered, Protected	Vulnerable
Flora	Fabaceae (Mimosoideae)	Acacia clunies-rossiae	Kanangra Wattle	No	Vulnerable, Protected	
Flora	Fabaceae (Mimosoideae)	Acacia gordonii		No	Endangered, Protected	Endangered
Flora	Fabaceae (Mimosoideae)	Acacia pubescens	Downy Wattle	No	Vulnerable, Protected	Vulnerable
Flora	Fabaceae (Mimosoideae)	Acacia terminalis subsp. terminalis	Sunshine Wattle	No	Endangered, Protected	Endangered
Flora	Grammitidaceae	Grammitis stenophylla	Narrow-leaf Finger Fern	No	Endangered, Protected, Category 3 Sensitive Species	
Flora	Haloragaceae	Haloragodendron lucasii		No	Endangered, Protected	Endangered
Flora	Lobeliaceae	Hypsela sessiliflora		No	Endangered, Protected, Category 3 Sensitive Species	Extinct
Flora	Malvaceae	Lasiopetalum joyceae		No	Vulnerable, Protected	Vulnerable
Flora	Myrtaceae	Callistemon linearifolius	Netted Bottle Brush	No	Vulnerable, Protected, Category 3 Sensitive Species	
Flora	Myrtaceae	Darwinia biflora		No	Vulnerable, Protected	Vulnerable
Flora	Myrtaceae	Darwinia peduncularis		No	Vulnerable, Protected	
Flora	Myrtaceae	Eucalyptus camfieldii	Camfield's Stringybark	No	Vulnerable, Protected	Vulnerable
Flora	Myrtaceae	Eucalyptus nicholii	Narrow-leaved Black Peppermint	No	Vulnerable, Protected	Vulnerable
Flora	Myrtaceae	Eucalyptus scoparia	Wallangarra White Gum	No	Endangered, Protected	Vulnerable
Flora	Myrtaceae	Leptospermum deanei		No	Vulnerable, Protected	Vulnerable
Flora	Myrtaceae	Melaleuca biconvexa	Biconvex Paperbark	No	Vulnerable, Protected	Vulnerable
Flora	Myrtaceae	Melaleuca deanei	Deane's Paperbark	No	Vulnerable, Protected	Vulnerable
Flora	Myrtaceae	Syzygium paniculatum	Magenta Lilly Pilly	No	Endangered, Protected	Vulnerable
Flora	Myrtaceae	Triplarina imbricata	Creek Triplarina	No	Endangered, Protected	Endangered
Flora	Orchidaceae	Caladenia tessellata	Thick Lip Spider Orchid	No	Endangered, Protected, Category 2 Sensitive Species	Vulnerable
Flora	Orchidaceae	Cryptostylis hunteriana	Leafless Tongue Orchid	No	Vulnerable, Protected, Category 2 Sensitive Species	Vulnerable
Flora	Orchidaceae	Genoplesium baueri	Bauer's Midge Orchid	No	Endangered, Protected, Category 2 Sensitive Species	Endangered
Flora	Orchidaceae	Pterostylis nigricans	Dark Greenhood	No	Vulnerable, Protected, Category 2 Sensitive Species	
Flora	Orchidaceae	Pterostylis saxicola	Sydney Plains Greenhood	No	Endangered, Protected, Category 2 Sensitive Species	Endangered
Flora	Poaceae	Deyeuxia appressa		No	Endangered, Protected	Endangered
Flora	Proteaceae	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	No	Vulnerable, Protected	Vulnerable
Flora	Proteaceae	Persoonia hirsuta	Hairy Geebung	No	Endangered, Protected, Category 3 Sensitive Species	Endangered
Flora	Proteaceae	Persoonia mollis subsp. maxima		No	Endangered, Protected	Endangered
Flora	Proteaceae	Persoonia nutans	Nodding Geebung	No	Endangered, Protected	Endangered
Flora	Rhamnaceae	Pomaderris prunifolia	P. prunifolia in the Parramatta, Auburn, Strathfield and Bankstown Local Government Areas	No	Endangered Population	
Flora	Rubiaceae	Galium australe	Tangled Bedstraw	No	Endangered, Protected	

Class	Family	Scientific	Common	Exotic	NSW Status	Commonwealth Status
Flora	Thymelaeaceae	Pimelea curviflora var. curviflora		No	Vulnerable, Protected	Vulnerable
Flora	Thymelaeaceae	Pimelea spicata	Spiked Rice-flower	No	Endangered, Protected	Endangered
Flora	Zannichelliaceae	Zannichellia palustris		No	Endangered, Protected	
Flora	Hygrophoraceae	Camarophyllopsis kearneyi		No	Endangered, Protected	
Flora	Hygrophoraceae	Hygrocybe anomala var. ianthinomarginata		No	Vulnerable, Protected	
Flora	Hygrophoraceae	Hygrocybe aurantipes		No	Vulnerable, Protected	
Flora	Hygrophoraceae	Hygrocybe austropratensis		No	Endangered, Protected	
Flora	Hygrophoraceae	Hygrocybe collucera		No	Endangered, Protected	
Flora	Hygrophoraceae	Hygrocybe griseoramosa		No	Endangered, Protected	
Flora	Hygrophoraceae	Hygrocybe lanecovensis		No	Endangered, Protected	
Flora	Hygrophoraceae	Hygrocybe reesiae		No	Vulnerable, Protected	
Flora	Hygrophoraceae	Hygrocybe rubronivea		No	Vulnerable, Protected	

Data does not include records not defined as either endangered or vulnerable, and category 1 sensitive species are also excluded. NSW Office of Environment and Heritage's Atlas of NSW Wildlife, which holds data from a number of custodians. Data obtained 11/10/2016

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report. The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available (Third Party Content Suppliers);
 - (j) content which is derived from content described in paragraph (i);
 - (b) Lotsearch does not take any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report;
 - the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (Property);
 - (d) Lotsearch has not undertaken any physical inspection of the property;
 - (e) Lotsearch does not warrant that all land uses or features whether past or current are identified in the Report;
 - (f) the Report does not include any information relating to the actual state or condition of the Property;
 - (g) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of a Property for any particular purpose;
 - (h) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (i) the End User should undertake its own inspection s of the Property to satisfy itself that there are no defects or failures.
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 5. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 6. To the extent permitted by law and subject to paragraph 7, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these terms other than as expressly set out in these terms are excluded.
- 7. Subject to paragraph 8, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 8. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 9. Subject to paragraph 7, neither Lotsearch nor the End User is liable to the other for any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to these terms.
- 10. These terms are subject to New South Wales law.

Section 149 Certificates

Locked Bag 2069, North Ryde NSW 1670 Facsimile 9952 8070 Telephone 9952 8222

PLANNING CERTIFICATE UNDER Cert No: PLN2016/2712

SECTION 149 ENVIRONMENTAL PLANNING Date: Thursday, 1 September 2016

AND ASSESSMENT ACT, 1979 Your Ref: LS000617

Applicant: Mr Howard Waldron (Lotsearch Pty Ltd)

Level 3

68 Alfred Street

Milsons Point NSW 2061

Property Address: 192 Balaclava Rd MACQUARIE PARK

Description: Lot 191 DP 1157041

Property Reference: 544572 Land Reference: 53353

INFORMATION PROVIDED PURSUANT TO SECTION 149(2) OF THE ACT.

1. NAMES OF RELEVANT ENVIRONMENTAL PLANNING INSTRUMENTS, DRAFT INSTRUMENTS AND DEVELOPMENT CONTROL PLANS THAT APPLY TO THE CARRYING OUT OF DEVELOPMENT ON THE LAND

a) LOCAL ENVIRONMENTAL PLAN AND DEEMED ENVIRONMENTAL PLANNING INSTRUMENTS Ryde Local Environmental Plan 2014

b) DRAFT LOCAL ENVIRONMENTAL PLANS Nil

c) DEVELOPMENT CONTROL PLANS

City of Ryde Development Control Plan 2014

d) STATE ENVIRONMENTAL PLANNING POLICIES AND INSTRUMENTS (includes Draft Policies)

The Minister for Planning has notified Council that the following State Environmental Planning Policies and Deemed State Environmental Plans apply to the land and should be specified in this certificate:

State Environmental Planning Policies

State Environmental Planning Policy No 19 - Bushland in Urban Areas.

State Environmental Planning Policy No 21 - Caravan Parks.

State Environmental Planning Policy No 30 - Intensive Agriculture.

State Environmental Planning Policy No 33 - Hazardous and Offensive Development.

State Environmental Planning Policy No 50 - Canal Estate Development.

State Environmental Planning Policy No 55 - Remediation of Land.

State Environmental Planning Policy No 62 - Sustainable Aquaculture.

State Environmental Planning Policy No 64 - Advertising and Signage.

State Environmental Planning Policy No 65 - Design Quality of Residential Apartment Development.

State Environmental Planning Policy (Affordable Rental Housing) 2009

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Major Development) 2005

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (Temporary Structures) 2007

Deemed State Environmental Planning Policies

Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005

Draft State Environmental Planning Policies

State Environmental Planning Policy No 66 - Integration of Land Use and Transport 2001

State Environmental Planning Policy (Competition) 2010

Note: Specific constraints and zoning of the land may affect the applicability of certain provisions within the Policies listed above.

2. ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) ZONING and ZONING TABLE

Ryde Local Environmental Plan 2014 - Zone B4 - Mixed Use

1 Objectives of zone

- To provide a mixture of compatible land uses.
- To integrate suitable business, office, residential, retail and other development in accessible locations so as to maximise public transport patronage and encourage walking and cycling.
- To ensure employment and educational activities within the Macquarie University campus are integrated with other businesses and activities.
- To promote strong links between Macquarie University and research institutions and businesses within the Macquarie Park corridor.

2 Permitted without consent

Home occupations

3 Permitted with consent

Boarding houses; Building identification signs; Business identification signs; Child care centres; Commercial premises; Community facilities; Educational establishments; Entertainment facilities; Function centres; Hotel or motel accommodation; Information and education facilities; Medical centres; Passenger transport facilities; Recreation facilities (indoor); Registered clubs; Respite day care centres; Restricted premises; Roads; Seniors housing; Shop top housing; Waste or resource transfer stations; Any other development not specified in item 2 or 4.

4 Prohibited

Agriculture; Air transport facilities; Animal boarding or training establishments; Biosolids treatment facilities; Camping grounds; Caravan parks; Depots; Eco-tourist facilities; Farm buildings; General industries; Heavy industrial storage establishments; Heavy industries; Home occupations (sex services); Industrial training facilities; Resource recovery facilities; Sewage treatment plants; Sex services premises; Signage; Vehicle body repair workshops; Vehicle repair stations; Waste disposal facilities; Water recycling facilities; Water supply systems.

Ryde Local Environmental Plan 2014 - Zone SP2 Infrastructure - Educational Establishment 1 Objectives of zone

- To provide for infrastructure and related uses.
- To prevent development that is not compatible with or that may detract from the provision of infrastructure.
- To ensure the orderly development of land so as to minimise any adverse effect of development on other land uses.

2 Permitted without consent

Nil

3 Permitted with consent

Roads; The purpose shown on the Land Zoning Map, including any development that is ordinarily incidental or ancillary to development for that purpose

4 Prohibited

Any development not specified in item 2 or 3

Schedule 1 - Additional permitted uses

Use of certain land at 192 Balaclava Road, Marsfield (Macquarie University)

- (1) This clause applies to the land
- (2) Development for the purposes of agriculture, car parks, commercial premises, health services facilities, high technology industries, light industries, places of public worship, recreation facilities (outdoor), research stations, residential accommodation, service stations, serviced apartments, signage, water recycling facilities and water treatment facilities is permitted with development consent on the land.

(b) DEVELOPMENT STANDARDS FOR THE ERECTION OF A DWELLING HOUSE

No development standards under the Local Environmental Plan apply to the land that fix minimum land dimensions for the erection of a dwelling house on the land.

(c) CRITICAL HABITAT

No. The land does not include or comprise critical habitat under the Local Environmental Plan.

(d) CONSERVATION AREA (however described)

No. The land has not been identified as being within a heritage conservation area under the Local Environmental Plan.

(e) ITEMS OF ENVIRONMENTAL HERITAGE (however described)

Yes. An item of environmental heritage under Ryde Local Environmental Plan 2014 is situated on the land.

2A. ZONING AND LAND USE UNDER STATE ENVIRONMENTAL PLANNING POLICY (SYDNEY REGION GROWTH CENTRES) 2006

This land is not subject to:

- (a) Part 3 of the State Environmental Planning Policy (Sydney Region Growth Centres) 2006 (the 2006 SEPP); or
- (b) a Precinct Plan (within the meaning of the 2006 SEPP); or

(c) a proposed Precinct Plan (within the meaning of the 2006 SEPP) that is or has been the subject of community consultation or on public exhibition.

OTHER PRESCRIBED INFORMATION

3. COMPLYING DEVELOPMENT

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.* If complying development may not be carried out on that land because of one of the requirements under that Policy, the reason why it may not be carried out.

General Housing Code and Rural Housing Code

Land which comprises a Heritage Item within an Environmental Planning Instrument

(a) Complying Development may not be carried out on that part of the land identified as containing a Heritage Item in Schedule 5 Environmental Heritage and identified in Ryde LEP 2014 Heritage Map.

Housing Alterations Code and General Development Code

Land which comprises a **Heritage Item** within an Environmental Planning Instrument

(a) Complying Development may not be carried out on that part of the land identified as containing a Heritage Item in Schedule 5 Environmental Heritage and identified in Ryde LEP 2014 Heritage Map.

Commercial and Industrial (New Buildings and Additions) Code

Land which comprises a Heritage Item within an Environmental Planning Instrument

(a) Complying Development may not be carried out on that part of the land identified as containing a Heritage Item in Schedule 5 Environmental Heritage and identified in Ryde LEP 2014 Heritage Map.

Subdivisions Code, Commercial and Industrial Alterations Code, Demolition Code and Fire Safety Code Land which comprises a **Heritage Item** within an Environmental Planning Instrument

(a) Complying Development may not be carried out on that part of the land identified as containing a Heritage Item in Schedule 5 Environmental Heritage and identified in Ryde LEP 2014 Heritage Map.

Note: It is necessary for the zoning, size of land and other criteria such as risk level of flood prone land and bushfire prone land to be in accordance with that specified in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 for certain types of development to occur under the Policy.

4. COASTAL PROTECTION

Whether or not the land is affected by the operation of section 38 or 39 of the *Coastal Protection Act* 1979, but only to the extent that the council has been so notified by the Department of Services, Technology and Administration.

The land is not affected by the operation of section 38 or 39 of the Coastal Protection Act 1979.

4A Information relating to a coastal council

(1) Whether an order has been made under Part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

- (2)(a) Whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and
- (b) If works have been so placed—whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

NO notification received

4B Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

Whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the *Local Government Act 1993* for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

NO

Note. "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of Section 553B of the *Local Government Act 1993*.

5. MINE SUBSIDENCE

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act* 1961.

No. The land has not been proclaimed to be a mine subsidence district.

6. ROAD WIDENING AND ROAD REALIGNMENT

Whether or not the land is affected by any road widening or road realignment.

The land is not affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993;
- (b) any Environmental Planning Instrument.
- (c) any resolution of Council.

7. COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS

Whether or not the land is affected by a policy adopted by the council, or adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by council, that restricts the development of the land because of the likelihood of

- (i) landslip NO.
- (ii) bush fire YES.
- (iii) tidal inundation NO.
- (iv) subsidence YES.
- (v) acid sulphate soil NO.
- (vi) any other risk (other than flooding) NO.

Note: The fact that land has not been identified as being affected by a policy to restrict development because of the risks referred to does not mean that the risk is non-existent.

7A. FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

- (1) Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors) living is subject to flood related development controls YES
- (2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls YES
- (3) Words and expressions in this clause have the same meanings as in the instrument set out in the schedule to the Standard Instrument (Local Environmental Plans) Order 2006.

8. LAND RESERVED FOR ACQUISITION

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in Clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

No Environmental Planning Instrument applying to the land provides for the acquisition of the land by a public authority pursuant to Section 27 of the Act.

9. CONTRIBUTIONS PLANS

The name of each contributions plan applying to the land:

City of Ryde Section 94 Development Contributions Plan 2007 – Interim Update (2014)

9A BIODIVERSITY CERTIFIED LAND

This land is not biodiversity certified land within the meaning of Part 7AA of the Threatened Species Conservation Act 1995.

10 BIOBANKING AGREEMENTS

The land is not the subject of a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995.

11. BUSH FIRE PRONE LAND

The land described in this certificate is bush fire prone land (as defined in the Act).

12. PROPERTY VEGETATION PLANS

The land is not subject to a property vegetation plan under the Native Vegetation Act 2003.

13. ORDERS UNDER TREES (DISPUTES BETWEEN NEIGHBOURS) ACT 2006

There has not been an order made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14. DIRECTIONS UNDER PART 3A

There is no direction in force under section 75P (2)(c1) of the Environmental Planning and Assessment Act 1979.

15. SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

Part A: There has been no Site Compatibility Certificate issued (of which Council is aware) under Clause 25 of State Environmental Planning Policy (Housing for Senior or People with a Disability) 2004.

Part B: There has not been any development consent granted since 11 October 2007 for development to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

16. SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

There is no valid Site Compatibility Certificate (Infrastructure) of which the Council is aware in respect of proposed development on the land.

17. SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

There is no current Site Compatibility Certificate (Affordable Rental Housing) that Council is aware in respect of proposed development on the land.

There are no terms of a kind referred to in clause 17(1) or 37(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.

18. PAPER SUBDIVISION INFORMATION

- (1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot. NIL
- (2) The date of any subdivision order that applies to the land. NIL
- (3) Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.

Note: City of Ryde does not hold any paper subdivision within the meaning of this clause.

19. SITE VERIFICATION CERTIFICATES

There is no current site verification certificate of which the Council is aware in respect of the land.

Note. The following matters are prescribed by section 59 (2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate:

- (a) The land to which this certificate relates IS NOT significantly contaminated land.
- (b) The land to which this certificate relates IS NOT subject to a management order.
- (c) The land to which this certificate relates IS NOT the subject of an approved voluntary management proposal.
- (d)The land to which this certificate relates IS NOT subject to an ongoing maintenance order .
- (e)The land to which this certificate relates IS NOT subject to a site audit statement.

Environmental planning instruments or development control plans may place restrictions on matters such as:

- i) the purpose for which buildings, works or land may be erected, carried out or used;
- ii) the extent of development permitted:
- iii) minimum site requirements; and/or
- iv) the means of vehicular access to the land.

The instruments and the plans should be examined in relation to the specific restrictions which may apply to any development which may be proposed.

Registers of Consents may be examined at Council's Customer Service Centre for particulars relating to development consents which may have been issued for the use or development of the land.

Enquiries regarding areas reserved for Classified Road and Regional Open Space should be directed to the Roads and Maritime Services and Department of Planning and Infrastructure respectively.

The information provided concerning the Coastal Protection Act, 1979 is only to the extent that the Council has been notified by the Department of Services, Technology and Administration.

Council has adopted by resolution a policy concerning the management of contaminated land. This policy applies to all land in the City of Ryde and will restrict development of the land if the circumstances set out in the policy prevail. Copies of the policy are available on Council's Website at www.ryde.nsw.gov.au.

FURTHER ADDITIONAL INFORMATION UNDER SECTION 149(5) OF THE ACT

Bush Fire Prone Land

The following map indicates the property has been identified as bush fire prone land: City of Ryde - Bush Fire Prone Land Map certified by the Commissioner for the NSW Rural Fire Service.

Bushland

The following studies /internal reports indicate the land may contain both endangered and inadequately conserved bushland: Urban Bushland in the Ryde LGA by OCULUS Landscape Architecture Urban Design Environmental Planning April 2001. This report identifies that the subject property contains both endangered and inadequately conserved bushland. Details are available by inspection of the report and maps held by Council's Customer Service Centre. For any proposed development of the land existing endangered bushland must be retained and all proposed development must take into account any aspects that may adversely effect the sustainability of the subject bushland. For development of land containing inadequately conserved bushland further investigation may be required to determine the condition and value of the existing bushland.

The Commonwealth Minister for the Environment and Heritage has listed the Blue Gum High Forest and the Turpentine Ironbark Forest of the Sydney Basin Bioregion as critically endangered ecological communities under the Environment Protection and Biodiversity and Conservation Act 1999, which is Federally administered legislation.

Council records show that your property may contain a Turpentine-Ironbark Forest community. Any action or activity that is proposed on this land which, is likely to have a significant impact on this endangered community, must be referred to the Minister for assessment and approval. It is the proponents responsibility to obtain this approval and any questions relating to this can be referred to the Department of the Environment Heritages Community Information Unit on 1800 803 772.

Subsidence

The following studies/reports indicate that the land is subject to subsidence: Maps Titled - 'Instability Risk Zones in the City of Ryde' dated 22 August, 2003 to be read in conjunction with Report titled 'Ryde City Council Instability Risk Zones - City of Ryde Geotechnical Advice - Areas of Extensive Man- made fill' 23 June 2003 by Geotechnique Pty Ltd. These maps and reports identify that the subject land is affected by subsidence risk.

Details are available by inspection of the maps and report held by Council's Customer Service Centre. For proposed development of geotechnical report may be required to accurately define the degree of risk associated with the proposed development.

No further additional information is available under this Section with respect to this property.

Note: The information in this certificate is current as of the date of the certificate.

Liz Coad

Acting Director City Strategy and Planning

Appendix B: Borehole Logs

BOREHOLE LOG

Borehole No.

