

Report on Detailed Site Investigation (Contamination)

Arthur Phillip High School South Site 175 Macquarie Street, Parramatta

> Prepared for Grimshaw Architects LLD

Project 85374.02 Rev2 November 2016

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	85374.02	Document No.	R.002.Rev2	
Document title	Report on Detailed Site Investigation (Contamination)			
	Arthur Phillip Hig	h School South Site	57	
Site address	175 Macquarie S	treet, Parramatta		
Report prepared for	Grimshaw Archit	ects LLD		
File name	85374.02.R.002.	Rev2		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Christopher Bagia	Tim Wright	18 August 2016
Revision 1	Christopher Bagia	Tim Wright	17 October 2016
Revision 2	Christopher Bagia	Tim Wright	14 November 2016

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Louise Browne; Grimshaw Architects LLD
Revision 1	1	0	Louise Browne; Grimshaw Architects LLD
Revision 2	1	0	Louise Browne; Grimshaw Architects LLD

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date	
Author PA 200	14 November 2016	
Reviewer	14 November 2016	

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Table of Contents

Page

1.	Introc	luction	1
2.	Scop	e of Works	1
3.	Site I	dentification and Description	3
	3.1	Site Identification	3
	3.2	Site Description	4
4.	Regio	onal Topography, Geology and Hydrogeology	5
	4.1	Topography and Surface Water	5
	4.2	Geology	5
	4.3	Soil Landscape	5
	4.4	Groundwater	6
5.	Site H	History Assessment	6
	5.1	Previous Reports	6
		5.1.1 Alliance Geotechnical Reports	
		5.1.2 DP Hazardous Building Materials Report	
	5.2	Regulatory Notices Search	8
	5.3	Lancer Barracks	9
6.	Prelir	ninary Conceptual Site Model	.10
6.	Prelin 6.1	ninary Conceptual Site Model Potential Contamination Sources	
6.			.10
6.	6.1	Potential Contamination Sources	10 11
6.	6.1 6.2	Potential Contamination Sources Potential Contamination Receptors	10 11 11
6. 7.	6.1 6.2 6.3 6.4	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways	10 11 11 11
-	6.1 6.2 6.3 6.4	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model	10 11 11 11
-	6.1 6.2 6.3 6.4 Field	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model Work Methods	10 11 11 11 12 12
-	6.1 6.2 6.3 6.4 Field 7.1	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model Work Methods Data Quality Objectives and Project Quality Procedures	10 11 11 12 12 13
-	6.1 6.2 6.3 6.4 Field 7.1 7.2	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model Work Methods Data Quality Objectives and Project Quality Procedures Data Quality Indicators	10 11 11 12 12 13 13
-	 6.1 6.2 6.3 6.4 Field 7.1 7.2 7.3 	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model Work Methods Data Quality Objectives and Project Quality Procedures Data Quality Indicators. Sampling Locations and Rationale	10 11 11 12 12 13 13 14
-	 6.1 6.2 6.3 6.4 Field 7.1 7.2 7.3 7.4 	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model Work Methods Data Quality Objectives and Project Quality Procedures Data Quality Indicators Sampling Locations and Rationale Drilling Methods	10 11 11 12 12 13 13 14 14
-	 6.1 6.2 6.3 6.4 Field 7.1 7.2 7.3 7.4 7.5 	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model Work Methods Data Quality Objectives and Project Quality Procedures Data Quality Indicators Sampling Locations and Rationale Drilling Methods Soil Sampling Procedures	10 11 11 12 12 13 13 14 14 15
-	 6.1 6.2 6.3 6.4 Field 7.1 7.2 7.3 7.4 7.5 7.6 	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model Work Methods Data Quality Objectives and Project Quality Procedures Data Quality Indicators Sampling Locations and Rationale Drilling Methods Soil Sampling Procedures Groundwater Well Construction and Groundwater Sampling	10 11 11 12 12 13 13 13 14 14 15 16
-	6.1 6.2 6.3 6.4 Field 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Potential Contamination Sources Potential Contamination Receptors Potential Contamination Pathways Summary of Conceptual Site Model Work Methods Data Quality Objectives and Project Quality Procedures Data Quality Indicators Sampling Locations and Rationale Drilling Methods Soil Sampling Procedures Groundwater Well Construction and Groundwater Sampling Analytical Rationale	10 11 11 12 12 13 13 14 14 15 16

	8.1	Soil		17
		8.1.1	Health Investigation and Screening Levels	17
		8.1.2	Ecological Investigation and Screening Levels	18
			Management Limits	
		8.1.4	Asbestos in Soil	21
	8.2	Ground	water	21
		8.2.1	Groundwater Investigation Levels	21
		8.2.2	Health Screening Levels – Petroleum Hydrocarbons	23
	8.3	Contam	ninants with No Assessment Criteria	24
9.	Field	Work Re	esults	24
	9.1	Soil		24
	9.2	Ground	water	24
10.	Labor	atory Te	sting	25
11.	Discu	ssion of	Results	25
	11.1	Field O	bservations	26
	11.2	Soil Ana	alytical Results	26
	11.3	Ground	water Analytical Results	27
12.	Concl	usions a	and Recommendations	27
13.	Limita	itions		28

Appendix A:	Drawings
Appendix B:	Site Photographs
Appendix C:	Data Quality Assessment
Appendix D:	Test Bore Logs
	Notes about this Report
	Groundwater Field Sheets

Appendix E: Summary of Laboratory Results for Soil, Laboratory Certificates and Advice (Chromatograms) and Chain of Custody Documentation

Report on Detailed Site Investigation (Contamination) Arthur Phillip High School South Site 175 Macquarie Street, Parramatta

1. Introduction

This report presents the results of a detailed site investigation (DSI) undertaken for contamination purposes at Arthur Phillip High School South Site at Macquarie Street, Parramatta NSW (the site). The investigation was commissioned by Louise Browne of Grimshaw Architects LLD and was undertaken in accordance with Douglas Partners' (DP) proposal SYD160465 dated 7 April 2016.

It is understood that the DSI is required to inform the design of the proposed redevelopment of Arthur Phillip High School and the adjacent Parramatta Public School. The redevelopment involves the demolition of some existing buildings and the upgrading of other buildings on site.

The aim of the DSI was to address data gaps in previous reports as identified in DP report *Review of Reports – Site Contamination, Arthur Phillip High School and Parramatta Public School, Macquarie Street, Parramatta*, Project 85374.01 R.001, dated 9 March 2016 (DP, 2016a).

The DSI included a site walkover, sampling from six locations and laboratory testing of selected samples. The details of the field work are presented in this report, together with recommendations for further works or remediation.

2. Scope of Works

The scope of works for the DSI was as follows:

- Assessment of the analytical data to assess the impact of the limited extent of analysis of the filling undertaken for the identified contaminants of potential concern (CoPC) to inform the requirement for further sampling and analysis;
- Further statistical analysis of the lead concentrations recorded in filling and natural soils;
- Seek confirmation from site personnel whether or not dangerous goods (e.g. underground or above ground storage tanks, chemicals etc) are currently, or have been historically, stored on site;
- Drill six hand auger boreholes to depths of between 0.4 m and 1.1 m;
- Drill one borehole using a truck mounted drilling to a depth of 10 m (Borehole MW1);
- Collect soil samples from the near surface then at regular intervals and where signs of contamination are observed;
- Screen each sample for volatile organic compounds (VOC) using a photoionisation detector (PID);

- Construct a groundwater well in the borehole MW1 (Well MW1);
- Analyse selected samples for the following contaminants of concern to assess suitability for reuse and classification for off-site disposal:
 - Metals (eight priority metals);
 - Total recoverable hydrocarbons (TRH);
 - Benzene, toluene, ethylbenzene and xylene (BTEX);
 - Polycyclic aromatic hydrocarbons (PAH);
 - Organophosphorus pesticides (OCP);
 - Organophosphorus pesticides (OPP);
 - Polychlorinated biphenyls (PCB);
 - Phenols;
 - Poly-fluoroalkyl substances (PFAS, including PFOS and PFOA);
 - Asbestos (500 mL sample);
 - pH and cation exchange capacity (CEC);
- Analysis of the following (soil) samples for QA/QC purposes will also be undertaken:
 - o 5% Intra-laboratory replicate soil samples for metals and TRH/BTEX;
 - o One trip spike sample for BTEX; and
 - One trip blank sample for BTEX.
- Development of three groundwater wells (Well MW1 as well as two wells previously constructed on the adjacent APHS-N and PPS sites¹) by removing a minimum of three well volumes or until each well is dry;
- Collection of groundwater samples from all three monitoring well using a peristaltic sampling pump. The physical parameters of pH, conductivity, dissolved oxygen and oxidation / reduction potential will be measured and recorded whilst sampling;
- Conduct laboratory analysis on three groundwater samples (plus QA/QC) at a NATA accredited laboratory for the following common contaminants and parameters:
 - Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc);
 - Total recoverable hydrocarbons (TRH);
 - Monocyclic aromatic hydrocarbons (benzene, toluene, ethylbenzene and xylene BTEX);
 - Polycyclic aromatic hydrocarbons (PAH);
 - Phenols;
 - Polychlorinated biphenyls (PCB);
 - Organochlorine pesticides (OCP);
 - Organophosphorus pesticides (OPP);
 - Volatile organic compounds (VOC);
 - Poly-fluoroalkyl substances (PFAS, including PFOS and PFOA);

Page 2 of 29

¹ Arthur Phillip High School – North (APHS-N) and Parramatta Public School (PPS)

- o Hardness;
- QA/QC:
 - One replicate sample for metals and PAH;
 - One trip spike sample for BTEX; and
 - One blank sample for BTEX.

3. Site Identification and Description

3.1 Site Identification

The site is located at the junction of Macquarie Street and Smith Street, Parramatta and is currently in operation as a High School (Arthur Phillip High School). The site Information is provided in Table 1 and the site location is provided on Figure 1 below and Drawing 1, Appendix A.

Table 1: Site Identification

Item	Description	
Site Address	175 Macquarie Street, Parramatta	
Legal Description	Lots 1, 2 & 3 D.P. 115296 and part Lot 414 D.P.820542	
Approximate Area	9,000 m ²	
Local Council Area	Parramatta City Council	
Current Zoning	B3 Commercial Core (including educational establishments) LEP 2011	
Previous Zoning	B3 Commercial Core (including educational establishments) LEP 2007	

The site is an irregular shape and is bound by Parramatta Public School to the east, Macquarie Street to the north, residential housing and parkland to the south and Smith Street to the west.

Figure 1: Site location and approximate site boundary (red)

3.2 Site Description

A site walkover was undertaken by a DP Environmental Scientist on the 19 April 2016. The observations made at that time are summarised below. The site layout is shown on Drawings 1 and 2 Appendix A. Photographs are provided in Appendix B.

The following features were observed:

- A number of multi-storey brick buildings containing classrooms and school administration encircled the site (Photograph 1);
- Occupying the centre of the site was an asphalt courtyard with seating areas and marked games areas (Photograph 2);
- A small bitumen asphalt paved car park was located in the northwestern corner of the site, the asphalt appeared to be in relatively poor condition (Photograph 3);
- The entire surface across the site was covered with bitumen asphalt;
- A small metal awning was located in the northern side of the central courtyard (Photograph 2);
- There were several raised planters throughout the playground (Photograph 1) as well as garden beds spread sporadically around the perimeter;
- A small 15 m by 15 m shade cloth covered part of the central courtyard in the western corner;

- Anecdotal evidence from the maintenance staff identified no underground storage tanks, above ground storage tanks or areas for dangerous chemical storage on site;
- No signs of distressed vegetation were observed during the site walkover; and
- No signs of gross contamination were observed during the site walkover.

The site is located on the edge of Parramatta CBD with major roads and surrounding sites comprising a range of commercial and residential uses, as well as sporting ovals and parkland.

4. Regional Topography, Geology and Hydrogeology

4.1 Topography and Surface Water

The site slopes towards Macquarie Street at an elevation of between 14 m and 12 m AHD. The regional slope is towards Parramatta River approximately 380 m north east of the site.

4.2 Geology

Reference to the Sydney 1:100000 Geological Map indicates that the site is underlain by Ashfield Shale of the Wianamatta Group. Ashfield Shale typically comprises black to dark grey shale and laminite.

4.3 Soil Landscape

The Sydney 1:100,000 Soils Landscape Sheet indicates that the site is underlain by the residual Blacktown soil landscape group. The soil landscape group typically occurs on gently undulating rises on Wianamatta Group shales and Hawkesbury Shale where the local relief is up to 30 m and slopes are usually <5%. It is also typical of broad rounded crests and ridges with gently inclined slopes. The soil types typically include shallow to moderately deep (<1000 mm) red and brown podzolic soils on crests, upper slopes and well drained areas and deep (1500 mm to 3000 mm) yellow podzolic soils and soloths on lower slopes and in areas of poor drainage. This soil group tends to be moderately reactive and highly plastic with low soil fertility and poor soil drainage.

The NSW National Resource Atlas Acid Sulfate Soil Risk Map indicates that the site is located in an area of 'no known occurrence of acid sulphate soil'.

The Department of Infrastructure, Planning and Natural Resources Salinity Potential in Western Sydney map 2002 indicates that the site is located in an area of moderate salinity potential. Soil salinity was considered in the previous geotechnical investigation 'Alliance Geotechnical Report; *Geotechnical Investigation Report, Arthur Phillip High School and Parramatta Public School, Macquarie Street, Parramatta*, Report Number: 1915-GR-1-1, dated 31 July 2015 (AG, 2015b) which provides recommendations for the proposed development.

4.4 Groundwater

Local contours suggest groundwater at the site is expected to conform with the anticipated regional groundwater and flow towards the north-east in the general direction of Parramatta River, approximately 380 m from the site.

A search of the NSW Department of Primary Industries, Office of Water registered groundwater bore database on 31 May 2016 revealed no registered groundwater bores within 500 m.

5. Site History Assessment

The following sections summarise the site history based on previous reports and a review of EPA public databases. Review of Council records, including 149 Certificates, and records of the storage of dangerous goods held by SafeWork NSW was not part of the agreed scope of works for this DSI.

5.1 **Previous Reports**

5.1.1 Alliance Geotechnical Reports

The following existing site contamination reports were reviewed by DP (2016a) which are summarised below:

- Alliance Geotechnical Report; *Detailed Site Investigation, Arthur Phillip High School and Parramatta Public School*, Report Number: 1915-ER-1-1, dated 11 August 2015 (AG, 2015b); and
- Alliance Geotechnical Report; *Remedial Action Plan and Asbestos Management Plan, Arthur Phillip High School and Parramatta Public School*, Report Number: 1915-ER-1-2, dated 14 August 2015 (AG, 2015c).

AG (2015b) comprised a detailed site investigation for Parramatta Public School and the adjacent Arthur Phillip High School, and included a site history review, a site walkover and an intrusive investigation comprising soil sampling and analysis. The following relates to the Arthur Phillip High School South Site only.

The site history review indicated that the site appeared to have been used for educational purposes from the early 1880s till present, with the exception of Lot 414 DP 820542 (the eastern section of the site) which passed through a series of owners (including a merchant and a builder) between 1914 and 1918 before being purchased as Crown land. The site was used as a school and possibly other public uses until the present day. Minor earthworks and the construction and demolition of buildings had occurred on the site over the years.

The findings of a site walkover conducted by AG on 9, 10 and 13 July 2015 were similar to those encountered during the site walkover for this DSI (Section 3.2).

The fieldwork comprised a total of fifteen mechanically advanced boreholes (BH23 to BH37) (refer to Drawing 2, Appendix A).

AG (2015b) included a sampling and analysis plan, which comprised data quality objectives, soil sampling methodology, decontamination procedures and laboratory analysis and an assessment of quality control and quality assurance procedures. AG (2015b) concluded that based on the results of the field and laboratory QA/QC program the 'soil data is of an acceptable quality upon which to draw conclusions regarding the environmental condition of the site'. Whilst, in some instances, there is no rationale for some of the decisions made and there are a couple of omissions, such as no trip spike sample, this is not considered sufficient to undermine to conclusion in AG (2015b). Therefore the data provided in AG (2015b) has been considered suitable for inclusion in this DSI.

The filling was encountered to depths of between 0.2 m and 0.4 m below ground level (bgl) and comprised brown gravelly clay with foreign material such as igneous gravel.

No indicators of contamination, other than the foreign materials, such as hydrocarbon odours, asbestos-containing materials (ACM) or staining were observed in the site soils.

Natural material below the filling across the site comprised red to brown clay to depths of between 0.7 m and 1.2 m bgl.

All recorded concentrations of metals, PAH, TRH, BTEX, OCP, OPP and PCB were below the laboratory limit of reporting and the site assessment criteria (SAC). However, only one sample of filling was sent for analysis.

AG (2015b) concluded that 'the site is able to be made suitable for residential with accessible soils land use with the following recommendations':

- Preparation of a remediation action plan (RAP);
- Preparation of an asbestos management plan (AMP) to manage asbestos during redevelopment; and
- Preparation of a validation report to demonstrate adequate remediation of any unexpected finds, and to provide a statement on the suitability of the site for the proposed use.

AG (2015c) comprises a RAP and asbestos management plan (AMP) and includes the following:

- A scope of additional assessment works;
- A review of remediation options;
- A remedial plan;
- A contingency plan;
- A validation plan; and
- An AMP.

AG (2015c) concluded that 'the site can be made suitable for the proposed residential with accessible soils land use' subject to the successful implementation of the measures detailed in the RAP.

DP (2016a) recommended that the following are undertaken in addition to the recommendations in AG (2015b):

- Seek confirmation from site personnel whether or not dangerous goods (e.g. underground or above ground storage tanks, chemicals etc) are currently, or have been historically, stored on site – Refer to Section 3.2 of this DSI;
- Re-assess the copper, nickel and zinc results against EIL calculated based on site derived criteria (soil samples analysed for CEC and pH) or based on reasonably conservative assumed values of CEC and pH for the soils types encountered- refer to Section 11.2 of this DSI;
- Undertake a detailed assessment of the analytical data to assess the impact of the limited extent
 of analysis of the filling undertaken for the identified CoPC to inform the requirement for further
 sampling and analysis either prior to or during redevelopment works refer to Section 7.3 of this
 DSI; and
- Further statistical analysis of the lead concentrations recorded in filling and natural soils refer to Section 11.2 of this DSI.

5.1.2 DP Hazardous Building Materials Report

DP report *Review of Reports – Hazardous Building Materials, Arthur Phillip High School and Parramatta Public School, Macquarie Street Parramatta NSW, 21 March 2016* (DP, 2016b) provides a review of existing and historical Hazardous Building Materials (HBM) reports relating to the proposed redevelopment of Arthur Phillip High School and Parramatta Public School. A summary of the findings of the review which relate to Arthur Phillip High School South Site is presented below.

- Asbestos-containing materials, lead-containing paint and synthetic mineral fibre products were identified. There is laboratory confirmation of asbestos materials but not of the lead paint coatings;
- Due to the limitations of the survey: the number of non-accessed areas, no investigation of other hazardous materials and absence of invasive survey techniques the documents are insufficient to meet the requirements of a pre-demolition survey and Register of asbestos and other hazardous materials;
- Further survey works and update of Register to be undertaken; and
- In accordance with Work Health and Safety Regulations 2011 (NSW) (specifically chapter eight) and associated Codes of Practice (How to Manage and Control Asbestos in the Workplace [Safe Work Australia (2011)] and Demolition Work Code of Practice [WorkCover NSW (2014)]) it is recommended that a full access (intrusive) asbestos and other hazardous materials survey is undertaken of all building structures on site and an updated Register of asbestos and other hazardous materials drawn up prior to the commencement of any demolition works.

5.2 Regulatory Notices Search

The EPA publishes records of contaminated sites under section 58 of the *Contaminated Land Management Act* 1997 (CLM Act) on a public database accessed via the internet. The notices relate to investigation and/or remediation of sites considered to be significantly contaminated under the definition in the CLM Act. More specifically the notices cover the following:

- Actions taken by the EPA under sections 15, 17, 19, 21, 23, 26 or 28 of the CLM Act;
- Actions taken by the EPA under sections 35 or 36 of the Environmentally Hazardous Chemicals Act 1985; and
- Site audit statements provided to the EPA under section 52 of the CLM Act on sites subject to an in-force remediation order.

A search of the public database on 1 June 2016 indicated that the site was not listed.

A search of the List of NSW Contaminated Sites notified to the EPA indicated that the site or surrounding areas were not listed,

It should be noted that the EPA record of Notices for contaminated land does not provide a record of all contaminated land in NSW.

The NSW EPA also issues environmental protection licenses under section 308 of the *Protection of the Environment Operations Act* 1997 (POEO Act). The register contains:

- Environmental protection licenses;
- Applications for new licenses and to transfer or vary existing licenses;
- Environment protection and noise control licenses;
- Convictions in prosecutions under the POEO Act;
- The result of civil proceedings;
- License review information;
- Exemptions from provisions of the POEO Act or Regulations;
- Approvals granted under Clause 9 of the POEO (Control of Burning) Regulation; and
- Approvals granted under Clause 7a of the POEO (Clean Air) Regulation.

A search of the public register on 1 June 2016 indicated that no Environmental Protection Licences were issued to the site.

A number of sites were listed in close proximity to the site as being subject to licences, all of which are listed as 'surrendered' or 'no longer in force.'

5.3 Lancer Barracks

Lancer Barracks is located immediately to the south of the site. The barracks were built between 1818 and 1820 to house British troops. An information leaflet on the Australian Government Department of Defence website titled Lancer Barracks, Parramatta, New South Wales, dated 1 October 2013 provides to following information in relation to potential contamination:

 Activities carried out at the site are relatively benign in terms of environmental contamination; however the base does contain a chemical storage compound and once contained two above ground storage tanks that were used to store diesel and waste oil. The two above ground storage tanks are no longer used; and

• Based on a limited stage 1 investigation *no known contamination exists on the site* and further action is currently proposed.

6. Preliminary Conceptual Site Model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e. it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

6.1 Potential Contamination Sources

The site has been previously used as a school and possible other public activities. Areas of the site may have been filled during the construction of, and amendments to, the school. Given the age of the school it is possible that near surface soils could be impacted with hazardous building materials such as asbestos and lead paint. Pesticides may have also been used in the past as pest control beneath floors and concrete slabs (school and former dwellings) and other parts of the school grounds. Hazardous building materials have been identified in the existing buildings on site. Therefore the following potential sources of contamination and associated contaminants of potential concern (COPC) have been identified.

S1 Filling and surficial soil: Associated with levelling, demolition of former buildings and use of the site.

COPC include metals, total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), phenols, and asbestos.

S2 Existing Buildings.

Asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB.

S3 Lancer Barracks

TPH, BTEX, PAH and perfluorinated Alkyated Substance (PFAS).

6.2 Potential Contamination Receptors

The main potential receptors of contamination (current and future) are considered to be:

- (R1) Site users (students, staff and visitors);
- (R2) Construction workers (for the construction of the proposed development);
- (R3) Adjacent site users;
- (R4) Surface water (Parramatta River);
- (R5) Groundwater;
- (R6) Terrestrial ecology; and
- (R7) In-ground structures.

