

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9324-1

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Clifton Thompson

Sample Log In Details

Your reference: No. of Samples: Date Received: Date completed instructions received: Date of analysis:	9324-1 1 02.07.2015 02.07.2015 02.07-10.07.2015
Report Details	
Report Date:	15.07.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12
	AS 1289.4.3.1
	*ESA-P-16

Results Authorised By:

Ro jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9324-C1
Sample Name		9324-WAC1
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
Benzo[a]anthracene	0.3	<0.3
Benzo[a]pyrene	0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3 <0.3
Benzo[g,h,i]perylene Benzo[k]fluoranthene	0.3	<0.3
Chrysene	0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	<0.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	121%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane) cis-chlordane	0.1	<0.1 <0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II	0.2	<0.2
endosulfan sulfate	0.1	<0.1
endrin	0.2	<0.2
endrin aldehyde	0.1	<0.1
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1 <0.1
methoxychlor TCMX	U.1 surr.	<0.1 118%
	3011.	110/0
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1
PCB		
Total PCB		<0.6
2-fluorobiphenyl	surr.	<0.6 91%
	3011.	51/0

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 6

Lab ID	PQL (mg/kg)	9324-C1
Sample Name		9324-WAC1
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	105%
Metals		
Arsenic	2	7.9
Cadmium	0.3	<0.3
Chromium	5	11
Copper	5	50
Lead	10	41
Mercury	0.2	<0.2
Nickel	10	32
Zinc	5	89
Moisture	%	16%
pH (average for 3 measurements)		8.0
EC	[dS/m]	0.13
	u =/ a	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	109%	111%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	109%	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	114%	112%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	109%	107%	0.4	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	110%	111%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	114%	112%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	114%	112%	0.4	<0.3	ACCEPT
p-Terphenyl-d14	surr.		106%	105%	119%	127%	
OCPs							
aldrin	0.1	<0.1	114%	112%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	96%	106%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide hexachlorobenzene	0.1	<0.1	NT	NT	<0.1 <0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1 <0.1	119% NT	117% NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
TCMX	o.1	<u.1< td=""><td>115%</td><td>115%</td><td><0.1 128%</td><td><0.1</td><td>ACCEPT</td></u.1<>	115%	115%	<0.1 128%	<0.1	ACCEPT
	5011.		113/0	11370	120/0	131/0	
OPPs							
chlorpyrifos	0.1	<0.1	103%	103%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	101%	103%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos tributylphosphorotrithioite	0.1	<0.1 <0.1	NT NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
ιποατγιμποερποιοτητητοιτε	0.1	<0.1			<0.1	<0.1	ACCEPT
РСВ							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.		91%	91%	95%	96%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1-	Batch Duplicate 1-	Batch Duplicate 1
			•		Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50		120%	118%	<50	<50	ACCEPT
>C16-C34	100		NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
ВТЕХ							
Benzene	0.5	<0.5	103%	109%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	92%	93%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	93%	96%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	92%	92%	<2	<2	ACCEPT
o-Xylene	1	<1	93%	92%	<1	<1	ACCEPT
Fluorobenzene	surr.		94%	98%	98%	98%	
Metals							
Arsenic	2	<2	83%	87%	3.5	3.8	ACCEPT
Cadmium	0.3	<0.3	105%	108%	<0.3	<0.3	ACCEPT
Chromium	5	<5	104%	112%	15	13	ACCEPT
Copper	5	<5	99%	109%	21	19	ACCEPT
Lead	10	<10	105%	119%	39	43	ACCEPT
Mercury	0.2	<0.2	94%	96%	<0.2	<0.2	ACCEPT
Nickel	10	<10	96%	107%	13	<10	ACCEPT
Zinc	5	<5	95%	98%	55	54	ACCEPT
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 6

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3		<0.3	ACCEPT
Anthracene	0.3		<0.3	ACCEPT
Benzo[a]anthracene	0.3		<0.3	ACCEPT
Benzo[a]pyrene	0.3		<0.3	ACCEPT
Benzo[b]fluoranthene	0.3		<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3		<0.3	ACCEPT
Chrysene	0.3		<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3		<0.3	ACCEPT
Fluoranthene	0.3		<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3		<0.3	ACCEPT
Naphthalene	0.3		<0.3	ACCEPT
Phenanthrene	0.3		<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	121%	127%	
F · · · F · · · · / · · · ·				
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	<0.2	ACCEPT
endosulfan II	0.2		<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	118%	122%	
OPPs		-0.1	-0.1	ACCEPT
chlorpyrifos	0.1		<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1		<0.1	ACCEPT
prophos tributy/phosphorotrithioito	0.1	<0.1	<0.1	ACCEPT
ruput uppocphorotrithioito	L 01	/// 1		

tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
РСВ				
Total PCB		<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	91%	94%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 5 of 6

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100		<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	103%	105%	
Metals				
Arsenic	2	7.9	9.8	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	11	12	ACCEPT
Copper	5	50	45	ACCEPT
Lead	10	41	34	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	32	27	ACCEPT
Zinc	5	89	91	ACCEPT
Moisture	%			
pH (average for 3 measurements)				
EC	[dS/m]			

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 6 of 6

General Comments and Glossary

Tests not covered by NATA are denoted with γ .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than **RPD**: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50%

Results >20 times the PQL : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9324-2

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Clifton Thompson

Sample Log In Details

Your reference:	9324-2
No. of Samples:	2
Date Received:	09.07.2015
Date completed instructions received:	09.07.2015
Date of analysis:	09.07-14.07.2015
Report Details	
Report Date:	15.07.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12
	AS 1289.4.3.1
	*ESA-P-16

Results Authorised By:

Ro jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9324-C2	9324-C3
Sample Name		9324-WAC2	9324-WAC3
РАН			
Acenaphthene	0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	131%	128%
OCPs			
aldrin	0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1
heptachlor epoxide hexachlorobenzene	0.1	<0.1	<0.1
	0.1	<0.1	<0.1
methoxychlor TCMX	0.1	<0.1 133%	<0.1 128%
	surr.	133%	128%
OPPs			
chlorpyrifos	0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1
tributulah ocah orotrithioito	0.1	-0.1	-0.1

tributylphosphorotrithioite	0.1	<0.1	<0.1
РСВ			
Total PCB		<0.6	<0.6
2-fluorobiphenyl	surr.	117%	113%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 6

Lab ID	PQL (mg/kg)	9324-C2	9324-C3
Sample Name		9324-WAC2	9324-WAC3
TRH			
>C6-C10	35	<35	<35
>C10-C16	50	<50	<50
>C16-C34	100	<100	<100
>C34-C40	100	<100	<100
BTEX			
Benzene	0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1
m, p- Xylene(s)	2	<2	<2
o-Xylene	1	<1	<1
Fluorobenzene	surr.	96%	113%
Metals			
Arsenic	2	4.8	<2
Cadmium	0.3	<0.3	<0.3
Chromium	5	12	<5
Copper	5	43	23
Lead	10	46	43
Mercury	0.2	<0.2	<0.2
Nickel	10	33	<10
Zinc	5	87	48
Moisture	%	22%	16%
pH (average for 3 measurements)		5.4	9.3
EC	[dS/m]	0.05	0.13

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	114%	118%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	118%	122%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	113%	119%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	117%	121%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	118%	122%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	120%	126%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		109%	117%	130%	126%	
OCPs							
aldrin	0.1	<0.1	119%	124%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	93%	102%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor heptachlor epoxide	0.1	<0.1 <0.1	NT NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
heptachlor epoxide hexachlorobenzene	0.1	<0.1 <0.1	123%	128%	<0.1 <0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	123% NT	128% NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.	<0.1	120%	126%	126%	125%	ACCEPT
OPPs							100555
chlorpyrifos	0.1	<0.1	111%	116%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon fenchlorphos	0.1	<0.1 <0.1	108% NT	114% NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
methyl parathion	0.1	<0.1	NT NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
PCB							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.		99%	106%	113%	109%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
					Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50		124%	121%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	100%	95%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	103%	96%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	102%	99%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	101%	95%	<2	<2	ACCEPT
o-Xylene	1	<1	103%	100%	<1	<1	ACCEPT
Fluorobenzene	surr.		102%	96%	121%	110%	
Metals							
Arsenic	2	<2	87%	85%	6.4	12	ACCEPT
Cadmium	0.3	<0.3	105%	100%	<0.3	<0.3	ACCEPT
Chromium	5		113%	115%	<5	9.0	ACCEPT
Copper	5		103%	103%	13	17	ACCEPT
Lead	10		110%	114%	19	22	ACCEPT
Mercury	0.2	<0.2	88%	93%	<0.2	<0.2	ACCEPT
Nickel	10	<10	102%	105%	<10	<10	ACCEPT
Zinc	5	<5	91%	87%	<5	<5	ACCEPT
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 6

Lab ID	PQL (mg/kg)	Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
a b b b		Value 1	Value 2	
Sample Name				
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	< 0.3	< 0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	< 0.3	< 0.3	ACCEPT
Fluoranthene	0.3	< 0.3	< 0.3	ACCEPT
Fluorene	0.3	<0.3 <0.3	<0.3 <0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3		<0.3	ACCEPT
Naphthalene Phenanthrene	0.3	<0.3 <0.3	<0.3	ACCEPT ACCEPT
	0.3	<0.3	<0.3	ACCEPT
Pyrene p-Terphenyl-d14		<0.3 137%	<0.3 137%	ALLEPT
p-161916191-014	surr.	13/70	15/70	
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	132%	130%	
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
РСВ				
PCB Total PCB		<0.6	<0.6	ACCEPT
2-fluorobiphenyl	curr	<0.6 117%	<0.6	ALLEPT
	surr.	11/70	11470	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 5 of 6

Lab ID	PQL (mg/kg)	Batch Duplicate 2-	Batch Duplicate 2-	Batch Duplicate 2
		Value 1	Value 2	
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
ВТЕХ				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	0.3	<0.5	<0.5	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	102%	118%	ACCEPT
	5011.	10276	11876	
Metals				
Arsenic	2	9.6	6.1	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	15	12	ACCEPT
Copper	5	26	24	ACCEPT
Lead	10	14	15	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	26	24	ACCEPT
Moicturo	%			
Moisture	70			
pH (average for 3 measurements)				
EC	[dS/m]			

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 6 of 6

General Comments and Glossary

Tests not covered by NATA are denoted with ".	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than **RPD**: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50%

Results >20 times the PQL : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9324-3

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Ridha Hussain

Sample Log In Details

Your reference:	9324-3
No. of Samples:	7
Date Received:	30.07.2015
Date completed instructions received:	30.07.2015
Date of analysis:	30.07-03.08.2015
Report Details	
Report Date:	04.08.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9324-C4	9324-C5	9324-C6	9324-C7
Sample Name		9324-WAC5	9324-WAC6	9324-WAC7	9324-WAC8
РАН					
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	< 0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	126%	134%	134%	134%
	5011.	12070	13470	13470	13470
OCPs					
aldrin	0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1		<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1
ТСМХ	surr.	120%	123%	128%	127%
OPPs					
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1	<0.1
tributyInhosnhorotrithioite	0.1		<0.1	<0.1	<0.1

tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1	<0.1
РСВ					
Total PCB		<0.6	<0.6	<0.6	<0.6
2-fluorobiphenyl	surr.	91%	89%	93%	93%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 8

Lab ID	PQL (mg/kg)	9324-C4	9324-C5	9324-C6	9324-C7
Sample Name		9324-WAC5	9324-WAC6	9324-WAC7	9324-WAC8
TRH					
>C6-C10	35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50
>C16-C34	100	130	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100
BTEX					
Benzene	0.5	<0.5	<0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1	<1	<1
m, p- Xylene(s)	2	<2	<2	<2	<2
o-Xylene	1	<1	<1	<1	<1
Fluorobenzene	surr.	122%	144%	115%	129%
Metals					
Arsenic	2	13	16	12	7.9
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	<5	<5	<5	<5
Copper	5	24	18	43	11
Lead	10	11	17	31	10
Mercury	0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	<10	<10	22	<10
Zinc	5	39	27	89	10
Moisture	%	7%	8%	10%	11%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 8

Lab ID	PQL (mg/kg)	9324-C8	9324-C9	9324-C10
Sample Name		9324-WAC9	9324-WAC10	9324-WAC11
РАН				
Acenaphthene	0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3		<0.3	<0.3
Anthracene	0.3		<0.3	<0.3
	0.3		<0.3	<0.3
Benzo[a]anthracene	0.3		<0.3	<0.3
Benzo[a]pyrene Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3		<0.3	<0.3
Chrysene	0.3		<0.3	<0.3
Dibenzo[a,h]anthracene	0.3		<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3
Fluorene	0.3		<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3		<0.3	<0.3
Naphthalene	0.3		<0.3	<0.3
Phenanthrene	0.3		<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	136%	133%	130%
OCPs				
aldrin	0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1
d-BHC	0.1		<0.1	<0.1
g-BHC (lindane)	0.1		<0.1	<0.1
cis-chlordane	0.1		<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1		<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1
dieldrin	0.1		<0.1	<0.1
endosulfan I	0.2		<0.2	<0.2
endosulfan II	0.2		<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1
тсмх	surr.	129%	129%	127%
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1		<0.1	<0.1
diazinon fanablarnhaa	0.1		<0.1	<0.1
fenchlorphos	0.1		<0.1	<0.1
methyl parathion	0.1		<0.1	<0.1
prophos tributy/phosphorotrithioito	0.1		<0.1	<0.1
triputvinhocnhorotrithioito	0.1	<01	0 1	∠0.1

tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1
РСВ				
Total PCB		<0.6	<0.6	<0.6
2-fluorobiphenyl	surr.	93%	95%	94%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 8

Lab ID	PQL (mg/kg)	9324-C8	9324-C9	9324-C10
Sample Name		9324-WAC9	9324-WAC10	9324-WAC11
TRH				
>C6-C10	35	<35	<35	<35
>C10-C16	50	<50	<50	<50
>C16-C34	100	<100	<100	<100
>C34-C40	100	<100	<100	<100
BTEX				
Benzene	0.5	<0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1	<1
m, p- Xylene(s)	2	<2	<2	<2
o-Xylene	1	<1	<1	<1
Fluorobenzene	surr.	106%	120%	119%
Metals				
Arsenic	2	6.3	9.4	13
Cadmium	0.3	<0.3	<0.3	<0.3
Chromium	5	<5	5.4	17
Copper	5	65	36	20
Lead	10	180	28	20
Mercury	0.2	<0.2	<0.2	<0.2
Nickel	10	<10	28	12
Zinc	5	130	96	32
Moisture	%	16%	8%	13%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 8

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	119%	113%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	124%	116%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	0.5	0.5	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	0.5	0.5	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	0.6	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	0.4	0.5	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	117%	105%	1.1	1.0	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	0.5	0.5	ACCEPT
Naphthalene	0.3	<0.3	118%	111%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	114%	123%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	123%	110%	1.0	1.1	ACCEPT
p-Terphenyl-d14	surr.		114%	110%	123%	121%	
OCPs							
aldrin	0.1	<0.1	126%	118%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	98%	112%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	128%	119%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		125%	118%	118%	119%	
OPPs							
chlorpyrifos	0.1	<0.1	111%	106%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	111%	104%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
PCB							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
			87%	82%	88%	89%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 5 of 8

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name					Value 1	Vulue 2	
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50		106%	98%	<50	<50	ACCEPT
>C16-C34	100		NT	NT	<100	<100	ACCEPT
>C34-C40	100		NT	NT	110	100	ACCEPT
BTEX							
Benzene	0.5	<0.5	90%	115%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	88%	110%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	87%	111%	<1	<1	ACCEPT
m, p- Xylene(s)	2		86%	109%	<2	<2	ACCEPT
o-Xylene	1		88%	109%	<1	<1	ACCEPT
Fluorobenzene	surr.		92%	114%	112%	123%	
Metals							
Arsenic	2	<2	96%	118%	<2	<2	ACCEPT
Cadmium	0.3	<0.3	118%	123%	<0.3	<0.3	ACCEPT
Chromium	5	<5	116%	120%	16	21	ACCEPT
Copper	5		109%	123%	36	52	ACCEPT
Lead	10	<10	120%	116%	100	120	ACCEPT
Mercury	0.2	<0.2	100%	103%	<0.2	<0.2	ACCEPT
Nickel	10	<10	115%	113%	22	35	ACCEPT
Zinc	5	<5	109%	103%	100	250	FAIL
Moisture	%						

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 6 of 8

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3		<0.3	ACCEPT
Anthracene	0.3		<0.3	ACCEPT
Benzo[a]anthracene	0.3		<0.3	ACCEPT
Benzo[a]pyrene	0.3		<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3		<0.3	ACCEPT
Chrysene	0.3		<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3		<0.3	ACCEPT
Fluoranthene	0.3		<0.3	ACCEPT
Fluorene	0.3		<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3		<0.3	ACCEPT
Naphthalene	0.3		<0.3	ACCEPT
Phenanthrene	0.3		<0.3	ACCEPT
Pyrene	0.3		<0.3	ACCEPT
p-Terphenyl-d14	surr.	134%	135%	
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1		<0.1	ACCEPT
endosulfan I	0.2		<0.2	ACCEPT
endosulfan II	0.2		<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2		<0.2	ACCEPT
endrin aldehyde	0.1		<0.1	ACCEPT
endrin ketone	0.1		<0.1	ACCEPT
heptachlor	0.1		<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1		<0.1	ACCEPT
methoxychlor	0.1		<0.1	ACCEPT
ТСМХ	surr.	128%	128%	
OPPs	0.1	-0.1	-0.1	ACCEPT
chlorpyrifos	0.1		<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1		<0.1	ACCEPT
prophos tributy/phosphorotrithioito	0.1		<0.1	ACCEPT
rinut unnochnorotrithioito	1 0 1			

tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
РСВ				
Total PCB		<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	93%	92%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 7 of 8

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
втех				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	110%	115%	
Metals				
Arsenic	2	12	20	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	43	52	ACCEPT
Lead	10	31	36	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	22	33	ACCEPT
Zinc	5	89	110	ACCEPT
Moisture	%			

Comment:

FAIL caused by inhomogenous matrix

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 8 of 8

General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

which are similar to the analyte of interest, however are not expected to be found in real samples.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested

<: Less than **RPD**: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assess	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Environmental and OH&S Laboratory

.....

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9324-4

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Ridha Hussain

Sample Log In Details

Your reference:	9324-4
No. of Samples:	1
Date Received:	26.08.2015
Date completed instructions received:	26.08.2015
Date of analysis:	26.08-28.08.2015
Report Details	
Report Date:	31.08.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12
	AS 1289.4.3.1
	*ESA-P-16

Results Authorised By:

Mo jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9324-C11
Sample Name		9324-WAC4
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
Benzo[a]anthracene	0.3	<0.3
Benzo[a]pyrene	0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3
Chrysene Dibenzo[a,h]anthracene	0.3	<0.3 <0.3
Fluoranthene	0.3	<0.3
Fluorantnene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	112%
····/· ···		
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II endosulfan sulfate	0.2	<0.2 <0.1
endrin endrin aldehyde	0.2	<0.2 <0.1
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
ТСМХ	surr.	106%
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1
PCB		-0 C
Total PCB 2-fluorobiphenyl	CLIPP	<0.6 87%
2-1100100101101101	surr.	ð/ <i>7</i> 0

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 6

Lab ID	PQL (mg/kg)	9324-C11
Sample Name		9324-WAC4
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	119%
Metals		
Arsenic	2	5.0
Cadmium	0.3	<0.3
Chromium	5	6.6
Copper	5	44
Lead	10	22
Mercury	0.2	<0.2
Nickel	10	27
Zinc	5	74
Moisture	%	9%
pH (average for 3 measurements)		8.9
EC	[dS/m]	0.38

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 6

Lab ID	PQL (mg/kg)	Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	114%	117%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	117%	113%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	< 0.3	ACCEPT
Benzo[k]fluoranthene Chrysene	0.3	<0.3 <0.3	NT NT	NT NT	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	116%	117%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	106%	111%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	117%	117%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	121%	123%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		119%	127%	112%	115%	
,							
OCPs							
aldrin	0.1	<0.1	120%	122%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	83%	97%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT NT	NT	<0.1	<0.1	ACCEPT
heptachlor heptachlor epoxide	0.1	<0.1 <0.1	NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
hexachlorobenzene	0.1	<0.1	122%	123%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.	NU.1	118%	120%	106%	109%	
	3011.		110/0	12070	10070	10970	
OPPs							
chlorpyrifos	0.1	<0.1	105%	106%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	107%	109%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
PCB		-0.0	A IT	NIT	-0.0	-0.0	ACCEPT
Total PCB	01177	<0.6	NT 85%	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.		85%	90%	87%	90%	ļ

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 6

Lab ID	PQL (mg/kg)	Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	117%	117%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	101%	114%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	99%	123%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	97%	112%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	95%	101%	<2	<2	ACCEPT
o-Xylene	1	<1	97%	102%	<1	<1	ACCEPT
Fluorobenzene	surr.		99%	111%	95%	94%	
Metals							
Arsenic	2	<2	88%	96%	5.0	8.2	ACCEPT
Cadmium	0.3	<0.3	103%	103%	<0.3	<0.3	ACCEPT
Chromium	5	<5	102%	113%	6.6	6.6	ACCEPT
Copper	5	<5	98%	104%	44	46	ACCEPT
Lead	10	<10	101%	111%	22	22	ACCEPT
Mercury	0.2	<0.2	114%	116%	<0.2	<0.2	ACCEPT
Nickel	10	<10	102%	115%	27	28	ACCEPT
Zinc	5	<5	100%	93%	74	83	ACCEPT
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 6

Lab ID	PQL (mg/kg)	Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Sample Name		Value 1	Value 2	
РАН				
Acenaphthene	0.3	NT	NT	NT
Acenaphthylene	0.3	NT	NT	NT
Anthracene	0.3	NT	NT	NT
Benzo[a]anthracene	0.3	NT	NT	NT
Benzo[a]pyrene	0.3	NT	NT	NT
Benzo[b]fluoranthene	0.3	NT	NT	NT
Benzo[g,h,i]perylene	0.3	NT	NT	NT
Benzo[k]fluoranthene	0.3	NT	NT	NT
Chrysene	0.3	NT	NT	NT
Dibenzo[a,h]anthracene	0.3	NT	NT	NT
Fluoranthene	0.3	NT	NT	NT
Fluorene	0.3	NT	NT	NT
Indeno(1,2,3-cd)pyrene	0.3	NT	NT	NT
Naphthalene	0.3	NT	NT	NT
Phenanthrene	0.3	NT	NT	NT
Pyrene	0.3	NT	NT	NT
p-Terphenyl-d14	surr.	NT	NT	
OCPs				
aldrin	0.1	NT	NT	NT
a-BHC	0.1	NT	NT	NT
b-BHC	0.1	NT	NT	NT
d-BHC	0.1	NT	NT	NT
g-BHC (lindane)	0.1	NT	NT	NT
cis-chlordane	0.1	NT	NT	NT
trans-chlordane	0.1	NT	NT	NT
4,4'-DDD	0.1	NT	NT	NT
4,4'-DDE	0.1	NT	NT	NT
4,4'-DDT	0.1	NT	NT	NT
dieldrin endosulfan I	0.1	NT NT	NT NT	NT NT
endosulfan II	0.2	NT	NT	NT
endosulfan sulfate	0.2	NT	NT	NT
endrin	0.1	NT	NT	NT
endrin aldehyde	0.2	NT	NT	NT
endrin ketone	0.1	NT	NT	NT
heptachlor	0.1	NT	NT	NT
heptachlor epoxide	0.1	NT	NT	NT
hexachlorobenzene	0.1	NT	NT	NT
methoxychlor	0.1	NT	NT	NT
ТСМХ	surr.	NT	NT	
OPPs				
chlorpyrifos	0.1	NT	NT	NT
chlorpyrifos methyl	0.1	NT	NT	NT
diazinon	0.1	NT	NT	NT
fenchlorphos	0.1	NT	NT	NT
methyl parathion	0.1	NT	NT	NT
prophos	0.1	NT	NT	NT
tributylphosphorotrithioite	0.1	NT	NT	NT
РСВ				
PCB Total PCB		NT	NT	NT
2-fluorobiphenyl	curr	NT	NT	111
	surr.	IN I	INT	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 5 of 6

Lab ID	PQL (mg/kg)	Batch Duplicate 2-	Batch Duplicate 2-	Batch Duplicate 2
		Value 1	Value 2	
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	NT	NT	NT
>C16-C34	100	NT	NT	NT
>C34-C40	100	NT	NT	NT
ВТЕХ				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	0.5	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	97%	94%	/ CCEI I
	50111	5770	5170	
Metals				
Arsenic	2	NT	NT	NT
Cadmium	0.3	NT	NT	NT
Chromium	5	NT	NT	NT
Copper	5	NT	NT	NT
Lead	10	NT	NT	NT
Mercury	0.2	NT	NT	NT
Nickel	10	NT	NT	NT
Zinc	5	NT	NT	NT
Moisture	%			
pH (average for 3 measurements)				
EC	[dS/m]			
	[us/m]			

