Hydraulic Services
Concept Design Report
Mixed Residential Development
Site 9, Sydney Olympic Park

Client:
Ecove Group Pty Ltd
Locked Bag 1451
Meadowbank NSW 2127
(T) 02 9763 0444

Hydraulic & Fire Services Consultant:
Insync Services Pty Ltd
Suite 6.02, Level 6, 89 York Street
Sydney NSW 2000
(T) 02 9262 3400
(F) 02 9262 3422

File: 20150077 Hydraulic Services Concept Design Report.docx
Review and Approval Record

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description of Release</th>
<th>Prepared By</th>
<th>Reviewed By</th>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17/02/16</td>
<td>Concept Design</td>
<td>RP</td>
<td>BL</td>
<td>BL</td>
</tr>
<tr>
<td>B</td>
<td>04/03/16</td>
<td>DA Issue</td>
<td>RP</td>
<td>BL</td>
<td>BL</td>
</tr>
<tr>
<td>C</td>
<td>04/04/16</td>
<td>DA Issue</td>
<td>RP</td>
<td>BL</td>
<td>BL</td>
</tr>
</tbody>
</table>

This document is and shall remain the property of Insync Services Pty Ltd. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.
Contents

1 Executive Summary
 1.1 Hydraulic Services
 1.2 Summary

2 Introduction
 2.1 Background
 2.2 Scope of Services
 2.3 Aims
 2.4 Briefing Documents
 2.5 Associated Services

3 Schedule Of Accommodation
 3.1 Area Schedule
 3.2 Accommodation Schedule

4 Sub-Soil Drainage Service
 4.1 Sub-Soil Drainage Generally
 4.2 Standards
 4.3 System Design
 4.4 Sizing
 4.5 Installation
 4.6 Materials

5 Stormwater Drainage Service
 5.1 Stormwater Drainage Generally
 5.2 Standards
 5.3 System Design
 5.4 Stormwater On-Site Detention (OSD)
 5.5 Sizing
 5.6 Inground Installation
 5.7 Suspended Installation
 5.8 Materials

6 Rainwater Plumbing Service
 6.1 Rainwater Plumbing Generally
 6.2 Standards
 6.3 System Design
 6.4 Sizing
 6.5 Syphonic Sizing
6.6 Installation 18
6.7 Materials 18

7 Sanitary Drainage Service 19
7.1 Sanitary Drainage Generally 19
7.2 Standards 19
7.3 System Design 19
7.4 Main Connection 19
7.5 Sizing 19
7.6 Inground Installation 19
7.7 Suspended Installation 20
7.8 Materials 20

8 Sanitary Plumbing Service 21
8.1 Sanitary Plumbing Generally 21
8.2 Standards 21
8.3 System Design 21
8.4 Sizing 21
8.5 Installation 21
8.6 Materials 22

9 Potable Cold Water Service 23
9.1 Potable Cold Water Service Generally 23
9.2 Standards 23
9.3 System Design 23
9.4 Sizing 23
9.5 Operating Pressures 23
9.6 Water Supply 24
9.7 Metering 24
9.8 Filtration 24
9.9 Booster Pumps – Residential (Triplex) 24
9.10 Booster Pumps – Commercial (Duplex) 24
9.11 Backflow Prevention 25
9.12 Isolation of Wet Areas & Fixtures 25
9.13 Thermal Insulation 25
9.14 Flow Rates 25
9.15 Materials 25

10 Non-Potable Cold Water Service 27
10.1 Non-Potable Cold Water Service Generally 27
10.2 Standards 27
10.3 System Design 27
10.4 Sizing 27
10.5 Operating Pressures 27
10.6 Water Supply 28
10.7 Metering 28
10.8 Filtration 28
10.9 Booster Pumps – Residential (Triplex) 28
10.10 Booster Pumps – Commercial (Duplex) 28
10.11 Backflow Prevention 28
10.12 Isolation of Wet Areas & Fixtures 29
10.13 Thermal Insulation 29
10.14 Flow Rates 29
10.15 Materials 29

11 Potable Hot Water Service 30
11.1 Potable Hot Water Service Generally 30
11.2 Standards 30
11.3 System Design 30
11.4 Potable Hot Water Capacity - Residential 30
11.5 Potable Hot Water Capacity – Commercial 30
11.6 Sizing 31
11.7 Operating Pressures 31
11.8 Metering 31
11.9 Circulation Pumps 31
11.10 Backflow Prevention 31
11.11 Isolation of Wet Areas & Fixtures 31
11.12 Thermal Insulation 31
11.13 Flow Rates 32
11.14 Temperature Control 32
11.15 Materials 32

12 Natural Gas Service 33
12.1 Gas Service Generally 33
12.2 System Design 33
12.3 Gas Service Capacity 33
12.4 Sizing 33
12.5 Operating Pressures 34
12.6 Gas Supply 34
12.7 Metering 34
12.8 Materials 34

13 Spatial Requirements 35
13.1 Summary Spatial Requirements 35
14 Appendix

14.1 Site plan
14.2 Sanitary Drainage Concept Schematic Diagram – Sheet 1
14.3 Sanitary Drainage Concept Schematic Diagram – Sheet 2
14.4 Sanitary Drainage Concept Schematic Diagram – Sheet 3
14.5 Stormwater Drainage Concept Schematic Diagram – Sheet 1
14.6 Stormwater Drainage Concept Schematic Diagram – Sheet 2
14.7 Cold Water Service Concept Schematic Diagram
14.8 Non-Potable Cold Water Service Concept Schematic Diagram
14.9 Hot Water Service Concept Schematic Diagram
14.10 Natural Gas Service Concept Schematic Diagram
14.11 Detail Sheet 1
14.12 Detail Sheet 2
14.13 Detail Sheet 3
1 Executive Summary

1.1 Hydraulic Services

The hydraulic services covered by this Concept Design report include:

<table>
<thead>
<tr>
<th>Hydraulic Services</th>
<th>Design Codes</th>
<th>Proposed Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Soil Drainage Service</td>
<td>National Construction Code A.S. 3500.3 – 2003</td>
<td>Deemed To Satisfy</td>
</tr>
<tr>
<td></td>
<td>Plumbing Code Of Australia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Council Stormwater DCP and Policies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plumbing Code of Australia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Council Stormwater DCP and Policies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plumbing Code of Australia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Council Stormwater DCP and Policies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plumbing Code of Australia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plumbing Code of Australia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWC Trade Waste Policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plumbing Code of Australia</td>
<td></td>
</tr>
<tr>
<td>Natural Gas Service</td>
<td>National Construction Code A.S. 5601 – 2004</td>
<td>Deemed To Satisfy</td>
</tr>
</tbody>
</table>

1.2 Summary

The proposed mixed residential development at site 9, Sydney Olympic Park will be constructed on an existing parcel of land having existing carpark demolished to allow for the new development. The site is bounded by Sarah Durack Avenue to the north, Olympic Boulevard to the west, an existing building to the east and existing carpark to the south.

The building has an effective height of more than 50m in accordance with the definition provided under the Building Code of Australia. Classification of a buildings effective height determines several significant factors in the design of hydraulic services for the building, including the following;
- Adequate sizing and ventilation of sanitary drainage risers, relative to the total load and number of floors served.
- Use of water service pumps to ensure minimum pressures are available at the point of use.
- Pressure control within water services to ensure that maximum pressures are not exceeded at the point of use.
- Location of hot water plant so as to not exceed the maximum working pressures of the plant.

A summary table of the key hydraulic services design proposals is detailed below;

- Sub-Soil Drainage – will be provided below all slabs on ground. Drainage over lower levels will be collected with slotted pipework and reticulated to a central collection location where it will be pumped for discharge into the site stormwater drainage system after having the water quality managed via treatment through a gross pollutant trap device.

- Stormwater Drainage – will be provided to all areas at grade that are exposed to rainfall, as well as throughout carpark levels of the building. Carpark drainage will be provided via a dedicated system that discharges to the sub-soil drainage system for water quality treatment prior to site discharge. Other areas of the building will be drained via gravity into several connections to the civil on-site stormwater detention tank facility that is being constructed in association with this development.

- Rainwater Plumbing – two systems of rainwater plumbing will be provided to the development. One via syphonic drainage to collect roof water only and transfer rainfall into the rainwater storage tank for re-use via the site landscape irrigation system. All other rainwater plumbing system drainage will be achieved via gravity downpipes located to provide drainage to all apartment balconies and terraces throughout the development. Rainwater plumbing systems will discharge into the stormwater drainage system. All associated plumbing to be concealed with structural elements.

