Remediation Action Plan

Site 9
Corner Sarah Durack Avenue & Olympic Boulevard
Homebush NSW 2127

ECOVE Group

DL3620_S004383

April 2016
DISCLAIMER

DLA Environmental Services (DLA) acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services. Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and DLA. DLA is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports. Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of DLA.

The conclusions presented in this report are relevant to the present condition of the Site and the state of legislation currently enacted as at the date of this report. DLA do not make any representation or warranty that the conclusions in this report will be applicable in the future as there may be changes in the condition of the Site, applicable legislation or other factors that would affect the conclusions contained in this report.

This report is limited to the scope defined herein. Sampling and chemical analysis of environmental media are based on representative samples, the intensity of those samples being in accordance with the usual levels of testing carried out for this type of investigation and appropriate for the objectives of this report. Due to the inherent variability in environmental media, DLA cannot warrant that the whole overall condition of the Site is identical or substantially similar to the representative samples.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>Asbestos Containing Material</td>
</tr>
<tr>
<td>AHD</td>
<td>Australian Height Datum</td>
</tr>
<tr>
<td>ANZECC</td>
<td>Australian and New Zealand Environment and Conservation Council</td>
</tr>
<tr>
<td>AST</td>
<td>Above-ground Storage Tank</td>
</tr>
<tr>
<td>ASS</td>
<td>Acid Sulfate Soil</td>
</tr>
<tr>
<td>B(a)P</td>
<td>Benzo(a)Pyrene</td>
</tr>
<tr>
<td>BGL</td>
<td>Below Ground Level</td>
</tr>
<tr>
<td>BH</td>
<td>Borehole</td>
</tr>
<tr>
<td>BTEX</td>
<td>Benzene, Toluene, Ethyl Benzene, Xylene</td>
</tr>
<tr>
<td>COC</td>
<td>Chain of Custody documentation</td>
</tr>
<tr>
<td>CLM</td>
<td>Contaminated Land Management</td>
</tr>
<tr>
<td>DA</td>
<td>Development Application</td>
</tr>
<tr>
<td>DEC</td>
<td>Department of Environment and Conservation (NSW)</td>
</tr>
<tr>
<td>DECC</td>
<td>Department of Environment and Climate Change (NSW)</td>
</tr>
<tr>
<td>DECCW</td>
<td>Department of Environment, Climate Change and Water (NSW)</td>
</tr>
<tr>
<td>DLA</td>
<td>DLA Environmental Services</td>
</tr>
<tr>
<td>DP</td>
<td>Deposited Plan</td>
</tr>
<tr>
<td>DQO</td>
<td>Data Quality Objective</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical Conductivity</td>
</tr>
<tr>
<td>EIL</td>
<td>Ecological Investigation Level</td>
</tr>
<tr>
<td>EMP</td>
<td>Environmental Management Plan</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Authority (NSW)</td>
</tr>
<tr>
<td>ESL</td>
<td>Ecological Screening Level</td>
</tr>
<tr>
<td>HIL</td>
<td>Health-Based Investigation Level</td>
</tr>
<tr>
<td>LOR</td>
<td>Limit of Reporting</td>
</tr>
<tr>
<td>MW</td>
<td>Monitoring Well</td>
</tr>
<tr>
<td>NATA</td>
<td>National Association of Testing Authorities, Australia</td>
</tr>
<tr>
<td>NEPC</td>
<td>National Environment Protection Council</td>
</tr>
<tr>
<td>NEPM</td>
<td>National Environment Protection Measure</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NRMMC</td>
<td>Natural Resource Management Ministerial Council</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>OCP</td>
<td>Organochlorine Pesticides</td>
</tr>
<tr>
<td>OEH</td>
<td>Office of Environmental and Heritage</td>
</tr>
<tr>
<td>OPP</td>
<td>Organophosphorus Pesticides</td>
</tr>
<tr>
<td>OH&S</td>
<td>Occupational Health and Safety</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic Aromatic Hydrocarbons</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated Biphenyls</td>
</tr>
<tr>
<td>PQL</td>
<td>Practical Quantification Limit</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality Assurance and Quality Control</td>
</tr>
<tr>
<td>RAP</td>
<td>Remedial Action Plan</td>
</tr>
<tr>
<td>RPD</td>
<td>Relative Percentage Difference</td>
</tr>
<tr>
<td>SAC</td>
<td>Site Acceptance Criteria</td>
</tr>
<tr>
<td>SAQP</td>
<td>Sampling Analysis and Quality Plan</td>
</tr>
<tr>
<td>SEPP</td>
<td>State Environmental Planning Policy</td>
</tr>
<tr>
<td>SWL</td>
<td>Standing Water Level</td>
</tr>
<tr>
<td>TCLP</td>
<td>Toxicity Characteristic Leaching Procedure</td>
</tr>
<tr>
<td>TRH</td>
<td>Total Recoverable Hydrocarbons</td>
</tr>
<tr>
<td>UCL</td>
<td>Upper Confidence Limit</td>
</tr>
<tr>
<td>UST</td>
<td>Underground Storage Tank</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>WHS</td>
<td>Work Health Safety</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 General

1.2 Development Controls

1.3 Objectives

1.4 Scope of Works

1.5 Remediation Guidelines

2.0 SITE DESCRIPTION

2.1 Site Identification

2.2 Proposed Development

2.3 Boundaries and Surrounding Land Use

2.4 Site Geology and Soils

2.5 Site Topography

2.6 Acid Sulphate Soils

2.7 Salinity and Aggressivity of Soils

2.8 Hydrology and Hydrogeology

2.9 Site Meteorology

2.10 Site History Summary

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS

3.1 Environmental and Geotechnical Investigation, Site 9 Sydney Olympic Park (URS, November, 2002)

3.2 Remediation Plan (URS, December 2002)

3.3 Waste Classification Assessment (Douglas Partners, May 2003)

3.4 Stage II Detailed Site Investigation (DLA Environmental, February 2016)

3.5 Contamination Status

3.5.1 Soils

3.5.2 Groundwater

3.5.3 Soil and Landfill Gas

3.5.4 Asbestos

4.0 CONCEPTUAL SITE MODEL
4.1 Contaminants of Concern ... 13
4.2 Release and Transport Mechanisms ... 13
 4.2.1 Landfill Gas Transport Mechanisms .. 14
4.3 Exposure Pathways ... 14
4.4 Sensitive Receptors .. 15
5.0 SELECTION OF PREFERRED REMEDIAL STRATEGY ... 17
 5.1 Overview .. 17
 5.1.1 Excavation and Off-Site Disposal ... 17
 5.1.2 On-Site Capping and Containment ... 18
5.2 Technical Appraisal .. 18
5.3 Economic Appraisal ... 20
5.4 Preferred Strategy .. 20
6.0 IMPLEMENTATION OF SELECTED STRATEGY ... 22
 6.1 General ... 22
 6.2 Stakeholder Consultation .. 22
 6.3 Implementation of Site Environmental Management Plan .. 22
 6.4 Site Establishment and Pre-Remedial Works .. 23
 6.5 Remediation Works ... 23
 6.5.1 LFG Gas Protection Measures .. 23
 6.5.2 Venting and Dilution Measures ... 23
 6.5.3 Floor Slab .. 24
 6.5.4 Gas membrane .. 25
 6.5.5 Monitoring ... 26
 6.5.6 Management of Asbestos and Landfill Material ... 27
 6.5.1 Management of Leachate and Surface Water ... 27
 6.5.2 Management of Unexpected Finds ... 27
7.0 VALIDATION PLAN .. 29
 7.1 Extent of Validation .. 29
 7.2 Validation Procedure ... 29
 7.3 Validation Guidelines .. 29
7.4 Validation Report .. 30
7.5 Validation of Gas Protection Measures .. 30
 7.5.1 Installation ... 30
 7.5.2 Effectiveness .. 30
 7.5.3 Validation Criteria ... 31
8.0 SOIL MANAGEMENT .. 32
 8.1 Importation of Soil ... 32
 8.2 Waste Disposal .. 33
9.0 CONTINGENCY PLAN .. 34
 9.1 Remediation Contingency .. 34
 9.2 Unexpected Finds ... 34
10.0 Site Environmental Management Plan ... 35
 10.1 Introduction ... 35
 10.2 Erosion Sedimentation Control Plan ... 35
 10.3 Noise Control Plan ... 36
 10.4 Dust Control Plan .. 36
 10.5 Odour Control Plan .. 37
 10.6 Health and Safety .. 37
 10.6.1 Occupational Health and Safety ... 37
 10.6.2 Personal Hygiene and Decontamination .. 39
 10.6.3 Community Health and Safety .. 39
 10.7 Traffic Control Plan .. 40
 10.8 Hours of Operation .. 40
 10.9 Emergency and Out of Hours Contact Numbers ... 40
11.0 CONCLUSION ... 41
12.0 REFERENCES .. 42
FIGURES

Figure 1 Site Location
Figure 2 Site Layout and Bore Locations
Figure 3 Site Layout and Area of Environmental Concern

APPENDICES

Appendix A Unexpected Findings Protocol
Appendix B Groundwater Works Database Search
1.0 INTRODUCTION

1.1 General

DLA Environmental Services (DLA) was commissioned by ECOVE Group to prepare a Remediation Action Plan (RAP) for the property identified as:

Site 9 – Corner Sarah Durack Ave and Olympic Boulevard, Sydney Olympic Park (the Site)

A RAP provides information on the works which are proposed to manage and remediate contamination identified at the Site. The RAP has been prepared utilising information obtained from previous assessment reports and from experience, knowledge, and current industry practice in the remediation of similar sites.

1.2 Development Controls

The preparation of a Remediation Action Plan was undertaken in anticipation of the Development Approval (DA) Consent. The conditions are expected to require a Remediation Action Plan to be prepared and approved by a NSW EPA Accredited Site Auditor.

1.3 Objectives

This purpose of this report is to set remediation goals and document the management procedures and environmental safeguards to be implemented to ensure the Site will be rendered suitable for future land use consistent with Residential B in the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1) (‘NEPM’, NEPC, 2013), thereby posing no unacceptable risk to human health or the environment generally.

1.4 Scope of Works

In achieving this objective, the RAP will provide:

- Brief summary of the history and environmental setting of the Site;
- Summary of the previous environmental investigations at the Site;
- Definition of the extent of remediation required;
- Review of the currently available remediation options;
- Details of the preferred remediation strategy and an outline of the methodology for the implementation of the selected strategy;
Details of the adopted validation programme;
- Brief outline of environmental pollution control, community health and safety, and occupational health and safety measures that should be implemented during remedial works;
- Outline of regulatory approvals and licences which may be required; and,
- Outline any potential ongoing monitoring or management requirements to ensure the continued protection of human health and the environment.

1.5 Remediation Guidelines

The RAP has been prepared with consideration to the following guidelines and legislation where relevant:

- *Australian and New Zealand Guidelines for Assessment and Management of Contaminated Sites* (ANZECC, 1992);
- *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (NSW EPA, 2011);
- *Contaminated Sites: Sampling Design Guidelines* (NSW EPA, 1995);
- *Guidelines for the NSW Site Auditor Scheme* (NSW EPA, 2nd ed., 2006);
- *Managing Land Contamination, Planning Guidelines, SEPP 55: Remediation of Land* (DUAP, 1998);
- *Managing Asbestos In or On Soil* (NSW WorkCover, 2014);
- *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1)* (NEPC, 2013);
- *Work Health and Safety Act 2011* (NSW) and associated regulations.
2.0 SITE DESCRIPTION

2.1 Site Identification

The Site identification details are summarised in Table 2a below:

Table 2a – Site Identification Summary

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name</td>
<td>Site 9 – Sydney Olympic Park</td>
</tr>
<tr>
<td>Address</td>
<td>Corner Sarah Durack Ave and Olympic Boulevard</td>
</tr>
<tr>
<td>Local Government Authority</td>
<td>Auburn City Council</td>
</tr>
<tr>
<td>Lot and Deposited Plan</td>
<td>Part Lot 2004 DP 1192085</td>
</tr>
<tr>
<td>Development Controls</td>
<td>Auburn Local Environmental Plan 2010</td>
</tr>
<tr>
<td>Site Zoning</td>
<td>Major Development – SEPP 2005</td>
</tr>
<tr>
<td>Current Use (NEPM 2013 Table 1A(1))</td>
<td>Commercial / Industrial & Residential B</td>
</tr>
<tr>
<td>Proposed Use (NEPM 2013 Table 1A(1))</td>
<td>Commercial / Industrial & Residential B</td>
</tr>
<tr>
<td>Site Area (approx.)</td>
<td>4,836 m² (0.48 ha)</td>
</tr>
<tr>
<td>Locality Map</td>
<td>Refer to Figure 1 – Site Location</td>
</tr>
</tbody>
</table>

2.2 Proposed Development

Based on the information provided, the Site is proposed to undergo redevelopment to commercial land use on the ground floor with high density residential and offices on upper levels. This development scenario is consistent with the definition of ‘Residential with minimal opportunities for soil access provided in Schedule B7 of the NEPM (NEPC, 2013).