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 6 of 6
General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	Νο

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

which are similar to the analyte of interest, however are not expected to be found in real samples.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than **RPD**: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

2

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assess	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

3

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9324 ASB 1

 Date Received:
 06.07.2015

 Date Analysed:
 22.07.2015

 Report Date:
 22.07.2015

 Olient:
 GHDP

 Job Location:
 Gregory Hills, NSW

 Analytical method:
 Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
9324-Asb1	Soil	139 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9324 ASB 2

 Date Received:
 07.07.2015

 Date Analysed:
 22.07.2015

 Report Date:
 23.07.2015

 Client:
 GHDP

 Job Location:
 Gregory Hills, NSW

 Analytical method:
 Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
9324-Asb2	Soil	76 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9324 ASB 3

Date Received:	26.08.2015
Date Analysed:	28.08.2015
Report Date:	28.08.2015
Client:	GHDP
Job Location:	Gregory Hills, NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
9324-Asb3	Soil	148 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9324-Asb4	Soil	116 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9324 ASB 4

Date Received:	29.07.2015
Date Analysed:	10.08.2015
Report Date:	11.08.2015
Client:	GHDP
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtaboice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.	No. Description/Matrix (cm) unless stated otherwise		Comments	
9324-Asb5	Soil	90 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9324-Asb6	Soil	126 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9324-Asb7	Soil	105 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9324-Asb8	Soil	106 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9324-Asb9	Soil	119 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9324-Asb10	Soil	94 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9324-Asb11	Soil	124 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	Z Ismail		
Report	462259-S		
Project name	9265		
Received Date	Jun 19, 2015		

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	9265-SAL1 Soil S15-Jn17107 Jun 19, 2015	9265-SAL2 Soil S15-Jn17108 Jun 19, 2015
	LOIN	Onit		
Chloride	10	mg/kg	54	280
Sulphate (as SO4)	10	mg/kg	77	110
% Moisture	0.1	%	25	23

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

mgt

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	Jun 22, 2015	28 Day
- Method: E033 /E045 /E047 Chloride			
Sulphate (as SO4)	Sydney	Jun 22, 2015	28 Day
- Method: E045 Sulphate			
% Moisture	Sydney	Jun 19, 2015	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: AD Envirotech Aust Pty Ltd Address: Unit 4/ 10-11 Millenium Court Silverwater NSW 2128						R P	Order Report Phone Fax:	462259 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Jun 19, 2015 4:39 PM Jun 24, 2015 3 Day Z Ismail
Project Name: 9265									Eurofins mg	t Client Manager: Mary Makario
		Sample Detail			Chloride	Sulphate (as SO4)	Moisture Set			
Laboratory wh	ere analysis is c	onducted								
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271							
	atory - NATA Site				Х	Х	X			
	ratory - NATA Si	te # 20794								
External Labor										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
9265-SAL1	Jun 19, 2015		Soil	S15-Jn17107	Х	Х	Х			
9265-SAL2	Jun 19, 2015		Soil	S15-Jn17108	Х	Х	Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed w
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

within

Quality Control Results

т	est		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride			mg/kg	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 10			10	Pass	
LCS - % Recovery									
Chloride			%	104			70-130	Pass	
Sulphate (as SO4)			%	104			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S15-Jn15267	NCP	%	106			70-130	Pass	
Sulphate (as SO4)	S15-Jn15267	NCP	%	107			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S15-Jn15266	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Sulphate (as SO4)	S15-Jn15266	NCP	mg/kg	36	37	3.0	30%	Pass	
% Moisture	S15-My23086	NCP	%	18	19	2.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Bob Symons Ivan Taylor Analytical Services Manager Senior Analyst-Inorganic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson National Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost, observed in the liable for client or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost of the reported or experiment of the reported or experved in the liable for experiment of the reported or experiment of the report of the report of the reported or experiment of

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	

C Thompson

442412-S 8513 Dec 15, 2014

Report	
Project name	
Received Date	

Client Sample ID Sample Matrix			8513-SAL1 Soil	8513-SAL2 Soil	8513-SAL3 Soil
Eurofins mgt Sample No.			S14-De13231	S14-De13232	S14-De13233
Date Sampled			Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit			
Polychlorinated Biphenyls (PCB)					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	115	125	112
Chloride	10	mg/kg	13	24	35
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Sulphate (as S)	10	mg/kg	20	17	37
% Moisture	0.1	%	12	6.4	13

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polychlorinated Biphenyls (PCB)	Sydney	Dec 16, 2014	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Chloride	Sydney	Dec 17, 2014	28 Day
- Method: E033 /E045 /E047 Chloride			
Phenolics (total)	Sydney	Dec 17, 2014	14 Day
- Method: E041 /E055 Total Phenolics			
Sulphate (as S)	Sydney	Dec 17, 2014	28 Day
- Method: E045 Sulphate			
% Moisture	Sydney	Dec 15, 2014	14 Day
- Method: LTM-GEN-7080 'Moisture Content in Soil or other Solid Matrices byGravimetry'			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address:	Unit 4/ 1 Silverwa NSW 21					R	Order Repor Phone Fax:	t #:		442412 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Dec 15, 2014 2:15 PM Dec 22, 2014 5 Day C Thompson
Project Name	e: 8513										Eurofins mgt	Client Manager: Mary Makarios
		Sample Detail			% Moisture	Chloride	Phenolics (total)	Sulphate (as S)	Polychlorinated Biphenyls (PCB)			
Laboratory whe	ere analysis is c	onducted										
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271				 			4		
	tory - NATA Site				X	Х	Х	Х	Х	4		
Brisbane Labo	ratory - NATA S	te # 20794								4		
External Labor		1										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
8513-SAL1	Not Provided		Soil	S14-De13231	Х	Х	Х	Х	Х			
8513-SAL2	Not Provided		Soil	S14-De13232	Х	Х	Х	Х	Х			
8513-SAL3	Not Provided		Soil	S14-De13233	Х	Х	Х	Х	Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				-				-	
Polychlorinated Biphenyls (PCB)									
Aroclor-1016			mg/kg	< 0.5			0.5	Pass	
Aroclor-1232			mg/kg	< 0.5			0.5	Pass	
Aroclor-1242			mg/kg	< 0.5			0.5	Pass	
Aroclor-1248		mg/kg	< 0.5			0.5	Pass		
Aroclor-1254			mg/kg	< 0.5			0.5	Pass	
Aroclor-1260			mg/kg	< 0.5			0.5	Pass	
Total PCB			mg/kg	< 0			0.5	Pass	
Method Blank			-		1		-	r	
Chloride			mg/kg	< 10			10	Pass	
Phenolics (total)			mg/kg	< 0.1			0.1	Pass	
Sulphate (as S)			mg/kg	< 10			10	Pass	
LCS - % Recovery				1			1		
Polychlorinated Biphenyls (PCB)									
Aroclor-1260			%	85			70-130	Pass	
LCS - % Recovery				1			1	1	
Chloride			%	108			70-130	Pass	
Phenolics (total)			%	77			70-130	Pass	
Sulphate (as S)			%	102			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T					
	1			Result 1					
Chloride	S14-De13231	CP	%	111			70-130	Pass	
Sulphate (as S)	S14-De13231	CP	%	105			70-130	Pass	
Spike - % Recovery				1	1		1		
Polychlorinated Biphenyls (PCB)	1			Result 1					
Aroclor-1260	S14-De13232	CP	%	70			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S14-De13231	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S14-De13231	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S14-De13231	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S14-De13231	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S14-De13231	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S14-De13231	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S14-De13231	CP	mg/kg	13	13	<1	30%	Pass	
Phenolics (total)	S14-De13231	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Sulphate (as S)	S14-De13231	СР	mg/kg	20	16	24	30%	Pass	
% Moisture	S14-De15145	NCP	%	21	18	16	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Bob Symons Ryan Hamilton Analytical Services Manager Senior Analyst-Inorganic (NSW) Senior Analyst-Organic (NSW)

Glenn Jackson National Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofines | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other preson or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine is may be liable for cost, out of the second o

A.C.N. 093 452 950

A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8513-WAC1

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Clifton Thompson

Sample Log In Details

Your reference:	8513-WAC1
No. of Samples:	3
Date Received:	03.12.2014
Date completed instructions received:	03.12.2014
Date of analysis:	03.12-12.12.2014

Report Details

Report Date: Method number**: 23.12.2014 ESA-MP-01 ESA-P-0R63 ESA-P-0R607 ESA-P-0R608 ESA-P-0R609 ESA-P-0R611 ESA-P-0R611 ESA-P-0R612 AS 1289.4.3.1 *ESA-P-16 *Texture Assessment

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8513-C1	8513-C2	8513-C3
	$\mathbf{DOL}(\mathbf{mg}/kg)$			
Lab ID	PQL (mg/kg)	8513-WAC1	8513-WAC2	8513-WAC3
Sample Name				
РАН				
Acenaphthene	0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	95%	98%	97%
OCPs				
aldrin	0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1
4,4'-DDD 4,4'-DDE	0.1	<0.1	<0.1	<0.1
4,4 -DDE 4,4'-DDT	0.1	<0.1	<0.1 <0.1	<0.1 <0.1
dieldrin	0.1	<0.1	<0.1	<0.1
endosulfan I endosulfan II	0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
endosulfan sulfate	0.2	<0.2	<0.2	<0.2
endrin	0.1	<0.1	<0.1	<0.1
endrin aldehyde	0.2	<0.2	<0.2	<0.2
endrin ketone	0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1
TCMX	surr.	115%	119%	114%
		110,0	11570	
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1
	1	<0.1	<0.1	<0.1

		8513-C1	8513-C2	8513-C3
Lab ID	PQL (mg/kg)			
		8513-WAC1	8513-WAC2	8513-WAC3
Sample Name				
TRH				
>C6-C10	35	<35	<35	<35
>C10-C16	50	<50	<50	<50
>C16-C34	100	<100	<100	<100
>C34-C40	100	<100	<100	<100
втех				
Benzene	0.5	<0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1	<1
m, p- Xylene(s)	2	<2	<2	<2
o-Xylene	1	<1	<1	<1
Fluorobenzene	surr.	95%	102%	105%
Metals				
Arsenic	2	8.9	5.1	8.2
Cadmium	0.3	<0.3	<0.3	<0.3
Chromium	5	<5	<5	69
Copper	5	<5	21	49
Lead	10	21	17	33
Mercury	0.2	<0.2	<0.2	<0.2
Nickel	10	<10	<10	35
Zinc	5	<5	34	51
Moisture	%	13%	8%	15%
рН		5.65	6.16	8.73
EC	[dS/m]	0.08	0.07	0.22
	[33/11]	0.00	0.07	0.22
Soil Texture Group		Light Clays	Light Clays	Light Clays
Approximate Clay		35-45	35-45	35-45
EC1:5 to ECe conversion factor		8.6	8.6	8.6

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
		Batton Blank 1	spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)		spike 1	Spike 1	Value 1	Value 2	Duplicate 1
					Value 1	Value 2	
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	108%	119%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	116%	119%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	107%	113%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	92%	98%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	116%	119%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	105%	113%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		123%	136%	85%	88%	
OCPs							
aldrin	0.1	<0.1	122%	131%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	92%	100%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1 <0.1	NT NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT
endrin ketone heptachlor	0.1	<0.1	NT		<0.1	<0.1	ACCEPT ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	115%	126%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	126% NT	<0.1	<0.1	ACCEPT
TCMX	0.1	NU.1	108%	115%	116%	111%	ACCEPT
	5011.		10876	11376	110%	11170	ACCEPT
OPPs chlorpyrifos	0.1	<0.1	115%	115%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	119%	121%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT

		Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1-	Batch Duplicate 1-	Batch Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	90%	83%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	97%	98%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	98%	100%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	97%	101%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	96%	100%	<2	<2	ACCEPT
o-Xylene	1	<1	98%	102%	<1	<1	ACCEPT
Fluorobenzene	surr.		100%	100%	103%	115%	
Metals							
Arsenic	2	<2	81%	73%	22	12	FAIL
Cadmium	0.3	<0.3	95%	93%	<0.3	<0.3	ACCEPT
Chromium	5	<5	124%	127%	<5	10	ACCEPT
Copper	5	<5	92%	95%	35	25	ACCEPT
Lead	10	<10	119%	118%	59	53	ACCEPT
Mercury	0.2	<0.2	107%	101%	<0.2	<0.2	ACCEPT
Nickel	10	<10	74%	77%	<10	<10	ACCEPT
Zinc	5	<5	94%	102%	65	52	ACCEPT
Moisture	%						
рН EC	[dC/m]						
	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion facto	r						

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	93%	94%	
OCPs		-0.1	-0.1	ACCEPT
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC d-BHC	0.1	<0.1 <0.1	<0.1 <0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	119%	120%	ACCEPT
OPPs chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
insurgiphosphoroununoite	0.1	\U.1	~U.1	ACCEPT

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
•				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX	1			
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	124%	120%	
Metals				
Arsenic	2	7.2	4.9	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	22	20	ACCEPT
Copper	5	9.1	12	ACCEPT
Lead	10	20	20	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	12	12	ACCEPT
Moisture	%			
pH	L 10 ()			
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

Comments:

FAIL caused by inhomogenous matrix

Light Clays - sandy clay, silty clay, light clay, light medium clay

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- **3.** However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated, samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate

were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogates Sar known additions to each sample, blank, matrix spike and LCS in a batch, of compound

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessm	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*FCA D 16	Presedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8513 ASB 1

Date Received:	03.12.2014
Date Analysed:	04.12.2014
Report Date:	08.12.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.
Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
8513-Asb1	Soil	56 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8513-Asb2 Soil		93 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8513-Asb3	Soil	61 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

C Thompson

Report Project name Received Date

439959-S					
8361					
Nov 24, 2014	ŀ				

Client Sample ID Sample Matrix			8361-SAL1 Soil	8361-SAL2 Soil	8361-SAL3 Soil	8361-SAL4 Soil	
Eurofins mgt Sample No.			S14-No17638	S14-No17639	S14-No17640	S14-No17641	
Date Sampled			Nov 07, 2014	Nov 07, 2014	Nov 11, 2014	Nov 17, 2014	
Test/Reference	LOR	Unit					
Polychlorinated Biphenyls (PCB)							
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PCB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dibutylchlorendate (surr.)	1	%	124	119	128	127	
Chloride	10	mg/kg	11	92	61	12	
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	0.2	0.3	
Sulphate (as S)	10	mg/kg	23	< 10	78	47	
% Moisture	0.1	%	18	4.1	12	13	

Client Sample ID Sample Matrix Eurofins mgt Sample No.			8361-SAL5 Soil S14-No17642	8361-SAL6 Soil S14-No17643
Date Sampled			Nov 18, 2014	Nov 18, 2014
Test/Reference	LOR	Unit		
Polychlorinated Biphenyls (PCB)				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	129	128
Chloride	10	mg/kg	11	32
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1
Sulphate (as S)	10	mg/kg	15	55
% Moisture	0.1	%	15	23

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polychlorinated Biphenyls (PCB)	Sydney	Dec 01, 2014	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Chloride	Sydney	Dec 01, 2014	28 Day
- Method: E033 /E045 /E047 Chloride			
Phenolics (total)	Sydney	Dec 01, 2014	14 Day
- Method: E041 /E055 Total Phenolics			
Sulphate (as S)	Sydney	Dec 01, 2014	28 Day
- Method: E045 Sulphate			
% Moisture	Sydney	Nov 25, 2014	28 Day
- Method: E005 Moisture Content			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address: Project Name	Silverwater NSW 2128			Order No.: Report #: Phone: Fax:			t #:		439959 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Nov 24, 2014 12:10 PM Dec 1, 2014 5 Day C Thompson	
											Eurofins mgt	Client Manager: Mary Makarios
		Sample Detail			% Moisture	Chloride	Phenolics (total)	Sulphate (as S)	Polychlorinated Biphenyls (PCB)			
Laboratory whe												
Melbourne Lab			271		V	×	×	×	~			
Sydney Labora					X	Х	Х	Х	Х			
Brisbane Labor		ite # 20794										
External Labor Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
8361-SAL1	Nov 07, 2014		Soil	S14-No17638	Х	Х	Х	Х	Х			
8361-SAL2	Nov 07, 2014		Soil	S14-No17639	Х	Х	Х	Х	Х			
8361-SAL3	Nov 11, 2014		Soil	S14-No17640	Х	Х	Х	Х	Х			
8361-SAL4	Nov 17, 2014		Soil	S14-No17641	Х	Х	Х	Х	Х			
8361-SAL5	Nov 18, 2014		Soil	S14-No17642	Х	Х	Х	Х	Х			
8361-SAL6	Nov 18, 2014		Soil	S14-No17643	Х	Х	Х	Х	Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank									
Polychlorinated Biphenyls (PCB)									
Aroclor-1016			mg/kg	< 0.5			0.5	Pass	
Aroclor-1232	mg/kg	< 0.5			0.5	Pass			
Aroclor-1242			mg/kg	< 0.5			0.5	Pass	
Aroclor-1248			mg/kg	< 0.5			0.5	Pass	
Aroclor-1254			mg/kg	< 0.5			0.5	Pass	
Aroclor-1260			mg/kg	< 0.5			0.5	Pass	
Total PCB			mg/kg	< 0.5			0.5	Pass	
Method Blank				1			1	-	
Chloride			mg/kg	< 10			10	Pass	
Phenolics (total)			mg/kg	< 0.1			0.1	Pass	
LCS - % Recovery				-			1		
Polychlorinated Biphenyls (PCB)									
Aroclor-1260			%	108			70-130	Pass	
LCS - % Recovery				1			1	-	
Chloride			%	97			70-130	Pass	
Phenolics (total)	1		%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1					
Polychlorinated Biphenyls (PCB)	1	·		Result 1					
Aroclor-1260	S14-No17287	NCP	%	102			70-130	Pass	
Spike - % Recovery				İ			1		
	1			Result 1					
Phenolics (total)	S14-No17639	CP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				I	1		I		
				Result 1	Result 2	RPD			
Phenolics (total)	S14-No17638	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
% Moisture	S14-De01044	NCP	%	19	19	2.0	30%	Pass	
Duplicate				1			T		
Polychlorinated Biphenyls (PCB)	1			Result 1	Result 2	RPD			
Aroclor-1016	S14-No17639	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S14-No17639	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S14-No17639	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S14-No17639	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S14-No17639	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S14-No17639	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1			I		
				Result 1	Result 2	RPD			
Chloride	S14-No17643	CP	mg/kg	32	32	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Bob Symons Ryan Hamilton

Analytical Services Manager Senior Analyst-Inorganic (NSW) Senior Analyst-Organic (NSW)

Glenn Jackson National Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofines | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other preson or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine is may be liable for cost, out of the second o

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court,

virotech Australia Pty Ltd A.C.N. 093 452 950

Environmental and OH&S Laboratory

Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8361-1

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Clifton Thompson

Sample Log In Details

Your reference:	8361-1
No. of Samples:	2
Date Received:	07.11.2014
Date completed instructions received:	07.11.2014
Date of analysis:	07.11-11.11.2014

Report Details

Report Date: Method number**: 11.11.2014 ESA-MP-01 ESA-P-ORG3 ESA-P-ORG3 ESA-P-ORG08 ESA-P-ORG08 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *Texture Assessment *ESA-P-16

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8361-C1	8361-C2
Lab ID	PQL (mg/kg)	0000 0000	0000 0000
		8361-WAC1	8361-WAC2
Sample Name			
РАН			
Acenaphthene	0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3 <0.3
Benzo[b]fluoranthene Benzo[g,h,i]perylene	0.3	<0.3 <0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	75%	71%
OCPs			
aldrin	0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2
endosulfan II endosulfan sulfate	0.2	<0.2 <0.1	<0.2 <0.1
endrin	0.1	<0.1	<0.1
endrin aldehyde	0.2	<0.2	<0.2
endrin ketone	0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1
ТСМХ	surr.	101%	98%
OPPs .		-0.1	-0.1
chlorpyrifos	0.1	<0.1	<0.1
chlorpyrifos methyl diazinon	0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1 <0.1	<0.1 <0.1
methyl parathion	0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1
	0.1		

		8361-C1	8361-C2
Lab ID	PQL (mg/kg)		
		8361-WAC1	8361-WAC2
Sample Name			
TRH			
>C6-C10	35	<35	<35
>C10-C16	50	<50	<50
>C16-C34	100	<100	<100
>C34-C40	100	<100	<100
BTEX			
Benzene	0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1
m, p- Xylene(s)	2	<2	<2
o-Xylene	1	<1	<1
Fluorobenzene	surr.	88%	100%
morobenzene	5011.	0070	100/0
Metals			
Arsenic	2	16	19
Cadmium	0.3	<0.3	<0.3
Chromium	5	12	5.3
Copper	5	36	77
Lead	10	24	35
Mercury	0.2	<0.2	<0.2
Nickel	10	<10	27
Zinc	5	30	77
Moisture	%	13%	5%
рН		6.20	9.58
EC	[dS/m]	0.09	0.27
Soil Texture Group		Medium & Heavy Clays	Sandy Loams
Approximate Clay		>45	10-25
EC1:5 to ECe conversion factor		7	13.8

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	88%	85%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	98%	97%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
, Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	98%	99%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	91%	88%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	100%	96%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	92%	94%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		90%	90%	102%	94%	
OCPs							
aldrin	0.1	<0.1	110%	104%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	106%	101%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	110%	102%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		99%	95%	142%	139%	
OPPs							
chlorpyrifos	0.1	<0.1	110%	107%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	99%	95%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT

		Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1-	Batch Duplicate 1-	Batch Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	88%	87%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	107%	117%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	102%	110%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	107%	113%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	111%	117%	<2	<2	ACCEPT
o-Xylene	1	<1	108%	115%	<1	<1	ACCEPT
Fluorobenzene	surr.		109%	118%	117%	97%	
Metals							
Arsenic	2	<2	112%	119%	<2	<2	ACCEPT
Cadmium	0.3	<0.3	105%	110%	<0.3	<0.3	ACCEPT
Chromium	5	<5	88%	78%	<5	<5	ACCEPT
Copper	5	<5	100%	95%	<5	<5	ACCEPT
Lead	10	<10	98%	82%	<10	<10	ACCEPT
Mercury	0.2	<0.2	90%	86%	<0.2	<0.2	ACCEPT
Nickel	10	<10	101%	97%	<10	<10	ACCEPT
Zinc	5	<5	103%	111%	9.4	16	ACCEPT
Moisture	%						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion facto	or						

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	·
Sample Name				
PAH				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene Benzo[k]fluoranthene	0.3	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
	0.3	<0.3	<0.3	ACCEPT
Chrysene Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	91%	90%	-
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin andrin aldahuda	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone heptachlor	0.1	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	123%	120%	ACCLET
		120/0		
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	< 0.1	< 0.1	ACCEPT

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
•				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	82%	119%	
Metals				
Arsenic	2	<2	<2	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	7.2	7.2	ACCEPT
Lead	10	<10	<10	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	15	12	ACCEPT
Moisture	%			
INIDISTULE	70			
рН				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay	1			
EC1:5 to ECe conversion factor	1			

Comment:

Sandy Loams - sandy loam, fine sandy loam

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

which are similar to the analyte of interest, however are not expected to be found in real samples.