6.3 Potential Contamination Pathways

The potential contamination pathways through which the identified receptors could come into contact with contamination are considered to be:

- (P1) Ingestion and dermal contact;
- (P2) Inhalation of dust and / or vapours;
- (P3) Surface water run off;
- (P4) Leaching and vertical migration into groundwater;
- (P5) Lateral migration of groundwater;
- (P6) Contact with terrestrial ecology; and
- (P7) Contact with in-ground structures.

6.4 Summary of Conceptual Site Model

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible complete pathways between the above sources (S1 to S3) and receptors (R1 to R7) are provided in Table 2.

Potential Source	Transport Pathway	Receptor
(S1) Filling and surficial soil	(P1) Ingestion and dermal contact (P2) Inhalation of dust and / or vapours	(R1) Site users (R2) Construction workers
	(P2) Inhalation of dust and / or vapours	(R3) Adjacent site users
	(P3) Surface water run off (P5) Lateral migration of groundwater	(R4) Surface water
	(P4) Leaching and vertical migration into groundwater	(R5) Groundwater
	(P6) Contact with terrestrial ecology	(R6) Terrestrial ecology
	(P7) Contact with in-ground structures	(R7) In-ground structures
(S2) Hazardous building materials	(P1): Ingestion and dermal contact (P2): Inhalation of dust and / or vapours	(R1) Site users (R2) Construction workers
(S3) Lancer Barracks	(P2): Inhalation of dust and Vapours	(R1) Site users (R2) Construction workers

Table 2: Summary of Potential Complete Pathways

7. Field Work Methods

7.1 Data Quality Objectives and Project Quality Procedures

The DSI has been devised broadly in accordance with the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of National Environment Protection Measure 1999 revised 2013, National Environment Protection Council (NEPC, 2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

Referenced sections for the respective DQOs listed above are presented in Appendix C.

7.2 Data Quality Indicators

The performance of the assessment in achieving the DQO was assessed through the application of Data Quality Indicators (DQI), defined as follows:

Completeness:	A measure of the amount of useable data from a data collection activity;		
Comparability:	The confidence (expressed qualitatively) that data can be considered equivalent for each sampling and analytical event;		
Representativeness:	The confidence (expressed qualitatively) that data are representative of each media present on the site;		
Precision:	A quantitative measure of the variability (or reproducibility) of data; and		
Accuracy:	A quantitative measure of the closeness of reported data to the "true" value.		

Further comments on the DQIs are presented in Appendix C.

7.3 Sampling Locations and Rationale

The recommended minimum sampling density as stipulated in the NSW EPA Contaminated Sites: Sampling Design Guidelines, (1995) for a 9,000 m² site is 20 sampling points. The previous investigation (AG, 2015b) comprised 15 boreholes. The purpose of this investigation was to provide further insight into potential contamination on site and following review of the findings of AG (2015b) six test bores (BH6 to BH12) were deemed suitable to complete the site assessment, i.e. a total of 21 locations. The test bore locations are shown on Drawing 2, Appendix A. The locations were selected on the basis of providing adequate site coverage.

The intrusive works were conducted on the 19 April 2016. Soil samples were collected from the six test bore locations.

Groundwater assessment was conducted from three wells located over APHS-N, APHS-S and PPS, with one well located on each site. Two of the wells were constructed as part of the geotechnical investigation (DP, 2016c: Wells 102 and 103). The third well was constructed in APHS-S as close as reasonably possible to Lancer Barracks to the south. This sampling design was considered appropriate given the relatively low risk of groundwater contamination at the sites. Well locations are shown on Drawing 3, Appendix A.

Groundwater contamination is considered to be low risk based on a number of factors, namely:

- The site use has been used for schools for over 70 years, which is considered to be a very low risk activity for groundwater contamination;
- Earlier uses were generally also of low risk, with the likelihood of contaminants from this time to remain in groundwater at the site with no soil source considered to be extremely low;
- The chemical contaminants detected at the site have been present in the upper 0.5 m of the soil profile;
- The PAH and TRH exceedances appearing to be associated with asphalt in most if not all locations detected, and are therefore not expected to be leachable; and

• The identified potential up-gradient source (the Lancer Barracks) has been reported to have "no known contamination" and following preparation of a Limited Stage 1 investigation no further action is proposed, although the need for assessment around the former above ground tanks if the areas were to be redeveloped has been identified (Section 5.3). Based on this assessment the risk from the site is considered to be low to moderate, and wells have been positioned to assess potential impacts from the Barracks.

7.4 Drilling Methods

Hand auger drilling was undertaken using a hand auger with a 110 mm diameter head. Asphalt was encountered at each location and was removed using a 10kg hand-held rotary hammer. Auguring was conducted down to a maximum depth of 1.0 m bgl or prior refusal. Asphalt was reinstated once test bores were terminated. Test bore logs are provided in Appendix D.

Drilling for Well MW1 was drilled using a truck-mounted drilling rig and solid flight auger.

The drilling techniques and sampling techniques (see Section7.5) were considered appropriate for the DSI based on the site history and potential contamination sources; i.e. predominantly non-volatiles contaminants of concern. The potential source of volatile contamination was filling which would have been highly disturbed at the time of placement between 50 and almost 100 years ago. However, loss of volatiles during drilling and sampling was minimised by timely sampling from auger returns and appropriate storage and preservation.

7.5 Soil Sampling Procedures

Environmental sampling was performed in accordance with standard operating procedures outlined in the DP *Field Procedures Manual*. All sampling data was recorded on test bore logs presented in Appendix D and selected samples for laboratory analysis were recorded on DP chain-of-custody (COC) sheets provided in Appendix E. The general soil sampling procedure comprised:

- Use of disposable sampling equipment including nitrile gloves;
- Transfer of samples into laboratory prepared glass jars and capping immediately with Teflon lined lids;
- Labelling of sampling containers with individual and unique identification, including project number sample location and sample depth; and
- Placement of sample containers and bags into a cooled, insulated and sealed container for transport to the laboratory.

No new clothes, Tyvek suits, food wrappers, alfoil, light plastic containers, waterproof paper, selfsticking notes, re-usable ice packs or drilling fluids were used on site during PFAS sampling.

Envirolab Services Pty Ltd, accredited by NATA, was employed to conduct the primary sample analysis. The laboratory is required to carry out in-house QC procedures.

7.6 Groundwater Well Construction and Groundwater Sampling

Two of the wells were constructed as part of the geotechnical investigation (DP, 2016c). These wells were constructed in Bores 102 and 103 (Wells 102 and 103) which were drilled using a Scout truck mounted auger/rotary drilling rig, using auger, rotary and NMLC-coring methods. Well construction details are shown on the borehole logs, Appendix D.

One of the wells was constructed in Bore MW1 (Well MW1), which was drilled using a DT-100 truck mounted auger/rotary drilling rig, using auger drilling methods. Well construction details are shown on the borehole log, Appendix D.

Groundwater monitoring wells were constructed so that the screened interval intercepted the expected depth of the water table. No drilling muds/ liquids were used in the drilling.

The groundwater monitoring wells were constructed of 50 mm diameter acid washed class 18 PVC casing and machine slotted well screen intervals. Joints were screw threaded, thereby avoiding the use of glues and solvents which may contaminate the wells. All wells were capped and a Gatic cover placed flush with the ground surface.

The groundwater levels were measured using an interface meter and the wells were developed on 13 September 2016 by pumping until dry. No phase separated hydrocarbons (PSH) were noted during the development.

The general groundwater sampling procedure comprised:

- Use of disposable, non-teflon containing measuring and sampling equipment including nitrile gloves;
- Collection of sample for chemical analysis from water which has only been in contact with new, disposable silicon and LDPE tubing;
- Transfer of samples into appropriately preserved laboratory prepared glass jars and capping immediately. Sampling containers for PFAS did not have Teflon lined lids);
- Labelling of sampling containers with individual and unique identification, including project number sample location and sample depth; and
- Placement of sample jars into a cooled, insulated and sealed container for transport to the laboratory.

No new clothes, Tyvek suits, food wrappers, alfoil, light plastic containers, waterproof paper, selfsticking notes, re-usable ice packs or drilling fluids were used on site during PFAS sampling. Decon 90 and potentially treated (e.g. Gore-tex) clothing was used/ worn during sampling.

The wells were micro-purged and sampled between 16 and 19 September 2016 using a low flow pump (Geopump). No PSH was observed during micropurging or sampling. Samples from Wells 102 and MW1 were collected following stabilisation of field parameters (pH, temperature, dissolved oxygen (DO), electrical conductivity and redox). Insufficient water was present in Well 103 to allow micropurging before sampling.

Samples were placed with a minimum of aeration into laboratory prepared and preserved bottles. For analysis of metals the relevant sample fraction was filtered using an in-line disposable 0.45 μ m filter that was changed between samples.

The samples were placed in an insulated cooler and maintained at a cool temperature using ice for transport to the analytical laboratory.

7.7 Analytical Rationale

The analytical scheme was designed to obtain an indication of the potential presence and possible distribution of contaminants that may be attributable to past and present activities, and features within the site, as discussed in Section 6.

7.8 Field Quality Assurance and Quality Control

The field QC procedures for sampling were undertaken in accordance with Douglas Partners' *Field Procedures Manual*. Field replicates were recovered and analysed for a limited suite of contaminants by means of intra-laboratory analysis. The results of the field QA programme are presented in Appendix C.

7.9 Laboratory QA/QC

The analytical laboratory, accredited by NATA, is required to conduct in-house QA/QC procedures. These are normally incorporated into every analytical run and include reagent blanks, spike recovery, surrogate recovery and duplicate samples.

The results of the DP assessment of laboratory QA/QC are shown in Appendix C with the laboratory certificates of analysis included in Appendix E.

8. Site Assessment Criteria

The current site use is a secondary school, it is understood that the intended end use of the site is a redevelopment of the secondary school facilities. However, the site will be redeveloped at the same time as the adjacent Parramatta Public School (primary school). It is possible that the redevelopment may include the movement of site soils between the two schools and therefore the proposed Site Assessment Criteria (SAC) will be for more conservative residential with garden/accessible soil which also includes childcare centres, preschools and primary schools.

The SAC applied in the current investigation are informed by the CSM which identified human and ecological receptors to potential contamination on the site. Analytical results were assessed (as a Tier 1 assessment) against the SAC comprising the investigation and screening levels of Schedule B1, *National Environment Protection (Assessment of Site Contamination) Measure* 1999, as amended 2013 (NEPC, 2013). NEPC (2013) is endorsed by the NSW EPA under the CLM Act 1997. Petroleum

based health screening levels for direct contact and vapour inhalation by intrusive maintenance workers from the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report no.10 Health screening levels for petroleum hydrocarbons in soil and groundwater (2011) as referenced by NEPC (2013) have not been considered in this assessment as these values are significantly higher than the soil vapour HSLs adopted.

8.1 Soil

8.1.1 Health Investigation and Screening Levels

Table 3 shows the HILs that have been adopted by NEPC (2013) Schedule B1, Table 1A(1). Table 3 only includes contaminants analysed during this assessment, not the full list provided in NEPC (2013).

Contaminant	HIL A – Residential (mg/kg)
Metals and Inorganics	
Arsenic	100
Cadmium	20
Chromium (IV)	100
Copper	6000
Lead	300
Mercury (inorganic)	40
Nickel	400
Zinc	7400
РАН	
Carcinogenic PAH (as benzo(a)pyrene TEQ) ¹	3
Total PAH	300
Phenols	
Pentachlorophenol (used as an initial screen)	100
OCP	
DDT + DDD + DDE	240
Aldrin + Dieldrin	6
Chlordane	50
Endosulfan (total)	270
Endrin	10
Hepatchlor	60
НСВ	10
Methoxychlor	300
Other Pesticides	
Chlorpyrifos	160

Table 3: Health Investigation Levels

Contaminant	HIL A – Residential (mg/kg)
Other Organics	
PCB ²	1
PFAS ³	4

Notes:

1 sum of carcinogenic PAH

- 2 non dioxin-like PCBs only.
- 3 Threshold adopted from human health residential values for PFOS from Government of Western Australia Department of Environment Regulation (DER) Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) Contaminated Sites Guidelines (2016) (DER, 206) in the absence of EPA endorsed criteria

Table 4 shows petroleum hydrocarbon compounds adopted from NEPC (2013) Schedule B1, Table 1A(3). The HSLs are based on overlying soil type and depth. HSLs for sand have been used based on the sandy clay fill material encountered at the site. Given the general depth of fill encountered in the investigation during the intrusive works, and using the most conservative values, the depth range of 0 m to <1 m has been used.

Contaminant	Soil Type	HSL A – Residential (mg/kg)	
		Depth 0 m to <1m	
Toluene		160	
Ethylbenzene		55	
Xylenes		40	
Napthalene	Sand	3	
Benzene	Sanu	0.5	
TRH C ₆ -C ₁₀ less BTEX [F1]		45	
TRH >C ₁₀ -C ₁₆ less naphthalene [F2]		110	

Table 4: Soil Health Screening Levels for Vapour Intrusion

8.1.2 Ecological Investigation and Screening Levels

Ecological Investigation Levels (EIL) have been derived for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems (NEPC, 2013). EIL depend on specific soil physiochemical properties and land use scenarios and generally apply to the top 2 m of soil, which corresponds to the root zone and habitation zone of many species. The EIL is determined for a contaminant based on the sum of the ambient background concentration (ABC) and an added contaminant limit (ACL). The ABC of a contaminant is the soil concentration in a specific locality that is the sum of naturally occurring background levels and the contaminants levels that have been introduced from diffuse or non-point sources (e.g. motor vehicle emissions). The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required.

The EIL is calculated using the following formula:

EIL = ABC + ACL,

The ABC is determined through direct measurement at an appropriate reference site (preferred) or through the use of methods defined by Olszowy et al *Trace element concentrations in soils from rural and urban areas of Australia*, Contaminated Sites monograph no. 4, South Australian Health Commission, Adelaide, Australia 1995 (Olszowy, 1995) or Hamon et al, *Geochemical indices allow estimation of heavy metal background concentrations in soils*, Global Biogeochemical Cycles, vol. 18, GB1014, (Hamon, 2004). ACL is based on the soil characteristics of pH, CEC and clay content.

EIL (and ACLs where appropriate) have been derived in NEPC (2013) for only a short list of contaminants comprising As, Cu, Cr (III), DDT, naphthalene, Ni, Pb and Zn. An *Interactive (Excel) Calculation Spreadsheet* may be used for calculating site-specific EIL for these contaminants, and has been provided in the ASC NEPM Toolbox available on the SCEW (Standing Council on Environment and Water) website (http://www.scew.gov.au/node/941).

The adopted EIL, derived from the *Interactive (Excel) Calculation Spreadsheet* are shown in the following Table 5. The following site specific data and assumptions have been used to determine the EILs:

- The EILs will apply to the top 2 m of the soil profile;
- Given the likely source of soil contaminants (i.e. historical site use/fill) the contamination is considered as "aged" (>2 years); and
- ABCs have been derived using the Interactive (Excel) Calculation Spreadsheet using input parameters of aged soil, CEC of 12.4 cmol_o/kg and pH of 7.5 with high traffic and clay content of 1% for the samples analysed as part of this DSI (see laboratory certificates provided in Appendix E).

	Analyte	EIL Residential	Comments
Metals	Arsenic	100	Adopted pH of 7.6 and
	Chromium III	200	CEC of 9.4 cmol _c /kg];
	Copper	210	assumed clay content 1%
	Lead	1,100	
	Nickel	150	
	Zinc	500	
PAH	Naphthalene	170	
OCP	DDT	180	

Table 5: Ecological Investigation Levels (EIL) in mg/kg

Ecological Screening Levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. ESL apply to the top 2 m of the soil profile as for EIL.

ESL have been derived in NEPC (2013) for petroleum fractions F1 to F4 as well as BTEX and Benzo(a)pyrene. Site specific data and assumptions as summarised in Table 6 have been used to

determine the ESL. The adopted ESL, from Table 1B(6), Schedule B1 of NEPC (2013) are shown in Table 7.

Variable	Input	Rationale
Depth of ESL application	Top 2 m of the soil profile	The top 2 m depth below ground level corresponds to the root zone and habitation zone of many species.
Land use	Urban Residential	Primary School
Soil Texture	Fine	Based on findings noted in test bore logs (Appendix D)

Table 6: Inputs to the Derivation of ESL

Table 7: Ecological Screening Levels (ESL) in mg/kg

	Analyte	ESL (Residential)	Comments
TRH	C6 – C10 (less BTEX) [F1]	180*	All ESLs are low
	>C10-C16 (less Naphthalene) [F2]	120*	reliability apart from those marked with * which are moderate
	>C16-C34 [F3]	1300	reliability
	>C34-C40 [F4]	5600	, , , , , , , , , , , , , , , , , , ,
BTEX	Benzene	65	
	Toluene	105	
	Ethylbenzene	125	
	Xylenes	45	
PAH	Benzo(a)pyrene	0.7	

8.1.3 Management Limits

NEPC (2013) Table 1B(7) provides 'management limits' for TRH fractions, which are applied after consideration of relevant HSLs. The management limits have been adopted to avoid or minimise the following potential effects of petroleum hydrocarbons:

- Formation of non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services by hydrocarbons.

The presence of site TRH contamination at the levels of the management limits does not imply that there is no need for administrative notification or controls in accordance with jurisdictional requirements. The adopted management limits are shown in Table 8 and have been selected based on the CSM.

Management limits for fine material are presented in Table 8 based on findings noted in test bore logs (Appendix D).

TRH Fraction	Soil Texture	Management Limit: Residential (mg/kg)		
C ₆ -C ₁₀ [F1]	Fine	800		
>C ₁₀ -C ₁₆ [F2]		1,000		
>C ₁₆ -C ₃₄ [F3]		3,500		
>C ₃₄ -C ₄₀ [F4]		10,000		

 Table 8: Management Limits for TRH Fractions in Soil

8.1.4 Asbestos in Soil

A detailed asbestos assessment was not undertaken as part of these works as asbestos was not an identified as a contaminant of concern for the APHS south site by AG (2015b). Therefore the presence or absence of asbestos at a limit of reporting of 0.1 g/kg has been adopted for this assessment as an initial screen. The laboratory engaged to undertake the analysis (Envirolab Services Ltd) reports any asbestos detected in a sample below the limit of reporting. Any detection of asbestos will be considered to require remediation or further investigation.

8.2 Groundwater

8.2.1 Groundwater Investigation Levels

The Groundwater Investigation Levels (GIL) adopted in NEPC (2013) are based on:

• National water quality management strategy. Australian and New Zealand guidelines for fresh and marine water quality 2000 (ANZECC & ARMCANZ).

The adopted GIL for the analytes included in the assessment, and the corresponding source documents, are shown in Table 9.

		NEPC	
Analyte		(2013)	Comments
		Fresh Waters ^a	
Metals	Arsenic (V)	13	[#] Base threshold, which can be
	Arsenic (III)	24	adjusted for site specific hardness
	Cadmium	0.2#	measurements
	Chromium (VI)	1#	
	Copper	1.4 [#]	
	Lead	3.4 [#]	
	Mercury (total)	0.06	
	Nickel	11 [#]	
	Zinc	8#	
PAH	Naphthalene	16	
	Benzo(a)pyrene	-	
BTEX	Benzene	950	
	Toluene	-	
	Ethylbenzene	-	
	Xylene (o)	350	
	Xylene (p)	200	
	Xylenes (Total)	-	
OCP	Chlordane	0.03	
	DDT	0.006	
	Endosulfan	0.03	
	Endrin	0.01	
	Heptachlor	0.01	
	Aldrin + Dieldrin	-	
	Lindane	0.2	
	Heptachlor Expoxide	-	
PCB	Aroclor 1242	0.3	
	Aroclor 1254	0.01	
Phenols	2,4,6-trichlorophenol	3	Adopted as a conservative screening threshold for total phenols
VOC	n/a	n/a	As no VOC concentrations above the laboratory reporting limits have GIL.
PFAS [℃]	PFOS	0.13	Value for PFOS adopted as
	PFOA	220	conservative screen for total PFAS

Table 9: Groundwater Investigation Levels (in µg/L)

Notes:

a Investigation levels apply to typically slightly-moderately disturbed systems

b In cases where no high reliability trigger values are provided, the low reliability trigger values provided in ANZECC &ARMCANZ (2000) were used as screening levels

c Threshold adopted from ecological freshwater value for slightly – moderately disturbed ecosystems (95% species protection) values from Government of Western Australia Department of Environment Regulation (DER) Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) Contaminated Sites Guidelines (2016) (DER, 206) in the absence of EPA endorsed criteria

8.2.2 Health Screening Levels – Petroleum Hydrocarbons

The generic HSL are considered to be appropriate for the assessment of contamination at the site. Given the proposed land use the adopted HSL are:

• HSL- AB - Low - high density residential

In addition, the HSL adopted is predicated on the following inputs prescribed in Table 10.

Variable	Input	Rationale	
Potential exposure pathway	Groundwater vapour intrusion (inhalation)	Exposure pathway via groundwater vapour intrusion affects the adopted HSL.	
Soil Type	Sand and Clay	Given the variable texture of soils identified at the site HSL for sand and clay have been included	
Depth to contamination	4-8 m	Recorded depths to groundwater (prior to sampling) ranged between 4.7 m and 7.2 m (Appendix D) which is considered to be potentially conservative given site levels are proposed to be raised as part of the current development.	

Table 10: Inputs to the Derivation of HSLs

The adopted groundwater HSL for vapour intrusion, from Table 1A(4), Schedule B1 of NEPC (2013) are shown in the following Table 11.

Analista	HSL A (vapour intrusion) (μg/L) Depth 4 m to <8m	
Analyte		
Soil Texture	Clay	Sand
Toluene	NL ¹	NL ¹
Ethylbenzene	NL ¹	NL ¹
Xylenes	NL ¹	NL ¹
Naphthalene	NL ¹	NL ¹
Benzene	5,000	800
TRH C ₆ -C ₁₀ less BTEX [F1]	NL ¹	1,000
TRH >C ₁₀ -C ₁₆ less Naphthalene [F2]	NL ¹	1,000

Note: NL -The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour which is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil-vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for a given scenario. For these scenarios no HSL is presented for these chemicals. These are denoted as not limiting 'NL'.

8.3 Contaminants with No Assessment Criteria

Where no guidance is provided in NEPC (2013) for a specific analyte, the PQL was used as the initial screening criteria.

If concentrations are recorded above the PQL, reference criteria will be sourced from other national and international guidance as relevant and used to determine the significance of the detected analyte.

9. Field Work Results

9.1 Soil

Detailed descriptions of the conditions encountered in each of the test bores are provided in the logs in Appendix D. The conditions encountered are summarised below.

- Asphalt: To depths of between 0.02 m and 0.05 m bgl.
- Roadbase: Typically light brown clayey, sandy gravel to depths of between 0.15 m and 0.30 m bgl.
- Fill: Typically consisted of brown / grey / orange gravelly sandy clay or clayey gravel or blue metal gravel filling to depths of between 0.40 m and 0.65 m bgl.
- Clay: Brown / orange mottled red sandy clay was noted to depths of between 0.5 m and 1.1 m bgl where boreholes were terminated.

The PID readings in each sample were all below 5 ppm (refer to logs in Appendix C) suggesting that the potential for organic contaminants was low.