- Sanitary Drainage – a system of gravity drainage will be provided to collect discharge from all fixtures and sanitary plumbing systems throughout the development. A site sanitary drainage connection will be made into the Sydney Water sewer main currently located on site, and that is being diverted in association with this development.

- Trade Waste Drainage – a system of gravity trade waste drainage will be provided to collect discharge from the retail & club tenancies. Pre-treatment of the waste shall be by multiple grease arrestor units installed within dedicated rooms at ground level. Discharge from the grease arrestor into the sanitary drainage system.

- Sanitary Plumbing – aerial drainage and fully vented modified stack work shall be used to provide connection of all fixtures through the development. Stacks will be located so that each apartment can be services by a dedicated riser, and therefore limit any requirement to penetrate party walls between apartments. Sanitary plumbing systems shall discharge via gravity in the sanitary drainage system.

- Potable Cold Water – potable cold water shall be sourced from a dedicated connection to the existing Sydney Water main located within Olympic Boulevard. A master Authority meter and site containment backflow prevention device shall be located at the site boundary on ground level adjacent to the carpark entry. Individually metered mains pressure water services will be provided for the Residential, Commercial, Retail tenancies and building shared services facilities. A dedicated pump boosted service shall be provided for the residential tower with individual metering to each apartment, and the central hot water plant at roof level. A dedicated pump boosted service shall be provided for Commercial, and the central hot water plant at roof level.
- **Non-Potable Cold Water** – non-potable cold water shall be sourced from a dedicated connection to the existing Sydney Water main located within Olympic Boulevard. A master Authority meter and site containment backflow prevention device shall be located at the site boundary on ground level adjacent to the carpark entry. An individually metered mains pressure water service will be provided for the Residential, Commercial, Retail tenancies, building shared services facilities, and top up to the rainwater storage tank. A dedicated pump boosted service shall be provided for the residential tower with individual metering to each apartment. Non-potable cold water shall be used for toilet flushing requirements. A dedicated pump boosted service shall be provided for Commercial.

- **Rainwater Re-use** – a rainwater re-use system shall be provided for landscape irrigation throughout the development. Rainwater shall be collected from roof level only and stored in a dedicated tank at ground level. A pump and filter system shall be provided to reticulate rainwater as required to the landscape irrigation system. Non-potable cold water top-up shall be provided for periods of low rainfall.

- **Potable Hot Water** – a central gas fired hot water plant shall be provided at roof level for all residential hot water requirements. A system of flow and return pipework shall be provided with pump circulation to reticulate hot water throughout Residential areas of the development. Individual meters shall be provided to each apartment, located with service risers that are accessible from the common corridor area. Retail/Club hot water requirements shall be provided by the tenants, with garbage area hot water being generated by individual electric hot water units located adjacent to each garbage room. A central heat pump hot water plant with electric boost shall be provided at level 8 for all Commercial hot water requirements. A system of flow and return pipework shall be provided with pump circulation to reticulate hot water throughout commercial areas of the development.

- **Natural Gas** – natural gas shall be sourced from a dedicated connection to the Jemena main located within Olympic Boulevard. There currently is a high pressure gas main located within Sarah Durack Avenue. However, we have written advice that a 210kPa main will be required to be installed in Olympic Boulevard extending from Fig Tree Drive in the near future (before the development proceeds) which will be suitable for connection of the site. A site regulator assembly shall be located at the site boundary on ground level adjacent to the carpark entry. Individually metered natural gas services will be provided for the Residential, Commercial, Retail tenancies, and each Residential apartment including the central hot water plant. Residential gas meters shall be located within dedicated service cupboards accessible from common corridor areas on all Residential levels.
2 Introduction

2.1 Background
Ecove Group Pty Ltd has engaged Insync Services Pty Ltd to provide building services consultancy on the mixed residential development at Site 9, Sydney Olympic Park. Specifically, Insync Services Pty Ltd have been engaged to provide engineering consultancy with regard to the following building services disciplines;

- Hydraulic Services
- Wet Fire Services
- Mechanical Services

2.2 Scope of Services
The building services engineering elements considered within this report are as follows;

- Sub-Soil Drainage
- Stormwater Drainage
- Rainwater Plumbing
- Sanitary Drainage
- Trade Waste Drainage
- Potable Cold Water Service
- Non-Potable Cold Water Service
- Hot Water Service
- Natural Gas Service

2.3 Aims
The aim of this Concept Design report is to provide a detailed description of the hydraulic services design proposals associated with the development. Specifically the report is intended to provide a summary of the following;

- Identification of services to be provided.
- Description of the codes to which they will be installed.
- Description of the basis for design.
- Description of the required performance.
- Description of the materials to be used.

2.4 Briefing Documents
The hydraulic services engineering elements considered within this report have taken into account the following preliminary documentation and investigations;

- Building Code of Australia.
- Authority main diagrams.
- Architectural drawings prepared by Bates Smart Pty Ltd.

2.5 Associated Services
The associated services engineering elements to be considered in conjunction within this report are as follows;

- Fire Rated Construction as detailed by the Architect and Structural Engineer.
- Acoustic Performance as detailed by the Acoustic Engineer.
3 Schedule Of Accommodation

3.1 Area Schedule

Preliminary load estimates within this report have been based upon the Schedule of GFA (m²) Area detailed below;

<table>
<thead>
<tr>
<th>Building Level</th>
<th>Floor Level</th>
<th>Building Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Level</td>
<td>12.05</td>
<td>1122</td>
</tr>
<tr>
<td>Level 02</td>
<td>17.00</td>
<td>0</td>
</tr>
<tr>
<td>Level 03</td>
<td>20.00</td>
<td>0</td>
</tr>
<tr>
<td>Level 04</td>
<td>23.00</td>
<td>0</td>
</tr>
<tr>
<td>Level 05</td>
<td>26.00</td>
<td>0</td>
</tr>
<tr>
<td>Level 06</td>
<td>29.00</td>
<td>0</td>
</tr>
<tr>
<td>Level 07</td>
<td>33.10</td>
<td>1866</td>
</tr>
<tr>
<td>Level 08</td>
<td>36.20</td>
<td>1723</td>
</tr>
<tr>
<td>Level 09</td>
<td>39.30</td>
<td>668</td>
</tr>
<tr>
<td>Level 10</td>
<td>42.40</td>
<td>681</td>
</tr>
<tr>
<td>Level 11</td>
<td>45.50</td>
<td>681</td>
</tr>
<tr>
<td>Level 12</td>
<td>48.60</td>
<td>681</td>
</tr>
<tr>
<td>Level 13</td>
<td>51.70</td>
<td>681</td>
</tr>
<tr>
<td>Level 14</td>
<td>54.80</td>
<td>681</td>
</tr>
<tr>
<td>Level 15</td>
<td>58.20</td>
<td>683</td>
</tr>
<tr>
<td>Level 16</td>
<td>61.30</td>
<td>683</td>
</tr>
<tr>
<td>Level 17</td>
<td>64.40</td>
<td>683</td>
</tr>
<tr>
<td>Level 18</td>
<td>67.50</td>
<td>683</td>
</tr>
<tr>
<td>Level 19</td>
<td>70.60</td>
<td>683</td>
</tr>
<tr>
<td>Level 20</td>
<td>74.00</td>
<td>683</td>
</tr>
<tr>
<td>Level 21</td>
<td>77.10</td>
<td>683</td>
</tr>
<tr>
<td>Level 22</td>
<td>80.20</td>
<td>683</td>
</tr>
<tr>
<td>Level 23</td>
<td>83.30</td>
<td>683</td>
</tr>
<tr>
<td>Level 24</td>
<td>86.40</td>
<td>683</td>
</tr>
<tr>
<td>Level 25</td>
<td>89.50</td>
<td>683</td>
</tr>
<tr>
<td>Level 26</td>
<td>92.60</td>
<td>683</td>
</tr>
<tr>
<td>Level 27</td>
<td>96.00</td>
<td>678</td>
</tr>
<tr>
<td>Level 28</td>
<td>99.10</td>
<td>678</td>
</tr>
<tr>
<td>Level 29</td>
<td>102.20</td>
<td>678</td>
</tr>
<tr>
<td>Level 30</td>
<td>105.30</td>
<td>678</td>
</tr>
<tr>
<td>Level 31</td>
<td>108.40</td>
<td>678</td>
</tr>
<tr>
<td>Level 32</td>
<td>111.50</td>
<td>678</td>
</tr>
<tr>
<td>Level 33</td>
<td>114.60</td>
<td>678</td>
</tr>
<tr>
<td>Level 34</td>
<td>117.70</td>
<td>678</td>
</tr>
<tr>
<td>Level 35</td>
<td>120.80</td>
<td>678</td>
</tr>
<tr>
<td>Level 36</td>
<td>124.20</td>
<td>719</td>
</tr>
<tr>
<td>Level 37</td>
<td>127.30</td>
<td>610</td>
</tr>
<tr>
<td>Level 38</td>
<td>130.40</td>
<td>610</td>
</tr>
<tr>
<td>Roof Level</td>
<td>133.50</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>117.7m</td>
<td>25,130</td>
</tr>
</tbody>
</table>
3.2 Accommodation Schedule