>: Greater than
 LCS: Laboratory Control Sample
 NT: Not tested
 <: Less than
 RPD: Relative Percent Difference
 NA: Test not required
 PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessr	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

A division of A. D. Envirotech Australia Pty Ltd

Environmental and OH&S Laboratory A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8361-2

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Clifton Thompson

Sample Log In Details

Your reference:	8361-2
No. of Samples:	1
Date Received:	11.11.2014
Date completed instructions received:	11.11.2014
Date of analysis:	11.11-13.11.2014

Report Details

Report Date: Method number**: 13.11.2014 ESA-MP-01 ESA-P-ORG3 ESA-P-ORG3 ESA-P-ORG08 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *Texture Assessment *ESA-P-16

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8361-C3
Lab ID	PQL (mg/kg)	0264 14462
		8361-WAC3
Comple News		
Sample Name		
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	0.5
Anthracene	0.3	2.6
Benzo[a]anthracene	0.3	3.1
	0.3	4.5
Benzo[a]pyrene	0.3	5.1
Benzo[b]fluoranthene Benzo[g,h,i]perylene	0.3	3.5
	0.3	1.7
Benzo[k]fluoranthene		
Chrysene	0.3	3.2
Dibenzo[a,h]anthracene	0.3	0.6
Fluoranthene	0.3	5.1
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	2.5
Naphthalene	0.3	<0.3
Phenanthrene	0.3	2.6
Pyrene	0.3	5.1
p-Terphenyl-d14	surr.	83%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II	0.2	<0.2
endosulfan sulfate	0.1	<0.1
endrin	0.2	<0.2
endrin aldehyde	0.1	<0.1
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
TCMX	surr.	101%
0.00-		
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
	0.1	<0.1
prophos tributylphosphorotrithioite	0.1	<0.1

		8361-C3
Lab ID	PQL (mg/kg)	
Lauid	PQL (mg/kg)	8361-WAC3
Sample Name		
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	130
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	120%
Metals		
Arsenic	2	2.5
Cadmium	0.3	<0.3
Chromium	5	<5
Copper	5	47
Lead	10	46
Mercury	0.2	<0.2
Nickel	10	<10
Zinc	5	56
Moisture	%	17%
-		
рН		7.72
EC	[dS/m]	0.22
Soil Toyturo Croup		Light Claure
Soil Texture Group Approximate Clay		Light Clays 35-45
EC1:5 to ECe conversion factor	+	8.6
LC1.5 to ECE conversion factor		0.0

		Blank 1	Blank spike 1	Matrix spike 1	Batch	Batch	Batch
					Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
PAH			0.00	010/			1005DT
Acenaphthene	0.3	<0.3	96%	91%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	99%	77%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	100%	64%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT 08%	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	98%	91%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	99%	77%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	98%	62%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		93%	102%	76%	72%	
OCPs							
aldrin	0.1	<0.1	115%	101%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	95%	119%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	120%	101%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
тсмх	surr.	-	108%	94%	106%	97%	
OPPs			40004	44.55			
chlorpyrifos	0.1	<0.1	120%	111%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	96%	94%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	< 0.1	NT	NT	< 0.1	< 0.1	ACCEPT

		Blank 1	Blank spike 1	Matrix spike 1	Batch	Batch	Batch
					Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	102%	94%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	130	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	100%	114%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	108%	123%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	106%	119%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	106%	118%	<2	<2	ACCEPT
o-Xylene	1	<1	107%	118%	<1	<1	ACCEPT
Fluorobenzene	surr.		101%	112%	120%	123%	
Metals							
Arsenic	2	<2	89%	94%	2.5	3.8	ACCEPT
Cadmium	0.3	<0.3	103%	88%	<0.3	<0.3	ACCEPT
Chromium	5	<5	98%	98%	<5	13	ACCEPT
Copper	5	<5	99%	104%	47	38	ACCEPT
Lead	10	<10	104%	96%	46	70	ACCEPT
Mercury	0.2	<0.2	105%	104%	<0.2	<0.2	ACCEPT
Nickel	10	<10	97%	97%	<10	<10	ACCEPT
Zinc	5	<5	95%	83%	56	73	ACCEPT
Moisture	%						
-							
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion factor			1				

Comment:

Light Clays - sandy clay, silty clay, light clay, light medium clay

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

which are similar to the analyte of interest, however are not expected to be found in real samples.

>: Greater than
 LCS: Laboratory Control Sample
 NT: Not tested
 <: Less than
 RPD: Relative Percent Difference
 NA: Test not required
 PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessr	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*FCA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8361-3

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. **Clifton Thompson**

Sample Log In Details

Your reference:	8361-3
No. of Samples:	1
Date Received:	17.11.2014
Date completed instructions received:	17.11.2014
Date of analysis:	17.11-20.11.2014

Report Details

Report Date: Method number**: 20.11.2014 ESA-MP-01 ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *Texture Assessment *ESA-P-16

Results Authorised By:

A.C.N. 093 452 950

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8361-C4
Lab ID	PQL (mg/kg)	0261 14/464
		8361-WAC4
Sample Name		
Sample Mame		
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	0.7
Benzo[a]anthracene	0.3	0.4
Benzo[a]pyrene	0.3	0.5
Benzo[b]fluoranthene	0.3	0.6
Benzo[g,h,i]perylene	0.3	0.4
Benzo[k]fluoranthene	0.3	<0.3
Chrysene	0.3	0.5
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	0.9
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	0.7
Pyrene	0.3	0.9
p-Terphenyl-d14	surr.	76%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II	0.2	<0.2
endosulfan sulfate	0.1	<0.1
endrin	0.2	<0.2
endrin aldehyde	0.1	<0.1
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
TCMX	surr.	85%
	_	
ODDa		
OPPs ablemutifies		-0.1
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon fanablarabas	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	< 0.1

		8361-C4
Lab ID	PQL (mg/kg)	
		8361-WAC4
Sample Name		
Sample Name		
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
DTEV		
BTEX Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	108%
	54.11	100/0
Metals		
Arsenic	2	3.9
Cadmium	0.3	<0.3
Chromium	5	11
Copper	5	15
Lead	10	23
Mercury	0.2	<0.2
Nickel	10	<10
Zinc	5	24
Moisture	%	12%
рН		9.95
EC	[dS/m]	0.22
Coll Tautura Croun		Loomo
Soil Texture Group	+	Loams 20-30
Approximate Clay		
EC1:5 to ECe conversion factor		9.5

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
		Butch Blank I	spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)		spike 1	spike 1	Value 1	Value 2	Duplicate 1
Lauid	FQL (IIIg/Kg)				value 1	value z	
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	88%	90%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	90%	92%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	90%	92%	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
	0.3	<0.3	NT	NT		<0.3	
Benzo[b]fluoranthene Benzo[g,h,i]perylene		<0.3			<0.3	<0.3	ACCEPT
	0.3	<0.3	NT	NT	<0.3		ACCEPT
Benzo[k]fluoranthene			NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	91%	94%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT 00%	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	91%	90%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	90%	92%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	89%	92%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		87%	90%	68%	67%	
OCPs							
aldrin	0.1	<0.1	99%	102%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	94%	107%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	98%	99%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		90%	93%	92%	93%	
OPPs chlorpurifoc		-0.1	1100/	1170/	-0.1	-0.1	ACCEPT
chlorpyrifos	0.1	<0.1	116%	117%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	89%	92%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT

		Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1-	Batch Duplicate 1-	Batch Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
•							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	99%	104%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	100%	97%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	97%	96%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	94%	92%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	94%	90%	<2	<2	ACCEPT
o-Xylene	1	<1	93%	92%	<1	<1	ACCEPT
Fluorobenzene	surr.		101%	96%	106%	112%	
Metals							
Arsenic	2	<2	111%	101%	9.9	20	ACCEPT
Cadmium	0.3	<0.3	105%	95%	<0.3	<0.3	ACCEPT
Chromium	5	<5	107%	119%	9.2	26	ACCEPT
Copper	5	<5	95%	91%	24	26	ACCEPT
Lead	10	<10	115%	126%	18	31	ACCEPT
Mercury	0.2	<0.2	109%	106%	<0.2	<0.2	ACCEPT
Nickel	10	<10	91%	92%	<10	23	ACCEPT
Zinc	5	<5	107%	88%	55	91	ACCEPT
Moisture	%						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion fac	ctor						

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
PAH	0.2	-0.2	-0.2	ACCEPT
Acenaphthene	0.3	<0.3 <0.3	<0.3 <0.3	ACCEPT
Acenaphthylene Anthracene	0.3	0.3	0.3	ACCEPT ACCEPT
Benzo[a]anthracene	0.3	0.7	0.4	ACCEPT
Benzo[a]pyrene	0.3	0.5	0.4	ACCEPT
Benzo[b]fluoranthene	0.3	0.6	0.6	ACCEPT
Benzo[g,h,i]perylene	0.3	0.4	0.4	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	0.5	0.5	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	0.9	0.9	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	0.7	0.7	ACCEPT
Pyrene	0.3	0.9	0.9	ACCEPT
p-Terphenyl-d14	surr.	82%	76%	
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE 4,4'-DDT	0.1	<0.1 <0.1	<0.1 <0.1	ACCEPT
	0.1			ACCEPT
dieldrin endosulfan I	0.1	<0.1 <0.2	<0.1 <0.2	ACCEPT ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.2	<0.2	<0.2	ACCEPT
endrin	0.1	<0.1	<0.1	ACCEPT
endrin aldehyde	0.2	<0.2	<0.2	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
TCMX	surr.	84%	85%	-
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	< 0.1	< 0.1	ACCEPT

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	NT	NT	NT
>C16-C34	100	NT	NT	NT
>C34-C40	100	NT	NT	NT
BTEX	1			
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	125%	109%	
Metals				
Arsenic	2	3.9	5.1	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	11	11	ACCEPT
Copper	5	15	17	ACCEPT
Lead	10	23	24	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	24	24	ACCEPT
Moisture	%			
wosture	/0			
рН				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

Comment:

Loams - loam, silty loam, sandy clay loam

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries. 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 4. Analysis of VOC in water samples are performed on dimittered waters (as received), spiked with surrogat
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compoun which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

Environmental and OH&S Laboratory A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8361-4

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. **Clifton Thompson**

Sample Log In Details

Your reference:	8361-4
No. of Samples:	2
Date Received:	18.11.2014
Date completed instructions received:	18.11.2014
Date of analysis:	18.11-24.11.2014

Report Details

Report Date: Method number**: 24.11.2014 ESA-MP-01 ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *ESA-P-16 *Texture Assessment

Results Authorised By:

A.C.N. 093 452 950

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8361-C5	8361-C6
Lab ID	PQL (mg/kg)		
		8361-WAC5	8361-WAC6
Sample Name			
РАН			
Acenaphthene	0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3
Fluoranthene Fluorene	0.3	<0.3 <0.3	<0.3 <0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	99%	94%
OCPs			
aldrin	0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1
d-BHC g-BHC (lindane)	0.1	<0.1 <0.1	<0.1 <0.1
cis-chlordane	0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1
endrin ketone heptachlor	0.1	<0.1 <0.1	<0.1 <0.1
heptachlor epoxide	0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1
тсмх	surr.	139%	139%
OPPs		.0.4	
chlorpyrifos	0.1	<0.1	<0.1
chlorpyrifos methyl diazinon	0.1	<0.1	<0.1
diazinon fenchlorphos	0.1	<0.1 <0.1	<0.1 <0.1
methyl parathion	0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1

		8361-C5	8361-C6				
Lab ID	PQL (mg/kg)						
	PQL (IIIg/Kg)	8361-WAC5	8361-WAC6				
		8301-WACS	8301-WAC0				
Sample Name							
TRH							
>C6-C10	35	<35	<35				
>C10-C16	50	<50	<50				
>C16-C34	100	<100	<100				
>C34-C40	100	<100	<100				
BTEX							
Benzene	0.5	<0.5	<0.5				
Toluene	0.5	<0.5	<0.5				
Ethylbenzene	1	<1	<1				
m, p- Xylene(s)	2	<2	<2				
o-Xylene	1	<1	<1				
Fluorobenzene	surr.	102%	97%				
Metals							
Arsenic	2	12	11				
Cadmium	0.3	<0.3	<0.3				
Chromium	5	13	24				
Copper	5	39	5.3				
Lead	10	47	19				
Mercury	0.2	<0.2	<0.2				
Nickel	10	26	<10				
Zinc	5	67	44				
Moisture	%	18%	25%				
		7.00	2.04				
pH	[-10 (]	7.98	3.94				
EC	[dS/m]	0.18	0.06				
Soil Texture Group	1	Medium & Heavy Clays	Medium & Heavy Clays				
Approximate Clay		>45	>45				
EC1:5 to ECe conversion factor		7	7				
		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
--	-------------	--------------	---------------	----------------	-------------------------	-------------------------	------------------
Lab ID	PQL (mg/kg)						
Sample Name							
PAH				0.1.1/			
Acenaphthene	0.3	<0.3	118%	91%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	122%	88%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3 <0.3	NT	NT NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene Fluoranthene	0.3	<0.3	127%	N I 89%	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
Fluorene	0.3	<0.3	NT	89% NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	109%	117%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	109%	88%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	132%	86%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	<0.5	137%	85%	94%	104%	ACCEPT
	5011.		15770	0370	5470	10470	
OCPs							
aldrin	0.1	<0.1	124%	92%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin andrin aldabuda	0.2	<0.2	105%	66%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1 <0.1	NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
endrin ketone heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	124%	94%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	94% NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.	\0.1	118%	87%	139%	137%	ACCELL
OPPs							
chlorpyrifos	0.1	<0.1	129%	93%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	126%	95%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT

		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	92%	95%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
DTEV							
BTEX		-0 F	000/	070/	-0.5		ACCEPT
Benzene	0.5	<0.5	80%	87%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	79%	85%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	79%	85%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	78%	89%	<2	<2	ACCEPT
o-Xylene	1	<1	79%	86%	<1	<1	ACCEPT
Fluorobenzene	surr.		82%	87%	97%	117%	
Metals							
Arsenic	2	<2	85%	79%	11	14	ACCEPT
Cadmium	0.3	<0.3	98%	85%	<0.3	< 0.3	ACCEPT
Chromium	5	<5	91%	84%	24	35	ACCEPT
Copper	5	<5	91%	95%	5.3	8.0	ACCEPT
Lead	10	<10	96%	88%	19	21	ACCEPT
Mercury	0.2	<0.2	91%	86%	<0.2	<0.2	ACCEPT
Nickel	10	<10	100%	108%	<10	<10	ACCEPT
Zinc	5	<5	93%	108%	44	35	ACCEPT
Moisture	%						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion fac	ctor						

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- **3.** However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated, samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compound which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessm	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*FCA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8361 ASB 1

Date Received:	07.11.2014
Date Analysed:	11.11.2014
Report Date:	12.11.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
8361-Asb1	Soil	29 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8361-Asb2	Soil	72 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8361 ASB 2

Date Received:	11.11.2014
Date Analysed:	12.11.2014
Report Date:	13.11.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
8361-Asb3	Soil	67 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8361 ASB 3

Date Received:	17.11.2014
Date Analysed:	17.11.2014
Report Date:	18.11.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtakoice.

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
8361-Asb4	Soil	63 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8361 ASB 4

Date Received:	18.11.2014
Date Analysed:	21.11.2014
Report Date:	24.11.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

-	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
8361-Asb5	Soil	62 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8361-Asb6	Soil	64 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

WORLD RECOGNISED

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

C Thompson

437412-S

Nov 03, 2014

8200

Report
Project name
Received Date

Client Sample ID Sample Matrix Eurofine I met Semple No			8200-SAL1 Soil S14-No00845	8200-SAL2 Soil S14-No00846	8200-SAL3 Soil S14-No00847	8200-SAL4 Soil S14-No00848
Eurofins mgt Sample No.						
Date Sampled			Oct 01, 2014	Oct 01, 2014	Oct 01, 2014	Oct 01, 2014
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	102	116	121	124
Chloride	10	mg/kg	42	19	100	34
Phenolics (total)	0.1	mg/kg	0.2	0.1	0.1	0.8
Sulphate (as S)	10	mg/kg	130	28	38	13
% Moisture	0.1	%	11	18	9.3	20

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			8200-SAL5 Soil S14-No00849 Oct 08, 2014	8200-SAL6 Soil S14-No00850 Oct 10, 2014	8200-SAL7 Soil S14-No00851 Oct 20, 2014	8200-SAL8 Soil S14-No00852 Oct 20, 2014
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	114	108	127	114
	1	-				
Chloride	10	mg/kg	< 10	110	25	41
Phenolics (total)	0.1	mg/kg	0.2	0.1	0.2	0.2
Sulphate (as S)	10	mg/kg	46	78	32	44
% Moisture	0.1	%	13	14	20	10

Client Sample ID Sample Matrix			8200-SAL9 Soil	8200-SAL10 Soil	8200-SAL11 Soil	8200-SAL12 Soil
Eurofins mgt Sample No.			S14-No00853	S14-No00854	S14-No00855	S14-No00856
Date Sampled			Oct 21, 2014	Oct 22, 2014	Oct 24, 2014	Oct 24, 2014
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	118	110	114	107
	1	1				
Chloride	10	mg/kg	24	140	61	< 10
Phenolics (total)	0.1	mg/kg	0.4	< 0.1	0.1	0.4
Sulphate (as S)	10	mg/kg	40	12	110	23
% Moisture	0.1	%	14	7.0	11	25

Client Sample ID Sample Matrix			8200-SAL13 Soil
Eurofins mgt Sample No.			S14-No00857
Date Sampled			Oct 27, 2014
ofins mgt Sample No. e Sampled t/Reference <u>ychlorinated Biphenyls (PCB)</u> clor-1016 clor-1232 clor-1242 clor-1248 clor-1254 clor-1260 al PCB utylchlorendate (surr.)	LOR	Unit	
Polychlorinated Biphenyls (PCB)			
Aroclor-1016	0.5	mg/kg	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5
Total PCB	0.5	mg/kg	< 0.5
Dibutylchlorendate (surr.)	1	%	117
Chloride	10	mg/kg	20
Phenolics (total)	0.1	mg/kg	0.3
Sulphate (as S)	10	mg/kg	19
% Moisture	0.1	%	22

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polychlorinated Biphenyls (PCB)	Sydney	Nov 04, 2014	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Chloride	Sydney	Nov 07, 2014	28 Day
- Method: E033 /E045 /E047 Chloride			
Phenolics (total)	Sydney	Nov 04, 2014	14 Day
- Method: E041 /E055 Total Phenolics			
Sulphate (as S)	Sydney	Nov 07, 2014	28 Day
- Method: E045 Sulphate			
% Moisture	Sydney	Nov 03, 2014	28 Day
- Method: E005 Moisture Content			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address: Project Name	Unit 4/ 10 Silverwa NSW 212	0-11 Millenium C ter				R P	order epor hone ax:	t #:		437412 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Nov 3, 2014 2:50 PM Nov 10, 2014 5 Day C Thompson
											Eurofins mg	t Client Manager: Mary Makarios
	ass: Unit 4/ 10-11 Millenium Court Silverwater NSW 2128 ct Name: 8200 Sample Detail Sample Detail Sample Detail tory where analysis is conducted trong where analysis is conducted rne Laboratory - NATA Site # 1254 & 14271 Laboratory - NATA Site # 1254 & 14271 Laboratory - NATA Site # 20794 I Laboratory - NATA Site # 20794 Laboratory - NATA Site # 20794 Laboratory - NATA Site # 20794 Laboratory - Unit Site # 20794 Laboratory - NATA Site # 20794 Laboratory - Unit Site # 20794 All Oct 01, 2014 Soil Soil Si				% Moisture	Chloride	Phenolics (total)	Sulphate (as S)	Polychlorinated Biphenyls (PCB)			
										-		
			4271							-		
					Х	Х	Х	Х	Х	-		
		te # 20794										
External Labor Sample ID		Sampling Time	Matrix	LAB ID								
8200-SAL1	Oct 01, 2014		Soil	S14-No00845	Х	Х	Х	Х	Х]		
8200-SAL2	Oct 01, 2014		Soil	S14-No00846	Х	Х	Х	Х	Х			
8200-SAL3	Oct 01, 2014		Soil	S14-No00847	Х	Х	Х	Х	Х			
8200-SAL4	Oct 01, 2014		Soil	S14-No00848	Х	Х	Х	Х	Х			
8200-SAL5	Oct 08, 2014		Soil	S14-No00849	Х	Х	Х	Х	Х			
8200-SAL6				S14-No00850	Х	Х	Х		Х			
8200-SAL7	00-SAL7 Oct 20, 2014 Soil S14-No00851				Х	Х	Х	Х	Х			
8200-SAL8				S14-No00852	Х	Х	Х	Х	Х			
8200-SAL9	Oct 21, 2014			S14-No00853	Х	Х	Х	Х	Х			
8200-SAL10	Oct 22, 2014		Soil	S14-No00854	Х	Х	Х	Х	Х			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nam Address: Project Name:	e: AD Envirotech Unit 4/ 10-11 I Silverwater NSW 2128 8200			R P	order epor hone ax:	t #:		437412 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Nov 3, 2014 2:50 PM Nov 10, 2014 5 Day C Thompson	
										Eurofins mgt	Client Manager: Mary Makarios
		iple Detail		% Moisture	Chloride	Phenolics (total)	Sulphate (as S)	Polychlorinated Biphenyls (PCB)			
	e analysis is condu								-		
	ratory - NATA Site #										
	ory - NATA Site # 18			X	Х	Х	Х	Х			
	tory - NATA Site # 2	20794							4		
	ernal Laboratory			X							
					X	X	X	X	4		
	Oct 24, 2014	Soil	S14-No00856	Х	Х	Х	Х	Х			
8200-SAL13	Oct 27, 2014	Soil	S14-No00857	Х	Х	Х	Х	Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed w
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

within

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Polychlorinated Biphenyls (PCB)									
Aroclor-1016			mg/kg	< 0.5			0.5	Pass	
Aroclor-1232			mg/kg	< 0.5			0.5	Pass	
Aroclor-1242			mg/kg	< 0.5			0.5	Pass	
Aroclor-1248			mg/kg	< 0.5			0.5	Pass	
Aroclor-1254			mg/kg	< 0.5			0.5	Pass	
Aroclor-1260			mg/kg	< 0.5			0.5	Pass	
Total PCB			mg/kg	< 0			0.5	Pass	
Method Blank									
Chloride			mg/kg	< 10			10	Pass	
Phenolics (total)			mg/kg	< 0.1			0.1	Pass	
Sulphate (as S)			mg/kg	< 10			10	Pass	
LCS - % Recovery									
Polychlorinated Biphenyls (PCB)									
Aroclor-1260			%	99			70-130	Pass	
LCS - % Recovery									
Chloride			%	108			70-130	Pass	
Phenolics (total)			%	90			70-130	Pass	
Sulphate (as S)			%	107			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Polychlorinated Biphenyls (PCB)				Result 1					
Aroclor-1260	S14-No00846	CP	%	96			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phenolics (total)	S14-No00846	CP	%	89			70-130	Pass	
Spike - % Recovery								-	
Polychlorinated Biphenyls (PCB)				Result 1					
Aroclor-1260	S14-No00856	CP	%	98			70-130	Pass	
Spike - % Recovery				_					
				Result 1					
Phenolics (total)	S14-No00856	CP	%	87			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					_				
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S14-No00845	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S14-No00845	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S14-No00845	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S14-No00845	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S14-No00845	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S14-No00845	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S14-No00849	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Sulphate (as S)	S14-No00849	CP	mg/kg	46	46	1.0	30%	Pass	

Duplicate					_				
Polychlorinated Biphenyls (PCB)			Result 1	Result 2	RPD				
Aroclor-1016	S14-No00855	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S14-No00855	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S14-No00855	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S14-No00855	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S14-No00855	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S14-No00855	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Phenolics (total)	S14-No00855	CP	mg/kg	0.1	0.2	55	30%	Fail	Q15

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	No
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description Q15 The RPD reported passes Eurofins | mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Mary Makarios Bob Symons Ryan Hamilton Analytical Services Manager Senior Analyst-Inorganic (NSW) Senior Analyst-Organic (NSW)

Glenn Jackson National Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Unit 4/10-11 Millennium Court,

Environmental and OH&S Laboratory A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950

Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8200-1

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Shek Yuen

Sample Log In Details

Your reference:	8200-1
No. of Samples:	4
Date Received:	01.10.2014
Date completed instructions received:	01.10.2014
Date of analysis:	01.10-07.10.2014

Report Details

Report Date: Method number**: 07.10.2014 ESA-MP-01 ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *ESA-P-16 *Texture Assessment

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8200-C1	8200-C2	8200-C3	8200-C4
I ah ID	DOL(mg/kg)				
Lab ID	PQL (mg/kg)	8200-WAC1	8200-WAC2	8200-WAC3	8200-WAC4
Sample Name					
РАН					
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	< 0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	4.1
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	1.4
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	1.6
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	2.0
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	1.4
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	0.7
Chrysene	0.3	<0.3	<0.3	<0.3	1.4
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	5.1
Fluorene	0.3	<0.3	<0.3	<0.3	0.4
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	1.2
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	4.1
Pyrene	0.3	<0.3	<0.3	<0.3	4.8
p-Terphenyl-d14	surr.	83%	79%	82%	83%
OCPs					
aldrin	0.1	<0.1	<0.1	<0.1	< 0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane) cis-chlordane	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.2	<0.2	<0.2	<0.2
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1
тсмх	surr.	88%	86%	90%	93%
OPPs		10.1	-0.1	-0.1	-0.4
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1
diazinon farablarabaa	0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1
prophos tribut dab contractività i cita	0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1	<0.1

		8200-C1	8200-C2	8200-C3	8200-C4
Lab ID	PQL (mg/kg)				
20010		8200-WAC1	8200-WAC2	8200-WAC3	8200-WAC4
Sample Name					
Sample Name					
TRH					
>C6-C10	35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100
BTEX					
Benzene	0.5	<0.5	<0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1	<1	<1
m, p- Xylene(s)	2	<2	<2	<2	<2
o-Xylene	1	<1	<1	<1	<1
Fluorobenzene	surr.	100%	108%	103%	99%
Metals					
Arsenic	2	2.0	<2	8.4	21
Cadmium	0.3	<0.3	<0.3	<0.3	< 0.3
Chromium	5	10	<5	<5	6.4
Copper	5	42	<5	39	73
Lead	10	41	<10	<10	120
Mercury	0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	19	<10	11	10
Zinc	5	59	<5	67	110
Moisture	%	12%	15%	10%	22%
рН		8.23	5.31	5.21	6.41
EC	[dS/m]	0.41	0.03	0.11	0.12
Soil Texture Group		Loams	Medium & Heavy Clays	Light Clays	Light Clays
Approximate Clay		20-30	>45	35-45	35-45
EC1:5 to ECe conversion factor		9.5	7	8.6	8.6