2.3 Boundaries and Surrounding Land Use

The boundary and surrounding landscape features of the Site are summarised in Table 2b below:

Table 2b – Boundaries and Surrounding Land Use

<table>
<thead>
<tr>
<th>DIRECTION</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>Sarah Durack Avenue</td>
</tr>
<tr>
<td>East</td>
<td>P3 Carpark</td>
</tr>
<tr>
<td>South</td>
<td>Tom Wills Oval and Learning Life Centre</td>
</tr>
<tr>
<td>West</td>
<td>Olympic Boulevard</td>
</tr>
</tbody>
</table>
2.4 Site Geology and Soils

Review of the Geological Survey map of NSW Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) indicates that the Site is underlain by Quaternary sands, silty clays and man-made filling.

Review of the Sydney 1:1 000 000 Soil Map (Sheet 9130) indicated that the Site is underlain by the Blacktown Landscape Group. This is characterised by gently undulating rises with local relief to 30m and slopes usually <5%. Broad rounded crests and ridges with gently inclined slopes. Soils comprise shallow to moderately deep red and brown podzolic soils on crests, upper slopes and well drained areas, and deep yellow podzolic soils and soloths on lower slopes and in areas of poor drainage. Limitations of the soils of the Blacktown landscape group include moderately reactive highly plastic subsoil, low soil fertility and poor soil drainage.

The majority of the site (with the exception of the north western corner) comprises of landfill with existing cap and contain measures, based on site observations the containment measures consist of clay capping at the surface.

2.5 Site Topography

The Site is relatively flat with a gentle slope towards the south east. The elevation of the site ranges from 17m (north west) to 14m AHD (south east).

2.6 Acid Sulphate Soils

Review of the Acid Sulfate Soil Risk Map – Edition Two for Parramatta/Prospect (DLWC 1997) indicated that the Site is within disturbed terrain. No visual indications of acid sulfate soils were observed.

2.7 Salinity and Aggressivity of Soils

The Salinity Potential in Western Sydney map (DIPNR, 2002) indicates the Site and the Sydney Olympic Park area generally is within a region of moderate salinity potential.

2.8 Hydrology and Hydrogeology

Approximately 75% of the Site is sealed and rainfall falling on the sealed surface is expected to flow into the underground stormwater drainage system. Approximately 25% of the Site is unsealed and situated on permeable soils. As such, rainfall is expected to infiltrate the unsealed surfaces of the Site, excess rainfall would be expected to flow toward the stormwater drainage system.
A search of the Department of Natural Resources groundwater database was also performed to identify wells in the vicinity of the Site. The search results identified eight registered groundwater monitoring wells located within 4km of the Site, the information of which is presented below:

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>DISTANCE FROM SITE (m)</th>
<th>PURPOSE</th>
<th>DEPTH (m)</th>
<th>STANDING WATER LEVEL (m)</th>
<th>SALINITY (µS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW111341</td>
<td>N – 365m</td>
<td>Monitoring</td>
<td>8.00</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>GW111342</td>
<td>N – 370m</td>
<td>Monitoring</td>
<td>8.00</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>GW111343</td>
<td>N – 360m</td>
<td>Monitoring</td>
<td>8.00</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102550</td>
<td>W – 700m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>1.80</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102553</td>
<td>W – 935m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>1.83</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102555</td>
<td>W – 850m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>1.83</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102556</td>
<td>W – 915m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>1.83</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102557</td>
<td>W – 910m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102558</td>
<td>W – 745m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>1.83</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102559</td>
<td>W – 750m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>1.83</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102561</td>
<td>W – 600m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>1.83</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102562</td>
<td>W – 485m</td>
<td>Monitoring</td>
<td>4.00</td>
<td>1.83</td>
<td>No Data</td>
</tr>
<tr>
<td>GW102645</td>
<td>S – 800m</td>
<td>Monitoring</td>
<td>10.00</td>
<td>No Data</td>
<td>No Data</td>
</tr>
</tbody>
</table>

Refer to Appendix B – Groundwater Works Database Search.

It is expected that localised hydraulic gradient at the site, in particular with the landfill section will be slightly negative with general flow to the centre of the landfill, in order to manage the leachate flow.
2.9 Site Meteorology

The Bureau of Meteorology NSW gives the average annual rainfall for the Sydney Olympic Park area at 884.0mm, with an annual daytime temperature range of 13.9° to 28.4°C, and an annual average temperature of 23.6°C.

2.10 Site History Summary

The area of investigation is known to have received waste and fill material for landfill. The Site is located on the boundary of the landfill and encompasses both fill material and natural soils, with an existing cap and contain approach for the landfill. It is understood that the landfill design in the particular area of the site, includes the excavation of a landfill cell with backfill of unsuitable materials and capping with clay fill materials. It is also understood that the hydraulic gradient in the landfill area is designed to be slightly negative to the centre of the landfill and there is no specific leachate collection or containment infrastructure within the vicinity of the site.

Previous contamination investigations have identified contaminated material including elevated benzene, toluene, ethylbenzene and xylenes (BTEX), naphthalene and total petroleum hydrocarbons (TPH) on the Site (Section 3.0). The site was redeveloped as part of the wider Sydney Olympic Park area and has been used as an open air car park since approximately 2000.
3.0 SUMMARY OF PREVIOUS INVESTIGATIONS

3.1 Environmental and Geotechnical Investigation, Site 9 Sydney Olympic Park (URS, November, 2002)

A summary of the works and the findings of the assessment are as follows:

- Six boreholes were drilled across the Site with samples collected for contamination and geotechnical investigations. One monitoring well was installed in the investigation (BH112).
- Landfill odours were noted across all boreholes, predominately in the fill material and slightly extending into the residual clay.
- Depth to bedrock varied between 5.7m (BH115) to 9.3m (BH111) to a low strength shale.
- Groundwater was encountered at 5.5m (BH111 and BH112) and 6.0m (BH116) during the investigation works.
- Elevated levels of TPH (C_{10}-C_{36}) were detected with a maximum concentration of 15,318mg/kg (BH112) in soil sample at a depth of 6.0 metres. Elevated levels of ethylbenzene were detected in BH111 at a depth of 7.0 metres with a concentration of 78.8mg/kg. All other samples contained levels of contaminants below the adopted site assessment criteria or below the laboratory level of reporting (LOR).
- Slightly elevated levels of metals (chromium, copper, zinc and mercury) and TPH were detected in groundwater above the adopted trigger values. All other analytes were recorded below the laboratory LOR.

3.2 Remediation Plan (URS, December 2002)

A summary of the remediation plan is:

- The impacted material identified in previous contamination investigations was above the adopted Site Criteria and required remediation. The preferred remediation method was excavation and off-site removal to a licensed landfill.
- A layer of clean material may be required for any unsealed areas (landscaped) of the Site to mitigate potential exposure of future Site users to the underlying impacted soils.
3.3 Waste Classification Assessment (Douglas Partners, May 2003)

A summary of the works and the findings of the assessment are as follows:

- A waste classification assessment was conducted to allow redevelopment of the Site. Twelve boreholes were constructed to a maximum depth of 6.5m or refusal.
- Observations on the Site indicated that the subject site forms part of the former municipal landfill site, which was redeveloped as part of the Sydney Olympic precinct. Refuse material was identified during site works with landfill odours.
- Sample results from BH7 (5.0m) recorded concentrations of heavy metal and organic contaminants (BTEX, naphthalene and TPH) in excess of the adopted site assessment criteria. It was assumed that the localised elevated results were due to heavy industrial oily liquid waste or similar substances within the landfill.
- Fragments of asbestos cement sheeting were noted in BH5 only, although the extent of asbestos impacted material was unknown.
- The material was classified into solid waste and hazardous waste. The solid waste applied to all material below 0.5m bgl, with the exception of material from BH7 (4.5-6m). Hazardous waste applied to the material in the vicinity of BH7 (4.5-6.0m) bgl. The asphalt, topsoil and road base (to 0.5m) were classified as inert waste.

3.4 Stage II Detailed Site Investigation (DLA Environmental, February 2016)

A summary of the works and the findings of the assessment are as follows:

- Eight boreholes were drilled in targeted locations to provide coverage of the Site area.
- Levels of total PAH, benzo(a)pyrene and naphthalene were observed in soil samples collected from within the landfill material. Low levels of F2 and F3 hydrocarbons were also detected within the landfill and fill materials identified on Site. The contaminants were reported below the Site acceptance criteria and are not expected to migrate off site.
- Asbestos fibres were identified in one borehole (BH7) at a depth of approximately 4.0 metres within landfill material. The asbestos fibres are expected to be contained at depth and are not deemed to be a risk to human health.
- Groundwater monitoring wells installed within the landfill contained elevated levels of methane, phenols, ammonia, total suspended solids (TSS), total organic compounds (TOC) and nitrogen above the laboratory level of reporting (LOR).
- Heavy metal analysis of groundwater identified exceedances of the adopted site criteria across all three sampled monitoring wells. However, none are considered a risk to human or ecological health risk within the urbanised area of the Site.
• Based on a Level 1 Risk Analysis and Assessment of landfill gas production on the Site, the risk has been determined to be ‘High Risk’
• Based upon the findings, a corresponding Characteristic Gas Situation (CS) of four (4) for the Site is recommended. In accordance with guideline requirements, gas protection measures for the Site are required.

3.5 Contamination Status

3.5.1 Soils

Fill was identified on the Site to a depth of 7.9 metres consisting of sandy clay, clayey sand, general refuse including plastic, rubber, timber and unidentifiable black mass. Natural soils consists of silty clay and sandy clay ranging in colours red, white, yellow overlaying extremely weathered shale.

No soil samples were reported concentrations exceeding the Site Acceptance Criteria (SAC) of Residential B (NEPM; NEPC 2013) for heavy metals, BTEX, vTRH, sTRH, Naphthalene, B(a)P, Total PAH, PCB or pesticides.

3.5.2 Groundwater

Groundwater monitoring wells installed within the landfill contained elevated levels of methane, phenols, ammonia, total suspended solids (TSS), total organic compounds (TOC) and nitrogen above the laboratory level of reporting (LOR). The levels of analytes were observed to be higher within the landfill when compared to the monitoring well located outside of the landfill (BH1). Groundwater within the landfill are considered to be leachate.

Some minor concentrations of benzene, toluene, ethylbenzene and xylene were reported above the laboratory LOR. Monitoring wells BH4 and BH8 reported levels of naphthalene and F1, F2 and F3 hydrocarbons (C6-C34) above the laboratory LOR. No detections of hydrocarbons in the F4 hydrocarbon (C34 – C40) fraction were observed in any of the three monitoring wells sampled.

Heavy metal analysis revealed some exceedances with relation to arsenic, cadmium, chromium, copper, nickel and zinc. Elevated levels are expected to be due to the leachate from the landfill material. The levels are not considered significant in the context of a human or ecological health risk within the urbanised area of the Site.
3.5.3 Soil and Landfill Gas

All gas monitoring locations were assessed for relevant landfill gas constituents, weather conditions, soil moisture, flow rates, differential pressure and barometric pressure were recorded. All borehole locations were assessed for major landfill gas constituents Methane (CH$_4$), Carbon Dioxide (CO$_2$), Oxygen (O$_2$), Carbon Monoxide (CO) and Hydrogen Sulphide (H$_2$S). All sample locations reported concentrations of CH$_4$, CO$_2$, CO concentrations above the detection limit of the GFM430 as shown in Table 3a.

