

**Brookfield Multiplex Australasia** 

#### Material Science Building University of New South Wales

### Geotechnical Investigation Report

4 February 2016



To find the smartest solutions sometimes you need to dig deeper This page has been left intentionally blank

#### **Material Science Building**

#### **University of New South Wales**

Prepared for Brookfield Multiplex Australasia

Prepared by Coffey Geotechnics Pty Ltd Level 19, Tower B, 799 Pacific Highway Chatswood NSW 2067 Australia t: +61 2 9406 1000 f: +61 2 9406 1002 ABN: 93 056 929 483

4 February 2016

#### **Document authorisation**

Our ref: GEOTLCOV24080AS-AE Rev 2

For and on behalf of Coffey

Mp

Raphael Hyde Geotechnical Engineer

#### **Quality information**

#### **Revision history**

| Revision | Description                                                                | Date       | Author         | Reviewer  | Signatory      |
|----------|----------------------------------------------------------------------------|------------|----------------|-----------|----------------|
| 0        | Geotechnical Investigation Report                                          | 15/08/2015 | Bernice Cahill | Ross Best | Bernice Cahill |
| 2        | Revised – Include reference to correct basement area, no technical changes | 4/02/2016  | RH             | -         | RH             |

#### Distribution

| Report Status | No. of copies | Format | Distributed to                   | Date      |
|---------------|---------------|--------|----------------------------------|-----------|
| Final         | 1             | PDF    | Brookfield Multiplex Australasia | 4/02/2016 |

# **Table of contents**

| 1. | Introd | uction1                                                            |
|----|--------|--------------------------------------------------------------------|
| 2. | Invest | tigation methodology1                                              |
| 3. | Resul  | ts of investigation2                                               |
|    | 3.1.   | Site description2                                                  |
|    | 3.2.   | Regional geology2                                                  |
|    | 3.3.   | Subsurface conditions2                                             |
|    | 3.4.   | Geotechnical model2                                                |
| 4. | Discu  | ssion and recommendations3                                         |
|    | 4.1.   | Excavations                                                        |
|    |        | 4.1.1. Excavatability                                              |
|    |        | 4.1.2. Groundwater conditions                                      |
|    |        | 4.1.3. Excavation retention                                        |
|    |        | 4.1.4. Excavation induced ground movements5                        |
|    | 4.2.   | Foundations5                                                       |
|    |        | 4.2.1. Raft and piled raft                                         |
|    | 4.3.   | Earthworks7                                                        |
|    |        | 4.3.1. Suitability of existing fill for re-use as engineered fill7 |
|    |        | 4.3.2. Engineered fill compaction                                  |
|    | 4.4.   | Soil aggressivity7                                                 |
|    | 4.5.   | Earthquake design7                                                 |
|    | 4.6.   | Recommendations for further investigation and assessment           |
| 5. | Closu  | re8                                                                |

#### Important information about your Coffey Report

#### Tables

- Table 1 Summary of Subsurface Conditions and Inferred Geotechnical Model
- Table 2 Preliminary Parameters for Retaining Wall Design
- Table 3 Design Parameters for Anchors
- Table 4 Recommended Geotechnical Design Parameters for CFA piles

#### Figures

Figure 1 - Investigation Location Plan Figure 2 - Inferred Geotechnical Sections A-A' Figure 3 – Inferred Geotechnical Section B-B'

#### Appendices

Appendix A - Engineering Borehole Logs

Appendix B - CPT Results

Appendix C - Laboratory Test Results

# 1. Introduction

This report presents the results of a geotechnical investigation carried out by Coffey Geotechnics Pty Ltd (Coffey) for the proposed Material Science Building at the University of New South Wales (UNSW), Kensington. The investigation was commissioned by Brookfield Australasia (Brookfield) and undertaken in general accordance with our proposal, reference GEOTLCOV24080AS-AD, dated 10 July 2015.

The objective of our investigation was to assess subsurface conditions across the site to support a feasibility assessment and preliminary structural design for the proposed development. The development is understood to involve the extension of the Physical Sciences Precinct which will provide a new home for the Materials Science and Engineering Centre. While still at concept design stage, the proposed development is understood to comprise a seven storey structure with a provision for a basement. Brookfield has advised that basement excavations are likely to extend to approximately 5 m below current surface levels. The site has an approximate area of 7,000 m<sup>2</sup>. It is understood that the proposed structure is to be situated on the southern portion of the site with the basement under the footprint of the proposed structure only.

The investigation was carried out to obtain information on subsurface conditions across the site as a basis for comments and recommendations on the following geotechnical aspects of the proposed development:

- Site ground conditions, geotechnical model and two interpreted geotechnical sections.
- Basement excavation conditions.
- Excavation retention systems and design parameters.
- Site preparatory earthworks, fill compaction and suitability of site soils for reuse as engineered fill.
- Foundation conditions, suitable footing systems and geotechnical design parameters.
- Advice on earthquake requirements in accordance to AS1170.4-2007.
- Groundwater conditions.
- Soil and groundwater aggressivity to buried structures.

The geotechnical site investigation was completed in conjunction with an environmental site assessment. The environmental assessment is presented in a separate report.

# 2. Investigation methodology

Fieldwork for the geotechnical investigation was carried out between 13 and 22 July 2015 and comprised the drilling of four deep boreholes (BH01 to BH04), two shallow boreholes (BH05 and BH06) and four Cone Penetration Tests (CPTs) (CPT01 to CPT04). The results of CPT testing are presented in Appendix B.

Figure 1 shows the approximate borehole and CPT locations. Reduced Levels (RL) were interpreted from a client supplied survey drawing and are shown on the Engineering Borehole Logs presented in Appendix A.

The boreholes were drilled using solid flight augers and wash boring techniques to depths ranging between 1.5 m to 45 m.

Standard Penetration Tests (SPT) were carried out at selected depths to assess soil strength and to obtain samples for logging. Two boreholes were completed as standpipe piezometers and the remainder were backfilled with cuttings to the ground surface and plugged with a 200 mm concrete cap.

Borehole drilling was observed by a Coffey Geotechnical Engineer who was present throughout the drilling operations to undertake sampling and testing, record test results and log materials encountered. The Engineering Borehole Logs are presented in Appendix A, together with Coffey soil and rock explanation sheets which describe the terms and symbols used in log preparation.

On completion of fieldwork, selected soil samples were submitted to our NATA accredited laboratory. The results of soil testing are presented in Appendix C.

# 3. Results of investigation

# 3.1. Site description

The site is currently occupied by a number of structures, Brookfield has advised that as part of the proposed development, all existing structures will be demolished and a new Material Science Building will be constructed.

The site is generally near level and is situated within a slight depression with changes in elevation of up to 1.5 m in the immediate vicinity. Ground surface levels across the site ranged from approximately 27.5 m AHD and 29.2 m AHD, dipping to the east at 2°.

# 3.2. Regional geology

The 1:100,000 Geological Series Sheet of Sydney indicates the site is underlain medium to fine grained marine sand and medium to coarse grained sandstone of the Hawkesbury Sandstone geological unit.

# 3.3. Subsurface conditions

For specific details at each borehole location reference should be made to the attached borehole logs and CPT test results in Appendices A and B. A general description of the encountered subsurface conditions for the site and observed groundwater is discussed below.

In summary, the boreholes encountered a ground profile comprising:

- Asphalt and concrete road surface and sandy fill up to 1.7 m deep. The fill was deepest in the northeast portion of the site; overlying
- Marine sands up to 30.8 m deep. The sands are fine to medium grained and are typically dense to very dense; overlying
- Marine clayey sand. The sands are typically fine to medium grained and are typically medium dense to very dense.

Figures 1 to 3 indicate our investigation locations and inferred subsurface cross sections respectively.

Groundwater was measured within installed standpipes at depths ranging from 5.55 to 5.6 m below ground level, i.e. at approximately 22.77 m to 23.19 m AHD, with an inferred hydraulic gradient trending in a southerly direction.

# 3.4. Geotechnical model

Using the subsurface information from the geotechnical investigation, the encountered ground conditions may be characterised into the geotechnical units presented in Table 1 below. Interpreted geotechnical sections through the site showing the inferred distribution of geotechnical units along each section are presented in Figures 2 and 3.

| Unit            | Material | Description                                                       | Depth to Top<br>of Unit (m) | Range of Unit<br>Thickness (m) <sup>a)</sup> |
|-----------------|----------|-------------------------------------------------------------------|-----------------------------|----------------------------------------------|
| 1               | Fill     | Sand and Gravelly SAND, overlain by asphalt or concrete pavements | 0.0                         | 0.6 to 1.7                                   |
| 2               | Marine   | Sand, fine to medium grained, dense to very dense                 | 0.6 to 1.7                  | 30.8 <sup>b)</sup>                           |
| 3 <sup>b)</sup> | Deposits | Clayey Sand, fine to medium grained, medium dense to very dense   | 32.5                        | Unproven                                     |

#### Table 1 - Summary of Subsurface Conditions and Inferred Geotechnical Model

Notes on Table 1:

- a) The depths and unit thicknesses are based on the boreholes and may not represent the maximum or minimum depths and thicknesses across the site.
- b) Observed in BH03 only.

# 4. Discussion and recommendations

### 4.1. Excavations

#### 4.1.1. Excavatability

We understand that the currently proposed single level basement excavation will be underneath the proposed structure only and will likely extend to approximately 5 m below current surface levels (i.e. approximately 23 m AHD).

Excavation contractors should be provided with the Engineering Borehole Logs and CPT results and be required to make their own assessment of the suitability and productivity of particular excavation plant.

Based on a single level basement excavation, excavations will penetrate through Units 1 and 2. Where basement excavations extend to or below groundwater levels, inflows to excavations are expected. It will be necessary to maintain groundwater levels 0.5 m below bulk excavation levels during construction to provide workable conditions within the excavation. To facilitate excavation and the construction of structural elements below the groundwater table it may be necessary to dewater the site using spear points or drilled dewatering wells dependent upon the chosen retention system and its effectiveness to retain groundwater.

#### 4.1.2. Groundwater conditions

Groundwater was observed at a depth of approximately 5.6 m, i.e. approximately 22.8 m to 23.4 m AHD. Where the proposed excavation extends below groundwater, the basement will need to be designed for tanked conditions. For a tanked basement structure, the basement floor will need to be designed to withstand uplift hydrostatic pressures.

In addition, during periods of rainfall, groundwater levels may rise. To establish design groundwater levels, it may be prudent to record groundwater level fluctuations at the site over an initial three month period, upon completion; the need for subsequent monitoring could be reviewed in consultation with the design team.

Based on Coffey archive information groundwater response in developed areas within the site locality typically varies within a 2 m vertical fluctuation. At this stage, we suggest a potential groundwater rise of 1 m above measured groundwater levels be adopted for design.

Where excavations extend to or below ground level, inflows to excavations are expected. To facilitate excavation and the construction of structural elements below the groundwater table it will be necessary to dewater the site. The method of dewatering will depend upon the chosen retention system and its effectiveness to retain groundwater

### 4.1.3. Excavation retention

We understand that the proposed development will require excavation up to 5 m below ground level for basements and as such temporary and permanent retention systems are likely to be required. Retention systems that could be considered include:

- Sheet Piled Walls
- Secant Piled Walls
- Diaphragm Walls

Sheet piles may be a feasible retention option to provide temporary support for the basement excavations. However, the effectiveness of sheet piles for controlling groundwater seepage would need to be considered. A cast in-situ concrete wall would be required to provide a permanent retention system. Driving in dense to very dense sands may be difficult and is not recommended for certain methods of installation. Impact driving may be a practicable technique for driving sheet piles in this stratum, subject to noise and vibration considerations. Specialist advice should be sought from a piling contractor with experience in these ground conditions.

Secant piles comprising alternate soft and hard piles may be used to provide temporary support. Close control of pile verticality is critical to achieving interlock of the piles for secant pile walls. Contiguous piled walls may be a suitable retention system where design groundwater levels are below the maximum depth of excavation.

A diaphragm wall may be an appropriate solution to provide permanent groundwater cut off but is generally more costly than the above retaining wall types.

Where excavations extend to or below design groundwater levels, permanent retention of groundwater will be required for the basement. The design should make allowance for a permanent groundwater table and the effects of dewatering. We recommend that the impact of dewatering and the construction inflow rates be assessed for the adopted shoring design.

The use of retaining walls such as sheet pile, CSM or secant pile walls could be considered for the proposed excavation retention systems. Retaining wall analyses will need to consider surcharges, footing loads from adjacent structures, and hydrostatic pressures due to groundwater fluctuations. Preliminary parameters for retaining wall design are presented in Table 2.

| Unit                | Active<br>Earth<br>Pressure<br>Coefficient<br>(Ka) | At Rest<br>Earth<br>Pressure<br>Coefficient<br>(Ko) | Earth Earth I<br>Pressure Pressure<br>Coefficient Coefficient ( |    | Effective<br>Cohesion<br>c' (kPa) | Effective<br>Friction<br>Angle Φ'<br>(degrees) | Young's<br>Modulu<br>s (MPa) |  |
|---------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|----|-----------------------------------|------------------------------------------------|------------------------------|--|
| Unit 1: Fill        | 0.4                                                | 0.5                                                 | 2.50                                                            | 20 | 0                                 | 25                                             | 10                           |  |
| Unit 2: Sand        | 0.27                                               | 0.5                                                 | 3.69                                                            | 21 | 0                                 | 35                                             | 60                           |  |
| Unit 3: Clayey Sand | 0.3                                                | 0.5                                                 | 3.39                                                            | 19 | 0                                 | 33                                             | 40                           |  |

Table 2 – Preliminary Parameters for Retaining Wall Design

### 4.1.4. Excavation induced ground movements

The potential impact of the proposed construction on adjoining properties will need to be considered during design. Dewatering systems will need to consider potential effects of drawdown on nearby structures, roads and major services. Where adjacent structures are located within the zone of influence of the excavation, the foundation stratum may experience horizontal and vertical movements from excavation induced ground movements and this should be assessed as part of excavation retention design.

We recommend that prior to the commencement of the bulk excavation works dilapidation surveys of the adjacent structures be carried out to provide a baseline for excavation monitoring and management works.

Where sensitive structures or services are situated in close proximity to the proposed development, a relatively stiff shoring with bracing and/or tie-back anchors designed to resist pressures higher than active earth pressures may be required. Conventional grouted anchors in sand typically have low load capacity. There are specialist multi-bonded anchor systems that could be considered to develop higher capacity anchors in sand. The permission of adjacent landowners and authorities would be required to install temporary anchors. Table 3 includes recommended allowable bond stresses for preliminary design of anchors.

Table 3 - Design Parameters for Anchors

| Material      | Allowable Bond Stress (kPa) |
|---------------|-----------------------------|
| Units 2 and 3 | 30                          |

The allowable bond stresses in Table 3 are based on anchors with bonded lengths of between 3 m and 7 m. Anchors in sand should be such that their bond length is established outside of the active wedge formed by a line from the toe of the wall rising to the ground surface at 45 degrees to the horizontal. Anchors should be proof loaded to at least 1.4 times their working load.

Staged excavation and installation of internal bracing may be an alternative to external anchoring. We suggest that anchoring requirements be specifically addressed by Coffey during detailed design when details of sensitive structures, adjacent footings and loadings are known.

### 4.2. Foundations

TTW has advised that CFA piles founded on Unit 2 (dense to very dense sand) will be adopted for the proposed development. Piled footings founded Unit 2 may be designed using the recommended the design parameters in Table 4.

Table 4 - Recommended Geotechnical Design Parameters for CFA piles

| Unit | Geotechnical Unit        | Elastic Modulus<br>E' (MPa) | Ultimate Skin Friction<br>f <sub>s</sub> (kPa) | Ultimate End Bearing<br>f <sub>b</sub> (MPa) |
|------|--------------------------|-----------------------------|------------------------------------------------|----------------------------------------------|
| 2    | Dense to Very Dense Sand | 60                          | 120 <sup>(1)</sup>                             | 7 <sup>(1)</sup>                             |

Notes: <sup>(1)</sup> A minimum pile embedment of 8 pile diameters below the basement slab level is required.

In order to adopt the above ultimate geotechnical parameters for CFA pile design (skin friction and end bearing), we emphasise that a minimum embedment in corresponding soil layers and below the proposed basement level must be achieved.

For limit state design, the design ultimate geotechnical pile capacity is derived by applying a geotechnical strength reduction factor ( $\phi_g$ ) to the ultimate geotechnical pile capacity assessed using the ultimate shaft resistance and end bearing values shown in Table 4.

In accordance with AS2159-2009,  $\phi_g$  is dependent on an Average Risk Rating (ARR) which takes into account various geotechnical uncertainties, foundation system redundancy, construction supervision, quantity and type of pile testing.

We've conducted a preliminary assessment of ARR and  $\phi_g$  values given the extent of geotechnical investigations performed and findings at this site, based on the following assumptions:

- Low redundancy foundation system
- The design will be carried out by an experienced geotechnical professional using well-established and soundly based methods
- Well established construction processes will be adopted and detailed professional geotechnical supervision will be provided during pile construction
- Performance of the supported structure is not monitored.

Based on our current understanding of the project and the above assumptions, the following preliminary values have been assessed:

- Average Risk Rating = 3.1
- Geotechnical strength reduction factor,  $\phi_{\alpha}$ , = 0.48 assuming no pile testing is undertaken.

We recommend that you review our assumptions and resulting  $\phi_g$  value. Testing may provide the degree of confidence required to achieve a higher  $\phi_g$  value and more economical design. Coffey will review the final  $\phi_g$  selection at the detailed design stage.

Limit state design also requires assessment of the serviceability performance of the foundation system, including pile group interaction effects. This should be carried out by experienced geotechnical professional using well-established and soundly based methods. The modulus values given in Table 4 can be used, though the accuracy of settlement prediction is dependent on construction methods as well as material stiffness, both of which can involve considerable uncertainty. Settlement predictions can have a large margin for error, and in some cases serviceability pile load testing should be completed when foundation settlement is critical to the structure's performance.

If foundations are to resist uplift, the ultimate shaft adhesion should be further reduced by a factor of 0.7. Uplift piles should also be checked for an inverted cone pullout mechanism.

### 4.2.1. Raft and piled raft

Piled raft foundations utilise piles for control of settlements with the piles providing most of the stiffness at serviceability loads and the raft providing additional capacity at ultimate loading. A geotechnical assessment for design of such a foundation system therefore needs to consider not only the capacity of the pile elements and the raft elements but their combined capacity and interaction under serviceability loading.

Coffey has specialist skills in the assessment raft and piled raft foundation systems. Typically, we work with the structural engineer to assess the feasibility with preliminary assessments of building loads. If the preliminary assessment indicates savings over conventional piled foundations, we can assist with detailed design, undertaking soil structure interaction analysis to provide bearing moments and shear forces in a raft and pile loads for structural detailing.

# 4.3. Earthworks

#### 4.3.1. Suitability of existing fill for re-use as engineered fill

Units 1, 2 and 3 observed within the boreholes are assessed to be reusable for engineered fill provided unsuitable and/or deleterious inclusions are removed. Some unsuitable materials should be expected and will require separation prior to reuse.

Further geotechnical assessment, sampling and testing would be required during construction to assess the suitability of particular soils for reuse.

### 4.3.2. Engineered fill compaction

Where filling is required to form the foundation for floor slabs or pavements, the ground should be prepared by stripping Unit 1 and unsuitable materials, and benching the ground surface so that fill can be placed in near horizontal layers.

Each bench should be proof rolled with 4 passes of smooth single-drum, non-vibratory roller of minimum weight 12 tonnes. An experienced earthworks practitioner should observe the proof rolling to detect soft, wet or heaving zones. Where these zones are encountered the affected area should be improved by appropriate methods, such as:

- Excavation of the affected soil and replacement with Engineered Fill;
- Tyning and moisture conditioning of the *in situ* material and compaction to achieve the criteria given below for Engineered Fill.

Fill embankments supporting structures or pavements should be compacted to at least 98% Standard Maximum Dry Density (SMDD) or 70% maximum density index for sandy soils. Engineered fill should be spread in layers not 300 mm loose thickness and moisture conditioned to Standard Optimum Moisture Content (SOMC) ±2% then compacted without delay with appropriate compaction plant.

Fill within 300 mm depth of floor slab/pavement subgrade level should be compacted to at least 100% SMDD or 75% maximum dry density for sandy soils.

Preparation for, and placement of Engineered Fill should be carried out under Level 1 Geotechnical Inspection and Testing as defined in Section 8.2 of *AS* 3798 – 2007 Guidelines on earthworks for commercial and residential developments

# 4.4. Soil aggressivity

The results of Soil Aggressivity testing were assessed in accordance with Australian Standard AS2159-2009 Piling – "Design and Installation". Chemical test results indicated non-aggressive ground conditions to buried steel and concrete structural elements.

# 4.5. Earthquake design

We recommend that the site be classified as Class  $D_e$  in accordance with the site sub-soil classes defined in AS1170.4-2007 Part 4, Earthquake Actions in Australia. A hazard factor of 0.08 is recommended.

# 4.6. Recommendations for further investigation and assessment

We recommend:

- Continuous monitoring of groundwater level over an initial three month period to provide a basis for assessment of design groundwater level for the basement floor slab;
- Upon completion of the monitoring period it may be prudent to carry out a groundwater inflow and drawdown assessments for the proposed basement excavation to assess potential impacts of dewatering.
- Dilapidation surveys be carried out on adjacent structures and services prior to the commencement of any work, if settlement or vibration sensitive structures or buried services are located adjacent to the proposed excavations;
- Coffey recommends that the site geotechnical conditions are reviewed once the proposed basement details are clarified. We have expertise in soil - structure interaction numerical modelling that can be used to optimise basement excavation design, including excavation support concept design, retaining all/support analysis and surrounding ground deformation analysis. We would be happy to assist with such an assessment in collaboration with the structural design team for the optimisation of excavation design, if required.
- The limit state design geotechnical reduction factor (Φg) be reviewed once the pile designer has evaluated the Average Risk Rating in accordance with AS2159-2009; and
- Assessment by an experienced geotechnical engineer / engineering geologist should be carried out during the construction phase of the project to confirm the suitability of fill placement and construction methodology.

# 5. Closure

Subsurface conditions can be complex and may vary over relatively short distances – and over time. The inferred geotechnical model and recommendations in this report are based on limited subsurface investigations at discrete locations. The engineering logs describe subsurface conditions only at the investigation locations.

Further investigations may be required to support detailed design if there are scope limitations or changes to the nature of the project. We can assist with detailed design and/or to review designs, and verify that the conditions exposed are consistent with design assumptions during construction.

The attached document entitled "Important information about your Coffey report" forms an integral part of this report and presents additional information about its uses and limitations.



### Important information about your **Coffey** Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

# Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

#### Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

#### Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how gualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

# Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore vour report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

# Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.



### Important information about your Coffey Report

#### Interpretation by other design professionals

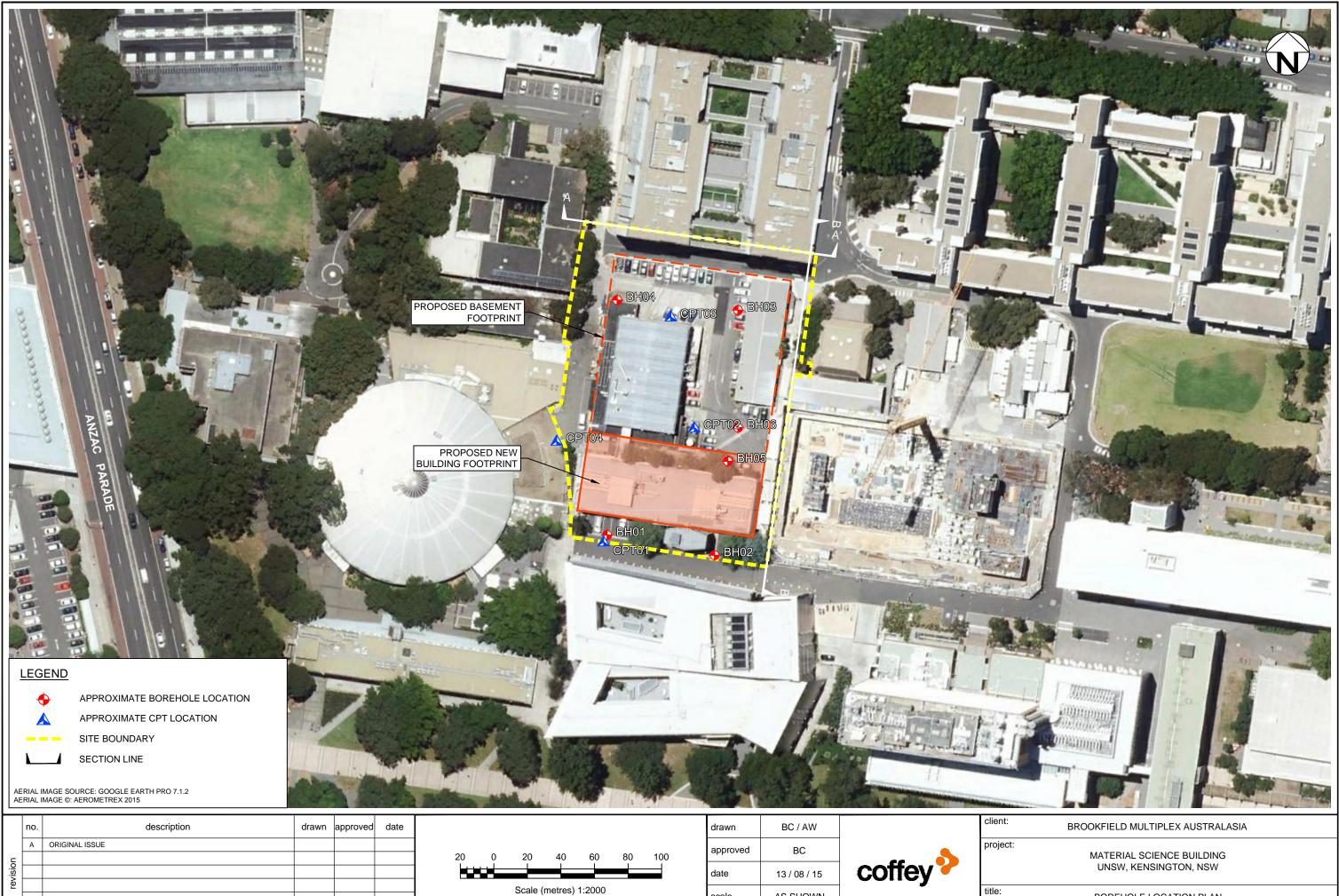
Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

#### Data should not be separated from the report\*

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

#### Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.


Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

#### Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims lodaed against consultants, beina which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

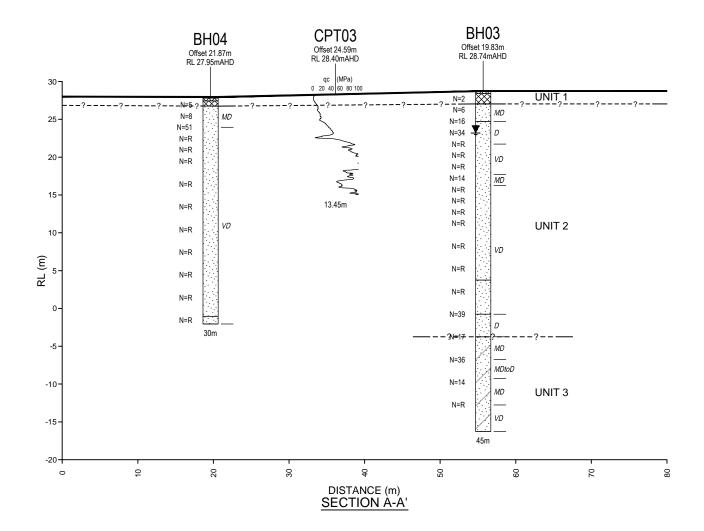
\* For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical information in Construction Contracts" published by the Institution of Engineers Australia, National headquarters, Canberra, 1987.

Figures



scale

original size


AS SHOWN

A3

#### BOREHOLE LOCATION PLAN

title:

| project no: GEOTLCOV24080AS-AE | figure no: FIGURE 1 | rev: A |
|--------------------------------|---------------------|--------|
|--------------------------------|---------------------|--------|



LEGEND

FILL

SAND

CLAYEY SAND

.\_\_\_\_ WATER LEVEL

N\*=17 STANDARD PENETRATION TEST RESULT

EXISTING GROUND SURFACE

--?-- INFERRED GEOLOGICAL BOUNDARY

| no.     | description    | drawn | approved | date | 5 0 5 15 25                                    | drawn            | BC / AW      |        | client:    |
|---------|----------------|-------|----------|------|------------------------------------------------|------------------|--------------|--------|------------|
| A       | ORIGINAL ISSUE |       |          |      |                                                | approved         | BC           |        | project:   |
| evisior |                |       |          |      | Horizontal Scale (metres) 1:500<br>5 0 5 15 25 | date             | 13 / 08 / 15 | coffey |            |
|         |                |       |          |      |                                                | scale            | AS SHOWN     |        | title:     |
|         |                |       |          |      | Vertical Scale (metres) 1:500                  | original<br>size | A3           |        | project no |

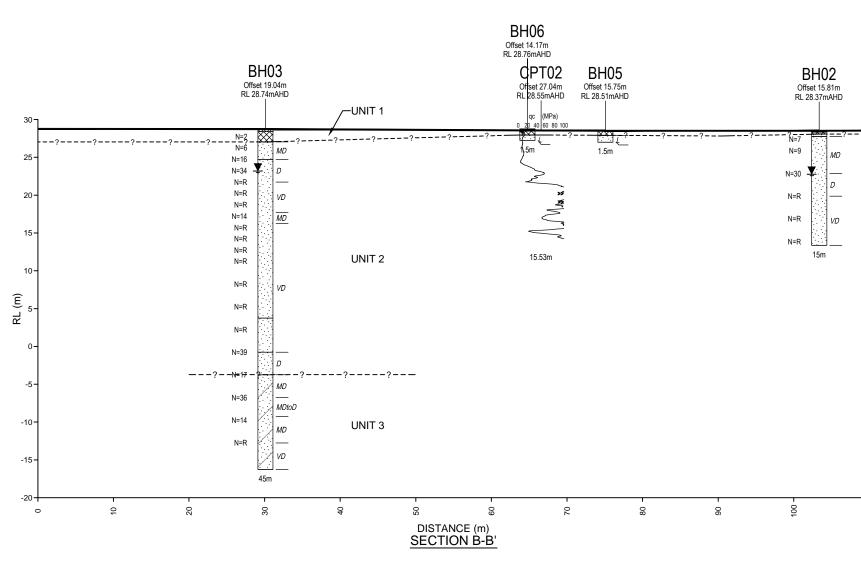
| BROOKFIELD MULTIPLEX AUSTRALASIA                   |                     |                   |  |  |  |  |
|----------------------------------------------------|---------------------|-------------------|--|--|--|--|
| MATERIAL SCIENCE BUILDING<br>UNSW, KENSINGTON, NSW |                     |                   |  |  |  |  |
| SECTION A-A'                                       |                     |                   |  |  |  |  |
| <sup>no:</sup> GEOTLCOV24080AS-AE                  | figure no: FIGURE 2 | <sup>rev:</sup> A |  |  |  |  |