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
•							
РАН							
Acenaphthene	0.3	<0.3	82%	79%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	84%	81%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	85%	82%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
ndeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	82%	78%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	84%	81%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	84%	81%	<0.3	<0.3	ACCEPT
o-Terphenyl-d14	surr.		80%	79%	106%	106%	N/A
OCPs aldrin	0.1	<0.1	91%	88%	<0.1	<0.1	ACCEPT
					-	-	
a-BHC p-BHC	0.1	<0.1 <0.1	NT	NT	<0.1 <0.1	<0.1 <0.1	ACCEPT
д-внс	0.1	<0.1	NT NT	NT NT	<0.1	<0.1	ACCEPT
з-внс g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
	0.1	<0.1			<0.1	<0.1	
trans-chlordane 4,4'-DDD	0.1	<0.1	NT NT	NT NT	<0.1	<0.1	ACCEPT ACCEPT
4,4 -DDD 4.4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE 4,4'-DDT	-						
4,4 -DDT dieldrin	0.1	<0.1 <0.1	NT NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
endosulfan I	0.1	<0.1			<0.1	<0.1	
endosulfan II	0.2	<0.2	NT NT	NT NT	<0.2	<0.2	ACCEPT ACCEPT
endosulfan sulfate	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endrin	0.1	<0.1	75%	69%	<0.1	<0.1	ACCEPT
endrin aldehyde	0.2	<0.2	75% NT	09%	<0.2	<0.2	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
neptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
neptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
nexachlorobenzene	0.1	<0.1	79%	76%	<0.1	<0.1	ACCEPT
	0.1	<0.1	79% NT	NT	<0.1	<0.1	ACCEPT
nethoxychlor FCMX	surr.	NU.1	85%	82%	111%	109%	N/A
	suit.		83%	8276	111/6	109%	N/A
OPPs							
chlorpyrifos	0.1	<0.1	95%	89%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	83%	79%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	91%	91%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	88%	98%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	85%	94%	< 0.5	< 0.5	ACCEPT
Ethylbenzene	1	<1	82%	89%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	83%	90%	<2	<2	ACCEPT
o-Xylene	1	<1	82%	88%	<1	<1	ACCEPT
Fluorobenzene	surr.		89%	96%	99%	100%	N/A
Metals							
Arsenic	2	<2	109%	108%	2.9	3.8	ACCEPT
Cadmium	0.3	<0.3	95%	95%	<0.3	<0.3	ACCEPT
Chromium	5	<5	100%	119%	<5	11	ACCEPT
Copper	5	<5	96%	99%	8.4	29	ACCEPT
Lead	10	<10	102%	100%	15	21	ACCEPT
Mercury	0.2	<0.2	88%	86%	<0.2	<0.2	ACCEPT
Nickel	10	<10	96%	95%	<10	14	ACCEPT
Zinc	5	<5	93%	86%	25	39	ACCEPT
Moisture	%						
Wolstare	,,,						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion fac	ctor						

		Batch	Batch	Batch
Lab ID		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
·				
PAH				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	97%	95%	N/A
OCPs aldrin	0.1	-0.1	-0.1	ACCEPT
	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1 <0.1	<0.1 <0.1	ACCEPT
g-BHC (lindane) cis-chlordane	0.1	<0.1	<0.1	ACCEPT ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.1	<0.1	<0.1	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.2	<0.2	<0.2	ACCEPT
endrin	0.1	<0.1	<0.1	ACCEPT
endrin aldehyde	0.2	<0.2	<0.2	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	107%	105%	N/A
	5411.	10770	103/0	
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
insatyphosphorothtmone	0.1	NU.1	\U.1	ALLEPT

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
TD				
TRH >C6-C10	25	-25	-25	ACCEDT
	35	<35	<35	ACCEPT
>C10-C16	100	<50 <100	<50 <100	ACCEPT
>C16-C34				ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	94%	98%	N/A
Metals				
Arsenic	2	<2	<2	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	9.5	6.3	ACCEPT
Copper	5	9.5	24	ACCEPT
Lead	10	19	23	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	30	27	ACCEPT
Moisture	%			
рН				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

Comments:

N/A - Not Applicable

NT - Not Tested

Loams - loam, silty loam, sandy clay loam

Light Clays - sandy clay, silty clay, light clay, light medium clay

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries. 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 4. Analysis of VOC in water samples are performed on unintered waters (as received), spiked with surrogat
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

which are similar to the analyte of interest, however are not expected to be found in real samples.

- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessr	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

Environmental and OH&S Laboratory A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8200-2

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. **Clifton Thompson**

Sample Log In Details

Your reference:	8200-2
No. of Samples:	1
Date Received:	09.10.2014
Date completed instructions received:	09.10.2014
Date of analysis:	09.10-14.10.2014

Report Details

Report Date: Method number**: 14.10.2014 ESA-MP-01 ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *ESA-P-16 *Texture Assessment

Results Authorised By:

A.C.N. 093 452 950

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8200-C5
L-L D		
Lab ID	PQL (mg/kg)	0200 10/0 05
		8200-WAC5
Sample Name		
Sample Name		
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
Benzo[a]anthracene	0.3	<0.3
Benzo[a]pyrene	0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3
Chrysene	0.3	<0.3
, Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	<0.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	73%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II	0.2	<0.2
endosulfan sulfate	0.1	<0.1
endrin	0.2	<0.2
endrin aldehyde	0.1	<0.1
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
TCMX	surr.	116%
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1
and a comprission of other models of the second sec	0.1	~U.I
		8200-C5
--	-------------	----------------
Lab ID	PQL (mg/kg)	
		8200-WAC5
Sample Name		
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
DTEV		
BTEX	0.5	<0 F
Benzene	0.5	<0.5 <0.5
Toluene	0.5	
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	-	<1
Fluorobenzene	surr.	115%
Metals		
Arsenic	2	28
Cadmium	0.3	<0.3
Chromium	5	28
Copper	5	<5
Lead	10	<10
Mercury	0.2	<0.2
Nickel	10	<10
Zinc	5	<5
Moisture	%	14%
рН		7.47
EC	[dS/m]	0.05
Soil Texture Group		Looms
	+	Loams 20-30
Approximate Clay EC1:5 to ECe conversion factor		
ECT:5 10 ECE conversion factor		9.5

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	82%	81%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	84%	74%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	86%	90%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	82%	82%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	84%	74%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	85%	87%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		79%	78%	82%	87%	N/A
OCPs							
aldrin	0.1	<0.1	90%	90%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.1	<0.1	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.1	68%	87%	<0.1	<0.1	ACCEPT
endrin aldehyde	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	95%	94%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
тсмх	surr.		87%	87%	95%	103%	N/A
			0,70	0,7,0	5570	20070	
OPPs chlorpyrifos	0.1	<0.1	82%	78%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	82% NT	78% NT	<0.1	<0.1	ACCEPT
diazinon							
	0.1	<0.1	84%	81%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
r							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	104%	99%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
DIEV							
BTEX	0.5	<0.5	96%	97%	<0.5	<0.5	ACCEDT
Benzene Toluene	0.5	<0.5	96% 104%	103%	<0.5	<0.5	ACCEPT ACCEPT
Ethylbenzene	0.5	<0.5	104%	103%	<0.5	<0.5	ACCEPT
1	2		103%	102%	<1	<2	
m, p- Xylene(s)	1	<2	101%	101%	<2 <1	<1	ACCEPT ACCEPT
o-Xylene Fluorobenzene		<1	98%	98%	106%	108%	N/A
Fluorobenzene	surr.		98%	98%	106%	108%	N/A
Metals							
Arsenic	2	<2	114%	116%	3.6	3.6	ACCEPT
Cadmium	0.3	<0.3	93%	110%	<0.3	<0.3	ACCEPT
Chromium	5	<5	103%	104%	<5	<5	ACCEPT
Copper	5	<5	88%	106%	140	130	ACCEPT
Lead	10	<10	104%	112%	22	23	ACCEPT
Mercury	0.2	<0.2	96%	88%	<0.2	<0.2	ACCEPT
Nickel	10	<10	96%	104%	<10	<10	ACCEPT
Zinc	5	<5	93%	104%	55	59	ACCEPT
Moisture	%						
INIDISTULE	/0						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion factor	or						

		Datab	Datab	Datah
		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	0.5	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	0.5	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	0.9	0.9	ACCEPT
Phenanthrene	0.3	0.5	<0.3	ACCEPT
Pyrene	0.3	0.5	<0.3	ACCEPT
p-Terphenyl-d14	surr.	69%	84%	N/A
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	103%	104%	N/A
OPPs chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	
insurgiphosphoroununoite	0.1	\U.1	\U.1	ACCEPT

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	110%	109%	N/A
Metals				
Arsenic	2	3.7	5.6	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	89	310	FAIL
Copper	5	21	38	ACCEPT
Lead	10	51	21	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	10	39	ACCEPT
Zinc	5	76	81	ACCEPT
Moisture	%			
рН				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion facto	r			

N/A - Not Applicable

NT - Not Tested

FAIL caused by inhomogenous matrix

Loams - loam, silty loam, sandy clay loam

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of composition which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessr	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8200-3

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. **Clifton Thompson**

Sample Log In Details

Your reference:	8200-3
No. of Samples:	1
Date Received:	10.10.2014
Date completed instructions received:	10.10.2014
Date of analysis:	10.10-14.10.2014

Report Details

Report Date: Method number**: 14.10.2014 ESA-MP-01 ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *ESA-P-16 *Texture Assessment

Results Authorised By:

A.C.N. 093 452 950

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8200-C6
L-L D		
Lab ID	PQL (mg/kg)	0200 11/1000
		8200-WAC6
Sample Name		
Sample Name		
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
	0.3	
Benzo[a]anthracene	0.3	<0.3 <0.3
Benzo[a]pyrene		
Benzo[b]fluoranthene	0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3
Chrysene	0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	<0.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	69%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II	0.2	<0.2
endosulfan sulfate	0.1	<0.1
endrin	0.2	<0.2
endrin aldehyde	0.1	<0.1
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
ТСМХ	surr.	106%
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1
7.1 .P		

		8200-C6
Lab ID	PQL (mg/kg)	
		8200-WAC6
Sample Name		
TRH	25	-25
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX	-	
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	98%
Matala		
Metals	2	29
Arsenic Cadmium	0.3	<0.3
Chromium	5	<0.3
	5	27
Copper Lead	10	38
	0.2	<0.2
Mercury Nickel	10	<0.2 11
Zinc	5	37
LIIL	5	57
Moisture	%	19%
рН		10.92
EC	[dS/m]	0.35
Soil Texture Group		Clay Loams
Approximate Clay		30-35
EC1:5 to ECe conversion factor		8.6

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name	_						
РАН							
Acenaphthene	0.3	<0.3	80%	80%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	83%	84%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	84%	86%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	82%	83%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	83%	84%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	83%	85%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		74%	80%	81%	81%	N/A
OCPs							
aldrin	0.1	<0.1	88%	89%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	83%	85%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	93%	95%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
TCMX	surr.		87%	89%	95%	102%	N/A
OPPs							
chlorpyrifos	0.1	<0.1	87%	89%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	82%	82%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ргорпоз							

		Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1-	Batch Duplicate 1-	Batch Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
•							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	99%	92%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	83%	79%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	79%	75%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	78%	77%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	77%	75%	<2	<2	ACCEPT
o-Xylene	1	<1	78%	76%	<1	<1	ACCEPT
Fluorobenzene	surr.		83%	77%	91%	98%	N/A
Matala							
Metals	2	<2	105%	99%	5.0	4.4	ACCEPT
Arsenic Cadmium	0.3	<0.3	103%	100%	<0.3	<0.3	ACCEPT
Chromium	5	<5	96%	97%	<5	<5	ACCEPT
Copper	5	<5	93%	92%	5.7	5.7	ACCEPT
Lead	10	<10	97%	100%	15	15	ACCEPT
Mercury	0.2	<0.2	91%	90%	<0.2	0.2	ACCEPT
Nickel	10	<10	96%	95%	<10	<10	ACCEPT
Zinc	5	<5	93%	97%	7.9	7.9	ACCEPT
2.110		.0	5676	5770	7.15	7.15	, locel i
Moisture	%						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion fact	tor						

		Datab	Datah	Datab
		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
·				
PAH				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	74%	73%	N/A
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	109%	110%	N/A
OPPs chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon			-	
	0.1	<0.1	<0.1 <0.1	ACCEPT
fenchlorphos	0.1	<0.1 <0.1	<0.1	ACCEPT ACCEPT
methyl parathion				
prophos tributulaboraboratrithioita	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
·				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	128%	99%	N/A
Metals				
Arsenic	2	4.6	7.1	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	17	19	ACCEPT
Copper	5	20	17	ACCEPT
Lead	10	13	11	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	39	32	ACCEPT
Moisture	%			
рН				
EC	[dS/m]			
Call Tastura Cua				
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

N/A - Not Applicable

NT - Not Tested

Clay Loams - fine sandy clay loam, clay loam, silty clay loam

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries. 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 4. Analysis of VOC in water samples are performed on dimittered waters (as received), spiked with surrogat
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compoun which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessr	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

Environmental and OH&S Laboratory A.C.N. 093 452 950

A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8200-4

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. **Clifton Thompson**

Sample Log In Details

Your reference:	8200-4
No. of Samples:	2
Date Received:	20.10.2014
Date completed instructions received:	20.10.2014
Date of analysis:	20.10-24.10.2014

Report Details

Report Date: Method number**: 24.10.2014 ESA-MP-01 ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *Texture Assessment *ESA-P-16

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8200-C7	8200-C8
Lab ID	PQL (mg/kg)		
		8200-WAC7	8200-WAC8
Sample Name			
РАН			
Acenaphthene	0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3
Dibenzo[a,h]anthracene Fluoranthene	0.3	<0.3 <0.3	<0.3 <0.3
Fluoranthene	0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	109%	115%
· · ·			
OCPs			
aldrin	0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1
g-BHC (lindane) cis-chlordane	0.1	<0.1 <0.1	<0.1 <0.1
trans-chlordane	0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1
hexachlorobenzene methoxychlor	0.1	<0.1 <0.1	<0.1 <0.1
TCMX	surr.	102%	106%
		102/0	100/0
OPPs			
chlorpyrifos	0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1
prophos tributylphosphorotrithioite	0.1	<0.1 <0.1	<0.1 <0.1
ιπρατγιμποερποτοτητηποιτε	0.1	<u.1< td=""><td><u.1< td=""></u.1<></td></u.1<>	<u.1< td=""></u.1<>

		8200-C7	8200-C8
Lab ID	PQL (mg/kg)		
		8200-WAC7	8200-WAC8
Sample Name			
TRH			
>C6-C10	35	<35	<35
>C10-C16	50	<50	<50
>C16-C34	100	<100	<100
>C34-C40	100	<100	<100
BTEX			
Benzene	0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1
m, p- Xylene(s)	2	<2	<2
o-Xylene	1	<1	<1
Fluorobenzene	surr.	96%	95%
Metals			
Arsenic	2	14	6.5
Cadmium	0.3	<0.3	<0.3
Chromium	5	6.4	<5
Copper	5	35	33
Lead	10	56	29
Mercury	0.2	<0.2	<0.2
Nickel	10	<10	20
Zinc	5	43	85
Moisture	%	22%	13%
рН		5.80	7.85
EC	[dS/m]	0.05	0.19
Soil Texture Group		Medium & Heavy Clays	Clay Loams
Approximate Clay		>45	30-35
EC1:5 to ECe conversion factor		7	8.6

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	•
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	93%	95%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	91%	92%	0.8	0.4	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	1.4	0.4	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	2.1	0.5	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	2.4	0.6	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	1.0	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	2.3	0.4	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	94%	96%	2.8	0.9	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	0.6	<0.3	ACCEPT
Naphthalene	0.3	<0.3	89%	92%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	95%	96%	0.4	0.4	ACCEPT
Pyrene	0.3	<0.3	89%	91%	2.6	0.9	ACCEPT
p-Terphenyl-d14	surr.		96%	97%	106%	110%	N/A
OCPs							
aldrin	0.1	<0.1	100%	102%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	81%	74%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT ACCEPT
heptachlor epoxide	0.1	<0.1 <0.1	NT NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	103%	105%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	103% NT	105% NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.	\U.1	93%	95%	100%	103%	N/A
	5011.		5370	5570	10070	10370	11/7
OPPs chlorpyrifos	0.1	<0.1	100%	105%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	100% NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	95%	95%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	95% NT	95% NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
	0.1	-0.1			-0.1	-0.1	, COLLI I

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	113%	108%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	89%	89%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	90%	90%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	90%	90%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	90%	87%	<2	<2	ACCEPT
o-Xylene	1	<1	89%	89%	<1	<1	ACCEPT
Fluorobenzene	surr.		91%	90%	95%	96%	N/A
Metals							
Arsenic	2	<2	105%	93%	2.6	3.7	ACCEPT
Cadmium	0.3	<0.3	103%	108%	<0.3	<0.3	ACCEPT
Chromium	5	<5	96%	112%	<5	<5	ACCEPT
Copper	5	<5	97%	82%	8.3	12	ACCEPT
Lead	10	<10	105%	110%	16	21	ACCEPT
Mercury	0.2	<0.2	97%	88%	<0.2	<0.2	ACCEPT
Nickel	10	<10	95%	119%	<10	12	ACCEPT
Zinc	5	<5	99%	115%	43	47	ACCEPT
Moisture	%						
рН							
EC	[dS/m]						
	[00/11]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion factor	r						

		Batch	Datch	Batch
		Batch Duplicate 2-	Batch Duplicate 2-	Batch Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	Duplicate 2
	PQL (IIIg/Kg)	Value 1	value 2	
Sample Name				
·				
PAH				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	< 0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	115%	106%	N/A
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1 <0.1	ACCEPT
4,4'-DDE 4,4'-DDT	0.1	<0.1 <0.1	<0.1	ACCEPT
		<0.1		ACCEPT
dieldrin endosulfan I	0.1	<0.1	<0.1 <0.2	ACCEPT ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.2	<0.2	<0.2	ACCEPT
endrin	0.1	<0.1	<0.1	ACCEPT
endrin aldehyde	0.2	<0.2	<0.2	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	105%	101%	N/A
	5411.	10370	101/0	14/5
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
	012			

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
	50			
>C10-C16		<50	<50	ACCEPT
>C16-C34	100	430	110	ACCEPT
>C34-C40	100	120	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	96%	94%	N/A
Metals				
Arsenic	2	<2	<2	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	<5	<5	ACCEPT
Lead	10	<10	<10	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	<5	<5	ACCEPT
Moisture	%			
рН				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion facto	r			

N/A - Not Applicable

NT - Not Tested

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of composition which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

Environmental and OH&S Laboratory A.C.N. 093 452 950

A division of A. D. Envirotech Australia Pty Ltd

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8200-5

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. **Clifton Thompson**

Sample Log In Details

Your reference:	8200-5
No. of Samples:	1
Date Received:	21.10.2014
Date completed instructions received:	21.10.2014
Date of analysis:	21.10-27.10.2014

Report Details

Report Date: Method number**: 27.10.2014 ESA-MP-01 ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *Texture Assessment *ESA-P-16

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8200-C9
Lab ID	PQL (mg/kg)	
		8200-WAC9
Sample Name		
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
Benzo[a]anthracene	0.3	<0.3
Benzo[a]pyrene	0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3
Chrysene	0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	<0.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	121%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane 4,4'-DDD	0.1	<0.1
4,4'-DDD 4,4'-DDE	0.1	<0.1 <0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.1	<0.1
endosulfan II	0.2	<0.2
endosulfan sulfate	0.2	<0.2
endrin	0.1	<0.1
endrin aldehyde	0.2	<0.2
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
TCMX	surr.	125%
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1

		8200-C9
Lab ID	PQL (mg/kg)	
	FQL (IIIg/Kg)	8200-WAC9
		0200 11/105
Sample Name		
•		
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1 <2
m, p- Xylene(s)	-	
o-Xylene	1	<1
Fluorobenzene	surr.	100%
Metals		
Arsenic	2	18
Cadmium	0.3	<0.3
Chromium	5	6.4
Copper	5	53
Lead	10	35
Mercury	0.2	<0.2
Nickel	10	<10
Zinc	5	27
** * *		22%
Moisture	%	22%
рН		5.60
EC	[dS/m]	0.12
	[]	0.12
Soil Texture Group		Medium & Heavy Clays
Approximate Clay	1	>45
EC1:5 to ECe conversion factor		7

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	93%	93%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	93%	93%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	96%	96%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	91%	92%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	97%	96%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	91%	91%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		94%	94%	117%	121%	N/A
OCPs							
aldrin	0.1	<0.1	104%	105%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	67%	67%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	104%	104%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
TCMX	surr.		96%	96%	115%	119%	N/A
OPPs							
chlorpyrifos	0.1	<0.1	102%	102%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	97%	97%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
insurgiphosphoroununoite	0.1	\U.1	INT	141	~U.1	\U.1	ACCLET

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
· ·							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	115%	112%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
DTEV							
BTEX							
Benzene	0.5	<0.5	96%	112%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	96%	115%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	96%	115%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	93%	112%	<2	<2	ACCEPT
o-Xylene	1	<1	94%	113%	<1	<1	ACCEPT
Fluorobenzene	surr.		97%	112%	98%	116%	N/A
Metals							
Arsenic	2	<2	77%	78%	3.0	7.2	ACCEPT
Cadmium	0.3	<0.3	98%	100%	<0.3	<0.3	ACCEPT
Chromium	5	<5	100%	102%	7.1	8.3	ACCEPT
Copper	5	<5	97%	99%	<5	<5	ACCEPT
Lead	10	<10	108%	106%	<10	<10	ACCEPT
Mercury	0.2	<0.2	91%	90%	<0.2	<0.2	ACCEPT
Nickel	10	<10	89%	90%	<10	<10	ACCEPT
Zinc	5	<5	99%	106%	<5	<5	ACCEPT
Moisture	%						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion facto	.r.						

