



| Document:          | Stormwater Quality Management Report   |
|--------------------|----------------------------------------|
| Project:           | Lindfield Learning Village Phase 2 & 3 |
| Location:          | 100 Eton Road Lindfield                |
| Prepared for:      | NSW Department of Education            |
| Revision:          | F                                      |
| Date:              | 18/07/2019                             |
| Project Reference: | 21701-003                              |

EWFW Pty Ltd Level 4, 360-362 Kent Street Sydney. NSW. 2000 Phone: 1300 553 654

www.ewfw.com.au



| Document Title         | Stormwater Quality Management Report                                                                                  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Project                | Lindfield Learning Village Stage 2 & 3                                                                                |
| Project Address        | 100 Eton Road Lindfield                                                                                               |
| Client                 | NSW Department of Education                                                                                           |
| Document version       | F                                                                                                                     |
| Date                   | 18/07/2019                                                                                                            |
| EWFW Project Reference | 21701-003                                                                                                             |
| File path:             | W:\217xx\21701 - Lindfield Learning Centre Stage 2\003 - Flood<br>Modelling Stage 2\Reports\Music Report REV [F].docx |

| Docum | Document Version Control |                            |             |            |             |  |
|-------|--------------------------|----------------------------|-------------|------------|-------------|--|
| Rev   | Date                     | Description of<br>Release  | Prepared By | Checked By | Approved By |  |
| A     | 10/01/2018               | Original Issue             | S.Bahrow    | L DeGioia  | D DeGioia   |  |
| В     | 14/01/2018               | Amendments                 | S.Bahrow    | L DeGioia  | D DeGioia   |  |
| С     | 24/06/2018               | Revised Areas &<br>Runoffs | S.Bahrow    | L DeGioia  | D DeGioia   |  |
| D     | 11/07/2019               | Amendments                 | S Bahrow    | L DeGioia  | D DeGioia   |  |
| E     | 17/07/2019               | Amendments                 | S Bahrow    | L DeGioia  | D DeGioia   |  |
| F     | 18/07/2019               | Amendments                 | S Bahrow    | L DeGioia  | D DeGioia   |  |

This document is and shall remain the property of EWFW. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

A person using EWFW documentation/information accepts the risk of using the documents or data for any purpose not agreed to in writing by EWFW or using the documentation/information in reproduced or electronic form without requesting and checking for accuracy against the original hard copy version.

#### Copyright©

All rights reserved. No part of the content of this document may be reproduced, published, transmitted or adapted in any form or by any means without the written permission of EWFW.

## **EXECUTIVE SUMMARY**

#### **Overview**

This Stormwater Quality Management Report has been prepared by EWFW on behalf of the NSW Department of Education and School Infrastructure NSW (the Applicant). It accompanies a Response to Submissions Report in support of State Significant Development Application (SSD 16\_8114) for Lindfield Learning Village (the site).

On 24 October 2018 the Minister for Planning granted partial development consent to SSD 8114 for Phase 1 construction and operation of a new school for 350 students. The remainder of SSD 8114 (as originally proposed) has not yet been granted consent and has been subject to further investigation, assessment and engagement with the relevant agencies (DPE, RFS, OEH, RMS, TfNSW) and Council.

The Response to Submissions and supporting documents seek approval for the remainder of SSD 8114, being:

Phase 2(a) of construction:

- Minor internal works within the approved Phase 1 area to accommodate an additional 35 students.
- The additional 35 students (a total of 385 enrolled students) is needed for Day 1 Term 1 2020, prior to Phase 2(b) being completed.
- Phase 2(a) will occur immediately on approval to allow the additional students for Day 1 Term • 1 2020.

Phase 2(b) of construction:

- Works to accommodate 1,050 students (including the approved 350).
- Repurposing of the Phase 1 area.
- A loop road around the southern portion of the site for emergency vehicles, buses and drop off and pick up vehicles.

Phase 3 of construction:

Works to accommodate an additional 950 students in the western wing of the building. Vegetation management will be required to achieve the necessary APZ. The SSD does not seek approval for vegetation management outside the site boundary.

The purpose of this Stormwater Quality Management Report is for water quality discharges.

Hydrologic and hydraulic modelling for this catchment and conveyance corridor has been undertaken.

Due to current construction a complete site survey was unable to be obtained. This report is based on survey information available, architectural and landscaping documentation for construction. The extent of the hydraulic model is restricted to the extent of survey. As a consequence of this, the model has a "glass wall" along the extent of survey and accurate flood levels from the west of the site cannot be determined.

On review of your project, and assessment of all the required elements, we do not foresee any costly items, or technical issues that would preclude this development from proceeding.

The concept drainage design and water quality modelling meet all council criteria and state environmental criteria

The site is able to be developed without adversely impacting on the downstream water quality. (Based on the current design)

Within the report, your attention is drawn to the stormwater and onsite detention requirements. There will be a requirement for water quality devices may have an impact on some of the open green space. iii