Table 3a: Gas monitoring results

<table>
<thead>
<tr>
<th>ID</th>
<th>DATE</th>
<th>CH$_4$ (%)</th>
<th>CO$_2$ (%)</th>
<th>O$_2$ (%)</th>
<th>FLOW (L/hr)</th>
<th>CO (ppm)</th>
<th>H$_2$S (ppm)</th>
<th>Balance (%)</th>
<th>Barometric Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH1</td>
<td>1/02/16</td>
<td>1.4</td>
<td>13.8</td>
<td>12.5</td>
<td>0</td>
<td>1029</td>
<td>86</td>
<td>72.3</td>
<td>998</td>
</tr>
<tr>
<td></td>
<td>5/02/16</td>
<td>0.4</td>
<td>12.1</td>
<td>14.5</td>
<td>0</td>
<td>247</td>
<td>23</td>
<td>12.0</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>8/02/16</td>
<td>0.3</td>
<td>17.7</td>
<td>9.4</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>10.2</td>
<td>1013</td>
</tr>
<tr>
<td>BH2</td>
<td>1/02/16</td>
<td>63.8</td>
<td>17.7</td>
<td>0.0</td>
<td>8.1</td>
<td>13</td>
<td>1</td>
<td>18.5</td>
<td>996</td>
</tr>
<tr>
<td></td>
<td>5/02/16</td>
<td>70.7</td>
<td>17.3</td>
<td>0.0</td>
<td>6.4</td>
<td>6</td>
<td>1</td>
<td>73.0</td>
<td>1014</td>
</tr>
<tr>
<td></td>
<td>8/02/16</td>
<td>71.1</td>
<td>18.7</td>
<td>0.0</td>
<td>6.3</td>
<td>2</td>
<td>5</td>
<td>72.6</td>
<td>1014</td>
</tr>
<tr>
<td>BH4</td>
<td>1/02/16</td>
<td>63.5</td>
<td>18.0</td>
<td>0.0</td>
<td>5.5</td>
<td>8</td>
<td>0</td>
<td>18.5</td>
<td>996</td>
</tr>
<tr>
<td></td>
<td>5/02/16</td>
<td>70.8</td>
<td>16.8</td>
<td>0.0</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>12.4</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>8/02/16</td>
<td>70.3</td>
<td>16.4</td>
<td>0.0</td>
<td>5.8</td>
<td>5</td>
<td>3</td>
<td>42.1</td>
<td>1013</td>
</tr>
<tr>
<td>BH5</td>
<td>1/02/16</td>
<td>45.6</td>
<td>26.0</td>
<td>0.0</td>
<td>1.5</td>
<td>221</td>
<td>11</td>
<td>28.4</td>
<td>997</td>
</tr>
<tr>
<td></td>
<td>5/02/16</td>
<td>55.1</td>
<td>26.9</td>
<td>0.0</td>
<td>2.8</td>
<td>24</td>
<td>2</td>
<td>18.0</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>8/02/16</td>
<td>58.5</td>
<td>26.9</td>
<td>0.0</td>
<td>3.9</td>
<td>19</td>
<td>2</td>
<td>13.3</td>
<td>1011</td>
</tr>
<tr>
<td>BH7</td>
<td>1/02/16</td>
<td>60.6</td>
<td>25.8</td>
<td>0.0</td>
<td>0.6</td>
<td>8</td>
<td>0</td>
<td>13.6</td>
<td>997</td>
</tr>
<tr>
<td></td>
<td>5/02/16</td>
<td>61.7</td>
<td>25.3</td>
<td>0.0</td>
<td>3.1</td>
<td>13</td>
<td>2</td>
<td>13.0</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>8/02/16</td>
<td>64</td>
<td>27.6</td>
<td>0.0</td>
<td>3.4</td>
<td>6</td>
<td>2</td>
<td>14.6</td>
<td>1011</td>
</tr>
<tr>
<td>BH8</td>
<td>1/02/16</td>
<td>39.5</td>
<td>18.4</td>
<td>0.0</td>
<td>1.6</td>
<td>13</td>
<td>0</td>
<td>42.1</td>
<td>996</td>
</tr>
<tr>
<td></td>
<td>5/02/16</td>
<td>33.8</td>
<td>15.8</td>
<td>0.0</td>
<td>3.2</td>
<td>8</td>
<td>2</td>
<td>50.4</td>
<td>1012</td>
</tr>
<tr>
<td></td>
<td>8/02/16</td>
<td>33.8</td>
<td>15.8</td>
<td>0.0</td>
<td>3.2</td>
<td>8</td>
<td>2</td>
<td>8.4</td>
<td>1012</td>
</tr>
</tbody>
</table>

The monitoring data collected during Site investigation works is considered to be representative of the Site condition and reliable for use in conducting a risk assessment. The primary hazard has been identified as an explosion occurring due to the presence of methane in the explosive range, either by:

- An accumulation of methane concentrations within the explosive range within on-site buildings, resulting in an explosion; or
• The exposure of machinery during the construction phase to in situ methane concentrations in the explosive range, causing an explosion.

The consequences of an explosion on site are deemed to be severe given that fatalities, very serious injuries and/or catastrophic damage to buildings may occur. The probability of this occurring is considered to be likely given the credible linkage based upon the conceptual site model (CSM) for all necessary elements required for a hazardous event to occur. Based on a Level 1 Risk Analysis and Assessment the risk has been determined to be ‘High Risk’ due to the identified likelihood and severe consequences of an explosive incident occurring.

Given the determination of the Level 1 Risk analysis and Assessment that a high risk level exists, a Level 2 assessment has been undertaken. A maximum Gas Screening Value (GSV) and Characteristic Gas Situation (CS) for the Site has been determined based upon the *NSW EPA Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases* as shown in Table 3a.

The method considers both gas concentrations and borehole flow rates to define a characteristic condition for a site using a calculation of the Gas Screening Value (GSV). The GSV is a multiple of the maximum gas flow rate (litres/hour) from a borehole and the maximum gas concentration (\%v/v).

Table 3a: Modified Wilson and Card Classification (Table 6 NSW EPA 2012)

<table>
<thead>
<tr>
<th>Characteristic situation</th>
<th>Risk Classification</th>
<th>Gas Screening Value Threshold (GSV) (CH₄ or CO₂) (l/hr)</th>
<th>Additional Factors</th>
<th>Typical source of generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very low risk</td>
<td><0.07</td>
<td>Typically methane 1.0 % v/v and/or carbon dioxide 5 % v/v. Otherwise consider increase to Situation 2</td>
<td>Natural soils with low organic content “Typical” fill</td>
</tr>
<tr>
<td>2</td>
<td>Low risk</td>
<td><0.7</td>
<td>Borehole air flow rate not to exceed 70l/hr. Otherwise consider increase to characteristic Situation 3</td>
<td>Natural soil, high peat/organic content. “Typical” made ground</td>
</tr>
<tr>
<td>3</td>
<td>Moderate risk</td>
<td><3.5</td>
<td>Old landfill, inert waste, mine-working flooded</td>
<td></td>
</tr>
</tbody>
</table>
GSVs have been calculated for each borehole under consideration. Due to limited monitoring data, the calculation was carried out conservatively for methane and carbon dioxide with the worst-case monitoring values adopted at each monitoring location. The GSV calculation was performed and a range of 0.0 (very low risk) to 4.48 (Moderate to High Risk) was recorded.

Table 3b: Gas Screening and Characteristic Gas Situation Values

<table>
<thead>
<tr>
<th>ID</th>
<th>Worst Case Values</th>
<th>GSV (l/hr) (CH₄)</th>
<th>GSV (l/hr) (CO₂)</th>
<th>Characteristic Gas Situation</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH1</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>Very Low</td>
</tr>
<tr>
<td>BH2</td>
<td>71.1</td>
<td>4.48</td>
<td>1.18</td>
<td>4</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>BH4</td>
<td>70.8</td>
<td>4.25</td>
<td>1.01</td>
<td>4</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>BH5</td>
<td>58.5</td>
<td>2.28</td>
<td>1.05</td>
<td>3</td>
<td>Moderate</td>
</tr>
<tr>
<td>BH7</td>
<td>64</td>
<td>2.18</td>
<td>0.94</td>
<td>3</td>
<td>Moderate</td>
</tr>
<tr>
<td>BH8</td>
<td>39.5</td>
<td>0.63</td>
<td>0.29</td>
<td>2</td>
<td>Low</td>
</tr>
</tbody>
</table>

Based upon the findings of Table 3b, a corresponding CS of Moderate to High Risk for the Site is recommended. In accordance with NSW guideline requirements, gas protection measures for the Site are required. GSV values and corresponding risk levels are shown in Figure 3.

3.5.4 Asbestos

Analysis of asbestos in soils was undertaken in five soil samples during the detailed Site investigation. One sample (BH7-4.0) contained chrysotile fibres. The sample was obtained within fill material from the landfill and fibres were not detected above this depth (4.0 metres). Previous investigations noted the presence of asbestos containing material (ACM) fragments.
4.0 CONCEPTUAL SITE MODEL

4.1 Contaminants of Concern

On the basis of the information summarised above, the principal contamination sources are associated with the landfill waste material, associated leachate and landfill gases (LFG). It is also possible there is methane present that is derived from other potential sources of ground gas in the vicinity of the Site which include:

- Mains sewer gas.
- Imported fill and man-made ground.
- Partitioning of methane dissolved in migrating groundwater.

Vapours may arise from volatisation of hydrocarbon wastes but the CSM considered the primary gaseous contaminants to be predominately methane and carbon dioxide e.g. the bulk gases that comprise Landfill Gas (LFG). The primary source of this ground gas was from the buried putrescible (biodegradable) waste generated by bacterial decomposition in the former landfill site. In addition to methane and carbon dioxide recent monitoring has measured elevated concentrations of hydrogen sulphide and carbon monoxide.

4.2 Release and Transport Mechanisms

Contaminants generally migrate from a site via a combination of windblown dusts, rainwater infiltration, groundwater migration, and surface water runoff and gas migration. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid/gas and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and,
- The site topography, geology, hydrology and hydrogeology.

As a significant proportion of the Site is within the landfill with an existing cap and contain strategy with the contamination being below ground level, the potential for windblown dust migration of contamination from the Site was considered to be minimal. The potential for migration of contamination via surface water movement and infiltration of water and subsequent migration through the soil profile was considered generally to be moderate given the potential of voids and high permeability of the landfill material. Due to the relatively low permeable nature of the underlying...
natural soils, migration of contamination off-site via groundwater movement was considered to be low.

4.2.1 Landfill Gas Transport Mechanisms

The driving force of LFG is affected by a number of variables and for LFG to migrate away from the waste mass a pathway must be available and for migration to be sustained the source of gas must be replenished. CIRIA C665 (2007) describe three main factors that influence LFG migration:

- Pressure differential.
- Diffusion.
- Flow in dissolved form in liquids.

Barometric pressure

The rate of fall of atmospheric pressure is more significant than the actual pressure level in influencing LFG movement in the subsurface. Rapidly falling pressure can lead to a pressure differential between the waste mass and the external atmosphere in general, thus providing a motive force for LFG migration. Once equilibrium of pressure has been reached, even at low barometric pressure, the motive force is removed and the influence of barometric pressure on potential LFG migration is greatly reduced. Barometric pressure changes are documented as one of the most important factors in incidents of LFG explosions.

Rainfall

Precipitation can lead to a reduction in the permeability of the ground surface by sealing migration routes, again leading to a build-up of pressure within a gas body, and the potential for an increase in subsurface migration.

Anthropogenic influences

The potential also exists for LFG to preferentially migrate through subsurface structures such as buried utility lines, where more permeable sands and gravels may have been used during the construction of these services.

4.3 Exposure Pathways

Based on the identified COCs and future potential site development activities, the exposure pathways for the Site’s use include:

- Inhalation of LFG migrating upwards from fill material of unknown origins or impacted surface soils resulting from potential historical activities;
- Potential dermal and oral contact with impacted soils;
- Potential dermal and oral contact with shallow groundwater;
- Potential contaminant uptake by vegetation established in the landscaped areas of the Site;
- Potential contaminant uptake by site occupants as a result of ingestion via consuming vegetation grown in areas of the Site; and/or,
- Direct ingestion of soil, particularly by young children playing on the ground surface in unsealed areas of the Site.

The LFG generated within the site will fill the available void spaces within the waste mass. The migration of LFG into a pore space results in LFG moving outward as there is a build-up of LFG pressure. Due to methane being less dense than air, there is a natural tendency for the gas to migrate upwards. When the upward movement of the LFG is restricted due to an engineered cap or moisture, the gas will naturally migrate in a lateral direction taking the easiest route out of the site.

The most significant source-pathway-receptor is usually associated with LFG migrating through subsurface soil, rock and man-made services potentially impacting human receptors. LFG can enter buildings via fractures in subsurface walls and wall cavities. With the exception of specific joints, well-constructed concrete slabs should not have cracks which would act as a pathway. However, there is always a potential for cracks to occur at any location across the slabs, generally as a result of induced stresses during or soon after construction, or from differential settlement or damage during use. Cracks can also occur at the floor/wall perimeter from settlement.

LFG can enter buildings and accumulate via the following routes listed below:
1. Beneath suspended floors (cracks or gaps in both solid and suspended floors)
2. Joins in walls
3. Vertical structures such as foundation piles
4. Cracks or gaps in walls and floors
5. Settlement voids and joints formed during the construction process
6. Around service pipes, ducts and drains.

4.4 Sensitive Receptors

The potential sensitive receptors of environmental impacts present at the Site include:

- Present and future workers and users of the Site who may potentially be exposed to COCs through direct contact with impacted soils and/or inhalation of dusts/vapours associated with impacted soils;
- Maintenance workers conducting activities at the Site, who may potentially be exposed to COCs through direct contact with impacted soils present in excavations/boreholes and/or inhalation of dusts associated with impacted soils; and
- Flora and fauna species established at the Site.

LFG presents a number of potential risks to human and environmental receptors, summarised below:

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Potential LFG Hazard</th>
<th>Potential risk associated with hazard</th>
<th>Potential type of risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Health</td>
<td>LFG and Air</td>
<td>Explosion and fire</td>
<td>Acute</td>
</tr>
<tr>
<td></td>
<td>Lack of oxygen</td>
<td>Asphyxiation</td>
<td>Acute</td>
</tr>
<tr>
<td></td>
<td>LFG trace toxics</td>
<td>Inhalation</td>
<td>Acute / Chronic</td>
</tr>
<tr>
<td>Ecosystems</td>
<td>LFG</td>
<td>Phytotoxicity</td>
<td>Acute / Chronic</td>
</tr>
<tr>
<td>Buildings and Structures</td>
<td>LFG and Air</td>
<td>Explosion and fire</td>
<td>Acute</td>
</tr>
<tr>
<td></td>
<td>LFG</td>
<td>Subsidence</td>
<td>Acute / Chronic</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>LFG</td>
<td>Odour</td>
<td>Acute / Chronic</td>
</tr>
<tr>
<td>Food and Flora</td>
<td>LFG</td>
<td>Phytotoxicity</td>
<td>Acute / Chronic</td>
</tr>
</tbody>
</table>
5.0 SELECTION OF PREFERRED REMEDIAL STRATEGY

5.1 Overview

The Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (NSW EPA, 2nd ed., 2006) outlines the hierarchical management of wastes as preferred by the EPA. According to this document, the order of preference for soil remediation and management is:

- On-site treatment of the soil so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level;
- Off-site treatment of excavated soil so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level, after which the soil is returned to the Site;
- Removal of contaminated soil to an approved site or facility, followed where necessary by replacement with clean fill; and,
- Consolidation and isolation of the soil on-site by containment within a properly designed barrier.