Preliminary load estimates within this report have been based upon the Schedule of Accommodation detailed below;

<table>
<thead>
<tr>
<th>Building Level</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Level</td>
<td>0</td>
</tr>
<tr>
<td>Level 02</td>
<td>0</td>
</tr>
<tr>
<td>Level 03</td>
<td>0</td>
</tr>
<tr>
<td>Level 04</td>
<td>0</td>
</tr>
<tr>
<td>Level 05</td>
<td>0</td>
</tr>
<tr>
<td>Level 06</td>
<td>0</td>
</tr>
<tr>
<td>Level 07</td>
<td>6</td>
</tr>
<tr>
<td>Level 08</td>
<td>6</td>
</tr>
<tr>
<td>Level 09</td>
<td>7</td>
</tr>
<tr>
<td>Level 10</td>
<td>8</td>
</tr>
<tr>
<td>Level 11</td>
<td>8</td>
</tr>
<tr>
<td>Level 12</td>
<td>8</td>
</tr>
<tr>
<td>Level 13</td>
<td>8</td>
</tr>
<tr>
<td>Level 14</td>
<td>8</td>
</tr>
<tr>
<td>Level 15</td>
<td>8</td>
</tr>
<tr>
<td>Level 16</td>
<td>8</td>
</tr>
<tr>
<td>Level 17</td>
<td>8</td>
</tr>
<tr>
<td>Level 18</td>
<td>8</td>
</tr>
<tr>
<td>Level 19</td>
<td>8</td>
</tr>
<tr>
<td>Level 20</td>
<td>8</td>
</tr>
<tr>
<td>Level 21</td>
<td>8</td>
</tr>
<tr>
<td>Level 22</td>
<td>8</td>
</tr>
<tr>
<td>Level 23</td>
<td>8</td>
</tr>
<tr>
<td>Level 24</td>
<td>8</td>
</tr>
<tr>
<td>Level 25</td>
<td>8</td>
</tr>
<tr>
<td>Level 26</td>
<td>8</td>
</tr>
<tr>
<td>Level 27</td>
<td>7</td>
</tr>
<tr>
<td>Level 28</td>
<td>7</td>
</tr>
<tr>
<td>Level 29</td>
<td>7</td>
</tr>
<tr>
<td>Level 30</td>
<td>7</td>
</tr>
<tr>
<td>Level 31</td>
<td>7</td>
</tr>
<tr>
<td>Level 32</td>
<td>7</td>
</tr>
<tr>
<td>Level 33</td>
<td>7</td>
</tr>
<tr>
<td>Level 34</td>
<td>7</td>
</tr>
<tr>
<td>Level 35</td>
<td>7</td>
</tr>
<tr>
<td>Level 36</td>
<td>4</td>
</tr>
<tr>
<td>Level 37</td>
<td>4</td>
</tr>
<tr>
<td>Level 38</td>
<td>3</td>
</tr>
<tr>
<td>Totals</td>
<td>229</td>
</tr>
</tbody>
</table>
4 Sub-Soil Drainage Service

4.1 Sub-Soil Drainage Generally
Specifically this section of the Concept Design report shall cover the following services:

- Sub-Soil Drainage

4.2 Standards
Works under this section of the Concept Design report shall be designed in accordance with the following standards:

- The Building Code of Australia
- Plumbing Code of Australia
- AS 3500.3 - Stormwater Drainage
- Council DCP and Policies.
- Sydney Olympic Park Authority Policies and Guidelines
- Environmental Protection Authority Policies and Guidelines

4.3 System Design
A system of sub-soil drainage will be installed to the high side of building perimeters when interfaced to sloping ground, below concrete slabs when installed below natural ground level, and behind all retaining walls.

All sub-soil branches shall be terminated with a bolted trap screw removable access cover at the upstream end. Access covers shall be located in accessible locations to facilitate future maintenance and cleaning of the sub-soil drainage system.

Sub-soil branches shall be terminated into pre-cast concrete sub-soil pits at the downstream end. Sub-soil pits shall be located at maximum 30 metre intervals, and shall be interconnected within stormwater pipework having a minimum diameter of 150mm.

Discharge from the sub-soil drainage system shall be directed through a pollution control device capable of removing sediments and oils, prior to being connected into the stormwater drainage system for disposal.

Where possible, on grade gravity drainage shall be the preferred method of connection for all sub-soil discharge into the stormwater drainage system. In the event that site conditions preclude a gravity drainage connection, discharge from the sub-soil drainage system shall be collected in a strategically located collection well. The collection well shall have adequate capacity to store discharge from all connected pipework during a 10 year ARI storm event of 2 hours duration. In any case the collection well shall have a minimum effective storage capacity of 3,000 litres.

Dual submersible pumps shall be installed within the collection well to transfer sub-soil discharge into the stormwater drainage system. Pumps shall be sized as a duty/standby arrangement whereby each pump has the capacity to provide the full required duty, therefore providing 100% redundancy to the system in the event of a single pump failure. Pumps shall be automatically controlled via a dedicated sub-soil pump control panel, complete with an interface connection to the Building Monitoring System.

4.4 Sizing
Sub-soil drainage shall be located and sized in consultation with the geotechnical engineer, to determine actual sub-soil flow rates for the particular development site.
4.5 Installation

Sub-Soil drainage pipework shall be installed within neatly excavated trenches, overwrapped with geotextile fabric, and covered on all sides to a depth of 150mm with blue metal backfill. Sub-soil pipework shall be installed at a minimum grade of 0.5%.

4.6 Materials

Sub-Soil Drainage services for this development shall be constructed from materials as follows;

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Soil Drainage</td>
<td>In-Ground</td>
<td>All</td>
<td>DWV Grade Slotted UPVC with solvent welded joints.</td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the intended purpose, durability, cost effectiveness and are in line with current trade practice.
5 Stormwater Drainage Service

5.1 Stormwater Drainage Generally
Specifically this section of the Concept Design report shall cover the following services;

- Stormwater Drainage

5.2 Standards
Works under this section of the Concept Design report shall be designed in accordance with the following standards;

- The Building Code of Australia
- Plumbing Code of Australia
- AS 3500.3 - Stormwater Drainage
- Council DCP and Policies.
- Sydney Olympic Park Authority Policies and Guidelines
- Environmental Protection Authority Policies and Guidelines

5.3 System Design
A system of stormwater drainage will be provided in accordance with code requirements, to collect discharge from the rainwater plumbing system and other connected stormwater discharges throughout the development.

Stormwater drainage pipework will be routed and collected through the building as necessary before connecting to the Authority stormwater drainage system.

Stormwater drainage pipework crossing fire compartment boundaries shall be fitted with fire collars.

Stormwater drainage pipework located within sensitive areas will be acoustically lagged in accordance with the Acoustic Engineer’s requirements.

5.4 Stormwater On-Site Detention (OSD)
Stormwater OSD requirements for this development have been detailed within the Civil Engineers documentation.

5.5 Sizing
Stormwater drainage pipework shall be sized with adequate capacity to convey discharge from all connected pipework from the rainwater plumbing system, and other connected discharges. Typically the pipe capacity tables shall be used from AS 3500.3, for pipes flowing full at 1.0% grade. In addition pipework shall be of adequate size to limit flow velocities within the pipework to a maximum of 2.0m/s.

5.6 Inground Installation
Stormwater drainage pipework shall be installed within neatly excavated trenches, covered on all sides to a depth of 150mm with blue metal backfill. Inground Stormwater drainage pipework shall be installed at a minimum grade of 1.0%.