**EWFW** 

## CONTENTS

| 1. | INTF | ODUC   | ΓΙΟΝ                                                       | 1  |
|----|------|--------|------------------------------------------------------------|----|
|    | 1.1. | PURP   | OSE                                                        | 1  |
|    | 1.2. | SITE I | LOCATION                                                   | 1  |
|    | 1.3. | AUTH   | ORITY                                                      | 1  |
|    | 1.4. | GOVE   | RNING AUTHORITIES                                          | 1  |
| 2. | TEC  | HNICAL | INFORMATION                                                | 2  |
|    | 2.1. | STOR   | MWATER                                                     | 2  |
|    | 2.2. | BACK   | GROUND                                                     | 2  |
|    | 2.3. | WATE   | ER QUALITY                                                 | 2  |
|    |      | 2.3.1. | During Construction – Sediment and Erosion Management      | 2  |
|    |      | 2.3.2. | Post Construction – For Occupation                         | 3  |
|    |      | 2.3.1. | Water Quality Information - Criteria for both phases above | 3  |
| 3. | INFC | RMATI  | ON SOURCES, ASSUMPTIONS, LIMITATIONS AND LIABILITY         | 8  |
|    | 3.1. | PROJ   | ECT INFORMATION SOURCES                                    | 8  |
|    | 3.2. | ASSU   | MPTIONS AND LIMITATIONS                                    | 8  |
|    | 3.3. | LIABIL | _ITY                                                       | 8  |
| 4. | APP  |        | ES                                                         | 9  |
|    | 4.1. | APPE   | NDIX A: MUSIC LINK REPORT                                  | 9  |
|    | 4.2. | APPE   | NDIX B: SEDIMENT & EROSION BASINS REPORT                   | 12 |

### 1. INTRODUCTION

#### 1.1. PURPOSE

The preparation of this water quality report is based on our understanding of the requirements and our understanding of the local conditions and constraints in attempting this type of development.

In undertaking the preparation of this water quality report, EWFW hereby advised that it has no control over any approvals, additional 3rd party requirements, competitive development costs, nor does it have any control over any increase in statutory fees or future availability of external water quality capacity.

This water quality report & summary produced by EWFW will therefore be provided on the basis of its best judgement as an experienced and qualified engineering consultant, familiar with the construction industry.

#### 1.2. SITE LOCATION

#### 1.3. AUTHORITY

Authority to undertake this report was provided by Department of Education

#### 1.4. GOVERNING AUTHORITIES

The following Governing Authorities and Regulations shall have jurisdiction over the services:

#### Authority

Local Council - Ku-ring-gai Shire Council

i

## 2. TECHNICAL INFORMATION

#### 2.1. STORMWATER

The purpose of this document is to provide a summary of the Water Quality report for the proposed Lindfield Learning Village Stage 2 & 3 located at 100 Eton Road Lindfield and to provide Ku-ring-gai Council (KC) with the background information to take into account during their assessment of the SSDA RTS.

The existing stormwater infrastructure within the vicinity of the subject site is complex.

We have used a Drains model file to assess our development effects to existing drainage system, and overland flows ensure the proposed design represent the existing stormwater network and runoffs as accurately as possible.

#### 2.2. BACKGROUND

1. We reviewed the detailed survey, provided by Client. This survey described the subject site in detail but did not contain enough information on the existing pit and pipe network adjacent to the site.

2. A Drainage Asset search was made to Ku-ring-gai Council of their asset information within the subject site and surrounds. This information was unavailable.

3. A surveyor was engaged to carry out a further detailed survey of, inter alia, the existing stormwater pipe and pit networks around the surrounding sites. The provision of this additional survey was essential in quantifying the existing stormwater assets and network topology exact locations, pit geometry, and discharge locations.

#### 2.3. WATER QUALITY

#### 2.3.1. During Construction – Sediment and Erosion Management

Council's Stormwater Management policy (Ku-ring-gai Council DCP) requires stormwater quality control on all developments to reduce the amount of suspended solids, total phosphorous and total nitrogen from leaving the developed site

It is proposed to provide retrofitting where possible Eco Sol 1500um screens all pits, prior to the Water quality / sediment control ponds. On the R4 catchment provide a Spel water clean FTM or another approved equivalent device.

MUSIC Modelling was used to model water quality pre and post development cycles.

- Water Quality and catchment hydrology has been derived by MUSIC (Version 6.3 Jun 2018) software package. Water quality levels have been addressed as shown below.
- Below are the results for the treatment train modelling, capturing and treatment of pollutants.

Council requires Stormwater quality modelling and preparation of a Stormwater Concept Plan and Erosion & Sediment Control Plan.

In this instance the modelling was carried out using MUSIC Version 6.3.

The measures to be used on the site incorporate five (5) On-Site Stormwater / settlement ponds with an overall total capacity of Total capacity of 1257 cubic meters,

ii

- Pond R4 has an area of 131 sq<sup>2</sup> meters & 85 m<sup>3</sup> storage
- Pond B1 zone D has an area of 172 sq<sup>2</sup> meters & 110 m<sup>3</sup> storage
- Pond B1 zone C has an area of 627 sq<sup>2</sup> meters & 402 m<sup>3</sup> storage with 50kL basin Pond R1 has an area of 197 sq<sup>2</sup> meters & 129 m<sup>3</sup> storage
- Pond R1 & B5 an area of 738 sq<sup>2</sup> meters & 531 m<sup>3</sup> storage

#### 2.3.2. Post Construction – For Occupation

All drainage pits will be retrofitted with a 1500um trash filter screen fitted internally prior to water entering the in-ground drainage system.

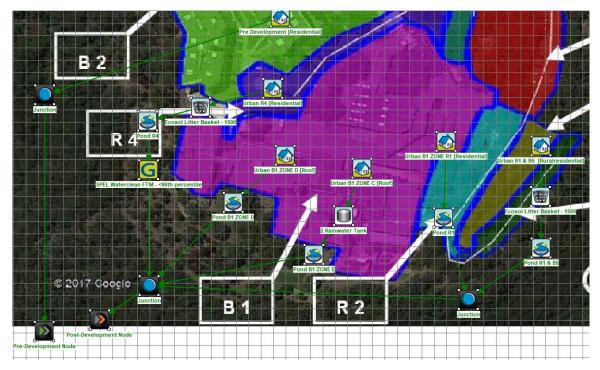
A 20kL terraced rain garden system is to be installed to meet the water quality requirements of Kuring-gai Council as derived by the water quality modelling. This terraced rain garden system is needed to meet the quality requirements of the entire site.