1

1 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: HAND AUGER R.L. Surface: ~64.2 m

Date: 28/9/16 **Datum:** AHD

PI	ant	Тур	e:				Lo	gged/Checked By: A.C.K./P.F	₹.			
Groundwater Record	Record 1050 U50		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION OF AUGERING AND 6/10/16			REFER TO DCP TEST RESULTS	64	-			FILL: Silty clay, low to medium plasticity, dark grey brown mottled brown, trace of fine to medium grained ironstone gravel./	MC>PL			APPEARS MODERATELY TO POORLY COMPACTED
				-	-		CL-CH	plasticity, orange brown and dark grey brown, trace of fine grained sandstone gravel and fine grained ironstone gravel. SILTY CLAY: medium to high plasticity,	MC>>PL	VSt	300 300 250	- RESIDUAL - HP TESTING ON - REMOULDED AUGER - SAMPLE
				63 -	1 — - -			orange brown and light brown mottled light grey, trace of fine grained ironstone gravel and fine grained sand.	MC <pl< td=""><td>Н</td><td></td><td> TOO FRIABLE FOR HP - TESTING - - - -</td></pl<>	Н		TOO FRIABLE FOR HP - TESTING - - - -
				-	2-			REFER TO CORED BOREHOLE LOG				- WASH BORE CASING - 1.10m TO 1.61m
				62 -	- -							- - - -
				-	3-							- - - -
				61 -	- - -							- - - -
				-	4-							- - - -
				60 -	- -							- - - -
				59 —	5 — -							- - - -
				-	-							- - - -
				58 -	6-							- - - -
				-	-							- - - -
	YRIG				-						-	- -

CORED BOREHOLE LOG

Borehole No.

2 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Date: 28/9/16 Inclination: VERTICAL Datum: AHD

Plant Type: MELVELLE Bearing: N/A Logged/Checked By: A.C.K./P.R.

	_			Dearing. 14/					ed/Onecked by. A.O.R./I .R.
			_	CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS
Loss\Level Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength	EL-0.03 C	DEFECT SPACING (mm)	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific Genera
	63 -	-	-	START CORING AT 1.61m					-
+	-	-		START CORING AT 1.61m CORE LOSS 0.88m					
	62-	2 — - - - -		CORE LOSS 0.00III					- - - - - -
	-	3-		SILTY CLAY: medium plasticity, light grey and orange brown, trace of fine grained ironstone gravel.	RS	Н			—— (2.63m) HP: 550kPa —— (2.70m) HP: >600kPa —— (2.85m) HP: 425kPa
	61 -	-	<u> </u>	00051000014		VSt			(3.05m) HP: 275kPa
	-	- - - -		CORE LOSS 0.11m SANDSTONE: fine grained, light grey, with grey laminae, bedded at 0-5°.	DW	М			— (3.48m) J, 70°, P, R — (3.58m) J, 85°, Un, R — (3.63m) J, 70°, P, R — (3.85m) XWS, 0°, 15 mm.t
100% RETURN	60 -	4				L - M			(3.90m) XWS, 0 - 20°, 15 mm.t (3.94m) J, 70°, P, R ————————————————————————————————————
100%	-	-	-:::::::	CORE LOSS 0.59m					(4.55m) XWS, 0°, 150 mm.t
	59 -	5- 5-		001E 2000 0.00m					_
	".	-		SANDSTONE: fine grained, light grey, with grey laminae, bedded at 0-5°.	DW	L			(5.36m) J, 75°, Un, R
	-	- - -		with grey familiae, bedded at 0-5.	XW	EL			
		6-			DW	L			(6.00m) J, 85°, P, R, CLAY INFILL
	58 -	-		CORE LOSS 0.08m	0)4/		1 233		_
	-	- - - -	-	SANDSTONE: fine grained, light grey, with grey laminae, bedded at 0-5°.	SW	M			—— (6.52m) XWS, 0°, 70 mm.t
	57 -	7-							
	-	- - - -		END OF BOREHOLE AT 7.30 m					50mm DIA. PVC MONITORING WELL INSTALLED 3.0m DEPTH, MACHINE SLOTTED FROM 0.5m TO 3.0m, Zmm SAND FILTER PACK FROM 0.4m TO 7.30m, BENTONITE SEAL FROM 0.1m TO 0.4m, BACK FILLED TO SURFACE

BOREHOLE LOG

COPYRIGHT

Borehole No. 2

1 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: HAND AUGER R.L. Surface: ~64.0 m

Date: 28/9/16 **Datum:** AHD

			9/16							atum:	AHD	
PI	ant	Тур	oe:			1	Lo	gged/Checked By: A.C.K./P.I	R.	1		
Record	SAM C20	IPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
JGERING D 6/10/16			REFER TO DCP TEST RESULTS	-				FILL: Silty clay, low to medium plasticity, dark brown, trace of root fibres.	MC <pl< td=""><td></td><td>-</td><td>APPEARS MODERATELY COMPACTED</td></pl<>		-	APPEARS MODERATELY COMPACTED
OF AUGERING AND 6/10/16				-	-		CL-CH	SILTY CLAY: medium to high plasticity, orange brown mottled light grey, trace of root fibres.	MC>PL	VSt	390 350 365	RESIDUAL HP TESTING ON REMOULDED AUGER SAMPLES
				63 -	1-			as above, but orange brown and light brown.	MC~PL	VSt - H	465 350 415	 - -
				-				SILTY CLAY: medium to high plasticity, light grey mottled orange brown, trace of fine to medium grained ironstone gravel.	MC <pl< td=""><td>Н</td><td>465 500 410</td><td>- - - - Hand Auger Refusal - On Inferred - Ironstone Gravel</td></pl<>	Н	465 500 410	- - - - Hand Auger Refusal - On Inferred - Ironstone Gravel
				62	2-	-		REFER TO CORED BOREHOLE LOG			-	WASH BORE CASING 1.5m TO 1.8m
				61 -	3-							- - - - - - -
				60 -	4-							- - - - - - -
				59 – -	5-	-						- - - - - - -
				58-	6-						-	- - - - - -
				-	-	-						-

CORED BOREHOLE LOG

Borehole No.

2

2 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

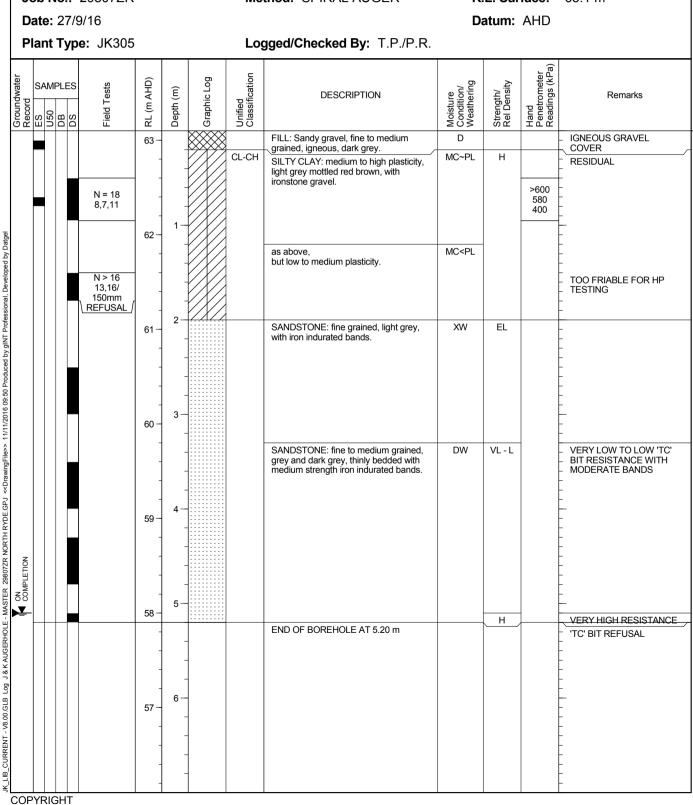
Date: 28/9/16 Inclination: VERTICAL Datum: AHD

Plant Type: MELVELLE Bearing: N/A Logged/Checked By: A.C.K./P.R.

_ :)		VIELVE	ELLE Bearing: NA					ed/Checked By: A.C.K./P.R.
		-			CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS
Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength	SIKENGIH NDEX I°(20)	DEFECT SPACING (mm)	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific General
		-	-		START CORING AT 1.80m					
					CORE LOSS 0.31m					
		62	2-		SILTY CLAY: medium plasticity, light grey mottled orange brown, trace of fine grained ironstone gravel, root fibres.	RS	St - VSt			
		61 –	3-		SILTY CLAY: medium plasticity, light grey, trace of fine grained sand.					(2.59m) HP: 170kPa - - - -
		- - -	-		CORE LOSS 0.61m SILTY CLAY: low to medium plasticity, light grey, trace of fine grained sand.	RS	St - VSt			
		60 -	4-		SANDSTONE: fine grained, light grey	XW -	EL -			
100 % INC. 101 M		-	-		and red brown. CORE LOSS 0.46m	DW	_VL_			
		59 -	5-		SANDSTONE: fine grained, light grey with high strength iron indurated bands. CORE LOSS 0.32m	XW - DW	EL - VL			(4.98m) CS, 0°, 40 mm.t
		-			GONE 2000 0.32III					
		- 58 –	6-		SANDSTONE: fine grained, grey, with high strength iron indurated bands, bedded at 0-5°.	DW	VL - L			
		-		-	CORE LOSS 0.18m SANDSTONE: fine grained, light grey	DW	М			•
		- - - 57	7-		with grey laminae, and iron indurated seams and bands, bedded at 0-15°.	DVV	IVI			(6.50m) Be, 15°, P, R (6.61m) XWS, 5°, 20 mm.t (6.72m) CS, 0 - 5°, 30 mm.t (6.72m) J, 90°, P, R (6.84m) J, 70°, P, R, CLAY INFILL
		-	-		END OF BOREHOLE AT 7.50 m					50mm DIA. PVC MONITORING WELL INSTALLED 1 3.0m DEPTH, MACHINE SLOTTED FROM 1.0m TO 3.0m, 2mm SAND FILTER PACK FROM 0.6m TO 7.50m, BENTONITE SEAL FROM 0.15m TO 0.6m, BACK FILLED TO SURFACE

BOREHOLE LOG

Borehole No.


1 / 1

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

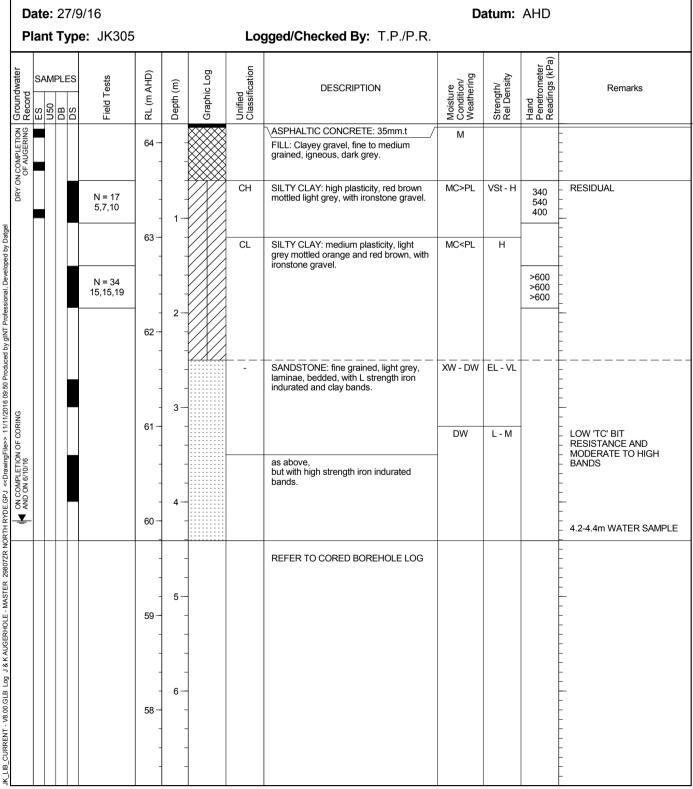
Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~63.1 m

BOREHOLE LOG

Borehole No.

4


1 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~64.2 m

COPYRIGHT

CORED BOREHOLE LOG

Borehole No.

4

2 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Date: 27/9/16 Inclination: VERTICAL Datum: AHD

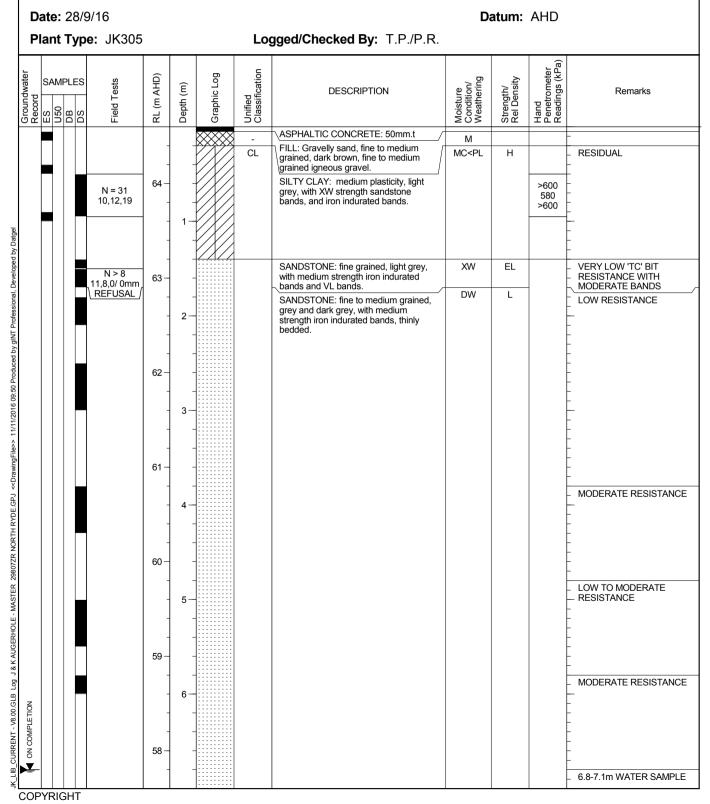
Plant Type: JK305 Bearing: N/A Logged/Checked By: T.P./P.R.

P	Plant Type: JK305				Bearing: N	/A		Logged/Checked By: T.P./P.R.							
Water Loss\Level	Loss/Level Barrel Lift RL (m AHD) Depth (m)	CORE DESCRIPTION Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength	S	DINT LOAD TRENGTH INDEX I _s (50)	DEFECT SPACING	Type, inclination, thickness, planarity, roughness, coating.							
Los 69	Ba	60 -	De	Gra	OTADT CODING AT 4 44-	W	Str	 - -		300 EH	Specific Genera				
RN		- - - 59 -	5		START CORING AT 4.41m SANDSTONE: fine to medium grained, light grey, with dark grey laminae, bedded at 0-10° and iron indurated bands.	DW	M				(5.18m) XWS, 0 - 5°, 90 mm.t (5.26m) XWS, 1°, 2 mm.t				
100% RETURN		58 — -	6		SANDSTONE: fine to medium grained, light grey with grey laminae, bedded at 5-15° and iron indurated bands.	-									
		- 57 —	- - 7- - -		SANDSTONE: fine to medium grained, light grey.	SW					(6.79m) XWS, 0 - 5°, 9 mm.t (6.85m) Be, 15°, P, R, IS (7.00m) CS, 0°, 5 mm.t				
		- - 56 -	8-		END OF BOREHOLE AT 7.42 m						GROUNDWATER MONITORING WELL INSTALLED TO A DEPTH OF APPROXIMATELY 7.42m, CLASS 18 MACHINE SLOTTED PVC PIPE FROM 7.42m TO 3.42m, CASING FROMS 42m TO 0.1m, 2mm SAND FILTER PACK FROM 7.42m TO 1.5m, BENTONITE SEAL FROM 1.5m TO 0.2m, BACKFILLED WITH SAND TO THE SURFACE, COMPLETED WITH A STEEL GATIC COVER AND LOCKABLE CAP				
		- 55 — -	9								- - - - - - -				
		54 — -	- 10 — - - - - -												
		IOLIT	- - -												

COPYRIGHT

BOREHOLE LOG

Borehole No. 5


1 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~64.6 m

BOREHOLE LOG

Borehole No. 5

2 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

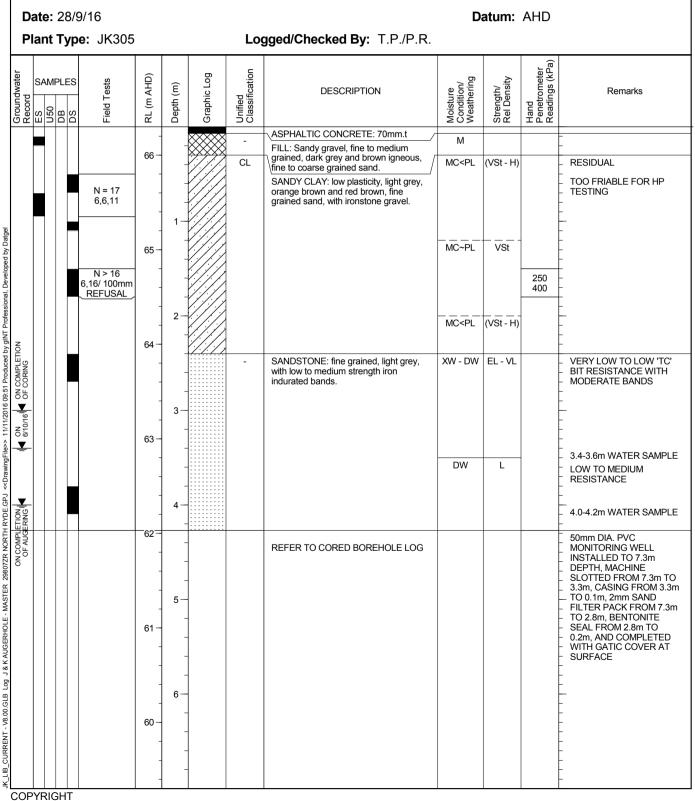
Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~64.6 m

Date: 28/9/16 **Datum:** AHD

Record	NAS	MPLES BB SD BB SD	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
				-				SANDSTONE: fine to medium grained, grey and dark grey, with medium strength iron indurated bands, thinly bedded. (continued)	DW	М		MODERATE RESISTANCE
				57 -	=			END OF BOREHOLE AT 7.50 m				-
				-	8							- - -
				56 -	-							- - - -
				-	9-							- - -
				-	-							- - - -
				55 -	10 —							- - - -
				-	-							- - - -
				54	-							- - - -
				-	11 —							- - -
				53 –	-							- - - -
				-	12 —							- -
				-	-							- - - -
				52 -	-							- - - -
				_	13 —							
				51 –	_							- - -

BOREHOLE LOG

Borehole No.


1 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~66.3 m

CORED BOREHOLE LOG

Borehole No.

2 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Date: 28/9/16 Inclination: VERTICAL Datum: AHD

Plant Type: JK305 Bearing: N/A Logged/Checked By: T.P./P.R.

Pla	ant	Тур	e:	JK30	Bearing:	N/A			Logo	ged/Checked By: T.P./P.R.
vvater Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour structure, minor components.	, Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	DEFECT SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific Genera
		-			START CORING AT 4.27m					-
ON COMPLETION OF AUGERING		-62 - -			CORE LOSS 0.65m					- - - -
TURN		61 -	5-		SANDSTONE: fine grained, grey, with dark grey laminae, thinly bedded at 0-5°, and iron indurated bands.	DW	M			(4.93m) J. 48°, Un, R, IS (4.99m) J. 60°, P, S, IS (5.17m) J. SUBVERTICAL, P, R, IS (5.20m) Be, 0 - 5°, P, R, IS (5.28m) CS, 0 - 5°, 40 mm.t, HP: 200kPa (5.49m) CS, 0 - 5°, 40 mm.t, HP: 120kPa (5.55m) CS, 0°, 2 mm.t
100% RETURN		60 -	6-							(6.13m) XWS, 0°, 18 mm.t (6.25m) Be, 0 - 5°, P, CLAY INFILL (6.35m) Be, 0°, P, S, CLAY INFILL (6.51m) J, SUBVERTICAL, Un, R, IS (6.55m) J, 22°, Un, R, IS (6.57m) Be, 0°, P, R, IS
		- - -59-	7-		END OF BOREHOLE AT 7.30 m					— (6.82m) CS, 0 - 15°, 45 mm.t, HP: 170kPa — (6.89m) XWS, 0 ° 5, 5 mm.t — (6.97m) XWS, 0 ° 5°, 30 mm.t — (7.10m) CS, 0 - 5°, 18 mm.t, HP: 220kPa
		58 -	8-							- - - - - - - -
		57 —	9-	-						- - - - - - -
		56 -	10-	-						- - - - - - - -

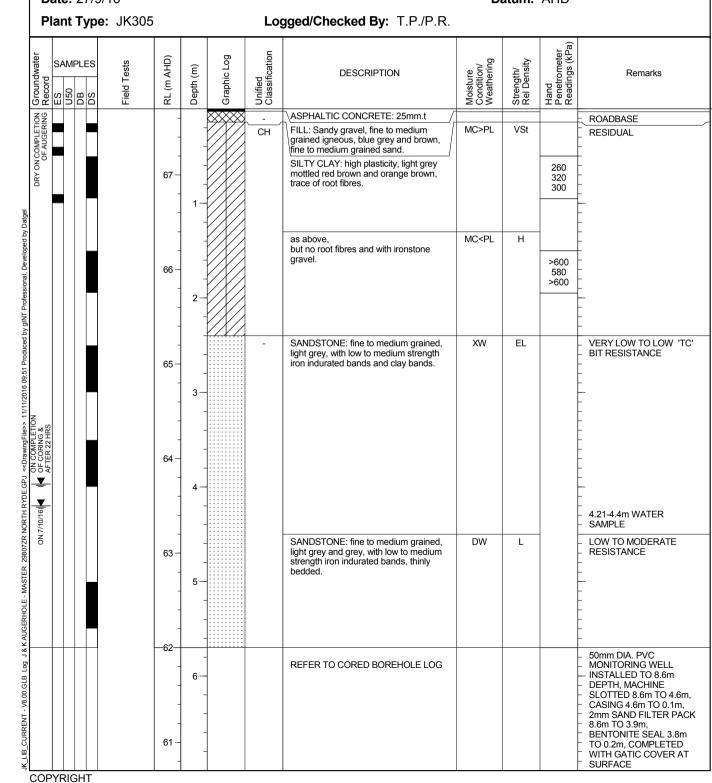
COPYRIGHT

BOREHOLE LOG

Borehole No.