LEGEND

FILL

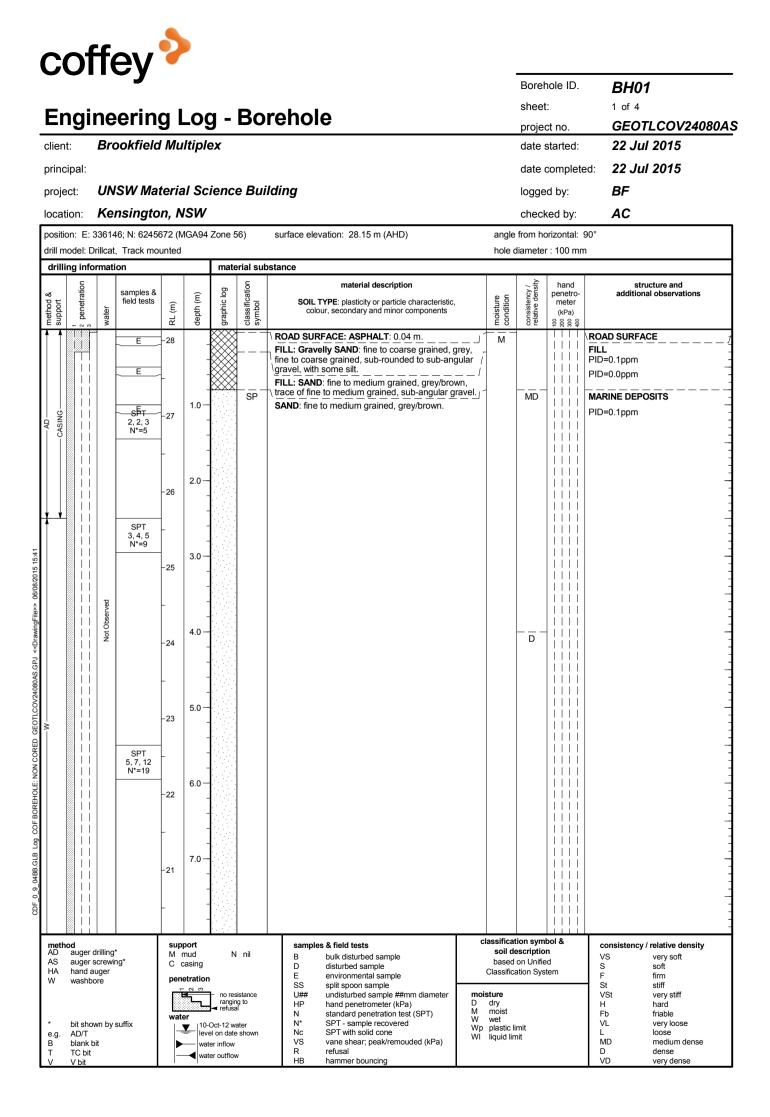
SAND

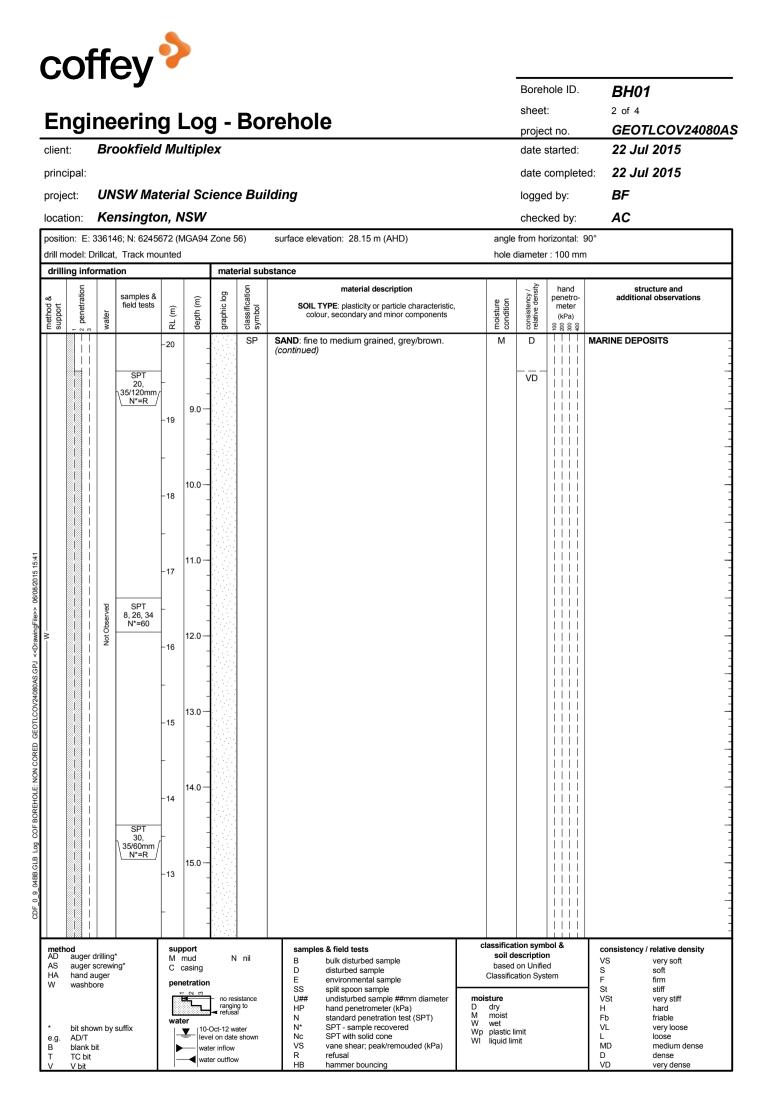
CLAYEY SAND

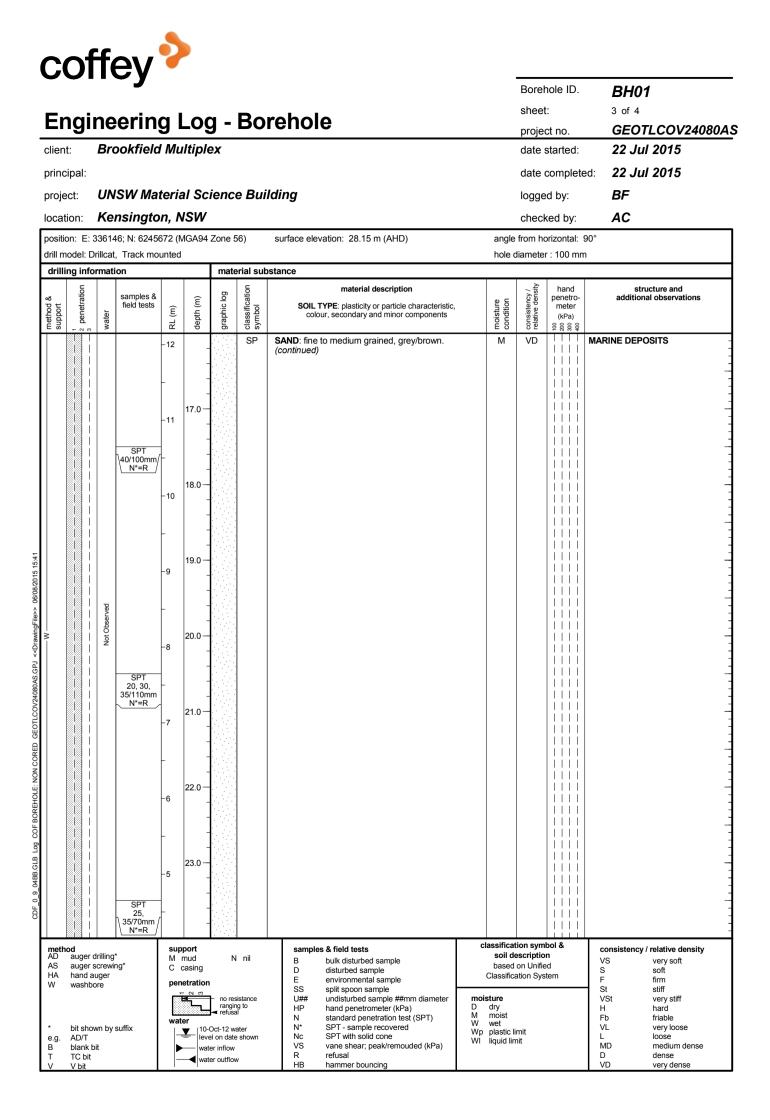

.\_\_\_\_ WATER LEVEL

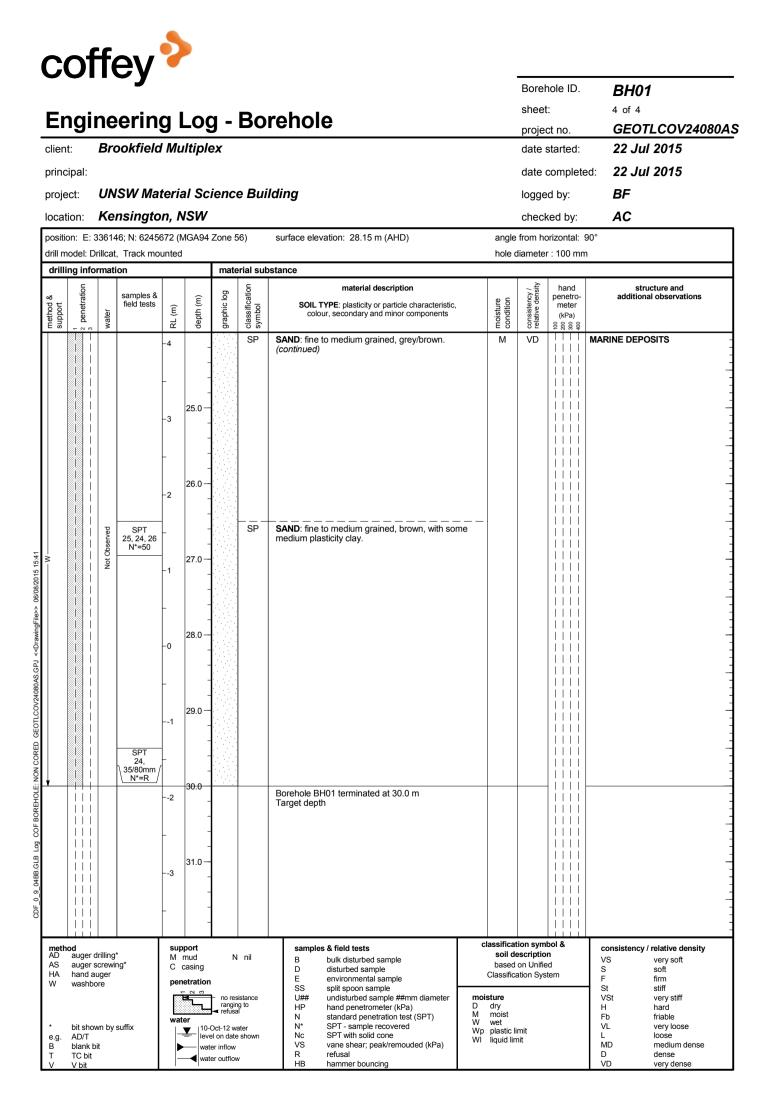
N\*=17 STANDARD PENETRATION TEST RESULT

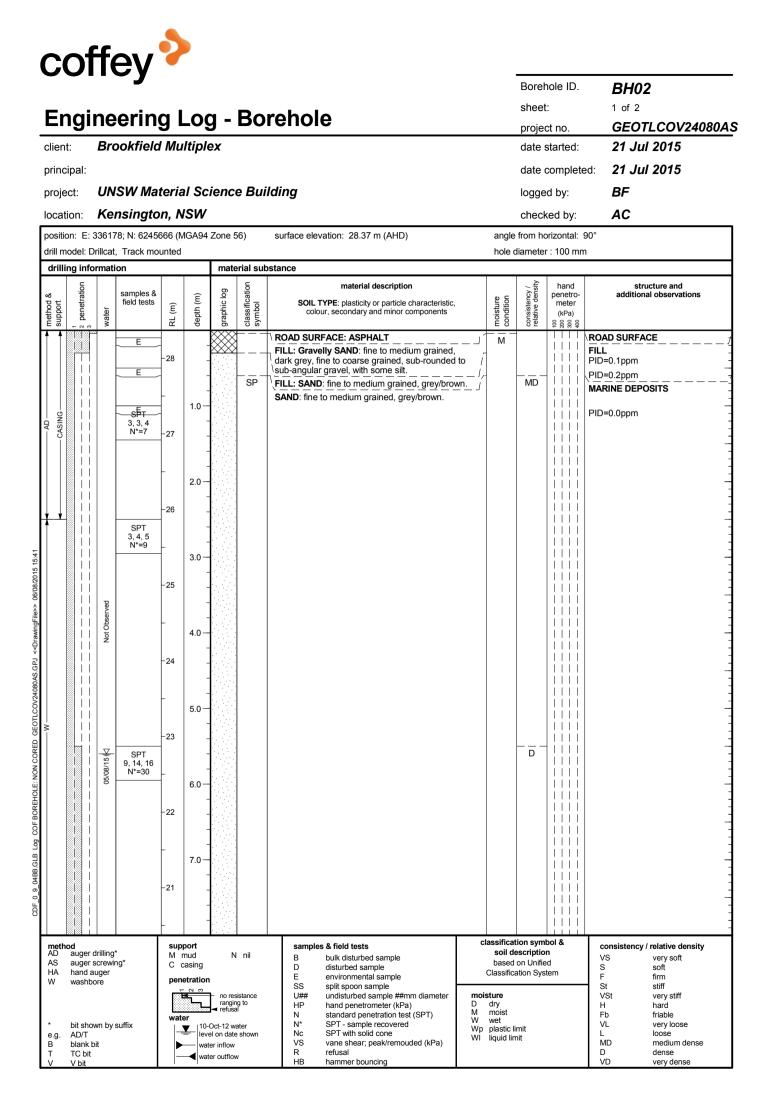
EXISTING GROUND SURFACE

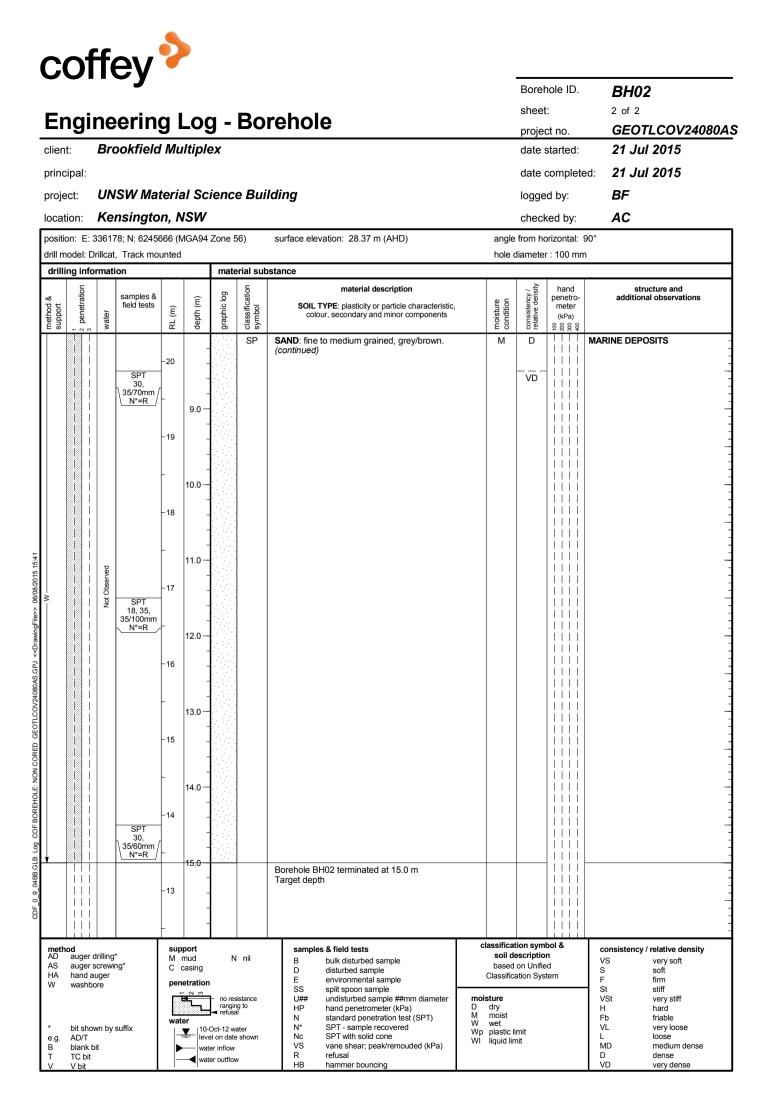

--?-- INFERRED GEOLOGICAL BOUNDARY

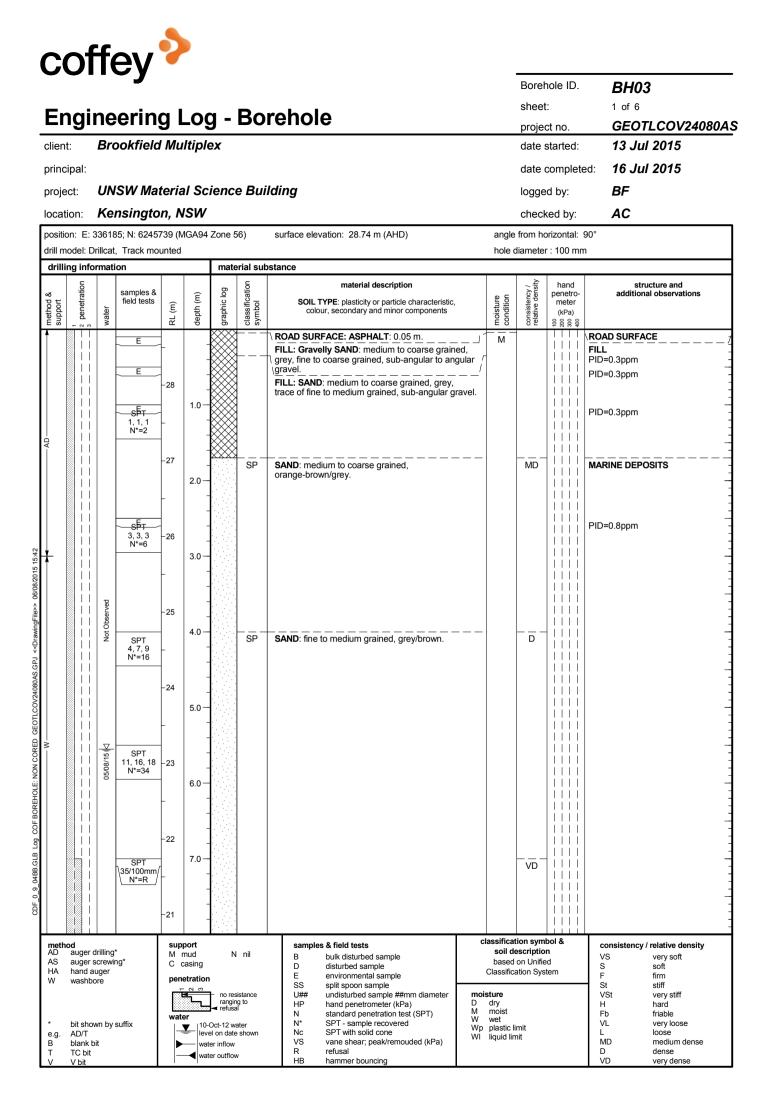

|         | no. | description    | drawn | approved | date | 5 0 5 15 25                                    | drawn            | BC / AW      |        | client:    |
|---------|-----|----------------|-------|----------|------|------------------------------------------------|------------------|--------------|--------|------------|
| -       | Α   | ORIGINAL ISSUE |       |          |      |                                                | approved         | BC           |        | project:   |
| evisior |     |                |       |          |      | Horizontal Scale (metres) 1:500<br>5 0 5 15 25 | date             | 13 / 08 / 15 | coffey |            |
| 2       |     |                |       |          |      |                                                | scale            | AS SHOWN     |        | title:     |
|         |     |                |       |          |      | Vertical Scale (metres) 1:500                  | original<br>size | A3           |        | project no |

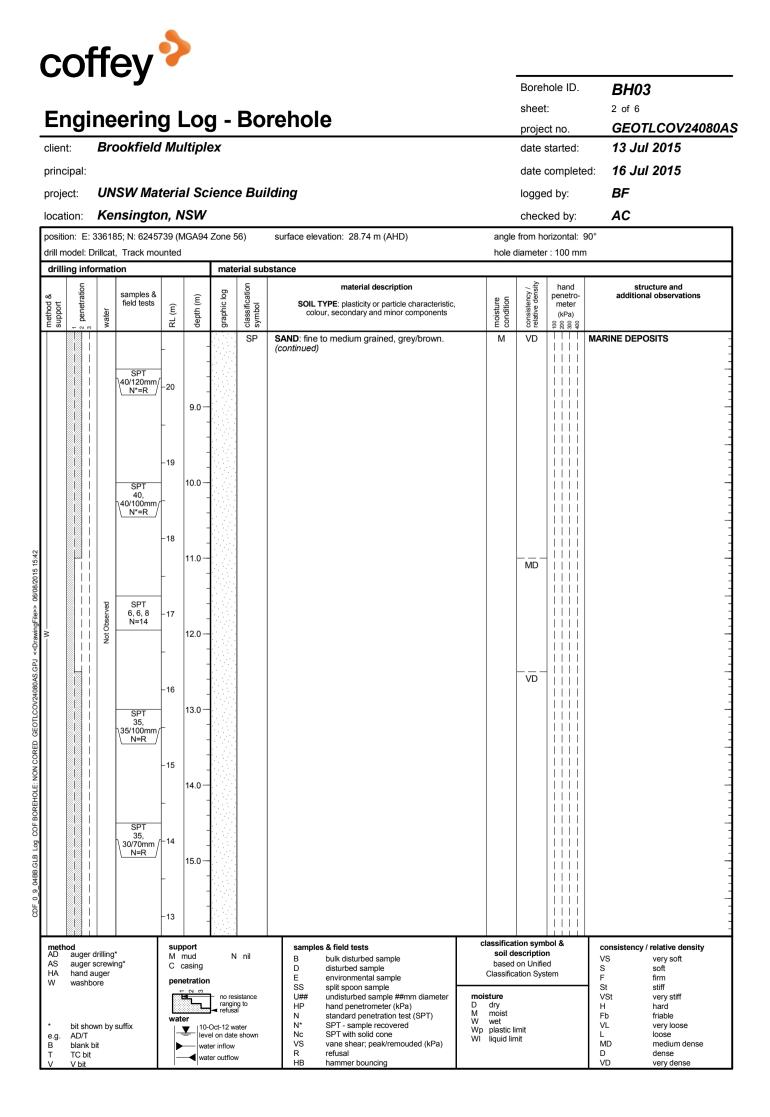


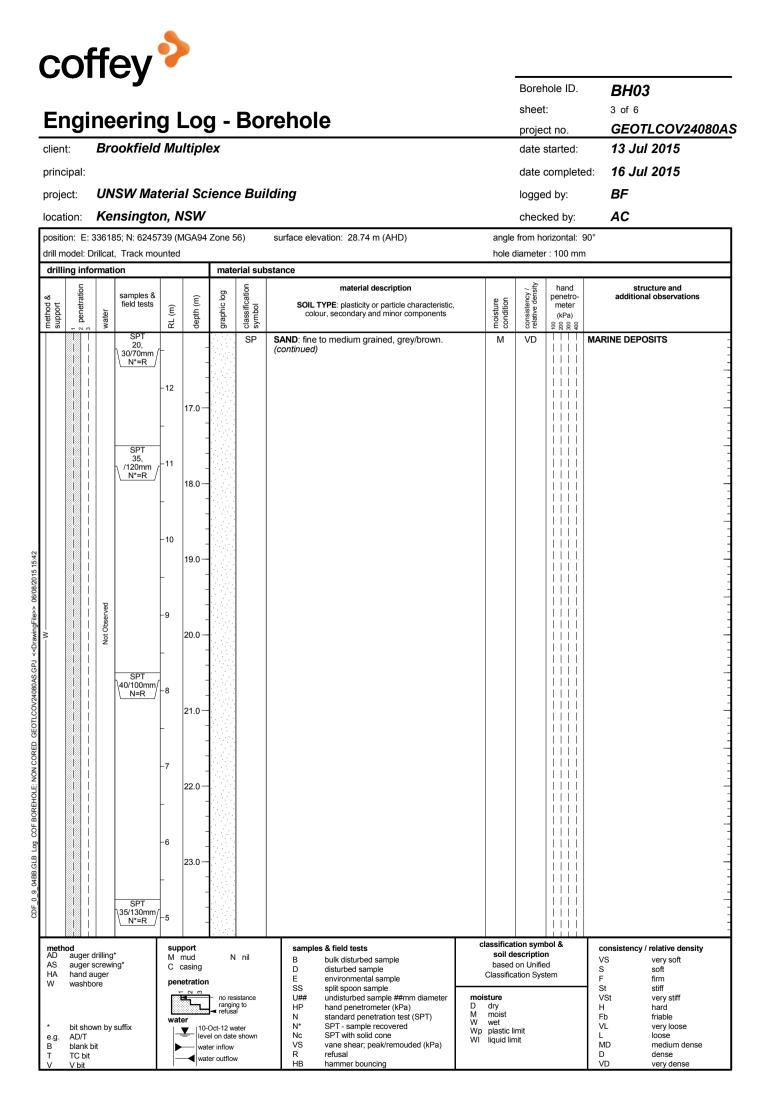


| BROOKFIELD MULTIPLEX AUSTRALASIA                   |                     |                   |  |  |  |  |
|----------------------------------------------------|---------------------|-------------------|--|--|--|--|
| MATERIAL SCIENCE BUILDING<br>UNSW, KENSINGTON, NSW |                     |                   |  |  |  |  |
| SECTION B-B'                                       |                     |                   |  |  |  |  |
| OC GEOTLCOV24080AS-AE                              | figure no: FIGURE 3 | <sup>rev:</sup> A |  |  |  |  |