	Datch	Datch	Datch
			Batch
			Duplicate 2
PQL (mg/kg)	Value 1	Value 2	
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
0.3	<0.3	<0.3	ACCEPT
surr.	120%	121%	N/A
0.1	<0.1	<0.1	ACCEDT
			ACCEPT ACCEPT
			ACCEPT
			ACCEPT
		-	ACCEPT
			ACCEPT
	-		ACCEPT
			ACCEPT
0.2		<0.2	ACCEPT
0.1			ACCEPT
0.2	<0.2	<0.2	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
surr.	120%	123%	N/A
	1		1
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
0.1	<0.1	<0.1	ACCEPT
	0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.3 <0.3	Duplicate 2- Value 1 Duplicate 2- Value 2 PQL (mg/kg) Value 1 0.0.1 Value 2 0.1 Value 2 0.1 Value 2 0.3 C0.3 0.3 C0.3 <

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
7011				
TRH		.25		100507
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	98%	99%	N/A
Metals				
Arsenic	2	13	46	FAIL
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	12	22	ACCEPT
Lead	10	<10	<10	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	<5	<5	ACCEPT
Moisture	%			
рН				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

N/A - Not Applicable

NT - Not Tested

FAIL caused by inhomogenous matrix

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of composition which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessr	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court,

Environmental and OH&S Laboratory A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950

Unit 4/10-11 Millennium Cou Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8200-6

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Clifton Thompson

Sample Log In Details

Your reference:	8200-6
No. of Samples:	1
Date Received:	22.10.2014
Date completed instructions received:	22.10.2014
Date of analysis:	22.10-27.10.2014

Report Details

Report Date: Method number**: 27.10.2014 ESA-MP-01 ESA-P-ORG3 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *Texture Assessment *ESA-P-16

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8200-C10
Lab ID	PQL (mg/kg)	0000 11/1 010
		8200-WAC10
Comple Name		
Sample Name		
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
Benzo[a]anthracene	0.3	<0.3
Benzo[a]pyrene	0.3	<0.3
Benzo[b]fluoranthene		
	0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene		
Chrysene	0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	<0.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	124%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II	0.2	<0.2
endosulfan sulfate	0.1	<0.1
endrin	0.2	<0.2
endrin aldehyde	0.1	<0.1
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
TCMX	surr.	117%
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1
	5.1	5.1
		8200-C10
--------------------------------	-------------	-------------
Lab ID	PQL (mg/kg)	
		8200-WAC10
Sample Name		
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	112%
Metals		
Arsenic	2	<2
Cadmium	0.3	<0.3
Chromium	5	<5
Copper	5	66
Lead	10	25
Mercury	0.2	<0.2
Nickel	10	23
Zinc	5	73
Linc	5	15
Moisture	%	8%
рН		9.51
EC	[dS/m]	0.28
		0.20
Soil Texture Group		Sandy Loams
Approximate Clay		10-25
EC1:5 to ECe conversion factor		13.8

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	92%	89%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	90%	88%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	94%	88%	0.4	0.4	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	89%	88%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	94%	90%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	89%	83%	0.3	0.3	ACCEPT
p-Terphenyl-d14	surr.		93%	90%	115%	113%	N/A
OCPs							
aldrin	0.1	<0.1	103%	98%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	84%	91%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	100%	97%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
TCMX	surr.		93%	90%	108%	108%	N/A
OPPs							
chlorpyrifos	0.1	<0.1	99%	98%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	96%	94%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
,				İ			

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
Sumple Nume							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	95%	92%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	102%	101%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	99%	101%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<0.5	97%	99%	<0.5	<0.5	ACCEPT
m, p- Xylene(s)	2	<2	99%	99%	<2	<2	ACCEPT
o-Xylene	1	<1	96%	100%	<1	<1	ACCEPT
Fluorobenzene	surr.	<1	104%	100%	115%	109%	N/A
	5011.		10476	10176	11576	10578	19/6
Metals							
Arsenic	2	<2	86%	101%	<2	<2	ACCEPT
Cadmium	0.3	<0.3	108%	100%	<0.3	<0.3	ACCEPT
Chromium	5	<5	94%	105%	12	<5	ACCEPT
Copper	5	<5	96%	100%	87	57	ACCEPT
Lead	10	<10	102%	105%	120	96	ACCEPT
Mercury	0.2	<0.2	92%	90%	0.3	0.5	ACCEPT
Nickel	10	<10	100%	87%	12	<10	ACCEPT
Zinc	5	<5	103%	105%	410	370	ACCEPT
Moisture	%						
moisture							
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion factor	or						

Comments:

N/A - Not Applicable

NT - Not Tested Sandy Loams - sandy loam, fine sandy loam

p 4 of 7

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compose which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessr	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

Environmental and OH&S Laboratory A division of A. D. Envirotech Australia Pty Ltd

Analysis report: 8200-7

Ph: (02) 9648-6669

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. **Clifton Thompson**

Sample Log In Details

Your reference:	8200-7
No. of Samples:	2
Date Received:	24.10.2014
Date completed instructions received:	24.10.2014
Date of analysis:	24.10-29.10.2014

Report Details

Report Date: Method number**: 29.10.2014 ESA-MP-01 ESA-MP-02 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *Texture Assessment *ESA-P-16

Results Authorised By:

A.C.N. 093 452 950

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8200-C11	8200-C12
Lab ID	PQL (mg/kg)		
		8200-WAC11	8200-WAC12
Comula Nama			
Sample Name			
РАН			
Acenaphthene	0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3 <0.3	<0.3 <0.3
Benzo[k]fluoranthene Chrysene	0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	130%	137%
OCPs			
aldrin	0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1
4,4'-DDT dieldrin	0.1	<0.1 <0.1	<0.1 <0.1
endosulfan I	0.1	<0.1	<0.1
endosulfan II	0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1
methoxychlor TCMX	0.1	<0.1	<0.1
	surr.	127%	135%
OPPs			
chlorpyrifos	0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1
prophos tributy/phosphorotrithioito	0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1

		8200-C11	8200-C12
Lab ID	PQL (mg/kg)		
		8200-WAC11	8200-WAC12
Sample Name			
TRH			
>C6-C10	35	<35	<35
>C10-C16	50	<50	<50
>C16-C34	100	<100	<100
>C34-C40	100	<100	<100
BTEX			
Benzene	0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1
m, p- Xylene(s)	2	<2	<2
o-Xylene	1	<1	<1
Fluorobenzene	surr.	110%	96%
Metals			
Arsenic	2	18	9.2
Cadmium	0.3	<0.3	<0.3
Chromium	5	19	9.1
Copper	5	62	30
Lead	10	120	17
Mercury	0.2	<0.2	<0.2
Nickel	10	<10	<10
Zinc	5	410	30
Moisture	%	20%	23%
pH		6.49	4.85
EC	[dS/m]	0.20	0.03
Soil Texture Group		Light Clays	Medium & Heavy Clays
Approximate Clay		35-45	>45
EC1:5 to ECe conversion factor		8.6	7

		Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
Lab ID	PQL (mg/kg)		opine 1	opine 1	Value 1	Value 2	Duplicate 1
					Vulue 1	Vulue 2	
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	101%	100%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	102%	101%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	102% NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	104%	104%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	104% NT	104%	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	99%	98%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	106%	105%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	100%	98%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	<0.5	100%	98%	131%	116%	N/A
	5011.		10070	50%	15170	110/0	19/4
OCPs							
aldrin	0.1	<0.1	116%	115%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I endosulfan II	0.2	<0.2 <0.2	NT	NT NT	<0.2 <0.2	<0.2 <0.2	ACCEPT
endosulfan sulfate			NT NT	NT			ACCEPT
	0.1	<0.1			<0.1	<0.1	ACCEPT
endrin endrin aldebyde	0.2	<0.2 <0.1	102% NT	100% NT	<0.2 <0.1	<0.2 <0.1	ACCEPT
endrin aldehyde endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	117%	115%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
TCMX		<u>\U.1</u>	104%	104%	130%	121%	N/A
	5011.		104%	104%	130%	12170	N/A
OPPs chlorpyrifos	0.1	<0.1	110%	112%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	106%	104%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	106% NT	104% NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ιποατγιμποερποιοτητιποιτε	0.1	\U.1	11/1	11/1	\U.1	\U.1	ACCEPT

		Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1-	Batch Duplicate 1-	Batch Duplicate 1
Lab ID	PQL (mg/kg)				Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	101%	102%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
DTEX							
BTEX	0.5	<0.5	89%	95%	<0.5	<0.5	ACCEPT
Benzene Toluene	0.5	<0.5	89%	93%	<0.5	<0.5	ACCEPT
	0.5		90%	95%	<1	<1	ACCEPT
Ethylbenzene		<1	90% 88%	95%			
m, p- Xylene(s)	2	<2			<2	<2	ACCEPT
o-Xylene		<1	90% 92%	94% 95%	<1 93%	<1 96%	ACCEPT
Fluorobenzene	surr.		92%	95%	93%	90%	N/A
Metals							
Arsenic	2	<2	100%	109%	20	6.9	ACCEPT
Cadmium	0.3	<0.3	100%	100%	<0.3	<0.3	ACCEPT
Chromium	5	<5	97%	100%	<5	<5	ACCEPT
Copper	5	<5	90%	95%	20	14	ACCEPT
Lead	10	<10	98%	108%	13	14	ACCEPT
Mercury	0.2	<0.2	91%	98%	<0.2	<0.2	ACCEPT
Nickel	10	<10	90%	100%	<10	<10	ACCEPT
Zinc	5	<5	102%	108%	8.2	9.4	ACCEPT
Moisture	%						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion facto							

		Datab	Datab	Datah
		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
·				
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	135%	138%	N/A
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	132%	136%	N/A
OPPs chlorpyrifos	0.1	<0.1	<0.1	ACCEDT
	0.1	<0.1	<0.1 <0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	-	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT

		Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
Lab ID	PQL (mg/kg)	Value 1	Value 2	
Sample Name				
· ·				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	112%	99%	N/A
Metals				
Arsenic	2	<2	<2	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	14	10	ACCEPT
Lead	10	<10	<10	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	<5	<5	ACCEPT
Moisture	%			
рН				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

Comments:

N/A - Not Applicable

NT - Not Tested

Light Clays - sandy clay, silty clay, light clay, light medium clay

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated, samples' results are not corrected for standards recoveries.
- Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
- 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compound which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

A division of A. D. Envirotech Australia Pty Ltd

Environmental and OH&S Laboratory A division of A. D. Envirotech Australia Pty Ltd A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 8200-8

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Clifton Thompson

Sample Log In Details

Your reference:	8200-8
No. of Samples:	1
Date Received:	27.10.2014
Date completed instructions received:	27.10.2014
Date of analysis:	27.10-31.10.2014

Report Details

Report Date: Method number**: 31.10.2014 ESA-MP-01 ESA-P-ORG3 ESA-P-ORG3 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG11 ESA-P-ORG12 AS 1289.4.3.1 *Texture Assessment *ESA-P-16

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

		8200-C13
		0200 010
Lab ID	PQL (mg/kg)	
		8200-WAC13
Sample Name		
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
Benzo[a]anthracene	0.3	<0.3
Benzo[a]pyrene	0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3
Chrysene	0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	<0.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	107%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane) cis-chlordane	0.1	<0.1
	0.1	<0.1
trans-chlordane 4,4'-DDD	0.1	<0.1 <0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.1	<0.1
endosulfan II	0.2	<0.2
endosulfan sulfate	0.2	<0.2
endrin	0.2	<0.2
endrin aldehyde	0.2	<0.2
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
тсмх	surr.	104%
	+	
OPPs chlorpyrifos	0.1	<0.1
chlorpyrifos chlorpyrifos methyl	0.1	
	0.1	<0.1
diazinon fonchlorphos	0.1	<0.1
fenchlorphos mothyl parathion		<0.1 <0.1
methyl parathion	0.1	
	0.1	<0.1
prophos tributylphosphorotrithioite	0.1	<0.1

		8200-C13
Lab ID	PQL (mg/kg)	
		8200-WAC13
Sample Name		
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	121%
	_	
Metals		
Arsenic	2	11
Cadmium	0.3	<0.3
Chromium	5	5.2
Copper	5	23
Lead	10	40
Mercury	0.2	<0.2
Nickel	10	<10
Zinc	5	34
Moisture	%	23%
рН		6.12
EC	[dS/m]	0.06
	[00/11]	0.00
Soil Texture Group		Medium & Heavy Clays
Approximate Clay		>45
EC1:5 to ECe conversion factor		7

		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Lab ID	PQL (mg/kg)		_				
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	110%	97%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	109%	98%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	106%	97%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	106%	97%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	109%	98%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	99%	90%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		106%	95%	107%	105%	N/A
000-							
OCPs	0.1	-0.1	1170/	1050/	-0.1	-0.1	ACCEPT
aldrin a-BHC	0.1	<0.1 <0.1	117% NT	105% NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
а-внс b-внс	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	110%	99%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	114%	101%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		105%	94%	104%	103%	N/A
OPPs							
chlorpyrifos	0.1	<0.1	128%	110%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	109%	99%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
,, ,						-	

		Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Lab ID	PQL (mg/kg)						
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	115%	109%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
DTEV							
BTEX Benzene	0.5	<0.5	99%	121%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	105%	121%	<0.5	<0.5	ACCEPT
			105%	131%	<0.5		
Ethylbenzene	1	<1				<1	ACCEPT
m, p- Xylene(s)	2	<2	109%	138%	<2 <1	<2 <1	ACCEPT
o-Xylene		<1	108%	136% 125%	<1 121%	146%	ACCEPT N/A
Fluorobenzene	surr.		103%	125%	121%	140%	N/A
Metals							
Arsenic	2	<2	101%	104%	11	30	FAIL
Cadmium	0.3	<0.3	93%	105%	<0.3	<0.3	ACCEPT
Chromium	5	<5	82%	108%	5.2	6.5	ACCEPT
Copper	5	<5	87%	101%	23	35	ACCEPT
Lead	10	<10	90%	109%	40	52	ACCEPT
Mercury	0.2	<0.2	95%	94%	<0.2	0.2	ACCEPT
Nickel	10	<10	86%	106%	<10	<10	ACCEPT
Zinc	5	<5	90%	104%	34	45	ACCEPT
Moisture	%						
рН							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion facto	or						

Comments:

N/A - Not Applicable NT - Not Tested

FAIL caused by inhomogenous matrix

General Comments and Glossary

Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,
- samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of composition which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

**Methods Number Description:

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG11	Extraction of OCP OPP and PAH from soil matrices
ESA-P-ORG12	Analysis of OCP OPP and PAHs by GC-MS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ECA D 16	Procedure for measurement of Electrical Conductivity EC

*ESA-P-16 Procedure for measurement of Electrical Conductivity EC

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8200 ASB 1

Date Received:	01.10.2014
Date Analysed:	07.10.2014
Report Date:	08.10.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
8200-Asb1	Soil	59 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8200-Asb2	Soil	36 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8200-Asb3	Soil	47 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8200-Asb4	Soil	56 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

All samples are analysed as received.

Samplig performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared specroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8200 ASB 2

Date Received:	08.10.2014
Date Analysed:	14.10.2014
Report Date:	15.10.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
8200-Asb5	Soil	51 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8200 ASB 3

Date Received:	10.10.2014
Date Analysed:	14.10.2014
Report Date:	15.10.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtalevice.

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
8200-Asb6	Soil	47 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8200 ASB 4

Date Received:	20.10.2014
Date Analysed:	22.10.2014
Report Date:	24.10.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtalevice.

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

-	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
8200-Asb7 Sc	Soil	64 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8200-Asb8	Soil	71 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8200 ASB 5

Date Received:	21.10.2014
Date Analysed:	23.10.2014
Report Date:	24.10.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtalevice.

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
8200-Asb9	Soil	56 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8200 ASB 6

Date Received:	22.10.2014
Date Analysed:	24.10.2014
Report Date:	27.10.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtalevice.

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

-	•	Sample Dimensions (cm) unless stated	Result	Comments
Sample No.	• •	otherwise		
8200-Asb10	Soil	122 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8200 ASB 7

Date Received:	24.10.2014
Date Analysed:	27.10.2014
Report Date:	28.10.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
8200-Asb11	Soil	57 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
8200-Asb12	Soil	85 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 8200 ASB 8

Date Received:	27.10.2014
Date Analysed:	29.10.2014
Report Date:	29.10.2014
Client:	Gregory Hills Development Company Pty Ltd
Job Location:	Gregory Hills NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier

Results Authorised By:

Rojtakoice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated		
		otherwise		
8200-Asb13	Soil	38 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Attention:

Clifton Thompson

Report	
Project name	
Received Date	

483479-S 9923 Dec 15, 2015

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			9923-SAL09 Soil S15-De15631 Dec 09, 2015	9923-SAL10 Soil S15-De15632 Dec 09, 2015	9923-SAL11 Soil S15-De15633 Dec 11, 2015	9923-SAL12 Soil S15-De15634 Dec 11, 2015
Test/Reference	LOR	Unit				
Chloride	5	mg/kg	60	11	140	180
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Sulphate (as SO4)	30	mg/kg	49	150	350	73
% Moisture	0.1	%	10	12	16	18

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			9923-SAL13 Soil S15-De15635 Dec 11, 2015
Test/Reference	LOR	Unit	
Chloride	5	mg/kg	110
Phenolics (total)	0.1	mg/kg	< 0.1
Sulphate (as SO4)	30	mg/kg	220
% Moisture	0.1	%	8.9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Dec 16, 2015	28 Day
- Method: MGT 1100A			
Phenolics (total)	Melbourne	Dec 17, 2015	14 Day
- Method: APHA 5530B & D Phenols			
Sulphate (as SO4)	Melbourne	Dec 16, 2015	28 Day
- Method: APHA 4500-SO4 Sulfate by FIA			
% Moisture	Melbourne	Dec 15, 2015	14 Day
Mothed: LTM-GEN-7080 Mojeture			

- Method: LTM-GEN-7080 Moisture

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address: Project Name	Unit 4/ Silvery NSW 2	Unit 4/ 10-11 Millenium Court Silverwater NSW 2128				R	epor epor hone ax:	t #:	483479 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Dec 15, 2015 1:02 PM Dec 22, 2015 5 Day Clifton Thompson
Project Name	9923									Eurofins mg	t Client Manager: Mary Makarios
Sample Detail					Chloride	Phenolics (total)	Sulphate (as SO4)	Moisture Set			
Laboratory where analysis is conducted											
Melbourne Laboratory - NATA Site # 1254 & 14271				X	Х	Х	Х				
Sydney Labora											
Brisbane Labo		Site # 20794									
External Laboratory											
Sample ID	Sample Date	e Sampling Time	Matrix	LAB ID							
9923-SAL09	Dec 09, 2015		Soil	S15-De15631	Х	Х	Х	Х			
9923-SAL10	Dec 09, 2015		Soil	S15-De15632	Х	Х	Х	Х			
9923-SAL11	Dec 11, 2015		Soil	S15-De15633	Х	Х	Х	Х			
9923-SAL12	Dec 11, 2015		Soil	S15-De15634	Х	Х	Х	Х			
9923-SAL13	Dec 11, 2015		Soil	S15-De15635	Х	Х	Х	Х			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Те	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank							-		
Chloride			mg/kg	< 5			5	Pass	
Phenolics (total)			mg/kg	< 0.1			0.1	Pass	
Sulphate (as SO4)			mg/kg	< 30			30	Pass	
LCS - % Recovery								-	
Chloride			%	109			70-130	Pass	
Phenolics (total)			%	105			70-130	Pass	
Sulphate (as SO4)			%	112			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S15-De15632	CP	%	112			70-130	Pass	
Sulphate (as SO4)	S15-De15632	CP	%	108			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phenolics (total)	S15-De15635	CP	%	98			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S15-De15631	CP	mg/kg	60	56	6.2	30%	Pass	
Sulphate (as SO4)	S15-De15631	CP	mg/kg	49	47	6.1	30%	Pass	
% Moisture	S15-De15628	NCP	%	16	16	4.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Phenolics (total)	S15-De15635	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Emily Rosenberg Huong Le Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost, observed in the liable for client or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost of the reported or experiment of the reported or experved in the liable for experiment of the reported or experiment of the report of the report of the reported or experiment of

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Attention:

Clifton Thompson

Report Project name Received Date **482679-S** 9826 Dec 08, 2015

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			9923.SAL2 Soil S15-De08726 Dec 02, 2015	9923.SAL3 Soil S15-De08727 Dec 03, 2015	9923.SAL4 Soil S15-De08728 Dec 03, 2015	9923.SAL5 Soil S15-De08729 Dec 03, 2015
Test/Reference	LOR	Unit				
Chloride	5	mg/kg	240	110	31	77
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Sulphate (as SO4)	30	mg/kg	260	110	120	280
% Moisture	0.1	%	11	11	7.4	11

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			9923.SAL6 Soil S15-De08730 Dec 03, 2015	9923.SAL7 Soil S15-De08731 Dec 03, 2015	9923.SAL8 Soil S15-De08732 Dec 03, 2015
Test/Reference	LOR	Unit			
Chloride	5	mg/kg	220	68	14
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Sulphate (as SO4)	30	mg/kg	300	140	79
% Moisture	0.1	%	10	11	9.5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Dec 10, 2015	28 Day
- Method: MGT 1100A			
Phenolics (total)	Melbourne	Dec 10, 2015	14 Day
- Method: APHA 5530B & D Phenols			
Sulphate (as SO4)	Melbourne	Dec 10, 2015	28 Day
- Method: APHA 4500-SO4 Sulfate by FIA			
% Moisture	Melbourne	Dec 09, 2015	14 Day
Mothed: LTM CEN 2090 Mointure			

- Method: LTM-GEN-7080 Moisture

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nar Address: Project Name	Silverwater NSW 2128					Order No.: Report #: Phone: Fax:				482679 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name: Eurofins mgt	Dec 8, 2015 3:50 PM Dec 15, 2015 5 Day Clifton Thompson Client Manager: Mary Makarios
		Sample Detail			CANCELLED	Chloride	Phenolics (total)	Sulphate (as SO4)	Moisture Set			
Laboratory whe												
		Site # 1254 & 1	4271			Х	Х	Х	Х			
Sydney Labora					X					-		
Brisbane Labo		5ite # 20794			<u> </u>							
External Labora	atory Sample Date	Sampling Time	Matrix	LAB ID								
9923.SAL1	Dec 01, 2015		Soil	S15-De08725	Х							
9923.SAL2	Dec 02, 2015		Soil	S15-De08726		Х	Х	Х	Х			
9923.SAL3	Dec 03, 2015		Soil	S15-De08727		Х	Х	Х	Х			
9923.SAL4	Dec 03, 2015		Soil	S15-De08728		Х	Х	Х	Х			
9923.SAL5	Dec 03, 2015		Soil	S15-De08729		Х	Х	Х	Х			
9923.SAL6	Dec 03, 2015		Soil	S15-De08730		Х	Х	Х	Х			
9923.SAL7	Dec 03, 2015		Soil	S15-De08731		Х	Х	Х	Х			
9923.SAL8	Dec 03, 2015		Soil	S15-De08732		Х	Х	Х	Х			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient
SRA CP NCP	Sample Receipt Advice Client Parent - QC was performed on samples pertaining to this report Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

т	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank									
Chloride			mg/kg	< 5			5	Pass	
Phenolics (total)			mg/kg	< 0.1			0.1	Pass	
Sulphate (as SO4)			mg/kg	< 30			30	Pass	
LCS - % Recovery									
Chloride			%	100			70-130	Pass	
Phenolics (total)			%	102			70-130	Pass	
Sulphate (as SO4)			%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S15-De08727	CP	%	95			70-130	Pass	
Sulphate (as SO4)	S15-De08727	CP	%	104			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phenolics (total)	S15-De08732	CP	%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S15-De08726	CP	mg/kg	240	230	5.6	30%	Pass	
Sulphate (as SO4)	S15-De08726	CP	mg/kg	260	260	2.0	30%	Pass	
Duplicate				-					
				Result 1	Result 2	RPD			
% Moisture	S15-De08729	CP	%	11	10	1.0	30%	Pass	
Duplicate				,					
				Result 1	Result 2	RPD			
Phenolics (total)	S15-De08732	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Emily Rosenberg Huong Le Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost, observed in the liable for client or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost of the reported or experiment of the reported or experved in the liable for experiment of the reported or experiment of the report of the report of the reported or experiment of

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Attention:

Clifton Thompson

Report Project name Received Date **478550-S** 9732 Nov 06, 2015

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix			9732 SAL 1 Soil	9732 SAL 2 Soil	9732 SAL 3 Soil
Eurofins mgt Sample No.			S15-No05077	S15-No05078	S15-No05079
Date Sampled			Oct 12, 2015	Oct 12, 2015	Oct 12, 2015
Test/Reference	LOR	Unit			
Chloride	5	mg/kg	70	< 5	45
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Sulphate (as SO4)	30	mg/kg	310	< 30	170
% Moisture	0.1	%	12	7.5	12

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Nov 10, 2015	28 Day
- Method: MGT 1100A			
Phenolics (total)	Melbourne	Nov 11, 2015	14 Day
- Method: APHA 5530B & D Phenols			
Sulphate (as SO4)	Melbourne	Nov 10, 2015	28 Day
- Method: APHA 4500-SO4 Sulfate by FIA			
% Moisture	Melbourne	Nov 07, 2015	14 Day
Mothed: LTM-GEN-7080 Mojeture			

- Method: LTM-GEN-7080 Moisture

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address:						Order No.: Report #: Phone: Fax:			478550 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Nov 6, 2015 5:38 PM Nov 16, 2015 5 Day Clifton Thompson
Project Name	97 32										Oliver Manager Manager Malagian
						-	-	1		Eurofins mgt	Client Manager: Mary Makarios
		Sample Detail			Chloride	Phenolics (total)	Sulphate (as SO4)	Moisture Set			
	ere analysis is c										
	oratory - NATA		271		X	Х	X	Х			
	atory - NATA Site										
	ratory - NATA S	ite # 20794									
External Labor		1									
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
9732 SAL 1	Oct 12, 2015		Soil	S15-No05077	Х	Х	Х	Х			
9732 SAL 2	Oct 12, 2015		Soil	S15-No05078	Х	Х	Х	Х			
9732 SAL 3	Oct 12, 2015		Soil	S15-No05079	Х	Х	Х	Х			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Тез	st		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride			mg/kg	< 5			5	Pass	
Phenolics (total)			mg/kg	< 0.1			0.1	Pass	
Sulphate (as SO4)			mg/kg	< 30			30	Pass	
LCS - % Recovery				-					
Chloride			%	102			70-130	Pass	
Phenolics (total)			%	97			70-130	Pass	
Sulphate (as SO4)			%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S15-No05078	CP	%	101			70-130	Pass	
Sulphate (as SO4)	S15-No05078	CP	%	105			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phenolics (total)	S15-No05079	CP	%	109			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
	1			Result 1	Result 2	RPD			
Chloride	S15-No05077	CP	mg/kg	70	61	13	30%	Pass	
Sulphate (as SO4)	S15-No05077	CP	mg/kg	310	360	14	30%	Pass	
Duplicate							-	1	
				Result 1	Result 2	RPD			
% Moisture	S15-No05078	CP	%	7.5	6.6	12	30%	Pass	
Duplicate				1			-	1	
		,		Result 1	Result 2	RPD			
Phenolics (total)	S15-No05079	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Emily Rosenberg Huong Le Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost, observed in the liable for client or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost of the reported or experiment of the reported or experved in the liable for experiment of the reported or experiment of the report of the report of the reported or experiment of