5.7 Suspended Installation
Stormwater drainage pipework shall be installed neatly in straight runs with constant fall, and include adequate brackets to prevent any variation in pipework alignment. Suspended Stormwater drainage pipework shall be installed at a minimum grade of 1.0%.
5.8 Materials

Stormwater Drainage services for this development shall be constructed from materials as follows:

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stormwater Drainage</td>
<td>In-Ground</td>
<td><300mm</td>
<td>DWV Grade UPVC pipework with solvent welded joints.</td>
</tr>
<tr>
<td>Stormwater Drainage</td>
<td>In-Ground</td>
<td>>300mm</td>
<td>Class 2 FRC pipework with rubber ring joints.</td>
</tr>
<tr>
<td>Stormwater Drainage</td>
<td>Suspended</td>
<td><300mm</td>
<td>DWV Grade UPVC pipework with solvent welded joints.</td>
</tr>
<tr>
<td>Stormwater Drainage</td>
<td>Suspended</td>
<td>>300mm</td>
<td>Class 2 FRC pipework with rubber ring joints.</td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the intended purpose, durability, cost effectiveness and are in line with current trade practice.
6 Rainwater Plumbing Service

6.1 Rainwater Plumbing Generally
Specifically this section of the Concept Design report shall cover the following services: Rainwater Plumbing Service

6.2 Standards
Works under this section of the Concept Design report shall be designed in accordance with the following standards:

- The Building Code of Australia
- Plumbing Code of Australia
- AS 3500.3 - Stormwater Drainage
- Council DCP and Policies.
- Sydney Olympic Park Authority Policies and Guidelines
- Environmental Protection Authority Policies and Guidelines

6.3 System Design
A mixture of gravity and syphonic rainwater plumbing will be provided in accordance with code requirements.

The system shall be sized with adequate capacity to convey discharge from all connected pipework during a 20 year ARI storm event of 5 minutes duration for eaves gutters and balcony outlets in non-critical areas (areas with a suitable overflow), and during a 100 year ARI storm event of 5 minutes duration for box gutters and balcony outlets in critical areas (areas without a suitable overflow).

Roof drainage outlets shall be provided to maximize flexibility for coordination purposes.

Rainwater plumbing roof outlets shall be sized to accept discharge from the fire hydrant service during pressure and flow testing of the system.

Rainwater plumbing pipework crossing fire compartment boundaries shall be fitted with fire collars.

Rainwater plumbing downpipes located within sensitive areas will be acoustically lagged in accordance with the Acoustic Engineer's requirements.

Rainwater plumbing downpipes shall have removable sealed access openings provided at the base of each downpipe, and shall discharge into stormwater drainage system.

6.4 Sizing
Rainwater plumbing pipework shall be sized with adequate capacity to convey discharge from all connected outlets. Typically the pipe capacity tables shall be used from AS 3500.3, for pipes flowing full at 1.0% grade. In addition pipework shall be of adequate size to limit flow velocities within the pipework to a maximum of 2.0m/s.

6.5 Syphonic Sizing
Syphonic rainwater plumbing pipework shall be sized with computer modeling programs provided by the syphonic drainage system manufacturer. Pipework grade and flow velocities shall be as determined by the system manufacturer.
6.6 Installation

Rainwater plumbing pipework shall be installed neatly in straight runs with constant fall, and include adequate brackets to prevent any variation in pipework alignment. Rainwater plumbing pipework shall be installed at a minimum grade of 1.0%, the exception being syphonic rainwater plumbing pipework which may be installed at 0% grade subject to design validation via computer modeling.

6.7 Materials

Stormwater Drainage services for this development shall be constructed from materials as follows:

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainwater Plumbing</td>
<td>Gravity</td>
<td><300mm</td>
<td>DWV Grade UPVC pipework with solvent welded joints.</td>
</tr>
<tr>
<td>Rainwater Plumbing</td>
<td>Gravity</td>
<td>>300mm</td>
<td>Class 2 FRC pipework with rubber ring joints.</td>
</tr>
<tr>
<td>Rainwater Plumbing</td>
<td>Syphonic</td>
<td>All</td>
<td>High Density Polyethylene pipework with fusion welded joints.</td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the intended purpose, durability, cost effectiveness and are in line with current trade practice.
7 Sanitary Drainage Service

7.1 Sanitary Drainage Generally

Specifically this section of the Concept Design report shall cover the following services;

- Sanitary Drainage

7.2 Standards

Works under this section of the Concept Design report shall be designed in accordance with the following standards;

- The Building Code of Australia
- Plumbing Code of Australia
- AS 3500.2 – Sanitary Plumbing & Drainage

7.3 System Design

A system of sewer drainage will be provided in accordance with code requirements.

Wastewater produced from sanitary fixtures and appliances within the proposed development shall be combined into common sewer lines before connecting via gravity where possible to the Authority sanitary drainage system.

For areas of the development unable to drain via gravity, dual submersible pumps shall be installed within a collection well to transfer sewer discharge into the Authority sewer drainage system. Pumps shall be sized as a duty/standby arrangement whereby each pump has the capacity to provide the full required duty, therefore providing 100% redundancy to the system in the event of a single pump failure. Pumps shall be automatically controlled via a dedicated sewer pump control panel, complete with an interface connection to the Building Monitoring System.

Access chambers shall be installed at all major directional change locations and at intervals not exceeding 60 metres.

Overflow relief devices shall be strategically located within the system to prohibit the unwanted surcharge of sewerage into the building in the event of a blockage in the downstream network.

Vent pipes shall be strategically located within the system to maintain the integrity of fixture trap seals whilst conveying sewer gases to the atmosphere.

7.4 Main Connection

A new 225mm sewer main connection will be required into the existing 150mm Sydney Water sewer main located at the South eastern end of the site. (Olympic Boulevard). Existing 150mm sewer main traversing proposed site would require diverting for proposed development. Advice from Sydney Water coordinator required.

7.5 Sizing

Sewer drainage shall be sized with adequate capacity to convey discharge from all connected fixtures and appliances. Typically the fixture unit method of load estimation shall be used from AS 3500.2, with sewer drainage pipework to be installed at a minimum grade of 1.65%.

7.6 Inground Installation

Sanitary drainage pipework shall be installed within neatly excavated trenches, covered on all sides to a depth of 150mm with blue metal backfill. Sanitary drainage pipework shall be installed at a minimum grade of 1.65%.
7.7 Suspended Installation
Sanitary drainage pipework shall be installed neatly in straight runs with constant fall, and include adequate brackets to prevent any variation suspended pipework alignment. Sanitary drainage pipework shall be installed at a minimum grade of 1.65%.

7.8 Materials
Sanitary Drainage services for this development shall be constructed from materials as follows;

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitary Drainage</td>
<td>In-Ground</td>
<td><300mm</td>
<td>DWV Class UPVC pipework with solvent welded joints.</td>
</tr>
<tr>
<td>Sanitary Drainage</td>
<td>In-Ground</td>
<td>>300mm</td>
<td>Class 2 FRC pipework with rubber ring joints.</td>
</tr>
<tr>
<td>Sanitary Drainage</td>
<td>Suspended</td>
<td><300mm</td>
<td>DWV Class UPVC pipework with solvent welded joints.</td>
</tr>
<tr>
<td>Sanitary Drainage</td>
<td>Suspended</td>
<td>>300mm</td>
<td>Class 2 FRC pipework with rubber ring joints.</td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the intended purpose, durability, cost effectiveness and are in line with current trade practice.
8 Sanitary Plumbing Service

8.1 Sanitary Plumbing Generally
Specifically this section of the Concept Design report shall cover the following services;

- Sanitary Plumbing

8.2 Standards
Works under this section of the Concept Design report shall be designed in accordance with the following standards;

- The Building Code of Australia
- Plumbing Code of Australia
- AS 3500.2 – Sanitary Plumbing & Drainage

8.3 System Design
A system of sanitary plumbing will be provided in accordance with code requirements.

Wastewater produced from sanitary fixtures and appliances within the proposed development shall be combined into common sanitary plumbing lines and gravitate to the sewer drainage service.

A combination of both aerial drainage and fully vented modified stack systems shall be used to achieve the most economical sanitary plumbing installation.