Some signs of potential contamination were observed, including fragments of asphalt and brick fragments recorded in the filling across the site and slight to strong solvent/ethanol odours in BH8, BH9 and BH10.

9.2 Groundwater

Well construction details are provided on the test bores logs, provided in Appendix D along with field records from the groundwater well development and sampling.

Groundwater was sampled from three wells, Well 102 (APHS-N), Well MW1 (Arthur Phillip High School - South) and Well 103 (Parramatta Public School). Groundwater levels recorded at the time of sampling (Appendix D) were generally consistent with a north easterly groundwater flow direction. Note, groundwater levels are transitory and subject to change over time.

No phase separated hydrocarbons, petroleum sheen or other signs of contamination concern were recorded during well development or sampling.

Water from Well 103 was noted to be silty, and some silt was observed to splash into the metals bottle during filtration.

Table 12: Groundwater Levels

	Approximate Surface	Groundwater Level	
Well ID	Level ¹	Level ¹ 16.09.16	
	m AHD	m bgl	m AHD
102	7.15	4.8	2.4
103	11	6.6	4.4
MW1	13	5.8	7.2

Notes:

1 draft levels interpolated from survey drawing. Final levels subject to dGPS survey not yet available

10. Laboratory Testing

Selected soil samples were analysed for the potential contaminants identified in the conceptual site model (CSM, refer to Section 6) comprising metals, TRH, BTEX, PAH, OCP, OPP, PCB, phenols and asbestos.

Groundwater samples were tested for metals, PAH, TRH, BTEX, total phenols, OCP, OPP, PCB, VOC, PFAS and hardness.

The results of the laboratory analysis from this PSI and AG (2015b) are presented in Tables E1 and E2, Appendix E with the SAC. The laboratory certificates and chain of custody information from this DSI are presented in Appendix E.

11. Discussion of Results

The key findings of the desktop and site history investigation were as follows:

- The site history review indicated that the site appeared to have been used for educational purposes from the early 1880's till present, with the exception of Lot 414 DP 820542 (the eastern section of the site) which passed through a series of owners (including a merchant and a builder) between 1914 and 1918 before being purchased as Crown land;
- The site was used as a school and possibly other public uses until the present day;
- Minor earthworks and the construction and demolition of buildings had occurred on the site over the years; and
- Asbestos has been identified in the buildings on site.

Based on the findings of the desktop assessment a number of potential contaminants were identified in the CSM comprising metals, TRH, BTEX, PAH, OCP, OPP, PCB, phenols, PFAS and asbestos.

11.1 Field Observations

Fragments of asphalt and brick were recorded in the filling across the site and unidentified solvent odours were detected in the filling at BH8 (0.2 m to 0.4 m), BH9 (0.3 m to 0.45 m) and BH10 (0.3 m to 0.5 m). The PID readings in each sample were all below 5 ppm suggesting that the potential for organic contaminants was low.

11.2 Soil Analytical Results

Selected soil samples were analysed for the potential contaminants of concern comprising metals, TRH, BTEX, PAH, OCP, OPP, PCB, phenols, PFAS and asbestos. The results of the soil analysis from this DSI and from AG (2015b), and the SAC are presented in Table E1, Appendix E.

The reported concentrations of BTEX, OCP, OPP, PCB, phenols, PFAS and asbestos were below the laboratory limits of reporting and therefore the SAC.

The reported concentrations of metals were below the SAC for all samples. Nickel and lead results indicate that leachate analysis may be required for waste classification for off-site disposal.

The reported concentrations of PAH and TRH exceeded the SAC in the following samples:

Filling

- BH7_0.35-0.45 B(a)P TEQ (19 mg/kg) exceeded the HIL (3 mg/kg), B(a)P (12 mg/kg) exceeded the ESL (0.7 mg/kg) and TRH >C₁₆-C₃₄ (1,500 mg/kg) exceeded the ESL (1,300 mg/kg);
- BH9_0.3-0.4 B(a)P TEQ (110 mg/kg) exceeded the HIL (3 mg/kg), B(a)P (74 mg/kg) exceeded the ESL (0.7 mg/kg), total PAH (1210 mg/kg) exceeded the HIL A (300 mg/kg), TRH F2 (530 mg/kg) exceeded the HSL (110 mg/kg) and ESL (120 mg/kg), and >C₁₆-C₃₄ (12,000 mg/kg) exceeded the ESL (1300 mg/kg) and the management limit (3,500 mg/kg);
- BH10_0.4-0.5 B(a)P TEQ (110 mg/kg) exceeded the HIL (3 mg/kg), B(a)P (74 mg/kg) exceeded the ESL (0.7 mg/kg), total PAH (1006 mg/kg) exceeded the HIL (300 mg/kg), TRH F2 (570mg/kg) exceeded the HSL (110 mg/kg) and ESL (120 mg/kg), and >C₁₆-C₃₄ (12,000 mg/kg) exceeded the ESL (1300 mg/kg) and the management limit (3,500mg/kg);
- BH12_0.2-0.3 B(a)P TEQ (32 mg/kg) exceeded the HIL (3 mg/kg), B(a)P (21 mg/kg) exceeded the ESL (0.7 mg/kg), total PAH (1210 mg/kg) exceeded the HIL A (300 mg/kg) and TRH >C₁₆-C₃₄ (2,200 mg/kg) exceeded the ESL (1,300 mg/kg); and
- MW1_0.4-0.5 B(a)P TEQ (15 mg/kg) exceeded the HIL (3 mg/kg), B(a)P (10 mg/kg) exceeded the ESL (0.7 mg/kg) and TRH >C₁₆-C₃₄ (1,300 mg/kg) was equal to the ESL (1,300 mg/kg);

Natural Clay

- BH36_0.5-0.6 B(a)P (0.8 mg/kg) exceeding the ESL (0.7 mg/kg); and
- BH37_0.5-0.6 B(a)P (0.9 mg/kg) exceeding the ESL (0.7 mg/kg).

Due to the unexpected high concentrations of PAH and TRH in the five samples of filling DP requested additional assessment of the results from BH7, BH9, BH10 and BH12 by the laboratory to determine whether bitumen fragments were included in the samples analysed. The chromatogram and advice are included in Appendix E. The chromatogram and advice revealed that the samples contained traces of bitumen and these higher concentrations may be attributed small fragments of bitumen which have been included in the sample.

The reported TRH fractions are the heavier end less volatile fractions and are not considered to be related to the slight to strong solvent/ethanol odours in BH8, BH9 and BH10 reported during the site works. Therefore it is considered that the reported concentrations of PAH and TRH do not pose and unacceptable risk to the proposed development.

There is no obvious on-site source of the slight to strong solvent/ethanol odours in BH8, BH9 and BH10. The source may be from off-site historic activities.

Whilst no asbestos was reported in the five samples of filling submitted for analysis (current and previous investigations) DP notes that asphalt and brick fragments were recorded in the filling. Anthropogenic materials such as brick fragments can be an indicator for the presence of ACM. Therefore there is the possibility of ACM being present in the filling.

11.3 Groundwater Analytical Results

Groundwater results for Well MW1, located at APHS-S were within the GIL with the exception of nickel which was reported at a concentration of 65 μ g/L compared to the GIL of 53 μ g/L (Table E2, Appendix E). It is considered that the reported concentration represents background concentrations in the area.

It is noted that minor concentrations of TRH C_6 - C_{10} , and VOC (chloroform, bromodichloromethane and 1,2,4-trimethyl benzene) were detected. The detected concentrations are considered to be low and likely to represent background concentrations in the area.

The results of the groundwater investigation are not considered to indicate a potential risk to site users.

12. Conclusions and Recommendations

Based on the findings of this investigation and the current use of the site as a secondary school, no immediate management action is considered necessary.

Based on the findings of this DSI it is considered that the site can be made suitable for the proposed development as a high school. However, a remediation action plan (RAP) for the redevelopment of the APHS-S, Arthur Phillip High School North site and Parramatta Public School should be prepared detailing the soil remediation and management requirements to render the site suitable for the continued high school use. The RAP should include (in relation to APHS-S):

- Delineation of the solvent/ethanol odours reported in the vicinity of BH8, BH9 and BH10;
- Assessment of the soil for a range of options including re-use on-site and disposal off-site;

- Inspection and assessment the site surface following removal of hardstand and building footprints;
- Assessment of the filling for a range of options including re-use on-site and disposal off-site (to include sampling and analysis of the potential contaminants of concern identified in Section 6); and
- An unexpected finds protocol which sets out procedures to be followed should unexpected contamination be encountered during the works.

A pre-demolition hazardous building material survey of all buildings has been undertaken and is reported in DP report *Pre-demolition Hazardous Building Materials Report, Arthur Phillip High School, Macquarie Street, Parramatta, NSW*, 85374.04.R.001, October 2016.

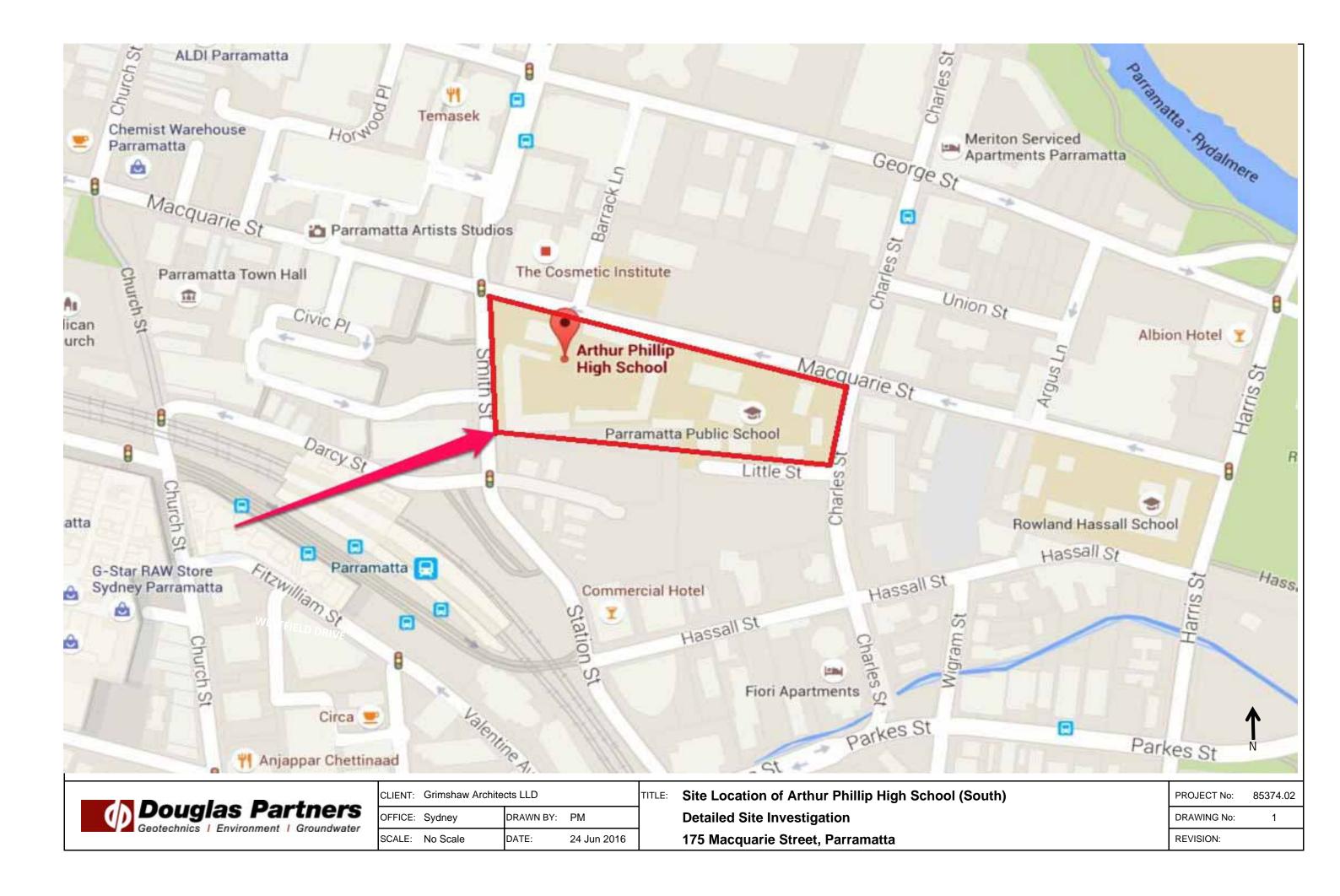
13. Limitations

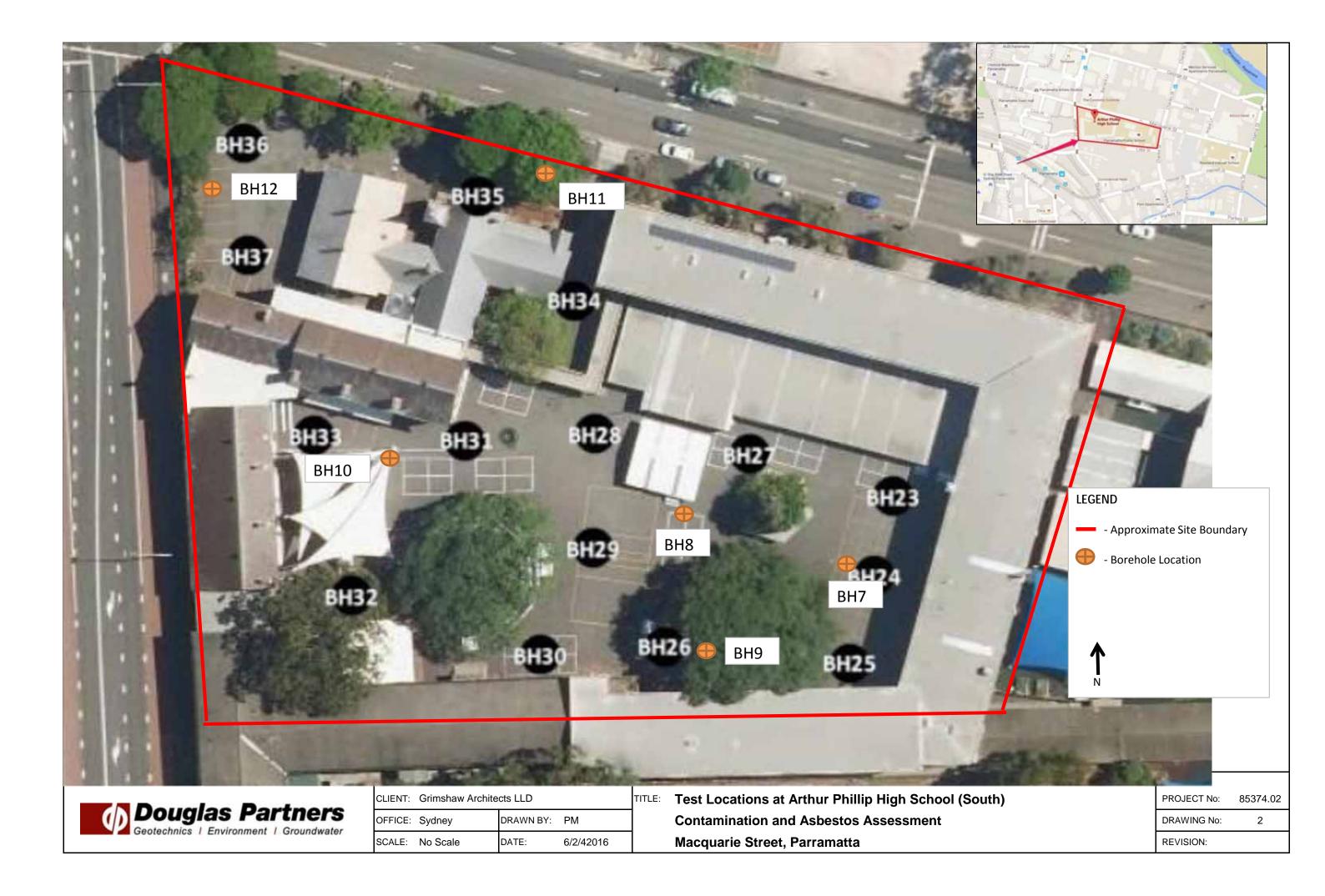
This report presents the results of a detailed site investigation (DSI) undertaken for a due diligence purposes at Arthur Phillip High School South Site, Macquarie Street, Parramatta. The investigation was commissioned by Louise Browne of Grimshaw Architects LLD and was undertaken in accordance with Douglas Partners' proposal SYD160465 dated 7 April 2016. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Grimshaw Architects LLP for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

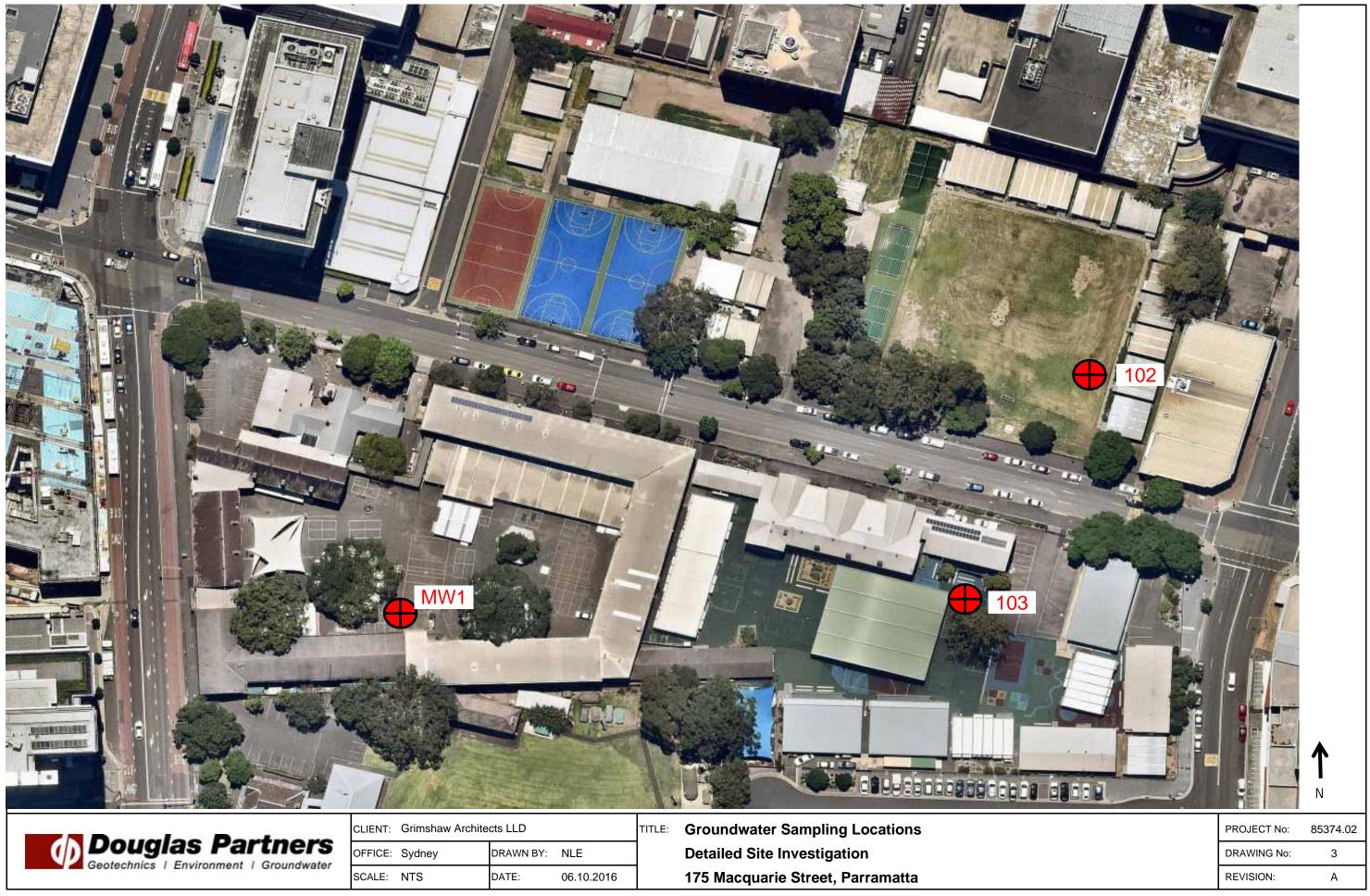
The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection/sampling, or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible, considering the previous land uses that hazardous building materials, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.


This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.


This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.


Douglas Partners Pty Ltd

Appendix A

Drawings

CLIENT:	Grimshaw Architects LLD							
OFFICE:	Sydney	DRAWN BY:	NLE					
SCALE:	NTS	DATE:	06.10.2016					

Appendix B

Site Photographs

Photograph 1 - Central courtyard, seating areas and surrounding buildings

Photograph 2 - Central courtyard, metal awnig (left), seating and surrounding buildings

Douglas Partners Geotechnics Environment Groundwater	Site Photographs	PROJECT:	85374.02
	Arthur Phillip High School (South	PLATE No:	B1
	Parramatta	REV:	А
	CLIENT: Grimshaw Architects LLD	DATE:	16-Jun-16

Photograph 3 - Carpark in northwest of the site

	Site Photographs	PROJECT:	85374.02
Douglas Partners	Arthur Phillip High School (South	PLATE No:	B2
Geotechnics Environment Groundwater	Parramatta	REV:	А
	CLIENT: Grimshaw Architects LLD	DATE:	16-Jun-16

Appendix C

Data Quality Assessment

DATA QUALITY ASSESSMENT

Q1. Data Quality Objectives

The Detailed Site Investigation (DSI) was prepared with reference to the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of the *National Environment Protection (Assessment of Site Contamination) Measure* 1999 as amended 2013 (NEPC, 2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

The DQOs have been addressed within the report as shown in Table Q1.

Data Quality Objective	Report Section where Addressed
State the Problem	S1 Introduction
Identify the Decision	S11 Discussion of Results
	S12 Conclusions and Recommendations
Identify Inputs to the Decision	S1 Introduction
	S3 Site Identification and Description
	S4 Regional Topography, Geology and Hydrogeology
	S5 Site History Assessment
	S6 Conceptual Site Model
	S8 Site Assessment Criteria
	S9 Field Work Results
	S10 Laboratory Testing
Define the Boundary of the Assessment	S3 Site Identification and Description
	Drawings - Appendix A
Develop a Decision Rule	S8 Site Assessment Criteria
Specify Acceptable Limits on Decision Errors	S7 Field Work Methods
	S8 Site Assessment Criteria
	QA/QC Procedures and Results – Sections Q2, Q3
Optimise the Design for Obtaining Data	S2 Scope of Works
	S7 Field Work Methods
	QA/QC Procedures and Results – Sections Q2, Q3

Table Q1: Data Quality Objectives

Q2. FIELD AND LABORATORY QUALITY CONTROL

The field and laboratory quality control (QC) procedures and results are summarised in Tables Q2 and Q3. Reference should be made to the fieldwork and analysis procedures in Section 7 and the laboratory certificates in Appendix E for further details.