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	
Report	
Project name	
Received Date	

473254-S 9639 Sep 22, 2015

K.Finnerty

Client Sample ID Sample Matrix Eurofins mgt Sample No.			9639-SAL1 Soil S15-Se20285	9639-SAL2 Soil S15-Se20286
Date Sampled			Sep 17, 2015	Sep 17, 2015
Test/Reference	LOR	Unit		
Chloride	10	mg/kg	16	35
Sulphate (as SO4)	10	mg/kg	240	240
% Moisture	0.1	%	16	13

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	Sep 25, 2015	28 Day
- Method: E033 /E045 /E047 Chloride			
Sulphate (as SO4)	Sydney	Sep 25, 2015	28 Day
- Method: E045 Sulphate			
% Moisture	Sydney	Sep 22, 2015	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address:						R P	Order Report Phone Fax:	473254 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Sep 22, 2015 10:35 AM Sep 29, 2015 5 Day K.Finnerty
Project Nam	ne: 9639								Eurofins mg	t Client Manager: Mary Mak
		Sample Detail			Chloride	Sulphate (as SO4)	Moisture Set			
	here analysis is									
		A Site # 1254 & 14	4271							
	ratory - NATA S				X	X	Х			
	oratory - NATA	Site # 20794								
External Labo										
Sample ID	Sample Dat	e Sampling Time	Matrix	LAB ID						
9639-SAL1	Sep 17, 2015		Soil	S15-Se20285	Х	Х	Х			

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Те	st		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride			mg/kg	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 10			10	Pass	
LCS - % Recovery								-	
Chloride			%	102			70-130	Pass	
Sulphate (as SO4)		%	102			70-130	Pass		
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S15-Se20297	NCP	%	109			70-130	Pass	
Sulphate (as SO4)	S15-Se20297	NCP	%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S15-Se20285	CP	mg/kg	16	16	1.0	30%	Pass	
Sulphate (as SO4)	S15-Se20285	CP	mg/kg	240	240	7.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S15-Se20286	CP	%	13	12	5.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Bob Symons Ivan Taylor Analytical Services Manager Senior Analyst-Inorganic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost, observed in the liable for client or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost of the reported or experiment of the reported or experved in the liable for experiment of the reported or experiment of the report of the report of the reported or experiment of

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Attention:

Clifton Thompson

Report Project name Received Date **483479-S** 9923 Dec 15, 2015

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			9923-SAL09 Soil S15-De15631 Dec 09, 2015	9923-SAL10 Soil S15-De15632 Dec 09, 2015	9923-SAL11 Soil S15-De15633 Dec 11, 2015	9923-SAL12 Soil S15-De15634 Dec 11, 2015
Test/Reference	LOR	Unit				
Chloride	5	mg/kg	60	11	140	180
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Sulphate (as SO4)	30	mg/kg	49	150	350	73
% Moisture	0.1	%	10	12	16	18

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			9923-SAL13 Soil S15-De15635 Dec 11, 2015
Test/Reference	LOR	Unit	
Chloride	5	mg/kg	110
Phenolics (total)	0.1	mg/kg	< 0.1
Sulphate (as SO4)	30	mg/kg	220
% Moisture	0.1	%	8.9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Dec 16, 2015	28 Day
- Method: MGT 1100A			
Phenolics (total)	Melbourne	Dec 17, 2015	14 Day
- Method: APHA 5530B & D Phenols			
Sulphate (as SO4)	Melbourne	Dec 16, 2015	28 Day
- Method: APHA 4500-SO4 Sulfate by FIA			
% Moisture	Melbourne	Dec 15, 2015	14 Day
Mothod: LTM_CEN_7080 Moisturo			

- Method: LTM-GEN-7080 Moisture

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: AD Envirotech Aust Pty Ltd Address: Unit 4/ 10-11 Millenium Court Silverwater NSW 2128						Order No.: Report #: Phone: Fax:		t #:	483479 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name:	Dec 15, 2015 1:02 PM Dec 22, 2015 5 Day Clifton Thompson
Project Name: 9923										Eurofins mg	t Client Manager: Mary Makarios
Sample Detail						Phenolics (total)	Sulphate (as SO4)	Moisture Set			
Laboratory wh	Laboratory where analysis is conducted										
Melbourne Laboratory - NATA Site # 1254 & 14271					Х	Х	Х	Х			
Sydney Labora	atory - NATA Site	# 18217									
Brisbane Labo	Brisbane Laboratory - NATA Site # 20794										
External Labor	ratory		-								
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
9923-SAL09	Dec 09, 2015		Soil	S15-De15631	Х	Х	Х	Х			
9923-SAL10	Dec 09, 2015		Soil	S15-De15632	Х	Х	Х	Х			
9923-SAL11	Dec 11, 2015		Soil	S15-De15633	Х	Х	Х	Х			
9923-SAL12	Dec 11, 2015		Soil	S15-De15634	Х	Х	Х	Х			
9923-SAL13	Dec 11, 2015		Soil	S15-De15635	Х	Х	Х	Х			

mgt

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

mgt

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	Method Blank							-	
Chloride			mg/kg	< 5			5	Pass	
Phenolics (total)			mg/kg	< 0.1			0.1	Pass	
Sulphate (as SO4)			mg/kg	< 30			30	Pass	
LCS - % Recovery								-	
Chloride			%	109			70-130	Pass	
Phenolics (total)			%	105			70-130	Pass	
Sulphate (as SO4)			%	112			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S15-De15632	CP	%	112			70-130	Pass	
Sulphate (as SO4)	S15-De15632	CP	%	108			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phenolics (total)	S15-De15635	CP	%	98			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S15-De15631	CP	mg/kg	60	56	6.2	30%	Pass	
Sulphate (as SO4)	S15-De15631	CP	mg/kg	49	47	6.1	30%	Pass	
% Moisture	S15-De15628	NCP	%	16	16	4.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Phenolics (total)	S15-De15635	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

mgt

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Emily Rosenberg Huong Le Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost, observed in the liable for client or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost of the reported or experiment of the reported or experved in the liable for client or the reported or experiment of th

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9923-1

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Clifton Thompson

Sample Log In Details

9923-1
1
01.12.2015
01.12.2015
01-09.12.2015
09.12.2015
ESA-MP-01
ESA-MP-02
ESA-P-ORG03
ESA-P-ORG07
ESA-P-ORG08
ESA-P-ORG09
ESA-P-ORG14
ESA-P-ORG15
ESA-P-12
AS 1289.4.3.1
*ESA-P-16
*Texture Assessment

Results Authorised By:

Ro jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9923-C1
Sample Name		9923-WAC1
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
Benzo[a]anthracene	0.3	<0.3
Benzo[a]pyrene Benzo[b]fluoranthene	0.3	<0.3 <0.3
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3
Chrysene	0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	<0.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	102%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II endosulfan sulfate	0.2	<0.2 <0.1
endrin	0.1	<0.1
endrin aldehyde	0.2	<0.2
endrin ketone	0.1	<0.1
heptachlor	0.1	<0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
ТСМХ	surr.	104%
OPPs chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1
PCB Total PCB		<0.6
2-fluorobiphenyl	surr.	89%
		0070

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 6

Lab ID	PQL (mg/kg)	9923-C1
Sample Name		9923-WAC1
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	104%
Metals		
Arsenic	2	8.2
Cadmium	0.3	<0.3
Chromium	5	<5
Copper	5	17
Lead	10	13
Mercury	0.2	<0.2
Nickel	10	<10
Zinc	5	22
Moisture	%	12%
pH (average for 3 measurements)		5.8
EC	[dS/m]	0.08
Soil Texture Group		Clay Loams
Approximate Clay		30-35
EC1:5 to ECe conversion factor		8.6

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
РАН							
Acenaphthene	0.3		88%	91%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3		90%	91%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene Benzo[k]fluoranthene	0.3		NT NT	NT NT	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
	0.3		NT	NT	<0.3	<0.3	ACCEPT
Chrysene Dibenzo[a,h]anthracene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	88%	95%	<0.3	0.5	ACCEPT
Fluorene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3		86%	90%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3		90%	93%	<0.3	<0.3	ACCEPT
Pyrene	0.3		85%	93%	<0.3	0.4	ACCEPT
p-Terphenyl-d14	surr.		82%	87%	96%	92%	
OCPs							
aldrin	0.1	<0.1	93%	95%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1		NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1		NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1		NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1		NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1		NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	64%	84%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1		NT	NT	<0.1	<0.1	ACCEPT
endrin ketone heptachlor	0.1		NT NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
heptachlor epoxide	0.1		NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1		94%	96%	<0.1	<0.1	ACCEPT
methoxychlor	0.1		NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.	<0.1	94%	96%	98%	96%	ACCEPT
	5011.			5078	5670	5070	
OPPs							
chlorpyrifos	0.1	<0.1	80%	85%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	84%	86%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1		NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1		NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
PCB			• · 	<u> </u>			
Total PCB		<0.6	NT 820/	NT 75%	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.		83%	75%	84%	83%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50		101%	95%	<50	<50	ACCEPT
>C16-C34	100		NT	NT	<100	<100	ACCEPT
>C34-C40	100		NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	114%	110%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	98%	93%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	104%	101%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	111%	110%	<2	<2	ACCEPT
o-Xylene	1	<1	112%	108%	<1	<1	ACCEPT
Fluorobenzene	surr.		112%	109%	103%	104%	
Metals							
Arsenic	2	<2	94%	97%	<2	<2	ACCEPT
Cadmium	0.3	<0.3	103%	100%	<0.3	<0.3	ACCEPT
Chromium	5	<5	108%	94%	<5	<5	ACCEPT
Copper	5	<5	102%	101%	<5	<5	ACCEPT
Lead	10	<10	101%	93%	11	14	ACCEPT
Mercury	0.2	<0.2	109%	111%	<0.2	<0.2	ACCEPT
Nickel	10	<10	99%	94%	<10	<10	ACCEPT
Zinc	5	<5	97%	91%	14	18	ACCEPT
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion factor							

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 6

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
DALL				
PAH	0.2	-0.2		ACCEPT
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3 <0.3	<0.3 <0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	<0.3	ACCEPT ACCEPT
Benzo[a]pyrene Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
	0.3	<0.3	<0.3	ACCEPT
Chrysene Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	102%	102%	ACCEPT
	3011.	10270	10270	
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane trans-chlordane	0.1	<0.1 <0.1	<0.1 <0.1	ACCEPT
		<0.1	<0.1	ACCEPT
4,4'-DDD 4,4'-DDE	0.1	<0.1	<0.1	ACCEPT ACCEPT
4,4 -DDE 4,4'-DDT	0.1		<0.1	
dieldrin	0.1	<0.1 <0.1	<0.1	ACCEPT ACCEPT
endosulfan I	0.1	<0.1	<0.1	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.2	<0.2	<0.2	ACCEPT
endrin	0.1	<0.1	<0.1	ACCEPT
endrin aldehyde	0.2	<0.2	<0.2	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
TCMX	surr.	104%	99%	
		104/0		
OPPs		-0.4	-0.1	ACCEPT
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon fara aldararda a	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos tributy/phosphorotrithioito	0.1	<0.1	<0.1	ACCEPT
triputulphocphorotrithioito	<u>∩ 1</u>	-0.1	1	

tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
РСВ				
Total PCB		<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	89%	85%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 5 of 6

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	104%	104%	
Metals				
Arsenic	2	8.2	8.6	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	17	15	ACCEPT
Lead	10	13	13	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	22	16	ACCEPT
Moisture	%			
pH (average for 3 measurements)				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

Comment:

Clay Loams - fine sandy clay loam, clay loam, silty clay loam

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 6 of 6

General Comments and Glossary

Tests not covered by NATA are denoted with *.	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than **RPD**: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50%

Results >20 times the PQL : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9923-2

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Clifton Thompson

Sample Log In Details

Your reference:	9923-2
No. of Samples:	5
Date Received:	04.12.2015
Date completed instructions received:	04.12.2015
Date of analysis:	04-11.12.2015
Report Details	
Report Date:	11.12.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12
	AS 1289.4.3.1
	*ESA-P-16
	*Texture Assessment

Results Authorised By:

Ro jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9923-C2	9923-C3	9923-C4	9923-C5	9923-C6
Sample Name		9923-WAC2	9923-WAC3	9923-WAC4	9923-WAC5	9923-WAC6
РАН						
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3 <0.3	<0.3 <0.3	<0.3 <0.3	<0.3	<0.3 <0.3
Chrysene Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3 <0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3	< 0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	96%	100%	101%	105%	106%
OCPs						
aldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
b-BHC d-BHC	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor TCMX	0.1	<0.1 104%	<0.1 106%	<0.1 106%	<0.1 105%	<0.1 104%
	surr.	104%	100%	100%	105%	104%
OPPs .						
chlorpyrifos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl diazinon	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
diazinon fenchlorphos	0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PCB		-0.0	-0.0	-0.0	-0.0	-0.0
Total PCB	C1.157	<0.6	<0.6	<0.6	<0.6	<0.6
2-fluorobiphenyl	surr.	88%	92%	88%	91%	89%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 4

Lab ID	PQL (mg/kg)	9923-C2	9923-C3	9923-C4	9923-C5	9923-C6
Sample Name		9923-WAC2	9923-WAC3	9923-WAC4	9923-WAC5	9923-WAC6
TRH						
>C6-C10	35		<35	<35	<35	<35
>C10-C16	50		<50	<50	<50	<50
>C16-C34	100		<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100	<100
BTEX						
Benzene	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1	<1	<1	<1
m, p- Xylene(s)	2	<2	<2	<2	<2	<2
o-Xylene	1	<1	<1	<1	<1	<1
Fluorobenzene	surr.	108%	106%	109%	108%	106%
Metals						
Arsenic	2	5.8	5.1	3.9	8.2	5.4
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	11	24	<5	<5	<5
Copper	5	21	24	16	21	18
Lead	10	10	28	20	24	26
Mercury	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	13	30	<10	<10	<10
Zinc	5	51	45	23	46	99
Moisture	%	10%	14%	8%	11%	11%
pH (average for 3 measurements)		6.5	8.6	8.5	6.7	6.6
EC	[dS/m]	0.23	0.17	0.09	0.15	0.18
Soil Texture Group		Light Clays	Light Clays	Light Clays	Clay Loams	Light Clays
Approximate Clay		35-45	35-45	35-45	30-35	35-45
EC1:5 to ECe conversion factor		8.6	8.6	8.6	8.6	8.6

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 4

Lab ID	PQL (mg/kg)	Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	93%	95%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	95%	95%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	< 0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3 <0.3	NT	NT	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
Benzo[k]fluoranthene Chrysene	0.3	<0.3	NT NT	NT NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	91%	95%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	91%	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	92%	95%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	94%	97%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	85%	88%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		90%	93%	100%	98%	
OCPs							
aldrin	0.1	<0.1	98%	100%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	69%	75%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT NT	NT	<0.1	<0.1	ACCEPT
heptachlor heptachlor epoxide	0.1	<0.1 <0.1	NT	NT NT	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
hexachlorobenzene	0.1	<0.1	99%	101%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	99% NT	101% NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.	NU.1	99%	101%	106%	99%	
			5570	101/0	10070	5570	
OPPs			1				
chlorpyrifos	0.1	<0.1	85%	87%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	90%	92%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
РСВ							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	<u>\</u> 0.0	87%	77%	92%	87%	
			5770	,,,,,	52/0	0770	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 4

Lab ID	PQL (mg/kg)	Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Sample Name							
TRH	25	.25	NIT	NIT	.25	.25	A.C.C.F.D.T.
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	105%	98%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX	+ +						
Benzene	0.5	<0.5	110%	116%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	100%	104%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	106%	112%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	118%	125%	<2	<2	ACCEPT
o-Xylene	1	<1	116%	122%	<1	<1	ACCEPT
Fluorobenzene	surr.		111%	112%	106%	108%	
Metals	+ +						
Arsenic	2	<2	88%	90%	5.1	8.3	ACCEPT
Cadmium	0.3	<0.3	108%	105%	<0.3	<0.3	ACCEPT
Chromium	5	<5	104%	99%	24	23	ACCEPT
Copper	5	<5	101%	101%	24	23	ACCEPT
Lead	10	<10	100%	108%	28	28	ACCEPT
Mercury	0.2	<0.2	102%	101%	<0.2	<0.2	ACCEPT
Nickel	10	<10	101%	106%	30	21	ACCEPT
Zinc	5	<5	102%	107%	45	42	ACCEPT
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						
Soil Texture Group	+ +						
Approximate Clay							
EC1:5 to ECe conversion factor							

Comments:

Clay Loams - fine sandy clay loam, clay loam, silty clay loam Light Clays - sandy clay, silty clay, light clay, light medium clay

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 4

General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than **RPD**: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50%

Results >20 times the PQL : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9923-3

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Clifton Thompson

Sample Log In Details

Your reference:	9923-3
No. of Samples:	4
Date Received:	09.12.2015
Date completed instructions received:	09.12.2015
Date of analysis:	09-14.12.2015
Report Details	
Report Date:	14.12.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12
	AS 1289.4.3.1
	*ESA-P-16
	*Texture Assessment

Results Authorised By:

Ro jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9923-C7	9923-C8	9923-C9	9923-C10
Sample Name		9923-WAC7	9923-WAC8	9923-WAC9	9923-WAC10
РАН					
Acenaphthene	0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	94%	108%	106%	108%
OCPs					
aldrin	0.1	<0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1	<0.1	<0.1
ТСМХ	surr.	121%	123%	109%	113%
OPPs chlorpyrifos	0.1	-0.1	-0.1	-0.1	<0.1
chlorpyrifos	0.1	<0.1	<0.1	<0.1	
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1	<0.1
prophos tributy/phosphorotrithioito	0.1	<0.1	<0.1	<0.1	<0.1
		//1/1	. /1.1	 /111 	. /// 1

tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1	<0.1
РСВ					
Total PCB		<0.6	<0.6	<0.6	<0.6
2-fluorobiphenyl	surr.	93%	94%	89%	94%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 6

Lab ID	PQL (mg/kg)	9923-C7	9923-C8	9923-C9	9923-C10
Concert Marcol		0000 11/1 07	00000 10/4 00	00000 10/4 00	00000 11/1 010
Sample Name		9923-WAC7	9923-WAC8	9923-WAC9	9923-WAC10
TRH					
>C6-C10	35	<35	<35	<35	<35
>C10-C16	50	<50	<50	<50	<50
>C16-C34	100	<100	<100	<100	<100
>C34-C40	100	<100	<100	<100	<100
BTEX					
Benzene	0.5	<0.5	<0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1	<1	<1
m, p- Xylene(s)	2	<2	<2	<2	<2
o-Xylene	1	<1	<1	<1	<1
Fluorobenzene	surr.	112%	114%	122%	118%
Metals					
Arsenic	2	11	16	6.1	11
Cadmium	0.3	<0.3	<0.3	<0.3	<0.3
Chromium	5	10	6.7	16	12
Copper	5	17	35	11	29
Lead	10	27	77	19	35
Mercury	0.2	<0.2	<0.2	<0.2	<0.2
Nickel	10	<10	10	<10	<10
Zinc	5	33	240	26	34
Moisture	%	12%	11%	15%	14%
pH (average for 3 measurements)		6.9	6.8	6.4	8.7
EC	[dS/m]	0.08	0.06	0.05	0.10
Soil Texture Group		Clay Loams	Clay Loams	Clay Loams	Clay Loams
Approximate Clay		30-35	30-35	30-35	30-35
EC1:5 to ECe conversion factor		8.6	8.6	8.6	8.6

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
PAH		(0.2	100%	1010/	-0.2	-0.2	ACCEPT
Acenaphthene	0.3			101%	<0.3	< 0.3	ACCEPT
Acenaphthylene Anthracene	0.3		NT 105%	NT 102%	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
Benzo[a]anthracene	0.3		105% NT	102% NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3		101%	103%	<0.3	<0.3	ACCEPT
Fluorene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3		93%	96%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	105%	103%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	96%	101%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		100%	105%	110%	108%	
OCPs							
aldrin	0.1	<0.1	113%	113%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	_	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1		NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1		NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1		NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1		NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1		NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1		NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1		NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II endosulfan sulfate	0.2	<0.2 <0.1	NT NT	NT NT	<0.2 <0.1	<0.2	ACCEPT
						<0.1	ACCEPT
endrin endrin aldehyde	0.2	<0.2 <0.1	73% NT	79% NT	<0.2 <0.1	<0.2 <0.1	ACCEPT ACCEPT
endrin ketone	0.1					<0.1	ACCEPT
heptachlor	0.1	<0.1 <0.1	NT NT	NT NT	<0.1 <0.1	<0.1	ACCEPT
heptachlor epoxide	0.1		NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1		108%	109%	<0.1	<0.1	ACCEPT
methoxychlor	0.1		NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		109%	108%	113%	107%	
OPPs							
chlorpyrifos	0.1	<0.1	97%	100%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	100%	103%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1		NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1		NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
РСВ							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	5.0	85%	86%	88%	86%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50		115%	108%	<50	<50	ACCEPT
>C16-C34	100		NT	NT	<100	<100	ACCEPT
>C34-C40	100		NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	95%	110%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	94%	91%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	114%	102%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	126%	113%	<2	<2	ACCEPT
o-Xylene	1	<1	126%	113%	<1	<1	ACCEPT
Fluorobenzene	surr.		100%	108%	114%	115%	
Metals							
Arsenic	2	<2	99%	76%	82	130	FAIL
Cadmium	0.3	<0.3	105%	103%	<0.3	1.2	ACCEPT
Chromium	5	<5	106%	93%	6.1	6.1	ACCEPT
Copper	5	<5	96%	92%	110	82	ACCEPT
Lead	10	<10	109%	100%	85	48	ACCEPT
Mercury	0.2	<0.2	109%	107%	<0.2	<0.2	ACCEPT
Nickel	10		99%	95%	23	18	ACCEPT
Zinc	5	<5	98%	97%	180	61	FAIL
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay							
EC1:5 to ECe conversion factor							

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 6

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
РАН				
	0.3	<0.3	<0.3	ACCEPT
Acenaphthene Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	106%	107%	ACCEPT
	5011.	10070	10770	
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin andoculfan l	0.1	<0.1	<0.1 <0.2	ACCEPT
endosulfan I endosulfan II	0.2	< 0.2	<0.2	ACCEPT
endosulfan sulfate	0.2	<0.2 <0.1	<0.2	ACCEPT
				ACCEPT
endrin andrin aldahuda	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1 <0.1	<0.1 <0.1	ACCEPT
methoxychlor	0.1			ACCEPT
ТСМХ	surr.	109%	109%	
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributyInhosphorotrithioito	0.1	<01	<01	ACCEDT

tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
РСВ				
Total PCB		<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	89%	88%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 5 of 6

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	101%	112%	
Metals				
Arsenic	2	<2	<2	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	<5	<5	ACCEPT
Lead	10	<10	<10	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	11	11	ACCEPT
Moisture	%			
pH (average for 3 measurements)				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

Comments:

FAIL caused by inhomogenous matrix

Clay Loams - fine sandy clay loam, clay loam, silty clay loam

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 6 of 6

General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	Νο

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than **RPD**: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50%

Results >20 times the PQL : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Environmental and OH&S Laboratory

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9923-4

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Clifton Thompson

Sample Log In Details

9923-4	Your reference:
3	No. of Samples:
14.12.2015	Date Received:
d: 14.12.2015	Date completed instructions received:
14-23.12.2015	Date of analysis:
	Report Details
23.12.2015	Report Date:
ESA-MP-01	Method number**:
ESA-MP-02	
ESA-P-ORG03	
ESA-P-ORG07	
ESA-P-ORG08	
ESA-P-ORG09	
ESA-P-ORG14	
ESA-P-ORG15	
*ESA-P-12	
AS 1289.4.3.1	
*ESA-P-16	
*Texture Assessment	
ESA-MP-01 ESA-MP-02 ESA-P-ORG03 ESA-P-ORG07 ESA-P-ORG08 ESA-P-ORG09 ESA-P-ORG14 ESA-P-ORG15 *ESA-P-12 AS 1289.4.3.1 *ESA-P-16	Report Date:

Results Authorised By:

Ro jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128 Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9923-C11	9923-C12	9923-C13
Sample News		0022 14/4 044	0022 14/4 042	0022 14/4 042
Sample Name		9923-WAC11	9923-WAC12	9923-WAC13
РАН				
Acenaphthene	0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3	<0.3
Anthracene	0.3	0.9	<0.3	<0.3
Benzo[a]anthracene	0.3	0.4	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3
Chrysene	0.3	0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	1.0	< 0.3	<0.3
Fluorene	0.3	<0.3	<0.3 <0.3	<0.3 <0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3 <0.3	<0.3 <0.3	<0.3
Naphthalene Phenanthrene	0.3	<0.3 0.9	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	100%	114%	114%
		10078	11470	11470
OCPs				
aldrin	0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1
b-BHC d-BHC	0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	< 0.1	< 0.1
ТСМХ	surr.	102%	117%	110%
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1
diazinon famable metres	0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1
prophos tributulphosphorotrithioito	0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1
PCB				
Total PCB		<0.6	<0.6	<0.6
2-fluorobiphenyl	surr.	84%	99%	93%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 6