A ventilation network fitted to the sanitary plumbing network will maintain the integrity of fixture trap seals whilst conveying sewer gases to the atmosphere. Vent terminals shall be connected in a manifold to minimise the frequency of roof penetrations.

Inspection openings shall be installed at all major directional change locations and at intervals not exceeding 30 metres.

Sanitary plumbing pipework crossing fire compartment boundaries shall be fitted with fire collars.

Sanitary plumbing pipework located within sensitive areas will be acoustically lagged in accordance with the Acoustic Engineer’s requirements.

8.4 Sizing
Sanitary plumbing shall be sized with adequate capacity to convey discharge from all connected fixtures and appliances. Typically the fixture unit method of load estimation shall be used from AS 3500.2, with sanitary plumbing pipework to be installed at a minimum grade of 1.65%.

8.5 Installation
Sanitary plumbing pipework shall be installed neatly in straight runs with constant fall, and include adequate brackets to prevent any variation in pipework alignment. Sanitary plumbing pipework shall be installed at a minimum grade of 1.65%.
8.6 Materials

Sanitary plumbing services for this development shall be constructed from materials as follows;

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitary Plumbing</td>
<td>Suspended</td>
<td><300mm</td>
<td>DWV Class UPVC pipework with solvent welded joints.</td>
</tr>
<tr>
<td>Sanitary Plumbing</td>
<td>Suspended</td>
<td>>300mm</td>
<td>Class 2 FRC pipework with rubber ring joints.</td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the intended purpose, durability, cost effectiveness and are in line with current trade practice.
9 Potable Cold Water Service

9.1 Potable Cold Water Service Generally
Specifically this section of the Concept Design report shall cover the following services;

- Potable Cold Water Service

9.2 Standards
Works under this section of the Concept Design report shall be designed in accordance with the following standards;

- Plumbing Code of Australia
- AS 3500.1 – Water Services

9.3 System Design
Water supply for the development shall be drawn from a new connection into the Existing 150mm Sydney Water main located within Olympic Boulevard.

An authority water meter and site containment backflow prevention device will be provided at the site boundary, in a dedicated meter cupboard located at ground level adjacent to the carpark entry of the Northern building façade.

Due to the height of the building potable cold water service booster pumps will be required to increase pressure within the system to an acceptable level on upper floor levels. Pumps shall be provided in Triplex for residential and Duplex for Commercial and located within a dedicated pump room at ground level.

A dead-leg main pipework configuration will be provided for connection to the base of each individual potable cold water riser from buildings above, to achieve the most economical potable cold water service installation, in conjunction with a system design that provides for flexibility and redundancy in supply.

Main isolation valves will be provided at the base of each riser for individual maintenance or emergency shutdown.

9.4 Sizing
Potable cold water services shall be sized with adequate capacity to convey water supply to all connected fixtures and appliances. Typically the loading unit method of load estimation shall be used from AS 3500.1.

Potable cold water service pipework shall be sized such that the maximum velocity within any pipework is as follows;

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Locations in Ground</td>
<td>2.4m/s</td>
</tr>
<tr>
<td>Internal Locations in Walls and Ceilings</td>
<td>1.5m/s</td>
</tr>
</tbody>
</table>

9.5 Operating Pressures
Potable cold water services shall be designed to ensure that a minimum outlet pressure of 250kPa is available at every fixture within the proposed development. Where required pressure limiting valves shall also be provided to ensure that a maximum of 500kPa is available at any fixture within the proposed development.
9.6 Water Supply

Potable cold water service water supply shall be drawn from a new 150mm diameter connection into the 150mm Sydney Water main within Olympic Boulevard.

9.7 Metering

An Authority meter shall be provided on the incoming potable cold water supply to the development. The meter shall be located within at the site boundary, adjacent to the main vehicle entry to the site.

Additional sub-meters shall be provided as required to various strata’s within the development in the meter/pump room. Sub-meters shall be pulse type meters suitable for connection into the Building Monitoring System. Typically sub-meters shall be provided to the following connections;

- Residential Services (each apartment)
- Commercial Service
- Retail Service
- Club Service
- Shared Services (Including FHR service)

9.8 Filtration

A fifty (50) micron primary water filtration system shall be provided to filter all potable cold water prior to reticulation throughout the development. The filter assembly shall be located immediately downstream of the booster pump assembly so as to filter the potable cold water supply to the entire building.

Filter assembly shall be automatic backwash type, with dual filters installed in parallel to provide redundancy during maintenance.

9.9 Booster Pumps – Residential (Triplex)

Booster pumps shall be provided to ensure adequate pressure within the potable cold water service. Pumps shall be located downstream of the Authority meter. Pumps shall be sized as a duty/duty/standby arrangement whereby each pump has the capacity to provide 50% of the full required duty, therefore providing 100% redundancy to the system in the event of a single pump failure. Pumps shall be automatically controlled via a dedicated potable cold water service pump control panel, complete with an interface connection to the Building Monitoring System.

9.10 Booster Pumps – Commercial (Duplex)

Booster pumps shall be provided to ensure adequate pressure within the potable cold water service. Pumps shall be located downstream of the Authority meter. Pumps shall be sized as a duty/standby arrangement whereby each pump has the capacity to provide 100% of the full required duty, therefore providing 100% redundancy to the system in the event of a single pump failure. Pumps shall be automatically controlled via a dedicated potable cold water service pump control panel, complete with an interface connection to the Building Monitoring System.
9.11 Backflow Prevention

Three levels of backflow protection shall be provided to the potable cold water supply for this development in accordance with the requirements of AS 3500.1 – Water Services.

Site containment backflow prevention shall be provided immediately downstream of the Authority water meter located adjacent to the main vehicle entry. The required backflow prevention device shall be a reduced pressure zone device.

Zone backflow prevention shall be provided on potable cold water supplies to the following areas within the development;

- Non-Potable Cold Water Service
- Mechanical Services Water Supply
- Fire Hose Reel Water Supply

Fixture backflow prevention shall be provided as required on potable cold water supplies to the various plant and equipment within the development.

9.12 Isolation of Wet Areas & Fixtures

All individual fixtures where possible will be controlled via (chrome plated where exposed) right-angled mini cistern taps. All groups of fixtures within designated wet areas will be controlled via in-wall recessed domed covered isolation valves generally at 2200mm above FFL or as near as practicable to the basin they serve.

9.13 Thermal Insulation

Where required potable cold water service pipework shall be thermally insulated to prevent heat gain within the service, and to prevent condensation on the pipework surface.

9.14 Flow Rates

Potable cold water supply to fixtures within the proposed development shall be based upon the following flow rates;

<table>
<thead>
<tr>
<th>Fixture</th>
<th>WELS Rating</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toilets</td>
<td>3 Star</td>
<td>Full – Not more than 6.5L/flush</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Half – Not more than 3.5L/flush</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avge – Not more than 4.0L/flush</td>
</tr>
<tr>
<td>Basins</td>
<td>3 Star</td>
<td>7.5L/min</td>
</tr>
<tr>
<td>Showers</td>
<td>3 Star</td>
<td>7.5L/min</td>
</tr>
<tr>
<td>Urinals</td>
<td>3 Star</td>
<td>Less than 2L/flush</td>
</tr>
<tr>
<td>Sinks</td>
<td>3 Star</td>
<td>7.5L/min</td>
</tr>
</tbody>
</table>

Note: Flow rates to be confirmed with Basix report

9.15 Materials

Potable cold water services for this development shall be constructed from materials as follows;

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Cold Water Service – Mains Pressure</td>
<td>In-Ground</td>
<td>All</td>
<td>Type B Copper pipework with silver solder or mechanical press fit joints.</td>
</tr>
<tr>
<td>Potable Cold Water</td>
<td>Suspended Mains</td>
<td>All</td>
<td>Type B Copper</td>
</tr>
<tr>
<td>Service – Mains Pressure</td>
<td>Potable Cold Water Service – Pumped Service</td>
<td>Potable Cold Water Service</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>Rough-In, Downstream Of Apartment Meter.</td>
<td></td>
</tr>
<tr>
<td>Pipework with silver solder or mechanical press fit joints.</td>
<td>Stainless steel pipework with mechanical press fit joints.</td>
<td>Polyethylene pipework with mechanical compression joints.</td>
<td></td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the intended purpose, durability, cost effectiveness and are in line with current trade practice.
10 Non-Potable Cold Water Service

10.1 Non-Potable Cold Water Service Generally
Specifically this section of the Concept Design report shall cover the following services;

- Non-Potable Cold Water Service

10.2 Standards
Works under this section of the Concept Design report shall be designed in accordance with the following standards;

- Plumbing Code of Australia
- AS 3500.1 – Water Services
- SWC Non-Potable Water (Recycled Water) requirements.
- Sydney Olympic Park Authority Policies and Guidelines

10.3 System Design
Non-Potable water supply for the development shall be drawn from a new connection into the existing 250mm Sydney Water main to be located within Olympic Boulevard.