Table Q2: Field QC

ltem	Evaluation / Acceptance Criteria	Achievement
Intra-laboratory replicates	5% primary samples; <30% RPD (inorganics), <50% RPD (organics)	yes ^{1,2}
Trip Spikes	1 per day, per sampling event; 60-140% recovery	Yes ³
Trip Blanks	1 per day, per sampling event; <pql< td=""><td>Yes³</td></pql<>	Yes ³

Notes: 1 qualitative assessment of RPD results overall; refer Section Q2.1

2 applies where concentrations are >5 x LOR/PQL

3 groundwater only, soil trip spikes and blanks not analysed for soil investigation as volatiles were not considered to be primary contaminants of concern

Table Q3: Laboratory QC

ltem	Evaluation / Acceptance Criteria	Achievement
Analytical laboratories used	NATA accreditation	yes
Holding times	In accordance with NEPC (2013) which references various Australian and international standards	yes
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>yes</td></pql<>	yes
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% (organics); 10-140% (SVOC and speciated phenols)	yes
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% (organics); 10-140% (SVOC and speciated phenols)	yes
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% (organics); 10-140% (SVOC and speciated phenols)	yes

The Envirolab Services Pty Ltd (ELS) laboratory certificate notes state that the practical quantitation limits (PQLs) were raised due to interference from analytes for TRH (semivol) and OC/OP/PCBs in soil.

In summary, the QC data is considered to be of sufficient quality to be acceptable for the assessment.

Q2.1 Intra-Laboratory Replicates

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory Envirolab Services Pty Ltd and as a measure of consistency of sampling techniques. The comparative results of analysis between original and intra-laboratory replicate samples are summarised in Tables Q4 and Q5.

Note that, where both samples are below LOR/PQL the difference and RPD has been given as zero. Where one sample is reported below LOR/PQL, but a concentration is reported for the other, the LOR/PQL value has been used for calculation of the RPD for the less than LOR/PQL sample.

Table Q4: Relative Percentage Difference Results – Intra-laboratory Replicate (Soil)

								М	etals					BTEX				PAH
Lab	Sample ID	Date Sampled	Media	Units	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Benzene	Toluene	Ethylbenzene	xylene	Naphthalene	Total
Envirolab	BH11	19/04/2016	filling	mg/kg	6	<0.4	28	11	16	<0.1	6	10	<2	<0.5	<1	<3	<0.1	NIL(+)VE
Envirolab	BD1a	19/04/2016	filling	mg/kg	7	<0.4	23	18	25	<0.1	10	19	<2	<0.5	<1	<3	<0.1	NIL(+)VE
	Difference mg/k				1	0	5	7	9	0	4	9	0	0	0	0	0	0
RPD				%	15	0	20	48	44	0	50	62	0	0	0	0	0	0

Table Q4: Continued - Relative Percentage Difference Results – Intra-laboratory Replicate (Soil)

					TRH					
Lab	Sample ID	Date Sampled	Media	Units	C6-C10	>C10-C16	>C16-C34	>C34-C40		
Envirolab	BH11	19/04/2016	filling	mg/kg	<25	<50	<100	<100		
Envirolab	BD1a	19/04/2016	filling	mg/kg	<25	<50	<100	<100		
	Differenc	mg/kg	0	0	0	0				
	RPD	%	0	0	0	0				

Table Q5: Relative Percentage Difference Results – Intra-laboratory Replicate (Groundwater)

		Priority Heavy Metals (total dissolved)									РАН			
Sample ID	Date Sampled	Units	As	Cd	Ċ	Cu	РЬ	Н	Ni	Zn	Naphthalene	B(a)P	РАН	
102	16/09/16	µg/L	<1	<0.1	<1	<1	<1	<0.05	1	12	<1	<1	NIL (+)VE	
BD1	16/09/16	µg/L	<1	<0.1	<1	<1	<1	<0.05	1	11	<1	<1	NIL (+)VE	
Diffe	Difference µg/L		0	0	0	0	0	0	0	1	0	0	0	
R	RPD %		0	0	0	0	0	0	0	9	0	0	0	

The calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes and \pm 50% for organics with the exception of those in bold. However, this is not considered to be significant because:

- The replicate pairs being collected from fill soils which were heterogeneous in nature;
- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence greater variability can be expected;
- The low concentrations recorded resulted in high RPDs; and
- All other QA/QC parameters met the DQIs.

Overall, the intra-laboratory replicate comparisons indicate that the sampling techniques were generally consistent and repeatable.

Q3. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present onsite;
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table Q6.

Data Quality Indicator	Method(s) of Achievement
Completeness	Planned systematic locations sampled;
	Preparation of field logs, sample location plan and chain of custody (COC) records;
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody;
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM);
	Completion of COC documentation;
	NATA endorsed laboratory certificates provided by the laboratory;
	Satisfactory frequency and results for field and laboratory QC samples as discussed in Section Q2.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project;
	Works undertaken by appropriately experienced and trained DP environmental scientist / engineer;
	Use of NATA registered laboratory;
	Satisfactory results for field and laboratory QC samples.

Table Q6: Data Quality Indicators

Data Quality Indicator	Method(s) of Achievement		
Representativeness Target media sampled;			
	Spatial and temporal distribution of sample locations;		
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs;		
	Samples were extracted and analysed within holding times;		
	Samples were analysed in accordance with the analysis request.		
Precision	Acceptable RPD overall between original samples and replicates;		
	Satisfactory results for all other field and laboratory QC samples.		
Accuracy	Satisfactory results for all field and laboratory QC samples.		

Based on the above, it is considered that the DQIs have been complied with. As such, it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

Appendix D

Test Bore Logs

and Notes About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	20 - 63	
Medium gravel	6 - 20	
Fine gravel	2.36 - 6	
Coarse sand	0.6 - 2.36	
Medium sand	0.2 - 0.6	
Fine sand	0.075 - 0.2	

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- Auger sample А
- В Bulk sample
- D Disturbed sample Е
- Environmental sample
- U_{50} Undisturbed tube sample (50mm)
- W Water sample
- pocket penetrometer (kPa) рр
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizonta

21

- vertical v
- sub-horizontal sh
- sub-vertical sv

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: BH7 **PROJECT No: 85374.02 DATE:** 19/4/2016 SHEET 1 OF 1

							l: 90°/		SHEET 1 OF 1
		Description	<u>.</u>		Sam	pling 8	k In Situ Testing		Well
[Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		ASPHALT				0)			
-	0.04 -	ROADBASE - apparently poorly compacted, brown-grey, clayey sandy gravel roadbase	0.0. 0.0.	A	0.05 0.1		PID<5		-
-	0.15	FILLING - fine to medium blue metal gravel with some asphalt fragments			0.2				-
-	0.3			A	0.3		PID<5		-
	0.35	FILLING - brown, gravelly clay filling with some asphalt \sidesimes fragments		A	0.35		PID<5		
-	0.45 -	FILLING - grey, sandy clay filling with some fine gravel and a trace of ironstone gravel		A	0.45		PID<5		-
-	0.45	FILLING - brown, sandy clay filling with some fine gravel			0.45				-
				A	0.6		PID<5		
	0.65 -	CLAY - brown-orange, sandy clay			0.0				
ŀ									-
ŀ									-
-					0.9				-
- 1				A	1.0		PID<5		-1
'					1.0				
-	1.1 -	Bore discontinued at 1.1m - target depth reached	<u> </u>						
-									
-									-
-									
									-
ŀ									
ŀ									

TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

Grimshaw Architects LLD

Arthur Phillip High School

LOCATION: Macquarie Street, Parramatta

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample LING & IN SITUTESTING G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample D Water seep ¥ Water level

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: BH8 **PROJECT No: 85374.02** DATE: 19/4/2016 SHEET 1 OF 1

DOADBASE apparently poorly compacted brown	Graphic Log	Type			k In Situ Testing	5	Well
of Strata		ype	£	e		- b	
			Depth	Sample	Results & Comments	Water	Construction Details
	ġ. 'O' '♀' . '	A	0.05		PID<5		
clayey sandy gravel roadbase ROADBASE - apparently well compacted, grey, clayey sandy coarse gravel roadbase	0. 	A	0.1		PID<5		-
FILLING - red-brown, sandy clay filling with some fine gravel, slight odour (ethanol?)			0.2				-
		۸*	0.3		PID-5		-
CLAY - stiff, red-brown clay			0.4				-
Pore discontinued at 0.5m							
- refusal on stiff clay							
	CLAY - stiff, red-brown clay Bore discontinued at 0.5m	CLAY - stiff, red-brown clay Bore discontinued at 0.5m	CLAY - stiff, red-brown clay Bore discontinued at 0.5m	CLAY - stiff, red-brown clay 0.3 0.4 0.4 0.4 0.4	CLAY - stiff, red-brown clay 0.3 0.4 0.4 0.4	CLAY - stiff, red-brown clay 0.3 PID<5	CLAY - stiff, red-brown clay 0.3 PID<5

RIG: Hand tools

CLIENT:

PROJECT:

Grimshaw Architects LLD

Arthur Phillip High School

LOCATION: Macquarie Street, Parramatta

DRILLER: MW TYPE OF BORING: Hand auger

LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS: *BD1-190416 taken at depth 0.3m to 0.4m

SAMPLING & IN SITU TESTING LEGEND LECEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: BH9 PROJECT No: 85374.02 DATE: 19/4/2016 SHEET 1 OF 1

							l: 90°/		SHEET 1 OF 1	
		Description			Sam		& In Situ Testing		Well	
ž	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
		ASPHALT								
-	0.04 -	ROADBASE - apparently poorly compacted, brown, clayey sandy gravel roadbase	0.0 .0 .0 .0		0.1				-	
			1.00.0. 	A	0.2		PID<5		-	
-	0.3-	FILLING - fine to medium blue metal gravel with some asphalt fragments, strong odour (ethanol?)		А	0.3 0.4		PID<5			
	0.45 -	CLAY - stiff, brown-orange clay			0.4					
-									-	
-					0.6				-	
-				A	0.7		PID<5		-	
	0.8-									
-		Bore discontinued at 0.8m - refusal on stiff clay							-	
-	1								-1	
-									-	
ŀ									-	
-									-	
-									-	
ľ										
-										
-										

RIG: Hand tools

CLIENT:

PROJECT:

Grimshaw Architects LLD

Arthur Phillip High School

LOCATION: Macquarie Street, Parramatta

DRILLER: MW

LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point bad axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point bad axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

TYPE OF BORING: Hand auger

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: BH10 PROJECT No: 85374.02 DATE: 19/4/2016 SHEET 1 OF 1

			DIF	P/AZII	MUTH	 90°/		SHEET 1 OF 1
	Description	ic		Sam		& In Situ Testing		Well
교 Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	ASPHALT							
-	ROADBASE - apparently poorly compacted, light grey, clayey sandy coarse gravel roadbase		A	0.05 0.1		PID<5		
-	- becoming grey at 0.2m with some brick fragments	5.0.0.0.0.0.	A	0.2		PID<5		
- 0.3	FILLING - fine to medium bluemetal gravel with some asphalt gravel, strong odour (solvent?)			0.3				-
- 0.5			A	0.4 0.5-		PID<5		-
- 1	Bore discontinued at 0.5m - refusal on gravel/stiff clay							

RIG: Hand tools

TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

Grimshaw Architects LLD

Arthur Phillip High School

LOCATION: Macquarie Street, Parramatta

DRILLER: MW

LOGGED: MW

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: BH11 PROJECT No: 85374.02 DATE: 19/4/2016 SHEET 1 OF 1

				DIF			H: 90°/		SHEET 1 OF 1
		Description	jc		Sam		& In Situ Testing	5	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.03	ASPHALT							
		ROADBASE - apparently poorly compacted, light brown, sandy clayey gravel roadbase with some asphalt gravel	0.0.0.0 0.0.0.0	A	0.05 0.1		PID<5		-
	- 0.2 -	FILLING - brown, sandy clay filling with some rootlets and gravel fragments		A	0.2		PID<5		-
					0.3				-
	- 0.45 -	CLAY - brown, sandy clay with some rootlets and traces of charcoal		A	0.45		PID<5		
			X//	1					
	0.55 -	Bore discontinued at 0.55m - due to refusal on stiff clay			-0.55-				-
	-								_
	-								-
									-
	- 1								-1
	-								-
									-
									-
	-								-
	-								
	-								

RIG: Hand tools

TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

Grimshaw Architects LLD

Arthur Phillip High School

LOCATION: Macquarie Street, Parramatta

DRILLER: MW

LOGGED: CB

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point bad axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point bad axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: BH12 PROJECT No: 85374.02 DATE: 19/4/2016 SHEET 1 OF 1

				DIF	P/AZI	MUTH	H: 90°/		SHEET 1 OF 1	
		Description	<u>i</u>		Sam	pling &	& In Situ Testing		Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	I
		ASPHALT				0,				
	0.05 -	ROADBASE - apparently poorly compacted, light brown, sandy clayey roadbase with some asphalt gravel	р. °О. • О. • О.	A	0.05 0.1		PID<5		-	
	0.2 -		0. P.		0.2				_	
		FILLING - dark brown, sandy clay filling with some rootlets and asphalt gravel		А			PID<5			
		- becoming brown at 0.35m with traces of brick fragments			0.3 0.35					
	0.45			A	0.45		PID<5		-	
	0.45 -	CLAY - brown, sandy clay		А	0.45		PID<5		-	
	0.55	Bore discontinued at 0.55m	V/		-0.55-					
		- refusal on stiff clay							-	
									-	
									-	
	-1								-1	
									-	
									-	
									-	
									-	
	.									
									1	

RIG: Hand tools

CLIENT:

PROJECT:

Grimshaw Architects LLD

Arthur Phillip High School

LOCATION: Macquarie Street, Parramatta

DRILLER: MW

LOGGED: MW

CASING: Uncased

TYPE OF BORING: Hand auger WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U_x
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: MW1 PROJECT No: 85374.02 DATE: 10/9/2016 SHEET 1 OF 1

Sampling & In Situ Testing Description Well Graphic Log Water Depth 닙 of Construction Sample Depth Type Results & Comments (m) Strata Details Gatic cover ASPHALT 0.1 0.2 0.1 FILLING - dark grey, clayey, coarse sand and basalt filling with trace asphalt gravel (roadbase) 0.3 0.4 0.4 A 0.6 0.5 - some crushed sandstone gravel at 0.2m to 0.3m FILLING - dark brown mottled red, clay filling with traces of 0.9 1.0 А sand, basalt and asphalt gravel CLAY - brown mottled red clay Backfill 0.2-2.5m 1.4 1.5 - becoming mottled grey at 1.4m Α 2 -2 2.3 SHALE Bentonite 2.5-3.0m 3 -3 4 -4 5 -5 6 -6 Gravel 3.0-10.0m Machine slotted PVC screen 4.0-10.0m - 7 7 8 8 9 g ¹⁰ End cap 10 10.15 Bore discontinued at 10.15m - target depth reached DRILLER: LC LOGGED: MW CASING: Uncased RIG: DT-100 TYPE OF BORING: Auger

WATER OBSERVATIONS: No free groundwater observed during drilling REMARKS:

CLIENT:

PROJECT:

LOCATION:

Grimshaw Architects LLD

Arthur Phillip High School (South)

Macquarie Street, Parramatta

SAMF	PLING & IN SITU TESTING	LEGEND	
A Auger sample	G Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	P Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK Block sample	U, Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	NOUGUSE Parthe
C Core drilling	W Water sample	pp Pocket penetrometer (kPa)	Douglas Partne
D Disturbed sample	Water seep	S Standard penetration test	
E Environmental sample	Water level	V Shear vane (kPa)	Geotechnics Environment Groundw

SURFACE LEVEL: 7.15 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 102 PROJECT No: 85374.00 DATE: 12/7/2016 SHEET 1 OF 2

		Description	Degree of Weathering	. <u>e</u>	Rock Strength ក្រ	Fracture	Discontinuities	Sa		-	n Situ Testing
R	Depth (m)		M M M S L L L L L L L L L L L L L L L L	Graphic Log	Very Low Low Medium Nety High Kery High Ex High Ex High Ex High Medium	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	-	FILLING - grey silty sandy clay filling with a trace of roadbase gravel and brick fragments, moist						A			
9	-	1.0 FILLING - poorly compacted, dark 1.2 grey to black, slag filling with some charcoal and sand, moist						A S			1,0,2 N = 2
	-2	SILTY CLAY - stiff to very stiff, light brown silty clay with some fine sand, moist						U ₅₀	-		pp = 300
-	- - - - - - - - - - 3							s	-		3,5,5 N = 10
- 4	-	3.3 SAND - medium dense, light brown, fine to medium grained sand with some silt and clay, wet									
	-4	40					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°	s	-		7,7,10 N = 17
	-5	4.8 LAMINITE - extremely low strength, grey laminite		· · · · ·							
0	- 6	5.1 LAMINITE - medium then high strength, fresh stained then fresh, slightly fractured then unbroken, grey-brown to grey laminite with approximately 20% fine sandstone laminations					5.31m: B0°, fe 5.35m: J60°, un, ro, fe 5.84m: J60°, ti, fe 6.32m: B0°, fe	с	100	96	PL(A) = 0.53 PL(A) = 1.37 PL(A) = 2.1
-1-							7.2, 7.25 & 7.35m: J (x3) 30° - 45°, pl, sm, cln 7.53m: J45°, pl, ro, cln 7.94m: J30°, pl, sm, cln 8.27m: J45°, pl, sm, ti 8.72m: B0°, fg, 5mm	с	100	100	PL(A) = 2.16 PL(A) = 2.24 PL(A) = 2.4

RIG: Scout

CLIENT:

PROJECT:

Grimshaw Architects

LOCATION: Macquarie Street, Parramatta

Arthur Philip High School

DRILLER: LC

LOGGED: SI

CASING: HW to 2.7m

TYPE OF BORING: Solid flight auger to 2.5m;
 Rotary to 5.1m;
 NMLC-Coring to 15.1m

 WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 7.0m (screen 4.0-7.0m; gravel 3.0-7.0m; bentonite 2.5-3.0m; backfill to 0.2m with gatic cover to GL)

	SAMP	LING	3 & IN SITU TESTING	LEGE	END						
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	-	Doug				
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)				26	Pal	rtners
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dug		a3	r ai	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	2	Geotechnics	1	Enviro	onment	I Groundwater
						 		-			

SURFACE LEVEL: 7.15 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 102 PROJECT No: 85374.00 DATE: 12/7/2016 SHEET 2 OF 2

					AZIWUTH:	00 /	•		2 01	-
	Description	Degree of Weathering	<u>.</u>	Rock Strength ត្រ	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
Depth (m)	of Strata	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	Graph Log	Strength Leave Conversion of the second sec	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	LAMINITE - medium then high strength, fresh stained then fresh, slightly fractured then unbroken, grey-brown to grey laminite with approximately 20% fine sandstone laminations <i>(continued)</i>					~	С		100	PL(A) = 2.37
- 12 - 12 - 12.3	3 SHALE - high then medium to high strength, fresh, slightly fractured and						с	100	100	PL(A) = 1.71
- - 13	unbroken, grey shale					13.03 & 13.75m: J20°, pl, sm, cln				PL(A) = 1.4
						14.52-14.89m: J (x3)	с	100	100	PL(A) = 1.08 PL(A) = 0.91
- 15 	Bore discontinued at 15.1m					30°- 45°, pl, sm, cln´				PL(A) = 1.18
- 16 - 16 										
- 17 										
- 18										
- 19 										
RIG: Scol	1	FR : 1 C			SED: SI	CASING: HI		1		

RIG: Scout

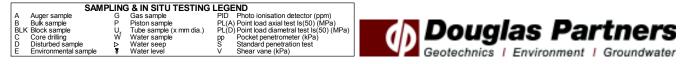
CLIENT:

PROJECT:

Grimshaw Architects

LOCATION: Macquarie Street, Parramatta

Arthur Philip High School


DRILLER: LC

LOGGED: SI

CASING: HW to 2.7m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 5.1m; NMLC-Coring to 15.1m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 7.0m (screen 4.0-7.0m; gravel 3.0-7.0m; bentonite 2.5-3.0m; backfill to 0.2m with gatic cover to GL)

SURFACE LEVEL: 11.00 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 103 PROJECT No: 85374.00 DATE: 8/7/2016 SHEET 1 OF 2

	-		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	S	. <u>.</u>	<u> </u>	n Situ Testing
		epth m)	of Strata		Graphic Log	Nate	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core ec. %	RQD %	Test Result
		0.04	CARPET & ASPHALTIC	M H M S S H			0.10		A	- 22	_	Comment
		0.2			\mathbf{X}							
ŀ		0.45	ROADBASE GRAVEL		\mathbb{H}				A			
			FILLING - grey to grey-brown, sandy clay filling, moist									pp = 400
ŀ	- 1		CLAY - stiff to very stiff, red-brown		\mathbb{Z}		ii ii		U ₅₀			pp = 400
			clay, slightly silty, moist						s			3,7,10 N = 17
		1.5	CLAY - very stiff, light grey clay,		H			Note: Unless otherwise		1		
			moist		\bigvee			stated, rock is fractured along rough planar				
ŀ	-2							bedding dipping 0°- 10°				
		2.2	SHALY CLAY - very stiff, light grey		6-7							
		2.5	mottled brown shaly clay, damp		- <u>/</u>			2.5m: CORE LOSS:				
ŀ		2.53	SHALE - extremely low strength, extremely weathered, slightly					\ 30mm				
	- 3		fractured, light grey shale					² .62-3.62m: relict joints (x5) 70°, pl, ro, cly				pp >600
								() -) - , - ,				
		3.45					النصرز					pp = 450
			SHALE - extremely low to very low strength, extremely to highly			┊┢┿┛╎╎╎╎│╎	╡					
			weathered, slightly fractured, light grey-brown shale with some				i i hi i	3.8-4.38m: B (x5) 0°, fe,	c	92	0	
	-4		ironcemented bands				╎╎┏┛╎╎	cly		92	0	
					====		i g ii					pp = 400
		4.5	SHALE - very low strength, highly					4.52-4.64m: fg, fe				
			weathered, slightly fractured,									
ŀ	-5		grey-brown shale					4.92m: J60°- 70°, st, ro,				
					₩			_ cln -5.18m: CORE LOSS:				
		5.4			\vdash			220mm 5.46m: B0°, fe				
ŀ				iiiii			ii ii	0.4011. 00 , 10				
	- 6											
	-0			iiiii			i i F Ti	6.06-6.26m: B0°, fe, cly,				
		6.35	SHALE - low then medium strength,	┤╎┖┷┷┓╎╎		┆╎┗┶┓╎╎╎╎╎		10-20mm 6.25-6.7m: B (x7) 0°, cly				
			slightly weathered then fresh, fractured then slightly fractured, grey				<u>i ii</u>	∖co, 1-3mm 6.3m: J45°, fe, cly, he				PL(A) = 0.2
			shale						с	100	53	
	-7			iiii			ii li			100	55	
ŀ							╎╎┎┦╎	7.2m: J70°, pl, ro, cln				DL(A) = 0
							i G ii	7.42m: J30° & 60°, st,				PL(A) = 0.
								∖ro, cln 7.52m: J60°, pl, ro, cly				
ŀ	- 8			i i i i i i	===		ii ii	7.84m: J70°, pl, ro, cln				
							╎╎┏┛╎╎					
			8.35-8.5m: very high strength		E		ji Sh					PL(A) = 5.1
			siderite band		E							FL(A) = 5.1
t	- 9						i i					
	-9								с	100	97	
ŀ					===						91	PL(A) = 0.3
ŀ		9.6				╎╎╎┖╗╎╎│║	╎╧┱┤┦	9.52m: J45°, pl, sm, cly				
ŀ					••••							
-		0.0	LAMINITE - description next page					9.88m: J60°, un, ro, cln				