#### 2.3.3. Water Quality Information - Criteria for both phases above

Stormwater from the drainage system enters the Lane Cove River downstream

The MUSIC model was established for the site utilizing multiple discharge sources node for the Treatment nodes were setup for the Road catchments prior entering the ponds

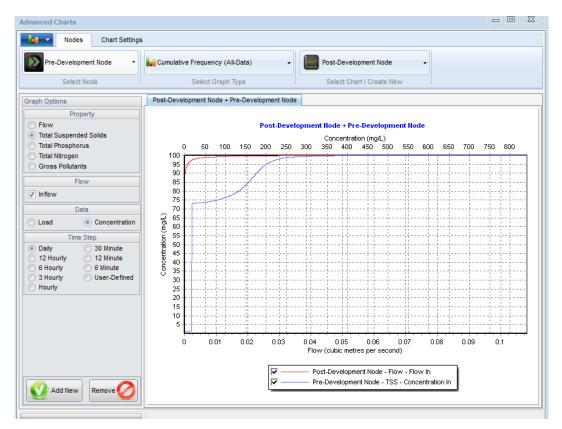
The model compared the pre-development and post-development scenarios.


Below is Council requirement the following performance targets to be met as a minimum: -

| Pollutant                                                                                       | Retention Criteria                   |
|-------------------------------------------------------------------------------------------------|--------------------------------------|
| <i>Total suspended solids</i> , including <i>sediment</i> and other fine material less than 5mm | 85% retention of average annual load |
| Total Phosphorous                                                                               | 65% retention of average annual load |
| Total Nitrogen                                                                                  | 45% retention of average annual load |
| Gross Pollutants                                                                                | 90% retention of average annual load |

The modelling results must also compare cumulative frequency curves of pollutant concentrations before and after development. They must show that pollutant concentrations after development will be better or equal to previous pollutant concentrations for 50-98% of the time.

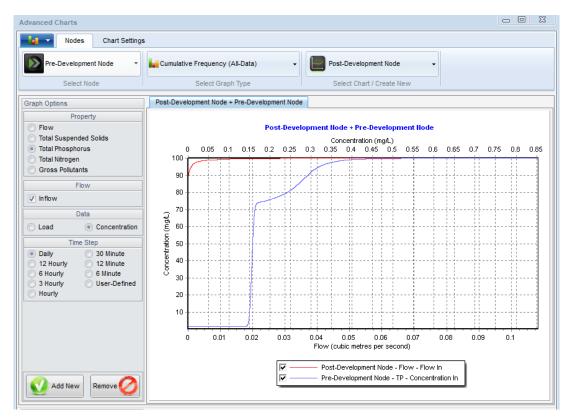
|                                | Sources |      | Residual Load |      | % Reduction |      |
|--------------------------------|---------|------|---------------|------|-------------|------|
|                                | Pre     | Post | Pre           | Post | Pre         | Post |
| Flow (ML/yr)                   | 24.3    | 33.9 | 24.3          | 10.5 | 0           | 69   |
| Total Suspended Solids (kg/yr) | 4060    | 3410 | 4060          | 311  | 0           | 90.9 |
| Total Phosphorus (kg/yr)       | 6.8     | 7.66 | 6.8           | 1.15 | 0           | 85   |
| Total Nitrogen (kg/yr)         | 51.2    | 71.8 | 51.2          | 11.3 | 0           | 84.3 |
| Gross Pollutants (kg/yr)       | 587     | 824  | 587           | 0    | 0           | 100  |


Above results show a reduction of total nitrogen, phosphorus and solids, below is the schematic layout of the treatment train cycle. (Shown below)

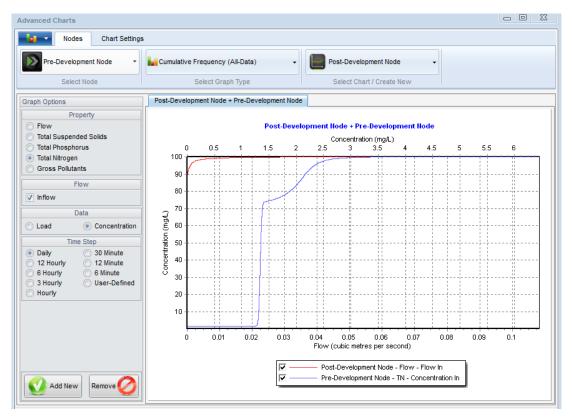


Treatment cycle schematic for the entire site.



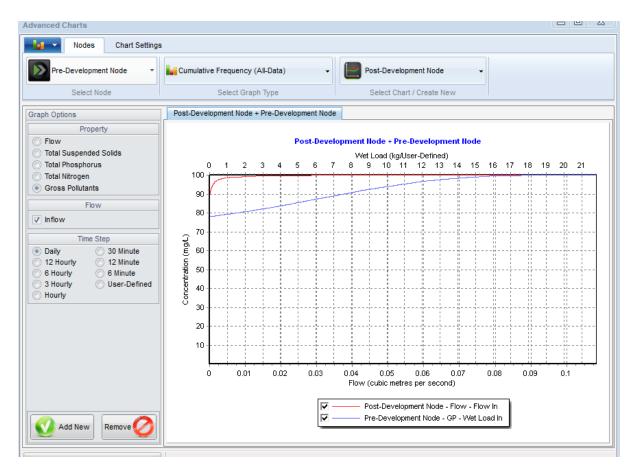

Above results, are the total flows of the treatment train cycle, Post vs. Pre-development.




Above results, the TSS (total suspended solids) of the treatment train cycle. Post vs. Predevelopment

EWFW

۷




Above results, the TP (total phosphorus) of the treatment train cycle.



Above results, the TN (total nitrogen) of the treatment train cycle.