7

1 / 2


Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~67.7 m

Date: 27/9/16 **Datum**: AHD

CORED BOREHOLE LOG

Borehole No.

7

2 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Date: 27/9/16 Inclination: VERTICAL Datum: AHD

Plant Type: JK305 Bearing: N/A Logged/Checked By: T.P./P.R.

PI	an	t Typ	e: J	K305	Bearing: N/	Ά			Logg	ed/Checked By: T.P./P.R.
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	DEFECT SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific General
oy Datgel		- - -62	6-		START CORING AT 5.70m SANDSTONE: fine to medium grained, light grey and grey, thinly bedded at 0-10°, with iron indurated bands and dark grey laminae.	DW	VL M	• 1 1 1		
BOREHOLE - MASTER 29807ZR NORTH RYDE.GPJ < <drawningfile>> 11/11/2016 09:51 Produced by gINT Professional, Developed by Datyel 100% RETURN</drawningfile>		- 61 - - -	7		SANDSTONE: fine to medium grained, light grey and grey. very high strength iron indurated band 6.72m-6.81m. low to moderate strength bands, 7.25m-7.34m, 7.52m-7.62m.	XW	EL			(6.18m) XWS, 0 - 5°, 90 mm.t (6.24m) J, 65°, P, R, IS
< <drawingfile>> 11/11/2016 09:</drawingfile>		60 — - - -	8-		SANDSTONE: fine to medium grained, light grey and grey, thinly bedded at 0-10°, with dark grey laminae.	DW	L-M	•		(7.64m) J, 45°, Un, R (7.75m) CS, 0 - 10°, 20 mm.t, HP: 270kPa (8.03m) XWS, 0 - 5°, 110 mm.t (8.36m) XWS, 0 - 10°, 90 mm.t (8.44m) J, 45°, Un, R (8.50m) CS, 0 - 5°, 10 mm.t (8.57m) XWS, 0 - 5°, 55 mm.t
29807ZR NORTH RYDE.GPJ		59 — - - -	9-		END OF BOREHOLE AT 8.60 m					
ORED BOREHOLE - MASTER		58 — - - -	10-							
JK_LIB_CURRENT - V8.00.GLB Log J.8.K CORED		57 — - - -	11 —							
		56 - -	- - - -							

COPYRIGHT

Borehole No. 8

1 / 1

BOREHOLE LOG

Client: CAPITAL INSIGHT PTY LTD

PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B Project:

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~63.3 m

	2900721					illou. SI INAL AUGEN		L. Jui		00.0 111
Date: 2	7/9/16						D	atum:	AHD	
Plant T	ype: JK305				Log	gged/Checked By: T.P./P.R.				
Record Line Line Line Line Line Line Line Line		RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
						ASPHALTIC CONCRETE: 100mm.t				_
		63 –	-		-	FILL: Gravelly sand, fine to medium grained, brown, fine grained igneous gravel.	D			-
	N > 18 8,18/ 100mm	=	-		CL	SANDY CLAY: low to medium plasticity,	MC <pl< td=""><td>(H)</td><td></td><td>- RESIDUAL - TOO FRIABLE FOR HP - TESTING</td></pl<>	(H)		- RESIDUAL - TOO FRIABLE FOR HP - TESTING
	REFUSAL /	-	1-	<i>///</i>		SANDSTONE: fine grained, light grey.	XW	EL		- -
		62 -	-			SANDSTONE: fine to medium grained, light grey, with iron indurated bands.	XW - DW	EL - VL		-
		61 -	2 - -							- - - - - - -
		60	3			as above, but with XW bands.	DW	VL-L		- - - - - - - - -
		59 — -	4 — - - -							-
		- 58 — -	5 — - - -			SANDSTONE: fine to medium grained, light grey, with high to very high strength iron indurated bands.		L		LOW 'TC' BIT RESISTANCE
-		- 57 —	6-					M - H		- MEDIUM TO HIGH RESISTANCE
		=	-					H - VH		- HIGH TO VERY HIGH - RESISTANCE - -
		-	-							- 6.0-6.5m WATER SAMPL

BOREHOLE LOG

Borehole No. 9

1 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~63.0 m

Date: 28/9/16 **Datum:** AHD

Date : 28/9/16							Datum: AHD						
Plant Type: JK308							Lo	gged/Checked By: A.F./P.R.					
Record	SAMP 090	PLES DS SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks	
						Δ Δ		CONCRETE: 160mm.t				8mm DIA.	
OF AUGERING							-	FILL: Gravelly sand, fine to coarse grained, brown, fine to medium grained	M			REINFORCEMENT, 30mm TOP COVER	
OF A				_			CL	igneous and sandstone gravel, trace of silt and brick fragments.	MC <pl< td=""><td>Н</td><td></td><td>- RESIDUAL</td></pl<>	Н		- RESIDUAL	
Š			N = 20 5,7,13	_	-			SANDY CLAY: medium plasticity, orange brown, fine grained sand, trace of ironstone gravel.			470 500 450	- - -	
				62	1			SANDSTONE: fine to medium grained, red grey, with clay seams and M strength iron indurated bands.	xw	EL		VERY LOW 'TC' BIT RESISTANCE WITH LOW TO MODERATE BANDS	
				-	-				DW	VL - L		- - - -	
on 6/10/16				59 — 58 —	3-							3.35-3.55m WATER SAMPLE	
				-	-			as above, but light grey and grey, without iron indurated bands.	SW	М		- MODERATE RESISTANCE - -	
				57 — - -	6			REFER TO CORED BOREHOLE LOG				- 50mm DIA. PVC - MONITORING WELL - INSTALLED TO 8.8m - DEPTH, MACHINE - SLOTTED 8.78m TO 2.8m - CASING 2.8m TO - SURFACE, 2mm SAND - FILTER PACK 8.8m TO - 1m, BENTONITE SEAL - 0.1m TO SURFACE, - COMPLETED WITH - STEEL GATIC COVER AT - SURFACE	

CORED BOREHOLE LOG

Borehole No. 9

2 / 2

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

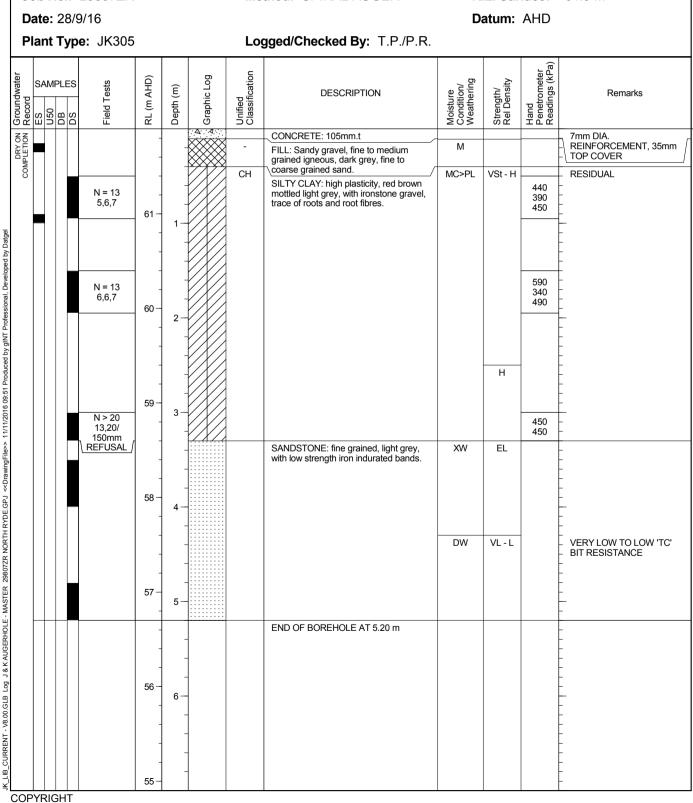
Date: 28/9/16 Inclination: VERTICAL Datum: AHD

ı ıaı	nt Ty	pe: 、	JK308	Bearing: N	/A				Logg	ed/Checked By: A.F./P.R.		
			_	CORE DESCRIPTION			INT LOAD RENGTH	DEFECT DETAILS				
Loss\Level	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, structure, minor components.	Weathering	Strength	8	INDEX I _s (50)	DEFECT SPACING (mm)	DESCRIPTION Type, inclination, thickness, planarity, roughness, coating. Specific Genera		
100% RETURN	56 -	- 6-		START CORING AT 5.60m INTERBEDDED SANDSTONE AND SHALE: fine to medium grained, brown grey, bedded at 5-10°. as above, but grey and light grey, with high strengh seams. SANDSTONE: fine grained, light grey, bedded at 5-10°.	DW XW DW DW	EL H				— (5.68m) Be, 5°, Un, R, IS — (6.00m) FRACTURED BAND 50mm.t — (6.10m) J, 85°, Un, R, IS — (6.17m) J, 70°, Un, R, IS — (7.52m) Be, 19°, Un, R, IS — (7.77m) Be, 5°, Un, R, IS — (7.77m) Be, 5°, Un, R, IS — (7.82m) CS, 5°, 60 mm.t — (8.11m) CS, 5°, 55 mm.t		
	54 -	9		END OF BOREHOLE AT 8.78 m		M				(8.20m - 8.46m) XWSx4, 15°, 3 mm.t		

COPYRIGHT

BOREHOLE LOG

Borehole No. 10


1 / 1

Client: CAPITAL INSIGHT PTY LTD

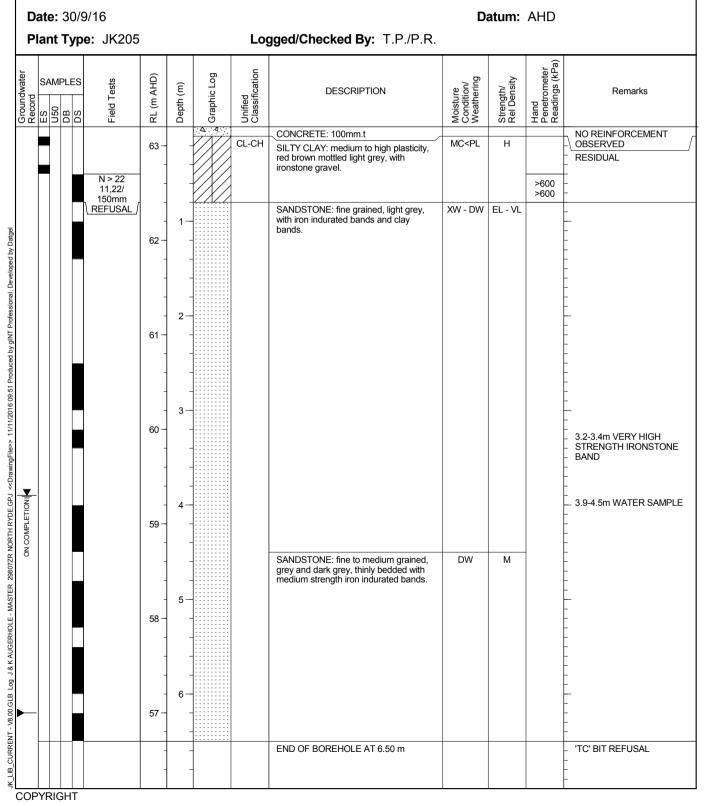
Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~61.9 m

BOREHOLE LOG

Borehole No.


1 / 1

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No.: 29807ZR Method: SPIRAL AUGER R.L. Surface: ~63.2 m

ENVIRONMENTAL INVESTIGATION SERVICES CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Borehole No.

12

1/1

Environmental logs are not to be used for geotechnical purposes

Client: CAPITAL INSIGHT PTY LTD

PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B **Project:**

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No. E29807KR Method: HAND AUGER **R.L. Surface:** \approx 66.5m

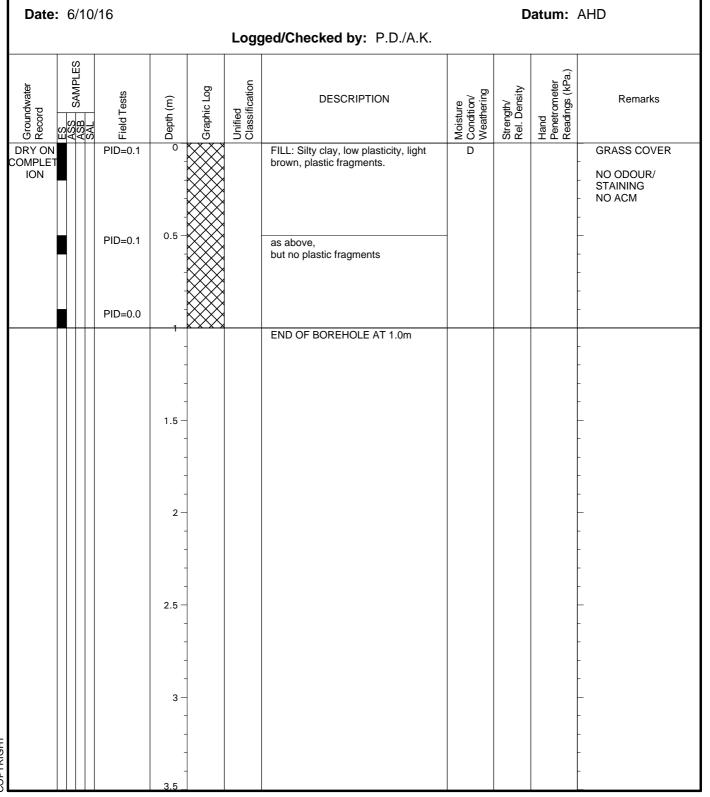
Date: 6	6/10/	/16					atum:	ım: AHD					
						Logged/Checked by: P.D./A.K.							
Ground	ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLET ION		PID=0.0 PID=0.0	0 0.5			FILL: Gravelly silty clay, low plasticity, light brown, fine grained sandstone gravel, orange brown.	D			NO ODOUR/ - STAINING NO ACM			
		2	1	XXX		END OF BOREHOLE AT 1.0m							
			1.5 — 1.5 — 1.5 — 2 — 2 — 3 — 3.5 — 3.5										

ENVIRONMENTAL INVESTIGATION SERVICES CONSULTING ENVIRONMENTAL ENGINEERS

1/1

ENVIRONMENTAL LOG

Borehole No. 13


Environmental logs are not to be used for geotechnical purposes

Client: CAPITAL INSIGHT PTY LTD

Project: PROPOSED NEW BUILDING & REFURBISHMENT OF BUILDINGS W6A & W6B

Location: MACQUARIE UNIVERSITY, NORTH RYDE, NSW

Job No. E29807KR Method: HAND AUGER **R.L. Surface:** ≈ 66.5m

EXPLANATORY NOTES - ENVIRONMENTAL LOGS

INTRODUCTION

These notes have been provided to supplement the environmental report with regards to drilling and field logging. Not all notes are necessarily relevant to all reports. Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies involve gathering and assimilating limited facts about these characteristics and properties in order to understand the ground on a particular site under certain conditions. These conditions are directly relevant only to the ground at the place where, and time when, the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below (note that unless stated in the report, the soil classification is based on a qualitative field assessment, not laboratory testing):

Soil Classification	Particle Size					
Clay	less than 0.002mm					
Silt	0.002 to 0.075mm					
Sand	0.075 to 2mm					
Gravel	2 to 60mm					

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as shown in the following table:

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 – 50
Firm	50 – 100
Stiff	100 – 200
Very Stiff	200 – 400
Hard	Greater than 400
Friable	Strength not attainable – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

DRILLING OR EXCAVATION METHODS

The following is a brief summary of drilling and excavation methods currently adopted by the Company, and some comments on their use and application. All except test pits and hand auger drilling require the use of a mechanical drilling rig.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descend into the pit. The depth of penetration is limited to approximately 3m for a backhoe and up to 6m for an excavator. Limitations of test pits include problems associated with disturbance and difficulty of reinstatement; and the consequent effects on nearby structures. Care must be taken if construction is to be carried out near test pit locations to either properly re-compact the backfill during construction, or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as fill, hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (e.g. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The locations of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

- In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as: N = 13 (4, 6, 7)
- In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as: N>30 (15, 30/40mm)

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid 60 tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "Nc" on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line"

variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open;
- A localised perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (e.g. bricks, concrete, plastic, slag/ash, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classifications and rocks strengths indicated on the environmental logs unless noted in the report.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, EIS should be notified immediately.

GRAPHIC LOG SYMBOLS FOR SOIL AND ROCKS

SOIL		ROCK		DEFEC	TS AND INCLUSIO
	FILL	්ලී :	CONGLOMERATE	77777	CLAY SEAM
***************************************	TOPSOIL		SANDSTONE		SHEARED OR CRUSHED SEAM
	CLAY (CL, CH)		SHALE	0000	BRECCIATED OR SHATTERED SEAM/ZONE
	SILT (ML, MH)		SILTSTONE, MUDSTONE, CLAYSTONE	4 4	IRONSTONE GRAVEL
	SAND (SP, SW)		LIMESTONE	KWWW	ORGANIC MATERIAL
ව රල ම ව දිට ව දිට	GRAVEL (GP, GW)		PHYLLITE, SCHIST	OTHE	R MATERIALS
	SANDY CLAY (CL, CH)		TUFF	700 S	CONCRETE
	SILTY CLAY (CL, CH)	不是	GRANITE, GABBRO		BITUMINOUS CONCRETE COAL
	CLAYEY SAND (SC)	* * * * * * * * * * * *	DOLERITE, DIORITE		COLLUVIUM
	SILTY SAND (SM)		BASALT, ANDESITE		
19/2	GRAVELLY CLAY (CL, CH)		QUARTZITE		
8 8 6	CLAYEY GRAVEL (GC)				
	SANDY SILT (ML)				
W. W. W	PEAT AND ORGANIC SOILS				

					ons on	Group Symbols	Typical Names	Information Required for Describing Soils			Laboratory Classification Criteria	
	Gravels More than half of coarse fraction is larger than 4 mm steve size	Clean gravels (little or no fines)	Wide range in grain size and substantial amounts of all intermediate particle sizes		G₩	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name: indicate ap- proximate percentages of sand and gravel: maximum size;		of gravel and sand from grain size tage of fines (fraction smaller than 75 grained soils are classified as follows: GW, GP, SW, SP GM, GC, SM, SC Borderline cases requiring use of dual symbols	$C_{\rm U} = \frac{D_{60}}{D_{10}}$ Greater than $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ Between	een I and 3	
	avels nalf of larger ieve si	Clean			range of sizes sizes missing	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	angularity, surface condition, and hardness of the coarse grains: local or geologic name		from particular sined as quiring	Not meeting all gradation re	quirements for GW
s rial is sizeb	Grae than Is ction is 4 mm s	s with	Nonplastic fi cedures see	nes (for ident	tification pro-	GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses		d sand raction are class W, SP M, SC ases red sols	"A" line, or PI less than 4	Above "A" line with PI between 4 and 7 are borderline cases
of mate	Mor	Gravels with fines (appreciable amount of fines)	Plastic fines (f	for identifications)	on procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation.	field identification	f fines (f ed soils: GP, S f, GC, S derline	Atterberg limits above "A" line, with PI greater than 7	requiring use of dual symbols
Coarse-grained soils More than half of material is larger than 75 µm sieve sizeb smallest particle visible to naked eve)	Sands More than half of coarse fraction is smaller than 4 mm sleve size	Clean sands (little or no fines)	Wide range in grain sizes and substantial amounts of all intermediate particle sizes		SW	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20% hard, angular gravel par-	under field ide	Determine percentages of gravel and sand from grain size curve Curve Depending on percentage of fines (fraction smaller than 75 µm sieve size) coarse grained soils are classified as follows: Less than 5% GW, GC, SW, SP More than 12% GM, GC, SM, SC 5% to 12% dual symbols	$C_{\text{U}} = \frac{D_{60}}{D_{10}}$ Greater than $C_{\text{C}} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ Between	6 en 1 and 3	
More large	More large large article alf of maller eve siz eve siz (little find find find find find find find find				range of sizes sizes missing	SP	Poorly graded sands, gravelly sands, little or no fines	ticles 12 mm maximum size; rounded and subangular sand grains coarse to fine, about	given un	percer on pe size) c nan 5% than 12	Not meeting all gradation re	equirements for SW
nallest	Sa re than ction is 4 mm t	Sands with fines (appreciable amount of fines)	Nonplastic fit cedures,	Nonplastic fines (for identification pro- cedures, see ML below)		SM	Silty sands, poorly graded sand- silt mixtures	15% non-plastic fines with low dry strength; well com- pacted and moist in place; alluvial sand; (SM)	the fractions as gi	termine curve spending um sieve Less th More 5% to	"A" line or PI less than	Above "A" line with PI between 4 and 7 are borderline cases
the	Mo	Sand B (appr amo			sc	Clayey sands, poorly graded sand-clay mixtures	andviai sailu, (5m)			Atterberg limits below "A" line with PI greater than 7	requiring use of dual symbols	
abou	Identification Procedures on Fraction Smaller than 380 µm Sieve Size					Ĕ						
	1 Dry Strength 1		Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				identifying	60 Comparin	g soils at equal liquid limit		
Finc-grained soils than half of material is <i>smaller</i> than 75 µm sieve size (The 75 µm sieve size is	s and clay	Silts and clays Jiquid limit Jess than 50		Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	curve in	2 40 Toughnes	s and dry strength increase asing plasticity index	
grained s f of mate δ μm siev (The 7	Silts liq les		Medium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses	grain size	Plasticity 20		0H
hal nn 7			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	Use	10 CL	OL OI	MH
More than	d clays limit than	Silts and clays liquid limit greater than 50		Slow to none	Slight to medium	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	mation on structure, stratifica- tion, consistency in undisturbed and remoulded states, moisture and drainage conditions		0 10	20 30 40 50 60 70	80 90 100
Ň	s and quid	8	High to very high	None	None High CH Inorganic clays of high plas- ticity, fat clays		Example:			Liquid limit Plasticity chart		
	Silt		Medium to high	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of		for labora	tory classification of fine	grained soils
Н	ighly Organic S	oils	Readily iden	tified by col and frequent	lour, odour,	Pt	Peat and other highly organic soils	fine sand; numerous vertical root holes; firm and dry in place; loess; (ML)				

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.