TYPE OF BORING: Solid flight auger to 2.5m; NMLC-Coring to 15.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 7.5m (screen 1.5-7.5m; gravel 1.0-7.5m; bentonite 0.2-10.0m; backfill to GL with gatic cover)

	5	SAMPLING	3 & IN SITU TESTIN	G LEGE	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
BLM	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)		
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dugi
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sam	nple 📱	Water level	V	Shear vane (kPa)		Geotechnics /
						_	

CLIENT:Grimshaw ArchitectsPROJECT:Arthur Philip High SchoolLOCATION:Macquarie Street, Parramatta

SURFACE LEVEL: 11.00 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 103 PROJECT No: 85374.00 DATE: 8/7/2016 SHEET 2 OF 2

	Description	Degree of Weathering ™ ₹ ≹ % © ₩ O	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
고 Depth (m)	of	raph and		Spacing [5] [5] [5] [5] [5] [5] [5] [5] [5] [5]	B - Bedding J - Joint	be	en %	<u>م</u>	Test Results
(,	Strata	G FR S S W W FR S S W W FR S S W W FR S S W FR S S W FR S S W FR S S S W FR S S S W FR S S S S S S S S S S S S S S S S S S S	Strength	0.10	S - Shear F - Fault	Type	ပိမ္မ	RQD %	& Comments
	LAMINITE - high strength, fresh, slightly fractured then unbroken, light grey to grey laminite with approximately 30% fine sandstone laminations (continued)				10.6m: B0°, cly co, 1mm	с	100		PL(A) = 1.22
					12.32m: J30°, pl, ro, cly				PL(A) = 1.55 PL(A) = 1.64
						с	100	100	PL(A) = 2.2
- - - - - - - - - - - - - - - - - - -			┦╎╎╎ 			с			PL(A) = 2.17
чү – 16	Bore discontinued at 15.0m								
φ - - - - - - - - - - - - - - - - - - -									
- 									
		ER: 10			CASING: HW				

RIG: Scout 1

CLIENT:

PROJECT:

Grimshaw Architects

LOCATION: Macquarie Street, Parramatta

Arthur Philip High School

DRILLER: LC

LOGGED: SI

CASING: HW to 2.6m

TYPE OF BORING:Solid flight auger to 2.5m;NMLC-Coring to 15.0m**WATER OBSERVATIONS:**No free groundwater observed whilst augering

REMARKS: Standpipe installed to 7.5m (screen 1.5-7.5m; gravel 1.0-7.5m; bentonite 0.2-10.0m; backfill to GL with gatic cover)

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B	Bulk sample	P	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)	-	Douglas Partners	_
BL	K Block sample	U _x	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		1 Dolldiag Partner	-
C	Core drilling	w	Water sample	pp	Pocket penetrometer (kPa)		Dougias rai cici	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	¥	Water level	V	Shear vane (kPa)	-	Geotechnics Environment Groundwat	er-

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field Sheet

Sampled By: MW Weather Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (pre-purge): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parameters Time Volume (L) Temp (*C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/-0.3 mg/L +/-3% +/-0.1 +/-10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179 Additional Readings Followi		er Fleid She					
Project Name: Detailed Site Investigation Project Number: 85374.02 Site Location: APHS-N Bore Easting: Investigation Installation Date: 12.07.16 Ground RL: 7.15 m AHD Well Depth: m bgl -0.4 m AHD Screened Interval: 4-7.5 m bgl -0.4 m AHD Bore Development Details Bore Development Details Bore Development Details Bare Development Details Screened Interval: 4-7.5 m bgl -0.4 m AHD Bore Development Details Bore Development Details Bore Development Details Bore Development Details Bare Time: 13.09.2016, 7am Purged By: CB Wit Lavel (pro-purge): 3.70 m bgl 3.5 m AHD Strestend MHD Observed Well Depth: 7.21 m bgl Estimated Bore Volume: 25 L Total Volume Purged: 17 L purged dry Estimated Bore Volume: 17 L Gaujement, decontamination: Water (20 contamination: MW Weater Conditions: MW Groud By: Watere (Inchalase/visual) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Project Number: 85374.02 Project Number: 85374.02 Site Location: APHS-N Bore Easting: 12.07.16 Ground RL: 7.15 m AHD KN Level (chirds of the second s		e ID:	-				
Site Location: APHS-N Northing: Bore Easting: 12.07.16 Ground RL: 7.15 m AHD GW Level (during drilling): - m bgl -0.4 m AHD GW Level (during drilling): 4.7.5 m bgl -0.4 m AHD Screened Interval: 4.7.5 m bgl -0.4 m AHD Contaminants/Comments: - - Bore Development Details - - Date/Time: 13.09.2016, 7am - Purged By: CB - - GW Level (pre-purge): 5.65 m bgl - - Observed Well Depth: 7.21 m bgl - - Stim tade Bore Volume: 25 L purged dry - Graupment, decontrainniation: twister '12 volt purp and hand bailer - Appearance/Comments: Iftee 2 volt purp and hand bailer - Appearance/Comments: Iftee 4.75 m bgl 2.4 m AHD GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (pre-purge): 4.75 m bgl <td></td> <td></td> <td></td> <td>vestigation</td> <td></td> <td></td> <td></td>				vestigation			
Bore Easing: Northing: installation Date: 12.07.16 Ground RL: 7.15 m AHD Well Depth: 7.5 m bgl -0.4 m AHD Screened Interval: 4.75 m bgl Screened Interval: 4.75 m bgl -0.4 m AHD Screened Interval: 6.4 m AHD Bore Development Details Bore Development Details Details Details Details Date/Time: 13.09.2016, 7am Purged By: CB GW Level (pre-purge): 5.65 m bgl Sr M AHD SW Level (pre-purge): 5.65 m bgl Sr M Level (post-purge): 5.65 m bgl Screened Interval: Purged Gry Stall Volume Purged: 17 L purged dry Equipment, decontamination: Water value your and hand bailer Appearance/Comments: Water value your and hand bailer Appearance/Comments: ScreenedScreened Date/Time: 16.09.2016 Sampled By: MW Wetere (post sample): 4.75 m bgl 2.4 m AHD OW Level (post sample): 4.75 m bgl 2.4 m AHD Screened Screened OW Level (post sample): 4.75 m bgl 2.4 m AHD </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Installation Date: 12.07.16 Ground RL: 7.15 m AHD Wel Loeph: . 7.5 m bgl -0.4 m AHD Screened Interval: 4-7.5 m bgl -0.4 m AHD Screened Interval: 4-7.5 m bgl -0.4 m AHD Contaminants/Comments: Bore Development Details -0.4 m AHD Date/Time: 13.09.2016, 7am Purged By: CB GW Level (pre-purge): 0.5 m bgl 3.5 m AHD GW Level (pre-purge): Observed: No (interface/visual) Observed: Doserved/Volume: 25 L Stimated Bore Volume: 25 L purged dry Equipment, decontamination: Wister Vac Vac purps and hand bailer Appearance/Comments: water was sily, brown Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine Severved: MO Severved (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (pre-purge): 4.75 m bgl Stimated Bore Volume: 17 L Tot I/Olume Purged: 10 L (prior to sampling) Equipment, decontamination: <t< td=""><td></td><td></td><td>APHS-N</td><td></td><td>1</td><td></td><td></td></t<>			APHS-N		1		
GW Level (during drilling): - m bgl -0.4 m AHD Well Depth: 7.5 m bgl -0.4 m AHD Garcened Interval: 4-7.5 m bgl -0.4 m AHD Contaminants/Comment Details Bore Development Details Bore Development Details							
Well Depth: 7.5 m bgl -0.4 m AHD Screened Interval: 4-7.5 m bgl Contaminants/Comments: Bore Development Details 13.09.2016, 7am Purged By: CB GW Level (pre-purge): 3.70 m bgl 3.5 m AHD GW Level (post-purge): 5.65 m bgl S.5 m AHD OSW Level (post-purge): 5.65 m bgl S.5 m AHD OSW Level (post-purge): 5.65 m bgl S.5 m AHD Observed Well Depth: 7.21 m bgl Estimated Bore Volume: 25 Total Volume Purged: 17 L purged dry Equipment, decontamination: Micropurg and Sampling Details Mater was silty, brown Micropurg and Sampling Details Date/Time: Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine GW Level (pro-purge): 4.75 m bgl 2.4 m AHD GW Level (pro-purge): 4.75 m bgl Stimated Bore Volume: 17 L Contamination: geoupment, decontamination: geoupment, decontamination: </td <td></td> <td></td> <td>12.07.16</td> <td></td> <td></td> <td></td> <td>i m AHD</td>			12.07.16				i m AHD
Screened Interval: 4-7.5 m bgl Contaminants/Comments: Bore Development Details Date/Time: 13.09.2016, 7am Purged By: CB GW Level (pre-purge): 5.65 m bgl SPH observed: No (interface/visual) Observed Well Depth: 7.21 m bgl Estimated Bore Volume: 25 L Total Volume Purged: 17 L purged By: Appearance?Comments: water was sity, brown Micropurge and Sampling Details Date/Time: Date/Time: 16.09.2016 Sampled By: MW Weevel (pre-purge): 4.75 m bgl OW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L Copymont. (prior to sampling) Equipment. decontamination: geopump, peristaltic pump Water Quality Parameters 17 L Total Volume (L) Temp (*C) DO (ppm) EC (ps/sm) pH		ng drilling):	-				
Contaminants/Comments: V Bore Development Details Development Details Durged By: CB GW Level (pre-purge): 3.70 m bgl 3.5 m AHD GW Level (post-purge): 5.65 m bgl S.50 m AHD OSW Level (post-purge): 5.65 m bgl S.50 m AHD Observed Well Depth: 7.21 m bgl Estimated Bore Volume: 25 L Total Volume Purged: 17 L purged dry Mare was silty, brown Micropurge and Sampling Details Details Details Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine 16.09.2016 Sampled By: GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 10 L (prior to sampling) Equipment, decontamination: geogump, peristatilic pump #4 0.1 #4 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 183 1.78 284 5.84 185 185 7.06				m bgl	-0.4	m AHD	
Bore Development Details 13.09.2016, 7am Durgod By: CB GW Level (pre-purge): 3.70 m bgl 3.5 m AHD GW Level (post-purge): 5.65 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.21 m bgl Estimated Bore Volume: 25 L Total Volume Purged: 17 L purged dry Equipment, decontamination: water was sity, brown Morepurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Wevel (post sample): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.75 m bgl 0.1 (prior to sampling) Call Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump yetawa Total Volume Purged: 17 L 10 L Total Volume Purged: 17 4.41 0.2 5.17 225 Total Volume (L) Temp (°C) DO (prm) EC (ustorn) pH Redox			4-7.5	m bgl			
Date/Time: 13.09.2016, 7am Purged By: CB GW Level (pre-purge): 5.65 SH observed: No (interface/visual) Observed Well Depth: 7.21 m bgl Total Volume Purged: 25 L Total Volume Purged: 17 L purged dry Equipment, decontamination: twister' 12 volt pump and hand bailer Appearance/Comments: Water was sifty, brown Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine 4.75 m bgl 2.4 m AHD GW Level (pre-purge): 4.75 m bgl Sampled By: Witwe Water Conditions: GW Level (pre-purge): 4.75 m bgl Estimated Bore Volume: 17 GW Level (pre-purge): 1.71 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Eguipment, decontamination: geopump, peristaltic pump Yater Value Volume: 17 225 Total Volume (L) Temp (*C)							
Purged By: CB GW Level (pre-purge): 3.70 m bgl 3.5 m AHD GW Level (post-purge): 5.65 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.21 m bgl Estimated Bore Volume: 25 L Total Volume Purged: 17 L purged dry Equipment, decontamination: Appearance/Comments: water was sity, brown Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weare (post sample): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.75 m bgl 2.4 m AHD GW Level (post sample): 54.70 m bgl Observed Wel Depth: 7.17 m bgl Estimated Bore Volume: 17 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parametry Time Volume (L) Temp (*C) DO (ppm) EC (piston) pH Redox (mV) Stabilisation Criteria (3 readings) +/ 0.3 mg/L +/ 0.3 mg/L +/ 0.1 +/ 10 mV Time Volume (L) Temp (*C) DO (ppm)		nent Details					
GW Level (pre-purge): 3.70 m bgl 3.5 m AHD GW Level (post-purge): 5.65 m bgl SSH observed: No (interface/visual) Observed Well Depth: 7.21 m bgl Estimated Bore Volume: 25 L purged dry Total Volume Purged: 17 L purged dry Appearance/Comments: water was silty, brown Micropurge and Sampling Details Sampled By: MW Wather Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (pors-purge): 4.76 m bgl 2.4 m AHD GW Level (pors-purge): 4.75 m bgl 2.4 m AHD GW Level (pors-purge): 17 L (prior to sampling) Setimated Bore Volume: 17 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parameters Tme Volume (L) Temp (°C) DO (prm)			13.09.2016, 7a	m			
GW Level (post-purge): 5.65 m bgl PSH observed: No (interface/visual) Observed/Vell Depth: 7.21 m bgl Estimated Bore Volume: 25 L purged dry Total Volume Purged: 17 L purged dry Appearance/Comments: water was sity, brown Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine GW Level (pors sample): 4.75 m bgl 2.4 m AHD GW Level (pors sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parameters Time Volume (L) Tem p_°C DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - 4/-0.3 mg/L 4/-3% 4/-0.1 4/-10 mV 7.02 17 4.41 0.2 5.77 194 7.04			СВ				
PSH observed: No (interface/visual) Observed Well Depth: 7.21 m bgl Equipment, decontamination: Wister' 12 volt pump and hand bailer Appearance/Comments: Water was silty, brown Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (pors-purge): 4.75 m bgl 2.4 m AHD GW Level (pors-purge): 4.76 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristatic pump Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µSirm) pH Redox (mV) Stabilisation Criteria (3 readings) - 4/ 0.3 mg/L 4/.3% 4/-0.1 4/.10 mV 7.02 17 4.41 0.2 5.17 1225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.86 179 Additional Readings Following stabilisation: m bgl. Sample Details Sample D					3.5	m AHD	
Observed Well Depth: 7.21 m bgl Estimated Bore Volume: 25 L Total Volume Purged: 17 L purged dry Equipment, decontamination: twister' 12 volt pump and hand bailer Appearance/Comments: water was silly, brown Micropurge and Sampling Details mater was silly, brown Micropurge and Sampling Details Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump muter Quality Parameters Time Volume (L) Temp (*C) D0 (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.194 7.03 17.8 2.33 <td< td=""><td></td><td>-purge):</td><td></td><td></td><td></td><td></td><td></td></td<>		-purge):					
Estimated Bore Volume: 25 L purged dry Total Volume Purged: 17 L purged dry Equipment, decontamination: twister 12 volt pump and hand bailer Appearance/Comments: water was silty, brown Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weater Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.80 m bgl 2.4 m AHD GW Level (post sample): 0.0 (interface/visual) Observed Well Depth: 7.17 m bgl Stamated Bore Volume: 17 L (prior to sampling) Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristatic pump Water Quality Parameters Time Volume (L) Tamp (*C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 <td></td> <td></td> <td>No (interface/vi</td> <td>sual)</td> <td></td> <td></td> <td></td>			No (interface/vi	sual)			
Total Volume Purged: 17 L purged dry Equipment, decontamination: twister '12 volt pump and hand bailer Appearance/Comments: Mater was silty, brown Micropurge and Sampling Details mater was silty, brown Micropurge and Sampling Details Micropurge and Sampling Details Sampled By: MW Weather Conditions: fine Micropurge GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation criteria (3 readings) - +/-0.3 mg/L +/-3% +/-0.1 +/-10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09			7.21	m bgl			
Equipment, decontamination: twister' 12 volt pump and hand bailer Appearance/Comments: water was silty, brown Micropurge and Sampling Details			25	L			
Appearance/Comments: water was silty, brown Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump metrical and the prior to sampling) Time Volume (L) Temp (*C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - #/-0.3 mg/L #/-3% #/-0.1 #/-10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.84 188 7.05 18.2 1.87 2.84 </td <td></td> <td>0</td> <td></td> <td>2</td> <td></td> <td>purged dry</td> <td></td>		0		2		purged dry	
Micropurge and Sampling Details Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parameters Time Volume (L) Temp (*C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/-0.3 mg/L +/-3% +/-0.1 +/-10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 284 5.86 179 0 1					d bailer		
Date/Time: 16.09.2016 Sampled By: MW Weather Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.80 m bgl 0 PSH observed: No (interface/visual) 0 Observed Well Depth: 7.17 m bgl 1 Estimated Bore Volume: 17 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parameters Time Volume (L) Temp (*C) DO (ppm) EC (µStem) pH Redox (mV) Stabilisation Criteria (3 readings) - +/-0.3 mg/L +/-3% +/-0.1 +/-10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 284 5.84 188 7.06 18.3 1.78 284 5.86 179	Appearance/Co	mments:	water was silty,	brown			
Sampled By: MW Weather Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/-0.3 mg/L +/-3% +/-0.1 +/-10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.86 179 7.06 18.3 1.78 284 5.86 179		d Sampling De	tails				
Weather Conditions: fine GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (pors sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/-0.3 mg/L +/-3% +/-0.1 +/-10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179 Additional Readings Following stabilisation:	Date/Time:		16.09.2016				
GW Level (pre-purge): 4.75 m bgl 2.4 m AHD GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl (prior to sampling) Estimated Bore Volume: 17 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump (prior to sampling) Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µS(cm)) pH Redox (mV) Stabilisation Criteria (3 readings) - +/-0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.81 185 7.06 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.86 179 4dditional Readings Following stabilisation:	Sampled By:		MW				
GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump model Water Quality Parameters geopump, peristaltic pump PH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.04 18.3 1.78 282 5.81 185 7.06 18.3 1.78 284 5.86 179 9 9 9 9 9 9 9 9 7.05 18.3 1.78 284 5.86 179 9 9	Weather Condit	ions:	fine				
GW Level (post sample): 4.80 m bgl PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump model Water Quality Parameters geopump, peristaltic pump PH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.04 18.3 1.78 282 5.81 185 7.06 18.3 1.78 284 5.86 179 9 9 9 9 9 9 9 9 7.05 18.3 1.78 284 5.86 179 9 9	GW Level (pre-	purge):	4.75	m bgl	2.4	m AHD	
PSH observed: No (interface/visual) Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump PH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 19. 1 1 1 1 1 19. 1 1 1 1 1 1 19.			4.80	m bal			
Observed Well Depth: 7.17 m bgl Estimated Bore Volume: 17 L Total Volume Purged: 10 L (prior to sampling) geopump, peristaltic pump geopump, peristaltic pump PH Redox (mV) Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179	PSH observed:	. ,					
Estimated Bore Volume: 17 L (prior to sampling) Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump (prior to sampling) Water Quality Parameters geopump, peristaltic pump prime Volume (L) Temp (°C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86		Depth:		-			
Total Volume Purged: 10 L (prior to sampling) Equipment, decontamination: geopump, peristaltic pump geopump, peristaltic pump Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179 7.04 18.3 1.78 284 5.86 179 9 9 9 9 9 9 9 9 9 9 9 9 9 9 7.06 18.3 1.78 284 5.86 1	Estimated Bore	Volume:	17				
Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 19.1 10.1 10.1 10.1 10.1 10.1 19.1 18.3 1.78 284 5.86 179 19.1 19.1 10.1 10.1 10.1 10.1 10.1			10	L	(1	prior to samplir	ng)
Water Quality Parameters Time Volume (L) Temp (°C) DO (ppm) EC (µS/cm) pH Redox (mV) Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 19.1 10.1 10.1 10.1 10.1 10.1 19.1 18.3 1.78 284 5.86 179 19.1 19.1 10.1 10.1 10.1 10.1 10.1		0	geopump, peris	staltic pump		•	0/
Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 3% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284<				• •			
Stabilisation Criteria (3 readings) - +/- 0.3 mg/L +/- 0.% +/- 0.1 +/- 10 mV 7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.86 179 7.06 18.3 1.78 284 5.86 179 7.07 18.3 1.78 284 5.86 179 7.07 18.3 1.78 284 5.86 179 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 18.3 1.78 284 5.86 179 9 9 9 9 9 9 9 9 <t< td=""><td>Time</td><td>Volume (L)</td><td>Temp (°C)</td><td>DO (ppm)</td><td>EC (µS/cm)</td><td>pН</td><td>Redox (mV)</td></t<>	Time	Volume (L)	Temp (°C)	DO (ppm)	EC (µS/cm)	pН	Redox (mV)
7.02 17 4.41 0.2 5.17 225 7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179 18.3 1.78 284 5.86 179	Stabilisation Crit	teria (3 readings)	-	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10 mV
7.03 17.8 2.33 261 5.7 194 7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.86 179 9			17				
7.04 18 2.09 284 5.76 187 7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.86 179 9 9 9 9 9 9 183 1.78 9 18.3 1.78 284 5.86 179 9<							
7.05 18.2 1.87 282 5.81 185 7.06 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 18.3 1.78 284 5.86 179 9 1 1.91 1.91 1.91 1.91 1.91 4dditional Readings Following stabilisation: 102 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91							
7.06 18.3 1.78 284 5.84 188 7.07 18.3 1.78 284 5.86 179 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-						
7.07 18.3 1.78 284 5.86 179 Image: Stability of the s							
Additional Readings Following stabilisation: Image: Constraint of the second secon							
stabilisation: m Sample Details Sampling Depth (rationale): m bgl, Sample Appearance: no odour, clear Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCl) , 1x500ml plastic, 1x200ml plastic (J\$O4), 1x preservatives, filtration: 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)	7.07		18.3	1.78	284	5.86	179
stabilisation: m Sample Details Sampling Depth (rationale): m bgl, Sample Appearance: no odour, clear Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCl) , 1x500ml plastic, 1x200ml plastic (J\$O4), 1x preservatives, filtration: 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)							
stabilisation: m Sample Details Sampling Depth (rationale): m bgl, Sample Appearance: no odour, clear Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCl) , 1x500ml plastic, 1x200ml plastic (J\$O4), 1x preservatives, filtration: 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)							
stabilisation: m Sample Details Sampling Depth (rationale): m bgl, Sample Appearance: no odour, clear Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCl) , 1x500ml plastic, 1x200ml plastic (J\$O4), 1x preservatives, filtration: 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)							
stabilisation: m Sample Details Sampling Depth (rationale): m bgl, Sample Appearance: no odour, clear Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCl) , 1x500ml plastic, 1x200ml plastic (J\$O4), 1x preservatives, filtration: 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)							
Sample Details Sampling Depth (rationale): m bgl, Sample Appearance: no odour, clear Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCl) , 1x500ml plastic, 1x200ml plastic (J\$O4), 1x preservatives, filtration: 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)							<u> </u>
Sampling Depth (rationale): m bgl, Sample Appearance: no odour, clear Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCI) , 1x500ml plastic, 1x200ml plastic (\cdot SO4), 1x preservatives, filtration: 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)		sation:					
Sample Appearance: no odour, clear Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCI) , 1x500ml plastic, 1x200ml plastic (\psO_4), 1x preservatives, filtration: 100mL plastic (HNO ₃ (filtered)), 1L glass (no Teflon lined lid)			1				
Sample ID: 102 Replicate Samples: BD1/160916 Sampling containers, 1L glass, 2x 40mL glass vials (HCI) , 1x500ml plastic, 1x200ml plastic (\psO_4), 1x preservatives, filtration: 100mL plastic (HNO ₃ (filtered)), 1L glass (no Teflon lined lid)				-			
Replicate Samples:BD1/160916Sampling containers, preservatives, filtration:1L glass, 2x 40mL glass vials (HCI) , 1x500ml plastic, 1x200ml plastic (\product SO_4), 1x 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)		ance:					
Sampling containers, preservatives, filtration:1L glass, 2x 40mL glass vials (HCl) , 1x500ml plastic, 1x200ml plastic (\product SO_4), 1x 100mL plastic (HNO3 (filtered)), 1L glass (no Teflon lined lid)	Sample ID:						
preservatives, filtration: 100mL plastic (HNO ₃ (filtered)), 1L glass (no Teflon lined lid)							
							astic (∳\$ O₄), 1x
	•				<u> </u>	,	