EWFW



Above results, the GP (Gross Pollutants) of the treatment train cycle.

#### AS 3500.3 Stormwater Drainage;

#### Australian Rainfall and Runoff;

I am an appropriately qualified and competent person in this area and as such can certify that the design and performance of the design systems comply with the above.

This certification shall not be construed as relieving any other party of their responsibilities, liabilities or contractual obligations.

## 3. INFORMATION SOURCES, ASSUMPTIONS, LIMITATIONS AND LIABILITY

#### 3.1. PROJECT INFORMATION SOURCES

| Document / programs        | Version  |
|----------------------------|----------|
| BOM (Bureau of Meteorology |          |
| Drains                     | 2018 .09 |
| 12D                        | Ver. 11  |
| Music                      | Ver. 6.3 |

#### Table 3.1 – Project information sources

#### 3.2. ASSUMPTIONS AND LIMITATIONS

The information contained in this document is provided for the sole use of the recipient and no reliance should be placed on the information by any other person. In the event that the information is disclosed or furnished to any other person, EWFW accepts no liability for any loss or damage incurred by that person whatsoever as a result of using the information.

This report is prepared in good faith and with due care for information purposes only and should not be relied upon as providing any warranty or guarantee as to the nature and condition of the building and/or its services or equipment. In particular, attention is drawn to the nature of the inspection and investigations undertaken and the limitations these impose in determining with accuracy the state of the building, its services or equipment.

Due to the limitations of our access to services in the preparation of this report, users of this report should not rely on any statements or representations contained within, but should undertake further and more detailed investigations to satisfy themselves as to the correctness of any statement or representation contained in this report.

#### 3.3. LIABILITY

EWFW shall not be held liable for any loss or damage resulting from any defect of the building or its services or equipment or for any non compliance of the building or its services or equipment with any legislative or operational requirements, whether or not such defect or non compliance is referred to or reported upon in this report, unless such defect or non compliance should have been apparent to a competent Engineer undertaking inspection of the type undertaken for the purpose of preparation of this report.

### 4. **APPENDICIES**

#### 4.1. APPENDIX A: MUSIC LINK REPORT



KU-RING-GAI COUNCIL

## music@link

#### MUSIC-link Report

| Project Details                      |                                                   | Company Details               |           |
|--------------------------------------|---------------------------------------------------|-------------------------------|-----------|
| Project:                             | Lindfield                                         | Company:                      | EWFW      |
| Report Export Date:                  | 3/07/2019                                         | Contact:                      |           |
| Catchment Name:                      | Lindfield                                         | Address:                      | Lindfield |
| Catchment Area:                      | 3.473ha                                           | Phone:                        |           |
| Impervious Area*:                    | 59.24%                                            | Email:                        |           |
| Rainfall Station:                    | 66062 SYDNEY                                      |                               |           |
| Modelling Time-step:                 | 6 Minutes                                         |                               |           |
| Modelling Period:                    | 1/01/1963 - 31/12/1993 11:54:00 PM                |                               |           |
| Mean Annual Rainfall:                | 1275mm                                            |                               |           |
| Evapotranspiration:                  | 1261mm                                            |                               |           |
| MUSIC Version:                       | 6.3.0                                             |                               |           |
| MUSIC-link data Version:             | 6.31                                              |                               |           |
| Study Area:                          | Ku-ring-gai Council                               |                               |           |
| Scenario:                            | Ku-ring-gai                                       |                               |           |
| t takes into apopunt area from all a | ource nodes that link to the chosen reporting nod | a aveluding lamost Data Nodae |           |

\* takes into account area from all source nodes that link to the chosen reporting node, excluding Inport Data Nodes

| Treatment Train Effectiveness |           | Treatment Nodes      |        | Source Nodes      |        |
|-------------------------------|-----------|----------------------|--------|-------------------|--------|
| Node: Junction                | Reduction | Node Type            | Number | Node Type         | Number |
| Row                           | 66.3%     | Pond Node            | 5      | Urban Source Node | 6      |
| TSS                           | 89.7%     | Rain Water Tank Node | 1      |                   |        |
| TP                            | 83.1%     | Generic Node         | 1      |                   |        |
| TN                            | 82.9%     | GPT Node             | 2      |                   |        |
| œ                             | 100%      |                      |        |                   |        |