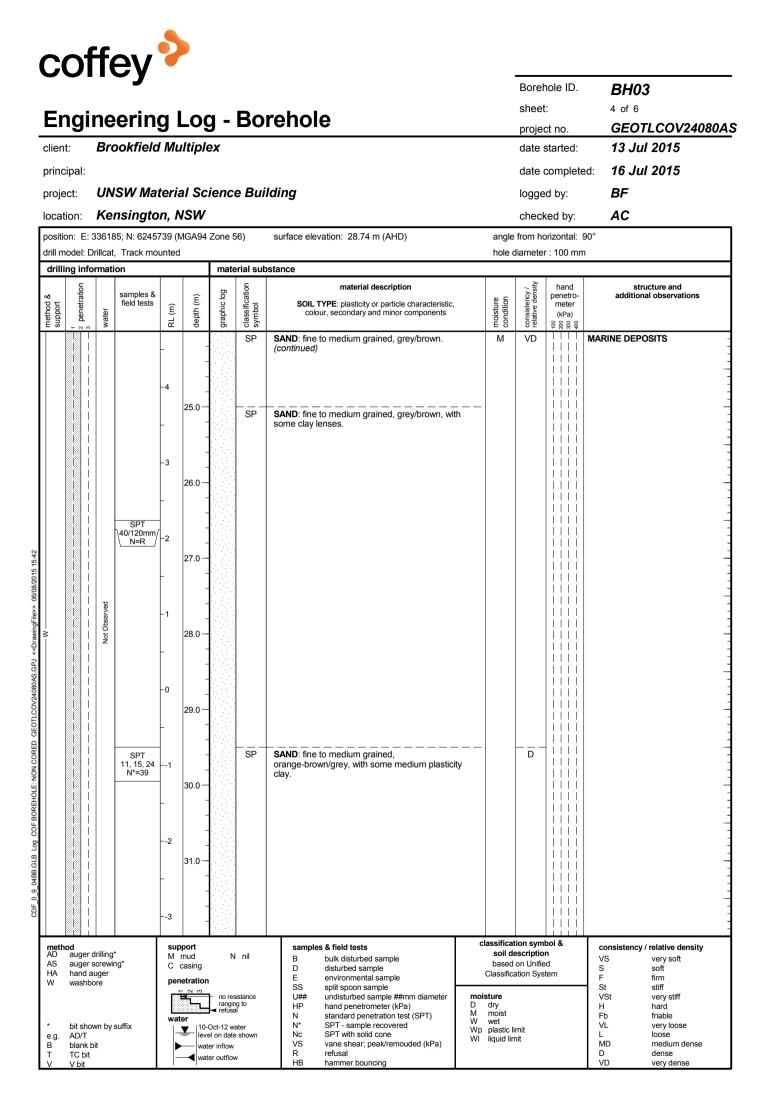

Appendix A - Engineering Borehole Logs

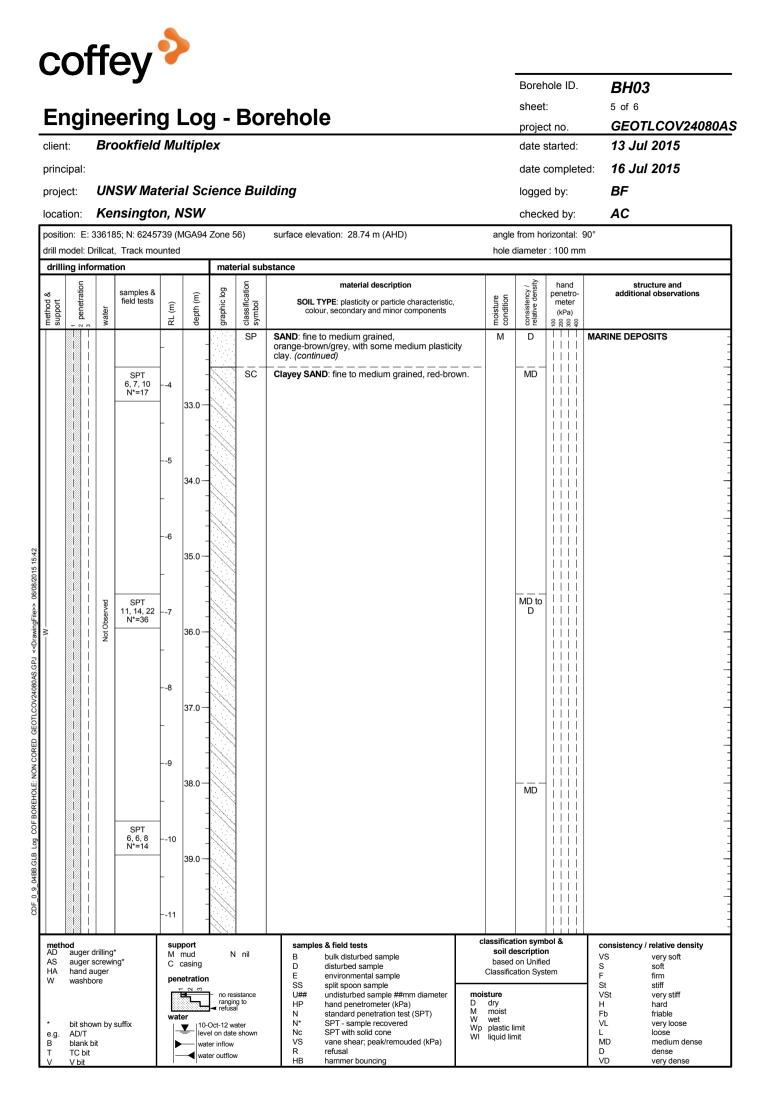


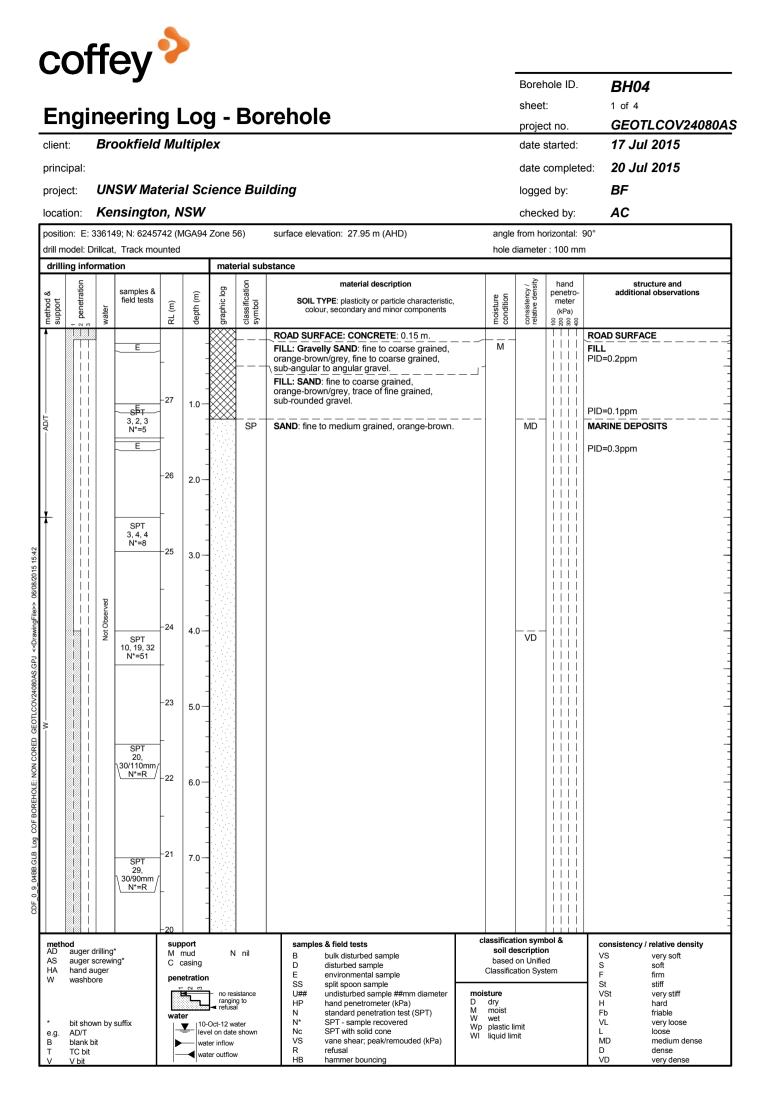



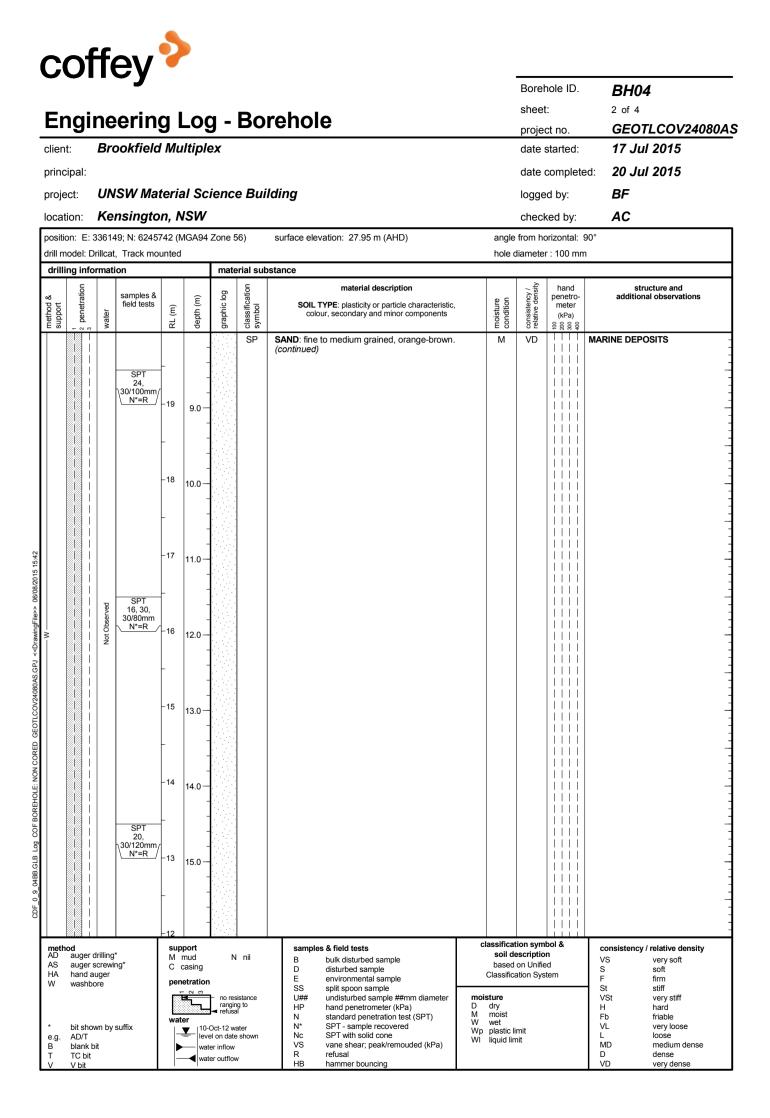



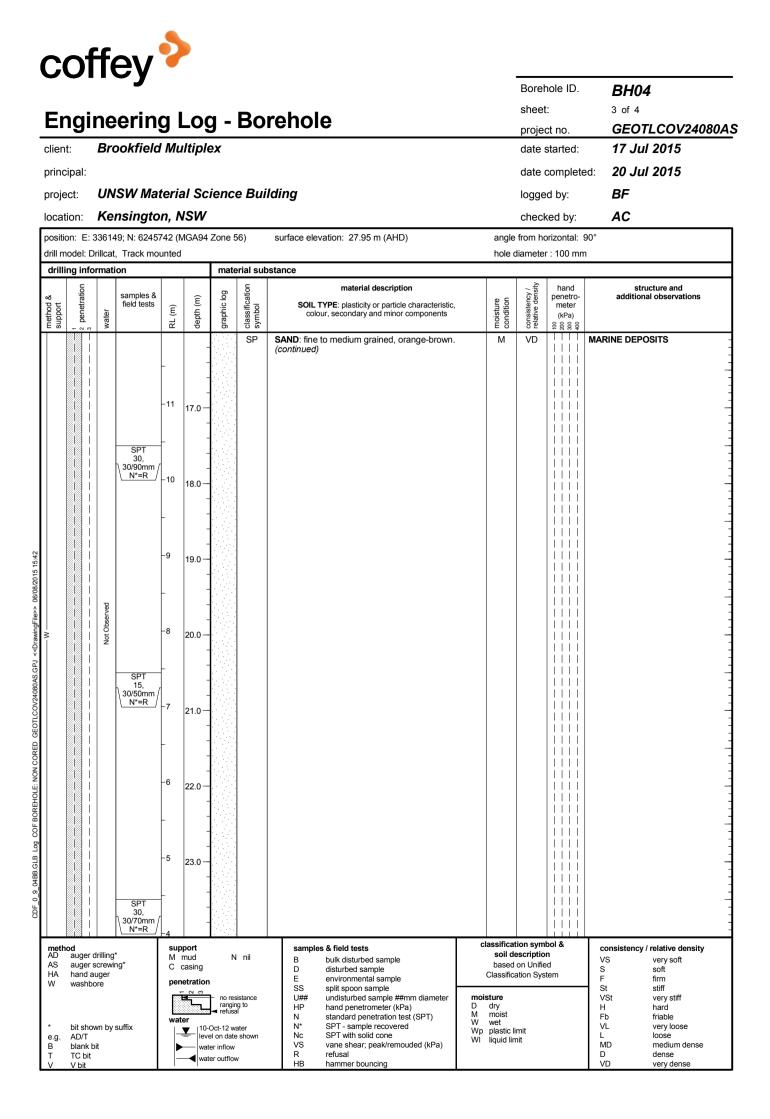








| Coffey Coffey Coffee Borehole                                    |                                        |                            |               |                                                                                                                                                                                |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                       | BH03<br>6 of 6<br>GEOTLCOV24080A  |                                                   |                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------|----------------------------------------|----------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| client: Brookfield Multiplex principal:                          |                                        |                            |               |                                                                                                                                                                                |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                       | started:                          | 13 Jul 2015                                       |                                                                                                                                                                                                                                                                                       |
|                                                                  |                                        |                            |               |                                                                                                                                                                                |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  | date o                | complete                          |                                                   |                                                                                                                                                                                                                                                                                       |
| oroject: UNSW Material Science Building ocation: Kensington, NSW |                                        |                            |               |                                                                                                                                                                                |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             | logge                                                                                                                                                                                                                            | d by:                 | BF                                |                                                   |                                                                                                                                                                                                                                                                                       |
|                                                                  |                                        |                            |               |                                                                                                                                                                                |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             | check                                                                                                                                                                                                                            | ed by:                | AC                                |                                                   |                                                                                                                                                                                                                                                                                       |
|                                                                  |                                        | 85; N: 6245                |               |                                                                                                                                                                                | Zone 5      | 6)                       | surface elevation: 28.74 m (AHD)                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                  | •                     |                                   | orizontal:                                        |                                                                                                                                                                                                                                                                                       |
| drilling inf                                                     |                                        | t, Track mo<br>i <b>on</b> | ountea        |                                                                                                                                                                                | mate        | rial sub                 | stance                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  | noie d                | lameter                           | : 100 mn                                          | 1                                                                                                                                                                                                                                                                                     |
| support<br>support                                               | s<br>water                             | samples & field tests      | RL (m)        | depth (m)                                                                                                                                                                      | graphic log | classification<br>symbol | material description<br>SOIL TYPE: plasticity or particle characteristic,<br>colour, secondary and minor components                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  | moisture<br>condition | consistency /<br>relative density | hand<br>penetro-<br>meter<br>(kPa)<br>ତୁ ରୁ ରୁ ତୁ | structure and additional observations                                                                                                                                                                                                                                                 |
|                                                                  |                                        | SPT                        | 12<br>        | 41.0                                                                                                                                                                           |             | SC                       | Clayey SAND: fine to medium grained, red-bro<br>(continued)                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                  | Μ                     | MD                                |                                                   | MARINE DEPOSITS                                                                                                                                                                                                                                                                       |
|                                                                  | Not Observed                           | 35/120mm<br>\N*=R/         |               | -<br>42.0<br>-<br>-<br>-                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                       | VD                                |                                                   |                                                                                                                                                                                                                                                                                       |
|                                                                  |                                        |                            |               | <br>43.0<br><br><br><br>44.0                                                                                                                                                   |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                       |                                   |                                                   |                                                                                                                                                                                                                                                                                       |
|                                                                  |                                        |                            | 16            | -<br>-<br>-<br>45.0<br>-                                                                                                                                                       |             |                          | Borehole BH03 terminated at 45.0 m<br>Target depth                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                       |                                   |                                                   |                                                                                                                                                                                                                                                                                       |
|                                                                  |                                        |                            | 17            | -<br>-<br>46.0<br>-<br>-                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                       |                                   |                                                   |                                                                                                                                                                                                                                                                                       |
|                                                                  |                                        |                            | 18            | -<br>47.0 —<br>-<br>-<br>-                                                                                                                                                     |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                       |                                   |                                                   |                                                                                                                                                                                                                                                                                       |
| method<br>AD augei<br>AS augei<br>HA hand<br>W wash              | r drilling<br>r screw<br>auger<br>bore | ing*                       | M<br>C<br>pen | support<br>M mud N nil<br>C casing<br>penetration<br>penetration<br>ranging to<br>refusal<br>water<br>10-Oct-12 water<br>level on date shown<br>water outflow<br>water outflow |             |                          | samples & field tests       B     bulk disturbed sample       D     disturbed sample       E     environmental sample       SS     split spoon sample       U##     undisturbed sample ##mm diameter       HP     hand penetrometer (kPa)       N     standard penetration test (SPT)       N*     SPT - sample recovered       Nc     SPT with solid cone       VS     vane shear; peak/remouded (kPa)       R     refusal | classification symbol &         soil description         based on Unified         Classification System         moisture         D       dry         M       moist         Wy       yelastic limit         WI       liquid limit |                       |                                   | bol&<br>n<br>d                                    | consistency / relative density         VS       very soft         S       soft         F       firm         St       stiff         VSt       very stiff         H       hard         Fb       friable         VL       very loose         L       loose         MD       medium dense |







| CC                                                                              | <b>)</b> f               | fe           | еу                      | 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |                       | Borel                             | nole ID.                              |                                                               | BH04                                                                                                              |  |
|---------------------------------------------------------------------------------|--------------------------|--------------|-------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Engineering Log - Borehole         client:       Brookfield Multiplex           |                          |              |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |                       | sheet                             |                                       |                                                               | 4 of 4                                                                                                            |  |
|                                                                                 |                          |              |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |                       | project no.                       |                                       |                                                               | GEOTLCOV24080A                                                                                                    |  |
|                                                                                 |                          |              |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |                       | date started:<br>date completed   |                                       |                                                               | 17 Jul 2015<br>20 Jul 2015                                                                                        |  |
| principal:                                                                      |                          |              |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |                       |                                   |                                       |                                                               |                                                                                                                   |  |
| project: UNSW Material Science Building                                         |                          |              |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | logge                                                                                                                                                                                                                                               | logged by:            |                                   | BF                                    |                                                               |                                                                                                                   |  |
| location: Kensington, NSW                                                       |                          |              |                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     | checked by:           |                                   |                                       | AC                                                            |                                                                                                                   |  |
|                                                                                 |                          |              | 9; N: 6245              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zone 8      | 56)                      | surface elevation: 27.95 m (AHD)                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     | -                     |                                   | orizontal:                            |                                                               |                                                                                                                   |  |
|                                                                                 |                          |              | Track mo                | untea         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mate        | erial sub                | stance                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                     | nole c                | liamete                           | r : 100 mn                            | n                                                             |                                                                                                                   |  |
|                                                                                 | drilling information     |              |                         |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion         | material description     |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     | y /<br>isity          | hand                              |                                       | structure and                                                 |                                                                                                                   |  |
| method &<br>support                                                             | <sup>2</sup> penetration | water        | samples & field tests   | RL (m)        | depth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | graphic log | classification<br>symbol | SOIL TYPE: plasticity or particle characteristic<br>colour, secondary and minor components                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                   | moisture<br>condition | consistency /<br>relative density | penetro-<br>meter<br>(kPa)<br>≌ ୠ ୠ ୠ |                                                               | additional observations                                                                                           |  |
| M                                                                               |                          | Not Observed | SPT<br>\50/130mm<br>№=R |               | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | SP                       | SAND: fine to medium grained, orange-brown.<br>(continued)                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     | М                     | VD                                |                                       |                                                               | INE DEPOSITS                                                                                                      |  |
|                                                                                 |                          |              | <u>N*=R</u>             | 2             | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                          | Borehole BH04 terminated at 30.0 m<br>Target depth                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |                       |                                   |                                       |                                                               |                                                                                                                   |  |
|                                                                                 |                          |              |                         | 3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |                       |                                   |                                       |                                                               | -                                                                                                                 |  |
| AD auger drilling* M<br>AS auger screwing* C<br>HA hand auger<br>W washbore Peu |                          |              |                         | M<br>C<br>pen | 4<br>support<br>M mud N nil<br>C casing<br>penetration<br>↓ for the second seco |             |                          | samples & field tests       B     bulk disturbed sample       D     disturbed sample       E     environmental sample       SS     split spoon sample       U##     undisturbed sample ##mm diameter       HP     hand penetrometer (kPa)       N     standard penetration test (SPT)       N*     SPT - sample recovered       Nc     SPT with solid cone       VS     vane shear; peak/remouded (kPa)       R     refusal       HB     hammer bouncing | classification symbol &         soil description         based on Unified         Classification System         moisture         D       dry         M       moist         W       wet         Wp       plastic limit         WI       liquid limit |                       |                                   |                                       | CC<br>V:<br>S<br>F<br>V:<br>H<br>Ft<br>VI<br>L<br>M<br>D<br>V | soft<br>firm<br>t stiff<br>St very stiff<br>hard<br>b friable<br>L very loose<br>loose<br>D medium dense<br>dense |  |

| -              | _                          | _ `             | ey                        |          |                    |                                     |                          |                                                                                                                                                                 |                       | Bore                              | hole ID.                  | BH05                                           |
|----------------|----------------------------|-----------------|---------------------------|----------|--------------------|-------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|---------------------------|------------------------------------------------|
| <b>C</b> r     | nai                        | no              | orin                      | a I      | ~                  | N _                                 | Bo                       | rehole                                                                                                                                                          |                       | shee                              | t:                        | 1 of 1                                         |
|                | iyi                        |                 |                           | <u> </u> |                    |                                     |                          | Tenole                                                                                                                                                          |                       | proje                             | ct no.                    | GEOTLCOV24080A                                 |
| clien          | t:                         | Bro             | ookfield                  | d Mu     | Itiple             | ex                                  |                          |                                                                                                                                                                 |                       | date                              | started:                  | 22 Jul 2015                                    |
| princ          | ipal:                      |                 |                           |          |                    |                                     |                          |                                                                                                                                                                 |                       | date                              | complet                   | ed: 22 Jul 2015                                |
| proje          | ect:                       |                 | SW Ma                     |          |                    | ienc                                | e Bui                    | lding                                                                                                                                                           |                       | logge                             | ed by:                    | BF                                             |
| locat          | ion:                       | Ke              | nsingto                   | on, N    | ISW                |                                     |                          |                                                                                                                                                                 |                       | chec                              | ked by:                   | AC                                             |
|                |                            |                 | 32; N: 6245<br>, Track mc |          | /IGA94             | Zone {                              | 56)                      | surface elevation: 28.51 m (AHD)                                                                                                                                |                       |                                   | orizontal:<br>er : 100 mr |                                                |
|                | ng info                    |                 |                           |          |                    | mate                                | erial sub                | ostance                                                                                                                                                         |                       |                                   |                           |                                                |
| ৵              | ation                      |                 | samples &                 |          | Ê                  | boj                                 | ation                    | material description                                                                                                                                            | 0 5                   | ncy /<br>lensity                  | hand<br>penetro-          | structure and additional observations          |
| method         | penetration                | water           | field tests               | RL (m)   | depth (m)          | graphic log                         | classification<br>symbol | SOIL TYPE: plasticity or particle characteristic,<br>colour, secondary and minor components                                                                     | moisture<br>condition | consistency /<br>relative density | meter<br>(kPa)            |                                                |
| Σo             | 9 10 7                     | \$              | E                         | <u> </u> | σ                  |                                     | ບ່ທີ<br>                 | <b>ROAD SURFACE: ASPHALT</b> : 0.03 m                                                                                                                           | M                     | 52                                | 40 30 20 <u>1</u>         | ROAD SURFACE                                   |
|                |                            | lved            |                           | 00       | -                  |                                     |                          | FILL: Gravelly SAND: fine to medium grained, brown/grey, fine to coarse grained, sub-angular                                                                    |                       |                                   |                           | FILL<br>PID=0.5ppm                             |
|                |                            | Not Observed    | E<br>B                    | -28      | -                  |                                     | SP -                     | gravel                                                                                                                                                          |                       | - <u>-</u> -                      |                           | PID=0.6ppm                                     |
|                |                            | 2               | E                         | 1        | 1.0-               |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           | 1        | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           | PID=0.8ppm                                     |
|                |                            |                 |                           | -27      | -                  |                                     |                          | Borehole BH05 terminated at 1.5 m                                                                                                                               |                       |                                   |                           |                                                |
|                |                            |                 |                           |          | -                  |                                     |                          | Target depth                                                                                                                                                    |                       |                                   |                           |                                                |
|                |                            |                 |                           | -        | 2.0-               |                                     |                          |                                                                                                                                                                 |                       |                                   |                           | -                                              |
|                |                            |                 |                           | -26      | -                  | -                                   |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           | 20       | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   | liii                      |                                                |
|                |                            |                 |                           | _        | 3.0-               |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           |          | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           | -25      | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           | -                                              |
|                |                            |                 |                           |          | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           | -        | 4.0-               |                                     |                          |                                                                                                                                                                 |                       |                                   |                           | -                                              |
|                |                            |                 |                           | -24      | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           |          | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           | -        | 5.0-               |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           |          | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           | -23      | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           |          |                    |                                     |                          |                                                                                                                                                                 |                       |                                   | 1111                      |                                                |
|                |                            |                 |                           | -        | 6.0-               |                                     |                          |                                                                                                                                                                 |                       |                                   |                           | -                                              |
|                |                            |                 |                           | -22      | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           |          | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           | F        | 7.0-               | -                                   |                          |                                                                                                                                                                 |                       |                                   |                           | -                                              |
|                |                            |                 |                           |          | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
|                |                            |                 |                           | -21      | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           | -                                              |
|                |                            |                 |                           |          | -                  |                                     |                          |                                                                                                                                                                 |                       |                                   |                           |                                                |
| meth<br>AD     | auger                      |                 |                           |          | <b>port</b><br>mud | N                                   | l nil                    | samples & field tests B bulk disturbed sample                                                                                                                   |                       | escriptic                         | on                        | consistency / relative density<br>VS very soft |
| AS<br>HA       | auger<br>hand a            | screwii<br>uger |                           | Co       | casing             |                                     |                          | D disturbed sample<br>E environmental sample                                                                                                                    |                       | on Unifie<br>ation Sys            |                           | S very soft<br>S soft<br>F firm                |
| W              | washb                      | ore             |                           | pen      | etration           | no re:                              | sistance                 | SS split spoon sample<br>U## undisturbed sample ##mm diameter mo                                                                                                | isture                |                                   |                           | St stiff<br>VSt very stiff                     |
|                |                            |                 |                           | wat      |                    | rangir<br>refusi                    | ng to<br>al              | HP         hand penetrometer (kPa)         D           N         standard penetration test (SPT)         M                                                      | dry<br>moist<br>wet   |                                   |                           | H hard<br>Fb friable                           |
| *<br>e.g.<br>B | bit sho<br>AD/T<br>blank t |                 | suffix                    |          | Leve               | Oct-12 w<br>el on date<br>er inflow | e shown                  | N*         SPT - sample recovered         W           Nc         SPT with solid cone         WI           VS         vane shear; peak/remouded (kPa)         WI | plastic l             |                                   |                           | VL very loose<br>L loose<br>MD medium dense    |
| T<br>V         | TC bit<br>V bit            |                 |                           | -        |                    | er outflov                          |                          | R refusal<br>HB hammer bouncing                                                                                                                                 |                       |                                   |                           | D dense<br>VD very dense                       |

|                     |                   | _            | әу                    |        |                    |                         |                          |                                                                                                                                                                 |                       | Bore                              | hole ID.                                  | BH06                                           |
|---------------------|-------------------|--------------|-----------------------|--------|--------------------|-------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|-------------------------------------------|------------------------------------------------|
| Fr                  | nai               | no           | orin                  | n I    | $\sim$             | - r                     | R۸                       | rehole                                                                                                                                                          |                       | shee                              | t:                                        | 1 of 1                                         |
|                     | <u> </u>          |              |                       |        |                    | -                       | 50                       |                                                                                                                                                                 |                       |                                   | ct no.                                    | GEOTLCOV24080A                                 |
| clien               | t:                | Bro          | okfield               | l Mu   | ltiple             | ex                      |                          |                                                                                                                                                                 |                       | date                              | started:                                  | 21 Jul 2015                                    |
| orinc               | ipal:             |              |                       |        |                    |                         |                          |                                                                                                                                                                 |                       | date                              | complete                                  | ed: 21 Jul 2015                                |
| oroje               | ect:              | UN           | SW Ma                 | teria  | al Sc              | ienc                    | e Bui                    | ilding                                                                                                                                                          |                       | logge                             | ed by:                                    | BF                                             |
| ocat                | ion:              | Ke           | nsingto               | n, N   | ISW                |                         |                          |                                                                                                                                                                 |                       | chec                              | ked by:                                   | AC                                             |
| positio             | on: E::           | 33618        | 5; N: 6245            | 704 (N | IGA94              | Zone 5                  | 56)                      | surface elevation: 28.76 m (AHD)                                                                                                                                | angle                 | from h                            | orizontal:                                | 90°                                            |
|                     |                   |              | Track mo              | unted  |                    | moto                    |                          | bstance                                                                                                                                                         | hole                  | diamete                           | er : 100 mr                               | n                                              |
| ariii               | ng info           | mau          |                       |        |                    |                         |                          | material description                                                                                                                                            |                       | ,<br>ity                          | hand                                      | structure and                                  |
| method &<br>support | 2 penetration     | water        | samples & field tests | RL (m) | depth (m)          | graphic log             | classification<br>symbol | SOIL TYPE: plasticity or particle characteristic,<br>colour, secondary and minor components                                                                     | moisture<br>condition | consistency /<br>relative density | penetro-<br>meter<br>(kPa)<br>କୁ ରୁ ରୁ କୁ | additional observations                        |
|                     |                   |              | B<br>E                | -      | _                  |                         |                          | ROAD SURFACE: ASPHALT: 0.03 m.                                                                                                                                  |                       |                                   |                                           | ROAD SURFACE                                   |
|                     |                   | erved        |                       |        | -                  |                         |                          | FILL: Gravelly SAND: fine to coarse grained, dark grey, fine to coarse grained, sub-angular gravel.                                                             | 1                     |                                   |                                           | FILL<br>PID=0.3ppm                             |
|                     |                   | Not Observed | E                     | -28    | -                  |                         |                          | FILL: SAND: fine to medium grained, yellow-brown, with some fine to coarse grained,                                                                             |                       |                                   |                                           | PID=0.3ppm                                     |
|                     |                   | N N          | B                     | ]      | 1.0-               |                         | SP                       | Sub-angular to angular gravel.                                                                                                                                  | 1                     |                                   |                                           |                                                |
|                     |                   |              |                       | 1      | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           | PID=0.4ppm                                     |
|                     |                   |              |                       | -      | -                  | <u> </u>                |                          | Borehole BH06 terminated at 1.5 m                                                                                                                               |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -27    | -                  |                         |                          | Target depth                                                                                                                                                    |                       |                                   |                                           |                                                |
|                     |                   |              |                       |        | 2.0-               |                         |                          |                                                                                                                                                                 |                       |                                   | liii                                      |                                                |
|                     |                   |              |                       | _      | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       |        | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -26    | 3.0-               |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | _      |                    |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       |        | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -25    |                    |                         |                          |                                                                                                                                                                 |                       |                                   | liii                                      |                                                |
|                     |                   |              |                       |        | 4.0-               |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -      | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       |        | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -24    | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       |        | 5.0-               |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | Γ      | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -23    | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       |        | 6.0-               |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | _      | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       |        |                    |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -22    | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       |        | 7.0-               |                         |                          |                                                                                                                                                                 |                       |                                   | liii                                      |                                                |
|                     |                   |              |                       | -      |                    |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -21    | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
|                     |                   |              |                       | -21    | -                  |                         |                          |                                                                                                                                                                 |                       |                                   |                                           |                                                |
| meth<br>AD          | auger of          |              |                       | Mi     |                    | N                       | nil                      | samples & field tests<br>B bulk disturbed sample                                                                                                                |                       | escriptio                         | on                                        | consistency / relative density<br>VS very soft |
| AS<br>HA            | auger s<br>hand a | uger         | ng*                   | Сd     | casing<br>etration |                         |                          | D disturbed sample                                                                                                                                              | based<br>Classific    | on Unifi<br>ation Sys             |                                           | S soft<br>F firm                               |
| W                   | washbo            | ле           |                       |        | - N M              | ⊢ no res                | sistance                 | SS split spoon sample<br>U## undisturbed sample ##mm diameter mo                                                                                                | oisture               |                                   |                                           | St stiff<br>VSt very stiff                     |
| •                   | <b>F</b> R :      |              | <i>(</i>              | wate   |                    | rangin<br>◄ refusa      |                          | HP hand penetrometer (kPa) D<br>N standard penetration test (SPT) M<br>N* SEDT complet receivered W                                                             | dry<br>moist<br>wet   |                                   |                                           | H hard<br>Fb friable                           |
| *<br>e.g.           | bit sho<br>AD/T   |              | suffix                | -      | - leve             | Oct-12 wa               |                          | N*         SPT - sample recovered         W           Nc         SPT with solid cone         WI           VS         vane shear; peak/remouded (kPa)         WI | plastic I             |                                   |                                           | VL very loose<br>L loose<br>MD medium dense    |
| B<br>T              | blank b<br>TC bit | 16           |                       |        |                    | er inflow<br>er outflov |                          | R refusal                                                                                                                                                       |                       |                                   |                                           | D dense                                        |



## Soil Description Explanation Sheet (1 of 2)

#### **DEFINITION:**

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

#### **CLASSIFICATION SYMBOL & SOIL NAME**

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

#### PARTICLE SIZE DESCRIPTIVE TERMS

| NAME     | SUBDIVISION | SIZE              |
|----------|-------------|-------------------|
| Boulders |             | >200 mm           |
| Cobbles  |             | 63 mm to 200 mm   |
| Gravel   | coarse      | 20 mm to 63 mm    |
|          | medium      | 6 mm to 20 mm     |
|          | fine        | 2.36 mm to 6 mm   |
| Sand     | coarse      | 600 μm to 2.36 mm |
|          | medium      | 200 μm to 600 μm  |
|          | fine        | 75 μm to 200 μm   |

#### MOISTURE CONDITION

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

#### CONSISTENCY OF COHESIVE SOILS

| TERM       | UNDRAINED<br>STRENGTH<br>S <sub>U</sub> (kPa) | FIELD GUIDE                                                                       |  |  |  |  |
|------------|-----------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| Very Soft  | <12                                           | A finger can be pushed well into the soil with little effort.                     |  |  |  |  |
| Soft       | 12 - 25                                       | A finger can be pushed into the soil to about 25mm depth.                         |  |  |  |  |
| Firm       | 25 - 50                                       | The soil can be indented about 5mm with the thumb, but not penetrated.            |  |  |  |  |
| Stiff      | 50 - 100                                      | The surface of the soil can be<br>indented with the thumb, but not<br>penetrated. |  |  |  |  |
| Very Stiff | 100 - 200                                     | The surface of the soil can be marked,<br>but not indented with thumb pressure.   |  |  |  |  |
| Hard       | >200                                          | The surface of the soil can be marked only with the thumbnail.                    |  |  |  |  |
| Friable    | _                                             | Crumbles or powders when scraped by thumbnail.                                    |  |  |  |  |

### DENSITY OF GRANULAR SOILS

| TERM         | DENSITY INDEX (%) |
|--------------|-------------------|
| Very loose   | Less than 15      |
| Loose        | 15 - 35           |
| Medium Dense | 35 - 65           |
| Dense        | 65 - 85           |
| Very Dense   | Greater than 85   |

#### MINOR COMPONENTS

| TERM      | ASSESSMENT<br>GUIDE                                                                                                                            | PROPORTION OF<br>MINOR COMPONENT IN                                 |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Trace of  | Presence just detectable<br>by feel or eye, but soil<br>properties little or no<br>different to general<br>properties of primary<br>component. | Coarse grained soils:<br><5%<br>Fine grained soils:<br><15%         |  |  |
| With some | Presence easily detected<br>by feel or eye, soil<br>properties little different<br>to general properties of<br>primary component.              | Coarse grained soils:<br>5 - 12%<br>Fine grained soils:<br>15 - 30% |  |  |

### SOIL STRUCTURE

|         | ZONING                                          | CEMENTING           |                                                                  |  |  |  |
|---------|-------------------------------------------------|---------------------|------------------------------------------------------------------|--|--|--|
| Layers  | Continuous across exposure or sample.           | Weakly cemented     | Easily broken up by hand in air or water.                        |  |  |  |
| Lenses  | Discontinuous<br>layers of lenticular<br>shape. | Moderately cemented | Effort is required to break up the soil by hand in air or water. |  |  |  |
| Pockets | Irregular inclusions of different material.     |                     |                                                                  |  |  |  |

| GEOLOGICAI<br>WEATHERED<br>Extremely<br>weathered<br>material | L ORIGIN<br>IN PLACE SOILS<br>Structure and fabric of parent rock visible.                                         |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Residual soil                                                 | Structure and fabric of parent rock not visible.                                                                   |
| TRANSPORT                                                     |                                                                                                                    |
| TRANSPORTE                                                    | DSOILS                                                                                                             |
| Aeolian soil                                                  | Deposited by wind.                                                                                                 |
| Alluvial soil                                                 | Deposited by streams and rivers.                                                                                   |
| Colluvial soil                                                | Deposited on slopes (transported downslope by gravity).                                                            |
| Fill                                                          | Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils. |
| Lacustrine soil                                               | Deposited by lakes.                                                                                                |
| Marine soil                                                   | Deposited in ocean basins, bays, beaches and estuaries.                                                            |

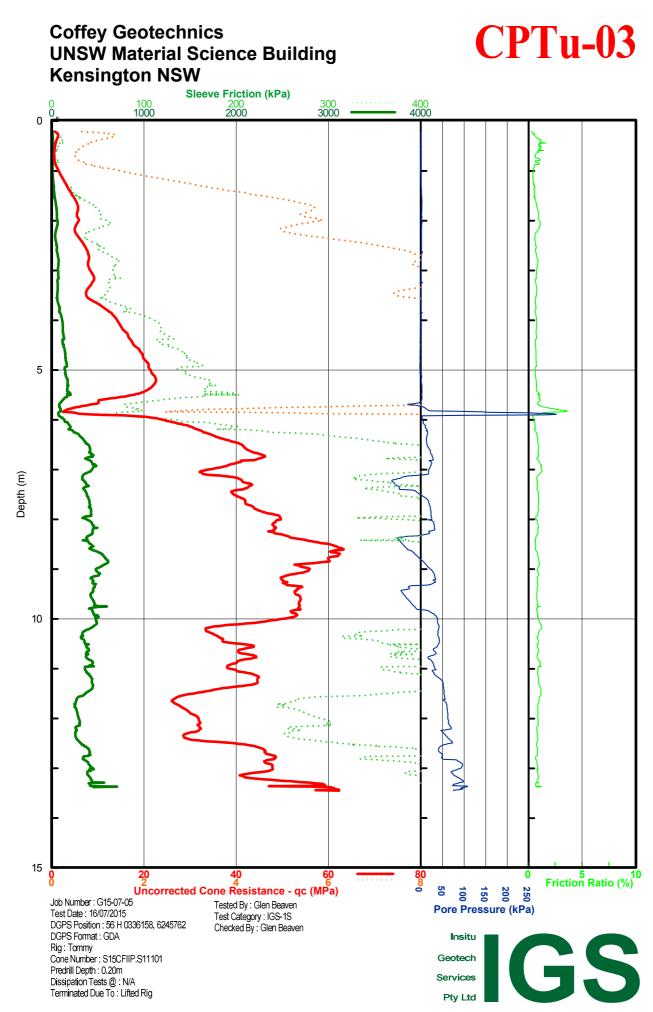
## coffey **>**

## Soil Description Explanation Sheet (2 of 2)

| (Exclu                                                                                         | Iding                                                              |                                                                        |                                                              |                                                                                                                                      | ON PROCEDURE<br>and basing fractions              |                            | USC | PRIMARY NAME  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|-----|---------------|
| SOILS<br>than 63 mm is<br>n                                                                    |                                                                    | arse<br>36 mm                                                          | CLEAN<br>GRAVELS<br>(Little<br>or no<br>fines)               |                                                                                                                                      | range in grain size a<br>Ints of all intermediat  |                            | GW  | GRAVEL        |
|                                                                                                |                                                                    | /ELS<br>than 2.                                                        | CLE<br>GRA<br>(Lit<br>or                                     |                                                                                                                                      | ominantly one size or<br>nore intermediate siz    |                            | GP  | GRAVEL        |
|                                                                                                | eye)                                                               | GRAVELS<br>More than half of coarse<br>ction is larger than 2.36 m     | /ELS<br>FINES<br>ciable<br>unt<br>nes)                       |                                                                                                                                      | plastic fines (for ident                          |                            | GM  | SILTY GRAVEL  |
| AlINED<br>ials less<br>0.075 m                                                                 | e naked                                                            | GRAVELS<br>More than half of coarse<br>fraction is larger than 2.36 mm | GRAVELS<br>WITH FINES<br>(Appreciable<br>amount<br>of fines) |                                                                                                                                      | c fines (for identificat<br>L below)              | ion procedures             | GC  | CLAYEY GRAVEL |
| COARSE GRAIINED SOILS<br>More than 50% of materials less than 63 mm is<br>larger than 0.075 mm | (A 0.075 mm particle is about the smallest particle visible to the |                                                                        | EAN<br>UDS<br>tile<br>ss)                                    | Wide<br>amou                                                                                                                         | range in grain sizes a<br>ints of all intermediat | and substantial<br>e sizes | SW  | SAND          |
|                                                                                                | icle visi                                                          | DS<br>f of coa<br>than 2.3                                             | CLEAN<br>SANDS<br>(Little<br>or no<br>fines)                 | Predominantly one size or a range of sizes with some intermediate sizes missing.                                                     |                                                   |                            | SP  | SAND          |
| More the                                                                                       | llest part                                                         | SANDS<br>More than half of coarse<br>fraction is smaller than 2.36 mm  | SANDS<br>WITH FINES<br>(Appreciable<br>amount<br>of fines)   | Non-plastic fines (for identification<br>procedures see ML below).<br>Plastic fines (for identification procedures<br>see CL below). |                                                   |                            | SM  | SILTY SAND    |
|                                                                                                | the sma                                                            | More<br>fraction i                                                     | SAI<br>WITH<br>(Appre<br>amo                                 |                                                                                                                                      |                                                   |                            | SC  | CLAYEY SAND   |
|                                                                                                | out                                                                |                                                                        | IDENTIFICAT                                                  |                                                                                                                                      | ROCEDURES ON FR                                   | ACTIONS <0.2 mm.           |     |               |
| nan<br>n                                                                                       | s ab                                                               |                                                                        | DRY STREN                                                    | GTH                                                                                                                                  | DILATANCY                                         | TOUGHNESS                  |     |               |
| less th<br>175 mr                                                                              | rticle i                                                           | & CLAYS<br>id limit<br>than 50                                         | None to Low                                                  | ,                                                                                                                                    | Quick to slow                                     | None                       | ML  | SILT          |
| ED SC<br>aterial<br>ian 0.0                                                                    | nm pa                                                              | SILTS & CLAY:<br>Liquid limit<br>less than 50                          | Medium to H                                                  | ligh None                                                                                                                            |                                                   | Medium                     | CL  | CLAY          |
| sRAIN<br>of ma<br>aller th                                                                     | .075 n                                                             | SIL                                                                    | Low to medi                                                  | um                                                                                                                                   | Slow to very slow                                 | Low                        | OL  | ORGANIC SILT  |
| FINE GRAINED SOILS<br>More than 50% of material less than<br>63 mm is smaller than 0.075 mm    | (A 0                                                               | CLAYS<br>I limit<br>than 50                                            | Low to medi                                                  | um                                                                                                                                   | Slow to very slow                                 | Low to medium              | MH  | SILT          |
| ore tha                                                                                        |                                                                    | ∞                                                                      | High                                                         |                                                                                                                                      | None High                                         |                            | СН  | CLAY          |
| Х<br>9                                                                                         |                                                                    | SILTS<br>Liqu<br>greate                                                | Medium to H                                                  | ligh                                                                                                                                 | h None Low to medium                              |                            | ОН  | ORGANIC CLAY  |
| HIGHL'<br>SOILS                                                                                | Y OF                                                               | RGANIC                                                                 | Readily ident<br>frequently by                               | tified b<br>/ fibrou                                                                                                                 | y colour, odour, spon<br>s texture.               | gy feel and                | Pt  | PEAT          |

## SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

• Low plasticity – Liquid Limit  $w_{L}$  less than 35%. • Medium plasticity –  $w_{L}$  between 35% and 50%. • High plasticity –  $w_{L}$  greater than 50%.