Lab ID	PQL (mg/kg)	9923-C11	9923-C12	9923-C13
Consula Nama		0022 \N/A C11	0022 10/0612	0022 W/A C12
Sample Name		9923-WAC11	9923-WAC12	9923-WAC13
TRH				
>C6-C10	35	<35	<35	<35
>C10-C16	50	<50	<50	<50
>C16-C34	100	<100	<100	<100
>C34-C40	100	<100	<100	<100
BTEX				
Benzene	0.5	<0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1	<1
m, p- Xylene(s)	2	<2	<2	<2
o-Xylene	1	<1	<1	<1
Fluorobenzene	surr.	89%	89%	94%
Metals				
Arsenic	2	5.5	6.8	3.9
Cadmium	0.3	<0.3	<0.3	<0.3
Chromium	5	<5	11	10
Copper	5	33	27	26
Lead	10	23	18	49
Mercury	0.2	<0.2	<0.2	<0.2
Nickel	10	17	13	29
Zinc	5	110	51	100
Moisture	%	17%	17%	13%
pH (average for 3 measurements)		8.6	7.7	9.1
EC	[dS/m]	0.25	0.07	0.19
Soil Texture Group		Medium & Heavy Clays	Medium & Heavy Clays	Light Clays
Approximate Clay		>45	>45	35-45
EC1:5 to ECe conversion factor		7	7	8.6

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 6

Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
101%	102%	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
98%	99%	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
96%	98%	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
NT	NT	<0.3	<0.3	ACCEPT
96%	98%	<0.3	<0.3	ACCEPT
98%	99%	<0.3	<0.3	ACCEPT
88%	91%	<0.3	<0.3	ACCEPT
92%	97%	111%	106%	
105%	108%	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.2	<0.2	ACCEPT
NT	NT	<0.2	<0.2	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
71%	73%	<0.2	<0.2	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
109%	112%	<0.1	<0.1	ACCEPT
NT 100%	NT	< 0.1	<0.1	ACCEPT
106%	108%	110%	120%	
90%	92%	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
97%	99%	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.1	<0.1	ACCEPT
NT	NT	<0.6	<0.6	ACCEPT
72%	87%	89%	93%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
TRH							
>C6-C10	35		NT	NT	<35	<35	ACCEPT
>C10-C16	50		108%	106%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	96%	106%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	86%	86%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	89%	86%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	94%	92%	<2	<2	ACCEPT
o-Xylene	1	<1	96%	94%	<1	<1	ACCEPT
Fluorobenzene	surr.		98%	103%	98%	91%	
Metals							
Arsenic	2	<2	116%	110%	9.7	5.9	ACCEPT
Cadmium	0.3	<0.3	108%	108%	<0.3	<0.3	ACCEPT
Chromium	5	<5	108%	107%	<5	<5	ACCEPT
Copper	5	<5	103%	105%	14	15	ACCEPT
Lead	10	<10	110%	109%	<10	<10	ACCEPT
Mercury	0.2	<0.2	121%	121%	<0.2	<0.2	ACCEPT
Nickel	10	<10	99%	101%	<10	<10	ACCEPT
Zinc	5	<5	102%	105%	24	24	ACCEPT
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						
Soil Texture Group							
Approximate Clay	1						
EC1:5 to ECe conversion factor							

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 6

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
244				
PAH		.0.2	.0.2	ACCEPT
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	0.9	<0.3	ACCEPT
Benzo[a]anthracene	0.3	0.4	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
Benzo[g,h,i]perylene Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
	0.3	0.3	<0.3	ACCEPT
Chrysene Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	1.0	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	0.9	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	100%	109%	ACCELL 1
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE		<0.1	<0.1	ACCEPT
4,4'-DDT dieldrin	0.1	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
endosulfan I	0.1	<0.1	<0.1	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.2	<0.2	<0.2	ACCEPT
endrin	0.1	<0.1	<0.1	ACCEPT
endrin aldehyde	0.2	<0.2	<0.2	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	102%	112%	
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos tributy/phosphorotrithioito	0.1	<0.1	<0.1	ACCEPT
+ributidobocoborotrithioito	0.1	<01	-01	

tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
РСВ				
Total PCB		<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	84%	95%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 5 of 6

Lab ID	PQL (mg/kg)	Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	89%	89%	
Metals				
Arsenic	2	5.5	6.3	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	7.2	ACCEPT
Copper	5	33	25	ACCEPT
Lead	10	23	22	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	17	19	ACCEPT
Zinc	5	110	93	ACCEPT
Moisture	%			
pH (average for 3 measurements)				
EC	[dS/m]			
Soil Texture Group				
Approximate Clay				
EC1:5 to ECe conversion factor				

Comment:

Light Clays - sandy clay, silty clay, light clay, light medium clay

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 6 of 6

General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	Νο

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than **RPD**: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable:

Results <10 times the PQL : No Limit

Results between 10-20 times the PQL : RPD must lie between 0-50%

Results >20 times the PQL : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office:

A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50
****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assessi	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
*ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9923 ASB 1

Date Received:	01.12.2015
Date Analysed:	01.12.2015
Report Date:	08.12.2015
Client:	Geogory Hills Development Company
Job Location:	Geogory Hills Corporate Park NSW
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Ho jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

-	Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
9923-Asb1	Soil 76 grams		No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9923 ASB 2

Date Received:	04.12.2015
Date Analysed:	07.12.2015
Report Date:	09.12.2015
Client:	Gregory Hills Development Company
Job Location:	Gregory Hills Corporate Park
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
9923-Asb2	Soil / ASB2	174 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb3	Soil / ASB3	136 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb4	Soil / ASB4	144 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb5	Soil / ASB5	124 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb6	Soil / ASB6	124 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9923 ASB 3

Date Received:	09.12.2015
Date Analysed:	11.12.2015
Report Date:	11.12.2015
Client:	Gregory Hills Development Company
Job Location:	Gregory Hills Corporate Park
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.			Comments	
9923-Asb7	Soil	57 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb8	Soil	72 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb9	Soil	67 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb10	Soil	62 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9923 ASB 4

Date Received:	14.12.2015
Date Analysed:	21.12.2015
Report Date:	22.12.2015
Client:	Gregory Hills Development Company
Job Location:	Gregory Hills Corporate Park
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory	Sample	Sample Dimensions	Result	Comments
Sample No.	Description/Matrix	(cm) unless stated otherwise		
9923-Asb11	Soil	46 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb12 S	Soil	71 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9923-Asb13	Soil	126 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

AD Envirotech Aust Pty Ltd Unit 4/ 10-11 Millenium Court Silverwater NSW 2128

Attention:

Clifton Thompson

Report Project name Received Date **482679-S** 9826 Dec 08, 2015

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			9923.SAL2 Soil S15-De08726 Dec 02, 2015	9923.SAL3 Soil S15-De08727 Dec 03, 2015	9923.SAL4 Soil S15-De08728 Dec 03, 2015	9923.SAL5 Soil S15-De08729 Dec 03, 2015
Test/Reference	LOR	Unit				
Chloride	5	mg/kg	240	110	31	77
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Sulphate (as SO4)	30	mg/kg	260	110	120	280
% Moisture	0.1	%	11	11	7.4	11

Client Sample ID Sample Matrix Eurofins mgt Sample No.			9923.SAL6 Soil S15-De08730	9923.SAL7 Soil S15-De08731	9923.SAL8 Soil S15-De08732
Date Sampled			Dec 03, 2015	Dec 03, 2015	Dec 03, 2015
Test/Reference	LOR	Unit			
Chloride	5	mg/kg	220	68	14
Phenolics (total)	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Sulphate (as SO4)	30	mg/kg	300	140	79
% Moisture	0.1	%	10	11	9.5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	Dec 10, 2015	28 Day
- Method: MGT 1100A			
Phenolics (total)	Melbourne	Dec 10, 2015	14 Day
- Method: APHA 5530B & D Phenols			
Sulphate (as SO4)	Melbourne	Dec 10, 2015	28 Day
- Method: APHA 4500-SO4 Sulfate by FIA			
% Moisture	Melbourne	Dec 09, 2015	14 Day
Mothed: LTM CEN 2090 Mointure			

- Method: LTM-GEN-7080 Moisture

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address:	Company Name:AD Envirotech Aust Pty LtdAddress:Unit 4/ 10-11 Millenium CourtSilverwaterNSW 2128Project Name:9826				Order No.: Report #: Phone: Fax:				482679 02 9400 7711 02 9401 0097	Received: Due: Priority: Contact Name: Eurofins mgt	Dec 8, 2015 3:50 PM Dec 15, 2015 5 Day Clifton Thompson Client Manager: Mary Makarios	
Sample Detail			CANCELLED	Chloride	Phenolics (total)	Sulphate (as SO4)	Moisture Set					
Laboratory whe												
		Site # 1254 & 1	4271			Х	Х	Х	Х			
Sydney Labora					Х					-		
Brisbane Labo		5ite # 20794										
External Laboratory Sample ID Sample Date Sampling Matrix LAB ID Time												
9923.SAL1	Dec 01, 2015		Soil	S15-De08725	Х							
9923.SAL2	Dec 02, 2015		Soil	S15-De08726		Х	Х	Х	Х			
9923.SAL3	Dec 03, 2015		Soil	S15-De08727		Х	Х	Х	Х			
9923.SAL4	Dec 03, 2015		Soil	S15-De08728		Х	Х	Х	Х			
9923.SAL5	Dec 03, 2015		Soil	S15-De08729		Х	Х	Х	Х			
9923.SAL6	Dec 03, 2015		Soil	S15-De08730		Х	Х	Х	Х			
9923.SAL7	Dec 03, 2015		Soil	S15-De08731		Х	Х	Х	Х			
9923.SAL8	Dec 03, 2015		Soil	S15-De08732		Х	Х	Х	Х			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient
SRA CP NCP	Sample Receipt Advice Client Parent - QC was performed on samples pertaining to this report Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

т	est		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride			mg/kg	< 5			5	Pass	
Phenolics (total)			mg/kg	< 0.1			0.1	Pass	
Sulphate (as SO4)			mg/kg	< 30			30	Pass	
LCS - % Recovery									
Chloride			%	100			70-130	Pass	
Phenolics (total)			%	102			70-130	Pass	
Sulphate (as SO4)			%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S15-De08727	CP	%	95			70-130	Pass	
Sulphate (as SO4)	S15-De08727	CP	%	104			70-130	Pass	
Spike - % Recovery									
				Result 1					
Phenolics (total)	S15-De08732	CP	%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S15-De08726	CP	mg/kg	240	230	5.6	30%	Pass	
Sulphate (as SO4)	S15-De08726	CP	mg/kg	260	260	2.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S15-De08729	CP	%	11	10	1.0	30%	Pass	
Duplicate				,					
				Result 1	Result 2	RPD			
Phenolics (total)	S15-De08732	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Mary Makarios Emily Rosenberg Huong Le Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost, observed in the liable for client or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag shall be for cost of the reported or experiment of the reported or experved in the liable for experiment of the reported or experiment of the report of the report of the reported or experiment of

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9826-1

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Clifton Thompson & Kirill Smelov

Sample Log In Details

Your reference: No. of Samples: Date Received: Date completed instructions received: Date of analysis:	9826-1 3 25.11.2015 25.11.2015 25-28.11.2015
· · · · · · · · · · · · · · · · · · ·	
Report Details	
Report Date:	30.11.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9826-C1	9826-C2	9826-C3
Sample Name		9826-WAC01	9826-WAC02	9826-WAC03
РАН				
Acenaphthene	0.3	<0.3	<0.3	<0.3
Acenaphthylene	0.3		<0.3	<0.3
Anthracene	0.3		<0.3	< 0.3
Benzo[a]anthracene	0.3		<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3	0.4
Fluorene	0.3		<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3		<0.3	<0.3
Naphthalene	0.3		<0.3	<0.3
Phenanthrene	0.3		<0.3	<0.3
Pyrene	0.3	<0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	133%	142%	139%
OCPs				
aldrin	0.1	<0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1	<0.1
endosulfan I	0.2		<0.2	<0.2
endosulfan II	0.2		<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1	<0.1
endrin	0.2		<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1	<0.1
heptachlor epoxide hexachlorobenzene	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
nexachlorobenzene methoxychlor	0.1	<0.1 <0.1	<0.1 <0.1	<0.1
methoxychlor TCMX		<0.1 95%	<0.1 95%	<0.1 91%
	surr.	33%	30%	91%
OPPs				
chlorpyrifos	0.1		<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1	<0.1	<0.1
РСВ				
Total PCB		<0.6	<0.6	<0.6
2-fluorobiphenyl	surr.	87%	87%	79%
	surr.	8/%	8/%	79%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 4

PQL (mg/kg)	9826-C1	9826-C2	9826-C3
	9826-WAC01	9826-WAC02	9826-WAC03
35	<35	<35	<35
50	<50	<50	<50
100	<100	<100	<100
100	<100	<100	<100
0.5	<0.5	<0.5	<0.5
0.5	<0.5	<0.5	<0.5
1	<1	<1	<1
2	<2	<2	<2
1	<1	<1	<1
surr.	114%	115%	113%
2	<2	<2	7.2
0.3	<0.3	<0.3	<0.3
5	<5	<5	23
5	14	18	52
10	10	11	680
0.2	<0.2	<0.2	<0.2
10	<10	<10	<10
5	16	28	150
%	14%	10%	12%
	35 50 100 100 0.5 0.5 0.5 1 1 2 2 1 3 surr. 2 1 5 5 5 5 10 0.2 10 0.2 10 5 5	9826-WAC01 9826-WAC01 35 36 37 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 310	9826-WAC01 9826-WAC02 9826-WAC01 9826-WAC02 35 <35

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 4

Lab ID	PQL (mg/kg)	Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Sample Name							
PAH			/				
Acenaphthene	0.3	<0.3	86%	90%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	85%	88%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3 <0.3	NT NT	NT	<0.3 <0.3	<0.3 <0.3	ACCEPT
Benzo[a]pyrene Benzo[b]fluoranthene	0.3	<0.3	NT	NT NT	<0.3	<0.3	ACCEPT ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	88%	92%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	85%	89%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	87%	91%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	81%	87%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		125%	131%	142%	143%	
OCPs							
aldrin	0.1	<0.1	95%	98%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin endrin aldehyde	0.2	<0.2 <0.1	61% NT	68% NT	<0.2 <0.1	<0.2 <0.1	ACCEPT ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	94%	97%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		95%	97%	95%	96%	
OPPs							
chlorpyrifos	0.1	<0.1	80%	85%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	85%	87%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
РСВ							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	-0.0	87%	90%	87%	89%	
			5770	5070	0770	0,00	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 4

Lab ID	PQL (mg/kg)	Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	97%	94%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	105%	112%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	92%	100%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	99%	105%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	104%	111%	<2	<2	ACCEPT
o-Xylene	1	<1	107%	114%	<1	<1	ACCEPT
Fluorobenzene	surr.		105%	110%	115%	111%	
Metals							
Arsenic	2	<2	92%	79%	<2	<2	ACCEPT
Cadmium	0.3	<0.3	105%	108%	<0.3	<0.3	ACCEPT
Chromium	5	<5	114%	113%	<5	<5	ACCEPT
Copper	5	<5	103%	104%	18	18	ACCEPT
Lead	10	<10	111%	112%	11	14	ACCEPT
Mercury	0.2	<0.2	109%	112%	<0.2	<0.2	ACCEPT
Nickel	10	<10	105%	109%	<10	<10	ACCEPT
Zinc	5	<5	98%	105%	28	14	ACCEPT
Moisture	%						

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 4

General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test
: Greater than
LCS: Laboratory Control Sample
NT: Not tested
: Less than
RPD: Relative Percent Difference
NA: Test not required
PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS:Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:
Results <10 times the PQL : No Limit</p>
Results between 10-20 times the PQL : RPD must lie between 0-50%
Results >20 times the PQL : RPD must lie between 0-30%
Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assess	nent based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9826-2

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Clifton Thompson & Kirill Smelov

Sample Log In Details

Your reference: No. of Samples: Date Received: Date completed instructions received:	9826-2 1 09.12.2015 09.12.2015
Date of analysis:	09-11.12.2015
Report Details	
Report Date:	14.12.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12

Results Authorised By:

Ao jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

	PQL (mg/kg)	9826-C4
Sample Name		9826-WAC04
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene	0.3	<0.3
Benzo[a]anthracene	0.3	<0.3
Benzo[a]pyrene	0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3
Chrysene	0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	<0.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3
Naphthalene	0.3	<0.3
Phenanthrene	0.3	<0.3
Pyrene	0.3	<0.3
p-Terphenyl-d14	surr.	114%
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane	0.1	<0.1
trans-chlordane	0.1	<0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II endosulfan sulfate	0.2	<0.2 <0.1
endrin andrin aldabuda	0.2	<0.2 <0.1
endrin aldehyde		
endrin ketone heptachlor	0.1	<0.1 <0.1
heptachlor epoxide	0.1	<0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
ТСМХ	surr.	114%
		TT4/0
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos	0.1	<0.1
tributylphosphorotrithioite	0.1	<0.1
РСВ		
PCB Total PCB 2-fluorobiphenyl		<0.6

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 6

Lab ID	PQL (mg/kg)	9826-C4
Sample Name		9826-WAC04
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	110%
Metals		
Arsenic	2	9.8
Cadmium	0.3	<0.3
Chromium	5	27
Copper	5	13
Lead	10	21
Mercury	0.2	<0.2
Nickel	10	<10
Zinc	5	25
Moisture	%	16%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
PAH	0.2	(0.2	100%	1010/	-0.2	-0.2	ACCEPT
Acenaphthene	0.3			101%	<0.3	< 0.3	ACCEPT
Acenaphthylene Anthracene	0.3		NT 105%	NT 102%	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
Benzo[a]anthracene	0.3		105% NT	102% NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3		101%	103%	<0.3	<0.3	ACCEPT
Fluorene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	93%	96%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	105%	103%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	96%	101%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		100%	105%	110%	108%	
OCPs							
aldrin	0.1	<0.1	113%	113%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	_	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1		NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1		NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1		NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1		NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1		NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1		NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1		NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II endosulfan sulfate	0.2	<0.2 <0.1	NT NT	NT NT	<0.2 <0.1	<0.2	ACCEPT
						<0.1	ACCEPT
endrin endrin aldehyde	0.2	<0.2 <0.1	73% NT	79% NT	<0.2 <0.1	<0.2 <0.1	ACCEPT ACCEPT
endrin ketone	0.1					<0.1	ACCEPT
heptachlor	0.1	<0.1 <0.1	NT NT	NT NT	<0.1 <0.1	<0.1	ACCEPT
heptachlor epoxide	0.1		NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1		108%	109%	<0.1	<0.1	ACCEPT
methoxychlor	0.1		NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		109%	108%	113%	107%	
OPPs							
chlorpyrifos	0.1	<0.1	97%	100%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	100%	103%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
PCB							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.		85%	86%	88%	86%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 6

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
			-		Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	115%	108%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	95%	110%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	94%	91%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	114%	102%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	126%	113%	<2	<2	ACCEPT
o-Xylene	1	<1	126%	113%	<1	<1	ACCEPT
Fluorobenzene	surr.		100%	108%	114%	115%	
Metals							
Arsenic	2	<2	99%	76%	82	130	FAIL
Cadmium	0.3	<0.3	105%	103%	<0.3	1.2	ACCEPT
Chromium	5	<5	106%	93%	6.1	6.1	ACCEPT
Copper	5	<5	96%	92%	110	82	ACCEPT
Lead	10	<10	109%	100%	85	48	ACCEPT
Mercury	0.2	<0.2	109%	107%	<0.2	<0.2	ACCEPT
Nickel	10	<10	99%	95%	23	18	ACCEPT
Zinc	5	<5	98%	97%	180	61	FAIL
Maiatura	%						
Moisture	70						

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 6

Lab ID	PQL (mg/kg)	Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
		Value 1	Value 2	
Sample Name				
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	<0.3	ACCEPT
Benzo[a]anthracene Benzo[a]pyrene	0.3	<0.3 <0.3	<0.3 <0.3	ACCEPT ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	106%	107%	
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1 <0.1	<0.1 <0.1	ACCEPT ACCEPT
4,4'-DDE 4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	<0.1	ACCEPT
endosulfan I	0.1	<0.1	<0.1	ACCEPT
endosulfan II	0.2	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	109%	109%	
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon famable rebai	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos tributulabasabasatrithiaita	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
РСВ				
Total PCB		<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	89%	88%	
		0070	00/0	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 5 of 6

Lab ID	PQL (mg/kg)	Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
		Value 1	Value 2	
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	101%	112%	
Metals				
Arsenic	2	<2	<2	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	<5	<5	ACCEPT
Lead	10	<10	<10	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	11	11	ACCEPT
Moisture	%			

Comment:

FAIL caused by inhomogenous matrix

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 6 of 6

General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	Νο

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

which are similar to the analyte of interest, however are not expected to be found in real samples.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

INS: Insufficient sample for this test
>: Greater than
LCS: Laboratory Control Sample
NT: Not tested
<: Less than
RPD: Relative Percent Difference
NA: Test not required
PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS:Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:
Results <10 times the PQL : No Limit</p>
Results between 10-20 times the PQL : RPD must lie between 0-50%
Results >20 times the PQL : RPD must lie between 0-30%
Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assess	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9826 ASB 1

Date Received:	09.12.2015
Date Analysed:	09.12.2015
Report Date:	09.12.2015
Client:	Gregory Hills Development Park
Job Location:	Gregory Hills Development Park
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Ho jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.
	•	Sample Dimensions (cm) unless stated	Result	Comments
	•	otherwise		
9826-Asb1	Soil / ASB04	71 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9826 ASB 2

Date Received:	01.12.2015
Date Analysed:	11.12.2015
Report Date:	11.12.2015
Client:	Gregory Hills Development Park
Job Location:	Gregory Hills Development Park
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated	Result	Comments
		otherwise		
9826-Asb2	Soil / ASB01	108 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9826-Asb3	Soil / ASB02	69 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9826-Asb4	Soil / ASB03	50 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

A division of A. D. Envirotech Australia Pty Ltd

Analysis report: 9732

Customer: Attention: A. D. Envirotech Australia Pty. Ltd. Nick Mirsepassi & Clifton Thompson

Environmental and OH&S Laboratory

*ESA-P-16

A.C.N. 093 452 950

Sample Log In Details

Your reference:	9732
No. of Samples:	1
Date Received:	13.10.2015
Date completed instructions received:	13.10.2015
Date of analysis:	13-14.10.2015
Report Details	
Report Date:	14.10.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12
	AS 1289.4.3.1

Results Authorised By:

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

Lab ID	PQL (mg/kg)	9732-C1
Comple Name		0722 \M/A CO1
Sample Name		9732-WAC01
РАН		
Acenaphthene	0.3	<0.3
Acenaphthylene	0.3	<0.3
Anthracene Benzo[a]anthracene	0.3	<0.3 1.0
Benzo[a]pyrene	0.3	1.3
Benzo[b]fluoranthene	0.3	0.7
Benzo[g,h,i]perylene	0.3	<0.3
Benzo[k]fluoranthene	0.3	0.7
Chrysene	0.3	0.8
Dibenzo[a,h]anthracene	0.3	<0.3
Fluoranthene	0.3	1.3
Fluorene	0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	1.2 <0.3
Naphthalene Phenanthrene	0.3	<0.3
Pyrene	0.3	1.3
p-Terphenyl-d14	surr.	112%
r - / - ·		
OCPs		
aldrin	0.1	<0.1
a-BHC	0.1	<0.1
b-BHC	0.1	<0.1
d-BHC	0.1	<0.1
g-BHC (lindane)	0.1	<0.1
cis-chlordane trans-chlordane	0.1	<0.1 <0.1
4,4'-DDD	0.1	<0.1
4,4'-DDE	0.1	<0.1
4,4'-DDT	0.1	<0.1
dieldrin	0.1	<0.1
endosulfan I	0.2	<0.2
endosulfan II	0.2	<0.2
endosulfan sulfate	0.1	<0.1
endrin	0.2	<0.2
endrin aldehyde	0.1	<0.1
endrin ketone	0.1	<0.1
heptachlor heptachlor epoxide	0.1	<0.1 <0.1
hexachlorobenzene	0.1	<0.1
methoxychlor	0.1	<0.1
тсмх	surr.	114%
OPPs		
chlorpyrifos	0.1	<0.1
chlorpyrifos methyl	0.1	<0.1
diazinon	0.1	<0.1
fenchlorphos	0.1	<0.1
methyl parathion	0.1	<0.1
prophos tributylphosphorotrithioite	0.1	<0.1 <0.1
anadyphosphorocritinoite	0.1	NU.1
РСВ		
Total PCB		<0.6
2-fluorobiphenyl	surr.	106%