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field Sheet

Groundwater Field She										
Project and Bore Installation										
Bore / Standpipe ID:	103									
Project Name:	Detailed Site Investigation									
Project Number:	85374.02									
Site Location:	PPS									
Bore Easting:			Northing:							
Installation Date:	8.07.16		Ground RL:	11	m AHD					
GW Level (during drilling):	-	- m bgl 3.5 m AHD								
Well Depth:	7.5	m bgl	3.5 r	m AHD						
Screened Interval:	1.5-7.5	m bgl								
Contaminants/Comments:										
Bore Development Details										
Date/Time:	13.09.2016, 6a	m								
Purged By:	СВ									
GW Level (pre-purge):	3.88	m bgl	7.1 r	n AHD						
GW Level (post-purge):	6.70	m bgl								
PSH observed:	No (interface/vi	sual)								
Observed Well Depth:	7.4	m bgl								
Estimated Bore Volume:	25	L								
Total Volume Purged:	11	L		purged dry						
Equipment, decontamination:	twister' 12 volt		d bailer							
Appearance/Comments:	water was silty,	brown								
Micropurge and Sampling De										
Date/Time:	19.09.2016									
Sampled By:	MW									
Weather Conditions:	raining									
GW Level (pre-purge):	6.62	m bgl	4.4 r	n AHD						
GW Level (post sample):	4.80	m bgl								
PSH observed:	No (interface/vi	sual)								
Observed Well Depth:	7.22	m bgl								
Estimated Bore Volume:	4	L								
Total Volume Purged:	5	L	(p	rior to sampli	ng)					
Equipment, decontamination:	geopump, peris	staltic pump								
Water Quality Parameters										
Time Volume (L)	Temp (°C) DO (mg/L) EC (µS or mS/cm) pH Redox (
Stabilisation Criteria (3 readings)	-	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10 mV					
	lr	sufficient wate) I							
					1					
Additional Readings Following										
stabilisation:										
Sample Details										
Sampling Depth (rationale):	6.9	m bgl,								
Sample Appearance:		U /	ear then silty aga	in						
Sample ID:	initially very silty, becoming clear then silty again 103									
Replicate Samples:										
Sampling containers,	1L glass, 2x 40mL glass vials (HCI) , 1x500ml plastic, 1x200ml plastic (Į€O₄), 1x									
preservatives, filtration:	100mL plastic (HNO ₃ (filtered)), 1L glass (no Teflon lined lid)									
Comments / Observations:	some silt in me		<u> </u>	,						
Comments / Observations.	Some Silt in me									

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field Sheet

	ore Installation					
Bore / Standpip		MW1				
Project Name:			voctigation			
	.	Detailed Site In	vestigation			
Project Number Site Location:	Γ.	85374.02				
		APHS-S		Northing		
Bore Easting:				Northing: Ground RL		
Installation Date	e:	10.09.2016		(approx):	13	3 m AHD
GW Level (duri	na drillina):	-	m bgl		m AHD	
Well Depth:		10.15	m bgl		m AHD	
Screened Inter	val:	4-10.15				
Contaminants/0						
Bore Develop	ment Details					
Date/Time:		13.09.2016, 6.3	7am			
Purged By:		СВ				
GW Level (pre-	·purge):	5.57	m bal	7.4	m AHD	
GW Level (pos		9.56	m bgl			
PSH observed:		No (interface/vi	sual)			
Observed Well	Depth:	10.1	m bgl			
Estimated Bore	e Volume:	33	L			
Total Volume P	0	18	L		purged dry	
Equipment, dec		twister' 12 volt		d bailer		
Appearance/Co		water was silty,	brown			
	nd Sampling De					
Date/Time:		16.09.2016				
Sampled By:		MW				
Weather Condi		raining				
GW Level (pre-		7.24	m bgl	5.8	m AHD	
GW Level (pos			m bgl			
PSH observed:		No (interface/vi	,			
Observed Well		10.1	m bgl			
Estimated Bore		21	L			
Total Volume P	v		L	(prior to samplin	ng)
Equipment, dec		geopump, peris	taltic pump			
Water Quality P						
Time	Volume (L)	Temp (°C)	DO (ppm)	EC (µS/cm)	рН	Redox (mV)
	iteria (3 readings)	-	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10 mV
7.45		18.9	5.04	10.6	5.37	181
7.46		19.1	4.86	8.6	5.43	163
7.47		19.5	4.5	2.5	5.54	126
7.52		20.6	3.27	2.9	5.53	132
7.53		21	2.96	2.89	5.52	126
7.54		21.3	3.03	2.87	5.51	130
7.55		21.4	2.95	2.86	5.51	132
7.56		21.4	2.92	2.86	5.5	134
A 1 1942	<u> </u>	ļ	ļ			
	dings Following					
	isation:	ļ	I		<u> </u>	1
Sample Details		1				
Sampling Dept			m bgl,			
Sample Appear	rance:	clear, becoming	g slightly silty			
Sample ID:		MW1				
Replicate Sam		41	L electric L (1)			
Sampling conta preservatives, f				ICI) , 1x500ml pla 1L glass (no Tefl		astic (ﷺU ₄), 1x
Comments / Ot		some silt in me		3		
Comments / Ot		some sitt in me				

Appendix E

Summary of Laboratory Results for Soil

Laboratory Certificates and Advice (Chromatograms)

Chain of Custody Documentation

			T				Heavy I	Metals					PAH	-	Τ			TRH (NEI	PM 2013)				E	STEX					00	CPb			PFAS	
Sample	Depth	Filling/ Natural	Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	total ^b	BaP TEQ upper	BaP	Naphthalene	C6-C10	>C10-C16	F1 - C6 – C10 less BTEX	F2 - >C10-C16 less naphthalene	>C16-C34	>C34-C40	Benzene	Toluene	Ethylbenzene	xylene	PCB ^b	asbestos	Phenois	DDT+DDD+DDE	рот	ЧАЮ	PFOS	PFOA	
			-	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	0.1g/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
EQL bil Assessment Criteria (SAC) - NEPM (as ar	mended 2013) (refer to repo	rt body)	2	0.4	1	1	1	0.05	1	1			0.05	0.1	20	50	20	50	100	100	0.1	0.1	0.1	0.3									
alth Investigation Level for Residential A alth Screening Level for Vapour Intrusion (0-1)		A Desidential		100	20	100	6000	300	40	400	7400	300	3		2			45	110			0.5	400	55	40	1	0.01%	100	240			4		
anagement Limit Residential	III) SAND HSL	A Residential													3	800	1000	45	110	3500	10000	0.5	160	55	40									
cological Investigation Levels Residential cological Screening Levels Residential				100	$ \longrightarrow $	200	210	1100		150	500			0.7	170			180	120	1300	5600	65	105	125	45					180				
urrent Investigation														0.7				100	120	1000	0000	00	100	120	-13									
-	0.05.0.45	-	10/1/10				- 10	04	0.4	7	0	404.0	10	10	0.0	05	50	05	50	1500			0.5		0		NAR	5		0.4		1		
107 108	0.35-0.45 0.3-0.4	F	19/4/16 19/4/16		<0.4 <0.4	22 19	13 20	21 23	<0.1 <0.1	9	9 21	164.3 1.1			0.2 <0.1	<25 <25	<50 <50	<25 <25	<50 <50	1500 <100	320 <100	<0.2	<0.5 <0.5	<1 <1	<3 <3	<0.1 <0.1	NAD NAD	<5 <5	<0.3		<0.1 <0.1			
H09	0.3-0.4		19/4/16		<0.4	8	50	20	<0.1	45		1210	110			<25	530	<25		12000	2200	<0.2	<0.5	<1	<3	<1	NAD	<5	<3	<1	<1			
H10 H11	0.4-0.5		19/4/16 19/4/16		<0.4 <0.4		56 11	57 16	0.1 <0.1	30 6		1006 1.02				<25 <25		<25 <25	570 <50	12000 <100	2500 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	<0.1 <0.1	NAD NAD	<5 <5		<0.1 <0.1	<0.1 <0.1	1	-	
D1a	0.3-0.4	F	19/4/16	7	<0.4	23	18	25	<0.1	10	19	0.38	<0.5	0.06	<0.1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.1	NAD	<5	< 0.3	<0.1	<0.1	1		
H12 W1	0.2-0.3	F	19/4/16 10/9/16	<4 7			49 15	110 63	0.3 <0.1	29 10		175.1 120				<25 <25	56 <50	<25 <25	56 <50	2200 1300	660 350	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	<3	NAD NAD	<5	<3	<3	<3	0.0001	<0.0001	
W1	0.9-1.0	N clay	10/9/16		<0.4		18	36	<0.1		52					<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3		NAD					0.0001		
revious Investigation																																		
										_																					1	1	•	
H23 H24	0.5-0.6	N clay N clay			<0.4 <0.4		11 18	20	<0.05 <0.05	<5 <5	42 9.1																NAD		-					
25	0.5-0.6	N clay		8	<0.4	22	29	20	< 0.05	16	36																NAD							
26 127	0.5-0.6	N clay N clay			<0.4 <0.4		11 15	21 32	<0.05 <0.05		13 41																NAD		-			1	-	
28	0.5-0.6	N clay		12	<0.4	38	14	23	<0.05	<5	22																							
29 30	0.5-0.6			10 3.5	<0.4		11 15	19 28	<0.05 <0.05		7.6 9.4																NAD		-					
131	0.5-0.6	N clay		9.7	<0.4	26	17	29	< 0.05	5.5	17																NAD							
132	0.5-0.6				<0.4 <0.4			17 19	0.06		7.2																							
H33 H34	0.3-0.8	N clay F			<0.4			19	<0.05 <0.05		7.5 55																							
H35 H36	0.5-0.6	N N dov			<0.4			23	< 0.05		10				< 0.5	<20 <20	<50 <50	<50 <50	<50	<100	<100	<0.1	<0.1	<0.1	< 0.3									
H37	0.5-0.6	N clay N clay		8.2	<0.4 <0.4		13 9.1	27 20	<0.05 <0.05	11 <5	21 9.7				<0.5 <0.5		<50	<50	<50 <50	<100 <100	<100 <100	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3						-			
b c	where results o guideline conce	e/triplicate of san f one or more co entrations are for ot defined/ not a	mponent comp Cr (III)		bove practi	ical quantita	ation limit (P(QL) sum of a	all results ab	ove PQL gi	ven, when a	all results a	re below PC	QL results	s quoted as	<pql ma<="" of="" td=""><td>ajority of indi</td><td>ividual analyte</td><td>es</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pql>	ajority of indi	ividual analyte	es															
		HILA residential Residential soil v		'M (2013) gu	uideline																													
		Residential EIL/E		tatistical ana!	alysis)																													
Bold	exceedance of asbestos detec	Management Lin	nits																															
	asbesites delet	100																																
Highlight red Acronyms																																		
Highlight red Acronyms AD	asbestos detec	ted																																
Highlight red Acronyms AD As	asbestos detec arsenic benzo(a)pyrene																																	
Highlight red Acronyms AD As BaP BaP TEQ	arsenic benzo(a)pyrene benzo(a)pyrene	e toxic equivalend																																
Highlight red Acronyms AD As BaP BaP TEQ BTEX	arsenic benzo(a)pyrene benzo(a)pyrene	9		i																														
Highlight red ACronyms AD As BaP TEQ BTEX Cd Cr	arsenic benzo(a)pyrene benzo(a)pyrene benzene, toluer cadmium chromium (total	e toxic equivalenc ne, ethyl benzene		3																														
Highlight red Acronyms AD As BaP BaP TEQ BTEX Cd Cr Cu	arsenic benzo(a)pyrene benzo(a)pyrene benzene, toluer cadmium chromium (total copper	e e toxic equivalenc ne, ethyl benzenc I)		š																														
Highlight red Acronyms AD As BaP TEQ BTEX Cd Cr Cu EIL ESL	arsenic benzo(a)pyrene benzo(a)pyrene benzene, toluer cadmium chromium (total copper Ecological Inve Ecological Scree	e toxic equivalenc ne, ethyl benzenc I) stigation Levels		š																														
Highlight red Acronyms AD As BaP BaP TEQ BTEX Cd Cr Cu EIL ESL Hg	arsenic benzo(a)pyrene benzene, toluer cadmium chromium (totai copper Ecological Inve Ecological Scre mercury	e toxic equivalend ne, ethyl benzend I) stigation Levels sening Level		3																														
Highlight red Acronyms AD As BaP TEQ BaP TEQ BTEX Cd Cr Cu EIL ESL Hg HIL	arsenic benzo(a)pyrene benzo(a)pyrene benzene, toluer cadmium chromium (total copper Ecological Inve Ecological Scree	e toxic equivalent ne, ethyl benzend I) stigation Levels sening Level ation level		3																														
Highlight red Acronyms AD As BaP TEQ BTEX Cd Cr Cu EIL ESL Hg HIL HSL NAD	arsenic benzo(a)pyrene benzo(a)pyrene benzene, toluer cadmium chromium (total copper Ecological Inve Ecological Scre mercury health investiga Health Screenii No asbestos de	e toxic equivalence ne, ethyl benzene I) stigation Levels stening Level ation level ng Levels tected	e, total xylenes		oil cosse	tration at	sich the er		0.000001.00			ndividual -	homical ba-		otrolo	inturo The		that is in accurate	likrium with th		will be at 'to	moviessee	f the derive ⁴	del avocada the				n for a set-		could act a	vened c			
Highlight red Acronyms AD As BaP TEQ BTEX Cd Cr Cu ElL ESL Hg HIL HSL NAD NL	arsenic benzo(a)pyrene benzo(a)pyrene benzene, toluer cadmium chromium (tota copper Ecological Sore mercury health investiga Health Screenin No asbestos de The soil saturat	e toxic equivalence ne, ethyl benzene I) stigation Levels stening Level ation level ng Levels tected	e, total xylenes	ined as the so													soil vapour 1	that is in equi	librium with th	e porewater	will be at its	: maximum. 1	f the derived I	HSL exceeds the	Csat, a soil-v	apour source	e concentratio	on for a petrol	leum mixture	could not ex	kceed a			
Highlight red Acronyms AD As BaP TEQ BTEX Cd Cr Cd Cr Cu EIL ESL Hg HIL HSL NAD NL OCP	arsenic benzo(a)pyrene benzo(a)pyrene benzone, toluer cadmium chromium (total copper Ecological Inve Ecological Inve Ecological Inve Ecological Inve Health Screenin No asbestos de The soil saturat level that would organochlorine	e toxic equivalence ne, ethyl benzene I) stigation Levels eening Level ation level go Levels etected ion concentration I result in the mail	e, total xylenes	ined as the so													soil vapour 1	that is in equi	librium with th	ie porewater	will be at its	maximum. I	f the derived b	HSL exceeds the	Csat, a soil-v	apour source	econcentratio	on for a petrol	leum mixture	could not ex	xceed a			
Highlight red Acronyms AD As BaP BaP TEQ BTEX Cd Cr Cu ElL ESL Hg HIL HSL NAD NL OCP OPP	arsenic benzo(a)pyrene benzo(a)pyrene benzone, toluer cadmium chromium (total copper Ecological Stree Ecological Stree Recury health investige Health Screenin No asbestos de The soil saturat level that would organochlorine organophosphc	e toxic equivalent ne, ethyl benzend stigation Levels eening Level ation level ng Levels tected ion concentration f result in the ma: pesticides rus pesticides	e, total xylenes n (Csat) is defi nimum allowat	ined as the so													soil vapour 1	that is in equi	librium with th	ie porewater	will be at its	: maximum. 1	f the derived I	HSL exceeds the	Csat, a soil-v	apour source	e concentratio	on for a petrol	leum mixture	could not ex	cceed a			
Highlight red Acronyms AD As BaP TEQ BTEX Cd Cr Cu EIL ESL Hg HIL HSL NAD NL OCP OPP PAH Pb	arsenic benzo(a)pyrene benzo(a)pyrene benzone, toluer cadmium chromium (tota copper Ecological Inve Ecological	e toxic equivalence e, ethyl benzence l) stigation Levels terning Level ation level quevels tected tion concentration fresult in the mai pesticides prus pesticides tatic hydrcarbons	e, total xylenes n (Csat) is defi nimum allowat	ined as the so													soil vapour 1	that is in equi	librium with th	ie porewater	will be at its	: maximum. I	f the derived I	HSL exceeds the	Csat, a soil-v	apour source	e concentratio	on for a petrol	ieum mixture	could not ex	cceed a			
Highlight red Acronyms AD As BaP BaP TEQ BTEX Cd Cr Cu EIL ESL Hg HIL HSL NAD NL OCP OPP PAH Pb PCB	arsenic benzo(a)pyrene benzo(a)pyrene benzo(a)pyrene benzone, toluer cadmium chromium (total copper Ecological Inve Ecological Inve Ecological Scre mercury health investige Health Screenii No asbestos de neath investige Health Screenii No asbestos de organophosphc polycyclic arom lead	e toxic equivalence e, ethyl benzence l) stigation Levels terning Level ation level quevels tected tion concentration fresult in the mai pesticides prus pesticides tatic hydrcarbons	e, total xylenes n (Csat) is defi nimum allowat	ined as the so													soil vapour	that is in equi	librium with th	ie porewater	will be at its	: maximum. I	f the derived I	HSL exceeds the	Csat, a soil-v	apour source	e concentratio	on for a petrol	leum mixture	could not ex	xceed a			
Highlight red Acronyms AD As BaP TEQ BTEX Cd Cr Cu EIL ESL Hg HIL HSL NAD NL OCP OPP PAH Pb PCB Ni	arsenic benzo(a)pyrene benzo(a)pyrene benzone, toluer cadmium chromium (tota copper Ecological Inve Ecological	e toxic equivalent ne, ethyl benzene i) stigation Levels stening Level attion level ng Levels stected tion concentration forsult in the mar pesticides orrus pesticides attic hydrcarbons biphenyls	e, total xylenes n (Csat) is defi nimum allowat	ined as the so													soil vapour 1	that is in equi	librium with th	ie porewater	will be at its	: maximum. I	f the derived I	HSL exceeds the	Csat, a soil-v	apour source	e concentratio	on for a petrol	leum mixture	could not ex	kceed a			
Highlight red Acronyms AD As BaP TEQ BTEX Cd Cr Cu EIL ESL Hg HIL HSL NAD NL OCP OPP PAH Pb PCB Ni TPH TRH	arsenic benzo(a)pyrene benzo(a)pyrene benzo(a)pyrene benzone, toluer cadmium chromium (total copper Ecological Inve Ecological	e e e e e e e e e e e e e e e e e e e	e, total xylenes n (Csat) is defi irimum allowab	ined as the sc	isk for a giv	ven scenario											soil vapour 1	that is in equi	librium with th	ne porewater	will be at its	: maximum. I	f the derived I	HSL exceeds the	Csat, a soil-v	apour source	e concentratio	on for a petrol	leum mixture	could not ex	kceed a			

Table E2: Summary of Laboratory Results for Groundwater Analysis

						Pr	iority Hea	vy Metals	; (total di	ssolved)					T	RH					BTEX				PAH	1						v	oc		
Sample ID	Depth ^e	Date Sampled	Hardness	Applicable Soil Type ^f	As	Cd	Cr	Cu	Рb	Нд	Ni	Zn	TRH C ₆ - C ₁₀	TRH >C ₁₀ - C ₁₆	C6-C10 less BTEX (F1)	>C10-C16 less Naphthalene (F2)	>C16-C34	>C34-40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Naphthalene	B(a)P	РАН	Total Phenols	OCP	dЮ	PCB	Chloroform	Bromodichloromethane	1,2,4-trimethyl benzene	Other VOC	PFAS
	m bgl		(mgCaCO3/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Groundwater As	sessment C	riteria																																	
GIL (freshwater)			-	-	24/ 13 ^c	0.2	1 ^d	1.4	3.4	0.06	11	8	-	-	-	-	-	-	950	-	-	200 ^h	350	16	-	-	0.003 ^g	-	-	-	-	-	-	-	-
GIL (freshwater, h	ardness adjus	sted) ^b	277	-	-	1.4		9	57	-	73	53	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HSLs (Residentia)																											•							
HSL-A&B	4-<8m		-	Sand	-	-	-	-	-	-	-	-	-	-	1,000	1,000	-	-	800	NL	NL	NL	-	NL	-	-	-	-	-	-	-	-	-	-	-
HSL-A&B	4-<8m		-	Clay	-	-	-	-	-	-	-	-	-	-	NL	NL	-	-	5,000	NL	NL	NL	-	NL	-	-	-	-	-	-	-	-	-	-	-
ADWG	(health-base	ed)	-	-	10	2	50 ^d	2,000	10	1	20	-	-	-	-	-	-	-	1	800	300	60	00	-	0.01	-	0.01	-	-	-	-	-	-	-	-
ADWG	(aesthetic-ba	ased)	-	-	-	-	-	1,000	-	-	-	3,000	-	-	-	-	-	-	-	25	3	2	0	-	-	-	-	-	-	-	-	-	-	-	-
Reference Level			-	-	-	-	-	-	-	-	-	-	-	-	150 ^j	600 ^j	-	-	-	180 ^k	80 ^k	75 ^{k,i}	-	-	0.1 ^k	-	-	-	-	-	-	-	-	-	0.13 ^m
Laboratory Res	ults																																		
MW1	7.2	16/09/16	100		2	<0.1	<1	2	<1	< 0.05	12	65	15	<50	15	<50	<100	<100	<1	<1	<1	<2	<1	<1	<1	NIL (+)VE	<0.05	<0.2	<0.2	<2	16	4	<1	<1/<10	<0.01
102	4.7	16/09/16	190		<1	<0.1	<1	<1	<1	<0.05	1	12	<10	<50	<10	<50	<100	<100	<1	<1	<1	<2	<1	<1	<1	NIL (+)VE	<0.05	<0.2	<0.2	<2	<1	<1	<1	<1/<10	<0.01
BD1 ^a	6.6	16/09/16			<1	<0.1	<1	<1	<1	<0.05	1	11												<1	<1	NIL (+)VE									
103	6.6	16/09/16	540		<1	0.2	<1	23	2	< 0.05	53	340	24	<50	24	<50	<100	<100	<1	<1	<1	<2	<1	<1	<1	NIL (+)VE	< 0.05	<0.2	<0.2	<2	<1	<1	1	<1/<10	<0.01