COMMON DEFECTS IN SOIL

| TERM               | DEFINITION                                                                                                                                                                                                                                        | DIAGRAM | TERM             | DEFINITION                                                                                                                                                                                                          | DIAGRAM        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| PARTING            | A surface or crack across which the<br>soil has little or no tensile strength.<br>Parallel or sub parallel to layering<br>(eg bedding). May be open or closed.                                                                                    |         | SOFTENED<br>ZONE | A zone in clayey soil, usually adjacent<br>to a defect in which the soil has a<br>higher moisture content than elsewhere.                                                                                           | ALTON COLONIAL |
| JOINT              | A surface or crack across which the soil<br>has little or no tensile strength but which is<br>not parallel or sub parallel to layering. May<br>be open or closed. The term 'fissure' may<br>be used for irregular joints <0.2 m in length.        |         | TUBE             | Tubular cavity. May occur singly or as one<br>of a large number of separate or<br>inter-connected tubes. Walls often coated<br>with clay or strengthened by denser packing<br>of grains. May contain organic matter |                |
| SHEARED<br>ZONE    | Zone in clayey soil with roughly<br>parallel near planar, curved or undulating<br>boundaries containing closely spaced,<br>smooth or slickensided, curved intersecting<br>joints which divide the mass into lenticular<br>or wedge shaped blocks. |         | TUBE<br>CAST     | Roughly cylindrical elongated body of soil<br>different from the soil mass in which it<br>occurs. In some cases the soil which<br>makes up the tube cast is cemented.                                               |                |
| SHEARED<br>SURFACE | A near planar curved or undulating, smooth,<br>polished or slickensided surface in clayey<br>soil. The polished or slickensided surface<br>indicates that movement (in many cases<br>very little) has occurred along the defect.                  |         | INFILLED<br>SEAM | Sheet or wall like body of soil substance<br>or mass with roughly planar to irregular<br>near parallel boundaries which cuts<br>through a soil mass. Formed by infilling of<br>open joints.                         |                |

Appendix B - CPT Results

## **Coffey Geotechnics CPTu-01** UNSW Material Science Building **Kensington NSW** Sleeve Friction (kPa) 100 1000 400 4000 300 3000 0 2000 0 5 Depth (m) 01 annii and the second second 22 1112 15 20 5 10 Friction Ratio (%) 20 40 8 80 250 Uncorrected Cone Resistance - qc (MPa) 50 100 150 200 Uncorrecte Job Number : G15-07-05 Test Date : 16/07/2015 DGPS Position : 56 H 0336150, 6245655 DGPS Format : GDA Rig : Tommy Cone Number : S15CFIIP.S11101 Predrill Depth : 0.00m Dissination Tests @ : N/A Tested By : Glen Beaven Pore Pressure (kPa) Test Category : IGS-1S Checked By : Glen Beaven Insitu GS Geotech Services Dissipation Tests @ N/A Terminated Due To : Lifted Rig Pty Ltd

## **Coffey Geotechnics CPT-02** UNSW Material Science Building **Kensington NSW** Sleeve Friction (kPa) 100 1000 300 3000 400 4000 0 2000 0 5 Pore Pressure Depth (m) 01 Not Testea 15 20 5 10 Friction Ratio (%) 80 8 0 20 40 8 Uncorrected Cone Resistance - qc (MPa) Uncorrecte Job Number : G15-07-05 Test Date : 16/07/2015 DGPS Position : 56 H 0336185, 6245679 DGPS Format : GDA Rig : Tommy Cone Number : S15CFII.C60 Predrill Depth : 0.15m Dissipation Tests @ : N/A Terminated Due To : Lifted Rin Tested By : Glen Beaven Test Category : IGS-2S Checked By : Glen Beaven Insitu GS Geotech Services Terminated Due To : Lifted Rig Pty Ltd



## **Coffey Geotechnics CPT-04** UNSW Material Science Building **Kensington NSW** Sleeve Friction (kPa) 100 1000 400 4000 300 3000 2000 0 5 Pore Pressure Depth (m) 01 Not 181 \$2.5.5 Tested 15 20 5 10 Friction Ratio (%) 80 8 0 20 40 00 Uncorrected Cone Resistance - qc (MPa) Uncorrecte Job Number : G15-07-05 Test Date : 16/07/2015 DGPS Position : 56 H 0336139, 6245704 DGPS Format : GDA Rig : Tommy Cone Number : S15CFII.C60 Predrill Depth : 0.13m Dissipation Tests @ : N/A Terminated Due To : Lifted Rin Tested By : Glen Beaven Test Category : IGS-2S Checked By : Glen Beaven Insitu GS Geotech Services Terminated Due To : Lifted Rig Pty Ltd

Appendix C - Laboratory Test Results

This page has been left intentionally blank



## gt

## Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067



NATA

WORLD RECOGNISED



Priya Dass

| Report        |
|---------------|
| Project name  |
| Project ID    |
| Received Date |

**465878-S** UNSW GEOTLCOV24080AS Jul 20, 2015

| Client Sample ID                                  |           |       | BH3_0.1-0.2  | BH3_0.5-0.6  | BH3_2.5      |
|---------------------------------------------------|-----------|-------|--------------|--------------|--------------|
| Sample Matrix                                     |           |       | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.                         |           |       | S15-JI18174  | S15-JI18175  | S15-JI18177  |
| Date Sampled                                      |           |       | Jul 13, 2015 | Jul 13, 2015 | Jul 13, 2015 |
| Test/Reference                                    | LOR       | Unit  |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |       |              |              |              |
| TRH C6-C9                                         | 20        | mg/kg | < 20         | < 20         | < 20         |
| TRH C10-C14                                       | 20        | mg/kg | < 20         | < 20         | < 20         |
| TRH C15-C28                                       | 50        | mg/kg | < 50         | < 50         | < 50         |
| TRH C29-C36                                       | 50        | mg/kg | 94           | < 50         | < 50         |
| TRH C10-36 (Total)                                | 50        | mg/kg | 94           | < 50         | < 50         |
| BTEX                                              | ł         |       |              |              |              |
| Benzene                                           | 0.1       | mg/kg | < 0.1        | < 0.1        | < 0.1        |
| Toluene                                           | 0.1       | mg/kg | < 0.1        | < 0.1        | < 0.1        |
| Ethylbenzene                                      | 0.1       | mg/kg | < 0.1        | < 0.1        | < 0.1        |
| m&p-Xylenes                                       | 0.2       | mg/kg | < 0.2        | < 0.2        | < 0.2        |
| o-Xylene                                          | 0.1       | mg/kg | < 0.1        | < 0.1        | < 0.1        |
| Xylenes - Total                                   | 0.3       | mg/kg | < 0.3        | < 0.3        | < 0.3        |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | 71           | 71           | 75           |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |       |              |              |              |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| TRH C6-C10                                        | 20        | mg/kg | < 20         | < 20         | < 20         |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20        | mg/kg | < 20         | < 20         | < 20         |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | < 50         | < 50         | < 50         |
| Polycyclic Aromatic Hydrocarbons                  |           |       |              |              |              |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5       | mg/kg | 0.6          | 0.6          | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5       | mg/kg | 1.2          | 1.2          | 1.2          |
| Acenaphthene                                      | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Acenaphthylene                                    | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Anthracene                                        | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Benz(a)anthracene                                 | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                                    | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>№7</sup>              | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                              | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                              | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Chrysene                                          | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                             | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Fluoranthene                                      | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Fluorene                                          | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                            | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        |



| Client Sample ID<br>Sample Matrix |      |       | BH3_0.1-0.2<br>Soil | BH3_0.5-0.6<br>Soil | BH3_2.5<br>Soil |
|-----------------------------------|------|-------|---------------------|---------------------|-----------------|
| •                                 |      |       |                     |                     |                 |
| Eurofins   mgt Sample No.         |      |       | S15-JI18174         | S15-JI18175         | S15-JI18177     |
| Date Sampled                      |      |       | Jul 13, 2015        | Jul 13, 2015        | Jul 13, 2015    |
| Test/Reference                    | LOR  | Unit  |                     |                     |                 |
| Polycyclic Aromatic Hydrocarbons  |      |       |                     |                     |                 |
| Naphthalene                       | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5           |
| Phenanthrene                      | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5           |
| Pyrene                            | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5           |
| Total PAH*                        | 0.5  | mg/kg | < 0.5               | < 0.5               | < 0.5           |
| 2-Fluorobiphenyl (surr.)          | 1    | %     | 106                 | 110                 | 115             |
| p-Terphenyl-d14 (surr.)           | 1    | %     | 109                 | 102                 | 110             |
| Organochlorine Pesticides         |      | -     |                     |                     |                 |
| Chlordanes - Total                | 0.1  | mg/kg | < 0.1               | -                   | -               |
| 4.4'-DDD                          | 0.05 | mg/kg | < 0.05              | -                   | -               |
| 4.4'-DDE                          | 0.05 | mg/kg | < 0.05              | -                   | -               |
| 4.4'-DDT                          | 0.05 | mg/kg | < 0.05              | -                   | -               |
| a-BHC                             | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Aldrin                            | 0.05 | mg/kg | < 0.05              | -                   | -               |
| b-BHC                             | 0.05 | mg/kg | < 0.05              | -                   | -               |
| d-BHC                             | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Dieldrin                          | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Endosulfan I                      | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Endosulfan II                     | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Endosulfan sulphate               | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Endrin                            | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Endrin aldehyde                   | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Endrin ketone                     | 0.05 | mg/kg | < 0.05              | -                   | -               |
| g-BHC (Lindane)                   | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Heptachlor                        | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Heptachlor epoxide                | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Hexachlorobenzene                 | 0.05 | mg/kg | < 0.05              | -                   | -               |
| Methoxychlor                      | 0.2  | mg/kg | < 0.2               | -                   | -               |
| Toxaphene                         | 1    | mg/kg | < 1                 | -                   | -               |
| Dibutylchlorendate (surr.)        | 1    | %     | 74                  | -                   | -               |
| Tetrachloro-m-xylene (surr.)      | 1    | %     | 78                  | -                   | -               |
| Organophosphorus Pesticides (OP)  |      |       |                     |                     |                 |
| Chlorpyrifos                      | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Coumaphos                         | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Demeton (total)                   | 1    | mg/kg | < 1                 | -                   | -               |
| Diazinon                          | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Dichlorvos                        | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Dimethoate                        | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Disulfoton                        | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Ethoprop                          | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Fenitrothion                      | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Fensulfothion                     | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Fenthion                          | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Methyl azinphos                   | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Malathion                         | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Methyl parathion                  | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Mevinphos                         | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Monocrotophos                     | 10   | mg/kg | < 10                | -                   | -               |
| Parathion                         | 0.5  | mg/kg | < 0.5               | -                   | -               |
| Phorate                           | 0.5  | mg/kg | < 0.5               | -                   | -               |



| Client Sample ID                           |           |          | BH3_0.1-0.2  | BH3_0.5-0.6  | BH3_2.5      |
|--------------------------------------------|-----------|----------|--------------|--------------|--------------|
| Sample Matrix                              |           |          | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.                  |           |          | S15-JI18174  | S15-JI18175  | S15-JI18177  |
| Date Sampled                               |           |          | Jul 13, 2015 | Jul 13, 2015 | Jul 13, 2015 |
| Test/Reference                             | LOR       | Unit     |              |              |              |
| Organophosphorus Pesticides (OP)           | L.        |          |              |              |              |
| Profenofos                                 | 0.5       | mg/kg    | < 0.5        | -            | -            |
| Prothiofos                                 | 0.5       | mg/kg    | < 0.5        | -            | -            |
| Ronnel                                     | 0.5       | mg/kg    | < 0.5        | -            | -            |
| Stirophos                                  | 0.5       | mg/kg    | < 0.5        | -            | -            |
| Trichloronate                              | 0.5       | mg/kg    | < 0.5        | -            | -            |
| Triphenylphosphate (surr.)                 | 1         | %        | 83           | -            | -            |
| Total Recoverable Hydrocarbons - 2013 NEPM | Fractions |          |              |              |              |
| TRH >C10-C16                               | 50        | mg/kg    | < 50         | < 50         | < 50         |
| TRH >C16-C34                               | 100       | mg/kg    | < 100        | < 100        | < 100        |
| TRH >C34-C40                               | 100       | mg/kg    | < 100        | < 100        | < 100        |
| Chloride                                   | 10        | mg/kg    | -            | < 10         | -            |
| Conductivity (1:5 aqueous extract at 25°C) | 10        | uS/cm    | -            | 30           | -            |
| Organic Matter %                           | 0.01      | % w/w    | -            | 4.8          | -            |
| pH (1:5 Aqueous extract)                   | 0.1       | pH Units | -            | 8.1          | -            |
| Sulphate (as SO4)                          | 10        | mg/kg    | -            | 37           | -            |
| % Moisture                                 | 0.1       | %        | 4.8          | 6.9          | 6.0          |
| Ion Exchange Properties                    |           |          |              |              |              |
| Cation Exchange Capacity                   | 0.05      | meq/100g | -            | 5.1          | -            |
| Heavy Metals                               |           |          |              |              |              |
| Arsenic                                    | 2         | mg/kg    | < 2          | < 2          | < 2          |
| Cadmium                                    | 0.4       | mg/kg    | < 0.4        | 0.6          | < 0.4        |
| Chromium                                   | 5         | mg/kg    | 8.8          | < 5          | < 5          |
| Copper                                     | 5         | mg/kg    | 43           | 12           | < 5          |
| Lead                                       | 5         | mg/kg    | < 5          | 19           | < 5          |
| Mercury                                    | 0.05      | mg/kg    | < 0.05       | < 0.05       | < 0.05       |
| Nickel                                     | 5         | mg/kg    | 47           | 8.9          | < 5          |
| Zinc                                       | 5         | mg/kg    | 40           | 41           | < 5          |



## Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                                          | Testing Site | Extracted    | Holding Time |
|--------------------------------------------------------------------------------------|--------------|--------------|--------------|
| Eurofins   mgt Suite B4                                                              |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                                 | Sydney       | Jul 27, 2015 | 14 Day       |
| - Method: TRH C6-C36 - LTM-ORG-2010                                                  |              |              |              |
| BTEX                                                                                 | Sydney       | Jul 27, 2015 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                                                  |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                                 | Sydney       | Jul 27, 2015 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                                                  |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                                     | Sydney       | Jul 27, 2015 | 14 Day       |
| - Method: E007 Polyaromatic Hydrocarbons (PAH)                                       |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                                 | Sydney       | Jul 27, 2015 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                                                  |              |              |              |
| Eurofins   mgt Suite B14                                                             |              |              |              |
| Organochlorine Pesticides                                                            | Sydney       | Jul 27, 2015 | 14 Day       |
| - Method: E013 Organochlorine Pesticides (OC)                                        |              |              |              |
| Organophosphorus Pesticides (OP)                                                     | Sydney       | Jul 27, 2015 | 14 Day       |
| - Method: E014 Organophosphorus Pesticides (OP)                                      |              |              |              |
| Eurofins   mgt Suite B18                                                             |              |              |              |
| Chloride                                                                             | Sydney       | Jul 27, 2015 | 28 Day       |
| - Method: E033 /E045 /E047 Chloride                                                  |              |              |              |
| pH (1:5 Aqueous extract)                                                             | Sydney       | Jul 21, 2015 | 7 Day        |
| - Method: LTM-GEN-7090 pH in soil by ISE                                             |              |              |              |
| Sulphate (as SO4)                                                                    | Sydney       | Jul 27, 2015 | 28 Day       |
| - Method: E045 Sulphate                                                              |              |              |              |
| Conductivity (1:5 aqueous extract at 25°C)                                           | Melbourne    | Jul 22, 2015 | 7 Day        |
| - Method: LM-LTM-INO-4030                                                            |              |              |              |
| Ion Exchange Properties                                                              | Melbourne    | Jul 22, 2015 |              |
| Organic Matter %                                                                     | Melbourne    | Jul 22, 2015 | 5 Day        |
| - Method: APHA 2540E Fixed and Volatile Solids Ignited at 550C                       |              |              |              |
| Metals M8                                                                            | Sydney       | Jul 27, 2015 | 28 Day       |
| - Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS |              |              |              |
| % Moisture                                                                           | Sydney       | Jul 21, 2015 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                                                      |              |              |              |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Na<br>Address:<br>Project Name<br>Project ID: | Level 18<br>Chatswo<br>NSW 20<br>:: UNSW | boc          | Ltd Chatswood<br>lel Tower 799 Pa | cific Highway |                            | F    | Order No.:<br>Report #:<br>Phone:<br>Fax: |           |                          | 465878<br>+61 2 9406 1000<br>+61 2 9406 1002 |              |                          |                         | Received:<br>Due:<br>Priority:<br>Contact Name: | Jul 20, 2015 4:34 PM<br>Jul 27, 2015<br>5 Day<br>Priya Dass |
|-------------------------------------------------------|------------------------------------------|--------------|-----------------------------------|---------------|----------------------------|------|-------------------------------------------|-----------|--------------------------|----------------------------------------------|--------------|--------------------------|-------------------------|-------------------------------------------------|-------------------------------------------------------------|
|                                                       |                                          |              |                                   |               |                            |      |                                           |           |                          |                                              |              |                          |                         | Eurofins   m                                    | gt Client Manager: Charl Du Preez                           |
|                                                       |                                          | Sample Detai | I                                 |               | Asbestos Absence /Presence | HOLD | Organic Matter %                          | Metals M8 | Eurofins   mgt Suite B18 | Eurofins   mgt Suite B14                     | Moisture Set | Cation Exchange Capacity | Eurofins   mgt Suite B4 |                                                 |                                                             |
|                                                       | ere analysis is c                        |              |                                   |               | _                          |      |                                           |           |                          |                                              |              |                          |                         |                                                 |                                                             |
|                                                       | oratory - NATA                           |              | 4271                              |               |                            |      | Х                                         |           |                          |                                              |              | Х                        |                         |                                                 |                                                             |
|                                                       | tory - NATA Sit                          |              |                                   |               | X                          | Х    |                                           | Х         | Х                        | Х                                            | Х            | Х                        | Х                       |                                                 |                                                             |
|                                                       | ratory - NATA S                          | ite # 20794  |                                   |               | -                          |      | -                                         | -         |                          | -                                            |              |                          |                         |                                                 |                                                             |
| External Labor<br>Sample ID                           | Sample Date                              | Sampling     | Matrix                            | LAB ID        | -                          |      | +                                         |           |                          |                                              |              |                          |                         |                                                 |                                                             |
| Cample ID                                             | Cample Date                              | Time         |                                   |               |                            |      |                                           |           |                          |                                              |              |                          |                         |                                                 |                                                             |
| BH3_0.1-0.2                                           | Jul 13, 2015                             |              | Soil                              | S15-JI18174   | Х                          |      |                                           | Х         |                          | Х                                            | Х            |                          | Х                       |                                                 |                                                             |
| BH3_0.5-0.6                                           | Jul 13, 2015                             |              | Soil                              | S15-JI18175   |                            |      | Х                                         | Х         | Х                        |                                              | Х            | Х                        | Х                       |                                                 |                                                             |
| BH3_1.0                                               | Jul 13, 2015                             |              | Soil                              | S15-JI18176   |                            | Х    |                                           |           |                          |                                              |              |                          |                         |                                                 |                                                             |
| BH3_2.5                                               | Jul 13, 2015                             |              | Soil                              | S15-JI18177   |                            |      |                                           | Х         |                          |                                              | Х            |                          | Х                       |                                                 |                                                             |
| BH3_(2.5)                                             | Jul 13, 2015                             |              | Soil                              | S15-JI18178   |                            | Х    |                                           |           | <u> </u>                 |                                              |              |                          |                         |                                                 |                                                             |
| BH3_5.5-5.9                                           | Jul 13, 2015                             |              | Soil                              | S15-JI18179   |                            | Х    |                                           |           |                          |                                              |              |                          |                         |                                                 |                                                             |



#### Eurofins | mgt Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

#### TERMS

| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOR              | Limit of Reporting.                                                                                                                                               |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                        |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                             |
| LCS              | Laboratory Control Sample - reported as percent recovery                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands.                                                                             |
|                  | In the case of water samples these are performed on de-ionised water.                                                                                             |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                        |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                  |
| Batch Duplicate  | A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| Batch SPIKE      | Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.                                 |
| USEPA            | United States Environmental Protection Agency                                                                                                                     |
| APHA             | American Public Health Association                                                                                                                                |
| ASLP             | Australian Standard Leaching Procedure (AS4439.3)                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                        |
| COC              | Chain of Custody                                                                                                                                                  |
| SRA              | Sample Receipt Advice                                                                                                                                             |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                             |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                        |
|                  |                                                                                                                                                                   |

#### **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

#### QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.



## **Quality Control Results**

| Test                                          | Units    | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------|----------|----------|----------------------|----------------|--------------------|
| Method Blank                                  |          | ļ        |                      | 2              |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fi | ractions |          |                      |                |                    |
| TRH C6-C9                                     | mg/kg    | < 20     | 20                   | Pass           |                    |
| TRH C10-C14                                   | mg/kg    | < 20     | 20                   | Pass           |                    |
| TRH C15-C28                                   | mg/kg    | < 50     | 50                   | Pass           |                    |
| TRH C29-C36                                   | mg/kg    | < 50     | 50                   | Pass           |                    |
| Method Blank                                  |          |          |                      |                |                    |
| BTEX                                          |          |          |                      |                |                    |
| Benzene                                       | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| Toluene                                       | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| Ethylbenzene                                  | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| m&p-Xylenes                                   | mg/kg    | < 0.2    | 0.2                  | Pass           |                    |
| o-Xylene                                      | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| Xylenes - Total                               | mg/kg    | < 0.3    | 0.3                  | Pass           |                    |
| Method Blank                                  |          |          |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fi | ractions |          |                      |                |                    |
| Naphthalene                                   | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| TRH C6-C10                                    | mg/kg    | < 20     | 20                   | Pass           |                    |
| TRH C6-C10 less BTEX (F1)                     | mg/kg    | < 20     | 20                   | Pass           |                    |
| Method Blank                                  |          |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons              |          |          |                      |                |                    |
| Acenaphthene                                  | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Acenaphthylene                                | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Anthracene                                    | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benz(a)anthracene                             | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene                        | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                          | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                          | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Chrysene                                      | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                         | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Fluoranthene                                  | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Fluorene                                      | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                        | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Naphthalene                                   | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Phenanthrene                                  | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Pyrene                                        | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                                  |          |          |                      |                |                    |
| Organochlorine Pesticides                     |          |          |                      |                |                    |
| Chlordanes - Total                            | mg/kg    | < 0.1    | 0.1                  | Pass           |                    |
| 4.4'-DDD                                      | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDE                                      | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| 4.4'-DDT                                      | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| a-BHC                                         | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Aldrin                                        | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| b-BHC                                         | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| d-BHC                                         | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Dieldrin                                      | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan I                                  | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan II                                 | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Endosulfan sulphate                           | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Endrin                                        | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |



| Test                                                 | Units    | Result 1 | Accep       | otance Pass<br>hits Limits |   |
|------------------------------------------------------|----------|----------|-------------|----------------------------|---|
| Endrin aldehyde                                      | mg/kg    | < 0.05   | 0.          | 05 Pass                    |   |
| Endrin ketone                                        | mg/kg    | < 0.05   | 0.          | 05 Pass                    |   |
| g-BHC (Lindane)                                      | mg/kg    | < 0.05   | 0.          | 05 Pass                    |   |
| Heptachlor                                           | mg/kg    | < 0.05   | 0.          | 05 Pass                    |   |
| Heptachlor epoxide                                   | mg/kg    | < 0.05   | 0.          |                            |   |
| Hexachlorobenzene                                    | mg/kg    | < 0.05   | 0.          | 05 Pass                    |   |
| Methoxychlor                                         | mg/kg    | < 0.2    | 0           | .2 Pass                    |   |
| Toxaphene                                            | mg/kg    | < 1      | · · · ·     | 1 Pass                     |   |
| Method Blank                                         |          |          | II          |                            | 4 |
| Organophosphorus Pesticides (OP)                     |          |          |             |                            |   |
| Chlorpyrifos                                         | mg/kg    | < 0.5    | 0           | .5 Pass                    |   |
| Coumaphos                                            | mg/kg    | < 0.5    | 0           | .5 Pass                    |   |
| Demeton (total)                                      | mg/kg    | < 1      | · · · · · · |                            |   |
| Diazinon                                             | mg/kg    | < 0.5    | 0           | .5 Pass                    |   |
| Dichlorvos                                           | mg/kg    | < 0.5    | 0           |                            |   |
| Dimethoate                                           | mg/kg    | < 0.5    | 0           |                            |   |
| Disulfoton                                           | mg/kg    | < 0.5    | 0           |                            |   |
| Ethoprop                                             | mg/kg    | < 0.5    | 0           |                            |   |
| Fenitrothion                                         | mg/kg    | < 0.5    | 0           |                            |   |
| Fensulfothion                                        | mg/kg    | < 0.5    | 0           |                            |   |
| Fenthion                                             | mg/kg    | < 0.5    | 0           |                            |   |
| Methyl azinphos                                      | mg/kg    | < 0.5    | 0           |                            |   |
| Malathion                                            | mg/kg    | < 0.5    | 0           |                            |   |
| Methyl parathion                                     | mg/kg    | < 0.5    | 0           |                            |   |
| Mevinphos                                            | mg/kg    | < 0.5    | 0           |                            |   |
| Monocrotophos                                        | mg/kg    | < 10     |             | 0 Pass                     |   |
| Parathion                                            | mg/kg    | < 0.5    | 0           |                            |   |
| Phorate                                              | mg/kg    | < 0.5    | 0.          |                            |   |
| Profenofos                                           | mg/kg    | < 0.5    | 0           |                            |   |
| Prothiofos                                           | mg/kg    | < 0.5    | 0           |                            |   |
| Ronnel                                               | mg/kg    | < 0.5    | 0           |                            |   |
| Stirophos                                            | mg/kg    | < 0.5    | 0           | .5 Pass                    |   |
| Method Blank                                         |          |          |             |                            |   |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |          |          |             |                            |   |
| TRH >C10-C16                                         | mg/kg    | < 50     |             | 0 Pass                     |   |
| TRH >C16-C34                                         | mg/kg    | < 100    |             | 00 Pass                    |   |
| TRH >C34-C40                                         | mg/kg    | < 100    | 1(          | 00 Pass                    |   |
| Method Blank                                         | n        |          |             |                            |   |
| Chloride                                             | mg/kg    | < 10     |             | 0 Pass                     |   |
| Conductivity (1:5 aqueous extract at 25°C)           | uS/cm    | < 10     |             | 0 Pass                     |   |
| Sulphate (as SO4)                                    | mg/kg    | < 10     | 1           | 0 Pass                     |   |
| Method Blank                                         |          |          |             |                            |   |
| Ion Exchange Properties                              |          |          |             |                            |   |
| Cation Exchange Capacity Method Blank                | meq/100g | < 0.05   | 0.1         | 05 Pass                    |   |
| Heavy Metals                                         |          |          |             |                            |   |
| Arsenic                                              | mg/kg    | < 2      |             | 2 Pass                     |   |
| Cadmium                                              | mg/kg    | < 0.4    | 0           | .4 Pass                    |   |
| Chromium                                             | mg/kg    | < 5      |             | 5 Pass                     |   |
| Copper                                               | mg/kg    | < 5      | Ę           | 5 Pass                     |   |
| Lead                                                 | mg/kg    | < 5      |             | 5 Pass                     |   |
| Mercury                                              | mg/kg    | < 0.05   | 0.          |                            |   |
| Nickel                                               | mg/kg    | < 5      |             | 5 Pass                     |   |
| Zinc                                                 | mg/kg    | < 5      |             | 5 Pass                     |   |



| Test                                                | Units | Result 1   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------|-------|------------|----------------------|----------------|--------------------|
| LCS - % Recovery                                    |       |            |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fraction | ons   |            |                      |                |                    |
| TRH C6-C9                                           | %     | 94         | 70-130               | Pass           |                    |
| TRH C10-C14                                         | %     | 72         | 70-130               | Pass           |                    |
| LCS - % Recovery                                    |       | <b>.</b>   |                      |                |                    |
| BTEX                                                | 1     |            |                      |                |                    |
| Benzene                                             | %     | 91         | 70-130               | Pass           |                    |
| Toluene                                             | %     | 91         | 70-130               | Pass           |                    |
| Ethylbenzene                                        | %     | 90         | 70-130               | Pass           |                    |
| m&p-Xylenes                                         | %     | 94         | 70-130               | Pass           |                    |
| o-Xylene                                            | %     | 94         | 70-130               | Pass           |                    |
| Xylenes - Total                                     | %     | 94         | 70-130               | Pass           |                    |
| LCS - % Recovery                                    |       | 1          |                      | 1              |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fraction |       |            |                      |                |                    |
| Naphthalene                                         | %     | 108        | 70-130               | Pass           |                    |
| TRH C6-C10                                          | %     | 87         | 70-130               | Pass           |                    |
| LCS - % Recovery                                    |       |            |                      | 1              |                    |
| Polycyclic Aromatic Hydrocarbons                    |       |            |                      |                |                    |
| Acenaphthene                                        | %     | 96         | 70-130               | Pass           |                    |
| Acenaphthylene                                      | %     | 95         | 70-130               | Pass           |                    |
| Anthracene                                          | %     | 99         | 70-130               | Pass           |                    |
| Benz(a)anthracene                                   | %     | 94         | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                      | %     | 92         | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene                              | %     | 103        | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene                                | %     | 87         | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene                                | %     | 100        | 70-130               | Pass           |                    |
| Chrysene                                            | %     | 95         | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene                               | %     | 88         | 70-130               | Pass           |                    |
| Fluoranthene                                        | %     | 96         | 70-130               | Pass           |                    |
| Fluorene                                            | %     | 95         | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                              | %     | 89         | 70-130               | Pass           |                    |
| Naphthalene                                         | %     | 95         | 70-130               | Pass           |                    |
| Phenanthrene                                        | %     | 91         | 70-130               | Pass           |                    |
| Pyrene                                              | %     | 100        | 70-130               | Pass           |                    |
| LCS - % Recovery                                    |       | <u>г</u>   |                      | 1              |                    |
| Organochlorine Pesticides                           | 0/    | 07         | 70.400               | Daaa           |                    |
| Chlordanes - Total<br>4.4'-DDD                      | %     | 97         | 70-130               | Pass           |                    |
| 4.4-DDD<br>4.4'-DDE                                 | %     | 106<br>102 |                      | Pass           |                    |
| 4.4-DDE<br>4.4'-DDT                                 | %     | 96         | 70-130               | Pass           |                    |
|                                                     |       | 1 1        |                      | Pass           |                    |
| a-BHC<br>Aldrin                                     | %     | 101<br>100 | 70-130               | Pass<br>Pass   |                    |
| b-BHC                                               | %     | 100        | 70-130               | Pass           |                    |
| d-BHC                                               | %     | 103        | 70-130               | Pass           |                    |
| Dieldrin                                            | %     | 96         | 70-130               | Pass           |                    |
| Endosulfan I                                        | %     | 96 97      | 70-130               | Pass           |                    |
| Endosulfan II                                       | %     | 97         | 70-130               | Pass           |                    |
| Endosulfan sulphate                                 | %     | 90         | 70-130               | Pass           |                    |
| Endrin                                              | %     | 97         | 70-130               | Pass           |                    |
| Endrin aldehyde                                     | %     | 97         | 70-130               | Pass           |                    |
| Endrin ketone                                       | %     | 92         | 70-130               | Pass           |                    |
| g-BHC (Lindane)                                     | %     | 104        | 70-130               | Pass           |                    |
| Heptachlor                                          | %     | 98         | 70-130               | Pass           |                    |
| Heptachlor epoxide                                  | %     | 97         | 70-130               | Pass           |                    |



| Test                             |                            |              | Units  | Result 1 |        | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|----------------------------|--------------|--------|----------|--------|----------------------|----------------|--------------------|
| Methoxychlor                     |                            |              | %      | 90       |        | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                            |              |        |          |        |                      |                |                    |
| Organophosphorus Pesticides (OF  | <sup>&gt;</sup> )          |              |        |          |        |                      |                |                    |
| Chlorpyrifos                     |                            |              | %      | 94       |        | 70-130               | Pass           |                    |
| Dimethoate                       |                            |              | %      | 100      |        | 70-130               | Pass           |                    |
| Disulfoton                       |                            |              | %      | 101      |        | 70-130               | Pass           |                    |
| Methyl azinphos                  |                            |              | %      | 75       |        | 70-130               | Pass           |                    |
| Methyl parathion                 |                            |              | %      | 96       |        | 70-130               | Pass           |                    |
| Parathion                        |                            |              | %      | 101      |        | 70-130               | Pass           |                    |
| Phorate                          |                            |              | %      | 100      |        | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                            |              |        |          | 1 1    | r                    | 1              |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract            | ions         |        |          |        |                      |                |                    |
| TRH >C10-C16                     |                            |              | %      | 80       |        | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                            |              |        |          | 1 1    | 1                    | 1              |                    |
| Chloride                         |                            |              | %      | 103      |        | 70-130               | Pass           |                    |
| Sulphate (as SO4)                |                            |              | %      | 114      |        | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                            |              |        |          | 1 1    |                      | 1              |                    |
| Heavy Metals                     |                            |              |        |          |        |                      |                |                    |
| Arsenic                          |                            |              | %      | 118      |        | 70-130               | Pass           |                    |
| Cadmium                          |                            |              | %      | 120      |        | 70-130               | Pass           |                    |
| Chromium                         |                            |              | %      | 118      |        | 70-130               | Pass           |                    |
| Copper                           |                            |              | %      | 122      |        | 70-130               | Pass           |                    |
| Lead                             |                            |              | %      | 114      |        | 70-130               | Pass           |                    |
| Mercury                          |                            |              | %      | 96       |        | 70-130               | Pass           |                    |
| Nickel                           |                            | %            | 117    |          | 70-130 | Pass                 |                |                    |
| Zinc                             | 1                          |              | %      | 105      |        | 70-130               | Pass           |                    |
| Test                             | Lab Sample ID              | QA<br>Source | Units  | Result 1 |        | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery               |                            |              |        |          |        |                      |                |                    |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract            | ions         | -      | Result 1 |        |                      |                |                    |
| TRH C6-C9                        | S15-JI17541                | NCP          | %      | 70       |        | 70-130               | Pass           |                    |
| TRH C10-C14                      | S15-JI18174                | CP           | %      | 100      |        | 70-130               | Pass           |                    |
| Spike - % Recovery               |                            |              |        |          |        |                      |                |                    |
| втех                             |                            | -            | -      | Result 1 |        |                      |                |                    |
| Benzene                          | S15-JI17541                | NCP          | %      | 80       |        | 70-130               | Pass           |                    |
| Toluene                          | S15-JI17541                | NCP          | %      | 79       |        | 70-130               | Pass           |                    |
| Ethylbenzene                     | S15-JI17541                | NCP          | %      | 78       |        | 70-130               | Pass           |                    |
| m&p-Xylenes                      | S15-JI17541                | NCP          | %      | 82       |        | 70-130               | Pass           |                    |
| o-Xylene                         | S15-JI17541                | NCP          | %      | 81       |        | 70-130               | Pass           |                    |
| Xylenes - Total                  | S15-JI17541                | NCP          | %      | 82       |        | 70-130               | Pass           |                    |
| Spike - % Recovery               |                            |              |        | 1        | 1      |                      |                |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract            | ions         |        | Result 1 |        |                      |                |                    |
| Naphthalene                      | S15-JI20692                | NCP          | %      | 100      |        | 70-130               | Pass           |                    |
| TRH C6-C10                       | S15-JI17541                | NCP          | %      | 75       |        | 70-130               | Pass           |                    |
| Spike - % Recovery               |                            |              |        | 1        | 1      |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons | 5                          |              |        | Result 1 |        |                      |                |                    |
| Acenaphthene                     | S15-JI18174                | СР           | %      | 88       |        | 70-130               | Pass           |                    |
| Acenaphthylene                   | S15-JI18174                | СР           | %      | 86       |        | 70-130               | Pass           |                    |
| Anthracene                       | S15-JI18174                | СР           | %      | 91       |        | 70-130               | Pass           |                    |
| Benz(a)anthracene                | S15-JI18174                | CP           | %      | 101      |        | 70-130               | Pass           |                    |
| Benzo(a)pyrene                   | S15-JI18174                | CP           | %      | 89       |        | 70-130               | Pass           |                    |
| Derizo(a)pyrene                  |                            |              |        |          | 1 1    | 70.400               | Deee           |                    |
| Benzo(b&j)fluoranthene           | S15-JI18174                | СР           | %      | 86       |        | 70-130               | Pass           |                    |
|                                  | S15-JI18174<br>S15-JI18174 | CP<br>CP     | %<br>% | 86<br>70 |        | 70-130<br>70-130     | Pass<br>Pass   |                    |
| Benzo(b&j)fluoranthene           |                            |              |        |          |        |                      |                |                    |