An authority water meter and site containment backflow prevention device will be provided at the site boundary, in a dedicated meter cupboard located at ground level adjacent to the carpark entry of the Northern building façade.

Due to the height of the building non-potable cold water service booster pumps will be required to increase pressure within the system to an acceptable level on upper floor levels. Pumps shall be provided in Triplex for residential and Duplex for Commercial and located within a dedicated pump room at ground level.

A dead-leg main pipework configuration will be provided for connection to the base of each individual non-potable cold water riser from buildings above, to achieve the most economical non-potable cold water service installation, in conjunction with a system design that provides for flexibility and redundancy in supply.

Main isolation valves will be provided at the base of each riser for individual maintenance or emergency shutdown.

10.4 Sizing
Non-Potable cold water services shall be sized with adequate capacity to convey water supply to all connected fixtures and appliances. Typically the loading unit method of load estimation shall be used from AS 3500.1.

Non-Potable cold water service pipework shall be sized such that the maximum velocity within any pipework is as follows;

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Locations in Ground</td>
<td>2.4m/s</td>
</tr>
<tr>
<td>Internal Locations in Walls and Ceilings</td>
<td>1.5m/s</td>
</tr>
</tbody>
</table>

10.5 Operating Pressures
Non-Potable cold water services shall be designed to ensure that a minimum outlet pressure of 250kPa is available at every fixture within the proposed development. Where required pressure limiting valves shall also be provided to ensure that a maximum of 500kPa is available at any
fixture within the proposed development.

10.6 Water Supply

Non-Potable cold water service water supply shall be drawn from a new 150mm diameter connection into the existing 250mm Sydney Water main to be located within Olympic Boulevard.

10.7 Metering

An Authority meter shall be provided on the incoming non-potable cold water supply to the development. The meter shall be located within the site boundary, adjacent to the main vehicle entry to the site.

Additional sub-meters shall be provided as required to various strata’s within the development. Sub-meters shall be pulse type meters suitable for connection into the Building Monitoring System. Typically sub-meters shall be provided to the following connections:

- Residential Services (each apartment)
- Commercial Services
- Retail Services
- Shared Services

10.8 Filtration

A fifty (50) micron primary water filtration system shall be provided to filter all non-potable cold water prior to reticulation throughout the development. The filter assembly shall be located immediately downstream of the booster pump assembly so as to filter the non-potable cold water supply to the entire building.

Filter assembly shall be automatic backwash type, with dual filters installed in parallel to provide redundancy during maintenance.

10.9 Booster Pumps – Residential (Triplex)

Booster pumps shall be provided to ensure adequate pressure within the non-potable cold water service. Pumps shall be located downstream of the Authority meter. Pumps shall be sized as a duty/duty/standby arrangement whereby each pump has the capacity to provide 50% of the full required duty, therefore providing 100% redundancy to the system in the event of a single pump failure. Pumps shall be automatically controlled via a dedicated non-potable cold water service pump control panel, complete with an interface connection to the Building Monitoring System.

10.10 Booster Pumps – Commercial (Duplex)

Booster pumps shall be provided to ensure adequate pressure within the non-potable cold water service. Pumps shall be located downstream of the Authority meter. Pumps shall be sized as a duty/standby arrangement whereby each pump has the capacity to provide 100% of the full required duty, therefore providing 100% redundancy to the system in the event of a single pump failure. Pumps shall be automatically controlled via a dedicated non-potable cold water service pump control panel, complete with an interface connection to the Building Monitoring System.

10.11 Backflow Prevention

Three levels of backflow protection shall be provided to the non-potable cold water supply for this development in accordance with the requirements of AS 3500.1 – Water Services.

Site containment backflow prevention shall be provided immediately downstream of the Authority water meter located adjacent to the main vehicle entry. The required backflow
prevention device shall be a reduced pressure zone device.

Zone backflow prevention shall be provided on non-potable cold water supplies to the following areas within the development;

- Non-Potable Cold Water Service

Fixture backflow prevention shall be provided as required on non-potable cold water supplies to the various plant and equipment within the development.

10.12 Isolation of Wet Areas & Fixtures

All individual fixtures where possible will be controlled via (chrome plated where exposed) right-angled mini cistern taps. All groups of fixtures within designated wet areas will be controlled via in-wall recessed domed covered isolation valves generally at 2200mm above FFL or as near as practicable to the basin they serve.

10.13 Thermal Insulation

Where required non-potable cold water service pipework shall be thermally insulated to prevent heat gain within the service, and to prevent condensation on the pipework surface.

10.14 Flow Rates

Potable cold water supply to fixtures within the proposed development shall be based upon the following flow rates;

<table>
<thead>
<tr>
<th>Fixture</th>
<th>WELS Rating</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toilets</td>
<td>3 Star</td>
<td>Full – Not more than 6.5L/flush</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Half – Not more than 3.5L/flush</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avge – Not more than 4.0L/flush</td>
</tr>
</tbody>
</table>

10.15 Materials

Potable cold water services for this development shall be constructed from materials as follows;

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Potable Cold Water Service – Mains</td>
<td>In-Ground</td>
<td>All</td>
<td>Type B Copper pipework with silver solder or mechanical press fit joints.</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Cold Water Service – Mains</td>
<td>Suspended Mains</td>
<td>All</td>
<td>Type B Copper pipework with silver solder or mechanical press fit joints.</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Cold Water Service –</td>
<td>Suspended Mains</td>
<td>All</td>
<td>Stainless steel pipework with mechanical press fit joints.</td>
</tr>
<tr>
<td>Pumped Service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Potable Cold Water Service</td>
<td>Rough-In,</td>
<td>All</td>
<td>Polyethylene pipework with mechanical compression joints.</td>
</tr>
<tr>
<td></td>
<td>Downstream Of Apartment Meter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the intended purpose, durability, cost effectiveness and are in line with current trade practice.
11 Potable Hot Water Service

11.1 Potable Hot Water Service Generally
Specifically this section of the Concept Design report shall cover the following services;

- Potable Hot Water Service

11.2 Standards
Works under this section of the Concept Design report shall be designed in accordance with the following standards;

- Plumbing Code of Australia
- AS 3500.4 – Hot Water Services

11.3 System Design
A combination of ring mains and main supply risers be used to achieve the most economical potable hot water service installation, in conjunction with a system design that provides for flexibility and redundancy in supply.

Potable hot water for residential base building uses within the development shall be provided from the main plant, with reticulation throughout the development via flow and return pipework and dual circulating pumps. Hot water discharge from the plant shall be 65 degrees and hot water return to the plant shall be a minimum of 60 degrees.

11.4 Potable Hot Water Capacity – Residential
In order to cover peak instantaneous demands, hot water storage shall be provided. The stored water shall be maintained at a temperature of 65 degrees whilst in the storage vessels.

Hot water plant shall be provided in multiple arrays of heaters or boilers, such that each array can maintain serviceable capacity in the event of a single heater or boiler failure.

Hot water plant shall be sized upon the following usage rates;

- Daily Hot Water Consumption – 110L per apartment
- Hot Water Capacity
 - 1 Bed = 25L peak hour
 - 2 Bed = 40L peak hour
 - 2 Bed + Ensuite = 75L peak hour
 - 3 Bed = 100L peak hour
 - 4 Bed = 150L peak hour

11.5 Potable Hot Water Capacity – Commercial
In order to cover peak instantaneous demands, hot water storage shall be provided. The stored water shall be maintained at a temperature of 65 degrees whilst in the storage vessels.

Hot water plant shall be provided in multiple arrays of heaters or boilers, such that each array can maintain serviceable capacity in the event of a single heater or boiler failure.

Hot water plant shall be sized upon the following usage rates;

- Daily Hot Water Consumption – 0.5L per person
 - Office area: 2581m² with Population 258
- Hot Water Capacity
 - Office = 129L peak hour
11.6 **Sizing**

Potable hot water services shall be sized with adequate capacity to convey water supply to all connected fixtures and appliances. Typically the loading unit method of load estimation shall be used from AS 3500.1.