Comments

UTS Linfield Redevelopment Stage 2



#### KU-RING-GAI COUNCIL

# music@link

| Passing Para | meters                      |                               |      |      |        |
|--------------|-----------------------------|-------------------------------|------|------|--------|
| Node Type    | Node Name                   | Parameter                     | Min  | Max  | Actual |
| GPT          | Ecosol Litter Basket - 1500 | Hi-flow bypass rate (cum/sec) | None | None | 100    |
| GPT          | Ecosol Litter Basket - 1500 | Hi-flow bypass rate (cum/sec) | None | None | 100    |
| Pond         | Pond B1 ZONE D              | % Reuse Demand Met            | None | None | 0      |
| Pond         | Pond B1 ZONE E              | % Reuse Demand Met            | None | None | 0      |
| Pond         | Pond R1                     | % Reuse Demand Met            | None | None | 0      |
| Pond         | Pond R1 & B5                | % Reuse Demand Met            | None | None | 0      |
| Pond         | Pond R4                     | % Reuse Demand Met            | None | None | 0      |
| Post         | Post-Development Node       | % Load Reduction              | None | None | 66.3   |
| Post         | Post-Development Node       | GP % Load Reduction           | 70   | None | 100    |
| Post         | Post-Development Node       | TN % Load Reduction           | 45   | None | 82.9   |
| Post         | Post-Development Node       | TP % Load Reduction           | 45   | None | 83.1   |
| Post         | Post-Development Node       | TSS % Load Reduction          | 80   | None | 89.7   |
| Pre          | Pre-Development Node        | % Load Reduction              | None | None | 0      |
| Pre          | Pre-Development Node        | GP % Load Reduction           | None | None | 0      |
| Pre          | Pre-Development Node        | TN % Load Reduction           | None | None | 0      |
| Pre          | Pre-Development Node        | TP % Load Reduction           | None | None | 0      |
| Pre          | Pre-Development Node        | TSS % Load Reduction          | None | None | 0      |
| Urban        | Pre Development             | Area Impervious (ha)          | None | None | 1.662  |
| Urban        | Pre Development             | Area Pervious (ha)            | None | None | 0.989  |
| Urban        | Pre Development             | Total Area (ha)               | None | None | 2.652  |
| Urban        | Urban B1 ZONE C             | Area Impervious (ha)          | None | None | 0.606  |
| Urban        | Urban B1 ZONE C             | Area Pervious (ha)            | None | None | 0.241  |
| Urban        | Urban B1 ZONE C             | Total Area (ha)               | None | None | 0.848  |
| Urban        | Urban B1 ZONE D             | Area Impervious (ha)          | None | None | 0.165  |
| Urban        | Urban B1 ZONE D             | Area Pervious (ha)            | None | None | 0.066  |
| Urban        | Urban B1 ZONE D             | Total Area (ha)               | None | None | 0.232  |
| Urban        | Urban B1 ZONE R1            | Area Impervious (ha)          | None | None | 0.164  |
| Urban        | Urban B1 ZONE R1            | Area Pervious (ha)            | None | None | 0.102  |
| Urban        | Urban B1 ZONE R1            | Total Area (ha)               | None | None | 0.267  |
| Urban        | Urban R1 & B5               | Area Impervious (ha)          | None | None | 0.467  |
| Urban        | Urban R1 & B5               | Area Pervious (ha)            | None | None | 0.718  |
| Urban        | Urban R1 & B5               | Total Area (ha)               | None | None | 1.186  |
| Urban        | Urban R4                    | Area Impervious (ha)          | None | None | 0.653  |
| Urban        | Urban R4                    | Area Pervious (ha)            | None | None | 0.286  |
| Urban        | Urban R4                    | Total Area (ha)               | None | None | 0.94   |

Only certain parameters are reported when they pass validation



#### KU-RING-GAI COUNCIL

## music@link

| Node Type | Node Name        | Parameter                    | Min  | Max  | Actual |
|-----------|------------------|------------------------------|------|------|--------|
| Pond      | Pond B1 ZONE D   | Evaporative Loss as % of PET | 75   | 75   | 100    |
| Pond      | Pond B1 ZONE D   | Extended detention depth (m) | 0.25 | 1    | 2      |
| Pond      | Pond B1 ZONE E   | Evaporative Loss as % of PET | 75   | 75   | 100    |
| Pond      | Pond B1 ZONE E   | Extended detention depth (m) | 0.25 | 1    | 2.75   |
| Pond      | Pond R1          | Evaporative Loss as % of PET | 75   | 75   | 100    |
| Pond      | Pond R1          | Extended detention depth (m) | 0.25 | 1    | 2.25   |
| Pond      | Pond R1 & B5     | Evaporative Loss as % of PET | 75   | 75   | 100    |
| Pond      | Pond R1 & B5     | Extended detention depth (m) | 0.25 | 1    | 2      |
| Pond      | Pond R4          | Evaporative Loss as % of PET | 75   | 75   | 100    |
| Pond      | Pond R4          | Extended detention depth (m) | 0.25 | 1    | 1.75   |
| Rain      | 2 Rainwater Tank | % Reuse Demand Met           | 80   | None | 0      |