| Test                        | Lab Sample ID         | QA<br>Source | Units | Result 1 |       | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------|-----------------------|--------------|-------|----------|-------|----------------------|----------------|--------------------|
| Dibenz(a.h)anthracene       | S15-JI18174           | CP           | %     | 76       |       | 70-130               | Pass           |                    |
| Fluoranthene                | S15-JI18174           | CP           | %     | 94       |       | 70-130               | Pass           |                    |
| Fluorene                    | S15-JI18174           | CP           | %     | 85       |       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene      | S15-JI18174           | CP           | %     | 74       |       | 70-130               | Pass           |                    |
| Naphthalene                 | S15-JI18174           | CP           | %     | 86       |       | 70-130               | Pass           |                    |
| Phenanthrene                | S15-JI18174           | CP           | %     | 87       |       | 70-130               | Pass           |                    |
| Pyrene                      | S15-JI18174           | CP           | %     | 96       |       | 70-130               | Pass           |                    |
| Spike - % Recovery          |                       |              |       | 1        | I I I |                      |                |                    |
| Organochlorine Pesticides   |                       |              |       | Result 1 |       |                      |                |                    |
| Chlordanes - Total          | S15-JI20953           | NCP          | %     | 89       |       | 70-130               | Pass           |                    |
| 4.4'-DDD                    | S15-JI20953           | NCP          | %     | 129      |       | 70-130               | Pass           |                    |
| 4.4'-DDE                    | S15-JI20953           | NCP          | %     | 94       |       | 70-130               | Pass           |                    |
| 4.4'-DDT                    | S15-JI20953           | NCP          | %     | 85       |       | 70-130               | Pass           |                    |
| a-BHC                       | S15-JI20953           | NCP          | %     | 92       |       | 70-130               | Pass           |                    |
| Aldrin                      | S15-JI20953           | NCP          | %     | 92       |       | 70-130               | Pass           |                    |
| b-BHC                       | S15-Jl20953           | NCP          | %     | 90       |       | 70-130               | Pass           |                    |
| d-BHC                       | S15-JI20953           | NCP          | %     | 92       |       | 70-130               | Pass           |                    |
| Dieldrin                    | S15-JI20953           | NCP          | %     | 107      |       | 70-130               | Pass           |                    |
| Endosulfan I                | S15-JI20953           | NCP          | %     | 87       |       | 70-130               | Pass           |                    |
| Endosulfan II               | S15-JI20953           | NCP          | %     | 116      |       | 70-130               | Pass           |                    |
| Endosulfan sulphate         | S15-JI20953           | NCP          | %     | 97       |       | 70-130               | Pass           |                    |
| Endrin                      | S15-JI20953           | NCP          | %     | 108      |       | 70-130               | Pass           |                    |
| Endrin aldehyde             | S15-JI20953           | NCP          | %     | 106      |       | 70-130               | Pass           |                    |
| Endrin ketone               | S15-JI20953           | NCP          | %     | 112      |       | 70-130               | Pass           |                    |
| g-BHC (Lindane)             | S15-JI20953           | NCP          | %     | 94       |       | 70-130               | Pass           |                    |
| Heptachlor                  | S15-JI20953           | NCP          | %     | 87       |       | 70-130               | Pass           |                    |
| Heptachlor epoxide          | S15-JI20953           | NCP          | %     | 89       |       | 70-130               | Pass           |                    |
| Methoxychlor                | S15-JI20953           | NCP          | %     | 127      |       | 70-130               | Pass           |                    |
| Spike - % Recovery          |                       |              |       |          |       |                      |                |                    |
| Organophosphorus Pesticide  | es (OP)               |              |       | Result 1 |       |                      |                |                    |
| Chlorpyrifos                | S15-JI18651           | NCP          | %     | 97       |       | 70-130               | Pass           |                    |
| Dimethoate                  | S15-JI18651           | NCP          | %     | 101      |       | 70-130               | Pass           |                    |
| Disulfoton                  | S15-JI18651           | NCP          | %     | 113      |       | 70-130               | Pass           |                    |
| Methyl azinphos             | S15-JI18651           | NCP          | %     | 72       |       | 70-130               | Pass           |                    |
| Methyl parathion            | S15-JI18651           | NCP          | %     | 90       |       | 70-130               | Pass           |                    |
| Parathion                   | S15-JI18651           | NCP          | %     | 103      |       | 70-130               | Pass           |                    |
| Phorate                     | S15-JI18651           | NCP          | %     | 100      |       | 70-130               | Pass           |                    |
| Spike - % Recovery          |                       |              |       |          |       |                      |                |                    |
| Total Recoverable Hydrocarb | ons - 2013 NEPM Fract | tions        |       | Result 1 |       |                      |                |                    |
| TRH >C10-C16                | S15-JI18174           | CP           | %     | 126      |       | 70-130               | Pass           |                    |
| Spike - % Recovery          |                       |              |       |          |       |                      |                |                    |
| Heavy Metals                |                       |              |       | Result 1 |       |                      |                |                    |
| Arsenic                     | S15-JI16955           | NCP          | %     | 99       |       | 70-130               | Pass           |                    |
| Cadmium                     | S15-JI16955           | NCP          | %     | 105      |       | 70-130               | Pass           |                    |
| Chromium                    | S15-JI16955           | NCP          | %     | 93       |       | 70-130               | Pass           |                    |
| Copper                      | S15-JI16955           | NCP          | %     | 101      |       | 70-130               | Pass           |                    |
| Lead                        | S15-JI17047           | NCP          | %     | 96       |       | 70-130               | Pass           |                    |
| Mercury                     | S15-JI16955           | NCP          | %     | 78       |       | 70-130               | Pass           |                    |
| Nickel                      | S15-JI16955           | NCP          | %     | 98       |       | 70-130               | Pass           |                    |
| Zinc                        | S15-JI20926           | NCP          | %     | 96       |       | 70-130               | Pass           |                    |
| Spike - % Recovery          |                       |              |       |          |       |                      |                |                    |
|                             |                       |              |       | Result 1 |       |                      |                |                    |
| Chloride                    | S15-Jl21491           | NCP          | %     | 103      |       | 70-130               | Pass           |                    |
| Sulphate (as SO4)           | S15-Jl21491           | NCP          | %     | 95       |       | 70-130               | Pass           |                    |



| Test                                  | Lab Sample ID     | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------------|-------------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Duplicate                             |                   |              |       |          |          |     | -1                   |                |                    |
| Total Recoverable Hydrocarbons        | - 1999 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD |                      |                |                    |
| TRH C6-C9                             | S15-JI17539       | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C10-C14                           | S15-JI18769       | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C15-C28                           | S15-JI18769       | NCP          | mg/kg | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| TRH C29-C36                           | S15-JI18769       | NCP          | mg/kg | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| Duplicate                             |                   |              |       |          |          |     |                      |                |                    |
| втех                                  |                   |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Benzene                               | S15-JI17539       | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Toluene                               | S15-JI17539       | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Ethylbenzene                          | S15-JI17539       | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| m&p-Xylenes                           | S15-JI17539       | NCP          | mg/kg | < 0.2    | < 0.2    | <1  | 30%                  | Pass           |                    |
| o-Xylene                              | S15-JI17539       | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Xylenes - Total                       | S15-JI17539       | NCP          | mg/kg | < 0.3    | < 0.3    | <1  | 30%                  | Pass           |                    |
| Duplicate                             |                   |              |       | 1        |          |     |                      |                |                    |
| <b>Total Recoverable Hydrocarbons</b> | - 2013 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Naphthalene                           | S15-JI17539       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| TRH C6-C10                            | S15-JI17539       | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C6-C10 less BTEX (F1)             | S15-JI17539       | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| Duplicate                             |                   |              |       | I        |          |     | 1                    | 1              |                    |
| Polycyclic Aromatic Hydrocarbon       | S                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Acenaphthene                          | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Acenaphthylene                        | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene                            | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benz(a)anthracene                     | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene                        | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(b&j)fluoranthene                | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(g.h.i)perylene                  | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(k)fluoranthene                  | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Chrysene                              | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Dibenz(a.h)anthracene                 | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluoranthene                          | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluorene                              | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Naphthalene                           | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Phenanthrene                          | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Pyrene                                | S15-JI18772       | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Duplicate                             |                   |              |       |          |          |     |                      | 1              |                    |
| Organochlorine Pesticides             | 0.17. 1100070     |              | "     | Result 1 | Result 2 | RPD |                      |                |                    |
| Chlordanes - Total                    | S15-JI20952       | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| 4.4'-DDD                              | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| 4.4'-DDE                              | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| 4.4'-DDT                              | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| a-BHC                                 | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Aldrin                                | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| b-BHC                                 | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| d-BHC                                 | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Dieldrin<br>Factoriulten I            | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endosulfan I                          | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endosulfan II                         | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endosulfan sulphate                   | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endrin<br>Exatria statebook           | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endrin aldehyde                       | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endrin ketone                         | S15-JI20952       | NCP          | mg/kg | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |



|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D. // D                                                                                 | 0.00                                                                                                                               |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>0</b> / <b>1</b> /1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                | +                                                                                                                              |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
| S15-JI20952                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 1                                                                                     | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>D 1 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                                                                                    | [                                                                                                                                              |                                                                                                                                |                                                                                                                                                          |
| <i>'</i>                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    | 0.00/                                                                                                                                          |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                | + +                                                                                                                            |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
| S15-JI18174                                             | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            |                                                                                                                                |                                                                                                                                                          |
| S15-JI18174                                             | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            |                                                                                                                                |                                                                                                                                                          |
| S15-JI18174                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            |                                                                                                                                |                                                                                                                                                          |
| S15-JI18174                                             | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            |                                                                                                                                |                                                                                                                                                          |
| S15-JI18645                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18174                                             | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18174                                             | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18645                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10                                                                                    | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18645                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18174                                             | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18645                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18645                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18174                                             | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18645                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
| 2013 NEPM Fract                                         | ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result 2                                                                                | RPD                                                                                                                                |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
| S15-JI18769                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 50                                                                                    | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18769                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 100                                                                                   | <1                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18769                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 100                                                                                   | <1                                                                                                                                 |                                                                                                                                                | Pass                                                                                                                           |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result 2                                                                                | RPD                                                                                                                                |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
| S15-My20808                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                                                    | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result 2                                                                                | RPD                                                                                                                                |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
| S15-JI16947                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.1                                                                                     | 7.0                                                                                                                                | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
|                                                         | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                | 1 1                                                                                                                            |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                | 1 1                                                                                                                            |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
| S15-JI16947                                             | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                     | 28                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
|                                                         | NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                     | 20                                                                                                                                 | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI16947                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    | 0070                                                                                                                                           |                                                                                                                                |                                                                                                                                                          |
| S15-JI16947                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
| S15-JI16947                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result 2                                                                                | RPD                                                                                                                                |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ma/ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result 2                                                                                | RPD<br><1                                                                                                                          | 30%                                                                                                                                            | Pase                                                                                                                           |                                                                                                                                                          |
| S15-JI16947<br>S15-JI18175                              | СР                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result 1<br>< 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result 2<br>< 10                                                                        | RPD<br><1                                                                                                                          | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
|                                                         | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg<br>uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                                                                                    | 30%                                                                                                                                            | Pass                                                                                                                           |                                                                                                                                                          |
| S15-JI18175                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 10                                                                                    | <1                                                                                                                                 |                                                                                                                                                |                                                                                                                                |                                                                                                                                                          |
|                                                         | S15-JI18174<br>S15-JI18174<br>S15-JI18174<br>S15-JI18645<br>S15-JI18645<br>S15-JI18645<br>S15-JI18645<br>S15-JI18645<br>S15-JI18645<br>S15-JI18645<br>S15-JI18645<br>S15-JI1874<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18769<br>S15-JI18947<br>S15-JI16947<br>S15-JI16947<br>S15-JI16947<br>S15-JI16947 | S15-JI20952         NCP           S15-JI180952         NCP           S15-JI20952         NCP           S15-JI18174         CP           S15-JI18645         NCP           S15-JI18174         CP           S15-JI18645         NCP           S15-JI18645         NCP | S15-JI20952         NCP         mg/kg           S15-JI18174         CP         mg/kg           S15-JI18645         NCP         mg/kg           S15-JI18645         NCP         mg/kg           S15-JI18645         NCP         mg/kg           S15-JI18174         CP         mg/kg           S15-JI18645         NCP         mg/kg           S15-JI18645         NCP         mg/kg           S15-JI1864 | S15-JI20952         NCP $mg/kg$ < 0.05           S15-JI20952         NCP $mg/kg$ < 0.05 | S15-JI20952         NCP         mg/kg         < 0.05         < 0.05           S15-JI20952         NCP         mg/kg         < 0.05 | S15-JI20952         NCP         mg/kg         < 0.05         < 0.05         < 1           S15-JI20952         NCP         mg/kg         < 0.05 | S15-JI20962         NCP $mg/kg$ < 0.05         < 0.05         < 1         30%           S15-JI20952         NCP $mg/kg$ < 0.05 | S15-JI20952         NCP         mg/kg         < 0.05         < 1         30%         Pass           S15-JI20952         NCP         mg/kg         < 0.05 |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### **Qualifier Codes/Comments**

Code Description

| N01 | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Where we have reported both valatile (DRT COMC) and conjugatile (COMC) pendatalene data require new paths identical. Dravided correct comple bandling protocols bey                                  |

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

- F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
- Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to N07 the total of the two co-eluting PAHs

#### Authorised By

| Charl Du Preez  | Analytical Services Manager    |
|-----------------|--------------------------------|
| Bob Symons      | Senior Analyst-Asbestos (NSW)  |
| Bob Symons      | Senior Analyst-Inorganic (NSW) |
| Emily Rosenberg | Senior Analyst-Metal (VIC)     |
| Huong Le        | Senior Analyst-Inorganic (VIC) |
| Ivan Taylor     | Senior Analyst-Metal (NSW)     |
| Ryan Hamilton   | Senior Analyst-Organic (NSW)   |
| Ryan Hamilton   | Senior Analyst-Volatile (NSW)  |
|                 |                                |

Glenn Jackson National Laboratory Manager Final report - this Report replaces any previously issued Report

- . . . . .
- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



## t

## Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067





Attention:

Matthew Locke

Report Project name Project ID Received Date 466918-S MSB UNSW GEOTLCOV24080AS Jul 30, 2015

| Client Sample ID                                  |           |       | BH04 7.0-7.5 | BH01 8.5-8.95 | BH02 0.1-0.2 | BH02 5.5-5.95 |
|---------------------------------------------------|-----------|-------|--------------|---------------|--------------|---------------|
| Sample Matrix                                     |           |       | Soil         | Soil          | Soil         | Soil          |
| Eurofins   mgt Sample No.                         |           |       | S15-JI25721  | S15-JI25723   | S15-JI25725  | S15-JI25726   |
| Date Sampled                                      |           |       | Jul 17, 2015 | Jul 22, 2015  | Jul 21, 2015 | Jul 21, 2015  |
| Test/Reference                                    | LOR       | Unit  |              |               |              |               |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |       |              |               |              |               |
| TRH C6-C9                                         | 20        | mg/kg | < 20         | < 20          | < 20         | < 20          |
| TRH C10-C14                                       | 20        | mg/kg | < 20         | < 20          | < 20         | < 20          |
| TRH C15-C28                                       | 50        | mg/kg | < 50         | < 50          | < 50         | < 50          |
| TRH C29-C36                                       | 50        | mg/kg | < 50         | < 50          | < 50         | < 50          |
| TRH C10-36 (Total)                                | 50        | mg/kg | < 50         | < 50          | < 50         | < 50          |
| BTEX                                              |           |       |              |               |              |               |
| Benzene                                           | 0.1       | mg/kg | < 0.1        | < 0.1         | < 0.1        | < 0.1         |
| Toluene                                           | 0.1       | mg/kg | < 0.1        | < 0.1         | < 0.1        | < 0.1         |
| Ethylbenzene                                      | 0.1       | mg/kg | < 0.1        | < 0.1         | < 0.1        | < 0.1         |
| m&p-Xylenes                                       | 0.2       | mg/kg | < 0.2        | < 0.2         | < 0.2        | < 0.2         |
| o-Xylene                                          | 0.1       | mg/kg | < 0.1        | < 0.1         | < 0.1        | < 0.1         |
| Xylenes - Total                                   | 0.3       | mg/kg | < 0.3        | < 0.3         | < 0.3        | < 0.3         |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | 104          | 74            | 73           | 85            |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |       |              |               |              |               |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| TRH C6-C10                                        | 20        | mg/kg | < 20         | < 20          | < 20         | < 20          |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20        | mg/kg | < 20         | < 20          | < 20         | < 20          |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | < 50         | < 50          | < 50         | < 50          |
| Polycyclic Aromatic Hydrocarbons                  | ·         |       |              |               |              |               |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5       | mg/kg | 0.6          | 0.6           | 0.6          | 0.6           |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5       | mg/kg | 1.2          | 1.2           | 1.2          | 1.2           |
| Acenaphthene                                      | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Acenaphthylene                                    | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Anthracene                                        | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Benz(a)anthracene                                 | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Benzo(a)pyrene                                    | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Benzo(g.h.i)perylene                              | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Benzo(k)fluoranthene                              | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Chrysene                                          | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Dibenz(a.h)anthracene                             | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Fluoranthene                                      | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Fluorene                                          | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Indeno(1.2.3-cd)pyrene                            | 0.5       | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |



| Client Sample ID                 |      |       | BH04 7.0-7.5 | BH01 8.5-8.95 | BH02 0.1-0.2 | BH02 5.5-5.95 |
|----------------------------------|------|-------|--------------|---------------|--------------|---------------|
| Sample Matrix                    |      |       | Soil         | Soil          | Soil         | Soil          |
|                                  |      |       |              |               |              |               |
| Eurofins   mgt Sample No.        |      |       | S15-JI25721  | S15-JI25723   | S15-JI25725  | S15-JI25726   |
| Date Sampled                     |      |       | Jul 17, 2015 | Jul 22, 2015  | Jul 21, 2015 | Jul 21, 2015  |
| Test/Reference                   | LOR  | Unit  |              |               |              |               |
| Polycyclic Aromatic Hydrocarbons |      |       |              |               |              |               |
| Naphthalene                      | 0.5  | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Phenanthrene                     | 0.5  | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Pyrene                           | 0.5  | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| Total PAH*                       | 0.5  | mg/kg | < 0.5        | < 0.5         | < 0.5        | < 0.5         |
| 2-Fluorobiphenyl (surr.)         | 1    | %     | 106          | 119           | 115          | 108           |
| p-Terphenyl-d14 (surr.)          | 1    | %     | 110          | 121           | 117          | 105           |
| Organochlorine Pesticides        |      |       |              |               |              |               |
| Chlordanes - Total               | 0.1  | mg/kg | -            | -             | < 0.1        | -             |
| 4.4'-DDD                         | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| 4.4'-DDE                         | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| 4.4'-DDT                         | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| a-BHC                            | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Aldrin                           | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| b-BHC                            | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| d-BHC                            | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Dieldrin                         | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Endosulfan I                     | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Endosulfan II                    | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Endosulfan sulphate              | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Endrin                           | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Endrin aldehyde                  | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Endrin ketone                    | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| g-BHC (Lindane)                  | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Heptachlor                       | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Heptachlor epoxide               | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Hexachlorobenzene                | 0.05 | mg/kg | -            | -             | < 0.05       | -             |
| Methoxychlor                     | 0.2  | mg/kg | -            | -             | < 0.2        | -             |
| Toxaphene                        | 1    | mg/kg | -            | -             | < 1          | -             |
| Dibutylchlorendate (surr.)       | 1    | %     | -            | -             | 81           | -             |
| Tetrachloro-m-xylene (surr.)     | 1    | %     | -            | -             | 86           | -             |
| Organophosphorus Pesticides (OP) |      |       |              |               |              |               |
| Chlorpyrifos                     | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Coumaphos                        | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Demeton (total)                  | 1    | mg/kg | -            | -             | < 1          | -             |
| Diazinon                         | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Dichlorvos                       | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Dimethoate                       | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Disulfoton                       | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Ethoprop                         | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Fenitrothion                     | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Fensulfothion                    | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Fenthion                         | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Methyl azinphos                  | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Malathion                        | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Methyl parathion                 | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Mevinphos                        | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Monocrotophos                    | 10   | mg/kg | -            | -             | < 10         | -             |
| Parathion                        | 0.5  | mg/kg | -            | -             | < 0.5        | -             |
| Phorate                          | 0.5  | mg/kg | -            | -             | < 0.5        | -             |



| Client Sample ID                           |           |          | BH04 7.0-7.5 | BH01 8.5-8.95 | BH02 0.1-0.2 | BH02 5.5-5.95 |
|--------------------------------------------|-----------|----------|--------------|---------------|--------------|---------------|
| Sample Matrix                              |           |          | Soil         | Soil          | Soil         | Soil          |
| Eurofins   mgt Sample No.                  |           |          | S15-JI25721  | S15-JI25723   | S15-JI25725  | S15-JI25726   |
| Date Sampled                               |           |          | Jul 17, 2015 | Jul 22, 2015  | Jul 21, 2015 | Jul 21, 2015  |
| Test/Reference                             | LOR       | Unit     |              |               |              |               |
| Organophosphorus Pesticides (OP)           | ŀ         | -        |              |               |              |               |
| Profenofos                                 | 0.5       | mg/kg    | -            | -             | < 0.5        | -             |
| Prothiofos                                 | 0.5       | mg/kg    | -            | -             | < 0.5        | -             |
| Ronnel                                     | 0.5       | mg/kg    | -            | -             | < 0.5        | -             |
| Stirophos                                  | 0.5       | mg/kg    | -            | -             | < 0.5        | -             |
| Trichloronate                              | 0.5       | mg/kg    | -            | -             | < 0.5        | -             |
| Triphenylphosphate (surr.)                 | 1         | %        | -            | -             | 69           | -             |
| Total Recoverable Hydrocarbons - 2013 NEPM | Fractions |          |              |               |              |               |
| TRH >C10-C16                               | 50        | mg/kg    | < 50         | < 50          | < 50         | < 50          |
| TRH >C16-C34                               | 100       | mg/kg    | < 100        | < 100         | < 100        | < 100         |
| TRH >C34-C40                               | 100       | mg/kg    | < 100        | < 100         | < 100        | < 100         |
|                                            |           |          |              |               |              |               |
| Chloride                                   | 10        | mg/kg    | -            | < 10          | -            | 11            |
| Conductivity (1:5 aqueous extract at 25°C) | 10        | uS/cm    | -            | 10            | -            | 16            |
| Organic Matter %                           | 0.01      | % w/w    | -            | 0.20          | -            | 0.30          |
| pH (1:5 Aqueous extract)                   | 0.1       | pH Units | -            | 7.0           | -            | 6.8           |
| Sulphate (as SO4)                          | 10        | mg/kg    | -            | < 10          | -            | < 10          |
| % Moisture                                 | 0.1       | %        | 16           | 14            | 5.6          | 16            |
| Ion Exchange Properties                    |           |          |              |               |              |               |
| Cation Exchange Capacity                   | 0.05      | meq/100g | -            | 6.2           | -            | 8.4           |
| Heavy Metals                               |           |          |              |               |              |               |
| Arsenic                                    | 2         | mg/kg    | < 2          | < 2           | < 2          | < 2           |
| Cadmium                                    | 0.4       | mg/kg    | < 0.4        | < 0.4         | < 0.4        | < 0.4         |
| Chromium                                   | 5         | mg/kg    | < 5          | < 5           | 27           | < 5           |
| Copper                                     | 5         | mg/kg    | < 5          | < 5           | 74           | < 5           |
| Lead                                       | 5         | mg/kg    | < 5          | < 5           | < 5          | < 5           |
| Mercury                                    | 0.05      | mg/kg    | < 0.05       | < 0.05        | < 0.05       | < 0.05        |
| Nickel                                     | 5         | mg/kg    | < 5          | < 5           | 160          | < 5           |
| Zinc                                       | 5         | mg/kg    | < 5          | 15            | 70           | < 5           |

| Client Sample ID<br>Sample Matrix                |      |       | BH01 0.1-0.2<br>Soil | BH02 0.5-0.6<br>Soil | BH04 0.2-0.3<br>Soil | BH06 0.1-0.2<br>Soil |
|--------------------------------------------------|------|-------|----------------------|----------------------|----------------------|----------------------|
| Eurofins   mgt Sample No.                        |      |       | S15-JI25729          | S15-JI25732          | S15-JI25734          | S15-JI25735          |
| Date Sampled                                     |      |       | Jul 22, 2015         | Jul 21, 2015         | Jul 17, 2015         | Jul 21, 2015         |
| Test/Reference                                   | LOR  | Unit  |                      |                      |                      |                      |
| Total Recoverable Hydrocarbons - 1999 NEPM Fract | ions |       |                      |                      |                      |                      |
| TRH C6-C9                                        | 20   | mg/kg | < 20                 | < 20                 | < 20                 | < 20                 |
| TRH C10-C14                                      | 20   | mg/kg | < 20                 | < 20                 | < 20                 | 41                   |
| TRH C15-C28                                      | 50   | mg/kg | < 50                 | < 50                 | < 50                 | < 50                 |
| TRH C29-C36                                      | 50   | mg/kg | < 50                 | < 50                 | < 50                 | < 50                 |
| TRH C10-36 (Total)                               | 50   | mg/kg | < 50                 | < 50                 | < 50                 | < 50                 |
| BTEX                                             |      |       |                      |                      |                      |                      |
| Benzene                                          | 0.1  | mg/kg | < 0.1                | < 0.1                | < 0.1                | < 0.1                |
| Toluene                                          | 0.1  | mg/kg | < 0.1                | < 0.1                | < 0.1                | < 0.1                |
| Ethylbenzene                                     | 0.1  | mg/kg | < 0.1                | < 0.1                | < 0.1                | < 0.1                |
| m&p-Xylenes                                      | 0.2  | mg/kg | < 0.2                | < 0.2                | < 0.2                | < 0.2                |
| o-Xylene                                         | 0.1  | mg/kg | < 0.1                | < 0.1                | < 0.1                | < 0.1                |
| Xylenes - Total                                  | 0.3  | mg/kg | < 0.3                | < 0.3                | < 0.3                | < 0.3                |
| 4-Bromofluorobenzene (surr.)                     | 1    | %     | 88                   | 105                  | 129                  | 91                   |



| Client Sample ID                                  |      |                | BH01 0.1-0.2     | BH02 0.5-0.6 | BH04 0.2-0.3 | BH06 0.1-0.2 |
|---------------------------------------------------|------|----------------|------------------|--------------|--------------|--------------|
| Sample Matrix                                     |      |                | Soil             | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.                         |      |                | S15-JI25729      | S15-JI25732  | S15-JI25734  | S15-JI25735  |
|                                                   |      |                |                  |              | Jul 17, 2015 |              |
| Date Sampled                                      | 1.05 |                | Jul 22, 2015     | Jul 21, 2015 | Jul 17, 2015 | Jul 21, 2015 |
| Test/Reference                                    | LOR  | Unit           |                  |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fi     |      |                |                  |              |              |              |
| Naphthalene <sup>N02</sup>                        | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| TRH C6-C10                                        | 20   | mg/kg          | < 20             | < 20         | < 20         | < 20         |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20   | mg/kg          | < 20             | < 20         | < 20         | < 20         |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50   | mg/kg          | < 50             | < 50         | < 50         | < 50         |
| Polycyclic Aromatic Hydrocarbons                  |      |                |                  |              |              |              |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5  | mg/kg          | 0.6              | 0.6          | 0.6          | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5  | mg/kg          | 1.2              | 1.2          | 1.2          | 1.2          |
| Acenaphthene                                      | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Acenaphthylene                                    | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Anthracene                                        | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benz(a)anthracene                                 | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene                                    | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                              | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                              | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Chrysene                                          | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                             | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Fluoranthene                                      | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Fluorene                                          | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                            | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Naphthalene                                       | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Phenanthrene                                      | 0.5  | mg/kg          | < 0.5            | < 0.5        | < 0.5        | < 0.5        |
| Pyrene Total PAH*                                 | 0.5  | mg/kg          | < 0.5<br>< 0.5   | < 0.5        | < 0.5        | < 0.5        |
| 2-Fluorobiphenyl (surr.)                          | 0.5  | mg/kg<br>%     | < 0.5<br>104     | < 0.5<br>115 | < 0.5        | < 0.5<br>113 |
|                                                   | 1    | %              | 104              | 118          | 114          | 115          |
| p-Terphenyl-d14 (surr.) Organochlorine Pesticides |      | 70             | 102              | 110          | 110          | 115          |
|                                                   | 0.4  |                | . 0.4            |              |              |              |
| Chlordanes - Total                                | 0.1  | mg/kg          | < 0.1            | -            | -            | -            |
| 4.4'-DDD                                          | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| 4.4'-DDE                                          | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| 4.4'-DDT<br>a-BHC                                 | 0.05 | mg/kg<br>mg/kg | < 0.05<br>< 0.05 | -            | -            | -            |
| Aldrin                                            | 0.05 | mg/kg          | < 0.05           | -            |              |              |
| b-BHC                                             | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| d-BHC                                             | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Dieldrin                                          | 0.05 | mg/kg          | < 0.05           | -            | -            |              |
| Endosulfan I                                      | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Endosulfan II                                     | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Endosulfan sulphate                               | 0.05 | mg/kg          | < 0.05           | _            | -            |              |
| Endrin                                            | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Endrin aldehyde                                   | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Endrin ketone                                     | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| g-BHC (Lindane)                                   | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Heptachlor                                        | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Heptachlor epoxide                                | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Hexachlorobenzene                                 | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Methoxychlor                                      | 0.05 | mg/kg          | < 0.05           | -            | -            | -            |
| Toxaphene                                         | 1    | mg/kg          | < 0.2            | -            |              | -            |