This scheme adopts the Australian and New Zealand Guidelines for Assessment and Management of Contaminated Sites (ANZECC, 1992). In addition, it is also a requirement that remediation should not proceed in the event that it is likely to cause a greater adverse effect than leaving the Site undisturbed (DEC, 2006).

A review of the available remediation methods and technologies indicates that the following strategies may be applicable to the remediation of the Site:

5.1.1 Excavation and Off-Site Disposal

Landfill disposal is the simplest of all remediation methods, and involves the excavation of the contaminated materials, and disposal off-site to an EPA approved landfill disposal site with appropriate environmental safeguards. The formed excavation is generally then backfilled using clean, validated fill materials.

The selection of an appropriate landfill will normally depend largely upon the results of classification of the wastes. It is sometimes necessary for heavily contaminated soils to be pre-treated prior to disposal, to reduce the concentrations or minimise the mobility of the contaminants. Special criteria are sometimes applicable to certain categories of waste. Contaminants covered by Chemical Control Orders have restrictions placed on their handling and disposal.
5.1.2 On-Site Capping and Containment

On-site capping and containment involves the installation of a physical barrier around the contaminated area to prevent potential migration pathways of contaminants. The predominant contaminants of concern are associated with the landfill waste material (including asbestos), associated leachate and LFG.

The inclusion of effective gas protection measures, a low permeability capping system and appropriate surface water controls/management is expected to result in the minimisation of landfill gas migration, leachate production and exposure to landfill waste, including asbestos.

A site management plan will need to be implemented for capping to ensure that future excavation work is minimised and where necessary, carried out in strict accordance with appropriate occupational health and safety procedures.

The Guidelines for the NSW Site Auditor Scheme (NSW EPA, 2nd ed., 2006) provides a checklist to ensure the following technical issues associated with cap and containment is identified:

- That the design maximises the long term engineering security of the works and minimises the potential for leachate formation;
- Does not include the erection of structures on the capped or contained area that may result in risk of harm to the public health or the environment; and,
- Includes a notification mechanism to ensure that the capped or contained area are protected from any unintentional or uncontrolled disturbance that could breach the integrity of the physical barrier.

5.2 Technical Appraisal

Important considerations (from a technical perspective) in selecting and effectively implementing one of the available remediation strategies for the Site are provided below in Table 5a.
Table 5a – Technical Considerations

<table>
<thead>
<tr>
<th>Technical Considerations</th>
<th>OPTION 1 Capping & Containment</th>
<th>OPTION 2 Excavation and Off-Site Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Health Risks</td>
<td>Low – contaminants do not generally constitute a significant risk when contained. Limited personal contact.</td>
<td>High – excavation and direct off-site disposal will cause potential personal contact with putrescible landfilled waste, asbestos, odour and leachate issues.</td>
</tr>
<tr>
<td>Reliability</td>
<td>Sound – some potential may exist for contaminant break though if cap breached or not maintained properly. Design and management will ensure minimal access to cap surface is possible.</td>
<td>Satisfactory – system ensures the removal of all contaminated materials.</td>
</tr>
<tr>
<td>Regulatory Approvals</td>
<td>Satisfactory – on-site containment is pre-existing due to the landfill and management/maintaining the existing capping is preferred.</td>
<td>Satisfactory – waste will satisfy the Waste Classification Guidelines (NSW EPA, 2014).</td>
</tr>
<tr>
<td>Site Suitability</td>
<td>Good – Minimal levels of excavation into the subsurface are proposed for the Site.</td>
<td>Low – The extent and depth of landfilled materials on the Site will incur significant expense and high levels of road transport for disposal.</td>
</tr>
<tr>
<td>Disruption to Site Structures and Activities</td>
<td>Sound – Inclusion of gas protection/containment measures are integrated into the design of the structure.</td>
<td>High – Excavation and off-site disposal is expected to cause significant disruption and delays in project schedule.</td>
</tr>
<tr>
<td>Ongoing Liabilities</td>
<td>Moderate – capping system needs to be maintained.</td>
<td>Minimal – all contaminated materials removed.</td>
</tr>
<tr>
<td>Contractor Experience</td>
<td>Moderate – contractors available with experience in the implementation of gas protection/containment measures.</td>
<td>Moderate – relatively simple strategy involving only basic technologies however high levels of health and safety would be required.</td>
</tr>
<tr>
<td>Availability of Disposal Sites</td>
<td>NA.</td>
<td>Good – landfills available to accept waste.</td>
</tr>
<tr>
<td>Implementation Time Frame</td>
<td>Short to moderate.</td>
<td>Moderate.</td>
</tr>
</tbody>
</table>
Based on the analysis undertaken in Table 5a, the following salient conclusions are made regarding the technical suitability of the various remediation options for the Site:

- Excavation and off-site disposal offers no constraints on future land use however the option is not considered suitable for the Site predominantly due to the depth and extent of the landfill waste material on the Site;
- The capping and containment method is the preferred method due to:
 - The cap and contain strategy has low health risks as it only involves a minimal disturbance of the contaminated soils. Other remediation schemes may result in the release of hazardous landfill waste, LFG, leachate and dust thereby creating a human health risk to remediation workers and nearby residents;
 - No increase in road traffic;
 - The strategy requires no additional excavation or disposal costs over that which would be normally incurred as part of the proposed development;
 - The cap can be effectively achieved with the proposed surface design therefore requiring no additional works; and
 - The time frame for implementation of the remediation system is relatively short compared excavate and dispose.

The primary drawbacks to an On-Site Capping and Containment strategy would be as follows:
- The strategy may require a more diligent maintenance schedule than otherwise anticipated;
- The strategy will require the development and implementation of an Environmental Management Plan (EMP); and
- It is noted that the Site requires notation as containing contamination and is titled accordingly;
- Requirement for ongoing monitoring of landfill gas build-up in buildings; and
- Requirement to maintain the landfill gas management system.

5.3 Economic Appraisal

DLA has performed a precursory cost-benefit analysis to assess the viability of the two most applicable remediation options for the Site – excavation and off-Site disposal and capping and containment. A review of typical project component costs, in conjunction with wider considerations regarding long-term liabilities and potential impacts on property value, have concluded that the option of capping and containment is expected to produce the most beneficial economic outcome.

5.4 Preferred Strategy
The Site strategy selected must be the most cost-effective solution, which does not bring about unacceptable long-term liabilities, and which does not impose unreasonable constraints on future Site developments or present operations. The strategy must also be capable of achieving the technical, environmental and economic objectives outlined in this RAP.

Based on the analysis undertaken in previous sections, the preferred remediation method for the Site is **capping and containment**.

It is recognised that material may need to be removed for service trenches and piling spoil, however, these will be classified in accordance with the *DECCW 2009 Waste Classification Guidelines* where material is considered excess. Where possible the construction methods will be selected in order to generate the least amount of waste such as driven piles (where structurally suitable) which due to the generally unconsolidated nature of the landfill will generate minimal spoil.
6.0 IMPLEMENTATION OF SELECTED STRATEGY

6.1 General

The remediation strategy developed for the Site will be required to achieve three main aims, namely:

- To negate any appreciable risk of human exposure to contaminated soils and therefore relieve the possibility for significant risk of harm;
- To halt the migration of landfill gas; and,
- To provide an end product desirable for the preferred intended land use.

The proposed remediation strategy incorporates the following elements:

- Stakeholder consultation;
- Implementation of an accepted Site Environmental Management Plan (SEMP);
- Site Establishment and Pre-Remedial Works;
- Remediation Works; and,
- Validation Plan.

6.2 Stakeholder Consultation

Prior to implementation of the RAP, it is necessary to secure all relevant approvals and licences and submit notification to council. For a list of potential environmental and planning approvals, refer to Section 10.0.

On approval of the strategy, the stakeholders including on-site management and relevant regulatory bodies will be informed of the intentions and the progress at all stages of the remediation works.

6.3 Implementation of Site Environmental Management Plan

A Site Environmental Management Plan (SEMP) covering the remedial works should be prepared for the Site. Before work commences it is imperative that all issues relating to potential impacts be reviewed. An outline of a SEMP including Remediation Works Management and Health and Safety Plans has been included in Section 10.0.
6.4 Site Establishment and Pre-Remedial Works

Initial activities at the Site shall involve the establishment of all plant and equipment necessary for the remediation works. This shall include:

- Establishment of a Project Manager/Contractor’s site office of temporary work sheds and amenities for Site workers;
- Establishment of a car parking area for Site workers and visitors to the Site; and,
- Establish the Site Environmental Monitoring Program.

Prior to the commencement of any earthmoving activities, it will also be necessary to install environmental protection safeguards, as well as Site security measures. These measures are outlined as part of the SEMP contained in Section 10.0.

6.5 Remediation Works

The remedial works envisioned at the Site are as follows:
- Landfill Gas (LFG) and gas vapour protection measures
- Asbestos and landfill Material
- Management of unexpected finds

6.5.1 LFG Gas Protection Measures

An LFG and gas vapour management system must be installed beneath ground level slabs constructed on the site as part of site development. Management recommendations have been determined with reference to the NSW EPA Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases (2012), based on the protection level determined by the process described therein.

6.5.2 Venting and Dilution Measures

Venting and dilution of LFG at the Site is required for the uninhibited flow of ground gasses from occupied areas and to avoid a build-up of gas beneath the sub-floor. The concept of the passive dilution barrier is to form a low pressure area relative to the surrounding gassing ground, to encourage gas to flow towards the sub-floor barrier. This is achieved by incorporating an air filled void and preferential pathway which are connected to collection/dilution ducts. The duct allows a relatively high flow of fresh air through it by means of passive ventilation to the atmosphere. The key advantages of the system are:

- Dilutes gas emissions to tolerable levels.
- Causes a venturi effect in the underfloor vents that enhances gas flow from the ground into the system.

DLA understands a partial under-floor void is part of the building design. The concrete slab will be constructed so that there is a 300 mm void directly on top of compacted fill. The advantages of a sub-floor, above ground air filled void are:

- It will encourage mixing of gases which migrate into the void, therefore reducing the hazard of LFG layering inside the backfill or building.
- The relatively large volume of underfloor void compared to granular infill will require a lower volume flow rate of fresh air to provide adequate ventilation.

The venting and dilution performance criteria and corresponding protection score is as follows:

<table>
<thead>
<tr>
<th>System Element</th>
<th>Gas Protection Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive sub-floor ventilation with very good performance (steady state concentration of methane over 100% of ventilation layer remains below 1% v/v at a wind speed of 0.3 m/s.)</td>
<td>2.5</td>
</tr>
</tbody>
</table>

6.5.3 Floor Slab

It is expected that the current design for the building will comprise a suspended slab with all services hung or cast in to the slab. This is due to the existing landfill and the expected ground movement / ongoing settlement of the landfill. The suspended slab mitigates the potential ground settlement issues which includes, stress fractures and cracking of the slab. The suspended slab will be engineered to receive support from piles anchored into rock and certified by a geotechnical engineer to withstand the development of voids and expected settlement.

The hanging or casting in of the services from the slab will limit the requirement for buried services and provide structural support for the services. This will also mitigate any ongoing settlement issues and potential generations of voids.

Any gas mitigation technology implemented at the site will be flexible to allow for future settlement of the landfill.

Beneath the occupied areas of the development, a reinforced concrete slabs will be constructed to reduce the intrusion of gas from below ground or from potential pathways originating from below ground, including services and relief joints. All joints and penetrations will be sealed with water bars and independent inspection.
The recommended option is to incorporate a reinforced concrete cast in situ or post-tensioned suspended slab with minimal service penetrations and water bars around all penetrations and at joints. The floor slab criteria and corresponding protection scores are as follows:

<table>
<thead>
<tr>
<th>Preferred Option</th>
<th>System Element</th>
<th>Gas Protection Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reinforced concrete cast in situ or post-tensioned suspended slab with minimal service penetrations and water bars around all penetrations and at joints.</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>Reinforced concrete ground bearing foundation raft with limited service penetrations cast into slab.</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Reinforced concrete ground bearing floor slab</td>
<td>0.5</td>
</tr>
</tbody>
</table>

6.5.4 Gas membrane

It is recommended that a gas membrane is installed underneath the concrete slab. Manufacturers of synthetic membranes will provide instructions on how to lay and install them correctly. The main considerations with respect to the installation of a gas membrane are presented in CIRIA guidance (Card, 1995). The requirements are that the membrane should:

- Meet a minimum requirement in hydraulic conductivity of 10^{-9} m/s.
- Overlain with a protective layer to provide mechanical protection from steel fixers and other workers on top of the membrane.
- Be protected once laid either by the use of temporary boarding or sheeting over the whole area. This is not always practical during construction operations because of the need to make provisions for service connections into the building, and for the construction of internal walls and substructures. Once the gas membrane has been installed an inspection should be undertaken to ensure adequate protection measures have been implemented. DLA note that a variety of gas membrane products are available and each should be assessed in their own merits.