Only certain parameters are reported when they pass validation

#### APPENDIX B: SEDIMENT & EROSION BASINS REPORT

| Site Name:                                                                                 | UTS Linfield |          |           |           |          |         |                                                                      |  |  |  |
|--------------------------------------------------------------------------------------------|--------------|----------|-----------|-----------|----------|---------|----------------------------------------------------------------------|--|--|--|
| Site Location:                                                                             | Eaton        | Road,    | Linfie    |           |          |         |                                                                      |  |  |  |
| Precinct/Stage:                                                                            | Stage        | 2        |           |           |          |         |                                                                      |  |  |  |
| Other Details:                                                                             |              |          |           |           |          |         |                                                                      |  |  |  |
| Site area                                                                                  |              | catchm   |           |           | Notes    |         |                                                                      |  |  |  |
|                                                                                            |              | Zone B   |           |           |          |         | Hotes                                                                |  |  |  |
| Total catchment area (ha)<br>Disturbed asterbarrent area (ha)                              |              | 0.211    |           | 0.229     |          |         |                                                                      |  |  |  |
| Disturbed catchment area (ha)                                                              | 0.783        | 0.134    | 0.664     | 0.132     | 0.102    |         |                                                                      |  |  |  |
| Soil analysis (enter sediment t                                                            | vpe if       | known    | . or lat  | orator    | v parti  | cle siz | e data)                                                              |  |  |  |
| Sediment Type (C, F or D) if known:                                                        | С            | С        | С         | С         | C        |         | From Appendix C (if known)                                           |  |  |  |
| % sand (fraction 0.0/2 to 2.00 mm)                                                         |              |          |           |           |          |         | Enter the persentant of each soil                                    |  |  |  |
| % slit (fraction 0.00/2 to 0.02 mm)                                                        |              |          |           |           |          |         | Enter the percentage of each soil<br>fraction. E.g. enter 10 for 10% |  |  |  |
| % clay (fraction finer than 0.002 mm)                                                      |              |          |           |           |          |         | nacion. ⊏.g. enier to ior to%                                        |  |  |  |
| Dispersion percentage                                                                      | 11.0         | 11.0     | 11.0      | 11.0      | 11.0     |         | E.g. enter 10 for dispersion of 10%                                  |  |  |  |
| % of whole soil dispersible                                                                |              |          |           |           |          |         | See Section 6.3.3(e). Auto-calculated                                |  |  |  |
| Soil Texture Group                                                                         | С            | С        | С         | С         | С        |         | Automatic calculation from above                                     |  |  |  |
| Rainfall data<br>Design rainfall depth (no of day s)<br>Design rainfall depth (percentile) | 20<br>90     | 20<br>90 | 20<br>90  | 20<br>90  | 20<br>90 |         | See Section 6.3.4 and, particularly,                                 |  |  |  |
| x-day, y-percentile rainfall event (mm)                                                    | 172          | 172      | 172       | 172       | 172      |         | Table 6.3 on pages 6-24 and 6-25.                                    |  |  |  |
| Rainfall R-factor (if known)                                                               | 3470.67      | 3470.67  | 3470.67   | 3470.67   | 3470.67  |         | Only need to enter one or the other her                              |  |  |  |
| FD: 2-year, 6-hour storm (if known)                                                        | 12.68        | 12.68    | 12.68     | 12.68     | 12.68    |         |                                                                      |  |  |  |
| RUSLE Factors                                                                              |              |          |           |           |          |         |                                                                      |  |  |  |
| Rainfall crosivity (R-factor)                                                              | 3470.67      | 3470.67  | 3470.67   | 3470.67   | 3470.67  |         | Auto-filled from above                                               |  |  |  |
| Soil erodibility (K -factor)                                                               | 0.04         | 0.04     | 0.04      | 0.04      | 0.04     |         |                                                                      |  |  |  |
| Slope length (m)                                                                           | 190.63       | 93.25    | 76.6      | 46.1      | 39.2     |         |                                                                      |  |  |  |
| Slope gradient (%)                                                                         | 9.65         | 11.2     | 8.4       | 13        | 17.2     |         | RUSLE LS factor calculated for a hig                                 |  |  |  |
| .ength/gradient (LS -factor)                                                               | 4.78         | 3.72     | 2.11      | 2.80      | 3.56     |         | rill/interrill ratio.                                                |  |  |  |
| Erosion control practice (P -factor)                                                       | 1.3          | 1.3      | 1.3       | 1.3       | 1.3      | 1.3     |                                                                      |  |  |  |
| Ground cover (C-factor)                                                                    | 1            | 1        | 1         | 1         | 1        | 1       |                                                                      |  |  |  |
| Sediment Basin Design Criteri                                                              | a (for 1     | Гуре D   | /Fbasi    | ns only   | /. Leav  | e blan  | k for Type C basins)                                                 |  |  |  |
| Storage (soil) zone design (no of months)                                                  | 9            | 6        | 3         | 4         | 2        | 2       | Minimum is generally 2 months                                        |  |  |  |
| Cv (Volumetric runoff coefficient)                                                         | 0.63         | 0.63     | 0.63      | 0.63      | 0.63     |         | See Table F2, page F-4 in Appendix F                                 |  |  |  |
| Calculations and Type D/F Sec                                                              |              | _        | _         | _         | 040      |         |                                                                      |  |  |  |
| Soll loss (Vha/yr)<br>Soll Loss Class                                                      | 862<br>6     | 671<br>5 | 381       | 505<br>5  | 642<br>5 |         | See Table 4.2, page 4-13                                             |  |  |  |
|                                                                                            | -            | 5        | 4<br>293  | 5<br>389  | 5<br>494 |         | See Table 4.2, page 4-13<br>Conversion to cubic metres               |  |  |  |
| Soil loss (m <sup>3</sup> /ha/yr)                                                          | 663<br>389   | 35       | 293<br>49 |           | 494<br>8 |         | See Sections 6.3.4(i) for calculations                               |  |  |  |
| Sediment basin storage (soil) volume (m <sup>3</sup> )                                     | 1285         | 229      | 49<br>956 | 17<br>248 | 0<br>191 |         | See Sections 6.3.4(i) for calculations                               |  |  |  |
| Sediment basin settling (water) volume (m <sup>3</sup> )                                   | 1280         | 264      | 1005      | 248       | 191      |         | oce occurs c.s.4(i) ior calculations                                 |  |  |  |