LOG SYMBOLS

LOG COLUMN	SYMBOL	DEFINITION						
		Standing water level. Time delay following completion of drilling may be shown.						
Groundwater Record	-c-	Extent of borehole collapse shortly after drilling.						
		Groundwater seepage into borehole or excavation noted during drilling or excavation.						
	ES	Soil sample taken over depth indicated, for environmental analysis.						
	U50 DB	Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated.						
Samples	DS	Small disturbed bag sample taken over depth indicated.						
	ASB	Soil sample taken over depth indicated, for asbestos screening.						
	ASS	Soil sample taken over depth indicated, for acid sulfate soil analysis.						
	SAL	Soil sample taken over depth indicated, for salinity analysis.						
	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual show blows per 150mm penetration. 'R' as noted below.						
	5	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual						
Field Tests	Nc = 7	figures show blows per 150mm penetration for 60 degree solid cone driven by SPT hammer.						
Field Tests		'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.						
	VNS = 25	Vana share reading in I-De of Hadrained Chara Chronath						
		Vane shear reading in kPa of Undrained Shear Strength.						
	PID = 100	Photoionisation detector reading in ppm (Soil sample heads pace test).						
Moisture (Cohesive Soils)	MC>PL	Moisture content estimated to be greater than plastic limit.						
(Coriesive Solis)	MC≈PL MC <pl< td=""><td colspan="6">Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.</td></pl<>	Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.						
(Cohesionless)	D	DRY - Runs freely through fingers.						
(20110010111000)	М	MOIST - Does not run freely but no free water visible on soil surface.						
	W	WET - Free water visible on soil surface.						
Strength (Consistency)	VS S	VERY SOFT – Unconfined compressive strength less than 25kPa SOFT – Unconfined compressive strength 25-5 0kPa						
Cohesive Soils	F	FIRM - Unconfined compressive strength 50-1 00kPa						
	St	STIFF - Unconfined compressive strength 100- 200kPa						
	VSt	VERY STIFF - Unconfined compressive strength 200- 400kPa						
	Н	HARD – Unconfined compressive strength greater than 400kPa						
	()	Bracketed symbol indicates estimated consistency based on tactile examination or other tests.						
Density Index/		Density Index (ID) Range (%) SPT ' N' Value Range (Blows/300mm)						
Relative Density	VL	Very Loose <15 0-4						
(Cohesionless Soils)	L	Loose 15-35 4-10						
	MD	Medium Dense 35-65 10-30						
	D	Dense 65-85 30-50						
	VD ()	Very Dense >85 >50 Bracketed symbol indicates estimated density based on ease of drilling or other tests.						
		, , , , , , , , , , , , , , , , , , , ,						
Hand Penetrometer Readings	300 250	Numbers indicate individual test results in kPa on representative undisturbed material unless noted otherwise						
Remarks	'V' bit	Hardened steel 'V' shaped bit.						
	'TC' bit	Tungsten carbide wing bit.						
	T ₆₀	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.						

LOG SYMBOLS CONTINUED

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining and Geomechanics Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	Is (50) MPa	FIELD GUIDE
Extremely Low:	EL	0.03	Easily remoulded by hand to a material with soil properties.
Very Low:	VL		May be crumbled in the hand. Sandstone is "sugary" and friable.
Low:	L	0.1	A piece of core 150 mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium Strength:	М	0.3	A piece of core 150 mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
High:	Н	3	A piece of core 150 mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
Very High:	VH	10	A piece of core 150 mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
Extremely High:	EH		A piece of core 150 mm long x 50mm dia. is very difficult to break with h and-held hammer . Rings when struck with a hammer.

ROCK STRENGTH

ABBREVIATION	DESCRIPTION	NOTES
Be	Bedding Plane Parting	Defect orientations measured relative to the normal to
CS	Clay Seam	(i.e. relative to horizontal for vertical holes)
J	Joint	
Р	Planar	
Un	Undulating	
S	Smooth	
R	Rough	
IS	Iron stained	
XWS	Extremely Weathered Seam	
Cr	Crushed Seam	
60t	Thickness of defect in millimetres	

Appendix C: Laboratory Report/s & COC Documents

SAMPLE AND CHAIN OF CUSTODY FORM FROM: TO: EIS E29807KR ENVIROLAB SERVICES PTY LTD EIS Job ENVIRONMENTAL 12 ASHI EY STREET INVESTIGATION Number **CHATSWOOD NSW 2067** SERVICES P: (02) 99106200 Date Results STANDARD REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: Attention: Priya Dass Sample Preserved in Esky on Ice Buildings W6A & W6B, Macquarie University, Macquarie Park Location: **Tests Required** Sampler: Sample Description Combo 3 Combo 6a Combo 6 **IRH/BTE** 8 Metals Asbesto PAHS BTEX Date Lab Sample Depth (m) PID Number Sampled Ref: G, A 0.1 Fill 28/09/2016 0.0-0.1 2 0.1 Fill 28/09/2016 BH1 0.2-0.3 3 Silty Clay 0 BH1 0.5-0.6 28/09/2016 0.3 0.0-0.1 28/09/2016 BH2 0.5 Silty Clay 28/09/2016 BH2 0.4-0.5 0.2 Fill 6 28/09/2016 внз 0.1-0.2 0.2 Silty Clay 28/09/2016 внз 0.7-0.8 P 0.1 Fill 0.05-0.15 27/09/2016 BH4 9 0 Fill 27/09/2016 BH4 0.4-0.5 10 0 Silty Clay 27/09/2016 BH4 0.9-1.0 0 Fill 11 BH5 0.05-0.15 28/09/2016 0.3 Silty Clay 12 28/09/2016 BH5 0.4-0.5 0.4 Silty Clay 13 28/09/2016 ВН5 0.9-1.0 0.2 Fill 28/09/2016 0.1-0.2 02 Sandy Clay 28/09/2016 вн6 0.7-0.95 Silty Clay 0.3 16 вн7 0.15-0.25 27/09/2016 0.2 Silty Clay 17 вн7 0.4-0.5 27/09/2016 0.4 Silty Clay 10 27/09/2016 вн7 0.9-1.0 19 0.3 Fill 30/09/2016 0.1-0.2 0.1 Sandy Clay 50 30/09/2016 вн8 0.4-0.5 0.1 Fill 0.2-0.3 21 28/09/2016 вн9 NIKOLAB 12 Ashley S. 0.1 Sandy Clay Chatswood NSW 2067 21 вн9 0.5-0.6 28/09/2016 Ph: (02) 9910 6200 2 0 Fill ob No: 154919 28/09/2016 BH10 0.15-0.25 0 Silty Clay 24 28/09/2016 BH10 0.9-1.0 Date Received: 07/10 25 Silty Clay 30/09/2016 BH11 0.1-0.2 ime Received: 16:30 eceived by: N-R 26 0 Silty Clay BH11 30/09/2016 0.4-0.5 27 Fill 0.3 6/10/2016 BH12 0.0-0.2 emp: Cool/Ambient Cooling: Ice/leepack 21 0.2 Fill 6/10/2016 0.5-0.6 **BH12** ecurity: Intact/Broken/None 0.2 Fill 29 6/10/2016 0.9-1.0 BH12 0.1 Fill 30 6/10/2016 BH13 0.0-0.2 31 0.1 Fill 6/10/2016 BH13 0.5-0.6 32 0.1 Fill 0.9-1.0 6/10/2016 **BH13** 33 DUPA 27/09/2016 34 30/09/2016 DUPB 35 30/09/2016 DUPC 36 30/09/2016 FR 37 ТВ 27/09/2016 27/09/2016 TS emarks (comments/detection limits required): Sample Containers

G - 250mg Glass Jar A - Ziplock Asbestos Bag P - Plastic Bag

Time:

Received By:

Date: 7/10/16

Relinquished By: Priya Dass

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Priya Dass

Sample Login Details					
Your Reference	E29807KR, Macquarie Park				
Envirolab Reference	154919				
Date Sample Received	07/10/2016				
Date Instructions Received	07/10/2016				
Date Results Expected to be Reported	14/10/2016				

Sample Condition								
Samples received in appropriate condition for analysis	YES							
No. of Samples Provided	1 water 36 soils							
Turnaround Time Requested	Standard							
Temperature on receipt (°C)	15.4							
Cooling Method	Ice							
Sampling Date Provided	YES							

Comments
Samples will be held for 1 month for water samples and 2 months for soil samples from date of
receipt of samples
missing TS

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au					

Sample and Testing Details on following page

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

Sample Id	vTRH(CG-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Asbestos ID - soils	BTEX in Water	On Hold
BH1-0.0-0.1	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark		
BH1-0.2-0.3										✓
BH1-0.5-0.6										✓
BH2-0.0-0.1	✓	✓	✓	✓	✓	✓	✓	✓		
BH2-0.4-0.5	✓	✓	✓				✓			
BH3-0.1-0.2	✓	✓	✓	✓	✓	✓	✓	✓		
BH3-0.7-0.8										✓
BH4-0.05-0.15	✓	✓	✓	✓	✓	✓	✓	✓		
BH4-0.4-0.5										✓
BH4-0.9-1.0										✓
BH5-0.05-0.15	\checkmark	✓	✓	✓	✓	✓	✓	✓		
BH5-0.4-0.5										√
BH5-0.9-1.0										✓
BH6-0.1-0.2	✓	✓	✓	✓	✓	✓	✓	✓		
BH6-0.7-0.95										✓
BH7-0.15-0.25	√	√	√	✓	✓	✓	√	✓		
BH7-0.4-0.5	✓	√	✓				✓			,
BH7-0.9-1.0		,		,	,	,		,		√
BH8-0.1-0.2	√	√	√	✓	√	✓	✓	√		
BH8-0.4-0.5								,		√
BH9-0.2-0.3	√	√	√	√	√	√	√	√		
BH9-0.5-0.6	√	√	√	,	,	,	√	,		
BH10-0.15- 0.25	√	√	√	√	√	√	√	√		
BH10-0.9-1.0	./	√	√				./			
BH11-0.1-0.2	\ \/	\ \/	\ \/	√	√	√	\ \/	√		
BH11-0.4-0.5	•	•	•	•	•	•	•	•		√
BH12-0.0-0.2	√	√	√	✓	√	√	✓	✓		•
BH12-0.5-0.6	Ť									√
BH12-0.9-1.0	√	√	✓				√			
BH13-0.0-0.2	Ť		Ť							√
BH13-0.5-0.6	√	√	√	✓	√	✓	✓	√		-
BH13-0.9-1.0										✓
DUPA	√	√	✓	√	√	✓	✓			
DUPB	✓	✓	✓	✓	√	✓	✓			
DUPC	√	✓	√	√	√	✓	✓			
FR									✓	
TB	✓									

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 154919

Client:

Environmental Investigation Services

PO Box 976 North Ryde BC NSW 1670

Attention: Priya Dass

Sample log in details:

Your Reference: E29807KR, Macquarie Park

No. of samples: 1 water 36 soils

Date samples received / completed instructions received 07/10/16 / 07/10/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 14/10/16 / 14/10/16

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

vTRH(C6-C10)/BTEXN in Soil Our Reference:	UNITS	154919-1	154919-4	154919-5	154919-6	154919-8
	UNITS					
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth Date Sampled Type of sample		0.0-0.1 28/09/2016 Soil	0.0-0.1 28/09/2016 Soil	0.4-0.5 28/09/2016 Soil	0.1-0.2 28/09/2016 Soil	0.05-0.15 27/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	83	81	83	85	81

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference	UNITS	154919-11 BH5	154919-14 BH6	154919-16 BH7	154919-17 BH7	154919-19 BH8
Depth Date Sampled Type of sample		0.05-0.15 28/09/2016 Soil	0.1-0.2 28/09/2016 Soil	0.15-0.25 27/09/2016 Soil	0.4-0.5 27/09/2016 Soil	0.1-0.2 30/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	84	80	77	76	82

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	154919-21	154919-22	154919-23	154919-24	154919-25
Your Reference		BH9	BH9	BH10	BH10	BH11
	-					
Depth		0.2-0.3	0.5-0.6	0.15-0.25	0.9-1.0	0.1-0.2
Date Sampled		28/09/2016	28/09/2016	28/09/2016	28/09/2016	30/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	80	77	77	80	82

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference	UNITS	154919-27 BH12	154919-29 BH12	154919-31 BH13	154919-33 DUPA	154919-34 DUPB
Depth Date Sampled Type of sample		0.0-0.2 6/10/2016 Soil	0.9-1.0 6/10/2016 Soil	0.5-0.6 6/10/2016 Soil	- 28/09/2016 Soil	- 30/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	82	81	77	83	79

vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	154919-37	154919-38
Your Reference		ТВ	TS
	-		
Depth		-	-
Date Sampled		27/09/2016	27/09/2016
Type of sample		Soil	soil
Date extracted	-	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016
TRHC6 - C9	mg/kg	<25	[NA]
TRHC6 - C10	mg/kg	<25	[NA]
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	[NA]
Benzene	mg/kg	<0.2	98%
Toluene	mg/kg	<0.5	98%
Ethylbenzene	mg/kg	<1	99%
m+p-xylene	mg/kg	<2	99%
o-Xylene	mg/kg	<1	100%
naphthalene	mg/kg	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	84	77

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	154919-1	154919-4	154919-5	154919-6	154919-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth Date Sampled Type of sample	-	0.0-0.1 28/09/2016 Soil	0.0-0.1 28/09/2016 Soil	0.4-0.5 28/09/2016 Soil	0.1-0.2 28/09/2016 Soil	0.05-0.15 27/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	72	72	73	70	71

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	154919-11	154919-14	154919-16	154919-17	154919-19
Your Reference		BH5	BH6	BH7	BH7	BH8
	-					
Depth		0.05-0.15	0.1-0.2	0.15-0.25	0.4-0.5	0.1-0.2
Date Sampled		28/09/2016	28/09/2016	27/09/2016	27/09/2016	30/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	200
TRHC29 - C36	mg/kg	240	<100	<100	<100	710
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	230	<100	<100	<100	670
TRH>C34-C40	mg/kg	330	<100	<100	<100	870
Surrogate o-Terphenyl	%	74	70	71	71	75

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	154919-21	154919-22	154919-23	154919-24	154919-25
Your Reference		ВН9	BH9	BH10	BH10	BH11
Depth Date Sampled Type of sample	-	0.2-0.3 28/09/2016 Soil	0.5-0.6 28/09/2016 Soil	0.15-0.25 28/09/2016 Soil	0.9-1.0 28/09/2016 Soil	0.1-0.2 30/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	70	79	73	70	70

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	154919-27	154919-29	154919-31	154919-33	154919-34
Your Reference		BH12	BH12	BH13	DUPA	DUPB
	-					
Depth		0.0-0.2	0.9-1.0	0.5-0.6	-	-
Date Sampled		6/10/2016	6/10/2016	6/10/2016	28/09/2016	30/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	71	74	71	74	69

PAHs in Soil						
Our Reference:	UNITS	154919-1	154919-4	154919-5	154919-6	154919-8
Your Reference		BH1	BH2	BH2	BH3	BH4
	-					
Depth		0.0-0.1	0.0-0.1	0.4-0.5	0.1-0.2	0.05-0.15
Date Sampled		28/09/2016	28/09/2016	28/09/2016	28/09/2016	27/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	96	97	109	104	95

PAHs in Soil						
Our Reference:	UNITS	154919-11	154919-14	154919-16	154919-17	154919-19
Your Reference		BH5	BH6	BH7	BH7	BH8
	-					
Depth		0.05-0.15	0.1-0.2	0.15-0.25	0.4-0.5	0.1-0.2
Date Sampled		28/09/2016	28/09/2016	27/09/2016	27/09/2016	30/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	=	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.2	<0.1	<0.1	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	0.32	NIL(+)VE	NIL(+)VE	NIL(+)VE	0.17
Surrogate p-Terphenyl-d14	%	105	102	99	102	97

PAHs in Soil						
Our Reference:	UNITS	154919-21	154919-22	154919-23	154919-24	154919-25
Your Reference		BH9	BH9	BH10	BH10	BH11
	-	-	-		-	
Depth		0.2-0.3	0.5-0.6	0.15-0.25	0.9-1.0	0.1-0.2
Date Sampled		28/09/2016	28/09/2016	28/09/2016	28/09/2016	30/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.8	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.9	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.8	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.5	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	5.7	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	95	103	104	102	99

PAHs in Soil						
Our Reference:	UNITS	154919-27	154919-29	154919-31	154919-33	154919-34
Your Reference		BH12	BH12	BH13	DUPA	DUPB
	-					
Depth		0.0-0.2	0.9-1.0	0.5-0.6	-	-
Date Sampled Type of sample		6/10/2016 Soil	6/10/2016 Soil	6/10/2016 Soil	28/09/2016 Soil	30/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.07	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	0.40	0.11	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	98	100	100	96	95

Organochlorine Pesticides in soil						
Our Reference:	UNITS	154919-1	154919-4	154919-6	154919-8	154919-11
Your Reference		BH1	BH2	ВН3	BH4	BH5
Donath	-	0.0-0.1	0.0-0.1	0.1-0.2	0.05-0.15	0.05-0.15
Depth Date Sampled		28/09/2016	28/09/2016	28/09/2016	27/09/2016	28/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	12/10/2016
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	90	88	85	91

Organochlorine Pesticides in soil						
Our Reference:	UNITS	154919-14	154919-16	154919-19	154919-21	154919-23
Your Reference		BH6	BH7	BH8	BH9	BH10
Donath	-	0.4.0.0	0.45.0.05	0.4.0.0	0.0.0	0.45.0.05
Depth Date Sampled		0.1-0.2 28/09/2016	0.15-0.25 27/09/2016	0.1-0.2 30/09/2016	0.2-0.3 28/09/2016	0.15-0.25 28/09/2016
Type of sample		26/09/2010 Soil	27/09/2010 Soil	Soil	26/09/2010 Soil	Soil
Date extracted	_	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	_	11/10/2016	11/10/2016	12/10/2016	11/10/2016	11/10/2016
HCB	malka	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg		-	-	-	
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	83	89	88	85	85

Organochlorine Pesticides in soil						
Our Reference:	UNITS	154919-25	154919-27	154919-31	154919-33	154919-34
Your Reference		BH11	BH12	BH13	DUPA	DUPB
Depth	-	0.1-0.2	0.0-0.2	0.5-0.6		_
Date Sampled		30/09/2016	6/10/2016	6/10/2016	28/09/2016	30/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	83	87	82	83	82

Organophosphorus Pesticides						
Our Reference:	UNITS	154919-1	154919-4	154919-6	154919-8	154919-11
Your Reference		BH1	BH2	BH3	BH4	BH5
Depth Date Sampled Type of sample		0.0-0.1 28/09/2016 Soil	0.0-0.1 28/09/2016 Soil	0.1-0.2 28/09/2016 Soil	0.05-0.15 27/09/2016 Soil	0.05-0.15 28/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	12/10/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	90	88	85	91

Organophosphorus Pesticides						
Our Reference:	UNITS	154919-14	154919-16	154919-19	154919-21	154919-23
Your Reference		BH6	BH7	BH8	BH9	BH10
Depth		0.1-0.2	0.15-0.25	0.1-0.2	0.2-0.3	0.15-0.25
Date Sampled		28/09/2016	27/09/2016	30/09/2016	28/09/2016	28/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	12/10/2016	11/10/2016	11/10/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	83	89	88	85	85

Organophosphorus Pesticides	LINITO	454040.05	454040.07	454040.04	454040.00	454040.04
Our Reference:	UNITS	154919-25	154919-27	154919-31	154919-33	154919-34
Your Reference		BH11	BH12	BH13	DUPA	DUPB
Depth		0.1-0.2	0.0-0.2	0.5-0.6	-	-
Date Sampled		30/09/2016	6/10/2016	6/10/2016	28/09/2016	30/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	83	87	82	83	82

PCBs in Soil						
Our Reference:	UNITS	154919-1	154919-4	154919-6	154919-8	154919-11
Your Reference		BH1	BH2	BH3	BH4	BH5
Depth Date Sampled Type of sample	-	0.0-0.1 28/09/2016 Soil	0.0-0.1 28/09/2016 Soil	0.1-0.2 28/09/2016 Soil	0.05-0.15 27/09/2016 Soil	0.05-0.15 28/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	12/10/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	89	90	88	85	91

PCBs in Soil						
Our Reference:	UNITS	154919-14	154919-16	154919-19	154919-21	154919-23
Your Reference		BH6	BH7	BH8	BH9	BH10
Depth Date Sampled Type of sample	-	0.1-0.2 28/09/2016 Soil	0.15-0.25 27/09/2016 Soil	0.1-0.2 30/09/2016 Soil	0.2-0.3 28/09/2016 Soil	0.15-0.25 28/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	12/10/2016	11/10/2016	11/10/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	83	89	88	85	85

PCBs in Soil						
Our Reference:	UNITS	154919-25	154919-27	154919-31	154919-33	154919-34
Your Reference		BH11	BH12	BH13	DUPA	DUPB
Depth Date Sampled Type of sample	-	0.1-0.2 30/09/2016 Soil	0.0-0.2 6/10/2016 Soil	0.5-0.6 6/10/2016 Soil	- 28/09/2016 Soil	- 30/09/2016 Soil
Date extracted	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	83	87	82	83	82

Acid Extractable metals in soil						
Our Reference:	UNITS	154919-1	154919-4	154919-5	154919-6	154919-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth Date Sampled Type of sample	-	0.0-0.1 28/09/2016 Soil	0.0-0.1 28/09/2016 Soil	0.4-0.5 28/09/2016 Soil	0.1-0.2 28/09/2016 Soil	0.05-0.15 27/09/2016 Soil
Date prepared	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Arsenic	mg/kg	11	9	7	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	41	35	21	4	63
Copper	mg/kg	13	16	9	190	19
Lead	mg/kg	29	40	18	6	12
Mercury	mg/kg	0.1	0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	3	1	13	54
Zinc	mg/kg	49	57	11	36	43