Potable hot water service pipework shall be sized such that the maximum velocity within any pipework is as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Locations in Ground</td>
<td>2.4m/s</td>
</tr>
<tr>
<td>Internal Locations in Walls and Ceilings</td>
<td>1.5m/s</td>
</tr>
</tbody>
</table>

11.7 **Operating Pressures**

Potable hot water services shall be designed to ensure that a minimum outlet pressure of 250kPa is available at every fixture within the proposed development. Where required pressure limiting valves shall also be provided to ensure that a maximum of 500kPa is available at any fixture within the proposed development.

11.8 **Metering**

A master hot water meter shall be provided at each potable hot water plant within the development. Additional sub-meters shall be provided as required to each individual apartment, with meters located outside of the apartment, as close as practicable to the fixtures within the apartment to reduce dead-leg pipework.

All meters shall be pulse type meters suitable for connection into the Meter Data Logger system as provided by Jemena.

11.9 **Circulation Pumps**

Potable hot water circulation pumps shall be provided to maintain the required temperature within flow and return potable hot water pipework systems. Pumps shall be sized as a duty/standby arrangement whereby each pump has the capacity to provide 100% of the full required duty, therefore providing 100% redundancy to the system in the event of a single pump failure. Pumps shall be automatically controlled via a dedicated potable hot water service pump control panel, complete with an interface connection to the Building Monitoring System.

11.10 **Backflow Prevention**

A single level of backflow protection shall be provided to the potable hot water supply for this development in accordance with the requirements of AS 3500.1 – Water Services.

Fixture backflow prevention shall be provided as required on potable cold water supplies to the various plant and equipment within the development.

11.11 **Isolation of Wet Areas & Fixtures**

All individual fixtures where possible will be controlled via (chrome plated where exposed) right-angled mini cistern taps. All groups of fixtures within designated wet areas will be controlled via in-wall recessed domed covered isolation valves generally at 2200mm above FFL or as near as practicable to the basin they serve.

11.12 **Thermal Insulation**

Thermal insulation shall be provided to all potable hot water service pipework.
11.13 Flow Rates
Potable heated water supply to fixtures within the proposed development shall be based upon the following flow rates:

<table>
<thead>
<tr>
<th>Fixture</th>
<th>WELS Rating</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basins</td>
<td>3 Star</td>
<td>7.5L/min</td>
</tr>
<tr>
<td>Showers</td>
<td>3 Star</td>
<td>7.5L/min</td>
</tr>
<tr>
<td>Sinks</td>
<td>3 Star</td>
<td>7.5L/min</td>
</tr>
</tbody>
</table>

Note: Flow rates to be confirmed with Basix report

11.14 Temperature Control
Generally there are three main potable hot water usage requirements within the proposed development as follows;

- 43.5 degree warm water to all disabled amenities
- 50 degree hot water to all amenities
- 60 degree hot water to utility areas.

11.15 Materials
Potable hot water services for this development shall be constructed from materials as follows;

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Hot Water Service</td>
<td>Suspended Mains</td>
<td>All</td>
<td>Type B Copper pipework with silver solder or mechanical press fit joints.</td>
</tr>
<tr>
<td>Potable Hot Water Service</td>
<td>Rough-In Downstream Of Apartment Meter</td>
<td>All</td>
<td>Polyethylene pipework with mechanical compression joints.</td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the intended purpose, durability, cost effectiveness and are in line with current trade practice.
12 Natural Gas Service

12.1 Gas Service Generally
Specifically this section of the Concept Design report shall cover the following services;

- Gas Service

12.2 System Design
Natural gas supply for the development shall be drawn from a new connection into the 210kPa Jemena main (not currently shown on Jemena plans, but will be built before development is completed – on advice from Jemena) located within Olympic Boulevard.

An authority gas regulator assembly will be provided at the site boundary, in a dedicated meter cupboard located at ground level of the building façade adjacent to the main vehicle entry.

Authority metering of the natural gas service shall be provided to each individual user throughout the project.

A dead-leg main pipework configuration will be provided for connection to the base of each individual natural gas risers from buildings above, to achieve the most economical natural gas service installation, in conjunction with a system design that provides for flexibility and redundancy in supply.

Main isolation valves will be provided at the base of each riser for individual maintenance or emergency shutdown.

12.3 Gas Service Capacity
In order to cover peak instantaneous demands while keeping pipe sizes to a minimum, the gas system load shall be diversified in the following areas:

- Residential unit supply - diversified in accordance with gas Authority requirements.
- Residential hot water supply - no diversification.
- Retail supply - 500MJ/h.
- Club supply - 1,500MJ/h.

12.4 Sizing
Gas services shall be sized with adequate capacity to convey gas supply to all connected appliances. The pipe sizing methods from AS 5601 (2004) shall be used.

Gas service pipework shall be sized using the following parameters;

<table>
<thead>
<tr>
<th>Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Type</td>
<td>Copper</td>
</tr>
<tr>
<td>Index Length</td>
<td>Variable depending on design layout</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>1.5kPa (to suit 5kPa reticulation pressure)</td>
</tr>
<tr>
<td>Gas Load</td>
<td>As per above and design layout</td>
</tr>
</tbody>
</table>
12.5 Operating Pressures

The incoming customer service will be at a pressure of 210kPa. The pressure shall be dropped to 5kPa for reticulation throughout the site. This shall occur via dual Authority gas pressure regulators located at ground level in a Gas Regulator Room.

12.6 Gas Supply

Natural gas supply shall be drawn from a new 210kPa connection into the Future Jemena main within Olympic Boulevard. Extension required from Fig Tree Ave A distance of approximately 230m away. Advice from Jemena required.

12.7 Metering

Gas meters shall be provided for all usages within the development including:

- Each residential unit
- Each residential hot water plant
- Commercial Service
- Retail Service (Meters by future tenant)
- Club Service (Meters by future tenant)

Gas meters shall be provided for each residential unit. Meter shall be located outside of the apartment, and shall be connected to a Jemena Meter Data Logger (MDL). The MDL system will transfer all metering data to Jemena for billing purposes.

12.8 Materials

Gas services for this development shall be constructed from materials as follows:

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Diameter</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Service</td>
<td>In-Ground</td>
<td>All</td>
<td>Polyamide (Nylon) or Type B Copper (Silver Soldered or Press-Fit System)</td>
</tr>
<tr>
<td>Gas Service</td>
<td>In-Wall</td>
<td>All</td>
<td>Type B Copper (Silver Soldered or Press-Fit System)</td>
</tr>
<tr>
<td>Gas Service</td>
<td>Above Ground</td>
<td>All</td>
<td>Type B Copper (Silver Soldered or Press-Fit System)</td>
</tr>
</tbody>
</table>

The above-nominated materials have been selected for the durability, cost effectiveness and intended purpose and are in line with current trade practice.
13 Spatial Requirements

13.1 Summary Spatial Requirements

Stormwater Drainage:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On-Site Stormwater Detention Tank</td>
<td>30m²</td>
<td>5m x 3m x 2m deep</td>
<td>Refer to civil engineers documentation for details.</td>
</tr>
<tr>
<td>2</td>
<td>Rainwater Storage Tank</td>
<td>10m²</td>
<td>4m x 2.5m x 2.4m high</td>
<td>30m³ effective capacity concrete tank cast in-situ above ground level slab, adjacent to the on-site stormwater detention tank. Location to be confirmed.</td>
</tr>
<tr>
<td>3</td>
<td>Gross Pollution Trap</td>
<td>8m²</td>
<td>4m x 2m</td>
<td>Pre-cast concrete stormwater pre-treatment device (GPT) installed below carpark level slab to treat all carpark and loading dock area run-off.</td>
</tr>
</tbody>
</table>

Sanitary Drainage:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boundary Trap Connection</td>
<td>0.75m²</td>
<td>1.5m x 0.5m x 3m deep</td>
<td>Main sewer connection located in ground at southern end of development. Connection to be confirmed.</td>
</tr>
</tbody>
</table>