Lab ID	PQL (mg/kg)	9732-C1
Sample Name		9732-WAC01
TRH		
>C6-C10	35	<35
>C10-C16	50	<50
>C16-C34	100	<100
>C34-C40	100	<100
BTEX		
Benzene	0.5	<0.5
Toluene	0.5	<0.5
Ethylbenzene	1	<1
m, p- Xylene(s)	2	<2
o-Xylene	1	<1
Fluorobenzene	surr.	88%
Metals		
Arsenic	2	26
Cadmium	0.3	<0.3
Chromium	5	<5
Copper	5	40
Lead	10	100
Mercury	0.2	<0.2
Nickel	10	<10
Zinc	5	110
Moisture	%	14%
pH (average for 3 measurements)		7.1
EC	[dS/m]	0.10

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
			·		Value 1	Value 2	•
Sample Name							
DALL							
PAH Acenaphthene	0.3	<0.3	98%	95%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	98% NT	95% NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	99%	97%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	100%	99%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	90%	88%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	99%	97%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	98%	101%	<0.3	< 0.3	ACCEPT
p-Terphenyl-d14	surr.		97%	101%	116%	122%	
OCPs							
aldrin	0.1	<0.1	104%	104%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.1	<0.1	NT NT	NT NT	<0.1 <0.2	<0.1 <0.2	ACCEPT ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endrin	0.2	<0.2	76%	83%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	102%	101%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
TCMX	surr.		105%	103%	116%	119%	
OPPs							
chlorpyrifos	0.1	<0.1	92%	93%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	96%	96%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
РСВ							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.		91%	88%	102%	105%	

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank	Batch Matrix	Batch	Batch	Batch
			spike 1	spike 1	Duplicate 1-	Duplicate 1-	Duplicate 1
	_				Value 1	Value 2	
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	113%	107%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	94%	95%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	92%	94%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	91%	93%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	89%	91%	<2	<2	ACCEPT
o-Xylene	1	<1	90%	93%	<1	<1	ACCEPT
Fluorobenzene	surr.		93%	94%	88%	88%	
Metals							
Arsenic	2	<2	81%	89%	2.4	3.5	ACCEPT
Cadmium	0.3	<0.3	103%	105%	<0.3	<0.3	ACCEPT
Chromium	5	<5	103%	101%	<5	<5	ACCEPT
Copper	5	<5	97%	93%	<5	<5	ACCEPT
Lead	10	<10	112%	102%	<10	<10	ACCEPT
Mercury	0.2	<0.2	96%	100%	<0.2	<0.2	ACCEPT
Nickel	10	<10	97%	103%	<10	<10	ACCEPT
Zinc	5	<5	97%	104%	11	7.7	ACCEPT
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						

Lab ID	PQL (mg/kg)	Batch	Batch	Batch
		Duplicate 2- Value 1	Duplicate 2- Value 2	Duplicate 2
Sample Name		value 1	value z	
РАН				
Acenaphthene	0.3	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3 <0.3	<0.3 <0.3	ACCEPT
Benzo[a]anthracene Benzo[a]pyrene	0.3	<0.3	<0.3	ACCEPT ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	<0.3	ACCEPT
, Dibenzo[a,h]anthracene	0.3	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.	114%	117%	
OCPs				
aldrin	0.1	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	<0.1	ACCEPT
dieldrin endosulfan I	0.1	<0.1	<0.1	ACCEPT
endosulfan II	0.2	<0.2 <0.2	<0.2 <0.2	ACCEPT
endosulfan sulfate	0.2	<0.2	<0.2	ACCEPT ACCEPT
endrin	0.1	<0.1	<0.1	ACCEPT
endrin aldehyde	0.2	<0.2	<0.2	ACCEPT
endrin ketone	0.1	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	<0.1	ACCEPT
ТСМХ	surr.	118%	120%	
OPPs				
chlorpyrifos	0.1	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	<0.1	ACCEPT
РСВ				
Total PCB		<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.	111%	111%	
; ,				

Lab ID	PQL (mg/kg)	Batch	Batch	Batch
		Duplicate 2-	Duplicate 2-	Duplicate 2
		Value 1	Value 2	Duplicate 2
Sample Name		Value 1	Value 2	
Sample Name				
TRH				
>C6-C10	35	<35	<35	ACCEPT
>C10-C16	50	<50	<50	ACCEPT
>C16-C34	100	<100	<100	ACCEPT
>C34-C40	100	<100	<100	ACCEPT
BTEX				
Benzene	0.5	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	<2	ACCEPT
o-Xylene	1	<1	<1	ACCEPT
Fluorobenzene	surr.	88%	88%	
Metals				
Arsenic	2	2.8	2.7	ACCEPT
Cadmium	0.3	<0.3	<0.3	ACCEPT
Chromium	5	<5	<5	ACCEPT
Copper	5	<5	<5	ACCEPT
Lead	10	<10	<10	ACCEPT
Mercury	0.2	<0.2	<0.2	ACCEPT
Nickel	10	<10	<10	ACCEPT
Zinc	5	8.7	9.8	ACCEPT
Moisture	%			
pH (average for 3 measurements)				
EC	[dS/m]			

General Comments and Glossary

Tests not covered by NATA are denoted with *.	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No
1. All samples are tested in batches of 20.	

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

- 3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated, samples' results are not corrected for standards recoveries.
- 4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate
- 5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.
- 6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate
- were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than RPD: Relative Percent Difference NA: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

 Matrix Spikes and LCS:
 Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.

 Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines

are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% **Surrogate Recoveries** : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assess	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9732-2

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Nick Mirsepassi & Clifton Thompson

Sample Log In Details

Your reference: No. of Samples: Date Received: Date completed instructions received:	9732-2 2 19.10.2015 19.10.2015
Date of analysis:	19-21.10.015
Report Details	
Report Date:	22.10.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12
	AS 1289.4.3.1
	*ESA-P-16

Results Authorised By:

A jralevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9732-C2	9732-C3
Sample Name		9732-WAC02	9732-WAC03
РАН			
Acenaphthene	0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	0.4	<0.3
Benzo[g,h,i]perylene	0.3	0.8	0.4
Benzo[k]fluoranthene	0.3	0.4	<0.3
Chrysene	0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3
Fluoranthene	0.3	0.5	<0.3
Fluorene	0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3
Pyrene	0.3	0.5	<0.3
p-Terphenyl-d14	surr.	110%	118%
OCPs			
aldrin	0.1	<0.1	<0.1
a-BHC	0.1	<0.1	<0.1
b-BHC	0.1	<0.1	<0.1
d-BHC	0.1	<0.1	<0.1
g-BHC (lindane)	0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1
endosulfan I	0.2	<0.2	<0.2
endosulfan II	0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	< 0.1
ТСМХ	surr.	106%	113%
OPPs			
chlorpyrifos	0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1
		10.4	.0.4

	•••	÷	÷ · –
tributylphosphorotrithioite	0.1	<0.1	<0.1
РСВ			
Total PCB		<0.6	<0.6
2-fluorobiphenyl	surr.	96%	98%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 7

Lab ID	PQL (mg/kg)	9732-C2	9732-C3
Sample Name		9732-WAC02	9732-WAC03
TRH			
>C6-C10	35	<35	<35
>C10-C16	50	<50	<50
>C16-C34	100	<100	<100
>C34-C40	100	<100	<100
BTEX			
Benzene	0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1
m, p- Xylene(s)	2	<2	<2
o-Xylene	1	<1	<1
Fluorobenzene	surr.	100%	100%
Metals			
Arsenic	2	30	6.6
Cadmium	0.3	<0.3	<0.3
Chromium	5	6.6	7.2
Copper	5	140	28
Lead	10	170	84
Mercury	0.2	<0.2	<0.2
Nickel	10	14	20
Zinc	5	160	70
Moisture	%	10%	17%
pH (average for 3 measurements)		7.8	7.0
EC	[dS/m]	0.14	0.32

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 7

Lab ID	PQL (mg/kg)	Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Sample Name							
РАН							
Acenaphthene	0.3	<0.3	98%	98%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	95%	95%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3	<0.3	NT	NT	0.4	0.6	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	99%	100%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3	<0.3	98%	98%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	95%	95%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	95%	102%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		93%	98%	118%	110%	
OCPs							
aldrin	0.1	<0.1	106%	104%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	83%	93%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	104%	101%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		101%	100%	113%	104%	
OPPs	+ +		1				
chlorpyrifos	0.1	<0.1	95%	97%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	94%	94%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
РСВ							
Total PCB		<0.6	NT	NT	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.		91%	89%	98%	96%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 7

Lab ID	PQL (mg/kg)	Blank 1	Blank spike 1	Matrix spike 1	Duplicate 1- Value 1	Duplicate 1- Value 2	Duplicate 1
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50	<50	98%	94%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	98%	99%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	99%	98%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	96%	96%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	97%	98%	<2	<2	ACCEPT
o-Xylene	1	<1	96%	96%	<1	<1	ACCEPT
Fluorobenzene	surr.		100%	98%	100%	100%	
Metals	+ +						
Arsenic	2	<2	73%	72%	6.6	8.7	ACCEPT
Cadmium	0.3	<0.3	100%	98%	<0.3	<0.3	ACCEPT
Chromium	5	<5	96%	123%	7.2	<5	ACCEPT
Copper	5	<5	89%	96%	28	29	ACCEPT
Lead	10	<10	106%	121%	84	69	ACCEPT
Mercury	0.2	<0.2	103%	102%	<0.2	<0.2	ACCEPT
Nickel	10	<10	97%	103%	20	18	ACCEPT
Zinc	5	<5	98%	97%	70	57	ACCEPT
Moisture	%						
nH (average for 2 measurements)							
pH (average for 3 measurements)	[d5/m]						
EC	[dS/m]						

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 7

General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency 7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test >: Greater than LCS: Laboratory Control Sample NT: Not tested <: Less than **RPD**: Relative Percent Difference **NA**: Test not required PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable. Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable: Results <10 times the PQL : No Limit Results between 10-20 times the PQL : RPD must lie between 0-50% Results >20 times the PQL : RPD must lie between 0-30% Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669

e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assess	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9732 ASB 1

Date Received:	12.10.2015
Date Analysed:	15.10.2015
Report Date:	16.10.2015
Client:	Gregory Hills Development Park
Job Location:	Gregory Hills Development Park
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

-	Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
9732-Asb1	Soil	116 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd Unit 4/10-11 Millennium Court, Silverwater 2128 A.C.N. 093 452 950

Analysis report: 9732 ASB 2

Date Received:	19.10.2015
Date Analysed:	26.10.2015
Report Date:	26.10.2015
Client:	Gregory Hills Development Park
Job Location:	Gregory Hills Development Park
Analytical method:	Polarised Light Microscopy with dispersion staining (ADE method ABI)

Analysis performed by:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA approved asbestos identifier **Results Authorised By:**

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager/Principal Chemist NATA signatory

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Laboratory Sample No.	Sample Description/Matrix	Sample Dimensions (cm) unless stated otherwise	Result	Comments
9732-Asb2	Soil	168 grams	No Chrysotile asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil
9732-Asb3	Soil	159 grams	Chrysotile asbestos found	Fibre cement fraction containing Chrysotile asbestos detected with approximate dimension of 5.0 x 5.0 x 2.0 mm. No respirable asbestos detected during the trace analysis.
			No Amosite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Crocidolite asbestos found at reporting limit of 0.1 g/kg.	Nil
			No Synthetic Mineral Fibres found	Nil
			Organic fibres found	Nil

General Comments:

All samples are analysed as received.

Sampling performed by AD Envirotech is not covered by NATA scope.

Samples are stored for period of 3 months.

Due to the difficulty of estimating the load on the swab the test is carried out for presence or absence of asbestos only.

¹ Independent confirming technique such as infrared spectroscopy, X-ray diffraction, scanning or transmission electron microscopy is advised.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A division of A. D. Envirotech Australia Pty Ltd

A.C.N. 093 452 950

Unit 4/10-11 Millennium Court, Silverwater 2128 Ph: (02) 9648-6669

Analysis report: 9639-1

Customer:	A. D. Envirotech Australia Pty. Ltd.
Attention:	Karl Finnerty & Bikesh Deoju

Sample Log In Details

Your reference: No. of Samples: Date Received: Date completed instructions received: Date of analysis:	9639-1 2 18.09.2015 18.09.2015 18.09-22.09.2015
Report Details	
Report Date:	24.09.2015
Method number**:	ESA-MP-01
	ESA-MP-02
	ESA-P-ORG03
	ESA-P-ORG07
	ESA-P-ORG08
	ESA-P-ORG09
	ESA-P-ORG14
	ESA-P-ORG15
	ESA-P-12
	AS 1289.4.3.1
	*ESA-P-16

Results Authorised By:

Rojtalevice

Dr Dominika Wojtalewicz (MRACI CCHEM) Laboratory Manager

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

Lab ID	PQL (mg/kg)	9639-C1	9639-C2
Sample Name		9639-WAC01	9639-WAC02
РАН			
Acenaphthene	0.3	<0.3	<0.3
Acenaphthylene	0.3	<0.3	<0.3
Anthracene	0.3	<0.3	<0.3
Benzo[a]anthracene	0.3	<0.3	<0.3
Benzo[a]pyrene	0.3	<0.3	<0.3
Benzo[b]fluoranthene	0.3	<0.3	<0.3
Benzo[g,h,i]perylene	0.3	<0.3	<0.3
Benzo[k]fluoranthene	0.3	<0.3	<0.3
Chrysene	0.3	<0.3	<0.3
Dibenzo[a,h]anthracene	0.3	<0.3	<0.3
Fluoranthene	0.3	<0.3	<0.3
Fluorene	0.3	<0.3	<0.3
Indeno(1,2,3-cd)pyrene	0.3	<0.3	<0.3
Naphthalene	0.3	<0.3	<0.3
Phenanthrene	0.3	<0.3	<0.3
Pyrene	0.3	<0.3	<0.3
p-Terphenyl-d14	surr.	130%	125%
OCPs	0.1	-0.1	-0.1
aldrin	0.1	<0.1 <0.1	<0.1 <0.1
a-BHC b-BHC	0.1	<0.1	<0.1
d-BHC	0.1		<0.1
g-BHC (lindane)	0.1	<0.1	<0.1
cis-chlordane	0.1	<0.1	<0.1
trans-chlordane	0.1	<0.1	<0.1
4,4'-DDD	0.1	<0.1	<0.1
4,4'-DDE	0.1	<0.1	<0.1
4,4'-DDT	0.1	<0.1	<0.1
dieldrin	0.1	<0.1	<0.1
endosulfan I	0.2	<0.1	<0.1
endosulfan II	0.2	<0.2	<0.2
endosulfan sulfate	0.1	<0.1	<0.1
endrin	0.2	<0.2	<0.2
endrin aldehyde	0.1	<0.1	<0.1
endrin ketone	0.1	<0.1	<0.1
heptachlor	0.1	<0.1	<0.1
heptachlor epoxide	0.1	<0.1	<0.1
hexachlorobenzene	0.1	<0.1	<0.1
methoxychlor	0.1	<0.1	<0.1
ТСМХ	surr.	130%	125%
OPPs			
chlorpyrifos	0.1	<0.1	<0.1
chlorpyrifos methyl	0.1	<0.1	<0.1
diazinon	0.1	<0.1	<0.1
fenchlorphos	0.1	<0.1	<0.1
methyl parathion	0.1	<0.1	<0.1
prophos	0.1	<0.1	<0.1

tributylphosphorotrithioite	0.1	<0.1	<0.1
РСВ			
Total PCB		<0.6	<0.6
2-fluorobiphenyl	surr.	91%	90%

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 1 of 4

Lab ID	PQL (mg/kg)	9639-C1	9639-C2
Sample Name		9639-WAC01	9639-WAC02
TRH			
>C6-C10	35	<35	<35
>C10-C16	50		<50
>C16-C34	100		<100
>C34-C40	100	<100	<100
BTEX			
Benzene	0.5	<0.5	<0.5
Toluene	0.5	<0.5	<0.5
Ethylbenzene	1	<1	<1
m, p- Xylene(s)	2	<2	<2
o-Xylene	1	<1	<1
Fluorobenzene	surr.	91%	90%
Metals			
Arsenic	2	6.2	7.4
Cadmium	0.3	<0.3	<0.3
Chromium	5	56	12
Copper	5	7.6	42
Lead	10	38	47
Mercury	0.2	<0.2	<0.2
Nickel	10	<10	16
Zinc	5	47	90
Moisture	%	21%	13%
pH (average for 3 measurements)		5.6	7.2
EC	[dS/m]	0.10	0.06

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 2 of 4

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
РАН							
Acenaphthene	0.3		103%	107%	<0.3	<0.3	ACCEPT
Acenaphthylene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Anthracene	0.3	<0.3	105%	107%	<0.3	<0.3	ACCEPT
Benzo[a]anthracene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[a]pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[b]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Benzo[g,h,i]perylene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Benzo[k]fluoranthene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Chrysene	0.3		NT	NT	<0.3	<0.3	ACCEPT
Dibenzo[a,h]anthracene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Fluoranthene	0.3	<0.3	103%	105%	<0.3	<0.3	ACCEPT
Fluorene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Indeno(1,2,3-cd)pyrene	0.3	<0.3	NT	NT	<0.3	<0.3	ACCEPT
Naphthalene	0.3		101%	106%	<0.3	<0.3	ACCEPT
Phenanthrene	0.3	<0.3	96%	98%	<0.3	<0.3	ACCEPT
Pyrene	0.3	<0.3	101%	103%	<0.3	<0.3	ACCEPT
p-Terphenyl-d14	surr.		98%	101%	126%	127%	
OCPs							
aldrin	0.1	<0.1	109%	114%	<0.1	<0.1	ACCEPT
a-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
b-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
d-BHC	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
g-BHC (lindane)	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
cis-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
trans-chlordane	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDD	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDE	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
4,4'-DDT	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
dieldrin	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endosulfan I	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan II	0.2	<0.2	NT	NT	<0.2	<0.2	ACCEPT
endosulfan sulfate	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin	0.2	<0.2	85%	77%	<0.2	<0.2	ACCEPT
endrin aldehyde	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
endrin ketone	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
heptachlor epoxide	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
hexachlorobenzene	0.1	<0.1	110%	113%	<0.1	<0.1	ACCEPT
methoxychlor	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
ТСМХ	surr.		110%	114%	135%	132%	
OPPs							
chlorpyrifos	0.1	<0.1	96%	99%	<0.1	<0.1	ACCEPT
chlorpyrifos methyl	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
diazinon	0.1	<0.1	98%	100%	<0.1	<0.1	ACCEPT
fenchlorphos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
methyl parathion	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
prophos	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
tributylphosphorotrithioite	0.1	<0.1	NT	NT	<0.1	<0.1	ACCEPT
DCP							
PCB		-0.0	N 17	N.T	-0.0	-0.0	ACCEPT
Total PCB		<0.6	NT	NT 86%	<0.6	<0.6	ACCEPT
2-fluorobiphenyl	surr.		80%	86%	93%	93%	

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 3 of 4

Lab ID	PQL (mg/kg)	Batch Blank 1	Batch Blank spike 1	Batch Matrix spike 1	Batch Duplicate 1- Value 1	Batch Duplicate 1- Value 2	Batch Duplicate 1
Sample Name							
TRH							
>C6-C10	35	<35	NT	NT	<35	<35	ACCEPT
>C10-C16	50		96%	94%	<50	<50	ACCEPT
>C16-C34	100	<100	NT	NT	<100	<100	ACCEPT
>C34-C40	100	<100	NT	NT	<100	<100	ACCEPT
BTEX							
Benzene	0.5	<0.5	102%	105%	<0.5	<0.5	ACCEPT
Toluene	0.5	<0.5	85%	96%	<0.5	<0.5	ACCEPT
Ethylbenzene	1	<1	90%	95%	<1	<1	ACCEPT
m, p- Xylene(s)	2	<2	97%	93%	<2	<2	ACCEPT
o-Xylene	1	<1	97%	94%	<1	<1	ACCEPT
Fluorobenzene	surr.		100%	100%	85%	93%	
Metals							
Arsenic	2	<2	96%	96%	16	45	FAIL
Cadmium	0.3	<0.3	105%	105%	<0.3	<0.3	ACCEPT
Chromium	5	<5	103%	106%	23	67	FAIL
Copper	5	<5	97%	101%	19	12	ACCEPT
Lead	10	<10	103%	111%	17	30	ACCEPT
Mercury	0.2	<0.2	115%	112%	<0.2	<0.2	ACCEPT
Nickel	10	<10	99%	106%	<10	34	ACCEPT
Zinc	5	<5	103%	94%	59	55	ACCEPT
Moisture	%						
pH (average for 3 measurements)							
EC	[dS/m]						

Comment:

FAIL caused by inhomogenous matrix

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50 p 4 of 4

General Comments and Glossary

Tests not covered by NATA are denoted with .	
Samples are analysed on "as received" basis.	
Samples were delivered chilled	Yes
Samples were preserved in correct manner	Yes
Sample containers for volatile analysis were received with minimal headspace	Yes
Samples were analysed within holding time	Yes
Some samples have been subcontracted	No

1. All samples are tested in batches of 20.

2. All results for soil samples are reported per gram of dry soil, unless otherwise stated.

3. However surrogate standards are added to samples due to PAH and BTEX analysis and recoveries are calculated,

samples' results are not corrected for standards recoveries.

4. Analysis of VOC in water samples are performed on unfiltered waters (as received), spiked with surrogate

5. If heterogenous or insufficient material provided LCS is used as matrix spike for QA/QC purposes.

6. Duplicate sample and matrix spike recoveries may not be prepared on smaller jobs, however, were analysed at a frequency
7. QA/QC samples shown within the report that states the word "BATCH"; Batch Blank, Matrix Spike and Duplicate were prepared on samples from outside of reported job.

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surr. (Surrogate Spike): Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

which are similar to the analyte of interest, however are not expected to be found in real samples.

INS: Insufficient sample for this test
: Greater than
LCS: Laboratory Control Sample
NT: Not tested
: Less than
RPD: Relative Percent Difference
NA: Test not required
PQL: Practical Quantitation Limit

Laboratory Acceptance Criteria

Matrix Spikes and LCS:Generally 70-130% for inorganics/metals, 60-140% for organics is acceptable.Matrix heterogeneity may result in matrix spike analyses falling outside these limits.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:
Results <10 times the PQL : No Limit</p>
Results between 10-20 times the PQL : RPD must lie between 0-50%
Results >20 times the PQL : RPD must lie between 0-30%
Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards.

Tests not covered by NATA are denoted with *.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50

****Methods Number Description:**

ESA-MP-01	Determination of metals by MP-AES
ESA-MP-02	Digestion of soil samples for MP-AES analysis
ESA-MP-03	Preparation of water samples for metals determination by MP-AES
ESA-MP-04	TCLP for inorganic contaminants
ESA-MP-05	Digestion of paint and dust samples for lead contect determination
ESA-MP-06	Digestion of air filters
ESA-MP-07	Digestion of swabs for determination of lead content in dust
ESA-P-ORG02	Analysis of PAHs by GC-MS
ESA-P-ORG03	Analysis of TRH and TPH by GC-FID
ESA-P-ORG04	Separatory funnel extraction of PAHs from water matrices including TCLP extracts
ESA-P-ORG05	Separatory funnel extraction of TRH and TPH from water matrices
ESA-P-ORG06	Silica gel clean up of soil and water extracts, prior analysis for STPH
ESA-P-ORG07	Extraction of BTEX and VTRX from soil matrices
ESA-P-ORG08	Analysis of soil extracts and waters by P&T GCMS
ESA-P-ORG09	Extraction of TRH from solid matrices
ESA-P-ORG14	Extraction of PCB (Aroclor) OCP OPP and PAH from soil matrices
ESA-P-ORG15	Analysis of PCB OCP OPP and PAH by GCMS
AS 1289.4.3.1	Determination of the pH value of a soil-Electrometric method
AS 1289.3.6.1	Determination of the particle size distribution of a soil - Standard method of analysis by sieving
T276	NSW RMS Test Method T 276 Foreign materials content of recycled crushed concrete
*Texture Assess	ment based on; Salinity Notes, Number 8, Oct 2000, ISSN 1 325-4448, "How to Texture soils & Test for Salinity"
*ESA-P-16	Procedure for measurement of Electrical Conductivity EC
ESA-P-12	Procedure for determination of moisture

Accreditation No.14664.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or

measurements included in this document are traceable

to Australian/national standards.

Tests not covered by NATA are denoted with *.

This document shall not be reproduced, except in full.

New South Wales Office: A. D. Envirotech Australia Pty Ltd Unit 4, 10-11 Millennium Court Silverwater, NSW 2128

Telephone: (02) 9648 6669 e-mail: info@ADenvirotech.com.au

ABN: 520 934 529 50