Notes:

a Replicate sample of sample listed directly above

b Adjusted in accordance with ANZECC (2000) for a hardness of 277mg/L, which is the average of the hardness values recorded in the primary samples

c 24µg/L as As(III) 13µg/L as As(V)

d Threshold value for Cr (VI)

e Depth to groundwater as measured immediately prior to sampling

f Overlying material applying for HSL.

g threshold for 2,4,6-trichlorophenol as a conservative screen

h As p-xylene

i As m-xylene

j Airport (Environment Protection) Regulations (1997), Schedule 2 Water Pollution Accepted Limits: Table 1.03 – Accepted limits of contamination

k ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000), Low reliability values

I threshold for pentachlorophenol as a conservative screen

m DER (2016) value for PFOS for slightly - moderately disturbed freshwater ecosystems

- Not defined/ not analysed/ not applicable

BOLD Concentration Detected at or above the PQL

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

145323

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Michael Whittaker, Tim Wright

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

85374.02, Parramatta 14 Soils 1 Material 21/04/2016 / 21/04/2016

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 29/04/16
 / 28/04/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
	-					
Depth		0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016	14/04/2016	14/04/2016	15/04/2016	15/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	78	89	86	90	88
	1					
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference		BH06	BH07	BH08	BH09	BH10
Depth		0.5-0.6	0.35-0.45	0.3-0.4	0.3-0.4	0.4-0.5
Date Sampled		15/04/2016	19/04/2016	19/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	85	82	87	87	88

vTRH(C6-C10)/BTEXN in Soil					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
	-				
Depth		0.45-0.55	0.2-0.3	-	-
Date Sampled		19/04/2016	19/04/2016	15/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	94	90	92	97

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
	-					
Depth		0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016	14/04/2016	14/04/2016	15/04/2016	15/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	110	<100	<100	<100
TRHC29 - C36	mg/kg	<100	170	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	240	<100	<100	<100
TRH>C34-C40	mg/kg	<100	110	<100	<100	<100
Surrogate o-Terphenyl	%	82	86	84	84	82
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference		BH06	BH07	BH08	BH09	BH10
Depth	-	0.5-0.6	0.35-0.45	0.3-0.4	0.3-0.4	0.4-0.5
Date Sampled		15/04/2016	19/04/2016	19/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC10 - C14	mg/kg	<50	<50	<50	160	150
TRHC 15 - C28	mg/kg	<100	980	<100	8,200	8,200
TRHC29 - C36	mg/kg	<100	630	<100	4,400	4,800
TRH>C10-C16	mg/kg	<50	<50	<50	530	570
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	530	570
TRH>C16-C34	mg/kg	<100	1,500	<100	12,000	12,000
TRH>C34-C40	mg/kg	<100	320	<100	2,200	2,500
Surrogate o-Terphenyl	%	86	124	81	#	#

svTRH (C10-C40) in Soil					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
	-				
Depth		0.45-0.55	0.2-0.3	-	-
Date Sampled		19/04/2016	19/04/2016	15/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	1,300	<100	<100
TRHC 29 - C36	mg/kg	<100	1,100	<100	<100
TRH>C10-C16	mg/kg	<50	56	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	56	<50	<50
TRH>C16-C34	mg/kg	<100	2,200	<100	<100
TRH>C34-C40	mg/kg	<100	660	<100	<100
Surrogate o-Terphenyl	%	82	136	81	84

PAHs in Soil						
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
Depth	-	0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016	14/04/2016	14/04/2016	15/04/2016	15/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	0.1	0.2
Anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	0.1
Fluoranthene	mg/kg	0.6	2.3	<0.1	0.5	0.9
Pyrene	mg/kg	0.7	3.5	<0.1	0.6	1.0
Benzo(a)anthracene	mg/kg	0.4	1.9	<0.1	0.3	0.6
Chrysene	mg/kg	0.4	1.9	<0.1	0.4	0.7
Benzo(b,j+k)fluoranthene	mg/kg	0.9	4.4	<0.2	0.8	2
Benzo(a)pyrene	mg/kg	0.4	2.5	<0.05	0.4	0.74
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	1.6	<0.1	0.3	0.6
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.3	<0.1	<0.1	0.1
Benzo(g,h,i)perylene	mg/kg	0.3	1.5	<0.1	0.3	0.5
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.6	3.7	<0.5	0.5	1.2
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.7	3.7	<0.5	0.6	1.2
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.7	3.7	<0.5	0.6	1.2
Total Positive PAHs	mg/kg	4.3	20	NIL(+)VE	3.6	7.1
Surrogate p-Terphenyl-d14	%	89	96	93	92	93

PAHs in Soil						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference		BH06	BH07	BH08	BH09	BH10
Depth	-	0.5-0.6	0.35-0.45	0.3-0.4	0.3-0.4	0.4-0.5
DateSampled		15/04/2016	19/04/2016	19/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Naphthalene	mg/kg	<0.1	0.2	<0.1	1.2	1.5
Acenaphthylene	mg/kg	<0.1	1.2	<0.1	2.4	2.3
Acenaphthene	mg/kg	<0.1	0.1	<0.1	13	21
Fluorene	mg/kg	<0.1	1.4	<0.1	8.1	11
Phenanthrene	mg/kg	<0.1	25	<0.1	290	140
Anthracene	mg/kg	<0.1	5.9	<0.1	64	44
Fluoranthene	mg/kg	<0.1	36	0.2	250	230
Pyrene	mg/kg	<0.1	33	0.2	220	210
Benzo(a)anthracene	mg/kg	<0.1	18	<0.1	91	91
Chrysene	mg/kg	<0.1	16	0.1	88	80
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	20	<0.2	130	120
Benzo(a)pyrene	mg/kg	<0.05	12	0.1	74	74
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	7.5	<0.1	50	48
Dibenzo(a,h)anthracene	mg/kg	<0.1	1.6	<0.1	11	9.4
Benzo(g,h,i)perylene	mg/kg	<0.1	6.4	<0.1	47	44
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	19	<0.5	110	110
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	19	<0.5	110	110
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	19	<0.5	110	110
Total Positive PAHs	mg/kg	NIL(+)VE	180	0.58	1,300	1,100
Surrogate p-Terphenyl-d14	%	94	89	94	91	91

PAHs in Soil					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
Depth	-	0.45-0.55	0.2-0.3	-	-
Date Sampled		19/04/2016	19/04/2016	15/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Naphthalene	mg/kg	<0.1	0.9	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	1.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.4	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	13	<0.1	<0.1
Anthracene	mg/kg	<0.1	5.3	<0.1	<0.1
Fluoranthene	mg/kg	0.2	29	<0.1	0.2
Pyrene	mg/kg	0.2	30	<0.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	20	<0.1	<0.1
Chrysene	mg/kg	<0.1	20	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	36	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.07	21	<0.05	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	17	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	3.3	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	14	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	32	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	32	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	32	<0.5	<0.5
Total Positive PAHs	mg/kg	0.41	210	NIL(+)VE	0.38
Surrogate p-Terphenyl-d14	%	94	88	98	96

Organochlorine Pesticides in soil						
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
Depth	-	0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016	14/04/2016	14/04/2016	15/04/2016	15/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	88	97	89	88	83

Organochlorine Pesticides in soil						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference		BH06	BH07	BH08	BH09	BH10
Depth	-	0.5-0.6	0.35-0.45	0.3-0.4	0.3-0.4	0.4-0.5
Date Sampled		15/04/2016	19/04/2016	19/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
HCB	mg/kg	<0.1	<0.1	<0.1	<1	<1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<1	<1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<1	<1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<1	<1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<1	<1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<1	<1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<1	<1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<1	<1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<1	<1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<1	<1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<1	<1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<1	<1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<1	<1
Endrin	mg/kg	<0.1	<0.5	<0.1	<2	<2
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<1	<1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<1	<1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<1	<1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<1	<1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<1	<1
Methoxychlor	mg/kg	<0.1	<0.5	<0.1	<2	<2
Surrogate TCMX	%	87	80	89	88	93

Organochlorine Pesticides in soil					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
Depth	-	0.45-0.55	0.2-0.3	_	-
Date Sampled		19/04/2016	19/04/2016	15/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016
HCB	mg/kg	<0.1	<1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<1	<0.1	<0.1
Endosulfanl	mg/kg	<0.1	<1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<1	<0.1	<0.1
Endrin	mg/kg	<0.1	<1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<1	<0.1	<0.1
Surrogate TCMX	%	93	93	87	87

Organophosphorus Pesticides						
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
	-					
Depth		0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016 Soil	14/04/2016	14/04/2016 Soil	15/04/2016 Soil	15/04/2016 Soil
Type of sample		501	Soil	501	501	501
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	88	97	89	88	83
<u> </u>						
Organophosphorus Pesticides						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference		BH06	BH07	BH08	BH09	BH10
Depth	-	0.5-0.6	0.35-0.45	0.3-0.4	0.3-0.4	0.4-0.5
Date Sampled		15/04/2016	19/04/2016	19/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	_	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed		23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<1	<1
Bromophos-ethyl		<0.1	<0.1	<0.1	<1	<1
	mg/kg	<0.1	<0.1	<0.1	<1	<1
Chlorpyriphos	mg/kg					
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<1	<1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<1	<1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<1	<1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<1	<1
Ethion	mg/kg	<0.1	<0.1	<0.1	<1	<1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<1	<1
Malathion	mg/kg	<0.1	<0.1	<0.1	<1	<1
Parathion	mg/kg	<0.1	<0.1	<0.1	<1	<1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<1	<1
Surrogate TCMX	%	87	80	89	88	93

Organophosphorus Pesticides					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
	-	Biiii	DITIE		
Depth		0.45-0.55	0.2-0.3	-	-
Date Sampled		19/04/2016	19/04/2016	15/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<1	<0.1	<0.1
Ethion	mg/kg	<0.1	<1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<1	<0.1	<0.1
Malathion	mg/kg	<0.1	<1	<0.1	<0.1
Parathion	mg/kg	<0.1	<1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<1	<0.1	<0.1
Surrogate TCMX	%	93	93	87	87

PCBs in Soil						
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
	-					
Depth		0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016	14/04/2016	14/04/2016	15/04/2016	15/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	88	97	89	88	83
PCBc in Soil						

PCBs in Soil						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference		BH06	BH07	BH08	BH09	BH10
Depth Date Sampled Type of sample		0.5-0.6 15/04/2016 Soil	0.35-0.45 19/04/2016 Soil	0.3-0.4 19/04/2016 Soil	0.3-0.4 19/04/2016 Soil	0.4-0.5 19/04/2016 Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Aroclor 1016	mg/kg	<0.1	<1	<0.1	<5	<5
Aroclor 1221	mg/kg	<0.1	<1	<0.1	<5	<5
Aroclor 1232	mg/kg	<0.1	<1	<0.1	<5	<5
Aroclor 1242	mg/kg	<0.1	<1	<0.1	<5	<5
Aroclor 1248	mg/kg	<0.1	<1	<0.1	<5	<5
Aroclor 1254	mg/kg	<0.1	<1	<0.1	<5	<5
Aroclor 1260	mg/kg	<0.1	<1	<0.1	<5	<5
Surrogate TCLMX	%	87	80	89	88	93

PCBs in Soil					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
Depth Date Sampled Type of sample		0.45-0.55 19/04/2016 Soil	0.2-0.3 19/04/2016 Soil	- 15/04/2016 Soil	- 19/04/2016 Soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Aroclor 1016	mg/kg	<0.1	<1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<1	<0.1	<0.1
Surrogate TCLMX	%	93	93	87	87

Acid Extractable metals in soil						
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
	-					
Depth		0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016	14/04/2016	14/04/2016	15/04/2016	15/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Arsenic	mg/kg	5	7	9	10	<4
Cadmium	mg/kg	0.4	<0.4	<0.4	0.4	<0.4
Chromium	mg/kg	14	16	16	16	6
Copper	mg/kg	48	57	14	28	36
Lead	mg/kg	56	54	63	47	22
Mercury	mg/kg	0.5	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	27	28	5	10	18
Zinc	mg/kg	70	84	33	49	220
Acid Extractable metals in soil						

Acid Extractable metals in soil						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference		BH06	BH07	BH08	BH09	BH10
	-					
Depth		0.5-0.6	0.35-0.45	0.3-0.4	0.3-0.4	0.4-0.5
Date Sampled		15/04/2016	19/04/2016	19/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Arsenic	mg/kg	7	7	7	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	24	22	19	8	15
Copper	mg/kg	18	13	20	50	56
Lead	mg/kg	16	21	23	20	57
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Nickel	mg/kg	11	7	9	45	30
Zinc	mg/kg	27	9	21	40	70

Acid Extractable metals in soil					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
Depth Date Sampled Type of sample		0.45-0.55 19/04/2016 Soil	0.2-0.3 19/04/2016 Soil	- 15/04/2016 Soil	- 19/04/2016 Soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Arsenic	mg/kg	6	<4	7	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	28	19	31	23
Copper	mg/kg	11	49	20	18
Lead	mg/kg	16	110	18	25
Mercury	mg/kg	<0.1	0.3	<0.1	<0.1
Nickel	mg/kg	6	29	19	10
Zinc	mg/kg	10	59	28	19

85374.02, Parramatta

Misc Soil - Inorg						
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
	-					
Depth		0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016	14/04/2016	14/04/2016	15/04/2016	15/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016	26/04/2016
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference		BH06	BH07	BH08	BH09	BH10
	-					
Depth		0.5-0.6	0.35-0.45	0.3-0.4	0.3-0.4	0.4-0.5
Date Sampled		15/04/2016	19/04/2016	19/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil

22/04/2016

26/04/2016

<5

22/04/2016

26/04/2016

<5

22/04/2016

26/04/2016

<5

22/04/2016

26/04/2016

<5

Misc Soil - Inorg					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
	-				
Depth		0.45-0.55	0.2-0.3	-	-
Date Sampled		19/04/2016	19/04/2016	15/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5

22/04/2016

26/04/2016

<5

-

-

mg/kg

Date prepared

Date analysed

Total Phenolics (as Phenol)

Misc Inorg - Soil					
Our Reference:	UNITS	145323-2	145323-6	145323-7	145323-12
Your Reference		BH02	BH06	BH07	BH12
	-				
Depth		0.25-0.35	0.5-0.6	0.35-0.45	0.2-0.3
Date Sampled		14/04/2016	15/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016
Date analysed	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016
pH 1:5 soil:water	pH Units	7.3	7.3	6.4	8.7

			····,·			
Moisture Our Reference: Your Reference	UNITS	145323-1 BH01	145323-2 BH02	145323-3 BH03	145323-4 BH04	145323-5 BH05
Depth Date Sampled Type of sample		0.3-0.4 14/04/2016 Soil	0.25-0.35 14/04/2016 Soil	0.5-0.6 14/04/2016 Soil	0.3-0.4 15/04/2016 Soil	0.3-0.4 15/04/2016 Soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016	26/04/2016
Moisture	%	8.0	17	22	17	8.1
			1	[
Moisture Our Reference: Your Reference		145323-6 BH06	145323-7 BH07	145323-8 BH08	145323-9 BH09	145323-10 BH10
Depth Date Sampled Type of sample		0.5-0.6 15/04/2016 Soil	0.35-0.45 19/04/2016 Soil	0.3-0.4 19/04/2016 Soil	0.3-0.4 19/04/2016 Soil	0.4-0.5 19/04/2016 Soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016	26/04/2016
Moisture	%	22	16	14	3.4	4.6
						7
Moisture Our Reference: Your Reference	UNITS 	145323-11 BH11	145323-12 BH12	145323-13 BD1	145323-14 BD1	
Depth		0.45-0.55	0.2-0.3	-	-	
Date Sampled Type of sample		19/04/2016 Soil	19/04/2016 Soil	15/04/2016 Soil	19/04/2016 Soil	
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	1
Date analysed	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016	
Moisture	%	17	4.6	21	15	

CEC					
Our Reference:	UNITS	145323-2	145323-6	145323-7	145323-12
Your Reference		BH02	BH06	BH07	BH12
	-				
Depth		0.25-0.35	0.5-0.6	0.35-0.45	0.2-0.3
Date Sampled		14/04/2016	15/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	27/04/2016	27/04/2016	27/04/2016	27/04/2016
Date analysed	-	27/04/2016	27/04/2016	27/04/2016	27/04/2016
Exchangeable Ca	meq/100g	12	8.4	2.3	11
ExchangeableK	meq/100g	0.3	0.2	0.1	0.1
Exchangeable Mg	meq/100g	4.4	5.1	1.8	3.1
ExchangeableNa	meq/100g	0.37	0.61	0.36	0.56
Cation Exchange Capacity	meq/100g	17	14	4.7	14

Asbestos ID - soils		445000.4	445000.0	445000.0	445000 4	445000 5
Our Reference:	UNITS	145323-1	145323-2	145323-3	145323-4	145323-5
Your Reference		BH01	BH02	BH03	BH04	BH05
Depth		0.3-0.4	0.25-0.35	0.5-0.6	0.3-0.4	0.3-0.4
Date Sampled		14/04/2016	14/04/2016	14/04/2016	15/04/2016	15/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	28/04/2016	28/04/2016	28/04/2016	28/04/2016	28/04/2016
Sample mass tested		Approx 35g	Approx 55g	Approx 30g	Approx 30g	Approx 55g
	g	11 5				
Sample Description	-	Brown	Brown	Brown	Brown	Brown
		coarse-grained soil & rocks				
Asbestos ID in soil	_	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected
Asbestos ID - soils						
Our Reference:	UNITS	145323-6	145323-7	145323-8	145323-9	145323-10
Your Reference	UNITS	BH06	BH07	BH08	BH09	BH10
Tour Reference	-	BIIOO	BINT	BIIO	DI 109	BIIIO
Depth		0.5-0.6	0.35-0.45	0.3-0.4	0.3-0.4	0.4-0.5
Date Sampled		15/04/2016	19/04/2016	19/04/2016	19/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	28/04/2016	28/04/2016	28/04/2016	28/04/2016	28/04/2016
Sample mass tested	g	Approx 30g	Approx 35g	Approx 30g	Approx 45g	Approx 30g
Sample Description	-	Brown	Brown	Brown	Black coarse-	Black bitumen
		coarse-grained	coarse-grained	coarse-grained	grained soil &	soil & rocks
		soil & rocks	soil & rocks	soil & rocks	rocks	
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected

Asbestos ID - soils					
Our Reference:	UNITS	145323-11	145323-12	145323-13	145323-14
Your Reference		BH11	BH12	BD1	BD1
	-				
Depth		0.45-0.55	0.2-0.3	-	-
Date Sampled		19/04/2016	19/04/2016	15/04/2016	19/04/2016
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	28/04/2016	28/04/2016	28/04/2016	28/04/2016
Sample mass tested	g	Approx 30g	Approx 35g	Approx 30g	Approx 40g
Sample Description	-	Brown	Brown	Brown	Brown
		coarse-grained soil & rocks	coarse-grained soil & rocks	coarse-grained soil & rocks	coarse-grained soil & rocks
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at	detected at
		reporting limit of	reporting limit of	reporting limit of	reporting limit of
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres	Organic fibres	Organic fibres	Organic fibres
		detected	detected	detected	detected
Trace Analysis	-	No asbestos	No asbestos	No asbestos	No asbestos
		detected	detected	detected	detected

85374.02,	Parramatta
-----------	------------

Asbestos ID - materials		
Our Reference:	UNITS	145323-15
Your Reference		T3 A01
	-	
Depth		-
Date Sampled		14/04/2016
Type of sample		Material
Date analysed	-	28/04/2016
Mass/Dimension of Sample	-	70x30x5mm
Sample Description	-	Green
		compressed
		fibre cement
		material
Asbestos ID in materials	-	Chrysotile
		asbestos
		detected
		Amosite
		asbestos
		detected
		Crocidolite
		asbestos
		detected

Client Reference: 85374.02, Parramatta

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	 3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" li="" pql.<="" stipulated="" the=""> Hence a mid-point between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is </pql>
	simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

		Clie	ent Referenc	e: 8	5374.02, Parr	amatta		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Date analysed	-			23/04/2 016	145323-1	23/04/2016 23/04/2016	LCS-8	23/04/2016
TRHC6 - C9	mg/kg	25	Org-016	<25	145323-1	<25 <25	LCS-8	112%
TRHC6 - C10	mg/kg	25	Org-016	<25	145323-1	<25 <25	LCS-8	112%
Benzene	mg/kg	0.2	Org-016	<0.2	145323-1	<0.2 <0.2	LCS-8	106%
Toluene	mg/kg	0.5	Org-016	<0.5	145323-1	<0.5 <0.5	LCS-8	111%
Ethylbenzene	mg/kg	1	Org-016	<1	145323-1	<1 <1	LCS-8	111%
m+p-xylene	mg/kg	2	Org-016	<2	145323-1	<2 <2	LCS-8	115%
o-Xylene	mg/kg	1	Org-016	<1	145323-1	<1 <1	LCS-8	109%
naphthalene	mg/kg	1	Org-014	<1	145323-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	99	145323-1	78 83 RPD:6	LCS-8	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Soil					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Date analysed	-			23/04/2 016	145323-1	23/04/2016 23/04/2016	LCS-8	23/04/2016
TRHC 10 - C14	mg/kg	50	Org-003	<50	145323-1	<50 <50	LCS-8	125%
TRHC 15 - C28	mg/kg	100	Org-003	<100	145323-1	<100 <100	LCS-8	132%
TRHC29 - C36	mg/kg	100	Org-003	<100	145323-1	<100 <100	LCS-8	127%
TRH>C10-C16	mg/kg	50	Org-003	<50	145323-1	<50 <50	LCS-8	125%
TRH>C16-C34	mg/kg	100	Org-003	<100	145323-1	<100 <100	LCS-8	132%
TRH>C34-C40	mg/kg	100	Org-003	<100	145323-1	<100 <100	LCS-8	127%
Surrogate o-Terphenyl	%		Org-003	85	145323-1	82 81 RPD:1	LCS-8	94%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Date analysed	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Naphthalene	mg/kg	0.1	Org-012	<0.1	145323-1	<0.1 <0.1	LCS-8	95%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	145323-1	<0.1 <0.1	LCS-8	96%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	145323-1	0.1 0.2 RPD:67	LCS-8	109%
Anthracene	mg/kg	0.1	Org-012	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	145323-1	0.6 0.7 RPD:15	LCS-8	97%
Pyrene	mg/kg	0.1	Org-012	<0.1	145323-1	0.7 0.8 RPD:13	LCS-8	105%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	145323-1	0.4 0.4 RPD:0	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	145323-1	0.4 0.5 RPD:22	LCS-8	82%
Benzo(b,j +k)fluoranthene	mg/kg	0.2	Org-012	<0.2	145323-1	0.9 1 RPD:11	[NR]	[NR]

		Clie	ent Referenc	:e: 85	5374.02, Parr	amatta		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	145323-1	0.4 0.5 RPD:22	LCS-8	90%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	145323-1	0.3 0.3 RPD:0	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	145323-1	0.3 0.3 RPD:0	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	93	145323-1	89 91 RPD:2	LCS-8	92%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Date analysed	-			23/04/2 016	145323-1	23/04/2016 23/04/2016	LCS-8	23/04/2016
HCB	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	78%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	75%
Heptachlor	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	75%
delta-BHC	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	82%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	77%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	79%
Dieldrin	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	79%
Endrin	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	82%
pp-DDD	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	80%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	LCS-8	70%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	90	145323-1	88 90 RPD:2	[NR]	[NR]