Trade Waste Drainage:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grease Arrestor Room No1.</td>
<td>47m²</td>
<td>7.3m x 4.5m x 2.4m high</td>
<td>Mechanically ventilated plant room at ground level.</td>
</tr>
<tr>
<td>2</td>
<td>Grease Arrestor Room No2.</td>
<td>12.4m²</td>
<td>4.1m x 3.1m x 2.4m high</td>
<td>Mechanically ventilated plant room at ground level.</td>
</tr>
<tr>
<td>3</td>
<td>Carwash Bay Oil water separator</td>
<td>6m²</td>
<td>3m x 2m x 2.4m high</td>
<td>Plant room at level 2 located adjacent to carwash bay</td>
</tr>
</tbody>
</table>
Potable Cold Water Service:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Site Backflow Prevention (RPZD)</td>
<td>3m²</td>
<td>3m x 1m x 1.8m high</td>
<td>Included in potable cold water pump room.</td>
</tr>
<tr>
<td>2</td>
<td>Authority Cold Water Meter</td>
<td></td>
<td></td>
<td>Included above.</td>
</tr>
<tr>
<td>3</td>
<td>Potable Cold Water Pump Room</td>
<td>36m²</td>
<td>6m x 6m x 2.4m high</td>
<td>Plant room at ground level. Adjacent to main driveway entry</td>
</tr>
</tbody>
</table>

Non-Potable Cold Water Service:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Site Backflow Prevention (RPZD)</td>
<td>3m²</td>
<td>3m x 1m x 1.8m high</td>
<td>Included above in potable cold water pump room.</td>
</tr>
<tr>
<td>2</td>
<td>Authority Cold Water Meter</td>
<td></td>
<td></td>
<td>As above</td>
</tr>
<tr>
<td>3</td>
<td>Non-Potable Cold Water Pump Room</td>
<td></td>
<td></td>
<td>As above</td>
</tr>
</tbody>
</table>

Hot Water Service:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential Central Hot Water Plant Room</td>
<td>40m²</td>
<td>8m x 5m x 2.4m high</td>
<td>Plant room on roof level.</td>
</tr>
<tr>
<td>2</td>
<td>Commercial Central Hot Water Plant Room</td>
<td>42m²</td>
<td>7m x 6m x 2.4m high</td>
<td>Plant room at level 8 with mechanical ventilation or direct access to external wall for heat pump ventilation.</td>
</tr>
<tr>
<td>3</td>
<td>Retail Electric Hot Water Units</td>
<td>1.5m²</td>
<td>1.0m x 1.5m x 2.4m high</td>
<td>Electric water heater located within the tenancy area to tenant requirements.</td>
</tr>
<tr>
<td>4</td>
<td>Electric Hot Water Units</td>
<td>1m²</td>
<td>1.0m x 1.0m x 1.0m high</td>
<td>Wall mounted at high level within or adjacent to garbage rooms</td>
</tr>
</tbody>
</table>

Natural Gas Service:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Site Regulator</td>
<td>12m²</td>
<td>3m x 4m x 2.4m high</td>
<td>Regulator located in room at ground level with direct access to external space. adjacent to main vehicle entry at ground level.</td>
</tr>
</tbody>
</table>

Fire Hose Reel Service:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fire Hose Reel cupboards</td>
<td>0.45m²</td>
<td>0.9m x 0.5m x 2.4m high</td>
<td>Fire hose reel cupboards located within 4m of the entry to every fire stair at every level within the building, and as</td>
</tr>
</tbody>
</table>
Hydraulic Risers:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Hydraulic Riser</td>
<td>0.27m²</td>
<td>0.9m x 0.3m</td>
<td>Adjacent to lift core.</td>
</tr>
<tr>
<td>2</td>
<td>Typical Residential Risers</td>
<td>0.36m²</td>
<td>0.6m x 0.5m Or 0.9m x 0.3m</td>
<td>Typically, one per unit.</td>
</tr>
<tr>
<td>3</td>
<td>Syphonic Riser</td>
<td>0.09m²</td>
<td>0.3m x 0.3m</td>
<td>Adjacent to lift core.</td>
</tr>
</tbody>
</table>

Note: All risers can be manipulated to vary from these sizes if required. These are generic sizes to fit expected pipework. Final riser sizes to be confirmed once pipework layouts are completed. Ideally, stack risers shall NOT offset (in order to avoid large bulkheads).

Authority Meter Cupboards:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Area</th>
<th>Configuration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apartment Meter Cupboard – Type 1</td>
<td>0.63m²</td>
<td>1.8m x 0.35m x 2.4m high</td>
<td>Cupboard located within the common corridor on southern corner of core. Cupboard serves 2 x Apartments. (CW, NPCW, HT & gas)</td>
</tr>
<tr>
<td>2</td>
<td>Apartment Meter Cupboard – Type 2</td>
<td>0.45m²</td>
<td>1.6m x 0.50m x0.35 x 2.4m high</td>
<td>Triangular cupboard located within the common corridor on north-west and north-east corner of core. Cupboard serves 3 x Apartments. (CW, NPCW, HT & gas)</td>
</tr>
<tr>
<td>3</td>
<td>Apartment Meter Cupboard – type 3</td>
<td>0.31m²</td>
<td>0.9m x 0.35m x 2.4m high</td>
<td>Cupboard located within the common corridor on southern corner of core. Cupboard serves 3 x Apartments. (CW, NPCW & HT)</td>
</tr>
<tr>
<td>4</td>
<td>Apartment Meter Cupboard – type 4</td>
<td>0.21m²</td>
<td>0.6m x 0.35m x 2.4m high</td>
<td>Cupboard located within the common corridor. Cupboard serves 3 x Apartments (gas only).</td>
</tr>
</tbody>
</table>
14 Appendix

14.1 Site plan
14.2 Sanitary Drainage Concept Schematic Diagram – Sheet 1
14.3 Sanitary Drainage Concept Schematic Diagram – Sheet 2
14.4 Sanitary Drainage Concept Schematic Diagram – Sheet 3
14.5 Stormwater Drainage Concept Schematic Diagram – Sheet 1
14.6 Stormwater Drainage Concept Schematic Diagram – Sheet 2
14.7 Cold Water Service Concept Schematic Diagram
14.8 Non-Potable Cold Water Service Concept Schematic Diagram
14.9 Hot Water Service Concept Schematic Diagram
14.10 Natural Gas Service Concept Schematic Diagram
14.11 Detail Sheet 1
14.12 Detail Sheet 2
14.13 Detail Sheet 3
NPCW RISER (SIZE VARIES)

ARCHITECT:

SCALE 1:20

3 x 20mm COLD WATER, 20mm

ISSUE

SUPPLY AND INSTALL JEMENA REGULATOR AND METER SET

METER CUPBOARD IN CORRIDOR - TYPE 3 (GAS x 3)

METER CUPBOARD IN CORRIDOR - TYPE 3 (GAS x 3)

SCALE 1:10

3 x 20mm GAS PIPES

PLAN

METER CUPBOARD IN CORRIDOR - TYPE 4 (HOT, COLD AND NPCW x 3)

SCALE 1:10

METER CUPBOARD IN CORRIDOR - TYPE 4 (HOT, COLD AND NPCW x 3)

PLAN

3 x 25mm GAS PIPES EXTEND TO RESPECTIVE UNITS.

3 x 20mm COLD WATER, 20mm AND 15mm HOT WATER PIPES EXTEND TO RESPECTIVE UNITS.

RMC WATER METERING SYSTEM ADJUSTABLE PRESSURE REDUCTION VALVE.

HOT WATER RISERS (SIZE VARIES)

COLD WATER AND NON-POTABLE COLD WATER ISOLATION VALVE

ITRON AQUADIS HOT ISOLATION VALVE

NON-POTABLE COLD WATER ISOLATION VALVE

WATER METERING SYSTEM ISOLATION VALVE

SECTION

METER CUPBOARD IN CORRIDOR - TYPE 3 (GAS x 3)

SCALE 1:10

METER CUPBOARD IN CORRIDOR - TYPE 3 (GAS x 3)

SECTION

METER CUPBOARD IN CORRIDOR - TYPE 4 (HOT, COLD AND NPCW x 3)

SCALE 1:10

METER CUPBOARD IN CORRIDOR - TYPE 4 (HOT, COLD AND NPCW x 3)
HOT WATER PLANT NO. 1
COMMERCIAL SERVICE (LEVEL 8)
SCALE 1:100

HOT WATER PLANT NO. 2
RESIDENTIAL SERVICE (ROOF LEVEL)
SCALE 1:100

NOTE: SYMBOLS ARE DRAWN IN THE CORRECT POSITION
BUT ARE NOT SHOWN TO SCALE.