| Client Sample ID                                           |              |                | BH01 0.1-0.2   | BH02 0.5-0.6 | BH04 0.2-0.3 | BH06 0.1-0.2 |
|------------------------------------------------------------|--------------|----------------|----------------|--------------|--------------|--------------|
| Sample Matrix                                              |              |                | Soil           | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.                                  |              |                | S15-JI25729    | S15-JI25732  | S15-JI25734  | S15-JI25735  |
| Date Sampled                                               |              |                | Jul 22, 2015   | Jul 21, 2015 | Jul 17, 2015 | Jul 21, 2015 |
| Test/Reference                                             | LOR          | Linit          | 501 22, 2015   | 50121, 2015  | 501 17, 2015 | 50121, 2015  |
| Organochlorine Pesticides                                  | LUK          | Unit           |                |              |              |              |
|                                                            | 4            | %              | 70             |              |              |              |
| Dibutylchlorendate (surr.)<br>Tetrachloro-m-xylene (surr.) | 1            | %              | 88             | -            | -            | -            |
| Organophosphorus Pesticides (OP)                           |              | 70             | 00             | -            | -            | -            |
|                                                            | 0.5          |                | .0.5           |              |              |              |
| Chlorpyrifos<br>Coumaphos                                  | 0.5          | mg/kg          | < 0.5<br>< 0.5 | -            | -            | -            |
| Demeton (total)                                            | 1            | mg/kg          | < 0.5          | -            | -            |              |
| Diazinon                                                   | 0.5          | mg/kg<br>mg/kg | < 0.5          | -            | -            |              |
| Dichlorvos                                                 | 0.5          | mg/kg          | < 0.5          | -            | -            |              |
| Dimethoate                                                 | 0.5          | mg/kg          | < 0.5          | -            | -            |              |
| Disulfoton                                                 | 0.5          | mg/kg          | < 0.5          | -            | -            |              |
| Ethoprop                                                   | 0.5          | mg/kg          | < 0.5          | -            | -            |              |
| Fenitrothion                                               | 0.5          | mg/kg          | < 0.5          | -            |              |              |
| Fensulfothion                                              | 0.5          | mg/kg          | < 0.5          | -            | -            |              |
| Fenthion                                                   | 0.5          | mg/kg          | < 0.5          | -            | -            | _            |
| Methyl azinphos                                            | 0.5          | mg/kg          | < 0.5          | -            | -            | _            |
| Malathion                                                  | 0.5          | mg/kg          | < 0.5          | -            | -            | _            |
| Methyl parathion                                           | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Mevinphos                                                  | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Monocrotophos                                              | 10           | mg/kg          | < 10           | -            | -            | -            |
| Parathion                                                  | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Phorate                                                    | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Profenofos                                                 | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Prothiofos                                                 | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Ronnel                                                     | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Stirophos                                                  | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Trichloronate                                              | 0.5          | mg/kg          | < 0.5          | -            | -            | -            |
| Triphenylphosphate (surr.)                                 | 1            | %              | 68             | -            | -            | -            |
| Total Recoverable Hydrocarbons - 2013 NE                   | PM Fractions |                |                |              |              |              |
| TRH >C10-C16                                               | 50           | mg/kg          | < 50           | < 50         | < 50         | < 50         |
| TRH >C16-C34                                               | 100          | mg/kg          | < 100          | < 100        | < 100        | < 100        |
| TRH >C34-C40                                               | 100          | mg/kg          | < 100          | < 100        | < 100        | < 100        |
|                                                            | l.           |                |                |              |              |              |
| % Moisture                                                 | 0.1          | %              | 6.0            | 7.2          | 23           | 14           |
| Heavy Metals                                               | ł            | •              |                |              |              |              |
| Aluminium                                                  | 10           | mg/kg          | 36000          | 2600         | 1500         | -            |
| Antimony                                                   | 10           | mg/kg          | < 10           | < 10         | < 10         | -            |
| Arsenic                                                    | 2            | mg/kg          | < 2            | < 2          | < 2          | < 2          |
| Barium                                                     | 10           | mg/kg          | 96             | 17           | < 10         | -            |
| Beryllium                                                  | 2            | mg/kg          | < 2            | < 2          | < 2          | -            |
| Bismuth                                                    | 10           | mg/kg          | < 10           | < 10         | < 10         | -            |
| Boron                                                      | 10           | mg/kg          | < 10           | < 10         | < 10         | -            |
| Cadmium                                                    | 0.4          | mg/kg          | < 0.4          | < 0.4        | < 0.4        | < 0.4        |
| Chromium                                                   | 5            | mg/kg          | 45             | 11           | < 5          | 11           |
| Cobalt                                                     | 5            | mg/kg          | 56             | < 5          | < 5          | -            |
| Copper                                                     | 5            | mg/kg          | 69             | < 5          | 21           | 43           |
| Iron                                                       | 5            | mg/kg          | 68000          | 3900         | 1800         | -            |
| Lead                                                       | 5            | mg/kg          | < 5            | 5.0          | 12           | 7.7          |
| Manganese                                                  | 5            | mg/kg          | 1100           | 73           | 24           | -            |
| Mercury                                                    | 0.05         | mg/kg          | < 0.05         | < 0.05       | 0.25         | 0.15         |



| Client Sample ID          |     |       | BH01 0.1-0.2 | BH02 0.5-0.6 | BH04 0.2-0.3 | BH06 0.1-0.2 |
|---------------------------|-----|-------|--------------|--------------|--------------|--------------|
| Sample Matrix             |     |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No. |     |       | S15-JI25729  | S15-JI25732  | S15-JI25734  | S15-JI25735  |
| Date Sampled              |     |       | Jul 22, 2015 | Jul 21, 2015 | Jul 17, 2015 | Jul 21, 2015 |
| Test/Reference            | LOR | Unit  |              |              |              |              |
| Heavy Metals              |     |       |              |              |              |              |
| Molybdenum                | 5   | mg/kg | < 5          | < 5          | < 5          | -            |
| Nickel                    | 5   | mg/kg | 210          | 5.4          | < 5          | 48           |
| Selenium                  | 2   | mg/kg | < 2          | < 2          | < 2          | -            |
| Silver                    | 5   | mg/kg | < 5          | < 5          | < 5          | -            |
| Thallium                  | 10  | mg/kg | < 10         | < 10         | < 10         | -            |
| Tin                       | 10  | mg/kg | < 10         | < 10         | < 10         | -            |
| Titanium                  | 10  | mg/kg | 2600         | 51           | 93           | -            |
| Uranium                   | 1   | mg/kg | < 1          | < 1          | < 1          | -            |
| Vanadium                  | 10  | mg/kg | 84           | < 10         | < 10         | -            |
| Zinc                      | 5   | mg/kg | 87           | 7.8          | 21           | 36           |
| Alkali Metals             |     |       |              |              |              |              |
| Calcium                   | 1   | mg/kg | 16000        | 750          | 1300         | -            |
| Magnesium                 | 1   | mg/kg | 57000        | 830          | 230          | -            |
| Potassium                 | 1   | mg/kg | 2000         | 110          | 490          | -            |
| Sodium                    | 1   | mg/kg | 12000        | 460          | 690          | -            |
| Extended Metals Suite     |     |       |              |              |              |              |
| Phosphorus                | 10  | mg/kg | 1300         | 59           | 74           | -            |
| Silicon                   | 100 | mg/kg | 1000         | 210          | 120          | -            |
| Sulphur                   | 100 | mg/kg | 620          | 190          | < 100        | -            |

| Client Sample ID                                  |           |       | BH04 1.0     | BH01 0.5-0.6 | BH05 0.5-0.6 | BH05 0.1-0.2 |
|---------------------------------------------------|-----------|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                                     |           |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.                         |           |       | S15-JI25736  | S15-JI25737  | S15-JI25739  | S15-JI25740  |
| Date Sampled                                      |           |       | Jul 17, 2015 | Jul 22, 2015 | Jul 21, 2015 | Jul 21, 2015 |
| Test/Reference                                    | LOR       | Unit  |              |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions |       |              |              |              |              |
| TRH C6-C9                                         | 20        | mg/kg | < 20         | < 20         | < 20         | < 20         |
| TRH C10-C14                                       | 20        | mg/kg | < 20         | < 20         | < 20         | < 20         |
| TRH C15-C28                                       | 50        | mg/kg | < 50         | < 50         | 130          | < 50         |
| TRH C29-C36                                       | 50        | mg/kg | < 50         | < 50         | 140          | < 50         |
| TRH C10-36 (Total)                                | 50        | mg/kg | < 50         | < 50         | 270          | < 50         |
| BTEX                                              |           |       |              |              |              |              |
| Benzene                                           | 0.1       | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1        |
| Toluene                                           | 0.1       | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1        |
| Ethylbenzene                                      | 0.1       | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1        |
| m&p-Xylenes                                       | 0.2       | mg/kg | < 0.2        | < 0.2        | < 0.2        | < 0.2        |
| o-Xylene                                          | 0.1       | mg/kg | < 0.1        | < 0.1        | < 0.1        | < 0.1        |
| Xylenes - Total                                   | 0.3       | mg/kg | < 0.3        | < 0.3        | < 0.3        | < 0.3        |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | 94           | 78           | 109          | 96           |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions | -     |              |              |              |              |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| TRH C6-C10                                        | 20        | mg/kg | < 20         | < 20         | < 20         | < 20         |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20        | mg/kg | < 20         | < 20         | < 20         | < 20         |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | < 50         | < 50         | < 50         | < 50         |



| Client Sample ID                           |           |       | BH04 1.0     | BH01 0.5-0.6 | BH05 0.5-0.6 | BH05 0.1-0.2 |
|--------------------------------------------|-----------|-------|--------------|--------------|--------------|--------------|
| Sample Matrix                              |           |       | Soil         | Soil         | Soil         | Soil         |
| Eurofins   mgt Sample No.                  |           |       | S15-JI25736  | S15-JI25737  | S15-JI25739  | S15-JI25740  |
| Date Sampled                               |           |       | Jul 17, 2015 | Jul 22, 2015 | Jul 21, 2015 | Jul 21, 2015 |
| Test/Reference                             | LOR       | Unit  |              |              |              |              |
| Polycyclic Aromatic Hydrocarbons           |           |       |              |              |              |              |
| Benzo(a)pyrene TEQ (lower bound) *         | 0.5       | mg/kg | < 0.5        | < 0.5        | 8.1          | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *        | 0.5       | mg/kg | 0.6          | 0.6          | 8.1          | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *         | 0.5       | mg/kg | 1.2          | 1.2          | 8.1          | 1.2          |
| Acenaphthene                               | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Acenaphthylene                             | 0.5       | mg/kg | < 0.5        | < 0.5        | 1.3          | < 0.5        |
| Anthracene                                 | 0.5       | mg/kg | < 0.5        | < 0.5        | 2.2          | < 0.5        |
| Benz(a)anthracene                          | 0.5       | mg/kg | < 0.5        | < 0.5        | 6.6          | < 0.5        |
| Benzo(a)pyrene                             | 0.5       | mg/kg | < 0.5        | < 0.5        | 5.2          | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup>      | 0.5       | mg/kg | < 0.5        | < 0.5        | 4.2          | < 0.5        |
| Benzo(g.h.i)perylene                       | 0.5       | mg/kg | < 0.5        | < 0.5        | 2.7          | < 0.5        |
| Benzo(k)fluoranthene                       | 0.5       | mg/kg | < 0.5        | < 0.5        | 4.8          | < 0.5        |
| Chrysene                                   | 0.5       | mg/kg | < 0.5        | < 0.5        | 4.4          | < 0.5        |
| Dibenz(a.h)anthracene                      | 0.5       | mg/kg | < 0.5        | < 0.5        | 1.0          | < 0.5        |
| Fluoranthene                               | 0.5       | mg/kg | < 0.5        | < 0.5        | 15           | < 0.5        |
| Fluorene                                   | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                     | 0.5       | mg/kg | < 0.5        | < 0.5        | 2.4          | < 0.5        |
| Naphthalene                                | 0.5       | mg/kg | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| Phenanthrene                               | 0.5       | mg/kg | < 0.5        | < 0.5        | 10           | < 0.5        |
| Pyrene                                     | 0.5       | mg/kg | < 0.5        | < 0.5        | 12           | < 0.5        |
| Total PAH*                                 | 0.5       | mg/kg | < 0.5        | < 0.5        | 72           | < 0.5        |
| 2-Fluorobiphenyl (surr.)                   | 1         | %     | 102          | 116          | 118          | 116          |
| p-Terphenyl-d14 (surr.)                    | 1         | %     | 105          | 116          | 117          | 119          |
| Total Recoverable Hydrocarbons - 2013 NEPM | Fractions |       |              |              |              |              |
| TRH >C10-C16                               | 50        | mg/kg | < 50         | < 50         | < 50         | < 50         |
| TRH >C16-C34                               | 100       | mg/kg | < 100        | < 100        | 260          | < 100        |
| TRH >C34-C40                               | 100       | mg/kg | < 100        | < 100        | 580          | < 100        |
|                                            |           |       |              |              |              |              |
| % Moisture                                 | 0.1       | %     | 8.3          | 7.7          | 7.8          | 11           |
| Heavy Metals                               |           |       |              |              |              |              |
| Aluminium                                  | 10        | mg/kg | 3900         | 5800         | -            | -            |
| Antimony                                   | 10        | mg/kg | < 10         | < 10         | -            | -            |
| Arsenic                                    | 2         | mg/kg | 2.7          | < 2          | 2.8          | 2.6          |
| Barium                                     | 10        | mg/kg | < 10         | 45           | -            | -            |
| Beryllium                                  | 2         | mg/kg | < 2          | < 2          | -            | -            |
| Bismuth                                    | 10        | mg/kg | < 10         | < 10         | -            | -            |
| Boron                                      | 10        | mg/kg | < 10         | < 10         | -            | -            |
| Cadmium                                    | 0.4       | mg/kg | < 0.4        | < 0.4        | < 0.4        | < 0.4        |
| Chromium                                   | 5         | mg/kg | < 5          | 11           | 5.1          | 17           |
| Cobalt                                     | 5         | mg/kg | < 5          | 7.5          | -            | -            |
| Copper                                     | 5         | mg/kg | < 5          | 25           | 35           | 42           |
| Iron                                       | 5         | mg/kg | 3700         | 14000        | -            | -            |
| Lead                                       | 5         | mg/kg | < 5          | 54           | 150          | 7.8          |
| Manganese                                  | 5         | mg/kg | < 5          | 180          | -            | -            |
| Mercury                                    | 0.05      | mg/kg | < 0.05       | 0.55         | 1.2          | 2.3          |
| Molybdenum                                 | 5         | mg/kg | < 5          | < 5          | -            | -            |
| Nickel                                     | 5         | mg/kg | < 5          | 22           | < 5          | 70           |
| Selenium                                   | 2         | mg/kg | < 2          | < 2          | -            | -            |
| Silver                                     | 5         | mg/kg | < 5          | < 5          | -            | -            |
| Thallium                                   | 10        | mg/kg | < 10         | < 10         | -            | -            |



| Client Sample ID<br>Sample Matrix |     |       | BH04 1.0<br>Soil | BH01 0.5-0.6<br>Soil | BH05 0.5-0.6<br>Soil | BH05 0.1-0.2<br>Soil<br>S15-JI25740<br>Jul 21, 2015 |  |
|-----------------------------------|-----|-------|------------------|----------------------|----------------------|-----------------------------------------------------|--|
| Eurofins   mgt Sample No.         |     |       | S15-JI25736      | S15-JI25737          | S15-JI25739          |                                                     |  |
| Date Sampled                      |     |       | Jul 17, 2015     | Jul 22, 2015         | Jul 21, 2015         |                                                     |  |
| Test/Reference                    | LOR | Unit  |                  |                      |                      |                                                     |  |
| Heavy Metals                      |     |       |                  |                      |                      |                                                     |  |
| Tin                               | 10  | mg/kg | < 10             | < 10                 | -                    | -                                                   |  |
| Titanium                          | 10  | mg/kg | 41               | 650                  | -                    | -                                                   |  |
| Uranium                           | 1   | mg/kg | < 1              | < 1                  | -                    | -                                                   |  |
| Vanadium                          | 10  | mg/kg | 12               | 26                   | -                    | -                                                   |  |
| Zinc                              | 5   | mg/kg | 76               | 40                   | 100                  | 51                                                  |  |
| Alkali Metals                     |     |       |                  |                      |                      |                                                     |  |
| Calcium                           | 1   | mg/kg | 190              | 3700                 | -                    | -                                                   |  |
| Magnesium                         | 1   | mg/kg | 73               | 4300                 | -                    | -                                                   |  |
| Potassium                         | 1   | mg/kg | 62               | 270                  | -                    | -                                                   |  |
| Sodium                            | 1   | mg/kg | 35               | 980                  | -                    | -                                                   |  |
| Extended Metals Suite             |     |       |                  |                      |                      |                                                     |  |
| Phosphorus                        | 10  | mg/kg | 16               | 290                  | -                    | -                                                   |  |
| Silicon                           | 100 | mg/kg | 180              | 390                  | -                    | -                                                   |  |
| Sulphur                           | 100 | mg/kg | < 100            | 160                  | -                    | -                                                   |  |

| Client Sample ID                                  |           |       | BH05 1.0     | BH06 0.5-0.6 |  |  |  |  |
|---------------------------------------------------|-----------|-------|--------------|--------------|--|--|--|--|
| Sample Matrix                                     |           |       | Soil         | Soil         |  |  |  |  |
| Eurofins   mgt Sample No.                         |           |       | S15-JI25741  | S15-JI25742  |  |  |  |  |
| Date Sampled                                      |           |       | Jul 21, 2015 | Jul 21, 2015 |  |  |  |  |
| Test/Reference                                    | LOR       | Unit  |              |              |  |  |  |  |
| Total Recoverable Hydrocarbons - 1999 NEPM        | Fractions | ·     |              |              |  |  |  |  |
| TRH C6-C9                                         | 20        | mg/kg | < 20         | < 20         |  |  |  |  |
| TRH C10-C14                                       | 20        | mg/kg | < 20         | < 20         |  |  |  |  |
| TRH C15-C28                                       | 50        | mg/kg | < 50         | < 50         |  |  |  |  |
| TRH C29-C36                                       | 50        | mg/kg | < 50         | < 50         |  |  |  |  |
| TRH C10-36 (Total)                                | 50        | mg/kg | < 50         | < 50         |  |  |  |  |
| втех                                              |           |       |              |              |  |  |  |  |
| Benzene                                           | 0.1       | mg/kg | < 0.1        | < 0.1        |  |  |  |  |
| Toluene                                           | 0.1       | mg/kg | < 0.1        | < 0.1        |  |  |  |  |
| Ethylbenzene                                      | 0.1       | mg/kg | < 0.1        | < 0.1        |  |  |  |  |
| m&p-Xylenes                                       | 0.2       | mg/kg | < 0.2        | < 0.2        |  |  |  |  |
| o-Xylene                                          | 0.1       | mg/kg | < 0.1        | < 0.1        |  |  |  |  |
| Xylenes - Total                                   | 0.3       | mg/kg | < 0.3        | < 0.3        |  |  |  |  |
| 4-Bromofluorobenzene (surr.)                      | 1         | %     | 77           | 124          |  |  |  |  |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |       |              |              |  |  |  |  |
| Naphthalene <sup>N02</sup>                        | 0.5       | mg/kg | < 0.5        | < 0.5        |  |  |  |  |
| TRH C6-C10                                        | 20        | mg/kg | < 20         | < 20         |  |  |  |  |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20        | mg/kg | < 20         | < 20         |  |  |  |  |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50        | mg/kg | < 50         | < 50         |  |  |  |  |
| Polycyclic Aromatic Hydrocarbons                  |           |       |              |              |  |  |  |  |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5       | mg/kg | < 0.5        | < 0.5        |  |  |  |  |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5       | mg/kg | 0.6          | 0.6          |  |  |  |  |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5       | mg/kg | 1.2          | 1.2          |  |  |  |  |
| Acenaphthene                                      | 0.5       | mg/kg | < 0.5        | < 0.5        |  |  |  |  |
| Acenaphthylene                                    | 0.5       | mg/kg | < 0.5        | < 0.5        |  |  |  |  |
| Anthracene                                        | 0.5       | mg/kg | < 0.5        | < 0.5        |  |  |  |  |
| Benz(a)anthracene                                 | 0.5       | mg/kg | < 0.5        | < 0.5        |  |  |  |  |



| Client Sample ID                          |             |       | BH05 1.0     | BH06 0.5-0.6 |
|-------------------------------------------|-------------|-------|--------------|--------------|
| Sample Matrix                             |             |       | Soil         | Soil         |
| Eurofins   mgt Sample No.                 |             |       | S15-JI25741  | S15-JI25742  |
| Date Sampled                              |             |       | Jul 21, 2015 | Jul 21, 2015 |
| Test/Reference                            | LOR         | Unit  |              |              |
| Polycyclic Aromatic Hydrocarbons          |             |       |              |              |
| Benzo(a)pyrene                            | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup>     | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Benzo(g.h.i)perylene                      | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Benzo(k)fluoranthene                      | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Chrysene                                  | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Dibenz(a.h)anthracene                     | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Fluoranthene                              | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Fluorene                                  | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Indeno(1.2.3-cd)pyrene                    | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Naphthalene                               | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Phenanthrene                              | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Pyrene                                    | 0.5         | mg/kg | < 0.5        | < 0.5        |
| Total PAH*                                | 0.5         | mg/kg | < 0.5        | < 0.5        |
| 2-Fluorobiphenyl (surr.)                  | 1           | %     | 92           | 128          |
| p-Terphenyl-d14 (surr.)                   | 1           | %     | 98           | 97           |
| Total Recoverable Hydrocarbons - 2013 NEP | M Fractions |       |              |              |
| TRH >C10-C16                              | 50          | mg/kg | < 50         | < 50         |
| TRH >C16-C34                              | 100         | mg/kg | < 100        | < 100        |
| TRH >C34-C40                              | 100         | mg/kg | < 100        | < 100        |
|                                           |             |       |              |              |
| % Moisture                                | 0.1         | %     | 1.2          | 7.0          |
| Heavy Metals                              |             | _     |              |              |
| Arsenic                                   | 2           | mg/kg | < 2          | 2.4          |
| Cadmium                                   | 0.4         | mg/kg | < 0.4        | < 0.4        |
| Chromium                                  | 5           | mg/kg | < 5          | < 5          |
| Copper                                    | 5           | mg/kg | 8.7          | < 5          |
| Lead                                      | 5           | mg/kg | 28           | 7.8          |
| Mercury                                   | 0.05        | mg/kg | 0.20         | 0.23         |
| Nickel                                    | 5           | mg/kg | < 5          | < 5          |
| Zinc                                      | 5           | mg/kg | 14           | 17           |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                                          | Testing Site | Extracted    | Holding Time |
|--------------------------------------------------------------------------------------|--------------|--------------|--------------|
| Eurofins   mgt Suite B4                                                              |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                                 | Sydney       | Jul 31, 2015 | 14 Day       |
| - Method: TRH C6-C36 - LTM-ORG-2010                                                  |              |              |              |
| BTEX                                                                                 | Sydney       | Jul 30, 2015 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                                                  |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                                 | Sydney       | Jul 30, 2015 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                                                  |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                                     | Sydney       | Jul 31, 2015 | 14 Day       |
| - Method: E007 Polyaromatic Hydrocarbons (PAH)                                       |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                                 | Sydney       | Jul 31, 2015 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                                                  |              |              |              |
| Eurofins   mgt Suite B14                                                             |              |              |              |
| Organochlorine Pesticides                                                            | Sydney       | Jul 31, 2015 | 14 Day       |
| - Method: E013 Organochlorine Pesticides (OC)                                        |              |              |              |
| Organophosphorus Pesticides (OP)                                                     | Sydney       | Jul 31, 2015 | 14 Day       |
| - Method: E014 Organophosphorus Pesticides (OP)                                      |              |              |              |
| Eurofins   mgt Suite B18                                                             |              |              |              |
| Chloride                                                                             | Sydney       | Jul 31, 2015 | 28 Day       |
| - Method: E033 /E045 /E047 Chloride                                                  |              |              |              |
| pH (1:5 Aqueous extract)                                                             | Sydney       | Jul 31, 2015 | 7 Day        |
| - Method: LTM-GEN-7090 pH in soil by ISE                                             |              |              |              |
| Sulphate (as SO4)                                                                    | Sydney       | Jul 31, 2015 | 28 Day       |
| - Method: E045 Sulphate                                                              |              |              |              |
| Conductivity (1:5 aqueous extract at 25°C)                                           | Melbourne    | Aug 03, 2015 | 7 Day        |
| - Method: LM-LTM-INO-4030                                                            |              |              |              |
| Ion Exchange Properties                                                              | Melbourne    | Aug 03, 2015 |              |
| Organic Matter %                                                                     | Melbourne    | Aug 05, 2015 | 5 Day        |
| - Method: APHA 2540E Fixed and Volatile Solids Ignited at 550C                       |              |              |              |
| Extended Metals Suite                                                                | Sydney       | Jul 30, 2015 | 28 Day       |
| - Method: E022 Acid Extractable metals in Soils & E026 Mercury & E022/E030 Cations   |              |              |              |
| Metals M8                                                                            | Sydney       | Jul 30, 2015 | 28 Day       |
| - Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS |              |              |              |
| % Moisture                                                                           | Sydney       | Jul 30, 2015 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                                                      |              |              |              |

- Method: LTM-GEN-7080 Moisture



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| r                                                                                                                                                                     |                                        |          |                  |        |                            |                                           |                  |           |                                              |                       |                          |              |                          |                                                                                       |   |                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|------------------|--------|----------------------------|-------------------------------------------|------------------|-----------|----------------------------------------------|-----------------------|--------------------------|--------------|--------------------------|---------------------------------------------------------------------------------------|---|-----------------------------------------------|
| Company Name:       Coffey Geotechnics Pty Ltd Chatswood         Address:       Level 18, Tower B, Citadel Tower 799 Pacific Highway         Chatswood       NSW 2067 |                                        |          |                  |        |                            | Order No.:<br>Report #:<br>Phone:<br>Fax: |                  |           | 466918<br>+61 2 9406 1000<br>+61 2 9406 1002 |                       |                          |              |                          | Received:Jul 30, 2015 11:32 AMDue:Aug 6, 2015Priority:5 DayContact Name:Matthew Locke |   |                                               |
| Project Name:MSB UNSWProject ID:GEOTLCOV24080AS                                                                                                                       |                                        |          |                  |        |                            |                                           |                  |           |                                              |                       |                          |              |                          |                                                                                       |   |                                               |
|                                                                                                                                                                       |                                        |          |                  |        |                            |                                           |                  |           |                                              |                       |                          |              |                          |                                                                                       |   | Eurofins   mgt Client Manager: Charl Du Preez |
| Sample Detail                                                                                                                                                         |                                        |          |                  |        | Asbestos Absence /Presence | HOLD                                      | Organic Matter % | Metals M8 | Eurofins   mgt Suite B18                     | Extended Metals Suite | Eurofins   mgt Suite B14 | Moisture Set | Cation Exchange Capacity | Eurofins   mgt Suite B4                                                               |   |                                               |
|                                                                                                                                                                       | Laboratory where analysis is conducted |          |                  |        |                            |                                           | <u> </u>         |           | ļ'                                           |                       |                          |              |                          |                                                                                       |   |                                               |
| Melbourne Lab                                                                                                                                                         |                                        |          |                  | 271    |                            |                                           |                  | Х         |                                              | <u> </u>              |                          |              |                          | Х                                                                                     |   | _                                             |
| Sydney Labora                                                                                                                                                         |                                        |          |                  |        |                            | Х                                         | Х                | _         | Х                                            | Х                     | Х                        | Х            | Х                        | Х                                                                                     | Х |                                               |
| Brisbane Labo                                                                                                                                                         |                                        | ATA Site | # 20794          |        |                            |                                           |                  | —         |                                              | <u> </u> '            |                          |              |                          |                                                                                       |   | _                                             |
| External Labor                                                                                                                                                        |                                        | Data     | Comulian         | Matrix |                            |                                           |                  | <u> </u>  |                                              | <u> </u> '            |                          |              |                          |                                                                                       |   | _                                             |
| Sample ID                                                                                                                                                             | Sample                                 | Date     | Sampling<br>Time | Matrix | LAB ID                     |                                           |                  |           |                                              |                       |                          |              |                          |                                                                                       |   |                                               |
| BH04 7.0-7.5                                                                                                                                                          | Jul 17, 20                             | 15       |                  | Soil   | S15-JI25721                |                                           |                  |           | Х                                            |                       |                          |              | Х                        |                                                                                       | Х | <u>&lt;</u>                                   |
| BH04 2.5-2.95                                                                                                                                                         | Jul 17, 20                             |          |                  | Soil   | S15-JI25722                |                                           | Х                | $\vdash$  |                                              | ļ'                    |                          |              |                          |                                                                                       |   |                                               |
| BH01 8.5-8.95                                                                                                                                                         | Jul 22, 20                             | 15       |                  | Soil   | S15-JI25723                |                                           |                  | Х         | Х                                            | Х                     |                          |              | Х                        | Х                                                                                     | Х |                                               |
| BH01 1.0-1.45                                                                                                                                                         | Jul 22, 20                             | 15       |                  | Soil   | S15-JI25724                |                                           | Х                | $\vdash$  |                                              | ļ'                    |                          |              |                          |                                                                                       |   |                                               |
| BH02 0.1-0.2                                                                                                                                                          | Jul 21, 20                             | 15       |                  | Soil   | S15-JI25725                | Х                                         |                  | _         | Х                                            | ļ'                    |                          | Х            | Х                        |                                                                                       | X |                                               |
| BH02 5.5-5.95                                                                                                                                                         | Jul 21, 20                             | 15       |                  | Soil   | S15-JI25726                |                                           |                  | X         | Х                                            | Х                     |                          |              | Х                        | Х                                                                                     | X |                                               |
| BH02 2.5-2.95                                                                                                                                                         | Jul 21, 20                             | 15       |                  | Soil   | S15-JI25727                |                                           | Х                | _         |                                              | ļ'                    |                          |              |                          |                                                                                       |   |                                               |
| BH01 2.5-2.95                                                                                                                                                         | Jul 22, 20                             |          |                  | Soil   | S15-JI25728                |                                           | X                | _         |                                              | ļ'                    |                          |              |                          |                                                                                       |   | _                                             |
| BH01 0.1-0.2 Jul 22, 2015 Soil S15-Jl25729                                                                                                                            |                                        |          |                  |        | Х                          |                                           |                  |           |                                              | Х                     | Х                        | Х            |                          | Х                                                                                     |   |                                               |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Nar<br>Address:<br>Project Name<br>Project ID: | Lev<br>Cha<br>NSV<br>e: MSI |                | Pty Ltd Chatswoo<br>Citadel Tower 799 |                            |                            | R      | order<br>epor<br>hone<br>ax: | t #:      |                          | +61                   | 918<br>2 94<br>2 94      |              |                          |                         | Due: Au<br>Priority: 5 I<br>Contact Name: Ma | l 30, 2015 11:32 AM<br>ig 6, 2015<br>Day<br>atthew Locke |
|--------------------------------------------------------|-----------------------------|----------------|---------------------------------------|----------------------------|----------------------------|--------|------------------------------|-----------|--------------------------|-----------------------|--------------------------|--------------|--------------------------|-------------------------|----------------------------------------------|----------------------------------------------------------|
|                                                        |                             | Sample D       | Petail                                |                            | Asbestos Absence /Presence | HOLD   | Organic Matter %             | Metals M8 | Eurofins   mgt Suite B18 | Extended Metals Suite | Eurofins   mgt Suite B14 | Moisture Set | Cation Exchange Capacity | Eurofins   mgt Suite B4 |                                              | nt Manager: Charl Du Preez                               |
| Laboratory who                                         | ere analysis                | is conducted   |                                       |                            |                            |        |                              |           |                          |                       |                          |              |                          |                         |                                              |                                                          |
| Melbourne Lab                                          |                             |                | & 14271                               |                            |                            |        | Х                            |           |                          |                       |                          |              | Х                        |                         |                                              |                                                          |
| Sydney Labora                                          |                             |                |                                       |                            | X                          | Х      |                              | Х         | Х                        | Х                     | Х                        | Х            | Х                        | Х                       |                                              |                                                          |
| Brisbane Labo                                          |                             | A Site # 20794 |                                       |                            | _                          |        |                              |           |                          |                       |                          |              |                          |                         |                                              |                                                          |
| External Labor                                         | 1 2                         |                |                                       |                            |                            |        |                              |           |                          |                       |                          |              |                          |                         |                                              |                                                          |
| BH01 1.0                                               | Jul 22, 201                 |                | Soil                                  | S15-JI25730                |                            | X<br>X |                              |           |                          |                       |                          |              |                          |                         |                                              |                                                          |
| BH02 1.0<br>BH02 0.5-0.6                               | Jul 21, 201                 |                | Soil<br>Soil                          | S15-JI25731<br>S15-JI25732 |                            | _ ^    |                              |           |                          | x                     |                          | x            |                          | x                       |                                              |                                                          |
| BH02 0.5-0.6<br>BH04 1.5-1.6                           | Jul 17, 201                 |                | Soil                                  | S15-JI25732                |                            | X      |                              |           |                          |                       |                          |              |                          |                         |                                              |                                                          |
| BH04 0.2-0.3                                           | Jul 17, 201                 |                | Soil                                  | S15-JI25734                | X                          |        |                              |           |                          | х                     |                          | х            |                          | Х                       |                                              |                                                          |
| BH06 0.1-0.2                                           | Jul 21, 201                 |                | Soil                                  | S15-JI25735                |                            |        |                              | х         |                          |                       |                          | X            |                          | X                       |                                              |                                                          |
| BH04 1.0                                               | Jul 17, 201                 |                | Soil                                  | S15-JI25736                |                            | 1      |                              |           |                          | Х                     |                          | X            |                          | X                       |                                              |                                                          |
| BH01 0.5-0.6                                           | Jul 22, 201                 |                | Soil                                  | S15-JI25737                |                            |        |                              |           |                          | X                     |                          | X            |                          | X                       |                                              |                                                          |
| BH06 1.0                                               | Jul 21, 201                 |                | Soil                                  | S15-JI25738                |                            | Х      |                              |           | 1                        |                       | 1                        |              |                          |                         |                                              |                                                          |
| BH05 0.5-0.6                                           | Jul 21, 201                 |                | Soil                                  | S15-JI25739                |                            |        |                              | Х         |                          |                       |                          | Х            |                          | Х                       |                                              |                                                          |



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Na<br>Address:<br>Project Name<br>Project ID: | Level 1<br>Chatsw<br>NSW 2<br>e: MSB U | 067             |      | cific Highway |                            | R<br>P   | order<br>epor<br>hone |           |                          | -                     | 2 94                     | 06 10<br>06 10 |                          |                         |   | Received:Jul 30, 2015 11:32 AMDue:Aug 6, 2015Priority:5 DayContact Name:Matthew LockeEurofins   mgt Client Manager: Charl D |  |  |  | reez |
|-------------------------------------------------------|----------------------------------------|-----------------|------|---------------|----------------------------|----------|-----------------------|-----------|--------------------------|-----------------------|--------------------------|----------------|--------------------------|-------------------------|---|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|------|
|                                                       |                                        | Sample Detai    | I    |               | Asbestos Absence /Presence | HOLD     | Organic Matter %      | Metals M8 | Eurofins   mgt Suite B18 | Extended Metals Suite | Eurofins   mgt Suite B14 | Moisture Set   | Cation Exchange Capacity | Eurofins   mgt Suite B4 |   |                                                                                                                             |  |  |  |      |
| Laboratory wh                                         | ere analysis is                        | conducted       |      |               |                            |          |                       |           |                          |                       |                          |                |                          |                         |   |                                                                                                                             |  |  |  |      |
| Melbourne Lab                                         | oratory - NATA                         | Site # 1254 & 1 | 4271 |               |                            |          | Х                     |           |                          |                       |                          |                | Х                        |                         | _ |                                                                                                                             |  |  |  |      |
| Sydney Labora                                         | atory - NATA Sit                       | e # 18217       |      |               | Х                          | Х        |                       | Х         | Х                        | Х                     | Х                        | Х              | Х                        | Х                       | _ |                                                                                                                             |  |  |  |      |
| Brisbane Labo                                         | ratory - NATA S                        | Site # 20794    |      |               |                            |          |                       |           |                          |                       |                          |                |                          |                         |   |                                                                                                                             |  |  |  |      |
| External Labor                                        | atory                                  | 1               | 1    |               |                            |          |                       | <u> </u>  |                          |                       |                          |                |                          |                         | 4 |                                                                                                                             |  |  |  |      |
| BH05 0.1-0.2                                          | Jul 21, 2015                           |                 | Soil | S15-JI25740   |                            | <u> </u> |                       | Х         |                          |                       |                          | Х              |                          | Х                       | 4 |                                                                                                                             |  |  |  |      |
| BH05 1.0                                              | Jul 21, 2015                           |                 | Soil | S15-JI25741   |                            |          |                       | Х         |                          |                       |                          | Х              |                          | Х                       | - |                                                                                                                             |  |  |  |      |
| BH06 0.5-0.6                                          | Jul 21, 2015                           |                 | Soil | S15-JI25742   |                            |          |                       | Х         |                          |                       |                          | Х              |                          | Х                       | 4 |                                                                                                                             |  |  |  |      |
| BH1 0.1-0.2<br>DUPLICATE                              | Jul 17, 2015                           |                 | Soil | S15-JI25838   |                            | х        |                       |           |                          |                       |                          |                |                          |                         |   |                                                                                                                             |  |  |  |      |