Acid Extractable metals in soil						
Our Reference:	UNITS	154919-11	154919-14	154919-16	154919-17	154919-19
Your Reference		BH5	BH6	BH7	BH7	BH8
Depth Date Sampled Type of sample	-	0.05-0.15 28/09/2016 Soil	0.1-0.2 28/09/2016 Soil	0.15-0.25 27/09/2016 Soil	0.4-0.5 27/09/2016 Soil	0.1-0.2 30/09/2016 Soil
Date prepared	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Arsenic	mg/kg	<4	<4	8	10	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	19	18	30	34	12
Copper	mg/kg	36	67	4	<1	81
Lead	mg/kg	2	3	22	22	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	39	49	7	1	7
Zinc	mg/kg	29	32	36	4	30

Acid Extractable metals in soil						
Our Reference:	UNITS	154919-21	154919-22	154919-23	154919-24	154919-25
Your Reference		BH9	BH9	BH10	BH10	BH11
Depth Date Sampled Type of sample	-	0.2-0.3 28/09/2016 Soil	0.5-0.6 28/09/2016 Soil	0.15-0.25 28/09/2016 Soil	0.9-1.0 28/09/2016 Soil	0.1-0.2 30/09/2016 Soil
Date prepared	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Arsenic	mg/kg	<4	6	10	8	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	29	28	77	26	21
Copper	mg/kg	71	<1	16	1	7
Lead	mg/kg	49	9	30	15	19
Mercury	mg/kg	0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	61	1	29	<1	4
Zinc	mg/kg	82	1	61	4	24

Acid Extractable metals in soil						
Our Reference:	UNITS	154919-27	154919-29	154919-31	154919-33	154919-34
Your Reference		BH12	BH12	BH13	DUPA	DUPB
Depth Date Sampled Type of sample	-	0.0-0.2 6/10/2016 Soil	0.9-1.0 6/10/2016 Soil	0.5-0.6 6/10/2016 Soil	- 28/09/2016 Soil	- 30/09/2016 Soil
Date prepared	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Arsenic	mg/kg	11	9	8	8	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	38	37	29	44	24
Copper	mg/kg	11	16	9	10	8
Lead	mg/kg	34	40	28	19	24
Mercury	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	2	3	3	23	3
Zinc	mg/kg	69	92	52	26	32

Acid Extractable metals in soil		
Our Reference:	UNITS	154919-39
Your Reference		BH10 -
	-	[TRIPLICATE]
Depth		0.15-0.25
Date Sampled		28/09/2016
Type of sample		Soil
Date prepared	-	10/10/2016
Date analysed	-	10/10/2016
Arsenic	mg/kg	8
Cadmium	mg/kg	<0.4
Chromium	mg/kg	91
Copper	mg/kg	23
Lead	mg/kg	26
Mercury	mg/kg	<0.1
Nickel	mg/kg	53
Zinc	mg/kg	59

	Ciletit	Reference.	E29007 KK, IVIA	cquarie Fark		
Moisture						
Our Reference:	UNITS	154919-1	154919-4	154919-5	154919-6	154919-8
Your Reference		BH1	BH2	BH2	BH3	BH4
	-				0.4.0.0	
Depth		0.0-0.1	0.0-0.1	0.4-0.5	0.1-0.2	0.05-0.15
Date Sampled		28/09/2016	28/09/2016	28/09/2016	28/09/2016	27/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
Moisture	%	18	16	16	6.4	18
						T
Moisture	—					
Our Reference:	UNITS	154919-11	154919-14	154919-16	154919-17	154919-19
Your Reference		BH5	BH6	BH7	BH7	BH8
Depth	-	0.05-0.15	0.1-0.2	0.15-0.25	0.4-0.5	0.1-0.2
Date Sampled		28/09/2016	28/09/2016	27/09/2016	27/09/2016	30/09/2016
Type of sample		28/09/2010 Soil	26/09/2010 Soil	Soil	Soil	Soil
Date prepared	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
Moisture	%	3.7	12	22	20	7.4
Moisture						T
Our Reference:	UNITS	154919-21	154919-22	154919-23	154919-24	154919-25
Your Reference	ONTO	BH9	BH9	BH10	BH10	BH11
Tour Reference	-	Di 19	Dila	BITTO	БПО	DITT
Depth		0.2-0.3	0.5-0.6	0.15-0.25	0.9-1.0	0.1-0.2
Date Sampled		28/09/2016	28/09/2016	28/09/2016	28/09/2016	30/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/10/2016	10/10/2016	10/10/2016	10/10/2016	10/10/2016
Date analysed	-	11/10/2016	11/10/2016	11/10/2016	11/10/2016	11/10/2016
Moisture	%	7.9	15	20	15	12
		<u> </u>	_		_	
Moisture						
Our Reference:	UNITS	154919-27	154919-29	154919-31	154919-33	154919-34
Your Reference		BH12	BH12	BH13	DUPA	DUPB
	-					
Depth		0.0-0.2	0.9-1.0	0.5-0.6	-	-
Date Sampled		0/40/0040	6/10/2016	6/10/2016	28/09/2016	30/09/2016
		6/10/2016				
Type of sample		Soil	Soil	Soil	Soil	Soil
Type of sample Date prepared	-					Soil 10/10/2016
	-	Soil	Soil	Soil	Soil	

Asbestos ID - soils						
Our Reference:	UNITS	154919-1	154919-4	154919-6	154919-8	154919-11
Your Reference		BH1	BH2	BH3	BH4	BH5
	-					
Depth		0.0-0.1	0.0-0.1	0.1-0.2	0.05-0.15	0.05-0.15
Date Sampled		28/09/2016	28/09/2016	28/09/2016	27/09/2016	28/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/10/2016	12/10/2016	12/10/2016	12/10/2016	12/10/2016
Sample mass tested	g	Approx. 25g	Approx. 45g	Approx. 40g	Approx. 60g	Approx. 20g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown clayey soil	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils				T	T	
Our Reference:	UNITS	154919-14	154919-16	154919-19	154919-21	154919-23
Your Reference		BH6	BH7	BH8	BH9	BH10
Tour Notorolloc	-	Brio	5117	Bilo	Di lo	Billo
Depth		0.1-0.2	0.15-0.25	0.1-0.2	0.2-0.3	0.15-0.25
Date Sampled		28/09/2016	27/09/2016	30/09/2016	28/09/2016	28/09/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/10/2016	12/10/2016	12/10/2016	12/10/2016	12/10/2016
Sample mass tested	g	Approx. 65g	Approx. 40g	Approx. 35g	Approx. 20g	Approx. 40g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils Our Reference:	UNITS	154919-25	154919-27	154919-31
Your Reference		BH11	BH12	BH13
Depth		0.1-0.2	0.0-0.2	0.5-0.6
Date Sampled Type of sample		30/09/2016 Soil	6/10/2016 Soil	6/10/2016 Soil
Date analysed	-	12/10/2016	12/10/2016	12/10/2016
Sample mass tested	g	Approx. 25g	Approx. 10g	Approx. 15g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

E29807KR, Macquarie Park **Client Reference:**

BTEX in Water		
Our Reference:	UNITS	154919-36
Your Reference		FR
	-	
Depth		-
Date Sampled		30/09/2016
Type of sample		water
Date extracted	-	11/10/2016
Date analysed	-	11/10/2016
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Surrogate Dibromofluoromethane	%	108
Surrogate toluene-d8	%	96
Surrogate 4-BFB	%	111

Revision No: R 00

Envirolab Reference: 154919

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" td="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

Envirolab Reference: 154919 Revision No: R 00

Client Reference: E29807KR, Macquarie Park QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II % RPD Soil 10/10/2 154919-1 10/10/2016 || 10/10/2016 LCS-10 10/10/2016 Date extracted 016 Date analysed 11/10/2 154919-1 11/10/2016 || 11/10/2016 LCS-10 11/10/2016 016 TRHC6 - C9 mg/kg 25 Org-016 <25 154919-1 <25||<25 LCS-10 91% 25 Org-016 <25 154919-1 <25||<25 LCS-10 91% TRHC6 - C10 mg/kg LCS-10 76% Benzene 0.2 Org-016 < 0.2 154919-1 <0.2 | | <0.2 mg/kg Toluene mg/kg 0.5 Org-016 < 0.5 154919-1 <0.5||<0.5 LCS-10 90% Ethylbenzene 1 Org-016 <1 154919-1 <1||<1 LCS-10 96% mg/kg 2 LCS-10 97% m+p-xylene Org-016 <2 154919-1 <2||<2 mg/kg o-Xylene 1 Org-016 <1 154919-1 <1||<1 LCS-10 98% mg/kg naphthalene 1 Org-014 <1 154919-1 <1||<1 [NR] [NR] mg/kg % Org-016 85 154919-1 83 | 81 | RPD: 2 LCS-10 82% Surrogate aaa-Trifluorotoluene QUALITYCONTROL UNITS PQL Blank METHOD Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II % RPD 10/10/2 154919-1 10/10/2016 || 10/10/2016 LCS-10 10/10/2016 Date extracted 016 11/10/2 154919-1 11/10/2016 || 11/10/2016 LCS-10 11/10/2016 Date analysed 016 TRHC₁₀ - C₁₄ mg/kg 50 Org-003 <50 154919-1 <50 || <50 LCS-10 93% TRHC₁₅ - C₂₈ mg/kg 100 Org-003 <100 154919-1 <100||<100 LCS-10 92% Org-003 LCS-10 TRHC29 - C36 mg/kg 100 <100 154919-1 <100 || <100 82% TRH>C10-C16 mg/kg 50 Org-003 <50 154919-1 <50||<50 LCS-10 93% TRH>C16-C34 mg/kg 100 Org-003 <100 154919-1 <100 | | <100 LCS-10 92% LCS-10 TRH>C34-C40 mg/kg 100 Org-003 <100 154919-1 <100 | | <100 82% Surrogate o-Terphenyl % Org-003 83 154919-1 72 | | 72 | | RPD: 0 LCS-10 87% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II % RPD Date extracted 10/10/2 154919-1 10/10/2016 || 10/10/2016 LCS-10 10/10/2016 016 10/10/2 10/10/2016 || 10/10/2016 Date analysed 154919-1 LCS-10 10/10/2016 016 Naphthalene 0.1 Org-012 <0.1 154919-1 <0.1||<0.1 LCS-10 112% mg/kg [NR] Acenaphthylene 0.1 Org-012 <0.1 154919-1 <0.1 || <0.1 [NR] mg/kg Acenaphthene 0.1 Org-012 <0.1 154919-1 <0.1||<0.1 [NR] [NR] mg/kg Fluorene 0.1 Org-012 <0.1 154919-1 <0.1||<0.1 LCS-10 117% mg/kg LCS-10 102% Phenanthrene 0.1 Org-012 <0.1 154919-1 <0.1||<0.1 mg/kg Anthracene 0.1 Org-012 <0.1 154919-1 <0.1||<0.1 [NR] [NR] mg/kg Fluoranthene 0.1 Org-012 <0.1 154919-1 LCS-10 116% mg/kg <0.1||<0.1 LCS-10 Pyrene 0.1 Org-012 <0.1 154919-1 119% mg/kg <0.1 || <0.1 Benzo(a)anthracene 0.1 Org-012 <0.1 154919-1 <0.1||<0.1 [NR] [NR] mg/kg Chrysene 0.1 Org-012 154919-1 [NR] mg/kg < 0.1 <0.1 || <0.1 [NR] Benzo(b,j 0.2 Org-012 <0.2 154919-1 [NR] [NR] mg/kg <0.2 | | <0.2 +k)fluoranthene

Envirolab Reference: 154919 Revision No: R 00

Client Reference: E29807KR, Macquarie Park PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD 0.05 Org-012 < 0.05 154919-1 <0.05||<0.05 LCS-10 117% Benzo(a)pyrene mg/kg [NR] Indeno(1,2,3-c,d)pyrene mg/kg 0.1 Org-012 <0.1 154919-1 <0.1||<0.1 [NR] 0.1 Org-012 [NR] Dibenzo(a,h)anthracene mg/kg <0.1 154919-1 <0.1 || <0.1 [NR] Org-012 Benzo(g,h,i)perylene mg/kg 0.1 <0.1 154919-1 <0.1 || <0.1 [NR] [NR] Org-012 98 154919-1 96||99||RPD:3 LCS-10 130% % Surrogate p-Terphenyld14 QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Organochlorine Base II Duplicate II %RPD Pesticides in soil Date extracted 10/10/2 154919-1 10/10/2016 || 10/10/2016 LCS-10 10/10/2016 016 11/10/2016 || 11/10/2016 12/10/2 154919-1 LCS-10 11/10/2016 Date analysed 016 **HCB** Org-005 [NR] mg/kg 0.1 <0.1 154919-1 <0.1||<0.1 [NR] alpha-BHC Org-005 LCS-10 121% mg/kg 0.1 <0.1 154919-1 <0.1||<0.1 gamma-BHC mg/kg 0.1 Org-005 <0.1 154919-1 <0.1 || <0.1 [NR] [NR] Org-005 LCS-10 beta-BHC mg/kg 0.1 <0.1 154919-1 <0.1||<0.1 94% LCS-10 106% Heptachlor mg/kg 0.1 Org-005 <0.1 154919-1 <0.1||<0.1 delta-BHC 0.1 Org-005 <0.1 154919-1 [NR] [NR] mg/kg <0.1||<0.1 Org-005 LCS-10 Aldrin mg/kg 0.1 <0.1 154919-1 <0.1||<0.1 98% Heptachlor Epoxide mg/kg 0.1 Org-005 <0.1 154919-1 <0.1||<0.1 LCS-10 99% gamma-Chlordane 0.1 Org-005 <0.1 154919-1 [NR] [NR] mg/kg <0.1||<0.1 Org-005 alpha-chlordane mg/kg 0.1 <0.1 154919-1 <0.1||<0.1 [NR] [NR] Endosulfan I mg/kg 0.1 Org-005 <0.1 154919-1 <0.1||<0.1 [NR] [NR] pp-DDE 0.1 Org-005 <0.1 154919-1 LCS-10 96% mg/kg <0.1||<0.1 LCS-10 Dieldrin mg/kg 0.1 Org-005 <0.1 154919-1 <0.1||<0.1 106% Endrin 0.1 Org-005 <0.1 154919-1 <0.1||<0.1 LCS-10 108% mg/kg LCS-10 105% pp-DDD mg/kg 0.1 Org-005 <0.1 154919-1 <0.1 || <0.1 Endosulfan II mg/kg 0.1 Org-005 <0.1 154919-1 <0.1||<0.1 [NR] [NR] pp-DDT 0.1 Org-005 <0.1 154919-1 <0.1||<0.1 [NR] [NR] mg/kg <0.1||<0.1 Endrin Aldehyde mg/kg 0.1 Org-005 <0.1 154919-1 [NR] [NR] Endosulfan Sulphate mg/kg 0.1 Org-005 <0.1 154919-1 <0.1||<0.1 LCS-10 104%

Envirolab Reference: 154919 Revision No: R 00

mg/kg

%

0.1

Org-005

Org-005

<0.1

87

154919-1

154919-1

<0.1||<0.1

89 | 89 | RPD: 0

[NR]

LCS-10

Methoxychlor

Surrogate TCMX

[NR]

124%

Client Reference: E29807KR, Macquarie Park PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Organophosphorus Base II Duplicate II % RPD **Pesticides** Date extracted 10/10/2 154919-1 10/10/2016 || 10/10/2016 LCS-10 10/10/2016 016 Date analysed 12/10/2 154919-1 11/10/2016 || 11/10/2016 LCS-10 11/10/2016 016 Azinphos-methyl mg/kg 0.1 Org-008 <0.1 154919-1 <0.1||<0.1 [NR] [NR] (Guthion) Org-008 Bromophos-ethyl mg/kg 0.1 <0.1 154919-1 <0.1||<0.1 [NR] [NR] Org-008 LCS-10 88% Chlorpyriphos mg/kg 0.1 <0.1 154919-1 <0.1||<0.1 Chlorpyriphos-methyl mg/kg 0.1 Org-008 <0.1 154919-1 <0.1||<0.1 [NR] [NR] Diazinon 0.1 Org-008 <0.1 154919-1 <0.1||<0.1 [NR] [NR] mg/kg 107% Dichlorvos 0.1 Org-008 <0.1 154919-1 <0.1||<0.1 LCS-10 mg/kg Dimethoate mg/kg 0.1 Org-008 <0.1 154919-1 <0.1||<0.1 [NR] [NR] **Ethion** 0.1 Org-008 <0.1 154919-1 <0.1||<0.1 LCS-10 119% mg/kg Fenitrothion 0.1 Org-008 <0.1 154919-1 <0.1||<0.1 LCS-10 104% mg/kg Malathion 0.1 Org-008 <0.1 154919-1 <0.1||<0.1 LCS-10 94% mg/kg Parathion 0.1 Org-008 154919-1 LCS-10 117% mg/kg <0.1 <0.1||<0.1 Ronnel 0.1 Org-008 <0.1 154919-1 LCS-10 94% mg/kg <0.1 || <0.1 % Org-008 87 154919-1 89 | 89 | RPD: 0 LCS-10 92% Surrogate TCMX QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PCBs in Soil Base II Duplicate II % RPD 10/10/2 Date extracted 154919-1 10/10/2016 || 10/10/2016 LCS-10 10/10/2016 016 12/10/2 11/10/2016 || 11/10/2016 Date analysed 154919-1 LCS-10 11/10/2016 016 Aroclor 1016 mg/kg 0.1 Org-006 <0.1 154919-1 <0.1||<0.1 [NR] [NR] Aroclor 1221 mg/kg 0.1 Org-006 <0.1 154919-1 <0.1 || <0.1 [NR] [NR] Aroclor 1232 mg/kg 0.1 Org-006 <0.1 154919-1 <0.1||<0.1 [NR] [NR] Aroclor 1242 0.1 Org-006 <0.1 154919-1 <0.1||<0.1 [NR] [NR] mg/kg Aroclor 1248 mg/kg 0.1 Org-006 <0.1 154919-1 <0.1 || <0.1 [NR] [NR] Aroclor 1254 mg/kg 0.1 Org-006 <0.1 154919-1 <0.1||<0.1 LCS-10 100% 154919-1 Aroclor 1260 0.1 Org-006 <0.1 <0.1||<0.1 [NR] [NR] mg/kg

Envirolab Reference: 154919 Revision No: R 00

%

Surrogate TCLMX

Org-006

87

154919-1

89 | 89 | RPD: 0

92%

LCS-10

	_		ient Referenc			cquarie Park		,	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Acid Extractable metals in soil					OH	Base II Duplicate II %RPD		Recovery	
Date prepared	-			10/10/2 016	154919-1	10/10/2016 10/10/2016	LCS-10	10/10/2016	
Date analysed	-			10/10/2 016	154919-1	10/10/2016 10/10/2016	LCS-10	10/10/2016	
Arsenic	mg/kg	4	Metals-020	<4	154919-1	11 11 RPD:0	LCS-10	122%	
Cadmium	mg/kg	0.4	Metals-020	<0.4	154919-1	<0.4 <0.4	LCS-10	115%	
Chromium	mg/kg	1	Metals-020	<1	154919-1	41 37 RPD:10	LCS-10	118%	
Copper	mg/kg	1	Metals-020	<1	154919-1	13 11 RPD:17	LCS-10	119%	
Lead	mg/kg	1	Metals-020	<1	154919-1	29 26 RPD:11	LCS-10	113%	
Mercury	mg/kg	0.1	Metals-021	<0.1	154919-1	0.1 0.1 RPD: 0	LCS-10	94%	
Nickel	mg/kg	1	Metals-020	<1	154919-1	2 2 RPD:0	LCS-10	110%	
Zinc	mg/kg	1	Metals-020	<1	154919-1	49 44 RPD:11	LCS-10	112%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank		•		•	
BTEX in Water									
Date extracted	-			11/10/2 016					
Date analysed	-			11/10/2 016					
Benzene	μg/L	1	Org-016	<1					
Toluene	μg/L	1	Org-016	<1					
Ethylbenzene	μg/L	1	Org-016	<1					
m+p-xylene	μg/L	2	Org-016	2					
o-xylene	μg/L	1	Org-016	<1					
Surrogate Dibromofluoromethane	%		Org-016	107					
Surrogate toluene-d8	%		Org-016	102					
Surrogate 4-BFB	%		Org-016	93					
QUALITYCONTROL	UNITS	3	Dup. Sm#		Duplicate	Spike Sm#	Spike % Reco	very	
vTRH(C6-C10)/BTEXNin Soil				Base+I	Duplicate+%RF	PD			
Date extracted	-		154919-23	10/10/2	2016 10/10/201	6 154919-4	10/10/201	6	
Date analysed	_		154919-23	11/10/2	2016 11/10/201	6 154919-4	11/10/201	6	
TRHC6 - C9	mg/kg	,	154919-23		 <25 <25	154919-4	96%		
TRHC6 - C10	mg/kg		154919-23		<25 <25	154919-4	96%		
Benzene			154919-23		<0.2 <0.2	154919-4	78%		
	mg/k								
Toluene	mg/k		154919-23		<0.5 <0.5	154919-4	93%		
Ethylbenzene	mg/k		154919-23		<1 <1	154919-4	101%		
m+p-xylene	mg/k	9	154919-23		<2 <2	154919-4	103%		
o-Xylene	mg/k	g	154919-23		<1 <1	154919-4	104%		
naphthalene	mg/k	g	154919-23		<1 <1	[NR]	[NR]		
Surrogate aaa- Trifluorotoluene	%		154919-23	77	7 77 RPD:0 154919-4 82%				