Additional notes on the construction of the membrane:

- All jointing and sealing should be in accordance with manufactures recommendations;
- If chloroprene modified asphaltic emulation and catalyst technique (Liquid Boot, Perlastic or equivalent) is used, the application must completely encapsulate the foundation, footings, and walls located below grade;
- All sharp protrusions are removed;
- Smoke tested (or equivalent) to demonstrate integrity of membrane; and,
- Inspected by Suitably Qualified Person.

Service conduits, pits and ducts should all be constructed so as to avoid any opportunity for gas build up within. All services entering the occupied areas should be constructed in such a manner as to avoid
providing a pathway for gas to enter the building. Service pits will also be constructed with a liquid boot lining to prevent gas migration directly into the service pit void. The membrane will require independent construction quality assurance and integration with the sub slab system.

The recommended membrane configuration is for the installation and verification by independent construction quality assurance (CQA) with integrity testing and independent validation. The Gas Protection Scores for the installation of a gas-resistant membrane is as follows:

<table>
<thead>
<tr>
<th>Preferred Option</th>
<th>System Element</th>
<th>Gas Protection Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proprietary gas-resistant membrane to reasonable levels of workmanship under independent construction quality assurance (CQA) with integrity testing and independent validation</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Proprietary gas-resistant membrane to reasonable levels of workmanship under independent CQA</td>
<td>1</td>
</tr>
</tbody>
</table>

6.5.5 Monitoring

Continuous monitoring of landfill gas concentrations is required to be undertaken during piling operations, any hot works and any other activities that have the potential to be an ignition source of built up explosive gas. In particular, during the installation of the piling system it will be necessary to penetrate the ground with augers.

The recommended and preferred option under the NSW Guidelines is for a permanent monitoring system installed in the underfloor venting and dilution system. The Gas Protection Scores for permanent monitoring systems are as follows:

<table>
<thead>
<tr>
<th>Preferred Option</th>
<th>System Element</th>
<th>Gas Protection Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Permanent monitoring system installed in the underfloor venting/dilution system</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Permanent monitoring system installed in the occupied space of the building</td>
<td>1</td>
</tr>
</tbody>
</table>

With the implementation of the preferred option of each recommended Gas Protection Measure, an overall Gas Protection Score of 8 is achieved, above the NSW Guidelines for Gas Protection Guidance Score requirement of 5.

Final design, monitoring and CQA measures to ensure the safety of the construction operatives and occupants of future building will be decided following submission of the draft report.
6.5.6 Management of Asbestos and Landfill Material

Asbestos and landfill material identified at depth will be managed through capping and containment remedial strategy. The gas vapour management system proposed (Section 6.5.1) will contain the asbestos at depth. The capping layer will prevent human contact with asbestos and thus reduce the risk to human health.

If material within the landfill is excavated/encountered during Site works, the material should be analysed, classified and disposed of accordingly.

6.5.1 Management of Leachate and Surface Water

Surface water at the site will be directed through appropriate site surface sedimentation water controls in order to minimise surface water entering the landfill and from exiting the site following contact with exposed soils and sediments. Where water comes into contact with waste materials, that water is considered to be leachate. Any leachate water must be dealt with accordingly. The preferred strategy for managing leachate is for it to remain onsite within the landfill.

Due to the proposed construction methods of driven piles and a suspended slab building design the requirement for excavation into the landfill below the cap is minimised. Penetrations into the landfill below the existing cap should be limited to the lift shaft overrun, OSD tank and other minor services.

Where excavation penetrations encounter leachate within the landfill appropriate measure should be taken in order to minimise the potential for leachate to come into contact with the surface, non-landfill materials and personnel at the site due to the potential health and environmental risks. Where practicable leachate will be circulated under gravity within the landfill.

6.5.2 Management of Unexpected Finds

DLA propose that the Unexpected Finds Protocol (UFP) (Appendix B) be used to address any anomalous or unexpected chemical or asbestos contamination issues that are encountered during remediation works.

Should non-compliant material be discovered as a result of the UFP, it will be classified and disposed of in accordance with the Waste Classification Guidelines (NSW EPA, 2014) and any WorkCover requirements.

A schematic of the Remediation Process is shown below:
Project ID: DL3620
Site 9 Corner of Sarah Durack and Olympic Boulevard, Sydney Olympic Park

Stakeholder Consultation

Obtain Necessary Approvals and Licenses

Implementation of Acceptable Site Remediation Environmental Management Plans

Commence civil works in area to be remediated

Stockpile excess soils in contained area

Classify and Dispose of waste

Prepare Containment Area

Install Gas Drainage System

Place capping material

Conduct Site Validation

Implement Final EMP

Classify and Dispose of waste
7.0 VALIDATION PLAN

7.1 Extent of Validation

Since all soils are in compliance with the proposed land use criteria – Residential B- High Density Residential the soil criteria will only be applicable to the unexpected find of suspected contaminated soils, or in the need to assess imported fill materials.

For the purpose of this site remediation any materials requiring off-site disposal will need to meet the requirements of the Waste Classification Guidelines (NSW DECCW 2009).

7.2 Validation Procedure

Validation of the Site will initially focus on the presence of asbestos and methane gas. The remainder of the Site will be dealt with under a Final Validation Report, thus the focus for validation will be on documenting:

The extent of contamination (if any) remaining outside the confines of the building slabs;
The adequacy of the final design in handling the methane gas issues;
Monitoring of methane gas concentrations within surface soils, within building structures and services and on boundaries;
Requirements for ongoing site monitoring (if any); and
Risk of remaining material impacting on future Site users (if any).

7.3 Validation Guidelines

Asbestos will not be visible at the surface or within the surface 100mm soils. This is in accordance with the WA Department of Health Guidelines for the Assessment, Remediation and Management of Contaminated Sites in Western Australia – May 2009. Due to the potential for unexpected finds of asbestos contamination within fill soils, the Site will be subject to an Asbestos Management Plan, which will highlight management practices that must be complied with. An asbestos Unexpected Finds Protocol will be implemented for the Site, providing a framework for the management of any unexpected finds of asbestos containing material on Site.

Methane gas concentrations will be required to be below 5% lower explosive limit (LEL) during all construction works and non-detect within all building and service conduits at building “lock-up” stage.
A Final Validation Report should be prepared by the environmental consultant engaged to validate the remedial works with reference to the NSW EPA (1997) - Contaminated sites: Guidelines for consultants reporting on contaminated sites.

7.4 Validation Report

At the completion of the remediation activities, a Validation Report documenting the works as completed will be prepared. The Validation Report will describe the strategic works undertaken at the Site, assess the result of the validation testing, demonstrate that the objectives of this RAP have been achieved and provide justifications for any deviation, statistically confirm that the remediated Site complies with the Validation Criteria and include any other information as deemed appropriate.

The report should contain a description of all testing and/or monitoring undertaken as part of the remedial works including but not limited to validation results, waste classification of material disposed offsite/imported onsite (if any), and an appropriate discussion of field and laboratory work undertaken. It will also include a statement regarding the appropriateness of the remediated site for the proposed land use and any limitations or ongoing monitoring/management required.

Sufficient information must be provided by a person suitably qualified and competent in the implementation of landfill gas protection measures. The person suitably qualified must certify that sufficient information has been provided and he or she is satisfied that the liner design will be effective and fit for purpose. Verification of the barrier installation must be undertaken by an appropriately qualified person and in accordance with manufacture’s specifications.

7.5 Validation of Gas Protection Measures

7.5.1 Installation

The installation of the vapour barrier must be documented, photographed and verified by a suitably qualified person. Installation must be undertaken in accordance with the manufacturer’s specification for “Liquid Boot” or any approved equivalent product.

7.5.2 Effectiveness

The effectiveness of the gas vapour barrier must be validated by a round of monitoring of indoor air quality in the completed building using a NATA accredited method. Air quality must be deemed to be consistent with the human health risk assessment model performed for the Site and meet residential standards.
The validation sampling method and results must be certified as being accurate and complete and approved by the administering authority as part of any site validation process before the building is occupied.

7.5.3 Validation Criteria

To determine Site suitability following remedial works, criteria from the 2012 NSW EPA Guidelines for the Assessment and Management of Sites Impacted Hazardous Ground Gases (Draft) and the Draft Environmental Guidelines: Solid Waste Landfills Second edition, 2015 were considered in the development of the assessment criteria.

The threshold level for further investigation and corrective action is detection of methane at concentrations above **500ppm (volume/volume)**. DLA consider as the building will be occupied, any detection of methane is unacceptable and therefore must trigger further investigation.
8.0 SOIL MANAGEMENT

8.1 Importation of Soil

If soils are to be imported onto the Site they must meet the following requirements:

- The soils must be legally able to be imported onto the Site in accordance with the *Protection of the Environment Operations (Waste) Regulation 2005* (NSW) and any SOPA requirements;
- The soils must meet the Validation Criteria (*Table 8a*); and,
- The soils must meet the geotechnical requirements for their proposed use.

It is preferable for all soil materials imported to the Site comprise:

- Virgin Excavated Natural Material (VENM) as per the *Protection of the Environment Operations Act 1997* (NSW);
- Excavated Natural Material (ENM) as per *Excavated Natural Material Order* (NSW EPA, 2014); and/or,
- Road-making materials consisting of quarried material.

The following requirements apply to material imported to the Site:

Table 8a – Imported Material Requirements

<table>
<thead>
<tr>
<th>IMPORTATION REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>In addition to the ENM criteria specified in the Excavated Natural Material Order (NSW EPA, 2014), imported ENM will also meet the Validation Criteria, including the adopted Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs), if the ENM is used in unpaved areas within 0-2m of the ground surface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VENM</th>
</tr>
</thead>
<tbody>
<tr>
<td>For imported VENM Should be in accordance with EPA guidelines.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANDSCAPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscaping materials will be assessed as compliant with the Validation Criteria, including the adopted EILs and ESLs if used within 0-2m of the ground surface.</td>
</tr>
</tbody>
</table>

Material to be imported at the Site will be supported by documentation and visually inspected by the Environmental Consultant demonstrating that the material meets the above definitions, material without relevant documentation verifying it’s classification or does not correspond with the relevant documentation must not be received at the site.

A minimum of five samples for VENM and landscaping material testing are required for imported VENM and landscaping materials. Sampling frequencies in accordance with the *Excavated Natural Material Order* (NSW EPA, 2014) are required for ENM materials. Soils will be analysed for the following contaminants of concern as a minimum: heavy metals, TRH, BTEX, PAH, OCP, PCB and asbestos. ENM testing will include analysis of pH, electrical conductivity and foreign materials.

8.2 Waste Disposal

Waste classification of soils will be carried out in accordance with the *Waste Classification Guidelines* (NSW EPA, 2014) and associated exemptions and approvals. Waste classification data will consist of approximately one sample from 200m³ of soil. The sample was then analysed for all potential contaminants including toxicity characteristic leaching procedure (TCLP) characteristics. This number of samples will increase for material that demonstrates signs of heterogeneity or whose average concentrations are on the margin between classifications.
9.0 CONTINGENCY PLAN

9.1 Remediation Contingency

If there are events or discoveries made at the Site that would prevent the proposed works complying with the Validation Criteria, or if the selected remediation strategy is not able to proceed, then the following contingencies are devised and should be discussed with the Site Auditor prior to implementation:

Methane Gas management measures do not effectively prevent the migration of LFG into the structure

Option A Implement an in-ground venting system designed to reduce the pressure and/or concentration in the source area and thus reduce the driving force for gas migration.

Option B Building over-pressurisation – Implementing an air conditioning system to maintain air pressure in the building.

Option C Sub-slab over pressurisation – Implement an air pump to achieve a positive pressure relative to the pressure of gas in the ground, thus preventing gas migrating from the ground into the void.

Should any other viable options be identified during the implementation of the remediation plan these should be reviewed and the validity of the options assessed. Prior to the implementation of the remediation contingency all options should be approved by relevant parties.

9.2 Unexpected Finds

An Unexpected Finds Protocol (UFP) has been developed as part of the construction planning for implementation during Site works primarily associated with excavation and civil activities. It has been prepared to ensure appropriate management of natural soils / fill which may contain undefined levels of TRH / BTEX, asbestos contamination and other possible contamination scenarios should they be encountered during Site works.

Refer to Appendix A – Unexpected Finds Protocol.
10.0 SITE ENVIRONMENTAL MANAGEMENT PLAN

10.1 Introduction

A major component of the remedial works shall involve the installation and maintenance of a Site Environmental Management Plan. It is appropriate for the Contractor to develop an EMP for their component of the works based on the broad guidelines of the RAP. The Site Environmental Management Plan will provide details of the environmental protection and pollution control measures to be implemented during the operational phase of the remedial works.

The pollution control measures have the objective of removing/minimising any adverse impact on the surrounding environment. Details of the pollution control measures to be implemented are documented in the Environmental Management Plan (EMP) for the remediation works which is prepared (and approved) prior to commencement of remedial works.

In order to prepare the Environmental Management Plan for the remedial works a review will be undertaken to identify possible impacts on the surrounding environment. For each potential impact identified the range of pollution control measure(s) available for mitigating the impact was reviewed and the most practicable, efficient and cost effective were identified for implementation.