| Deak flow is given by th                                          | Det:            | onal E-                                                        | mula     |                     | $O_{Y} = 0$            | 00279    | x Con    | x F., v | I <sub>v. tc</sub> x A                                                                                                                        |  |  |  |
|-------------------------------------------------------------------|-----------------|----------------------------------------------------------------|----------|---------------------|------------------------|----------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Peak flow is given by th                                          | e Rati          | onal Fo                                                        | irmula:  |                     | Qy = t                 | 1.00270  | × C10    | A F Y A | ly, to A A                                                                                                                                    |  |  |  |
| where:                                                            | Qv              | is pea                                                         | k flow r | ate (m <sup>.</sup> | /sec) o                | f averag | ge recu  | rrence  | interval (ARI) of "Y" years                                                                                                                   |  |  |  |
|                                                                   | C <sub>10</sub> | is the runoff coefficient (dimensionless) for ARI of 10 years. |          |                     |                        |          |          |         |                                                                                                                                               |  |  |  |
|                                                                   | Fy              | is a fre                                                       |          |                     |                        |          |          |         |                                                                                                                                               |  |  |  |
|                                                                   | Α               | is the                                                         |          |                     |                        |          |          |         |                                                                                                                                               |  |  |  |
|                                                                   | ly, to          |                                                                | -        |                     |                        |          |          |         | RI of "Y" years                                                                                                                               |  |  |  |
|                                                                   |                 | and a                                                          | design   | duratio             | n of "to               | " (minu  | tes or I | nours)  |                                                                                                                                               |  |  |  |
| Time of conce                                                     | ntratio         | n (t <sub>c</sub> ) =                                          | 0.76 x   | (A/100              | )) <sup>0.38</sup> hr: | s        |          |         |                                                                                                                                               |  |  |  |
| calculations or reduc                                             | ced by          | a fact                                                         | or of 5  | i0 per d            | cent. P                | lace ar  | n x in t | he ap   | nined by more precise<br>propriate row below to<br>catchment.                                                                                 |  |  |  |
| Structure Details                                                 |                 |                                                                |          |                     |                        |          |          |         | Notes                                                                                                                                         |  |  |  |
| Name                                                              | Zone A          | Zone B                                                         | Zone C   | Zone D              | Zone E                 |          |          |         |                                                                                                                                               |  |  |  |
| Catchment Area (ha)                                               | 1.1863          | 0.211                                                          | 0.882    | 0.229               | 0.176                  |          |          |         |                                                                                                                                               |  |  |  |
| Place an x here to halve to                                       |                 |                                                                |          |                     |                        |          |          |         | Place an x if disturbed catchmer                                                                                                              |  |  |  |
| Time of concentration (tc)                                        | 8               | 4                                                              | 8        | 5                   | 4                      |          |          |         | minutes                                                                                                                                       |  |  |  |
| Rainfall Intensities                                              |                 |                                                                |          |                     |                        |          |          |         |                                                                                                                                               |  |  |  |
| 1-year, to                                                        | 80.3            | 95.3                                                           | 80.3     | 95.3                | 95.3                   |          |          |         | Enter the relevant rainfall intensiti                                                                                                         |  |  |  |
| 2-year, to                                                        | 102.6           | 121.9                                                          | 102.6    | 121.9               | 121.9                  |          |          |         | (in mm/hr) for each of the<br>nominated rainfall events.<br>The time of concentration (tc)<br>determines the duration of the ev<br>to be used |  |  |  |
| 5-year, to                                                        | 130.2           | 154.1                                                          | 130.2    | 154.1               | 154.1                  |          |          |         |                                                                                                                                               |  |  |  |
| 10-year, to                                                       | 145.9           | 172.4                                                          | 145.9    | 172.4               | 172.4                  |          |          |         |                                                                                                                                               |  |  |  |
| 20-year, to                                                       | 167             | 196.9                                                          | 167      | 196.9               | 196.9                  |          |          |         |                                                                                                                                               |  |  |  |
| 50-year, to                                                       | 194.2           | 228.7                                                          | 194.2    | 228.7               | 228.7                  |          |          |         |                                                                                                                                               |  |  |  |
| 100-year, tc                                                      | 214.9           | 252.65                                                         | 214.9    | 252.65              | 252.65                 |          |          |         |                                                                                                                                               |  |  |  |
| C10 runoff coefficient                                            | 0.05            | 0.05                                                           | 0.05     | 0.05                | 0.05                   |          |          |         | Hee AD&D or Table C2 are C (                                                                                                                  |  |  |  |
| C 10 runoit coemcient                                             | 0.85            | 0.85                                                           | 0.85     | 0.85                | 0.85                   |          |          |         | Use AR&R or Table F3, pg F-6                                                                                                                  |  |  |  |
| Frequency Factors                                                 |                 |                                                                |          |                     |                        |          |          |         |                                                                                                                                               |  |  |  |
| FF, 1-year                                                        | 0.8             | 0.8                                                            | 0.8      | 0.8                 | 0.8                    | 0.8      | 0.8      | 0.8     | Can use 0.8 for a construction si                                                                                                             |  |  |  |
| FF, 2-year                                                        | 0.85            | 0.85                                                           | 0.85     | 0.85                | 0.85                   | 0.85     | 0.85     | 0.85    | Can use 0.85 for a construction s                                                                                                             |  |  |  |
| FF, 5-year                                                        | 0.95            | 0.95                                                           | 0.95     | 0.95                | 0.95                   | 0.95     | 0.95     | 0.95    | Can use 0.95 for a construction s                                                                                                             |  |  |  |
| FF, 10-year                                                       | 1               | 1                                                              | 1        | 1                   | 1                      | 1        | 1        | 1       | Generally always 1                                                                                                                            |  |  |  |
| FF, 20-year                                                       | 1.05            | 1.05                                                           | 1.05     | 1.05                | 1.05                   | 1.05     | 1.05     | 1.05    | Can use 1.05 for a construction s                                                                                                             |  |  |  |
| FF, 50-year                                                       | 1.15            | 1.15                                                           | 1.15     | 1.15                | 1.15                   | 1.15     | 1.15     | 1.15    | Can use 1.15 for a construction s                                                                                                             |  |  |  |
| FF, 100-year                                                      | 1.2             | 1.2                                                            | 1.2      | 1.2                 | 1.2                    | 1.2      | 1.2      | 1.2     | Can use 1.2 for a construction si                                                                                                             |  |  |  |
| Flow Calculations                                                 |                 |                                                                |          |                     |                        |          |          |         | Notes                                                                                                                                         |  |  |  |
| 1-year, tc (m <sup>3</sup> /s)                                    | 0.18            | 0.038                                                          | 0.134    | 0.041               | 0.032                  |          |          |         |                                                                                                                                               |  |  |  |
| 2-year, tc (m <sup>3</sup> /s)                                    | 0.244           | 0.052                                                          | 0.182    | 0.056               | 0.043                  |          |          |         |                                                                                                                                               |  |  |  |
|                                                                   | 0.347           | 0.073                                                          | 0.258    | 0.079               | 0.061                  |          |          |         |                                                                                                                                               |  |  |  |
|                                                                   |                 |                                                                |          | 0.093               | 0.072                  | $\vdash$ |          |         |                                                                                                                                               |  |  |  |
| 5-year, tc (m <sup>3</sup> /s)                                    | 0.409           | 0.086                                                          | 0.304    | 0.085               | 0.072                  |          |          |         |                                                                                                                                               |  |  |  |
| 5-year, tc (m <sup>3</sup> /s)<br>10-year, tc (m <sup>3</sup> /s) | 0.409           | 0.086                                                          | 0.304    | 0.085               | 0.072                  |          |          |         |                                                                                                                                               |  |  |  |
| 5-year, tc (m <sup>3</sup> /s)                                    |                 |                                                                |          |                     |                        |          |          |         |                                                                                                                                               |  |  |  |