Envirolab Reference: 154919 Revision No: R 00 E29807KR, Macquarie Park

		Client Referenc	e: E29807KR, Macqu	arie Park	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	154919-23	10/10/2016 10/10/2016	154919-4	10/10/2016
Date analysed	-	154919-23	11/10/2016 11/10/2016	154919-4	11/10/2016
TRHC10 - C14	mg/kg	154919-23	<50 <50	154919-4	92%
TRHC15 - C28	mg/kg	154919-23	<100 <100	154919-4	88%
TRHC29 - C36	mg/kg	154919-23	<100 <100	154919-4	140%
TRH>C10-C16	mg/kg	154919-23	<50 <50	154919-4	92%
TRH>C16-C34	mg/kg	154919-23	<100 <100	154919-4	88%
TRH>C34-C40	mg/kg	154919-23	<100 <100	154919-4	140%
Surrogate o-Terphenyl	%	154919-23	73 71 RPD:3	154919-4	72%
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base+Duplicate+%RPD	Spike Sm#	Spike % Recovery
Date extracted	-	154919-23	10/10/2016 10/10/2016	154919-4	10/10/2016
Date analysed	-	154919-23	10/10/2016 10/10/2016	154919-4	10/10/2016
Naphthalene	mg/kg	154919-23	<0.1 <0.1	154919-4	103%
Acenaphthylene	mg/kg	154919-23	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	154919-23	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	154919-23	<0.1 <0.1	154919-4	107%
Phenanthrene	mg/kg	154919-23	<0.1 <0.1	154919-4	130%
Anthracene	mg/kg	154919-23	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	154919-23	<0.1 <0.1	154919-4	99%
Pyrene	mg/kg	154919-23	<0.1 <0.1	154919-4	107%
Benzo(a)anthracene	mg/kg	154919-23	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	154919-23	<0.1 <0.1	[NR]	[NR]
Benzo(b,j+k)fluoranthene	mg/kg	154919-23	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	154919-23	<0.05 <0.05	154919-4	114%
Indeno(1,2,3-c,d)pyrene	mg/kg	154919-23	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	154919-23	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	154919-23	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	154919-23	104 98 RPD:6	154919-4	132%

Envirolab Reference: 154919 Revision No: R 00

Client Reference: E29807KR, Macquarie Park QUALITYCONTROL UNITS Dup. Sm# Spike Sm# Spike % Recovery **Duplicate** Organochlorine Pesticides Base + Duplicate + %RPD in soil 154919-23 10/10/2016 || 10/10/2016 154919-4 10/10/2016 Date extracted Date analysed 154919-23 11/10/2016 || 11/10/2016 154919-4 11/10/2016 **HCB** mg/kg 154919-23 <0.1||<0.1 [NR] [NR] alpha-BHC <0.1||<0.1 154919-4 119% mg/kg 154919-23 gamma-BHC mg/kg 154919-23 <0.1||<0.1 [NR] [NR] beta-BHC <0.1||<0.1 93% mg/kg 154919-23 154919-4 Heptachlor 154919-23 <0.1||<0.1 154919-4 104% mg/kg delta-BHC mg/kg 154919-23 <0.1||<0.1 [NR] [NR] Aldrin mg/kg 154919-23 <0.1||<0.1 154919-4 97% Heptachlor Epoxide 154919-23 <0.1||<0.1 154919-4 101% mg/kg gamma-Chlordane mg/kg 154919-23 <0.1||<0.1 [NR] [NR] alpha-chlordane mg/kg 154919-23 <0.1||<0.1 [NR] [NR] Endosulfan I mg/kg 154919-23 <0.1||<0.1 [NR] [NR] pp-DDE 154919-23 <0.1||<0.1 154919-4 99% mg/kg Dieldrin 107% mg/kg 154919-23 <0.1||<0.1 154919-4 Endrin 154919-23 <0.1||<0.1 154919-4 111% mg/kg pp-DDD 154919-4 mg/kg 154919-23 <0.1||<0.1 110% Endosulfan II mg/kg 154919-23 <0.1||<0.1 [NR] [NR] pp-DDT mg/kg 154919-23 <0.1||<0.1 [NR] [NR] Endrin Aldehyde mg/kg 154919-23 <0.1||<0.1 [NR] [NR]

<0.1||<0.1

<0.1||<0.1

85 | 84 | RPD: 1

154919-4

[NR]

154919-4

119%

[NR] 116%

Envirolab Reference: 154919 Revision No: R 00

Endosulfan Sulphate

Methoxychlor

Surrogate TCMX

mg/kg

mg/kg

%

154919-23

154919-23

154919-23

Client Reference: E29807KR, Macquarie Park QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Organophosphorus Base + Duplicate + %RPD Pesticides 10/10/2016 || 10/10/2016 10/10/2016 Date extracted 154919-23 154919-4 Date analysed 154919-23 11/10/2016 || 11/10/2016 154919-4 11/10/2016 Azinphos-methyl (Guthion) 154919-23 <0.1||<0.1 [NR] [NR] mg/kg Bromophos-ethyl mg/kg 154919-23 <0.1||<0.1 [NR] [NR] Chlorpyriphos mg/kg 154919-23 <0.1||<0.1 154919-4 80% Chlorpyriphos-methyl 154919-23 <0.1||<0.1 [NR] [NR] mg/kg Diazinon 154919-23 <0.1||<0.1 [NR] [NR] mg/kg Dichlorvos mg/kg 154919-23 <0.1||<0.1 154919-4 76% Dimethoate 154919-23 <0.1||<0.1 [NR] [NR] mg/kg **Ethion** 154919-4 106% mg/kg 154919-23 <0.1||<0.1 Fenitrothion mg/kg 154919-23 <0.1||<0.1 154919-4 97% Malathion mg/kg 154919-23 <0.1||<0.1 154919-4 87% Parathion mg/kg 154919-23 <0.1||<0.1 154919-4 107% Ronnel 154919-23 <0.1||<0.1 154919-4 93% mg/kg Surrogate TCMX % 154919-23 85 | 84 | RPD: 1 154919-4 85% QUALITYCONTROL UNITS Dup. Sm# Spike Sm# Spike % Recovery **Duplicate** PCBs in Soil Base + Duplicate + %RPD 154919-23 10/10/2016 || 10/10/2016 154919-4 10/10/2016 Date extracted Date analysed 154919-23 11/10/2016 || 11/10/2016 154919-4 11/10/2016 Aroclor 1016 mg/kg 154919-23 <0.1||<0.1 [NR] [NR] Aroclor 1221 154919-23 <0.1||<0.1 [NR] [NR] mg/kg Aroclor 1232 mg/kg 154919-23 <0.1||<0.1 [NR] [NR] Aroclor 1242 mg/kg 154919-23 <0.1||<0.1 [NR] [NR] Aroclor 1248 154919-23 <0.1||<0.1 [NR] [NR] mg/kg Aroclor 1254 mg/kg 154919-23 <0.1||<0.1 154919-4 100% Aroclor 1260 [NR] [NR] mg/kg 154919-23 <0.1||<0.1 154919-23 85 | 84 | RPD: 1 154919-4 85% Surrogate TCLMX % QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Acid Extractable metals in Base + Duplicate + %RPD Date prepared 154919-23 10/10/2016 | 10/10/2016 154919-4 10/10/2016 Date analysed 154919-23 10/10/2016 || 10/10/2016 154919-4 10/10/2016 Arsenic 154919-23 10 | 8 | RPD: 22 154919-4 101% mg/kg Cadmium mg/kg 154919-23 <0.4||<0.4 154919-4 103% Chromium mg/kg 154919-23 77 || 94 || RPD: 20 154919-4 104% 112% Copper 154919-23 16 | 23 | RPD: 36 154919-4 mg/kg Lead 154919-23 30 || 21 || RPD: 35 154919-4 92% mg/kg Mercury mg/kg 154919-23 0.2 || 0.1 || RPD: 67 154919-4 88% Nickel mg/kg 154919-23 29 || 51 || RPD: 55 154919-4 99%

Envirolab Reference: 154919 Revision No: R 00

mg/kg

154919-23

61 || 62 || RPD: 2

154919-4

Zinc

86%

vTRH(C6-C10)/BTEXNin Soil Date extracted	UNITS	Dup.Sm#	Duplicate Base+Duplicate+%RPD
Soil Date extracted			2400 · 24p04.0 · /0.1. 2
Date analysed	-	154919-33	10/10/2016 10/10/2016
Date analysed	-	154919-33	11/10/2016 11/10/2016
TRHC6 - C9	mg/kg	154919-33	<25 <25
TRHC6 - C10	mg/kg	154919-33	<25 <25
Benzene	mg/kg	154919-33	<0.2 <0.2
Toluene	mg/kg	154919-33	<0.5 <0.5
Ethylbenzene	mg/kg	154919-33	<1 <1
m+p-xylene	mg/kg	154919-33	<2 <2
o-Xylene	mg/kg	154919-33	<1 <1
naphthalene	mg/kg	154919-33	<1 <1
Surrogate aaa- Trifluorotoluene	%	154919-33	83 109 RPD:27
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD
Date extracted	-	154919-33	10/10/2016 10/10/2016
Date analysed	-	154919-33	11/10/2016 12/10/2016
TRHC10 - C14	mg/kg	154919-33	<50 <50
TRHC15 - C28	mg/kg	154919-33	<100 <100
TRHC29 - C36	mg/kg	154919-33	<100 <100
TRH>C10-C16	mg/kg	154919-33	<50 <50
TRH>C16-C34	mg/kg	154919-33	<100 <100
TRH>C34-C40	mg/kg	154919-33	<100 <100
Surrogate o-Terphenyl	%	154919-33	74 80 RPD:8
	UNITS	Dup. Sm#	Duplicate
PAHs in Soil			Base + Duplicate + %RPD
Date extracted	-	154919-33	10/10/2016 11/10/2016
Date analysed	-	154919-33	10/10/2016 11/10/2016
Naphthalene	mg/kg	154919-33	<0.1 <0.1
Acenaphthylene	mg/kg	154919-33	<0.1 <0.1
Acenaphthene	mg/kg	154919-33	<0.1 <0.1
Fluorene	mg/kg	154919-33	<0.1 <0.1
Phenanthrene	mg/kg	154919-33	<0.1 <0.1
Anthracene	mg/kg	154919-33	<0.1 <0.1
Fluoranthene	mg/kg	154919-33	<0.1 <0.1
Pyrene	mg/kg	154919-33	<0.1 <0.1
Benzo(a)anthracene	mg/kg	154919-33	<0.1 <0.1
Chrysene	mg/kg	154919-33	<0.1 <0.1
Benzo(b,j+k)fluoranthene	mg/kg	154919-33	<0.2 <0.2
Benzo(a)pyrene	mg/kg	154919-33	<0.05 <0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	154919-33	<0.1 <0.1
Dibenzo(a,h)anthracene	mg/kg	154919-33	<0.1 <0.1

Envirolab Reference: 154919 Revision No: R 00

		Olicili Nolciciono	c. Ezoorikik, maoqu	arro r arri	
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD		
17416416611			Base : Bapiloate : 76111 B		
Benzo(g,h,i)perylene	mg/kg	154919-33	<0.1 <0.1		
Surrogate p-Terphenyl-d14	%	154919-33	96 123 RPD:25		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
BTEX in Water			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	LCS-W1	11/10/2016
Date analysed	-	[NT]	[NT]	LCS-W1	11/10/2016
Benzene	μg/L	[NT]	[NT]	LCS-W1	95%
Toluene	μg/L	[NT]	[NT]	LCS-W1	100%
Ethylbenzene	μg/L	[NT]	[NT]	LCS-W1	97%
m+p-xylene	μg/L	[NT]	[NT]	LCS-W1	102%
o-xylene	μg/L	[NT]	[NT]	LCS-W1	102%
Surrogate Dibromofluoromethane	%	[NT]	[NT]	LCS-W1	106%
Surrogate toluene-d8	%	[NT]	[NT]	LCS-W1	113%
Surrogate 4-BFB	%	[NT]	[NT]	LCS-W1	110%

Envirolab Reference: 154919 Revision No: R 00

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 154919-23 for Ni. Therefore a triplicate result has been issued as laboratory sample number 154919-39.

Asbestos: Excessive sample volume was provided for asbestos analysis.

A portion of the supplied sample was sub-sampled according to Envirolab procedures.

We cannot guarantee that this sub-sample is indicative

of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in

its own container as per AS4964-2004.

Note: Samples 154919-6,11,14,16,19,25,27,31 were sub-sampled from bags

provided by the client.

Asbestos ID was analysed by Approved Identifier: Matt Mansfield Asbestos ID was authorised by Approved Signatory: Matt Mansfield

INS: Insufficient sample for this test

PQL: Practical Quantitation Limit RPD: Relative Percent Difference NR: Test not required

NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

NT: Not tested

Envirolab Reference: 154919 Page 35 of 36

Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 154919 Page 36 of 36

Revision No: R 00

Aileen Hie

From:

Priya Dass < PDass@jkgroup.net.au>

Sent:

Monday, 17 October 2016 3:56 PM

To:

Nancy Zhang

Cc:

Aileen Hie

Subject:

RE: Results for Registration 154919 E29807KR, Macquarie Park

Hi,

Could I have TCLP analysis done for Nickel on the following samples from this lab batch:

8 BH4 0.05-0.15 14 BH6 0.1-0.2 21 BH9 0.2-0.3

Thanks,

Priya.

Envirolab Ref. 154919A Due: 24/10116 Std TIA.

Regards,

Priya Dass Senior Environmental Scientist PDass@jkgroup.net.au

www.jkgroup.net.au

Environmental Investigation Services

CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS PO Box 976, North Ryde BC NSW 1670

115 Wicks Rd, Macquarie Park NSW 2113 T: +612 9888 5000 F: +612 9888 5001

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

----Original Message-----

From: Nancy Zhang [mailto:NZhang@envirolab.com.au]

Sent: Friday, 14 October 2016 1:44 PM To: Priya Dass <PDass@jkgroup.net.au>

Subject: Results for Registration 154919 E29807KR, Macquarie Park

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC an excel file containing the results

Please note that a hard copy will not be posted.

Enquiries should be made directly to: sydney@envirolab.com.au

Regards

Envirolab Services 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 www.envirolabservices.com.au

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

154919-A

Client:

Environmental Investigation Services

PO Box 976 North Ryde BC NSW 1670

Attention: Priya Dass

Sample log in details:

Your Reference: E29807KR, Macquarie Park
No. of samples: Additional Testing on 3 Soils
Date samples received / completed instructions received 07/10/16 / 17/10/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 24/10/16 / 20/10/16

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer/ General Manager

Envirolab Reference: 154919-A Revision No: R 00

Metals in TCLP USEPA1311				
Our Reference:	UNITS	154919-A-8	154919-A-14	154919-A-21
Your Reference		BH4	BH6	ВН9
	-			
Depth		0.05-0.15	0.1-0.2	0.2-0.3
Date Sampled		27/09/2016	28/09/2016	28/09/2016
Type of sample		Soil	Soil	Soil
Date extracted	-	18/10/2016	18/10/2016	18/10/2016
Date analysed	-	18/10/2016	18/10/2016	18/10/2016
pH of soil for fluid# determ.	pH units	6.8	9.1	9.1
pH of soil TCLP (after HCI)	pH units	1.6	1.6	1.7
Extraction fluid used	-	1	1	1
pH of final Leachate	pH units	5.0	5.0	5.3
NickelinTCLP	mg/L	<0.02	0.06	0.04

Envirolab Reference: 154919-A Revision No: R 00

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

Envirolab Reference: 154919-A

Page 3 of 6

Revision No: R 00

E29807KR, Macquarie Park **Client Reference:** PQL QUALITYCONTROL UNITS METHOD Blank Duplicate results Spike % Duplicate Spike Sm# Sm# Recovery Metals in TCLP Base II Duplicate II % RPD USEPA1311 18/10/2 18/10/2016 || 18/10/2016 LCS-W1 Date extracted 154919-A-8 18/10/2016 016 18/10/2 18/10/2016 || 18/10/2016 Date analysed 154919-A-8 LCS-W1 18/10/2016 016

154919-A-8

<0.02

<0.02||<0.02

LCS-W1

111%

Envirolab Reference: 154919-A Revision No: R 00

Nickel in TCLP

mg/L

0.02

Metals-020

ICP-AES

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 154919-A

Page 5 of 6

Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 154919-A Page 6 of 6

Revision No: R 00

	TO: ENVIROLAB 12 ASHLEY: CHATSWOO P: (02) 99100 F: (02) 99100	STREE D NSW 6200 6201	Т	D	EIS Job Number Date Re Require Page:	: sults	E29807KR STANDARD					SER REA MAC P: 0:	VIRON ESTIG EVICES IR OF	ATION S 115 W RIE PA	N VICKS ARK, N	NSW 2 F: 02	0 113 2-9888		S		
	Location:		ngs W6A & V	N6B, Macqua		rsity, Mac		F			Sam	ple Pr	reserv	ed in	Esky		Dass	-	46.20		
	Sampler: Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample	PID	Sample Description	Combo 2	Combo 3	Combo 6	Combo 6a	8 Metals	SHA9	TRH/BTEX	втех	Asbestos					
,					G, A	0.1	Fill	+	Ļ	L	3		_	F	-	-				_	
2	28/09/2016	-	BH1	0.0-0.1	G, A	0.1	Fill	+-	-		-			-		-		\dashv	-	-	
2	28/09/2016		BH1	0.2-0.3		0	Silty Clay	+	-						-			-	-	-	
"	28/09/2016		BH1	0.5-0.6		0.3	Fill	+	-		1						\dashv	-		1	
6	28/09/2016		BH2	0.0-0.1		0.5	Silty Clay	+-		-	-							-		-	
1	28/09/2016		BH2	0.4-0.5		0.2	Fill	+		_								+		77.00	
_	28/09/2016		BH3	0.1-0.2		0.2	Silty Clay	+			F							-		e E	SGS
4	28/09/2016		BH3	0.7-0.8		0.1	Fill	+-			1						-	\dashv			m
9	27/09/2016		BH4	0.05-0.15		0	Fill	1									-	+			S
. 1	27/09/2016		BH4	0.4-0.5		0	Silty Clay	+									-	\dashv	-	70	Ale
. 1	27/09/2016		BH4	0.9-1.0		0	Fill	+				_							-	90	Xan
١,	28/09/2016		BH5	0.05-0.15		0.3	Silty Clay				<u> </u>						\dashv	+	-	09 COC	Alexandria
. 1	28/09/2016		BH5	0.4-0.5		0.4	Silty Clay	+									\dashv	+	\dashv		_
	28/09/2016		BH5	0.9-1.0		0.2	Fill	+		7	1						\dashv	+	-	ಕ೧≣	<u> </u>
1	28/09/2016		BH6	0.1-0.2		0.2	Sandy Clay	\vdash									+	\dashv	\dashv		ahorator
7	28/09/2016		BH6	0.7-0.95		0.3	Silty Clay	+			1	_					\dashv	-	-		
_[27/09/2016		ВН7	0.15-0.25		0.2	Silty Clay	\vdash	1		-	-					-	+	\dashv		
- 1	27/09/2016			0.4-0.5		0.4	Silty Clay	-	8	-							\dashv	+	\dashv		
4	27/09/2016		BH7	0.9-1.0		0.3	Fill	\vdash								\dashv	\dashv	+	\dashv		
٦,	30/09/2016		BH8	0.1-0.2		0.1	Sandy Clay	-		-	~					-	\dashv	+	\dashv		
f	30/09/2016		вн8	0.4-0.5		0.1	Fill	-				-				-	\dashv	+	\dashv	f or q	
_ [28/09/2016		ВН9	0.2-0.3		0.1		-			V				-		-	+	⊣	NVINOLAB 12 AShiey &	
	28/09/2016		вн9	0.5-0.6		0.1	Sandy Clay Fill	\vdash		_		\dashv					+	+	\dashv	Chatswood NSW 2367 Ph: (02) 9910 6200	
1	28/09/2016			0.15-0.25		0	Silty Clay			-	~	-			\vdash	\dashv	+	-+	4	ob No: 154919	
4	28/09/2016			0.9-1.0		0.2	Silty Clay	-	-			-1		-	\dashv		+	+		ate Received: 07/10	
1	30/09/2016		7	0.1-0.2		0	Silty Clay					\dashv	-	-		-	-	-	7	ime Received: 16:30	
٦ľ	30/09/2016			0.4-0.5		0.3	Fill					\dashv	-	-		\dashv	+	\dashv	-4	eceived by: A/. /2	
- 15	6/10/2016			0.0-0.2		0.2	Fill			_		-	\dashv	-	-	-	+	-	7	emp Cool Ambient	
	6/10/2016			0.5-0.6		0.2	Fill	\vdash	1			-	\dashv	\dashv	\dashv	\dashv	-	-	4	ooling: Ice/leepack ecurity: Intact/Broken/Non-	
. Г	6/10/2016		BH12	0.9-1.0		0.1	Fill	\vdash	4	-		\dashv	\dashv	\dashv	+	-	+	+	\dashv	THE TOKETHYON	
T	5/10/2016		BH13	0.0-0.2		0.1	Fill	-	\dashv			\dashv	-	\dashv	-	\dashv	+	+	\dashv		
2.	3/10/2016			0.5-0.6		0.1	Fill		-			\dashv	-	\dashv	-	+	-	+	\dashv		
. F	3/10/2016			0.9-1.0				H	-			\dashv		\dashv	1	+	+	+	\dashv		
	27/09/2016		DUPA									\dashv	\dashv	-	\dashv	+	+	+	\dashv		
-1	30/09/2016 30/09/2016		DUPB								-	\dashv	\dashv	\dashv	-	+	+	+	\dashv	-SGS.	
, Γ	30/09/2016		DUPC FR	1					-	-	+	-	+	-	1		+	+	\dashv	W 3.	
. [27/09/2016		TB						-		-	-	-	-	1	-	+	+	\dashv		
ء ا	27/09/2016		TS I		-				+		\dashv	+		-		+	+	+	\dashv		
+	.1103/2016		10						+	-	+	+		-1	+	+	+	+	\dashv		
F	Remarks (con	nments	detection lin	nits required);		#4) #	Samp G - 25 A - Zij P - Pla	lock /	Glass Asbes	Jar	ag									
F	Relinquished	By: Pri	ya Dass		Date: 7/10	0/16		Time:				Recei	wed By	y:			Date:	0/16	3		
	James 12.10	25	Crack 3 16 5 9	tand 12.30 MD)														_		