## Eurofins | mgt Internal Quality Control Review and Glossary

## General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

## **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

## UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

## TERMS

| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOR              | Limit of Reporting.                                                                                                                                          |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                   |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                        |
| LCS              | Laboratory Control Sample - reported as percent recovery                                                                                                     |
| CRM              | Certified Reference Material - reported as percent recovery                                                                                                  |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands.                                                                        |
|                  | In the case of water samples these are performed on de-ionised water.                                                                                        |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                   |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                             |
| Batch Duplicate  | A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.                            |
| Batch SPIKE      | Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.                            |
| USEPA            | United States Environmental Protection Agency                                                                                                                |
| APHA             | American Public Health Association                                                                                                                           |
| ASLP             | Australian Standard Leaching Procedure (AS4439.3)                                                                                                            |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                   |
| COC              | Chain of Custody                                                                                                                                             |
| SRA              | Sample Receipt Advice                                                                                                                                        |
| CP               | Client Parent - QC was performed on samples pertaining to this report                                                                                        |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed w |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                   |
|                  |                                                                                                                                                              |

## **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$ 

## QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

within



## **Quality Control Results**

| Test                                                 | Units  | Result 1 |                                               | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|--------|----------|-----------------------------------------------|----------------------|----------------|--------------------|
| Method Blank                                         |        |          | •                                             | ·                    |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |        |          |                                               |                      |                |                    |
| TRH C6-C9                                            | mg/kg  | < 20     |                                               | 20                   | Pass           |                    |
| TRH C10-C14                                          | mg/kg  | < 20     |                                               | 20                   | Pass           |                    |
| TRH C15-C28                                          | mg/kg  | < 50     |                                               | 50                   | Pass           |                    |
| TRH C29-C36                                          | mg/kg  | < 50     |                                               | 50                   | Pass           |                    |
| Method Blank                                         |        |          |                                               |                      |                |                    |
| BTEX                                                 |        |          |                                               |                      |                |                    |
| Benzene                                              | mg/kg  | < 0.1    |                                               | 0.1                  | Pass           |                    |
| Toluene                                              | mg/kg  | < 0.1    |                                               | 0.1                  | Pass           |                    |
| Ethylbenzene                                         | mg/kg  | < 0.1    |                                               | 0.1                  | Pass           |                    |
| m&p-Xylenes                                          | mg/kg  | < 0.2    |                                               | 0.2                  | Pass           |                    |
| o-Xylene                                             | mg/kg  | < 0.1    |                                               | 0.1                  | Pass           |                    |
| Xylenes - Total                                      | mg/kg  | < 0.3    |                                               | 0.3                  | Pass           |                    |
| Method Blank                                         |        |          |                                               | 0.0                  | 1 400          |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |        |          |                                               |                      |                |                    |
| Naphthalene                                          | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| TRH C6-C10                                           | mg/kg  | < 20     |                                               | 20                   | Pass           |                    |
| TRH C6-C10 less BTEX (F1)                            | mg/kg  | < 20     |                                               | 20                   | Pass           |                    |
| Method Blank                                         | ing/kg | <u> </u> |                                               | 20                   | 1 455          |                    |
| Polycyclic Aromatic Hydrocarbons                     |        |          |                                               |                      |                |                    |
| Acenaphthene                                         | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Acenaphthylene                                       | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Anthracene                                           | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Benz(a)anthracene                                    | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                       | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene                               |        | < 0.5    |                                               | 0.5                  | Pass           |                    |
|                                                      | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene<br>Benzo(k)fluoranthene         | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
|                                                      | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Chrysene                                             | mg/kg  | 1        |                                               | 0.5                  |                |                    |
| Dibenz(a.h)anthracene                                | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Fluoranthene                                         | mg/kg  | < 0.5    |                                               |                      | Pass           |                    |
| Fluorene                                             | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                               | mg/kg  | < 0.5    |                                               |                      | Pass           |                    |
| Naphthalene                                          | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Phenanthrene                                         | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Pyrene Nothed Plank                                  | mg/kg  | < 0.5    |                                               | 0.5                  | Pass           |                    |
| Method Blank                                         |        | 1        |                                               | 1                    | [              |                    |
| Organochlorine Pesticides                            |        | 0.4      |                                               | 0.1                  | Dese           |                    |
| Chlordanes - Total                                   | mg/kg  | < 0.1    |                                               | 0.1                  | Pass           |                    |
| 4.4'-DDD                                             | mg/kg  | < 0.05   | <u>                                      </u> | 0.05                 | Pass           |                    |
| 4.4'-DDE                                             | mg/kg  | < 0.05   | <u>                                      </u> | 0.05                 | Pass           |                    |
| 4.4'-DDT                                             | mg/kg  | < 0.05   | <u>                                      </u> | 0.05                 | Pass           |                    |
| a-BHC                                                | mg/kg  | < 0.05   | <u> </u>                                      | 0.05                 | Pass           |                    |
| Aldrin                                               | mg/kg  | < 0.05   | <u>                                      </u> | 0.05                 | Pass           |                    |
| b-BHC                                                | mg/kg  | < 0.05   | <u> </u>                                      | 0.05                 | Pass           |                    |
| d-BHC                                                | mg/kg  | < 0.05   | <u> </u>                                      | 0.05                 | Pass           |                    |
| Dieldrin                                             | mg/kg  | < 0.05   |                                               | 0.05                 | Pass           |                    |
| Endosulfan I                                         | mg/kg  | < 0.05   |                                               | 0.05                 | Pass           |                    |
| Endosulfan II                                        | mg/kg  | < 0.05   |                                               | 0.05                 | Pass           |                    |
| Endosulfan sulphate                                  | mg/kg  | < 0.05   |                                               | 0.05                 | Pass           |                    |
| Endrin                                               | mg/kg  | < 0.05   |                                               | 0.05                 | Pass           |                    |



| Test                                              | Units    | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------------------------|----------|----------|----------------------|----------------|--------------------|
| Endrin aldehyde                                   | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Endrin ketone                                     | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| g-BHC (Lindane)                                   | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor                                        | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor epoxide                                | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Hexachlorobenzene                                 | mg/kg    | < 0.05   | 0.05                 | Pass           |                    |
| Methoxychlor                                      | mg/kg    | < 0.2    | 0.2                  | Pass           |                    |
| Toxaphene                                         | mg/kg    | < 1      | 1                    | Pass           |                    |
| Method Blank                                      |          |          | <b>F F</b>           | 1              |                    |
| Organophosphorus Pesticides (OP)                  |          |          |                      |                |                    |
| Chlorpyrifos                                      | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Coumaphos                                         | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Demeton (total)                                   | mg/kg    | < 1      | 1                    | Pass           |                    |
| Diazinon                                          | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Dichlorvos                                        | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Dimethoate                                        | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Disulfoton                                        | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Ethoprop                                          | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Fenitrothion                                      | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Fensulfothion                                     | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Fenthion                                          | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Methyl azinphos                                   | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Malathion                                         | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Methyl parathion                                  | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Mevinphos                                         | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Monocrotophos                                     | mg/kg    | < 10     | 10                   | Pass           |                    |
| Parathion                                         | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Phorate                                           | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Profenofos                                        | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Prothiofos                                        | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Ronnel                                            | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Stirophos                                         | mg/kg    | < 0.5    | 0.5                  | Pass           |                    |
| Method Blank                                      |          | -        |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fracti | ons      |          |                      |                |                    |
| TRH >C10-C16                                      | mg/kg    | < 50     | 50                   | Pass           |                    |
| TRH >C16-C34                                      | mg/kg    | < 100    | 100                  | Pass           |                    |
| TRH >C34-C40                                      | mg/kg    | < 100    | 100                  | Pass           |                    |
| Method Blank                                      |          |          |                      | -              |                    |
| Chloride                                          | mg/kg    | < 10     | 10                   | Pass           |                    |
| Conductivity (1:5 aqueous extract at 25°C)        | uS/cm    | < 10     | 10                   | Pass           |                    |
| Sulphate (as SO4)                                 | mg/kg    | < 10     | 10                   | Pass           |                    |
| Method Blank                                      |          |          |                      |                |                    |
| Ion Exchange Properties                           |          |          |                      |                |                    |
| Cation Exchange Capacity                          | meq/100g | < 0.05   | 0.05                 | Pass           |                    |
| Method Blank                                      |          |          |                      |                |                    |
| Heavy Metals                                      |          |          |                      |                |                    |
| Aluminium                                         | mg/kg    | < 10     | 10                   | Pass           |                    |
| Antimony                                          | mg/kg    | < 10     | 10                   | Pass           |                    |
| Arsenic                                           | mg/kg    | < 2      | 2                    | Pass           |                    |
| Barium                                            | mg/kg    | < 10     | 10                   | Pass           |                    |
| Beryllium                                         | mg/kg    | < 2      | 2                    | Pass           |                    |
| Bismuth                                           | mg/kg    | < 10     | 10                   | Pass           |                    |
| Boron                                             | mg/kg    | < 10     | 10                   | Pass           |                    |
| Cadmium                                           | mg/kg    | < 0.4    | 0.4                  | Pass           |                    |



| Test                                                 | Units    | Result 1 | A | cceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|----------|----------|---|---------------------|----------------|--------------------|
| Chromium                                             | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Cobalt                                               | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Copper                                               | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Iron                                                 | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Lead                                                 | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Manganese                                            | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Mercury                                              | mg/kg    | < 0.05   |   | 0.05                | Pass           |                    |
| Molybdenum                                           | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Nickel                                               | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Selenium                                             | mg/kg    | < 2      |   | 2                   | Pass           |                    |
| Silver                                               | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Thallium                                             | mg/kg    | < 10     |   | 10                  | Pass           |                    |
| Tin                                                  | mg/kg    | < 10     |   | 10                  | Pass           |                    |
| Titanium                                             | mg/kg    | < 10     |   | 10                  | Pass           |                    |
| Uranium                                              | mg/kg    | < 1      |   | 1                   | Pass           |                    |
| Vanadium                                             | mg/kg    | < 10     |   | 10                  | Pass           |                    |
| Zinc                                                 | mg/kg    | < 5      |   | 5                   | Pass           |                    |
| Method Blank                                         | iiig/itg |          |   | 0                   | 1 400          |                    |
| Alkali Metals                                        |          |          |   |                     |                |                    |
| Calcium                                              | mg/kg    | < 1      |   | 1                   | Pass           |                    |
| Magnesium                                            | mg/kg    | <1       |   | 1                   | Pass           |                    |
| Potassium                                            | mg/kg    | <1       |   | 1                   | Pass           |                    |
| Sodium                                               |          | <1       |   | 1                   |                |                    |
| Method Blank                                         | mg/kg    | < 1      |   | 1                   | Pass           |                    |
|                                                      |          | I I      |   |                     | [              |                    |
| Extended Metals Suite                                |          | . 10     |   | 40                  | Dees           |                    |
| Phosphorus                                           | mg/kg    | < 10     |   | 10                  | Pass           |                    |
| Silicon                                              | mg/kg    | < 100    |   | 100                 | Pass           |                    |
| Sulphur                                              | mg/kg    | < 100    |   | 100                 | Pass           |                    |
| LCS - % Recovery                                     |          |          |   |                     |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions | 0/       | 4.07     |   | 70.400              | Dese           |                    |
| TRH C6-C9                                            | %        | 127      |   | 70-130              | Pass           |                    |
| TRH C10-C14                                          | %        | 95       |   | 70-130              | Pass           |                    |
| LCS - % Recovery                                     |          |          |   |                     | 1              |                    |
| BTEX                                                 |          |          |   |                     |                |                    |
| Benzene                                              | %        | 84       |   | 70-130              | Pass           |                    |
| Toluene                                              | %        | 114      |   | 70-130              | Pass           |                    |
| Ethylbenzene                                         | %        | 112      |   | 70-130              | Pass           |                    |
| m&p-Xylenes                                          | %        | 114      |   | 70-130              | Pass           |                    |
| o-Xylene                                             | %        | 117      |   | 70-130              | Pass           |                    |
| Xylenes - Total                                      | %        | 115      |   | 70-130              | Pass           |                    |
| LCS - % Recovery                                     |          |          |   |                     |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |          |          |   |                     |                |                    |
| Naphthalene                                          | %        | 110      |   | 70-130              | Pass           |                    |
| TRH C6-C10                                           | %        | 116      |   | 70-130              | Pass           |                    |
| LCS - % Recovery                                     |          |          |   |                     |                |                    |
| Polycyclic Aromatic Hydrocarbons                     |          |          |   |                     |                |                    |
| Acenaphthene                                         | %        | 86       |   | 70-130              | Pass           |                    |
| Acenaphthylene                                       | %        | 87       |   | 70-130              | Pass           |                    |
| Anthracene                                           | %        | 94       |   | 70-130              | Pass           |                    |
| Benz(a)anthracene                                    | %        | 87       |   | 70-130              | Pass           |                    |
| Benzo(a)pyrene                                       | %        | 81       |   | 70-130              | Pass           |                    |
| Benzo(b&j)fluoranthene                               | %        | 87       |   | 70-130              | Pass           |                    |
| Benzo(g.h.i)perylene                                 | %        | 105      |   | 70-130              | Pass           |                    |
|                                                      |          |          |   |                     |                |                    |



| Test                                                 | Units | Result 1 | Accept<br>Limi |              | Qualifying<br>Code |
|------------------------------------------------------|-------|----------|----------------|--------------|--------------------|
| Chrysene                                             | %     | 102      | 70-1           | 30 Pass      |                    |
| Dibenz(a.h)anthracene                                | %     | 127      | 70-1           | 30 Pass      |                    |
| Fluoranthene                                         | %     | 91       | 70-1           | 30 Pass      |                    |
| Fluorene                                             | %     | 103      | 70-1           | 30 Pass      |                    |
| Indeno(1.2.3-cd)pyrene                               | %     | 110      | 70-1           | 30 Pass      |                    |
| Naphthalene                                          | %     | 84       | 70-1           | 30 Pass      |                    |
| Phenanthrene                                         | %     | 99       | 70-1           | 30 Pass      |                    |
| Pyrene                                               | %     | 94       | 70-1           | 30 Pass      |                    |
| LCS - % Recovery                                     |       |          |                |              |                    |
| Organochlorine Pesticides                            |       |          |                |              |                    |
| Chlordanes - Total                                   | %     | 107      | 70-1           | 30 Pass      |                    |
| 4.4'-DDD                                             | %     | 112      | 70-1           | 30 Pass      |                    |
| 4.4'-DDE                                             | %     | 109      | 70-1           | 30 Pass      |                    |
| 4.4'-DDT                                             | %     | 102      | 70-1           | 30 Pass      |                    |
| a-BHC                                                | %     | 105      | 70-1           | 30 Pass      |                    |
| Aldrin                                               | %     | 109      | 70-1           |              |                    |
| b-BHC                                                | %     | 106      | 70-1           |              |                    |
| d-BHC                                                | %     | 111      | 70-1           | 30 Pass      |                    |
| Dieldrin                                             | %     | 105      | 70-1           |              |                    |
| Endosulfan I                                         | %     | 107      | 70-13          |              |                    |
| Endosulfan II                                        | %     | 106      | 70-1           |              |                    |
| Endosulfan sulphate                                  | %     | 105      | 70-1           |              |                    |
| Endrin                                               | %     | 96       | 70-1           |              |                    |
| Endrin aldehyde                                      | %     | 104      | 70-1           |              |                    |
| Endrin ketone                                        | %     | 105      | 70-1           |              |                    |
| g-BHC (Lindane)                                      | %     | 107      | 70-1           |              |                    |
| Heptachlor                                           | %     | 101      | 70-1           |              |                    |
| Heptachlor epoxide                                   | %     | 104      | 70-1           |              |                    |
| Methoxychlor                                         | %     | 104      | 70-1           |              |                    |
| LCS - % Recovery                                     | /0    |          | 1 101          | 50   1 4 3 3 | -                  |
| Organophosphorus Pesticides (OP)                     |       |          |                |              |                    |
| Chlorpyrifos                                         | %     | 103      | 70-1           | 30 Pass      |                    |
| Dimethoate                                           | %     | 108      | 70-1           |              |                    |
| Disulfoton                                           | %     | 103      | 70-1           |              |                    |
| Methyl azinphos                                      | %     | 74       | 70-1           |              |                    |
| Methyl parathion                                     | %     | 101      | 70-1           |              |                    |
| Parathion                                            | %     | 97       | 70-1           |              |                    |
| Phorate                                              | %     | 83       | 70-1           |              |                    |
| LCS - % Recovery                                     | /0    | 05       | 70-13          | 50   Fass    |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |       | I I      |                |              |                    |
| TRH >C10-C16                                         | %     | 96       | 70-1           | 30 Pass      |                    |
|                                                      | /0    | 30       | / /U-1,        | JU   1°455   |                    |
| LCS - % Recovery Chloride                            | %     | 99       | 70-1           | 30 Pass      |                    |
|                                                      |       |          |                |              |                    |
| Sulphate (as SO4)                                    | %     | 100      | 70-1           | 30 Pass      |                    |
| LCS - % Recovery<br>Heavy Metals                     |       |          |                |              | -                  |
|                                                      | %     | 97       | 70-1           | 30 Pass      |                    |
| Aluminium                                            |       |          |                |              |                    |
| Antimony                                             | %     | 107      | 70-1           |              |                    |
| Arsenic                                              | %     | 92       | 70-1           |              |                    |
| Barium                                               | %     | 119      | 70-1           |              |                    |
| Beryllium                                            | %     | 121      | 70-1           |              |                    |
| Bismuth                                              | %     | 120      | 70-1           |              |                    |
| Boron                                                | %     | 123      | 70-13          |              |                    |
| Cadmium                                              | %     | 89       | 70-1           | 30 Pass      |                    |



| Tes                                                              | st                                        |                | Units  | Result 1         |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------------------|-------------------------------------------|----------------|--------|------------------|----------|----------------------|----------------|--------------------|
| Chromium                                                         |                                           |                | %      | 91               |          | 70-130               | Pass           |                    |
| Cobalt                                                           |                                           |                | %      | 114              |          | 70-130               | Pass           |                    |
| Copper                                                           |                                           |                | %      | 88               |          | 70-130               | Pass           |                    |
| Iron                                                             |                                           |                | %      | 92               |          | 70-130               | Pass           |                    |
| Lead                                                             |                                           |                | %      | 84               |          | 70-130               | Pass           |                    |
| Manganese                                                        |                                           |                | %      | 116              |          | 70-130               | Pass           |                    |
| Mercury                                                          |                                           |                | %      | 83               |          | 70-130               | Pass           |                    |
| Molybdenum                                                       |                                           |                | %      | 127              |          | 70-130               | Pass           |                    |
| Nickel                                                           |                                           |                | %      | 88               |          | 70-130               | Pass           |                    |
| Selenium                                                         |                                           |                | %      | 114              |          | 70-130               | Pass           |                    |
| Silver                                                           |                                           |                | %      | 120              |          | 70-130               | Pass           |                    |
| Thallium                                                         |                                           |                | %      | 120              |          | 70-130               | Pass           |                    |
| Tin<br>—                                                         |                                           |                | %      | 120              |          | 70-130               | Pass           |                    |
| Titanium                                                         |                                           |                | %      | 100              |          | 70-130               | Pass           |                    |
| Uranium                                                          |                                           |                | %      | 123              |          | 70-130               | Pass           |                    |
| Vanadium                                                         |                                           |                | %      | 117              |          | 70-130               | Pass           |                    |
|                                                                  |                                           |                | %      | 90               |          | 70-130               | Pass           |                    |
| LCS - % Recovery                                                 |                                           |                |        |                  |          |                      |                |                    |
| Alkali Metals<br>Calcium                                         |                                           |                | %      | 110              |          | 70-130               | Page           |                    |
| Magnesium                                                        |                                           |                | %      | 110              |          | 70-130               | Pass<br>Pass   |                    |
| Potassium                                                        |                                           |                | %      | 113              |          | 70-130               | Pass           |                    |
| Sodium                                                           |                                           |                | %      | 105              |          | 70-130               | Pass           |                    |
| LCS - % Recovery                                                 |                                           |                | /0     | 105              |          | 70-130               | газэ           |                    |
| Extended Metals Suite                                            |                                           |                |        |                  | I (      | 1                    |                |                    |
| Phosphorus                                                       |                                           |                | %      | 116              |          | 70-130               | Pass           |                    |
| Silicon                                                          |                                           |                | %      | 111              |          | 70-130               | Pass           |                    |
| Sulphur                                                          |                                           |                | %      | 100              |          | 70-130               | Pass           |                    |
| Test                                                             | Lab Sample ID                             | QA<br>Source   | Units  | Result 1         |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery                                               |                                           |                |        |                  |          |                      |                |                    |
| Total Recoverable Hydrocarbo                                     | ns - 1999 NEPM Fract                      | ions           |        | Result 1         |          |                      |                |                    |
| TRH C6-C9                                                        | S15-JI25172                               | NCP            | %      | 90               |          | 70-130               | Pass           |                    |
| TRH C10-C14                                                      | S15-JI25931                               | NCP            | %      | 87               |          | 70-130               | Pass           |                    |
| Spike - % Recovery                                               |                                           |                |        |                  |          |                      |                |                    |
| BTEX                                                             |                                           |                |        | Result 1         |          |                      |                |                    |
| Benzene                                                          | S15-Jl25172                               | NCP            | %      | 89               |          | 70-130               | Pass           |                    |
| Toluene                                                          | S15-Jl25172                               | NCP            | %      | 87               |          | 70-130               | Pass           |                    |
| Ethylbenzene                                                     | S15-JI25172                               | NCP            | %      | 95               |          | 70-130               | Pass           |                    |
| m&p-Xylenes                                                      | S15-Jl25172                               | NCP            | %      | 98               |          | 70-130               | Pass           |                    |
| o-Xylene                                                         | S15-Jl25172                               | NCP            | %      | 102              |          | 70-130               | Pass           |                    |
| Xylenes - Total                                                  | S15-Jl25172                               | NCP            | %      | 99               |          | 70-130               | Pass           |                    |
| Spike - % Recovery                                               |                                           |                |        |                  | T T      | -                    |                |                    |
| Total Recoverable Hydrocarbo                                     | ns - 2013 NEPM Fract                      | ions           |        | Result 1         |          |                      |                |                    |
| Naphthalene                                                      | S15-JI25172                               | NCP            | %      | 128              |          | 70-130               | Pass           |                    |
| TRH C6-C10                                                       | S15-JI25172                               | NCP            | %      | 81               |          | 70-130               | Pass           |                    |
| Spike - % Recovery                                               |                                           |                |        |                  |          | 1                    |                |                    |
| Polycyclic Aromatic Hydrocarb                                    |                                           | 1              |        | Result 1         |          |                      |                |                    |
| Acenaphthene                                                     | S15-JI25721                               | CP             | %      | 99               |          | 70-130               | Pass           |                    |
| Acenaphthylene                                                   | S15-JI25721                               | CP             | %      | 97               |          | 70-130               | Pass           |                    |
| Anthracene                                                       | S15-JI25721                               | CP             | %      | 99               |          | 70-130               | Pass           |                    |
| Benz(a)anthracene                                                | S15-JI25721                               | CP             | %      | 104              |          | 70-130               | Pass           |                    |
|                                                                  | <b>•</b> • • • • • • • • • • • • • •      |                | %      | 104              | 1 1      | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                                   | S15-Jl25721                               | CP             |        |                  | <u> </u> |                      |                |                    |
| Benzo(a)pyrene<br>Benzo(b&j)fluoranthene<br>Benzo(g.h.i)perylene | S15-JI25721<br>S15-JI25721<br>S15-JI25721 | CP<br>CP<br>CP | %<br>% | 104<br>109<br>84 |          | 70-130<br>70-130     | Pass<br>Pass   |                    |



| Test                                                | Lab Sample ID       | QA<br>Source | Units | Result 1  |              | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------|---------------------|--------------|-------|-----------|--------------|----------------------|----------------|--------------------|
| Benzo(k)fluoranthene                                | S15-Jl25721         | CP           | %     | 97        |              | 70-130               | Pass           |                    |
| Chrysene                                            | S15-Jl25721         | CP           | %     | 101       |              | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene                               | S15-JI25721         | CP           | %     | 87        |              | 70-130               | Pass           |                    |
| Fluoranthene                                        | S15-JI25721         | CP           | %     | 100       |              | 70-130               | Pass           |                    |
| Fluorene                                            | S15-JI25721         | CP           | %     | 98        |              | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                              | S15-JI25721         | CP           | %     | 88        |              | 70-130               | Pass           |                    |
| Naphthalene                                         | S15-JI25721         | CP           | %     | 99        |              | 70-130               | Pass           |                    |
| Phenanthrene                                        | S15-JI25721         | CP           | %     | 91        |              | 70-130               | Pass           |                    |
| Pyrene                                              | S15-JI25721         | CP           | %     | 101       |              | 70-130               | Pass           |                    |
| Spike - % Recovery                                  |                     |              |       |           |              |                      |                |                    |
| Total Recoverable Hydrocarbon                       | s - 2013 NEPM Fract | ions         |       | Result 1  |              |                      |                |                    |
| TRH >C10-C16                                        | S15-JI25931         | NCP          | %     | 92        |              | 70-130               | Pass           |                    |
| Spike - % Recovery                                  | · ·                 |              |       |           |              |                      |                |                    |
| Heavy Metals                                        |                     |              |       | Result 1  |              |                      |                |                    |
| Copper                                              | S15-JI25890         | NCP          | %     | 101       |              | 70-130               | Pass           |                    |
| Spike - % Recovery                                  | •                   |              |       | •         |              |                      |                |                    |
| Organochlorine Pesticides                           |                     |              |       | Result 1  |              |                      |                |                    |
| Chlordanes - Total                                  | S15-JI27111         | NCP          | %     | 99        |              | 70-130               | Pass           |                    |
| 4.4'-DDD                                            | S15-JI27111         | NCP          | %     | 109       |              | 70-130               | Pass           |                    |
| 4.4'-DDE                                            | S15-JI27111         | NCP          | %     | 101       |              | 70-130               | Pass           |                    |
| 4.4'-DDT                                            | S15-JI27111         | NCP          | %     | 100       |              | 70-130               | Pass           |                    |
| a-BHC                                               | S15-JI27111         | NCP          | %     | 98        |              | 70-130               | Pass           |                    |
| Aldrin                                              | S15-JI27111         | NCP          | %     | 100       |              | 70-130               | Pass           |                    |
| b-BHC                                               | S15-JI27111         | NCP          | %     | 96        |              | 70-130               | Pass           |                    |
| d-BHC                                               | S15-JI27111         | NCP          | %     | 108       |              | 70-130               | Pass           |                    |
| Dieldrin                                            | S15-JI27111         | NCP          | %     | 99        |              | 70-130               | Pass           |                    |
| Endosulfan I                                        | S15-JI27111         | NCP          | %     | 100       |              | 70-130               | Pass           |                    |
| Endosulfan II                                       | S15-JI27111         | NCP          | %     | 100       |              | 70-130               | Pass           |                    |
| Endosulfan sulphate                                 | S15-JI27111         | NCP          | %     | 100       |              | 70-130               | Pass           |                    |
| Endrin                                              | S15-JI27111         | NCP          | %     | 97        |              | 70-130               | Pass           |                    |
| Endrin aldehyde                                     | S15-JI27111         | NCP          | %     | 93        |              | 70-130               | Pass           |                    |
| Endrin ketone                                       | S15-JI27111         | NCP          | %     | 102       |              | 70-130               | Pass           |                    |
| g-BHC (Lindane)                                     | S15-JI27111         | NCP          | %     | 102       |              | 70-130               | Pass           |                    |
| Heptachlor                                          | S15-JI27111         | NCP          | %     | 98        |              | 70-130               | Pass           |                    |
| Heptachlor epoxide                                  | S15-JI27111         | NCP          | %     | 98        |              | 70-130               | Pass           |                    |
|                                                     |                     |              |       |           |              |                      |                |                    |
| Methoxychlor                                        | S15-JI27111         | NCP          | %     | 92        |              | 70-130               | Pass           |                    |
| Spike - % Recovery<br>Organophosphorus Pesticides ( |                     |              |       | Result 1  |              |                      | 1              |                    |
| Chlorpyrifos                                        |                     | NCP          | %     | 95        |              | 70-130               | Pass           |                    |
|                                                     | S15-JI27112         |              |       |           |              |                      |                |                    |
| Dimethoate                                          | S15-JI27112         | NCP          | %     | 101       |              | 70-130<br>70-130     | Pass           |                    |
| Disulfoton                                          | S15-JI27112         | NCP          | %     | 126       |              |                      | Pass           |                    |
| Methyl azinphos                                     | S15-JI27112         | NCP          | %     | 92        |              | 70-130               | Pass           |                    |
| Methyl parathion                                    | S15-JI27112         | NCP          | %     | 94        |              | 70-130               | Pass           |                    |
| Parathion                                           | S15-JI27112         | NCP          | %     | 95        | <u> </u>     | 70-130               | Pass           |                    |
| Phorate                                             | S15-JI27112         | NCP          | %     | 103       |              | 70-130               | Pass           |                    |
| Spike - % Recovery                                  |                     |              |       | Dec. 11.4 |              |                      |                |                    |
| Heavy Metals                                        | 045 110-000         | NOT          | ~ ~ ~ | Result 1  | <u> </u>     | 70.400               |                |                    |
| Manganese                                           | S15-Jl25890         | NCP          | %     | 107       |              | 70-130               | Pass           |                    |
| Spike - % Recovery                                  |                     |              |       |           |              |                      |                |                    |
| Heavy Metals                                        | <b>a</b> · = ···    |              |       | Result 1  |              |                      | -              |                    |
| Antimony                                            | S15-JI25735         | CP           | %     | 86        |              | 70-130               | Pass           |                    |
| Arsenic                                             | S15-JI25735         | CP           | %     | 102       |              | 70-130               | Pass           |                    |
| Barium                                              | S15-JI25735         | CP           | %     | 87        | <b>├</b> ─── | 70-130               | Pass           |                    |
| Beryllium                                           | S15-JI25735         | CP           | %     | 95        |              | 70-130               | Pass           |                    |