It was envisaged that there would be a series of control measures that would be common to the various elements of the remedial works. In addition, there are supplementary control measures that would be specific to particular elements of the remedial works.

In the following sections, outlines have been presented of the various pollution control measures that would be implemented during most elements of the remedial works. These form the basis of the Environmental Management Plan that should be read in conjunction with this document.

10.2 Erosion Sedimentation Control Plan

Erosion and run-off control measures will be implemented during all elements of remedial works undertaken. Typically, these measures will be designed to prevent the transport of pollutants (including sediments) out of the remediation area via stormwater/surface run-off.

Generally, no surface run-off and/or water from excavations/pits and trenches within the remediation area will be permitted to discharge, without regulatory authority approval, to the surrounding environment. Run-off control measures will be developed giving consideration to the site conditions in each remediation area, and are likely to include (but not necessarily be limited to) the following:
- Diversion drains, berms, sumps and pumping systems to prevent runoff entering or leaving excavation areas. All water in contact with works will be diverted through the treatment system;
- Truck cleaning areas for use in washing down all vehicles potentially coming into contact with contaminated soil leaving a remediation area; and,
- Use of silt fencing, hay bales and/or oil absorbing booms, as required.

10.3 Noise Control Plan

The impact of noise associated with the site remediation works is acknowledged as a potentially important environmental effect. It will be necessary to minimise noise in accordance with NSW OEH Standards. The methods used to control noise will be dependent upon the equipment being used for particular remedial activities however, it would be expected that the methods would include those commonly used during normal construction and demolition works.

Noise control measures will be developed giving consideration to the site conditions in each remediation area, and are likely to include (but not necessarily be limited to) the following:
- Site work will be restricted to the hours specified below;
- The use of construction vehicles on-site will be kept to a minimum;
- All equipment in operation in open areas on-site shall comply with the requirements of AS 2436-1981 *Guide to Noise Control on Construction, Maintenance and Demolition Sites*; and,
- Noise monitoring may be conducted during the site remediation program.

10.4 Dust Control Plan

During the course of remediation works dust control measures shall be undertaken to ensure that dust generated from the site is controlled within acceptable levels. These control measures will be developed giving consideration to the site conditions in each remediation area, and are likely to include (but not necessarily be limited) to the following:

- All vehicles leaving the site will be cleaned on site to remove any potentially contaminated dust;
- Access to water sprays shall be available to water down the excavation/loading if dust generation becomes significant;
- Plastic sheeting shall be available to cover excavation faces and stockpiles; and,
- An ambient air-monitoring program shall monitor dust levels at the site boundary, if necessary.
10.5 Odour Control Plan

During the course of remediation works odour control measures shall be undertaken to ensure that possible odours generated on-site are controlled to within acceptable levels. These control measures will be developed giving consideration to the site conditions in each remediation area, and are likely to include (but not necessarily be limited) to the following:

- The prevailing weather conditions shall be considered in the manner in which work is undertaken;
- Plastic sheeting (such as VLDPE or PVC) will be made available at all times on-site to allow for any excavated or disturbed contaminated soils to be covered, if necessary to reduce odour;
- Odour masking agents (such as Biosolve) will be available for use on-site to suppress any nuisance odours not controlled by the above actions, so that ambient air quality at the site boundary is not adversely impacted.
- Application of Biosolve at a rate of 1 part to 5 parts water will be by way of hand held pressure applicator.

10.6 Health and Safety

10.6.1 Occupational Health and Safety

An Occupational Health and Safety (OH&S) plan is an essential part of all remediation projects, to ensure the health and safety of all personnel working on or visiting the site. All remediation work would be undertaken in accordance with the provisions set out by the Occupational Health and Safety Act (2000) and associated Regulations 2001, and any other regulations or directions set out by regulatory authorities.

Typically the OH&S plan would consider a broad range of issues including (but not limited to) the following:

- Characterisation of potential hazards including hazardous materials and site activities (e.g. excavation);
- Air, Landfill Gas and dust monitoring required within and at the boundary of the remediation area;
- Personnel and equipment movements to and from the remediation area;
- Training, instruction, and induction of site workers/visitors;
- Toolbox talks on the hazards of landfill gas;
- Appropriate landfill gas (explosive and asphyxiation risk) signage;
- Clear outline of responsibilities for health and safety; and,
- Emergency response plan for injuries or chemical exposure.

Prior to commencing any remediation works, a specific OH&S Plan would be prepared by the Remediation Contractor covering the following aspects:
- Identification of the remediation area and exclusion zones;
- Induction of personnel;
- Hazard identification/locations;
- Appropriate landfill gas (explosive and asphyxiation risk) signage;
- Identification of contaminants of concern and their physical and toxicological properties;
- Description of exposure pathways and personal protection requirements;
- Location of all underground/aboveground services;
- Details of specific work practice procedures to be followed within the designated contaminated areas;
- Monitoring protocols to identify a potentially hazardous practice;
- No smoking areas;
- Emergency information; and,
- Incident reporting.

Occupational Health and Safety Planning involves the development and implementation of systems and procedures into a Health and Safety Plan included in a site Work Method statement. The objectives of these documents are to ensure the health and safety of those undertaking specific tasks on site and the wider community if necessary.

A Health and Safety Plan should be developed for any site work and would typically include the following:
- A clear health and safety policy;
- Requirements for worker health assessments and inductions;
- Identified health and safety training requirements;
- Requirements for occupational health protection and monitoring;
- Site/location specific emergency plan;
- Site/location specific emergency contact details;
- Permit to work/clearance procedures, and
- Task specific safe work method statements.
10.6.2 Personal Hygiene and Decontamination

Appropriate hygiene and decontamination assists with minimising worker exposure and the transportation of potentially contaminated materials from the site to more sensitive home environments.

The following activities are prohibited while working in the hazardous materials area:
- eating;
- drinking;
- chewing gum, and;
- smoking.

Practices that involve contact between the hands and the mouth increase the risk of chemical ingestion. Personal decontamination is required to minimise workers’ exposure to, and indirect transportation of potential chemicals of concern. Decontamination involves physically removing material from personnel and equipment. Protective equipment, tools and other equipment are decontaminated by cleaning with detergent water using a soft-bristle brush followed by rinsing with a sufficient quantity of water. Decontamination should be conducted before meal breaks, and at the end of a day’s work.

10.6.3 Community Health and Safety

The health and safety of the surrounding community is very important for any remediation works. While it is possible to control the activities of personnel within the remediation area (e.g. ensuring appropriate OH&S procedures and equipment are utilised) it is not normally possible to control the activities of the surrounding community. Therefore, to protect the community health and safety it is necessary to control the remedial works so that no fugitive emissions occur during the remedial works that could have an adverse impact on the surrounding community.

These controls are documented in the Environment Management Plan for the remedial works, although monitoring requirements to confirm the effectiveness of the measures may also be documented in the OH&S Plan. The methodology that would normally be used to develop the control measures is described below.

Firstly, the portions of the community that may be impacted by any fugitive emissions will be identified. Secondly an assessment of the hazard posed by the contaminants and the proposed remedial methodology/technology would be undertaken. This assessment would define the hazard posed by the particular contaminants present in the remediation area using risk assessment
techniques (i.e. identifying the hazard or contaminants and the exposure pathway that the potentially at risk community could be exposed to the hazard).

Once these have been identified, a review will be undertaken of control measures available to remove or minimise the risk posed to the surrounding community during the remedial works. Typically the control measures would comprise removal/minimisation of the exposure pathway to the community. As indicated above it may be necessary to undertake monitoring to confirm the effectiveness of the control measures, and if the monitoring indicates a possibility for exposure then contingency measures may need to be implemented. By way of example control mechanisms could include (but not necessarily limited to) the following:

- Site security measures to prevent access to the contaminated material by the public;
- Dust suppression measures to minimise inhalation and ingestion exposure; and,
- Not undertaking certain work if winds are unfavourable etc.

10.7 Traffic Control Plan

Movement of excavation equipment, trucks and other vehicles involved in the remediation works, to and from the site will be strictly controlled and restricted to a minimum and only take place during approved working hours. All potentially contaminated vehicles leaving the site will be decontaminated in an appropriate truck wash-down area. All vehicles will be visually free of soil before permission to leave a remediation area is granted.

10.8 Hours of Operation

Working hours for on-site remedial works as outlined in the consent conditions or would be set in consultation with the Council, but it is envisaged the likely hours would be as follows:

- Mondays to Fridays 7:00 am to 5:00 pm
- Saturdays 7:00 am to 3:00 pm
- Sundays and Public Holidays No Work Permitted

10.9 Emergency and Out of Hours Contact Numbers

<table>
<thead>
<tr>
<th>DLA</th>
<th>94761765</th>
<th>NSW EPA</th>
<th>131 555</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Lane</td>
<td>0410494810</td>
<td>WorkCover NSW</td>
<td>13 10 50</td>
</tr>
</tbody>
</table>
11.0 CONCLUSION

The Site can be made suitable for the intended land-use through remedial works as part of the redevelopment works in accordance with State Environmental Planning Policy No.55 (SEPP 55).

In conclusion this RAP:

- Has been developed in a manner consistent with current industry practice;
- Has selected a preferred remediation strategy based on the site-specific issues and currently available technologies;
- Has presented an outline of the Site Environmental Management Plan (SEMP) and associated health and safety and remediation management plans to ensure human health and the environment are appropriately protected during the proposed works (Section 10.0);
- Has presented an information and consultation program to ensure the stakeholders are informed of the works as they proceed (Section 10.0); and,
- Has outlined the means of validation for the completed remediation works.
12.0 REFERENCES

- Australian and New Zealand Guidelines for the Management of Contaminated Sites (ANZECC/NHMRC 1992);
- Chapman, G A, Murphy, C L, Tille, P J, Atkinson, G and Morse, R J, Sydney Soil Landscapes Map, Series 9130 (1989);
- Code of Practice for the Safe Removal of Asbestos (NOHSC, 2nd ed., 2005);
- Contaminated Land Management Act 1997 (NSW);
- Contaminated Site: Guidelines for Consultants Reporting on Contaminated Sites (NSW EPA, 2011);
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (NSW EPA, 2nd ed., 2006);
- Contaminated Sites: Guidelines on Significant Risk of Harm from Contaminated Land and the Duty to Report (NSW EPA 1999);
- Contaminated Sites: Sampling Design Guidelines (NSW EPA 1995);
- Environmental Guidelines: Solid Waste Landfills (NSW EPA, 2015);
- Guidelines for the Assessment of On-Site Containment of Contaminated Soil (ANZECC, 1999).
- Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases (NSW EPA, 2012);
- Health - Based Soil Investigation Levels, Imray, P & Langley, A, National Environmental Health Forum Monographs, Soil Series No. 2 (2nd Ed), South Australian Health Commission (NEHF 1998b);
- How to Safely Remove Asbestos: Code of Practice (WorkCover, 2011);
- National Environment Protection (Assessment of Site Contamination) Measure (No.1) (NEPC, 2013);
- Managing Land Contamination: Planning Guidelines, SEPP 55 - Remediation of Land (DUAP, 1998);
- Storage and Handling of Dangerous Goods Code of Practice 2005;
- Pacific Southwest, Region 9 Regional Screening Levels (US EPA, 2014);
- Waste Avoidance and Resource Recovery Act 2001 (NSW);
- Waste Classification Guidelines (NSW EPA, 2014); and,
- Work Health and Safety Act 2011 (NSW) and associated regulations.
FIGURE 1 – SITE LOCATION
SITE LOCATION

CLIENT: ECOVE
LOCATION: Cnr Sarah Durack Ave and Olympic Boulevard, Sydney Olympic Park NSW

DESIGNED: DLA
COMPiled: AP
PROJ. No. DL3620
DRAWING: 10.02.16
FIGURE: 1
Legend
- Groundwater and Gas Well locations
- Gas Well locations
- Borehole locations

Site Boundary

Approximate Scale

0m 20m 40m

Title: Site Layout and Bore Locations

Project No.: DL 3620

Date: 10/02/2015

Code: As Shown

Employee: AP

Revision: R00
FIGURE 3 – SITE LAYOUT AND AREA OF ENVIRONMENTAL CONCERN
Site Layout and Area of Environmental Concern

Legend
- DLA Monitoring Bore Locations
- DLA Bore Hole Location
- Site Boundary
- Approximate Extent of Waste

Approximate Scale

GSV (L/hr)

<0.07
1.0
t

<0.7
2.0

<3.5
3.0

<15
4.0

<70
5.0

Characteristics Situation

Risk

very low risk
Low risk
Moderate risk
Moderate to high risk
High risk

Scales

0m 20m 40m

Title: Site Layout and Area of Environmental Concern

Client: ECOVE

Project No.: DL 3620

Figure No.: 3

Date: 10/2/2016

Scale: As Shown

Compiled: SB

Revision: R00
APPENDIX A – UNEXPECTED FINDINGS PROTOCOL
Michael Azar
ECOVE Group
Cnr Australia Avenue and Herb Elliott Avenue
Sydney Olympic Park
NSW 2127

Dear Sir,

DLA Environmental Services (DLA) was commissioned by Michael Azar of ECOVE Group to prepare an Unexpected Finds Protocol (UFP) for the property identified as:

| Site 9 – Corner Sarah Durack Ave and Olympic Boulevard, Sydney Olympic Park (the Site) |

This UFP has been developed as part of the construction planning for implementation during Site works primarily associated with excavation and civil activities. It has been prepared to ensure appropriate management of natural soils / fill which may contain undefined levels of landfill waste, leachate, landfill gas and asbestos contamination should they be encountered during Site works.