| Structure Details          |          |        |        |         |        |     |                                             |
|----------------------------|----------|--------|--------|---------|--------|-----|---------------------------------------------|
| Structure Name             | Zone A   | Zone B | Zone C | Zone D  | Zone E |     | Auto-filled from Worksheet 1                |
| Catchment Area (ha)        | 1.1863   | 0.211  | 0.882  | 0.229   | 0.176  |     | Auto-filled from Worksheet 1                |
| Time of concentration (tc) | 4        | 2      | 4      | 2       | 2      |     | Auto-calculated assuming to is halved       |
| Rainfall Intensities (IFD  | Values)  |        |        |         |        |     |                                             |
| 1 year, tc                 | 80.3     | 95.3   | 95.3   | 95.3    | 95.3   |     |                                             |
| 2 year, tc                 | 102.6    | 121.9  | 121.9  | 121.9   | 121.9  |     | Enter the relevant rainfall intensities (in |
| 5 year, tc                 | 130.2    | 154.1  | 154.1  | 154.1   | 154.1  |     | mm/hr) for each of the nominated rainfal    |
| 10 year, tc                | 145.9    | 172.4  | 172.4  | 172.4   | 172.4  |     | events.                                     |
| 20 year, tc                | 167      | 196.9  | 196.9  | 196.9   | 196.9  |     | The time of concentration (tc) determines   |
| 50 year, tc                | 194.2    | 228.7  | 228.7  | 228.7   | 228.7  |     | the duration of the event to be used        |
| 100 year, tc               | 214.9    | 252.65 | 252.65 | 252.65  | 252.65 |     |                                             |
| C10 runoff coefficient     | 0.85     | 0.85   | 0.85   | 0.85    | 0.85   |     | Use AR&R or Table F3, pg F-6                |
| Design ARI event (select): | 20       | 20     | 100    | 100     | 100    | 100 | Select design ARI (years) from dropdow      |
| Frequency Factor           | 1.05     | 1.05   | 1.2    | 1.2     | 1.2    | 1.2 | Auto-filled based on selected ARI           |
| Flow Calculation           | 0.492    | 0.103  | 0.632  | 0.164   | 0.126  |     | Auto-calculated based on selected ARI       |
|                            |          |        |        |         |        |     |                                             |
| 4. Volume of Ty            | /pe C (C | oarse) | Sedim  | ient Ba | isins  |     |                                             |
| Type C Basin Design C      | riteria  |        |        |         |        |     |                                             |
| Structure Name             | Zone A   | Zone B | Zone C | Zone D  | Zone E |     | Auto-filled from Worksheet 1                |
| Catchment Area (ha)        | 1.1863   | 0.211  | 0.882  | 0.229   | 0.176  |     | Auto-filled from Worksheet 1                |
| Sediment type (C, F or D)  | С        | С      | С      | С       | С      |     | Auto-filled from Worksheet 1                |
| Design rainfall event      | 1        | 1      | 1      | 1       | 1      |     | Choose design event from dropdown           |
|                            |          |        |        |         |        |     |                                             |

| riow volume (m /s)                             | 0.10       | 0.000 | 0.135 | 0.041 | 0.002 |            | Calculated Form in D Values above        |
|------------------------------------------------|------------|-------|-------|-------|-------|------------|------------------------------------------|
| Area Factor                                    | 4100       | 4100  | 4100  | 4100  | 4100  | 4100       | Default is 4,100. See pg 6-12            |
| Depth of settling (water zone) (m)             | 0.6        | 0.6   | 0.6   | 0.6   | 0.6   | 0.6        | Minimum is 0.6m (pg 6-12)                |
|                                                |            |       |       |       |       |            |                                          |
| Type C Basin Volume Ca                         | lculations | 3     |       |       |       |            |                                          |
| Basin Surface Area (m <sup>2</sup> )           | 738        | 155.8 | 651.9 | 168.1 | 131.2 | Not Type C | Auto-calculated                          |
| Settling (water) zone volume (m <sup>3</sup> ) | 442.8      | 93.5  | 391.1 | 100.9 | 78.7  | Not Type C | Auto-calculated                          |
| Storage (soil) zone volume (m <sup>3</sup> )   | 88.3       | 11.8  | 33    | 8.7   | 8.6   | Not Type C | Auto-calculated                          |
| Total basin volume (m <sup>3</sup> )           | 531.1      | 105.3 | 424.1 | 109.6 | 87.3  | Not Type C | Auto-calculated                          |
| Basin Shape                                    |            |       |       |       |       |            |                                          |
| Enter length:width ratio                       | 3          | 3     | 2     | 3     | 3     | 3          | E.g. for 3:1 (L:W) enter 3.              |
| Length (m)                                     | 47.1       | 21.6  | 36.1  | 22.5  | 19.8  | N/A        | These figures should be taken as a guide |
| Width (m)                                      | 15.7       | 7.2   | 18.1  | 7.5   | 6.6   | N/A        | only. Detailed calcs might be required.  |
|                                                |            |       |       |       |       |            |                                          |