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Telephone

Facsimile

LABORATORY DETAILS

Priya Dass Contact

Jeffery & Katauskas Pty Ltd Client

Address Rear 115 Wicks Road MACQUARIE PARK

NSW 2113

(02) 9888 5000 (02) 9888 5004

pdass@jkgroup.net.au Email

E29807KR W6A&B Macquarie University Project

E29807KR Order Number

Samples

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

+61 2 8594 0400

Telephone +61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com **Email**

Samples Received Wed 12/10/2016

Wed 19/10/2016 Report Due SF158009 SGS Reference

SUBMISSION DETAILS

This is to confirm that 1 sample was received on Wednesday 12/10/2016. Results are expected to be ready by Wednesday 19/10/2016. Please quote SGS reference SE158009 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix 1 Soil 12/10/2016 Date documentation received Samples received without headspace Yes Sample container provider SGS Samples received in correct containers Yes Sample cooling method Ice Bricks

Complete documentation received Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled

Standard Number of eskies/boxes received

COC

Yes

Yes

Yes

7.6°C

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Jeffery & Katauskas Pty Ltd Project E29807KR W6A&B Macquarie University

SUMMART	OF ANALI 313									
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil	
001	DUPC	28	13	26	11	7	10	12	8	

_ CONTINUED OVERLEAF

SAMPLE RECEIPT ADVICE

ent Jeffery & Katauskas Pty Ltd		Project E29807KR W6A&B Macquarie University
SUMMARY OF ANALYSIS ———————————————————————————————————		
	n Soil Content	
No. Sample ID	Mercury i	
001 DUPC	1 1	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

13/10/2016 Page 3 of 3

CLIENT DETAILS -

LABORATORY DETAILS

Manager

Contact Priya Dass

Client Jeffery & Katauskas Pty Ltd

Address Rear 115 Wicks Road

MACQUARIE PARK

NSW 2113

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Huong Crawford

(02) 9888 5004

pdass@jkgroup.net.au

(02) 9888 5000

E29807KR W6A&B Macquarie University

E29807KR

Samples 1

Telephone +61 2 8594 0400 Facsimile +61 2 8594 0499

Email au.environmental.sydney@sgs.com

SGS Reference SE158009 R0
Date Received 12 Oct 2016

Date Reported 19 Oct 2016

COMMENTS

Order Number

Telephone

Facsimile

Email Project

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Andy Sutton

Senior Organic Chemist

Kinly

Ad Sitte

Dong Liang

Metals/Inorganics Team Leader

Kamrul Ahsan Senior Chemist

Ly Kim Ha

Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

d8-toluene (Surrogate)

Bromofluorobenzene (Surrogate)

ANALYTICAL REPORT

SE158009 R0

	Sa :	nple Number ample Matrix Sample Date ample Name	SE158009.001 Soil 30 Sep 2016 DUPC
Parameter	Units	LOR	
VOC's in Soil Method: AN433 Tested: 13/10/2016			
Monocyclic Aromatic Hydrocarbons			
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Polycyclic VOCs			
Naphthalene	mg/kg	0.1	<0.1
Surrogates Dibromofluoromethane (Surrogate)	%	-	78
d4-1,2-dichloroethane (Surrogate)	%	-	82
d8-toluene (Surrogate)	%	-	73
Bromofluorobenzene (Surrogate)	%	-	116
Totals			
Total Xylenes*	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433 T	ested: 13/10/20)16	
TRH C6-C10	mg/kg	25	<25
TRH C6-C9	mg/kg	20	<20
Surrogates			
Dibromofluoromethane (Surrogate)	%	-	78
d4-1,2-dichloroethane (Surrogate)	%	-	82

19-October-2016 Page 2 of 12

73

116

Sample Number Sample Matrix Sample Date Sample Name

Soil 30 Sep 2016 DUPC

Parameter Units LOR

Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tested: 13/10/2016 (continued)

VPH F Bands

Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403 Tested: 14/10/2016

TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	210
TRH C29-C36	mg/kg	45	560
TRH C37-C40	mg/kg	100	190
TRH C10-C36 Total	mg/kg	110	770
TRH C10-C40 Total	mg/kg	210	960

TRH F Bands

TRH >C10-C16 (F2)	mg/kg	25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	530
TRH >C34-C40 (F4)	mg/kg	120	430

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420 Tested: 14/10/2016

Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

19-October-2016 Page 3 of 12

SE158009 R0

Sample Number
Sample Matrix
Sample Date
Sample Name

SE158009.001 Soil 30 Sep 2016 DUPC

Parameter Units LOR

PAH (Polynuclear Aromatic Hydrocarbons) in Soil	Method: AN420	Tested	l: 14/10/2016	(continued)
Surrogates				

d5-nitrobenzene (Surrogate)	%	-	74
2-fluorobiphenyl (Surrogate)	%	-	86
d14-p-terphenyl (Surrogate)	%	-	90

OC Pesticides in Soil Method: AN400/AN420 Tested: 14/10/2016

Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1

Surrogates

Tetrachloro-m-xylene (TCMX) (Surrogate)	%	_	82

19-October-2016 Page 4 of 12

SE158009 R0

		ample Number Sample Matrix Sample Date Sample Name	SE158009.001 Soil 30 Sep 2016 DUPC
Parameter	Units	LOR	

OP Pesticides in Soil Method: AN400/AN420 Tested: 14/10/2016

Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	86
d14-p-terphenyl (Surrogate)	%	-	90

PCBs in Soil Method: AN400/AN420 Tested: 14/10/2016

mg/kg	0.2	<0.2
mg/kg	0.2	<0.2
mg/kg	1	<1
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0.2

Surrogates

Tetrachloro-m-xvlene (TCMX) (Surrogate)	%	_	82

19-October-2016 Page 5 of 12

SE158009 R0

	Sample Number Sample Matrix Sample Date Sample Name	SE158009.001 Soil 30 Sep 2016 DUPC
Parameter	Units LOR	

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 17/10/2016

Arsenic, As	mg/kg	3	<3
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	6.7
Copper, Cu	mg/kg	0.5	130
Lead, Pb	mg/kg	1	9
Nickel, Ni	mg/kg	0.5	6.6
Zinc, Zn	mg/kg	0.5	36

Mercury in Soil Method: AN312 Tested: 17/10/2016

		Mercury	ma/ka	0.05	<0.05
--	--	---------	-------	------	-------

Moisture Content Method: AN002 Tested: 13/10/2016

% Moisture	%w/w	0.5	3.6

19-October-2016 Page 6 of 12

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

F	Parameter	QC	Units	LOR	МВ	DUP %RPD	LCS	MS
		Reference					%Recovery	%Recovery
	Mercury	LB111802	mg/kg	0.05	<0.05	0%	109%	104%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC		LOR	DUP %RPD		
	Reference					
% Moisture	LB111632	%w/w	0.5	8 - 15%		

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery
Hexachlorobenzene (HCB)	LB111680	mg/kg	0.1	<0.1	0%	NA
Alpha BHC	LB111680	mg/kg	0.1	<0.1	0%	NA
Lindane	LB111680	mg/kg	0.1	<0.1	0%	NA
Heptachlor	LB111680	mg/kg	0.1	<0.1	0%	118%
Aldrin	LB111680	mg/kg	0.1	<0.1	0%	109%
Beta BHC	LB111680	mg/kg	0.1	<0.1	0%	NA
Delta BHC	LB111680	mg/kg	0.1	<0.1	0%	114%
Heptachlor epoxide	LB111680	mg/kg	0.1	<0.1	0%	NA
o,p'-DDE	LB111680	mg/kg	0.1	<0.1	0%	NA
Alpha Endosulfan	LB111680	mg/kg	0.2	<0.2	0%	NA
Gamma Chlordane	LB111680	mg/kg	0.1	<0.1	0%	NA
Alpha Chlordane	LB111680	mg/kg	0.1	<0.1	0%	NA
trans-Nonachlor	LB111680	mg/kg	0.1	<0.1	0%	NA
p,p'-DDE	LB111680	mg/kg	0.1	<0.1	0%	NA
Dieldrin	LB111680	mg/kg	0.2	<0.2	0%	116%
Endrin	LB111680	mg/kg	0.2	<0.2	0%	123%
o,p'-DDD	LB111680	mg/kg	0.1	<0.1	0%	NA
o,p'-DDT	LB111680	mg/kg	0.1	<0.1	0%	NA
Beta Endosulfan	LB111680	mg/kg	0.2	<0.2	0%	NA
p,p'-DDD	LB111680	mg/kg	0.1	<0.1	0%	NA
p,p'-DDT	LB111680	mg/kg	0.1	<0.1	0%	125%
Endosulfan sulphate	LB111680	mg/kg	0.1	<0.1	0%	NA
Endrin Aldehyde	LB111680	mg/kg	0.1	<0.1	0%	NA
Methoxychlor	LB111680	mg/kg	0.1	<0.1	0%	NA
Endrin Ketone	LB111680	mg/kg	0.1	<0.1	0%	NA
Isodrin	LB111680	mg/kg	0.1	<0.1	0%	NA
Mirex	LB111680	mg/kg	0.1	<0.1	0%	NA

Surrogates

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
п		Reference					%Recovery
	Tetrachloro-m-xylene (TCMX) (Surrogate)	LB111680	%	-	127%	2%	121%

19-October-2016 Page 7 of 12

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Dichlorvos	LB111680	mg/kg	0.5	<0.5	93%
Dimethoate	LB111680	mg/kg	0.5	<0.5	NA
Diazinon (Dimpylate)	LB111680	mg/kg	0.5	<0.5	111%
Fenitrothion	LB111680	mg/kg	0.2	<0.2	NA
Malathion	LB111680	mg/kg	0.2	<0.2	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB111680	mg/kg	0.2	<0.2	89%
Parathion-ethyl (Parathion)	LB111680	mg/kg	0.2	<0.2	NA
Bromophos Ethyl	LB111680	mg/kg	0.2	<0.2	NA
Methidathion	LB111680	mg/kg	0.5	<0.5	NA
Ethion	LB111680	mg/kg	0.2	<0.2	91%
Azinphos-methyl (Guthion)	LB111680	mg/kg	0.2	<0.2	NA

Surrogates

ı	Parameter	QC	Units	LOR	MB	LCS
ı		Reference				%Recovery
ı	2-fluorobiphenyl (Surrogate)	LB111680	%	-	92%	92%
ı	d14-p-terphenyl (Surrogate)	LB111680	%	-	102%	96%

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	МВ	LCS %Recovery
Naphthalene	LB111680	mg/kg	0.1	<0.1	97%
2-methylnaphthalene	LB111680	mg/kg	0.1	<0.1	NA
1-methylnaphthalene	LB111680	mg/kg	0.1	<0.1	NA
Acenaphthylene	LB111680	mg/kg	0.1	<0.1	99%
Acenaphthene	LB111680	mg/kg	0.1	<0.1	95%
Fluorene	LB111680	mg/kg	0.1	<0.1	NA
Phenanthrene	LB111680	mg/kg	0.1	<0.1	94%
Anthracene	LB111680	mg/kg	0.1	<0.1	90%
Fluoranthene	LB111680	mg/kg	0.1	<0.1	89%
Pyrene	LB111680	mg/kg	0.1	<0.1	89%
Benzo(a)anthracene	LB111680	mg/kg	0.1	<0.1	NA
Chrysene	LB111680	mg/kg	0.1	<0.1	NA
Benzo(b&j)fluoranthene	LB111680	mg/kg	0.1	<0.1	NA
Benzo(k)fluoranthene	LB111680	mg/kg	0.1	<0.1	NA
Benzo(a)pyrene	LB111680	mg/kg	0.1	<0.1	106%
Indeno(1,2,3-cd)pyrene	LB111680	mg/kg	0.1	<0.1	NA
Dibenzo(ah)anthracene	LB111680	mg/kg	0.1	<0.1	NA
Benzo(ghi)perylene	LB111680	mg/kg	0.1	<0.1	NA
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>LB111680</td><td>TEQ</td><td>0.2</td><td><0.2</td><td>NA</td></lor=0<>	LB111680	TEQ	0.2	<0.2	NA
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>LB111680</td><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>NA</td></lor=lor<>	LB111680	TEQ (mg/kg)	0.3	<0.3	NA
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>LB111680</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>NA</td></lor=lor>	LB111680	TEQ (mg/kg)	0.2	<0.2	NA
Total PAH (18)	LB111680	mg/kg	0.8	<0.8	NA
Total PAH (NEPM/WHO 16)	LB111680	mg/kg	0.8	<0.8	

Surrogates

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
d5-nitrobenzene (Surrogate)	LB111680	%	-	84%	88%
2-fluorobiphenyl (Surrogate)	LB111680	%	-	84%	86%
d14-p-terphenyl (Surrogate)	LB111680	%	-	92%	98%

19-October-2016 Page 8 of 12

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

PCBs in Soil Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery
Arochlor 1016	LB111680	mg/kg	0.2	<0.2	0%	NA
Arochlor 1221	LB111680	mg/kg	0.2	<0.2	0%	NA
Arochlor 1232	LB111680	mg/kg	0.2	<0.2	0%	NA
Arochlor 1242	LB111680	mg/kg	0.2	<0.2	0%	NA
Arochlor 1248	LB111680	mg/kg	0.2	<0.2	0%	NA
Arochlor 1254	LB111680	mg/kg	0.2	<0.2	0%	NA
Arochlor 1260	LB111680	mg/kg	0.2	<0.2	0%	104%
Arochlor 1262	LB111680	mg/kg	0.2	<0.2	0%	NA
Arochlor 1268	LB111680	mg/kg	0.2	<0.2	0%	NA
Total PCBs (Arochlors)	LB111680	mg/kg	1	<1	0%	NA

Surrogates

1	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
1		Reference					%Recovery
ı	Tetrachloro-m-xylene (TCMX) (Surrogate)	LB111680	%	-	127%	2%	117%

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arsenic, As	LB111787	mg/kg	3	<3	7 - 32%	95%	86%
Cadmium, Cd	LB111787	mg/kg	0.3	<0.3	0%	96%	89%
Chromium, Cr	LB111787	mg/kg	0.3	<0.3	2 - 17%	97%	126%
Copper, Cu	LB111787	mg/kg	0.5	<0.5	11 - 13%	95%	76%
Lead, Pb	LB111787	mg/kg	1	<1	4 - 7%	97%	97%
Nickel, Ni	LB111787	mg/kg	0.5	<0.5	2 - 6%	99%	92%
Zinc, Zn	LB111787	mg/kg	0.5	<0.5	1 - 4%	97%	116%

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C10-C14	LB111680	mg/kg	20	<20	0%	103%	120%
TRH C15-C28	LB111680	mg/kg	45	<45	0 - 7%	90%	45%
TRH C29-C36	LB111680	mg/kg	45	<45	0 - 24%	93%	73%
TRH C37-C40	LB111680	mg/kg	100	<100	0%	NA	NA
TRH C10-C36 Total	LB111680	mg/kg	110	<110	0 - 13%	NA	NA
TRH C10-C40 Total	LB111680	mg/kg	210	<210	0%	NA	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH >C10-C16 (F2)	LB111680	mg/kg	25	<25	0%	98%	115%
TRH >C10-C16 (F2) - Naphthalene	LB111680	mg/kg	25	<25	0%	NA	NA
TRH >C16-C34 (F3)	LB111680	mg/kg	90	<90	0 - 11%	88%	20%
TRH >C34-C40 (F4)	LB111680	mg/kg	120	<120	0%	95%	NA

19-October-2016 Page 9 of 12

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

VOC's in Soil Method: ME-(AU)-[ENV]AN433

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene	LB111611	mg/kg	0.1	<0.1	0%	62%	81%
Toluene	LB111611	mg/kg	0.1	<0.1	0%	61%	71%
Ethylbenzene	LB111611	mg/kg	0.1	<0.1	0%	62%	61%
m/p-xylene	LB111611	mg/kg	0.2	<0.2	0%	74%	73%
o-xylene	LB111611	mg/kg	0.1	<0.1	0%	67%	67%

Polycyclic VOCs

Ì	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
ı		Reference					%Recovery	%Recovery
ı	Naphthalene	LB111611	mg/kg	0.1	<0.1	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB111611	%	-	83%	0 - 8%	79%	74%
d4-1,2-dichloroethane (Surrogate)	LB111611	%	-	84%	5%	84%	79%
d8-toluene (Surrogate)	LB111611	%	-	77%	4 - 5%	78%	73%
Bromofluorobenzene (Surrogate)	LB111611	%	-	114%	0 - 4%	118%	119%

Totals

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Xylenes*	LB111611	mg/kg	0.3	<0.3	0%	NA	NA
Total BTEX	LB111611	mg/kg	0.6	<0.6	0%	NA	NA

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C6-C10	LB111611	mg/kg	25	<25	0%	82%	83%
TRH C6-C9	LB111611	mg/kg	20	<20	0%	69%	70%

Surrogates

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery	MS %Recovery
Dibromofluoromethane (Surrogate)	LB111611	%	-	83%	0 - 8%	79%	74%
d4-1,2-dichloroethane (Surrogate)	LB111611	%	-	84%	5%	84%	79%
d8-toluene (Surrogate)	LB111611	%	-	77%	4 - 5%	78%	73%
Bromofluorobenzene (Surrogate)	LB111611	%	-	114%	0 - 4%	118%	119%

VPH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene (F0)	LB111611	mg/kg	0.1	<0.1	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB111611	mg/kg	25	<25	0%	118%	111%

19-October-2016 Page 10 of 12

SGS

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
	ME THOSESOT COMMUNIC
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

19-October-2016 Page 11 of 12

FOOTNOTES _

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting QFH QC result is above the upper tolerance QFL QC result is below the lower tolerance

- The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

19-October-2016 Page 12 of 12

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

Priya Dass **Huong Crawford** Manager Contact

Jeffery & Katauskas Pty Ltd SGS Alexandria Environmental Client Laboratory Address Rear 115 Wicks Road Address Unit 16, 33 Maddox St

MACQUARIE PARK Alexandria NSW 2015 NSW 2113

(02) 9888 5000 +61 2 8594 0400 Telephone Telephone (02) 9888 5004 +61 2 8594 0499 Facsimile Facsimile

pdass@jkgroup.net.au au.environmental.sydney@sgs.com Fmail Email

E29807KR W6A&B Macquarie University SE158009 R0 SGS Reference Project E29807KR 12 Oct 2016 Order Number Date Received

19 Oct 2016 Date Reported Samples

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike TRH (Total Recoverable Hydrocarbons) in Soil 2 items

SAMPLE SUMMARY

Sample counts by matrix 1 Soil Type of documentation received COC 12/10/2016 Samples received in good order Date documentation received Yes 7.6°C Samples received without headspace Yes Sample temperature upon receipt Sample container provider SGS Turnaround time requested Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Ice Bricks Samples clearly labelled Yes Number of eskies/boxes received Complete documentation received Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

Analysis Due Analysed

22 Nov 2016

13 Oct 2016

Sample Name Sample No.