Due to the history of the Site (both past and present) and discoveries of landfill waste, leachate and landfill gas and asbestos during previous environmental investigations, there is potential for landfill waste, leachate, landfill gas and asbestos materials to be present in soils. These materials may require additional assessment or management. It is imperative that the potential for such material to impact Site workers and the remainder of the Site is minimised during remedial and construction works.

The area of investigation is known to have received waste and fill material for landfill. The Site is located on the boundary of the landfill and encompasses both fill material and natural soils. It is thought prudent to implement a UFP to cover all possible potential contamination scenarios. Potential contamination on the Site which may exist outside the scope of the past environmental investigations will be managed through the following UFP.
1.0 TYPICAL FEATURES OF ‘UNEXPECTED FINDS’

The main features to look for are:

- Material containing anthropogenic artefacts such as rubble, plastics, metal etc.;
- Material that is noticeably stained in colour;
- Asbestos or suspected asbestos containing material;
- Material with fibres visible;
- Leachate; and
- Landfill Gas odours;

2.0 IMPLEMENTATION OF THE PROTOCOL

2.1 General

Prior to the commencement of any excavation or construction works onsite, an occupational health and safety induction should be attended by all Site staff. The aim and importance of the UFP and how it is to be implemented should be discussed at this time. Responsibility for its implementation will be assigned to the Principal Contractor.

Monitoring of environmental issues will be undertaken on a daily basis. If an unexpected find is revealed during Site works, the following protocol is to be followed.

2.2 Implementation Process

1. Cease disturbance of the affected portion of the site and evacuate the immediate area.

2. Contact the Principal Contractor and the Contractors Environmental Representative (CER).

3. Principal Contractor and CER to conduct an assessment of the location and extent of the unexpected find.
4. High risk areas should be isolated and secured against unintended access.

5. Temporary encapsulation (sealing) of the high risk area to ensure no airborne spread of contamination occurs may be appropriate. This may involve clean soil, plastic sheeting, etc.

6. Dust should be prevented by wetting the soil and drainage controls should be arranged where there is a potential for runoff to occur (runoff should be minimised).

7. Warning signs should be placed in the vicinity.

8. If the Principal Contractor and CER considers that the material warrants further investigation, the area is to be barricaded to provide an exclusion zone.

9. If necessary, environmental controls should be established to minimise the potential for migration of contaminants from the impacted area.

10. Principal Contractor to complete UFP form (refer to Section 4.0) and issue to all relevant stakeholders.

11. Further visual assessment and sample collection and analysis undertaken by a qualified environmental consultant. If necessary, samples will be sent to a NATA registered laboratory.

12. Evaluation of analytical data with respect to specific health screening levels to be undertaken. Contaminated soil incident report amended with final classification of soils, including whether the soils are suitable for the proposed land use, need to be remediated or disposed of offsite to a suitably licensed facility. If soils are suitable to remain on-site and/or the area is found to be clean, a work instruction will be provided by the CER to this effect. A waste classification letter must be provided prior to any offsite disposal.

13. If the material is subsequently found to contain asbestos, an appropriately licensed contractor will be employed to remove it.

14. Affected areas will be reopened for earthworks following a clearance of the location and issuance of a report by CER.
2.3 Notes

1. Any suspected asbestos containing should be left in place and not disturbed. The CER will organise appropriate environmental professionals for further investigation purposes.

2. It is essential that material of differing compositions not be mixed.

3. All sampling for validation, waste classification or characterisation purposes will be carried out in accordance with the following documents:

 - *Contaminated Sites: Sampling Design Guidelines* (NSW EPA, 1995);
 - *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1)* (NEPC, 2013);

4. Any unexpected finds encountered should be listed on a UFP register, which should include the action taken and the status of the unexpected find. A suitable register is included in Section 5.0.

5. Once an unexpected find has been identified and a UFP form filled in the Principal Contractor and CER should liaise with the client as to the appropriate means of managing the situation. This should include discussions around the handling, treatment and disposal of material, OH&S considerations and how the affected area will be validated and reopened for works.

6. Prior to closing out an unexpected find it will be important to ensure the appropriate documentation is obtained, such as: photographs, the UFP form, waste classification letter(s) and a validation report or letter.

7. A UFP form should be completed on each day of the remedial works as part of the daily site records. This will ensure that the process is being undertaken even if no unexpected finds are encountered. The form should include the name, company and the position of the person undertaking the field observations.
3.0 UNEXPECTED FINDS PROTOCOL FORM

To be completed by the Site Controller/Environmental Representative

SITE: __

PERSONNEL ON-SITE: __

DATE: __

DAILY SUMMARY:

1. Suspect material encountered during daily activities: YES ☐ NO ☐
 (if YES, compete 2 to 5)

2. CER contacted: YES ☐ NO ☐

3. UFP Reference Number
 (label occurrences sequentially 1, 2, 3, etc.).
 __

DESCRIPTION OF MATERIAL ENCOUNTERED:

4. Asbestos or suspected ACM present: YES ☐ NO ☐

5. Brief written description of material:
 __

6. Material isolated: YES ☐ NO ☐

7. Location of contaminated material (incl. field sketch/map if required):

8. Photographs taken: YES ☐ NO ☐

NAME: __________________________ SIGNATURE: ________________________
4.0 UNEXPECTED FINDS REGISTER

<table>
<thead>
<tr>
<th>UFP No.</th>
<th>Date Found</th>
<th>Suspect Material</th>
<th>Description</th>
<th>Recorded on UFP Form</th>
<th>Action Taken</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>
GW111343

Work Summary

Licence: 10BL604349

Licence Status: ACTIVE

Authorised MONITORING BORE

Purpose(s): MONITORING BORE

Work Type: Bore

Work Status: Equipped

Construct.Method: Auger - Solid Flight

Owner Type: Other Govt

Commenced Date:

Completion Date: 06/11/2010

Final Depth: 8.00 m

Drilled Depth: 8.00 m

Contractor Name:

Driller: Daniel Giles Fox

Assistant Driller: David Mangnall

Property: SYDNEY WATER 4 HERB

Standing Water Level:

GWMA:

GW Zone:

Elliott Avenue Homebush

BAY 2127 NSW

Site Details

Site Chosen By:

<table>
<thead>
<tr>
<th>County</th>
<th>Parish</th>
<th>Cadastre</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMBE</td>
<td>CUMBE.13</td>
<td>52/747909</td>
</tr>
</tbody>
</table>

Region: 10 - Sydney South Coast

CMA Map:

River Basin: - Unknown

Grid Zone:

Scale:

Elevation: 0.00 m (A.H.D.)

Source:

Northing: 6253040.0

Easting: 321540.0

Latitude: 33°50'52.3"S

Longitude: 151°04'15.9"E

GS Map: -

MGA Zone: 0

Coordinate Source: Unknown

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td></td>
<td>0.00</td>
<td>8.00</td>
<td>100</td>
<td></td>
<td></td>
<td>Auger - Solid Flight</td>
</tr>
<tr>
<td>1</td>
<td>Annulus</td>
<td>Crushed Aggregate</td>
<td>3.50</td>
<td>8.00</td>
<td>Graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 Casing</td>
<td>PVC Class 12</td>
<td>0.00</td>
<td>5.00</td>
<td>50</td>
<td>40</td>
<td>Seated on Bottom, Screwed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 Opening</td>
<td>Slots - Horizontal</td>
<td>5.00</td>
<td>8.00</td>
<td>50</td>
<td>1</td>
<td>Casing - Machine Slotted, PVC Class 12, Screwed, A: 1.00mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log
Drillers Log

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Drillers Description</th>
<th>Geological Material</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
<td>BITUMEN</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.40</td>
<td>0.20</td>
<td>GRAVELLY ROAD BASE,GREY/BROWN</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>0.60</td>
<td>0.20</td>
<td>CLAY BROWN,GRAVELS MOIST</td>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>8.00</td>
<td>7.40</td>
<td>SHALE,BROWN,HARD,DRY</td>
<td>Shale</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

*** End of GW111343 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water
Work Summary

GW102553

Licence: 10BL157703
Licence Status: ACTIVE

Authorised: MONITORING BORE
Purpose(s): MONITORING BORE

Work Type: Bore
Work Status: Construct.Method:
Owner Type:

Commenced Date: Final Depth: 4.00 m
Completion Date: Drilled Depth:

Contractor Name: Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -

Standing Water Level: 1.830
Salinity: Yield:

Site Details

Site Chosen By:

Form A: County Licensed: CUMBERLAND
Parish: CONCORD
Cadastre: Whole Lot //

Region: 10 - Sydney South Coast
CMA Map:
River Basin: - Unknown
Area/District: Grid Zone:
Elevation: 0.00 m (A.H.D.)
Northing: 6253267.0
Easting: 322210.0
Latitude: 33°50'45.3"S
Longitude: 151°04'42.2"E
GS Map: -
MGA Zone: 0
Coordinate Source: Unknown

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of
Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td>0</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Casing</td>
<td>P.V.C.</td>
<td>0.00</td>
<td>0.00</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

From (m) To (m) Thickness (m) WBZ Type S.W.L. (m) D.D.L. (m) Yield (L/s) Hole Depth (m) Duration (hr) Salinity (mg/L)

Geologists Log

Drillers Log
Remarks

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

*** End of GW102553 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water
Work Summary
GW102555

License: 10BL157703 Licence Status: ACTIVE

Authorised MONITORING BORE
Purpose(s): MONITORING BORE
Intended Purpose(s): MONITORING BORE

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

Commenced Date: 01/01/1996
Completion Date: 01/01/1996

Contractor Name: Macquarie Drilling
Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -

Standing Water Level: 1.830
Salinity:
Yield:

Site Details

Site Chosen By:

<table>
<thead>
<tr>
<th>Form A</th>
<th>County</th>
<th>Parish</th>
<th>Cadastre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Licensed: CUMBERLAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licensed: CONCORD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole Lot //</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District: Unknown

Elevation: 0.00 m (A.H.D.)
Easting: 6253143.0
Northing: 322187.0
Latitude: 33°50'49.3"S
Longitude: 151°04'41.2"E
MGA Zone: 0
Coordinate Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td>50</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log
Remarks

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Drillers Description</th>
<th>Geological Material</th>
<th>Comments</th>
</tr>
</thead>
</table>

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

*** End of GW102555 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water

Work Summary

GW102556

License: 10BL157703

Licence Status: ACTIVE

Authorized: MONITORING BORE
Purpose(s): MONITORING BORE

Work Type: Bore
Work Status:

Construct.Method:

Owner Type:

Commenced Date: 01/01/1996
Completion Date: 01/01/1996

Final Depth: 4.00 m
Drilled Depth:

Contractor Name: Macquarie Drilling
Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -
Standing Water Level: 1.830
Salinity: Yield:

Site Details

Site Chosen By:

Form A:
County: CUMBERLAND
Licensed: CUMBERLAND
Parish: CONCORD
Cadastre: Whole Lot //

CMA Map:
Grid Zone:
Scale:

Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District:

Elevation: 0.00 m (A.H.D.)
Elevation Unknown
Source:

Northing: 6252900.0
Easting: 322371.0
Latitude: 33°50'57.3"S
Longitude: 151°04'48.2"E

GS Map: -
MGA Zone: 0
Coordinate Unknown
Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td>50</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Casing</td>
<td>P.V.C.</td>
<td>0.00</td>
<td>0.00</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log
Remarks

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

*** End of GW102556 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Drillers Description</th>
<th>Geological Material</th>
<th>Comments</th>
</tr>
</thead>
</table>

NSW Office of Water
Work Summary

GW102557

Licence: 10BL157703
Licence Status: ACTIVE

Authorised: MONITORING BORE
Purpose(s): MONITORING BORE

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

Commenced Date: 01/01/1996
Completion Date: 01/01/1996

Final Depth: 4.00 m
Drilled Depth:

Contractor Name: Macquarie Drilling
Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -
Standing Water Level:
Salinity:
Yield:

Site Details

Site Chosen By:

Form A: Licensed: CUMBERLAND
County: Parish: Cadastre:
Licensed: CONCORD Whole Lot //

Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District:

Elevation: 0.00 m (A.H.D.)
Elevation Unknown
Source:

Northing: 6252778.0
Easting: 322425.0
Latitude: 33°51'01.3"S
Longitude: 151°04'50.2"E

Source: Coordinate: Unknown
GS Map: -
MGA Zone: 0

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td>0</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Casing</td>
<td>P.V.C.</td>
<td>0.00</td>
<td>0.00</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log
Remarks

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water
Work Summary

GW102558

<table>
<thead>
<tr>
<th>Licence:</th>
<th>Licence Status:</th>
<th>ACTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorised:</td>
<td>MONITORING BORE</td>
<td></td>
</tr>
<tr>
<td>Purpose(s):</td>
<td>MONITORING BORE</td>
<td></td>
</tr>
</tbody>
</table>

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

Commenced Date: Final Depth: 4.00 m
Completion Date: Drilled Depth:

Contractor Name: Macquarie Drilling
Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -
Standing Water Level: 1.830
Salinity: Yield:

Site Details

Site Chosen By:

<table>
<thead>
<tr>
<th>County</th>
<th>Parish</th>
<th>Cadastre</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMBERLAND</td>
<td>CONCORD</td>
<td>Whole Lot //</td>
</tr>
</tbody>
</table>

Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District:

Elevation: 0.00 m (A.H.D.) Northing: 6252682.0
Elevation Unknown Easting: 322272.0
Source: Latitude: 33°51'04.3"S
GS Map: -
MGA Zone: 0
Longitude: 151°04'44.2"E
Coordinate Unknown
Source:

Construction
Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Casing</td>
<td>P.V.C.</td>
<td>0.00</td>
<td>0.00</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log
Remarks

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

*** End of GW102558 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Drillers Description</th>
<th>Geological Material</th>
<th>Comments</th>
</tr>
</thead>
</table>

NSW Office of Water
Work Summary

GW102550

<table>
<thead>
<tr>
<th>Licence: 10BL157703</th>
<th>Licence Status: ACTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorised: MONITORING BORE</td>
<td></td>
</tr>
<tr>
<td>Purpose(s):</td>
<td></td>
</tr>
<tr>
<td>Intended Purpose(s): MONITORING BORE</td>
<td></td>
</tr>
</tbody>
</table>

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

Commenced Date:
Completion Date: 01/01/1996
Final Depth: 4.00 m
Drilled Depth:

Contractor Name: Macquarie Drilling
Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -

<table>
<thead>
<tr>
<th>Standing Water Level: 1.800</th>
<th>Salinity:</th>
</tr>
</thead>
</table>

Site Details

Site Chosen By:

<table>
<thead>
<tr>
<th>County</th>
<th>Parish</th>
<th>Cadastre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form A:</td>
<td>CUMBERLAND</td>
<td>CONCORD</td>
</tr>
<tr>
<td>Licensed:</td>
<td>Whole Lot //</td>
<td></td>
</tr>
</tbody>
</table>

Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District:

Elevation: 0.00 m (A.H.D.)
Elevation: Unknown
Source:

<table>
<thead>
<tr>
<th>Northing</th>
<th>Easting</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>6253109.0</td>
<td>322033.0</td>
<td>33°50'50.3"S</td>
<td>151°04'35.2"E</td>
</tr>
</tbody>
</table>

GS Map: -
MGA Zone: 0
Coordinate Source: Unknown

Construction
Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td>0</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Casing</td>
<td>P.V.C.</td>
<td>0.00</td>
<td>0.00</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log
Remarks

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

*** End of GW102550 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water

Work Summary

GW102561

<table>
<thead>
<tr>
<th>Licence: 10BL157703</th>
<th>Licence Status: ACTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorised</td>
<td>MONITORING BORE</td>
</tr>
<tr>
<td>Purpose(s):</td>
<td>MONITORING BORE</td>
</tr>
<tr>
<td>Intended Purpose(s):</td>
<td>MONITORING BORE</td>
</tr>
</tbody>
</table>

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

Commenced Date:
Completion Date: 01/01/1996
Final Depth: 4.00 m
Drilled Depth:

Contractor Name: Macquarie Drilling
Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -
Standing Water Level: 1.830
Salinity:
Yield:

Site Details

Site Chosen By:
Form A:
Licensed: CUMBERLAND
County:
Parish: CONCORD
Cadastre: Whole Lot //
Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District:
Elevation: 0.00 m (A.H.D.)
Elevation Source: Unknown
Northing: 6252741.0
Easting: 322117.0
Latitude: 33°51'02.3"S
Longitude: 151°04'38.2"E
GS Map: -
MGA Zone: 0
Coordinate Source: Unknown

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Diameter</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td></td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td></td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Casing</td>
<td>P.V.C.</td>
<td>0.00</td>
<td>0.00</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log
Remarks

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

*** End of GW102561 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
GW102562

NSW Office of Water
Work Summary

Licence: 10BL157703
Licence Status: ACTIVE

Authorised: MONITORING BORE
Purpose(s): MONITORING BORE

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

Commenced Date: Final Depth: 4.00 m
Completion Date: 01/01/1996 Drilled Depth:

Contractor Name: Macquarie Drilling
Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -

Standing Water Level: 1.830
Salinity:
Yield:

Site Details

Site Chosen By:

Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District:

Elevation: 0.00 m (A.H.D.)
Elevation Unknown
Source:

GS Map: -
MGA Zone: 0
Coordinate Unknown
Source:

Country: CUMBERLAND
Parish: CONCORD
Cadastre: Whole Lot //

Construction
Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td></td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log
<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Drillers Description</th>
<th>Geological Material</th>
<th>Comments</th>
</tr>
</thead>
</table>

Remarks

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

*** End of GW102562 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water
Work Summary

GW102562

Licence: 10BL157703
Licence Status: ACTIVE

Authorised: MONITORING BORE
Purpose(s): MONITORING BORE

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

Commenced Date: Final Depth: 4.00 m
Completion Date: Drilled Depth:

Contractor Name: Macquarie Drilling
Driller:
Assistant Driller:

Property: N/A
GWMA: -
GW Zone: -

Standing Water Level: 1.830
Salinity: Yield:

Site Details

Site Chosen By:

<table>
<thead>
<tr>
<th>Form A:</th>
<th>County</th>
<th>Parish</th>
<th>Cadastre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licensed:</td>
<td>CUMBERLAND</td>
<td>CONCORD</td>
<td>Whole Lot //</td>
</tr>
</tbody>
</table>

Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District:

Elevation: 0.00 m (A.H.D.)
Elevation Unknown
Source:

Northing: 6252830.0
Easting: 321935.0
Latitude: 33°50'59.3"S
Longitude: 151°04'31.2"E

GS Map: -
MGA Zone: 0
Coordinate Unknown
Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>4.00</td>
<td>0</td>
<td></td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log
Remarks

01/01/1996: Form A Remarks:
DATA FROM AG APPLICATION ONLY

*** End of GW102562 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water
Work Summary

GW102645

Licence: 10BL150044 Licence Status: ACTIVE

Authorised: MONITORING BORE
Purpose(s): MONITORING BORE
Intended Purpose(s): MONITORING BORE

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

Commenced Date: 21/05/1992
Completion Date: 21/05/1992

Contractor Name: DJ DOUGLAS
Driller:
Assistant Driller:

Property: N/A NSW
GWMA: -
GW Zone: -

Standing Water Level:
Salinity:
Yield:

Site Details

Site Chosen By:

Form A:
County: CUMBERLAND
Licensed:
Parish:
Cadastre: LIBERTY PLAINS Whole Lot 121/11427
Region: 10 - Sydney South Coast
CMA Map:
River Basin: - Unknown
Grid Zone:
Area/District:
Elevation: 0.00 m (A.H.D.)
Elevation Unknown
Source:

GS Map: -
MGA Zone: 0
Coordinate GIS - Geographic
Source: Information System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Annulus</td>
<td>Waterworn/Rounded</td>
<td>6.50</td>
<td>10.00</td>
<td>Graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Casing</td>
<td>PVC Class 18</td>
<td>0.00</td>
<td>9.50</td>
<td>65</td>
<td>Seated on Bottom, Screwed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Opening</td>
<td>Slots - Vertical</td>
<td>6.50</td>
<td>9.50</td>
<td>65</td>
<td>1 Sawn, PVC Class 18, SL: 3.0mm, A: 1.00mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00 Unknown</td>
<td></td>
<td>7.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geologists Log

Drillers Log

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Drillers Description</th>
<th>Geological Material</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>5.00</td>
<td>5.00</td>
<td>SHALE WEATHERED</td>
<td>Shale</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>10.00</td>
<td>5.00</td>
<td>SHALE</td>
<td>Shale</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

*** End of GW102645 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water
Work Summary

GW111341

Licence: 10BL604349
Licence Status: ACTIVE

Authorized: MONITORING BORE
Purpose(s): MONITORING BORE

Intended Purpose(s): MONITORING BORE

Work Type: Bore
Work Status: Equipped
Construct.Method: Auger - Solid Flight
Owner Type: Other Govt

Commenced Date: 26/06/2007
Completion Date: 06/11/2010

Contractor Name:
Driller: Daniel Giles Fox
Assistant Driller:

Property: SYDNEY WATER 4 HERB
ELLIOTT AVENUE HOMEBURGH
BAY 2127 NSW

Standing Water Level:
GWMA:
Salinity:
Yield:

Site Details

Site Chosen By:

County
Form A: CUMBE
Licensed:

Parish
CUMBE.13

Cadastre
52 747909

Region: 10 - Sydney South Coast
River Basin: - Unknown
Area/District:

Elevation: 0.00 m (A.H.D.)
Elevation Unknown

Source: Unknown

Northing: 6253031.0
Easting: 321544.0

Latitude: 33°50'52.6"S
Longitude: 151°04'16.1"E

GS Map: -
MGA Zone: 0
Coordinate Source: Unknown

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td></td>
<td>0.00</td>
<td>8.00</td>
<td>100</td>
<td></td>
<td></td>
<td>Auger - Solid Flight</td>
</tr>
<tr>
<td>1</td>
<td>Annulus</td>
<td>Crushed Aggregate</td>
<td>3.50</td>
<td>8.00</td>
<td>100</td>
<td>50</td>
<td>Graded, Q:40.000m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Casing</td>
<td>PVC Class 12</td>
<td>0.00</td>
<td>5.00</td>
<td>50</td>
<td>40</td>
<td></td>
<td>Seated on Bottom</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Opening</td>
<td>Slots</td>
<td>5.00</td>
<td>8.00</td>
<td>50</td>
<td>40</td>
<td>1</td>
<td>Casing - Machine Slotted, PVC Class 12, Screwed, A: 1.00mm</td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Drillers Description</th>
<th>Geological Material</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
<td>BITUMEN</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.40</td>
<td>0.20</td>
<td>GRAVELLY ROAD BASE,GREY/BROWN</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>0.60</td>
<td>0.20</td>
<td>CLAY BROWN,GRAVELS MOIST</td>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>8.00</td>
<td>7.40</td>
<td>SHALE BROWN,HARD,DRY</td>
<td>Shale</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

*** End of GW111341 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.
NSW Office of Water
Work Summary

GW111342

Licence: 10BL604349
Licence Status: ACTIVE

Authorized MONITORING BORE
Purpose(s): MONITORING BORE

Work Type: Bore
Work Status: Equipped
Construct.Method: Auger - Solid Flight
Owner Type: Other Govt

Commenced Date: 06/11/2010
Completion Date: 06/11/2010
Final Depth: 8.00 m
Completed Depth: 8.00 m

Contractor Name:
Driller: Daniel Giles Fox
Assistant Driller: David Mangnall

Property: SYDNEY WATER 4 HERB
Elliott Avenue Homebush
Bay 2127 NSW

Standing Water Level:

GWMA: Salinity:
GW Zone: Yield:

Site Details

Site Chosen By:

County
Parish
Cadastre
Form A: CUMBE
CUMBE,13
52//747909

Region: 10 - Sydney South Coast
CMA Map:
River Basin: - Unknown
Grid Zone:
Area/District:
Elevation: 0.00 m (A.H.D.)
Elevation: Unknown
Source:

GS Map: -
MGA Zone: 0
Coordinate
Source: Unknown

Construction
Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

<table>
<thead>
<tr>
<th>Hole</th>
<th>Pipe</th>
<th>Component</th>
<th>Type</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Outside Diameter (mm)</th>
<th>Inside Diameter (mm)</th>
<th>Interval</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hole</td>
<td>Hole</td>
<td>Hole</td>
<td>0.00</td>
<td>8.00</td>
<td>100</td>
<td></td>
<td></td>
<td>Auger - Solid Flight</td>
</tr>
<tr>
<td>1</td>
<td>Annulus</td>
<td>Crushed Aggregate</td>
<td>3.50</td>
<td>8.00</td>
<td>Graded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Casing</td>
<td>PVC Class 12</td>
<td>0.00</td>
<td>5.00</td>
<td>50</td>
<td>40</td>
<td>Seated on Bottom, Screwed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Opening</td>
<td>Slots - Horizontal</td>
<td>5.00</td>
<td>8.00</td>
<td>50</td>
<td>1</td>
<td>Casing - Machine Slotted, PVC Class 12, Screwed, A: 1.00mm</td>
<td></td>
</tr>
</tbody>
</table>

Water Bearing Zones

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>WBZ Type</th>
<th>S.W.L. (m)</th>
<th>D.D.L. (m)</th>
<th>Yield (L/s)</th>
<th>Hole Depth (m)</th>
<th>Duration (hr)</th>
<th>Salinity (mg/L)</th>
</tr>
</thead>
</table>

Geologists Log

Drillers Log

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Thickness (m)</th>
<th>Drillers Description</th>
<th>Geological Material</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
<td>BITUMEN</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.40</td>
<td>0.20</td>
<td>GRAVELLY ROAD BASE,GREY BROWN,MOIST</td>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>0.60</td>
<td>0.20</td>
<td>CLAY BROWN,ANGULAR GRAVELS,MOIST</td>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>8.00</td>
<td>7.40</td>
<td>SHALE BROWN,HARD,DYR</td>
<td>Shale</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

*** End of GW111342 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.