| Test                                                                                                                                                               | Lab Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                 | QA<br>Source                                                       | Units                                                                                  | Result 1                                                       |                                                                                                                                                             |                                                                                 | Acceptance<br>Limits                                                                                                                                                                                                                                                                        | Pass<br>Limits                                               | Qualifying<br>Code |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|
| Bismuth                                                                                                                                                            | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 88                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Boron                                                                                                                                                              | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 104                                                            |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Cadmium                                                                                                                                                            | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 104                                                            |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Chromium                                                                                                                                                           | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 105                                                            |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Cobalt                                                                                                                                                             | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 87                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Lead                                                                                                                                                               | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 108                                                            |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Mercury                                                                                                                                                            | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 113                                                            |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Molybdenum                                                                                                                                                         | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 70                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Nickel                                                                                                                                                             | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 74                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Selenium                                                                                                                                                           | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 99                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Silver                                                                                                                                                             | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 89                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Thallium                                                                                                                                                           | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 88                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Uranium                                                                                                                                                            | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 114                                                            |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Vanadium                                                                                                                                                           | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 98                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Zinc                                                                                                                                                               | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 70                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Spike - % Recovery                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        |                                                                |                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Alkali Metals                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        | Result 1                                                       |                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Calcium                                                                                                                                                            | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 78                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Potassium                                                                                                                                                          | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 114                                                            |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Spike - % Recovery                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        |                                                                |                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Extended Metals Suite                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        | Result 1                                                       |                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Phosphorus                                                                                                                                                         | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 118                                                            |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Sulphur                                                                                                                                                            | S15-JI25735                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | %                                                                                      | 96                                                             |                                                                                                                                                             |                                                                                 | 70-130                                                                                                                                                                                                                                                                                      | Pass                                                         |                    |
| Test                                                                                                                                                               | Lab Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                 | QA<br>Source                                                       | Units                                                                                  | Result 1                                                       |                                                                                                                                                             |                                                                                 | Acceptance<br>Limits                                                                                                                                                                                                                                                                        | Pass<br>Limits                                               | Qualifying<br>Code |
| Duplicate                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        |                                                                |                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                             |                                                              |                    |
|                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        | Result 1                                                       | Result 2                                                                                                                                                    | RPD                                                                             |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Chloride                                                                                                                                                           | S15-JI24046                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                                | mg/kg                                                                                  | 200                                                            | 200                                                                                                                                                         | <1                                                                              | 30%                                                                                                                                                                                                                                                                                         | Pass                                                         |                    |
| Conductivity (1:5 aqueous extract at 25°C)                                                                                                                         | M15-JI25631                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                                | uS/cm                                                                                  | 16                                                             | 13                                                                                                                                                          | 21                                                                              | 30%                                                                                                                                                                                                                                                                                         | Pass                                                         |                    |
| Sulphate (as SO4)                                                                                                                                                  | S15-JI24046                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                                | mg/kg                                                                                  | 120                                                            | 120                                                                                                                                                         | <1                                                                              | 30%                                                                                                                                                                                                                                                                                         | Pass                                                         |                    |
| Duplicate                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        |                                                                |                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Total Recoverable Hydrocarbons -                                                                                                                                   | 1999 NEPM Fract                                                                                                                                                                                                                                                                                                                                                                                                                               | ions                                                               |                                                                                        | Result 1                                                       | Result 2                                                                                                                                                    | RPD                                                                             |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| TRH C10-C14                                                                                                                                                        | S15-JI25725                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | mg/kg                                                                                  | < 20                                                           | < 20                                                                                                                                                        | <1                                                                              | 30%                                                                                                                                                                                                                                                                                         | Pass                                                         |                    |
| TRH C15-C28                                                                                                                                                        | S15-JI25725                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                                 | mg/kg                                                                                  | < 50                                                           | < 50                                                                                                                                                        | <1                                                                              | 30%                                                                                                                                                                                                                                                                                         | Pass                                                         |                    |
| TRH C29-C36                                                                                                                                                        | S15-JI25725                                                                                                                                                                                                                                                                                                                                                                                                                                   | СР                                                                 | mg/kg                                                                                  | < 50                                                           | < 50                                                                                                                                                        | <1                                                                              | 30%                                                                                                                                                                                                                                                                                         | Pass                                                         |                    |
| Duplicate                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        |                                                                |                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Organochlorine Pesticides                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        |                                                                |                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Organochiorine Pesticides                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        | Result 1                                                       | Result 2                                                                                                                                                    | RPD                                                                             |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Chlordanes - Total                                                                                                                                                 | B15-JI26040                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                                | mg/kg                                                                                  | Result 1                                                       | Result 2<br>< 0.1                                                                                                                                           | RPD<br><1                                                                       | 30%                                                                                                                                                                                                                                                                                         | Pass                                                         |                    |
| 0                                                                                                                                                                  | B15-Jl26040<br>B15-Jl26040                                                                                                                                                                                                                                                                                                                                                                                                                    | NCP<br>NCP                                                         | mg/kg<br>mg/kg                                                                         |                                                                |                                                                                                                                                             |                                                                                 | 30%<br>30%                                                                                                                                                                                                                                                                                  | Pass<br>Pass                                                 |                    |
| Chlordanes - Total                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                        | **                                                             | < 0.1                                                                                                                                                       | <1                                                                              |                                                                                                                                                                                                                                                                                             |                                                              |                    |
| Chlordanes - Total<br>4.4'-DDD                                                                                                                                     | B15-JI26040                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                                | mg/kg                                                                                  | **                                                             | < 0.1<br>< 0.05                                                                                                                                             | <1<br><1                                                                        | 30%                                                                                                                                                                                                                                                                                         | Pass                                                         |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE                                                                                                                         | B15-JI26040<br>B15-JI26040                                                                                                                                                                                                                                                                                                                                                                                                                    | NCP<br>NCP                                                         | mg/kg<br>mg/kg                                                                         | ** **                                                          | < 0.1<br>< 0.05<br>< 0.05                                                                                                                                   | <1<br><1<br><1                                                                  | 30%<br>30%                                                                                                                                                                                                                                                                                  | Pass<br>Pass                                                 |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT                                                                                                             | B15-JI26040<br>B15-JI26040<br>B15-JI26040                                                                                                                                                                                                                                                                                                                                                                                                     | NCP<br>NCP<br>NCP                                                  | mg/kg<br>mg/kg<br>mg/kg                                                                | **<br>**<br>**<br>**                                           | < 0.1<br>< 0.05<br>< 0.05<br>< 0.05                                                                                                                         | <1<br><1<br><1<br><1                                                            | 30%<br>30%<br>30%                                                                                                                                                                                                                                                                           | Pass<br>Pass<br>Pass                                         |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC                                                                                                    | B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040                                                                                                                                                                                                                                                                                                                                                                                      | NCP<br>NCP<br>NCP<br>NCP<br>NCP                                    | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                              | **<br>**<br>**<br>**                                           | < 0.1<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                                                                                                               | <1<br><1<br><1<br><1<br><1<br><1                                                | 30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                                                                    | Pass<br>Pass<br>Pass<br>Pass                                 |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin                                                                                          | B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040                                                                                                                                                                                                                                                                                                                                                                       | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                             | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                     | **<br>**<br>**<br>**<br>**                                     | < 0.1<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                                                                                                     | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                              | 30%<br>30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                                                             | Pass<br>Pass<br>Pass<br>Pass<br>Pass                         |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin<br>b-BHC                                                                                 | B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040<br>B15-Jl26040                                                                                                                                                                                                                                                                                                                                                        | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                      | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                     | **<br>**<br>**<br>**<br>**<br>**                               | < 0.1<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                                                                                           | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1            | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                                                      | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin<br>b-BHC<br>d-BHC                                                                        | B15-Jl26040           B15-Jl26040           B15-Jl26040           B15-Jl26040           B15-Jl26040           B15-Jl26040           B15-Jl26040           B15-Jl26040                                                                                                                                                                                                                                                                         | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP               | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                     | **<br>**<br>**<br>**<br>**<br>**<br>**                         | < 0.1<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                                                                                 | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                              | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                                                      | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin<br>b-BHC<br>d-BHC<br>Dieldrin<br>Endosulfan I                                            | B15-Jl26040                                                                                                                                     | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP        | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | **<br>**<br>**<br>**<br>**<br>**<br>**<br>**                   | < 0.1<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05<br>< 0.05                                                             | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>< | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                                        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin<br>b-BHC<br>d-BHC<br>Dieldrin<br>Endosulfan I<br>Endosulfan II                           | B15-Jl26040                                                                                                               | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP        | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | **<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**             | < 0.1<br>< 0.05<br>< 0.05                                         | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>< | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                                 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin<br>b-BHC<br>d-BHC<br>Dieldrin<br>Endosulfan I<br>Endosulfan II<br>Endosulfan sulphate    | B15-Jl26040                                                                   | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg          | **<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**       | < 0.1<br>< 0.05<br>< 0.05                               | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>< | 30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30%           30% | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin<br>b-BHC<br>d-BHC<br>Dieldrin<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin           | B15-Jl26040                                             | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | ** ** ** ** ** ** ** ** ** ** ** ** **                         | < 0.1<br>< 0.05<br>< 0.05           | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>< | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                          | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin<br>b-BHC<br>d-BHC<br>Dieldrin<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin<br>Endrin | B15-Jl26040           B15-Jl26040 | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | **<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>** | < 0.1<br>< 0.05<br>< 0.05 | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>< | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                          | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |
| Chlordanes - Total<br>4.4'-DDD<br>4.4'-DDE<br>4.4'-DDT<br>a-BHC<br>Aldrin<br>b-BHC<br>d-BHC<br>Dieldrin<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin           | B15-Jl26040                                             | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | ** ** ** ** ** ** ** ** ** ** ** ** **                         | < 0.1<br>< 0.05<br>< 0.05           | <1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br>< | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%                                                                                                                                                                                                                          | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |                    |



| Duplicate                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      |                                                                                               |                                                                                     |                                         |                                                             |                                                      |     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----|
| Organochlorine Pesticides                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      | Result 1                                                                                      | Result 2                                                                            | RPD                                     |                                                             |                                                      |     |
| Heptachlor epoxide                                                                                                                        | B15-Jl26040                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | **                                                                                            | < 0.05                                                                              | <1                                      | 30%                                                         | Pass                                                 |     |
| Hexachlorobenzene                                                                                                                         | B15-JI26040                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | **                                                                                            | < 0.05                                                                              | <1                                      | 30%                                                         | Pass                                                 |     |
| Methoxychlor                                                                                                                              | B15-JI26040                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | **                                                                                            | < 0.03                                                                              | <1                                      | 30%                                                         | Pass                                                 |     |
| Toxaphene                                                                                                                                 | B15-JI26040                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | **                                                                                            | < 1                                                                                 | <1                                      | 30%                                                         | Pass                                                 |     |
| Duplicate                                                                                                                                 | B13-3120040                                                                                                                                                                                                                                                                                                                                                                                                                                   | INCE                                                           | під/ку                                                               |                                                                                               |                                                                                     | <1                                      | 30 /8                                                       | F d55                                                |     |
| Organophosphorus Pesticides (                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      | Result 1                                                                                      | Result 2                                                                            | RPD                                     |                                                             |                                                      |     |
| Chlorpyrifos                                                                                                                              | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               | NCP                                                            |                                                                      |                                                                                               |                                                                                     | <1                                      | 30%                                                         | + +                                                  |     |
| Coumaphos                                                                                                                                 | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               |                                         |                                                             | Pass                                                 |     |
| Demeton (total)                                                                                                                           | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 1                                                                                           | < 1                                                                                 | <1                                      | 30%                                                         | Pass                                                 |     |
| Diazinon                                                                                                                                  | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Dichlorvos                                                                                                                                | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Dimethoate                                                                                                                                | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Disulfoton                                                                                                                                | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Ethoprop                                                                                                                                  | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Fenitrothion                                                                                                                              | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Fensulfothion                                                                                                                             | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Fenthion                                                                                                                                  | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Methyl azinphos                                                                                                                           | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Malathion                                                                                                                                 | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Methyl parathion                                                                                                                          | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Mevinphos                                                                                                                                 | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Monocrotophos                                                                                                                             | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 10                                                                                          | < 10                                                                                | <1                                      | 30%                                                         | Pass                                                 |     |
| Parathion                                                                                                                                 | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Phorate                                                                                                                                   | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Profenofos                                                                                                                                | S15-JI26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Prothiofos                                                                                                                                | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Ronnel                                                                                                                                    | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Stirophos                                                                                                                                 | S15-Jl26280                                                                                                                                                                                                                                                                                                                                                                                                                                   | NCP                                                            | mg/kg                                                                | < 0.5                                                                                         | < 0.5                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Duplicate                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      |                                                                                               |                                                                                     |                                         | _                                                           |                                                      |     |
| Total Recoverable Hydrocarbons                                                                                                            | s - 2013 NEPM Fract                                                                                                                                                                                                                                                                                                                                                                                                                           | ions                                                           |                                                                      | Result 1                                                                                      | Result 2                                                                            | RPD                                     |                                                             |                                                      |     |
| TRH >C10-C16                                                                                                                              | S15-Jl25725                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                             | mg/kg                                                                | < 50                                                                                          | < 50                                                                                | <1                                      | 30%                                                         | Pass                                                 |     |
| TRH >C16-C34                                                                                                                              | S15-JI25725                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                             | mg/kg                                                                | < 100                                                                                         | < 100                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| TRH >C34-C40                                                                                                                              | S15-JI25725                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                             | mg/kg                                                                | < 100                                                                                         | < 100                                                                               | <1                                      | 30%                                                         | Pass                                                 |     |
| Duplicate                                                                                                                                 | · •                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                      |                                                                                               |                                                                                     |                                         |                                                             |                                                      |     |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      | Result 1                                                                                      | Result 2                                                                            | RPD                                     |                                                             |                                                      |     |
| pH (1:5 Aqueous extract)                                                                                                                  | S15-JI25726                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                             | pH Units                                                             | 6.8                                                                                           | 6.9                                                                                 | pass                                    | 30%                                                         | Pass                                                 |     |
| Duplicate                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      |                                                                                               |                                                                                     |                                         | •                                                           |                                                      |     |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      | Result 1                                                                                      | Result 2                                                                            | RPD                                     |                                                             |                                                      |     |
| % Moisture                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                      | 1                                                                                             |                                                                                     | 6.0                                     | 30%                                                         | Pass                                                 |     |
|                                                                                                                                           | S15-JI25734                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                             | %                                                                    | 23                                                                                            | 22                                                                                  | 0.0                                     |                                                             |                                                      |     |
|                                                                                                                                           | S15-JI25734                                                                                                                                                                                                                                                                                                                                                                                                                                   | СР                                                             | %                                                                    | 23                                                                                            | 22                                                                                  | 0.0                                     |                                                             |                                                      |     |
| Duplicate                                                                                                                                 | S15-JI25734                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP                                                             | %                                                                    | 1                                                                                             |                                                                                     | RPD                                     |                                                             |                                                      |     |
| Duplicate                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               | СР                                                             |                                                                      | Result 1                                                                                      | 22<br>Result 2<br>1400                                                              | RPD                                     | 30%                                                         | Pass                                                 |     |
| Duplicate<br>Heavy Metals<br>Aluminium                                                                                                    | S15-JI25734                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | mg/kg                                                                | Result 1<br>1500                                                                              | Result 2<br>1400                                                                    | RPD<br>11                               |                                                             | Pass                                                 |     |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony                                                                                        | S15-JI25734<br>S15-JI25734                                                                                                                                                                                                                                                                                                                                                                                                                    | CP<br>CP                                                       | mg/kg<br>mg/kg                                                       | Result 1<br>1500<br>< 10                                                                      | Result 2<br>1400<br>< 10                                                            | RPD<br>11<br><1                         | 30%<br>30%                                                  | Pass                                                 |     |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic                                                                             | S15-JI25734<br>S15-JI25734<br>S15-JI25734                                                                                                                                                                                                                                                                                                                                                                                                     | CP<br>CP<br>CP                                                 | mg/kg<br>mg/kg<br>mg/kg                                              | Result 1<br>1500<br>< 10<br>< 2                                                               | Result 2<br>1400<br>< 10<br>< 2                                                     | RPD<br>11<br><1<br><1                   | 30%<br>30%<br>30%                                           | Pass<br>Pass                                         | Q15 |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic<br>Barium                                                                   | S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734                                                                                                                                                                                                                                                                                                                                                                       | CP<br>CP<br>CP<br>CP                                           | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                     | Result 1<br>1500<br>< 10<br>< 2<br>< 10                                                       | Result 2<br>1400<br>< 10<br>< 2<br>29                                               | RPD<br>11<br><1<br><1<br>97             | 30%<br>30%<br>30%<br>30%                                    | Pass<br>Pass<br>Fail                                 | Q15 |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic<br>Barium<br>Beryllium                                                      | S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734                                                                                                                                                                                                                                                                                                                                                        | CP<br>CP<br>CP<br>CP<br>CP                                     | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | Result 1<br>1500<br>< 10<br>< 2<br>< 10<br>< 2                                                | Result 2<br>1400<br>< 10<br>< 2<br>29<br>< 2                                        | RPD<br>11<br><1<br><1<br>97<br><1       | 30%<br>30%<br>30%<br>30%<br>30%                             | Pass<br>Pass<br>Fail<br>Pass                         | Q15 |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth                                           | S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734<br>S15-JI25734                                                                                                                                                                                                                                                                                                                                         | CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP                         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | Result 1<br>1500<br>< 10<br>< 2<br>< 10<br>< 2<br>< 2<br>< 10                                 | Result 2<br>1400<br>< 10<br>< 2<br>29<br>< 2<br>< 10                                | RPD<br>11<br><1<br><1<br>97<br><1<br><1 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                      | Pass<br>Pass<br>Fail<br>Pass<br>Pass                 | Q15 |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth<br>Boron                                  | S15-JI25734                                                                                                                                                                                 | CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP                   | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | Result 1           1500           < 10                                                        | Result 2<br>1400<br>< 10<br>< 2<br>29<br>< 2<br>< 10<br>< 10                        | RPD           11           <1           | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%               | Pass<br>Pass<br>Fail<br>Pass<br>Pass<br>Pass         | Q15 |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth<br>Boron<br>Cadmium                       | S15-Jl25734                                                                                                                                     | CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP             | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg          | Result 1         1500         < 10                                                            | Result 2<br>1400<br>< 10<br>< 2<br>29<br>< 2<br>< 10<br>< 10<br>< 0.4               | RPD           11           <1           | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%        | Pass<br>Pass<br>Fail<br>Pass<br>Pass<br>Pass<br>Pass | Q15 |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth<br>Boron<br>Cadmium<br>Chromium           | S15-JI25734                                                                   | CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP       | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | Result 1<br>1500<br>< 10<br>< 2<br>< 10<br>< 2<br>< 10<br>< 10<br>< 10<br>< 0.4<br>< 5        | Result 2<br>1400<br>< 10<br>< 2<br>29<br>< 2<br>< 10<br>< 10<br>< 0.4<br>< 5        | RPD           11           <1           | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | PassPassFailPassPassPassPassPassPassPass             | Q15 |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth<br>Boron<br>Cadmium<br>Chromium<br>Cobalt | S15-JI25734           S15-JI25734 | CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | Result 1<br>1500<br>< 10<br>< 2<br>< 10<br>< 2<br>< 10<br>< 10<br>< 10<br>< 0.4<br>< 5<br>< 5 | Result 2<br>1400<br>< 10<br>< 2<br>29<br>< 2<br>< 10<br>< 10<br>< 0.4<br>< 5<br>< 5 | RPD           11           <1           | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | PassPassFailPassPassPassPassPassPassPassPass         | Q15 |
| Duplicate<br>Heavy Metals<br>Aluminium<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth<br>Boron<br>Cadmium<br>Chromium           | S15-JI25734                                                                   | CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP<br>CP       | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | Result 1<br>1500<br>< 10<br>< 2<br>< 10<br>< 2<br>< 10<br>< 10<br>< 10<br>< 0.4<br>< 5        | Result 2<br>1400<br>< 10<br>< 2<br>29<br>< 2<br>< 10<br>< 10<br>< 0.4<br>< 5        | RPD           11           <1           | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | PassPassFailPassPassPassPassPassPassPass             | Q15 |



| Duplicate                         |                            |       |         |          |          |          |      |       |     |
|-----------------------------------|----------------------------|-------|---------|----------|----------|----------|------|-------|-----|
| Heavy Metals                      |                            |       |         | Result 1 | Result 2 | RPD      |      |       |     |
| Manganese                         | S15-Jl25734                | СР    | ma/ka   | 24       | 23       | 5.0      | 30%  | Pass  |     |
| 0                                 |                            | CP    | mg/kg   |          |          |          |      | + +   |     |
| Mercury                           | S15-JI25734                | CP    | mg/kg   | 0.25     | 0.31     | 21<br><1 | 30%  | Pass  |     |
| Molybdenum                        | S15-JI25734                |       | mg/kg   | < 5      | < 5      |          | 30%  | Pass  |     |
| Nickel                            | S15-JI25734                | CP    | mg/kg   | < 5      | < 5      | <1       | 30%  | Pass  |     |
| Selenium                          | S15-JI25734                | CP    | mg/kg   | < 2      | < 2      | <1       | 30%  | Pass  |     |
| Silver                            | S15-JI25734                | CP    | mg/kg   | < 5      | < 5      | <1       | 30%  | Pass  |     |
| Thallium                          | S15-JI25734                | CP    | mg/kg   | < 10     | < 10     | <1       | 30%  | Pass  |     |
| Tin                               | S15-JI25734                | CP    | mg/kg   | < 10     | < 10     | <1       | 30%  | Pass  |     |
| Uranium                           | S15-JI25734                | CP    | mg/kg   | < 1      | < 1      | <1       | 30%  | Pass  |     |
| Vanadium                          | S15-JI25734                | CP    | mg/kg   | < 10     | < 10     | <1       | 30%  | Pass  |     |
| Zinc                              | S15-JI25734                | CP    | mg/kg   | 21       | 35       | 49       | 30%  | Fail  | Q15 |
| Duplicate                         |                            |       |         | -        | 1        |          |      |       |     |
| Extended Metals Suite             | 1                          | 1     | i       | Result 1 | Result 2 | RPD      |      |       |     |
| Phosphorus                        | S15-Jl25734                | CP    | mg/kg   | 74       | 70       | 5.0      | 30%  | Pass  |     |
| Duplicate                         |                            |       |         |          |          |          |      |       |     |
| Total Recoverable Hydrocarbons    | - 1999 NEPM Fract          | tions |         | Result 1 | Result 2 | RPD      |      |       |     |
| TRH C6-C9                         | S15-Jl25735                | CP    | mg/kg   | < 20     | < 20     | <1       | 30%  | Pass  |     |
| Duplicate                         |                            |       |         |          |          |          |      |       |     |
| втех                              | 1                          | 1     |         | Result 1 | Result 2 | RPD      |      |       |     |
| Benzene                           | S15-Jl25735                | CP    | mg/kg   | < 0.1    | < 0.1    | <1       | 30%  | Pass  |     |
| Toluene                           | S15-Jl25735                | CP    | mg/kg   | < 0.1    | < 0.1    | <1       | 30%  | Pass  |     |
| Ethylbenzene                      | S15-Jl25735                | CP    | mg/kg   | < 0.1    | < 0.1    | <1       | 30%  | Pass  |     |
| m&p-Xylenes                       | S15-JI25735                | CP    | mg/kg   | < 0.2    | < 0.2    | <1       | 30%  | Pass  |     |
| o-Xylene                          | S15-Jl25735                | CP    | mg/kg   | < 0.1    | < 0.1    | <1       | 30%  | Pass  |     |
| Xylenes - Total                   | S15-Jl25735                | CP    | mg/kg   | < 0.3    | < 0.3    | <1       | 30%  | Pass  |     |
| Duplicate                         | ·                          |       |         |          |          |          | •    |       |     |
| Total Recoverable Hydrocarbons    | - 2013 NEPM Fract          | tions |         | Result 1 | Result 2 | RPD      |      |       |     |
| Naphthalene                       | S15-Jl25735                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| TRH C6-C10                        | S15-Jl25735                | СР    | mg/kg   | < 20     | < 20     | <1       | 30%  | Pass  |     |
| TRH C6-C10 less BTEX (F1)         | S15-Jl25735                | СР    | mg/kg   | < 20     | < 20     | <1       | 30%  | Pass  |     |
| Duplicate                         |                            | -     | 55      |          |          |          |      |       |     |
| Alkali Metals                     |                            |       |         | Result 1 | Result 2 | RPD      |      |       |     |
| Calcium                           | S15-Jl26988                | NCP   | mg/kg   | 4300     | 4100     | 5.0      | 30%  | Pass  |     |
| Potassium                         | S15-JI26988                | NCP   | mg/kg   | 1700     | 1800     | 8.0      | 30%  | Pass  |     |
| Duplicate                         | 0.000                      | 1.10  |         |          |          | 0.0      | 0070 | 1 400 |     |
| Extended Metals Suite             |                            |       |         | Result 1 | Result 2 | RPD      |      |       |     |
| Sulphur                           | S15-Jl26988                | NCP   | mg/kg   | 5500     | 6700     | 19       | 30%  | Pass  |     |
| Duplicate                         | 0100120000                 |       | iiig/kg | 0000     | 0100     | 10       | 0070 | 1 400 |     |
| Polycyclic Aromatic Hydrocarbon   | S                          |       |         | Result 1 | Result 2 | RPD      |      |       |     |
| Acenaphthene                      | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Acenaphthylene                    | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Anthracene                        | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Benz(a)anthracene                 | S15-JI25737<br>S15-JI25737 | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
|                                   |                            |       |         |          |          |          |      |       |     |
| Benzo(a)pyrene                    | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Benzo(b&j)fluoranthene            | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Benzo(g.h.i)perylene              | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Benzo(k)fluoranthene              | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Chrysene<br>Diberta b) anthropped | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Dibenz(a.h)anthracene             | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Fluoranthene                      | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Fluorene                          | S15-JI25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Indeno(1.2.3-cd)pyrene            | S15-Jl25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Naphthalene                       | S15-Jl25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Phenanthrene                      | S15-Jl25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |
| Pyrene                            | S15-Jl25737                | CP    | mg/kg   | < 0.5    | < 0.5    | <1       | 30%  | Pass  |     |



| Duplicate     |             |     |       |          |          |     |     |      |  |
|---------------|-------------|-----|-------|----------|----------|-----|-----|------|--|
| Alkali Metals |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| Magnesium     | S15-JI26988 | NCP | mg/kg | 2700     | 3000     | 11  | 30% | Pass |  |
| Sodium        | S15-JI26988 | NCP | mg/kg | 190      | 230      | 19  | 30% | Pass |  |



## Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

## **Qualifier Codes/Comments**

Code Description

 N01
 F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

 N01
 Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N04 F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins | mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

## Authorised By

| Charl Du Preez  | Analytical Services Manager    |
|-----------------|--------------------------------|
| Bob Symons      | Senior Analyst-Asbestos (NSW)  |
| Bob Symons      | Senior Analyst-Inorganic (NSW) |
| Emily Rosenberg | Senior Analyst-Metal (VIC)     |
| Huong Le        | Senior Analyst-Inorganic (VIC) |
| Ivan Taylor     | Senior Analyst-Metal (NSW)     |
| Ryan Hamilton   | Senior Analyst-Organic (NSW)   |
| Ryan Hamilton   | Senior Analyst-Volatile (NSW)  |

ling the

Glenn Jackson National Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofine; Ing shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine; Ing the liable for cost, easily and the liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofine; Ing the liable for cost, easily and the liable for cost of the start of the start



Artarmon, Sydney Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 47 - 49 Carlotta Street Artarmon SYDNEY NSW 2064

| coffe                                                                                        |                                                                                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                   | Phone: +61 2 9437 0137                                                                                                    |                                                                                    |                       |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|
|                                                                                              | <u> </u>                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                                           |                                                                                    |                       |
|                                                                                              |                                                                                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                   | Repo                                                                                                                      | ort No: ARTA15                                                                     | 5S-00428<br>Issue No: |
| /laterial                                                                                    | I Test Repo                                                                                                                        | rt                                                                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                           |                                                                                    | 15500 100.            |
| lient:                                                                                       | Coffey Geotechnics Pty Ltd (Chatswood)                                                                                             |                                                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                                           | ed for compliance with ISO                                                         |                       |
| PO Box 5275<br>West Chatswood NSW 1515                                                       |                                                                                                                                    |                                                                                                                                                                                                                                       | The results of the tests, calibrations and/or measurements included in this document are tracea to Australian/national standards. |                                                                                                                           |                                                                                    |                       |
| rincipal:                                                                                    |                                                                                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                   | NATA softms                                                                                                               |                                                                                    |                       |
| Project No .:                                                                                | INFOARTA01378AA                                                                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                                           | d Signatory: Garry Collins                                                         |                       |
| ot No.:                                                                                      | GEOTLCOV24080AS - M                                                                                                                | IATERIAL SCIENCE E<br>TRN:                                                                                                                                                                                                            | BUILDING, UNSW                                                                                                                    | ACCREDITATION NATA AC                                                                                                     | sed Testing Manager)<br>ccredited Laboratory Numb<br>ssue: 12/08/2015              | oer:431               |
| Sample De                                                                                    | etails                                                                                                                             |                                                                                                                                                                                                                                       | Other Test R                                                                                                                      | esults                                                                                                                    |                                                                                    |                       |
| Sample ID:<br>Client Sample:                                                                 | ARTA15S-0042<br>BH03                                                                                                               | 28                                                                                                                                                                                                                                    | Description                                                                                                                       | Method                                                                                                                    | Result                                                                             | Limits                |
| ource:<br>laterial:<br>pecification:<br>ampling Meth<br>roject Locatio<br>ample Locatio      | on: Kensington, NS                                                                                                                 | lient<br>SW                                                                                                                                                                                                                           |                                                                                                                                   |                                                                                                                           |                                                                                    |                       |
|                                                                                              |                                                                                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                                           |                                                                                    |                       |
| article Size                                                                                 | e Distribution                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                   | Method: AS                                                                                                                | 1289 3 6 1                                                                         |                       |
|                                                                                              | e Distribution                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                   | Drving by: Ove                                                                                                            |                                                                                    |                       |
| % Passing                                                                                    | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>300µm<br>600µm<br>1.18mm<br>2.36mm                                                                                                                                                                          | 4.75mm<br>6.76mm<br>9.56m<br>19.32mm<br>19.32mm<br>26.56mm<br>28.55mm<br>53.06mm<br>75.0mm                                        | Drying by: Ove                                                                                                            | en                                                                                 |                       |
| % Passing                                                                                    | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>300µm<br>600µm<br>1.18mm<br>2.36mm                                                                                                                                                                          | 4.75mm<br>6.7mm<br>9.5mm<br>19.0mm<br>26.5mm<br>33.5mm<br>53.0mm                                                                  | Drying by: Ove<br>Date Tested: 5<br>Note: 5                                                                               | en<br>5/08/2015<br>Sample Washed                                                   | Limite                |
| % Passing                                                                                    | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>300µm<br>600µm<br>1.18mm<br>2.36nm                                                                                                                                                                          | 4.75mm<br>6.7mm<br>9.5mm<br>13.0mm<br>26.5mm<br>33.0mm<br>53.0mm                                                                  | Drying by: Ove<br>Date Tested: 5<br>Note: 5<br>Sieve Size<br>2.36mm                                                       | en<br>5/08/2015                                                                    | Limits                |
| % Passing                                                                                    | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>300µm<br>600µm<br>1.18mm                                                                                                                                                                                    | 4.75mm<br>6.7mm<br>9.5mm<br>19.0mm<br>19.0mm<br>26.5mm<br>53.0mm                                                                  | Drying by: Ove<br>Date Tested: 5<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm                                             | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99                         | Limits                |
| % Passing                                                                                    | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>212µm<br>425µm<br>600µm<br>1.18mm<br>2.36mm                                                                                                                                                                 | 4.75mm<br>6.7mm<br>9.5mm<br>19.0mm<br>26.5mm<br>33.5mm<br>53.0mm                                                                  | Drying by: Ove<br>Date Tested: 5<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm                           | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66             | Limits                |
| % Passing                                                                                    | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>212µm<br>212µm<br>600µm<br>600µm<br>2.36nm                                                                                                                                                                  | 4.75mm<br>6.7mm<br>9.5mm<br>13.2mm<br>13.2mm<br>26.5mm<br>53.5mm<br>53.0mm                                                        | Drying by: Ove<br>Date Tested: 5<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm                                    | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45<br>28 | Limits                |
| % Passing                                                                                    | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>300µm<br>600µm<br>1.18mm                                                                                                                                                                                    | 4.75mm<br>6.7mm<br>9.5mm<br>13.0mm<br>26.5mm<br>33.0mm<br>53.0mm                                                                  | Drying by: Ove<br>Date Tested: 4<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm<br>300µm                  | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45       | Limits                |
| % Passing<br>100 - · · · · · · ·<br>90 - · · · · · ·<br>80 - · · · · · ·<br>70 - · · · · · · | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>425µm<br>600µm<br>1.18mm<br>2.36mm                                                                                                                                                                          | 4.75mm<br>6.7mm<br>9.5mm<br>19.0mm<br>19.0mm<br>26.5mm<br>33.0mm<br>75.0mm                                                        | Drying by: Ove<br>Date Tested: 4<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm<br>300µm<br>150µm         | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45<br>28 | Limits                |
| % Passing<br>100                                                                             | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>212µm<br>425µm<br>600µm<br>1.18mm                                                                                                                                                                           | 4.75mm<br>6.7mm<br>9.5mm<br>19.0mm<br>26.5mm<br>53.5mm<br>53.5mm                                                                  | Drying by: Ove<br>Date Tested: 4<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm<br>300µm<br>150µm         | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45<br>28 | Limits                |
| % Passing<br>100                                                                             | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>212µm<br>212µm<br>600µm<br>600µm                                                                                                                                                                            | 4.75mm<br>6.7mm<br>9.5mm<br>13.0mm<br>26.5mm<br>53.0mm<br>53.0mm                                                                  | Drying by: Ove<br>Date Tested: 4<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm<br>300µm<br>150µm         | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45<br>28 | Limits                |
| % Passing<br>100                                                                             | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>425µm<br>600µm<br>1.18mm<br>2.36mm                                                                                                                                                                          | 4.75mm<br>6.7mm<br>9.5mm<br>19.0mm<br>19.0mm<br>2.6.5mm<br>3.0mm<br>75.0mm                                                        | Drying by: Ove<br>Date Tested: 4<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm<br>300µm<br>150µm         | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45<br>28 | Limits                |
| % Passing<br>100                                                                             | e Distribution                                                                                                                     | 75µm<br>150µm<br>212µm<br>212µm<br>212µm<br>600µm<br>600µm                                                                                                                                                                            | 4.75mm<br>6.7mm<br>9.5mm<br>13.2mm<br>13.2mm<br>53.5mm<br>53.5mm                                                                  | Drying by: Ove<br>Date Tested: 4<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm<br>300µm<br>150µm         | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45<br>28 | Limits                |
| % Passing<br>100                                                                             |                                                                                                                                    | 0.06<br>0.1<br>0.2<br>0.5<br>0.6<br>0.6<br>1.8<br>0.6<br>0.6<br>1.8<br>0.6<br>0.6<br>1.8<br>0.6<br>0.0<br>1.8<br>0.0<br>0.6<br>0.0<br>1.8<br>0.0<br>0.0<br>2.35<br>0.0<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 |                                                                                                                                   | Drying by: Ove<br>Date Tested: 4<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm<br>300µm<br>150µm         | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45<br>28 | Limits                |
| % Passing<br>100                                                                             | මී වි වි වී ට<br>ට<br>පි වි වි වී ව<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට<br>ට | 8 - 0 - 0<br>5 - 0 - 0<br>5 - 0 - 0<br>5 - 0 - 0<br>5 - 0                                                                                                                                                                             |                                                                                                                                   | Drying by: Ove<br>Date Tested: 4<br>Note: 5<br>Sieve Size<br>2.36mm<br>1.18mm<br>600µm<br>425µm<br>300µm<br>150µm<br>75µm | en<br>5/08/2015<br>Sample Washed<br>% Passing<br>100<br>99<br>90<br>66<br>45<br>28 | Limits                |

## Comments



Artarmon, Sydney Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 47 - 49 Carlotta Street Artarmon SYDNEY NSW 2064

Phone: +61 2 9437 0137

## Report No: ARTA15S-00429-1 Issue No: 1 Material Test Report Accredited for compliance with ISO/IEC 17025. Client: Coffey Geotechnics Pty Ltd (Chatswood) PO Box 5275 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. West Chatswood NSW 1515 ΝΑΤΑ Principal: leftins Project No.: INFOARTA01378AA Approved Signatory: Garry Collins Project Name: GEOTLCOV24080AS - MATERIAL SCIENCE BUILDING, UNSW

TRN:

## Sample Details

Lot No .:

## Test Results

| Description          | Method        | Result Limi |
|----------------------|---------------|-------------|
| Sample History       | AS 1289.1.1   | Air-dried   |
| Preparation          | AS 1289.1.1   | Dry Sieved  |
| Linear Shrinkage (%) | AS 1289.3.4.1 | 7.0         |
| Mould Length (mm)    |               | 250.1       |
| Crumbling            |               | No          |
| Curling              |               | No          |
| Cracking             |               | Yes         |
| Liquid Limit (%)     | AS 1289.3.1.2 | 33          |
| Method               |               | One Point   |
| Plastic Limit (%)    | AS 1289.3.2.1 | 16          |
| Plasticity Index (%) | AS 1289.3.3.1 | 17          |
| Date Tested          |               | 5/08/2015   |

## Comments



(Specialised Testing Manager) NATA Accredited Laboratory Number:431 Date of Issue: 12/08/2015