DUPC

SE158009.001

QC Ref

30 Sep 2016

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

lercury in Soil							Method: I	ME-(AU)-[ENV]AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
OUPC	SE158009.001	LB111802	30 Sep 2016	12 Oct 2016	28 Oct 2016	17 Oct 2016	28 Oct 2016	19 Oct 2016
oisture Content							Method:	ME-(AU)-[ENV]AN(
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DUPC	SE158009.001	LB111632	30 Sep 2016	12 Oct 2016	14 Oct 2016	14 Oct 2016	19 Oct 2016	19 Oct 2016
C Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DUPC	SE158009.001	LB111680	30 Sep 2016	12 Oct 2016	14 Oct 2016	14 Oct 2016	23 Nov 2016	19 Oct 2016
P Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DUPC	SE158009.001	LB111680	30 Sep 2016	12 Oct 2016	14 Oct 2016	14 Oct 2016	23 Nov 2016	19 Oct 2016
AH (Polynuclear Aromatic	c Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
OUPC	SE158009.001	LB111680	30 Sep 2016	12 Oct 2016	14 Oct 2016	14 Oct 2016	23 Nov 2016	19 Oct 2016
CBs in Soil							Method: ME-(AU)-[ENV]AN400/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DUPC	SE158009.001	LB111680	30 Sep 2016	12 Oct 2016	14 Oct 2016	14 Oct 2016	23 Nov 2016	19 Oct 2016
otal Recoverable Metals i	in Soil/Waste Solids/Mater	ials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
UPC	SE158009.001	LB111787	30 Sep 2016	12 Oct 2016	29 Mar 2017	17 Oct 2016	29 Mar 2017	19 Oct 2016
RH (Total Recoverable H	lydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN
	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Sample Name								
•	SE158009.001	LB111680	30 Sep 2016	12 Oct 2016	14 Oct 2016	14 Oct 2016	23 Nov 2016	19 Oct 2016
DUPC	·	LB111680	30 Sep 2016	12 Oct 2016	14 Oct 2016	14 Oct 2016		19 Oct 2016 ME-(AU)-[ENV]AN
OUPC OC's in Soil Sample Name	·	LB111680 QC Ref	30 Sep 2016 Sampled	12 Oct 2016	14 Oct 2016 Extraction Due	14 Oct 2016 Extracted		

19/10/2016	Page 2 of 13
------------	--------------

Received

12 Oct 2016

d8-toluene (Surrogate)

Dibromofluoromethane (Surrogate)

SURROGATES

SE158009 R0

60 - 130%

60 - 130%

73

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: ME-(AU)-	[ENV]AN400/AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	DUPC	SE158009.001	%	60 - 130%	82
OP Pesticides in Soil				Method: ME-(AU)-	[ENV]AN400/AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	DUPC	SE158009.001	%	60 - 130%	86
d14-p-terphenyl (Surrogate)	DUPC	SE158009.001	%	60 - 130%	90
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	DUPC	SE158009.001	%	70 - 130%	86
d14-p-terphenyl (Surrogate)	DUPC	SE158009.001	%	70 - 130%	90
d5-nitrobenzene (Surrogate)	DUPC	SE158009.001	%	70 - 130%	74
PCBs in Soil				Method: ME-(AU)-	[ENV]AN400/AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	DUPC	SE158009.001	%	60 - 130%	82
VOC's in Soil				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	DUPC	SE158009.001	%	60 - 130%	116
d4-1,2-dichloroethane (Surrogate)	DUPC	SE158009.001	%	60 - 130%	82
d8-toluene (Surrogate)	DUPC	SE158009.001	%	60 - 130%	73
Dibromofluoromethane (Surrogate)	DUPC	SE158009.001	%	60 - 130%	78
Volatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	DUPC	SE158009.001	%	60 - 130%	116
d4-1,2-dichloroethane (Surrogate)	DUPC	SE158009.001	%	60 - 130%	82

SE158009.001

SE158009.001

DUPC

DUPC

19/10/2016 Page 3 of 13

Method: ME-(AU)-[ENV]AN312

METHOD BLANKS

SGS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil

Sample Number	Parameter	Units	LOR	Result
LB111802.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

Sample Number	Parameter	Units	LOR	Result
LB111680.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	127

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

Sample Number		Parameter	Units	LOR	Result
LB111680.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
Surrogates		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	92
		d14-p-terphenyl (Surrogate)	%	-	102

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB111680.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

19/10/2016 Page 4 of 13

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result
LB111680.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
Sun	rrogates	d5-nitrobenzene (Surrogate)	%	-	84
		2-fluorobiphenyl (Surrogate)	%	-	84
		d14-p-terphenyl (Surrogate)	%	-	92

PCBs in Soil

Method: ME-(AU)-[ENV]AN400/AN420

Sample Number		Parameter	Units	LOR	Result
LB111680.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
S	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	127

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB111787.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB111680.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB111611.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	83
		d4-1,2-dichloroethane (Surrogate)	%	-	84
		d8-toluene (Surrogate)	%	-	77
		Bromofluorobenzene (Surrogate)	%	-	114
	Totals	Total BTEX	mg/kg	0.6	<0.6

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

•					
Sample Number		Parameter	Units	LOR	Result
LB111611.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	83
		d4-1,2-dichloroethane (Surrogate)	%	-	84
		d8-toluene (Surrogate)	%	-	77

19/10/2016 Page 5 of 13

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157993.010	LB111802.014	Mercury	mg/kg	0.05	0.0055873398	30.0063695796	200	0
SE158103.003	LB111802.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158008.010	LB111632.011	% Moisture	%w/w	0.5	5.1495016611	5.5831265508	49	8
SE158008.020	LB111632.022	% Moisture	%w/w	0.5	6.1728395061	5.3019145802	47	15
SE158008.030	LB111632.033	% Moisture	%w/w	0.5	4.1717791411	4.9937578027	52	18
SE158011.002	LB111632.044	% Moisture	%w/w	0.5	22.054380664	1 7.0382165605	35	26

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN400/AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158034.011	LB111680.032		Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
			Alpha BHC	mg/kg	0.1	0	0	200	0
			Lindane	mg/kg	0.1	0	0	200	0
			Heptachlor	mg/kg	0.1	0	0	200	0
			Aldrin	mg/kg	0.1	0	0	200	0
			Beta BHC	mg/kg	0.1	0	0	200	0
			Delta BHC	mg/kg	0.1	0	0	200	0
			Heptachlor epoxide	mg/kg	0.1	0	0	200	0
			o,p'-DDE	mg/kg	0.1	0	0	200	0
			Alpha Endosulfan	mg/kg	0.2	0	0	200	0
			Gamma Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Chlordane	mg/kg	0.1	0	0	200	0
			trans-Nonachlor	mg/kg	0.1	0	0	200	0
			p,p'-DDE	mg/kg	0.1	0	0	200	0
			Dieldrin	mg/kg	0.2	0	0	200	0
			Endrin	mg/kg	0.2	0	0	200	0
			o,p'-DDD	mg/kg	0.1	0	0	200	0
			o,p'-DDT	mg/kg	0.1	0	0	200	0
			Beta Endosulfan	mg/kg	0.2	0	0	200	0
			p,p'-DDD	mg/kg	0.1	0	0	200	0
			p,p'-DDT	mg/kg	0.1	0	0	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	0
			Endrin Aldehyde	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0	0	200	0
			Endrin Ketone	mg/kg	0.1	0	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Mirex	mg/kg	0.1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.122	0.12	30	2

PCBs in Soil

Method: ME-(AU)-[ENV]AN400/AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158034.011	LB111680.031		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.122	0.12	30	2

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original I	Duplicate	Criteria %	RPD %
SE158008.036	LB111787.014	Arsenic, As	mg/kg	3	5.20183344604.	8334169431	50	7
		Cadmium, Cd	mg/kg	0.3	0.15572347620.	1448818504	200	0
		Chromium, Cr	mg/kg	0.3	7.13847713227.	0242021044	37	2
		Copper, Cu	mg/kg	0.5	33.97069287480	.5238912067	32	11

19/10/2016 Page 6 of 13

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original [Ouplicate	Criteria %	RPD %
SE158008.036	LB111787.014	Lead, Pb	mg/kg	1	6.18693478546.0	6635254348	46	7
		Nickel, Ni	mg/kg	0.5	6.85416014687.	2498716949	37	6
		Zinc, Zn	mg/kg	0.5	47.7686121579 8.	386322928 ⁻	1 34	11
SE158080.001	LB111787.024	Arsenic, As	mg/kg	3	2.40028067963.	3169818862	65	32
		Cadmium, Cd	mg/kg	0.3	0.11132491600.	1240934994	200	0
		Chromium, Cr	mg/kg	0.3	8.682939965110.	305485956	1 35	17
		Copper, Cu	mg/kg	0.5	2.53985165302.8	3968958619	48	13
		Lead, Pb	mg/kg	1	12.12064436152.	6304912312	38	4
		Nickel, Ni	mg/kg	0.5	2.08996441032.	1237392368	54	2
		Zinc, Zn	mg/kg	0.5	9.978407468410.	399491604	50	4

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

IRH (Total Recov	erable Hydrocarbons) in Soil					Metr	od: ME-(AU)-	ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158033.003	LB111680.032		TRH C10-C14	mg/kg	20	0	0	200	0
			TRH C15-C28	mg/kg	45	103	110	72	7
			TRH C29-C36	mg/kg	45	51	65	108	24
			TRH C37-C40	mg/kg	100	0	0	200	0
			TRH C10-C36 Total	mg/kg	110	154	175	97	13
			TRH C10-C40 Total	mg/kg	210	154	175	158	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	0	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	-0.03	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	151	169	86	11
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0
SE158034.011	LB111680.034		TRH C10-C14	mg/kg	20	0	0	200	0
			TRH C15-C28	mg/kg	45	0	0	200	0
			TRH C29-C36	mg/kg	45	0	0	200	0
			TRH C37-C40	mg/kg	100	0	0	200	0
			TRH C10-C36 Total	mg/kg	110	0	0	200	0
			TRH C10-C40 Total	mg/kg	210	0	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	0	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	0	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	0	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	0

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158008.008	LB111611.014	Monocyclic	Benzene	mg/kg	0.1	0	0	200	0
		Aromatic	Toluene	mg/kg	0.1	0.01	0.01	200	0
			Ethylbenzene	mg/kg	0.1	0	0	200	0
			m/p-xylene	mg/kg	0.2	0	0	200	0
			o-xylene	mg/kg	0.1	0	0	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	0.03	0.03	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.95	4.93	50	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.88	4.63	50	5
			d8-toluene (Surrogate)	mg/kg	-	3.73	3.91	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.95	5.71	50	4
		Totals	Total Xylenes*	mg/kg	0.3	0	0	200	0
			Total BTEX	mg/kg	0.6	0.01	0.01	200	0
SE158009.001	LB111611.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	3.6	50	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	3.9	50	5
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.5	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.8	5.8	50	0
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0

19/10/2016 Page 7 of 13

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/olatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN43

Volatile Petroleun	n Hydrocarbons in So	il					Meth	od: ME-(AU)-	ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158008.008	LB111611.014		TRH C6-C10	mg/kg	25	0.19	0.17	200	0
			TRH C6-C9	mg/kg	20	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.95	4.93	30	0
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.88	4.63	30	5
			d8-toluene (Surrogate)	mg/kg	-	3.73	3.91	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.95	5.71	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	0.18	0.16	200	0
SE158009.001	LB111611.025		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	3.6	30	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	3.9	30	5
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.5	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.8	5.8	30	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

19/10/2016 Page 8 of 13

Surrogates

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Tetrachloro-m-xylene (TCMX) (Surrogate)

Mercury in Soil						N	lethod: ME-(Al	U)-[ENV]AN312
Sample Number	Parameter		Unite	LOR	Posult	Evpected	Critoria %	Recovery %

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB111802.002	Mercury	mg/kg	0.05	0.22	0.2	70 - 130	109

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420 Sample Number Expected Criteria % Recovery % Units LOR LB111680.002 Heptachlor mg/kg 0.1 0.2 0.2 60 - 140 118 Aldrin 0.1 0.2 0.2 60 - 140 109 mg/kg Delta BHC 0.2 0.2 60 - 140 114 mg/kg 0.1 Dieldrin mg/kg 0.2 0.2 0.2 60 - 140 116 Endrin 0.2 0.2 0.2 60 - 140 123 mg/kg p,p'-DDT mg/kg 0.1 0.2 0.2 60 - 140 125

OP Pesticides In Soil Method: ME-(AU)-[ENV]AN400/AN420 Sample Number Parameter Units LOR Result Expected Criteria % Recovery %

mg/kg

0.18

0.15

40 - 130

Method: ME-(AU)-[ENV]AN433

121

Sample Number	Parameter	Units	LUR	Result	Expected	Criteria %	Recovery %
LB111680.002	Dichlorvos	mg/kg	0.5	1.9	2	60 - 140	93
	Diazinon (Dimpylate)	mg/kg	0.5	2.2	2	60 - 140	111
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	2	60 - 140	89
	Ethion	mg/kg	0.2	1.8	2	60 - 140	91
Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB111680.002	Naphthalene	mg/kg	0.1	3.9	4	60 - 140	97
	Acenaphthylene	mg/kg	0.1	3.9	4	60 - 140	99
	Acenaphthene	mg/kg	0.1	3.8	4	60 - 140	95
	Phenanthrene	mg/kg	0.1	3.8	4	60 - 140	94
	Anthracene	mg/kg	0.1	3.6	4	60 - 140	90
	Fluoranthene	mg/kg	0.1	3.6	4	60 - 140	89
	Pyrene	mg/kg	0.1	3.6	4	60 - 140	89
	Benzo(a)pyrene	mg/kg	0.1	4.3	4	60 - 140	106
Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
	d14-p-terphenyl (Surrogate)	ma/ka	-	0.5	0.5	40 - 130	98

PCBs in Soil Method: ME-(AU)-[ENV]AN400/AN420

1.D444000.000			Units	LOR	Result	Expected	Criteria %	Recovery %
LB111680.002 Arochior 1260 mg/kg 0.2 0.4 0.4 60	LB111680.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	104

Total Recoverable Metals in Soil/Waste Soilds/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Total (Cooverable Metale III	Com Waste Condemnational by for CLC				mounou.	ME (/10) [E14	paro von arozo
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB111787.002	Arsenic, As	mg/kg	3	48	50	80 - 120	95
	Cadmium, Cd	mg/kg	0.3	48	50	80 - 120	96
	Chromium, Cr	mg/kg	0.3	49	50	80 - 120	97
	Copper, Cu	mg/kg	0.5	47	50	80 - 120	95
	Lead, Pb	mg/kg	1	48	50	80 - 120	97
	Nickel, Ni	mg/kg	0.5	50	50	80 - 120	99
	Zinc, Zn	mg/kg	0.5	48	50	80 - 120	97

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB111680.002		TRH C10-C14	mg/kg	20	41	40	60 - 140	103
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	90
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	93
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	39	40	60 - 140	98
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	88
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	95

VOC's in Soil Sample Number Parameter Units LO

19/10/2016 Page 9 of 13

LABORATORY CONTROL SAMPLES

SE158009 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB111611.002	Monocyclic	Benzene	mg/kg	0.1	1.8	2.9	60 - 140	62
	Aromatic	Toluene	mg/kg	0.1	1.8	2.9	60 - 140	61
		Ethylbenzene	mg/kg	0.1	1.8	2.9	60 - 140	62
		m/p-xylene	mg/kg	0.2	4.3	5.8	60 - 140	74
		o-xylene	mg/kg	0.1	2.0	2.9	60 - 140	67
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	5	60 - 140	79
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		d8-toluene (Surrogate)	mg/kg	-	3.9	5	60 - 140	78
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.9	5	60 - 140	118

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Voladio i Gaoledii i	iyarooarbona iir c	No.					ioulou. ME-(/-	0)-[[[[[[]]]]
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB111611.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	82
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	69
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	5	60 - 140	79
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		d8-toluene (Surrogate)	mg/kg	-	3.9	5	60 - 140	78
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.9	5	60 - 140	118
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	118

19/10/2016 Page 10 of 13

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil	Method: ME-(AU)-[ENV]AN312
Morodry III Con	Modiod: ME (No) [ENV) 44012

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE157993.001	LB111802.004	Mercury	mg/kg	0.05	0.22	0.01733561255	0.2	104

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158008.027	LB111787.004	Arsenic, As	mg/kg	3	47	3.75020611294	50	86
		Cadmium, Cd	mg/kg	0.3	45	0.36133805893	50	89
		Chromium, Cr	mg/kg	0.3	83	19.84531400624	50	126
		Copper, Cu	mg/kg	0.5	98	59.73360264525	50	76
		Lead, Pb	mg/kg	1	90	41.54027173876	50	97
		Nickel, Ni	mg/kg	0.5	52	5.61310740119	50	92
		Zinc, Zn	mg/kg	0.5	110	55.90574891634	50	116

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158033.001	LB111680.031		TRH C10-C14	mg/kg	20	48	0	40	120
			TRH C15-C28	mg/kg	45	210	195	40	45 ⑤
			TRH C29-C36	mg/kg	45	130	99	40	73
			TRH C37-C40	mg/kg	100	<100	0	-	-
			TRH C10-C36 Total	mg/kg	110	390	294	-	-
			TRH C10-C40 Total	mg/kg	210	390	294	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	51	5	40	115
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	51	4.94	-	-
			TRH >C16-C34 (F3)	mg/kg	90	290	277	40	20 ⑤
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	-	-

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158008.001	LB111611.026	Monocyclic	Benzene	mg/kg	0.1	2.4	0	2.9	81
		Aromatic	Toluene	mg/kg	0.1	2.1	0.01	2.9	71
			Ethylbenzene	mg/kg	0.1	1.8	0.01	2.9	61
			m/p-xylene	mg/kg	0.2	4.2	0.01	5.8	73
			o-xylene	mg/kg	0.1	2.0	0.01	2.9	67
		Polycyclic	Naphthalene	mg/kg	0.1	0.2	0.04	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	4.76	-	74
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	5.1	-	79
			d8-toluene (Surrogate)	mg/kg	-	3.6	4.24	-	73
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.9	5.73	-	119
		Totals	Total Xylenes*	mg/kg	0.3	6.2	0.02	-	-
			Total BTEX	mg/kg	0.6	12	0.04	-	-

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE158008.001	LB111611.026		TRH C6-C10	mg/kg	25	<25	0.27	24.65	83
			TRH C6-C9	mg/kg	20	<20	0.09	23.2	70
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	4.76	-	74
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	5.1	-	79
			d8-toluene (Surrogate)	mg/kg	-	3.6	4.24	-	73
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.9	5.73	-	119
		VPH F	Benzene (F0)	mg/kg	0.1	2.4	0	-	-
		Rands	TRH C6-C10 minus BTEX (F1)	ma/ka	25	<25	0.23	7 25	111

19/10/2016 Page 11 of 13

MATRIX SPIKE DUPLICATES

SE158009 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

19/10/2016 Page 12 of 13

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover tthe performance of this service .
- Sample not analysed for this analyte.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

19/10/2016 Page 13 of 13

Appendix D: Report Explanatory Notes

STANDARD SAMPLING PROCEDURE (SSP)

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by EIS.

The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

Soil Sampling

- Prepare a borehole/test pit log or made a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The
 work area should be at a distance from the drill rig/excavator such that the machine can operate in a
 safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the EIS job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurements are taken following equilibration of the headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-1993¹⁴.
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

Decontamination Procedures for Soil Sampling Equipment

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
 - Phosphate free detergent (Decon 90);
 - Potable water;
 - Stiff brushes; and
 - Plastic sheets.

¹⁴ Standards Australia, (1993), Geotechnical Site Investigations. (AS1726-1993)

- Ensure the decontamination materials are clean prior to proceeding with the decontamination.
- Fill both buckets with clean potable water and add phosphate free detergent to one bucket.
- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

Groundwater Sampling

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells
 (well development) to remove any water introduced during the drilling process and/or the water that is
 disturbed during installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data sheets. The following information should be noted: the condition of the well, noting any signs of damage, tampering or complete destruction; the condition and operation of the well lock; the condition of the protective casing and the cement footing (raised or cracked); and, the presence of water between protective casing and well.
- Take the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micropurge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will
 not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment
 generally required includes:
 - Micropore filtration system or Stericup single-use filters (for heavy metals samples);
 - Filter paper for Micropore filtration system; Bucket with volume increments;
 - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
 - Bucket with volume increments;
 - Flow cell;
 - pH/EC/Eh/T meters;
 - Plastic drums used for transportation of purged water;
 - Esky and ice;
 - Nitrile gloves;
 - Distilled water (for cleaning);
 - Electronic dip meter;

- Low flow pump pack and associated tubing; and
- Groundwater sampling forms.
- If single-use stericup filtration is not used, clean the Micropore filtration system thoroughly with distilled water prior to use and between each sample. Filter paper should be changed between samples. 0.45um filter paper should be placed below the glass fibre filter paper in the filtration system.
- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow/micro-purge sampling equipment to reduce the disturbance of the water column and loss of volatiles.
- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential
 and groundwater levels are monitored (where possible) using calibrated field instruments to assess the
 development of steady state conditions. Steady state conditions are generally considered to have been
 achieved when the difference in the pH measurements was less than 0.2 units and the difference in
 conductivity was less than 10%.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- All samples are preserved in accordance with water sampling requirements detailed in the NEPM 2013
 and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage
 in an insulated sample container with ice as outlined in the report text.
- Record the sample on the appropriate log in accordance with AS1726:1993. At the end of each water sampling complete a chain of custody form.

Decontamination Procedures for Groundwater Sampling Equipment

- All equipment associated with the groundwater sampling procedure (other than single-use items) should be decontaminated between every sampling location.
- The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent;
 - Potable water;
 - Distilled water; and
 - Plastic Sheets or bulk bags (plastic bags).
- Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- Flush potable water and detergent through pump head. Wash sampling equipment and pump head
 using brushes in the bucket containing detergent until all materials attached to the equipment are
 removed.
- Flush pump head with distilled water.
- Change water and detergent solution after each sampling location.
- Rinse sampling equipment in the bucket containing distilled water.
- Place cleaned equipment on clean plastic sheets.
- If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned

QA/QC DEFINITIONS

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994¹⁵) methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (H. Keith 1991¹⁶).

Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection limit (MDL) for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations.

"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" Keith 1991.

Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD). Acceptable targets for precision in this report will be less than 50% RPD for concentrations greater than ten times the PQL, less than 75% RPD for concentrations between five and ten times the PQL and less than 100% RPD for concentrations that are less than five times the PQL.

Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured. The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes.

The proximity of an averaged result to the true value, where all random errors have been statistically removed. Accuracy is measured by percent recovery. Acceptable limits for accuracy generally lie between 70% to 130% recoveries. Certain laboratory methods may allow for values that lie outside these limits.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

¹⁵ US EPA, (1994), SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

¹⁶ Keith., H, (1991), Environmental Sampling and Analysis, A Practical Guide.

Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms; Sample receipt form;
- All sample results reported; All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

Comparability

Comparability is the evaluation of the similarity of conditions (eg. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

Blanks

The purpose of laboratory and field blanks is to check for artifacts and interferences that may arise during sampling and analysis.

Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

Duplicates

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix E: Field Work Documents

JOB NO: E 29807 KR LOCATION: Macquarie University, Macquarie Park

PID FIELD CALIBRATION FORM

Make: MiniRAE	Model: 2000	Unit: İ	Date of last factory calibration:			
Date of calibration: 27/	09/16	Name of Calibrator:				
Calibration gas: Iso-butyl		Calibration Gas Concentration: 100.0 ppm				
	99.9 ppm	Error in measured reading: ± ppm				
Make: MiniRAE	Model: 2000	Unit:	Date of last factory calibration:			
Date of calibration: 2:	8/09/16	Name of Calibrator:				
Calibration gas: Iso-buty	1	Calibration Gas Concentration: 100.0 ppm				
Measured reading:	99.8 ppm	Error in measured reading: ± ppm				
Make: MiniRAE	Model: 2000	Unit:	Date of last factory calibration:			
Date of calibration: 30	109/16	Name of Calibrator:				
Calibration gas: Iso-buty		Calibration Gas Concentration: 100.0 ppm				
Measured reading:	(00 ppm	Error in measured reading: ± ppm				
Make: MiniRAE	Model: 2000	Unit: /	Date of last factory calibration:			
Date of calibration: 6	110/16	Name of Calibrator:				
Calibration gas: Iso-buty		Calibration Gas Concentration: 100.0 ppm				
Measured reading:	99.9 ppm	Error in measured reading: ± ppm				
Make: MiniRAE	Model: 2000	Unit:	Date of last factory calibration:			
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-buty	lene	Calibration Gas Concentration: 100.0 ppm				
Measured reading:	ppm	Error in measured reading: ± ppm				
Make: MiniRAE	Model: 2000	Unit:	Date of last factory calibration:			
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-buty	lene	Calibration Gas Concentration: 100.0 ppm				
Measured reading:	ppm	Error in measured reading: ± ppm				
Make: MiniRAE	Model: 2000	Unit:	Date of last factory calibration:			
Date of calibration:	1	Name of Calibrator:				
Calibration gas: Iso-buty	'lene	Calibration Gas Concentration: 100.0 ppm				
Measured reading:	ppm	Error in measured reading: ± ppm				