Client R	eference:
----------	-----------

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Date analysed	-			23/04/2 016	145323-1	23/04/2016 23/04/2016	LCS-8	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	LCS-8	84%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	LCS-8	76%
Dimethoate	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	LCS-8	87%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	LCS-8	113%
Malathion	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	LCS-8	65%
Parathion	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	LCS-8	111%
Ronnel	mg/kg	0.1	Org-008	<0.1	145323-1	<0.1 <0.1	LCS-8	93%
Surrogate TCMX	%		Org-008	90	145323-1	88 90 RPD:2	LCS-8	90%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Date analysed	-			23/04/2 016	145323-1	23/04/2016 23/04/2016	LCS-8	23/04/2016
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	145323-1	<0.1 <0.1	LCS-8	82%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	145323-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	90	145323-1	88 90 RPD:2	LCS-8	90%

					5374.02, Pari		Calles Card	Spike %
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date prepared	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Date analysed	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-8	22/04/2016
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	145323-1	5 <4	LCS-8	117%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	145323-1	0.4 <0.4	LCS-8	108%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	145323-1	14 13 RPD:7	LCS-8	110%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	145323-1	48 43 RPD:11	LCS-8	114%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	145323-1	56 60 RPD: 7	LCS-8	109%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	145323-1	0.5 0.4 RPD:22	LCS-8	100%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	145323-1	27 22 RPD:20	LCS-8	105%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	145323-1	70 69 RPD:1	LCS-8	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Soil - Inorg						Base II Duplicate II % RPD		
Date prepared	-			22/04/2 016	145323-1	22/04/2016 22/04/2016	LCS-1	22/04/2016
Date analysed	-			26/04/2 016	145323-1	26/04/2016 26/04/2016	LCS-1	26/04/2016
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	ব্য	145323-1	<5 <5	LCS-1	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Inorg - Soil						Base II Duplicate II % RPD		
Date prepared	-			26/04/2 016	[NT]	[NT]	LCS-1	26/04/2016
Date analysed	-			26/04/2 016	[NT]	[NT]	LCS-1	26/04/2016
pH 1:5 soil:water	pHUnits		Inorg-001	[NT]	[NT]	[NT]	LCS-1	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
CEC						Base II Duplicate II % RPD		
Date prepared	-			27/04/2 016	145323-7	27/04/2016 27/04/2016	LCS-2	27/04/2016
Date analysed	-			27/04/2 016	145323-7	27/04/2016 27/04/2016	LCS-2	27/04/2016
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1	145323-7	2.3 2.4 RPD:4	LCS-2	114%
Exchangeable K	meq/100 g	0.1	Metals-009	<0.1	145323-7	0.1 0.1 RPD:0	LCS-2	110%
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1	145323-7	1.8 2.0 RPD:11	LCS-2	111%

Client Reference: 85374.02, Parramatta								
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
CEC						Base II Duplicate II % RPD		Recovery
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1	145323-7	0.36 0.37 RPD:3	LCS-2	100%
QUALITYCONTROL	UNITS	6	Dup. Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
vTRH(C6-C10)/BTEXNin Soil				Base + [Duplicate + %RP	D		
Date extracted	-	1	45323-11	22/04/2	016 22/04/2010	6 145323-2	22/04/201	6
Date analysed	-	- 145323-11		23/04/2	016 23/04/2010	6 145323-2	23/04/201	6
TRHC6 - C9	mg/kg	g 1	45323-11	<25 <25 1453		145323-2	104%	
TRHC6 - C10	mg/kg	g 1	45323-11		<25 <25	145323-2	104%	
Benzene	mg/kg	g 1	45323-11		<0.2 <0.2	145323-2	97%	
Toluene	mg/kg	g 1	45323-11		<0.5 <0.5	145323-2	103%	
Ethylbenzene	mg/kg	g 1	45323-11		<1 <1	145323-2	105%	
m+p-xylene	mg/kg	g 1	45323-11		<2 <2	145323-2	107%	
o-Xylene	mg/kg	g 1	45323-11		<1 <1	145323-2	102%	
naphthalene	mg/kg	g 1	45323-11		<1 <1	[NR]	[NR]	
Surrogate aaa- Trifluorotoluene	%	1	45323-11	94	91 RPD:3	145323-2	87%	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	6	Dup. Sm#		Duplicate Duplicate+%RP	Spike Sm# D	Spike % Reco	overy
Date extracted	-	1	45323-11	22/04/2	016 22/04/2010	5 145323-2	22/04/201	6
Date analysed	_	1	45323-11	23/04/2016 23/04/2016 145323-2		6 145323-2	23/04/2016	
TRHC 10 - C14	mg/kg	g 1	45323-11		<50 <50 145323-2		112%	
TRHC 15 - C28	mg/kg	g 1	45323-11	<	100 <100	145323-2	105%	
TRHC29 - C36	mg/kg	g 1	45323-11	<	100 <100	145323-2	#	
TRH>C10-C16	mg/kg	g 1	45323-11		<50 <50	145323-2	112%	
TRH>C16-C34	mg/kg	g 1	45323-11	<	100 <100	145323-2	105%	
TRH>C34-C40	mg/kg	g 1	45323-11	<	100 <100	145323-2	#	
Surrogate o-Terphenyl	%	1	45323-11	82	82 RPD:0	145323-2	145323-2 86%	
QUALITY CONTROL PAHs in Soil	UNITS	6	Dup. Sm#		Duplicate Duplicate+%RP	Spike Sm# D	Spike % Reco	overy
Date extracted	-	1	45323-11	22/04/2	016 22/04/2010	6 145323-2	22/04/201	6
Date analysed	-		45323-11		.016 22/04/2010		22/04/201	6
Naphthalene	mg/kg	g 1	45323-11		<0.1 <0.1	145323-2	90%	
Acenaphthylene	mg/kg		45323-11		<0.1 <0.1	[NR]	[NR]	
Acenaphthene	mg/kg		45323-11		<0.1 <0.1	[NR]	[NR]	
Fluorene	mg/kg		45323-11		<0.1 <0.1	145323-2	92%	
Phenanthrene	mg/kg		45323-11		<0.1 <0.1	145323-2	93%	
Anthracene	mg/kg		45323-11		<0.1 <0.1	[NR]	[NR]	
Fluoranthene	mg/kg		45323-11		" 0.2 RPD:0	145323-2	81%	
Pyrene	mg/kg		45323-11		0.2 RPD:0	145323-2		
Benzo(a)anthracene	mg/kg		45323-11		<0.1 <0.1	[NR]	[NR]	
Chrysene	mg/kg		45323-11		<0.1 0.1	145323-2	79%	

Client Reference: 85374.02, Parramatta						
QUALITY CONTROL UNI		Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery	
PAHs in Soil			Base + Duplicate + % RPD			
Benzo(b,j+k)fluoranthene	mg/kg	145323-11	<0.2 0.2	[NR]	[NR]	
Benzo(a)pyrene	mg/kg	145323-11	0.07 0.1 RPD:35	145323-2	73%	
Indeno(1,2,3-c,d)pyrene	mg/kg	145323-11	<0.1 0.1	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	145323-11	<0.1 0.1	[NR]	[NR]	
Surrogate p-Terphenyl-d14	%	145323-11	94 100 RPD:6	145323-2	85%	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery	
Organochlorine Pesticides in soil			Base + Duplicate + %RPD			
Date extracted	-	145323-11	22/04/2016 22/04/2016	145323-2	22/04/2016	
Date analysed	-	145323-11	23/04/2016 23/04/2016	145323-2	23/04/2016	
HCB	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
alpha-BHC	mg/kg	145323-11	<0.1 <0.1	145323-2	79%	
gamma-BHC	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
beta-BHC	mg/kg	145323-11	<0.1 <0.1	145323-2	74%	
Heptachlor	mg/kg	145323-11	<0.1 <0.1	145323-2	73%	
delta-BHC	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Aldrin	mg/kg	145323-11	<0.1 <0.1	145323-2	82%	
Heptachlor Epoxide	mg/kg	145323-11	<0.1 <0.1	145323-2	73%	
gamma-Chlordane	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
alpha-chlordane	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Endosulfan I	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
pp-DDE	mg/kg	145323-11	<0.1 <0.1	145323-2	76%	
Dieldrin	mg/kg	145323-11	<0.1 <0.1	145323-2	77%	
Endrin	mg/kg	145323-11	<0.1 <0.1	145323-2	79%	
pp-DDD	mg/kg	145323-11	<0.1 <0.1	145323-2	78%	
Endosulfan II	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
pp-DDT	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Endrin Aldehyde	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Endosulfan Sulphate	mg/kg	145323-11	<0.1 <0.1	145323-2	73%	
Methoxychlor	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Surrogate TCMX	%	145323-11	93 88 RPD:6	[NR]	[NR]	

Client Reference: 85374.02, Parramatta						
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery	
Organophosphorus Pesticides			Base + Duplicate + %RPD			
Date extracted	-	145323-11	22/04/2016 22/04/2016	145323-2	22/04/2016	
Date analysed	-	145323-11	23/04/2016 23/04/2016	145323-2	23/04/2016	
Azinphos-methyl (Guthion)	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Bromophos-ethyl	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Chlorpyriphos	mg/kg	145323-11	<0.1 <0.1	145323-2	84%	
Chlorpyriphos-methyl	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Diazinon	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Dichlorvos	mg/kg	145323-11	<0.1 <0.1	145323-2	78%	
Dimethoate	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Ethion	mg/kg	145323-11	<0.1 <0.1	145323-2	81%	
Fenitrothion	mg/kg	145323-11	<0.1 <0.1	145323-2	109%	
Malathion	mg/kg	145323-11	<0.1 <0.1	145323-2	68%	
Parathion	mg/kg	145323-11	<0.1 <0.1	145323-2	83%	
Ronnel	mg/kg	145323-11	<0.1 <0.1	145323-2	98%	
Surrogate TCMX	%	145323-11	93 88 RPD:6	145323-2	103%	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery	
PCBs in Soil			Base + Duplicate + % RPD			
Date extracted	-	145323-11	22/04/2016 22/04/2016	145323-2	22/04/2016	
Date analysed	-	145323-11	23/04/2016 23/04/2016	145323-2	23/04/2016	
Aroclor 1016	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Aroclor 1221	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Aroclor 1232	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Aroclor 1242	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Aroclor 1248	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Aroclor 1254	mg/kg	145323-11	<0.1 <0.1	145323-2	84%	
Aroclor 1260	mg/kg	145323-11	<0.1 <0.1	[NR]	[NR]	
Surrogate TCLMX	%	145323-11	93 88 RPD:6	145323-2	103%	
QUALITYCONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date prepared	-	145323-11	22/04/2016 22/04/2016	145323-2	22/04/2016	
Date analysed	-	145323-11	22/04/2016 22/04/2016	145323-2	22/04/2016	
Arsenic	mg/kg	145323-11	6 7 RPD: 15	145323-2	86%	
Cadmium	mg/kg	145323-11	<0.4 <0.4	145323-2	88%	
Chromium	mg/kg	145323-11	28 27 RPD:4	145323-2	87%	
Copper	mg/kg	145323-11	11 9 RPD:20	145323-2	105%	
Lead	mg/kg	145323-11	16 17 RPD:6	145323-2	124%	
Mercury	mg/kg	145323-11	<0.1 <0.1	145323-2	96%	
Nickel	mg/kg	145323-11	6 5 RPD:18	145323-2	89%	
Zinc	mg/kg	145323-11	10 7 RPD:35	145323-2	72%	

		Client Reference	e: 85374.02, Parrama	itta	
QUALITY CONTROL Misc Soil - Inorg	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	145323-11	22/04/2016 22/04/2016	145323-2	22/04/2016
Date analysed	-	145323-11	26/04/2016 26/04/2016	145323-2	26/04/2016
Total Phenolics (as Phenol)	mg/kg	145323-11	<5 <5	145323-2	93%

Report Comments:

TRH_S(semivol):# PQL has been raised due to interference from analytes(other than those being tested) in the sample/s.Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

OC/OP/PCBs in soil: PQL has been raised due to interference from analytes(other than those being tested) in the sample/s.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 145323-1 to 14 were sub-sampled from jars provided by the client.

Asbestos ID was analysed by Approved Identifier:	Paul Ching
Asbestos ID was authorised by Approved Signatory:	Paul Ching

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

From: Sent: To: Subject: Tim Wright Thursday, 2 June 2016 2:51 PM Christopher Bagia; Paula Maurici FW: Parramatta

Tim Wright | Snr Associate / Snr Environmental Engineer Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | F: 02 9809 4095 | M: 0409 543 517 | E: Tim.Wright@douglaspartners.com.au

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

From: Jeremy Faircloth [mailto:JFaircloth@envirolab.com.au]
Sent: Friday, 29 April 2016 3:49 PM
To: Christopher Bagia
Cc: Tim Wright; Aileen Hie
Subject: RE: Parramatta

Afternoon, The guys have told me they see what appears to be bitumen in the samples.

I hope this helps.

Cheers,

Regards,

Jeremy Faircloth | Organics Supervisor | Envirolab Services Pty Ltd

Great Chemistry, Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 jfaircloth@envirolab.com.au | www.envirolab.com.au

<u>Our new 2016 Price List commences 1st November 2015 – please contact your local Envirolab office for a copy.</u>

Follow this link to provide feedback on our service.

Latest Links Below:

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms</u> and Conditions. The Terms and Conditions are accessible by clicking this link From: Jeremy Faircloth
Sent: Friday, 29 April 2016 2:36 PM
To: 'Chris.Bagia@douglaspartners.com.au'
Cc: Tim Wright (<u>tim.wright@douglaspartners.com.au</u>); Aileen Hie
Subject: RE: Parramatta

Gidday Chris,

Here are the chromatograms that we have on file, they are all the same profiles just different concentrations. 9/10 are off the scale there but I can get those amended if you need.

Ill get someone to have a look at those samples later on today for you.

If there is anything else, please don't hesitate to ask,

From: Aileen Hie Sent: Friday, 29 April 2016 2:18 PM To: Jeremy Faircloth Subject: FW: Parramatta

Can you do this Jeremy?

Regards,

Aileen Hie | Sample Receipt Supervisor | Envirolab Services Pty Ltd

Great Chemistry, Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 <u>ahie@envirolab.com.au</u> | <u>www.envirolab.com.au</u>

<u>Our new 2016 Price List commences 1st November 2015 – please contact your local Envirolab office for a copy.</u>

Follow this link to provide feedback on our service.

Latest Links Below:

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms</u> <u>and Conditions. The Terms and Conditions are accessible by clicking this link</u>

From: Christopher Bagia [mailto:Chris.Bagia@douglaspartners.com.au]
Sent: Friday, 29 April 2016 1:38 PM
To: Aileen Hie
Cc: Tim Wright
Subject: Parramatta

Hi Aileen

We got some unexpected high hits of TRH and PAH in BH02, 07, 09, 10 and 12. The site history suggests that it shouldn't be this high as there is no previous signs of contamination on or around the site.

Could you please get someone to have a look at the Chromatogram to see what it might be. As well as checking the samples in the jars themselves for bitumen.

The Job Number is: 85374.02

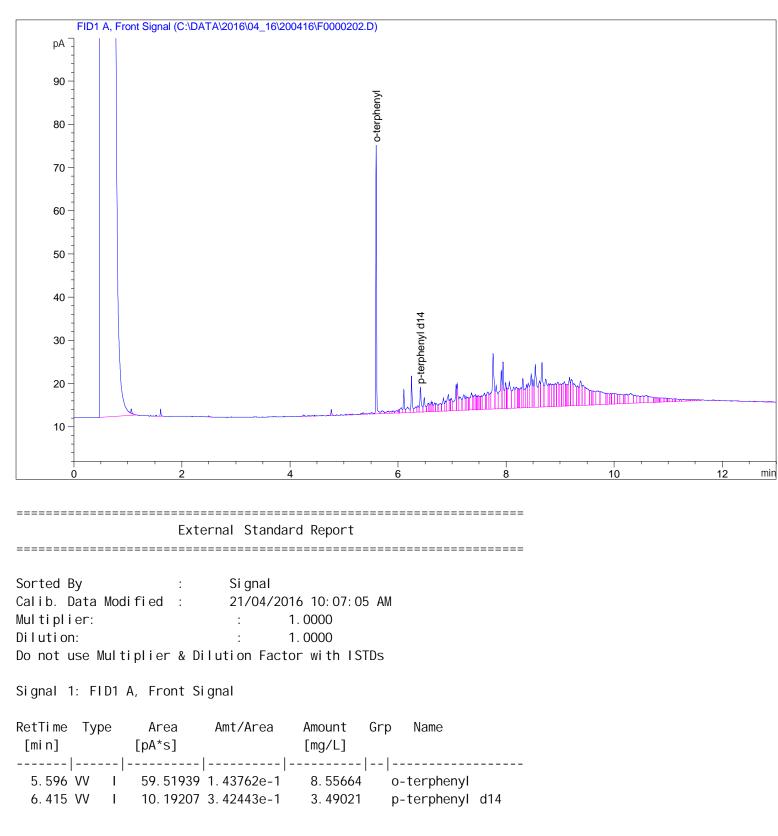
ELS#: 145323

Kindest Regards

Chris

Christopher Bagia | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | F: 02 9809 4095 | E: Chris.Bagia@douglaspartners.com.au ELIENT CHOICE

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.


This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

This message has been scanned and no issues discovered. Click here to report this email as spam

Data File C:\DATA\2016\04_16\200416\F0000202.D Sample Name: s145323-2

	==:		
Acq. Operator	:	Seq. Line : 202	
Acq. Instrument	:	GC#4 Location : Vial 52	
Injection Date	:	23/04/2016 9:54:13 AM Inj: 1	
		Inj Volume : 1 μl	
Acq. Method	:	C: \CHEM32\1\METHODS\NEPM JF.M	
Last changed	:	15/04/2016 5:27:11 PM	
Analysis Method	:	C: \METHODS\2016\04_16\200416F-PROCESSING. M	
Last changed	:	26/04/2016 8:44:01 AM	
		(modified after loading)	
Method Info	:	FAST TPH WITH 15M HP5 COLUMNS	

Data File C:\DATA\2016\04_16\200416\F0000202.D Sample Name: s145323-2

Totals : 12.04685 _____ Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Start Time End Time Total Area Name Amount [min] [pA*s] [min] [mg/L] 2. 0204. 1203. 80423e-10. 05772. 5604. 8102. 937560. 44584. 1217. 860296. 2949245. 8422 TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C344.8119.000652.04749100.8835TRH C29-C367.8619.330467.0584170.0830NEPM >C34-C409.00110.410290.0518043.5229 Totals : 260.8351 _____ Final Summed Peaks Report Signal 1: FID1 A, Front Signal Name Total Area Amount [pA*s] [mg/L] -----|-----|------| TRH C10-C14 3.80423e-1 0.0577 NEPM >C10-C16 2.93756 0.4458 TRH C15-C28 296. 29492 45. 8422 NEPM >C16-C34 652.04749 100.8835 TRH C29-C36 467.05841 70.0830 NEPM >C34-C40 290.05180 43.5229 8.5566 59. 51939 o-terphenyl p-terphenyl d14 10.19207 3.4902 Totals : 272.8820

*** End of Report ***

		5		5	2	5							Geot	chnics i E	nvironmen	Geotechnics i Environment ? Groundwater
Client: Douglas Partners					Project Number		73315.02					To:	En	Envirolab Services		
Contact Person: Michael Whittaker					Project Name: Parramatta	Parramatta						Contact Person:		Aileen Hie		
Project Mar: Tim Wright					PO No.:							Address:	11	12 Ashley Street		
					ab Quote No.								0	Chatswood NSW 2068	2068	
Address: 06 Hormitade Road					Date results required:	squired:						Phone:	0	02 9910 6200		
					Or choose: standard	andard						Fax:	0	02 9910 6201		
				~	Vote: Inform la.	b in advance if	urgent turnaro.	und is required	Note: Inform lab in advance if urgent turnaround is required - surcharges apply	Ajda		Email:	ah	ahie@envirolab.com.au	-1	
Phone: 9809 0666 h	Mob:	0447 282 095			Report forma	Report format: esdat / PDF / Excel	/ Excel					Laboratory Report No:	port No:			
		@douglaspartners.com.au	com.au		Comments:							Lab Comments:	s:			
Michael.whittaker		@douglaspartners.com.au	com.au									_				
	Sample information									Test	Tests Required					Comments
Lab Sample ID	Depth	Date sampled	Container Type	Type of sample	Combo 8a	8CB	Hd	CEC	Asbestos ID						Combo	Provide as much information about the sample as you can
I BH01	0.3-0.4	14.4.16	Jar	Soil	X	х	х	×								
L BH02	0.25-0.35	14.4.16	Jar	Soil	X	×	х	×								
3 BH03	0.5-0.6	14.4.16	Jar	Soil	x	×	×	×								
CI BH04	0.3-0.4	S 14.4.16	Jar	Soil	x	×	×	×								
BHOS	0.3-0.4	15 N.4.16	Jar	Soil	х	×	×	×								
ВНО6	0.5-0.6	15 14.4.16	Jar	Soil	х	×	×	×								
4 BH07	0.35-0.45	19.4.16	Jar	Soil	×	×	×	×								
BH08	0.3-0.4	19.4.16	Jar	Soil	×	×	×	×								
6 BH09	0.3-0.4	19.4.16	Jar	Soil	х	×	×	×								
I O BH10	0.4-0.5	19.4.16	Jar	Soil	×	×	×	×								
L/ BH11	0.45-0.55	19.4.16	Jar	Soil	×	×	×	×							ŧ	
12 BH12	0.2-0.3	19.4.16	Jar	Soil	×	×	×	×							j.	
173 BD1		15 19.4.16	Jar	Soil	×											
- 108		19.4.16	Jar	Soil	×											
13 A01		14.4.16	Bag	ACM					×					_	-	
Relinquished by: Douglas Partners					Sample Receipt	pt						Lab use only:				
Hand delivered / Courier (by whom)					Received by ((Company):	5-13					Samples Reco	ived: Cool or A	Samples Received: Cool or Ambient (circle one)	(a	
Condition of Sample at dispatch Cool or Ambient (circle)	r Ambient (circle)				Print Name:	Jam	Crac	Social	propp			Temperature	Temperature Received at:	(if applicable)	ole)	
Temperature (if Applicable):					Date & Time:	2112	116	1600	0			Transported	fransported by: Hand delivered / courier	sred / courier		
Print Name: Michael Whittaker					Signature:	- I	~	1								
Date & Time:						5	7									Proof of
																10 1 1001

Envirolab Services Envirolab Services 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200 Job No: [45323 Time Received: 16 Time Received: 16 Received by: J4116 Received by: J4116 Received by: J4116 Received by: J4116

5

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Michael Whittaker, Tim Wright

Sample Login Details	
Your Reference	85374.02, Parramatta
Envirolab Reference	145323
Date Sample Received	21/04/2016
Date Instructions Received	21/04/2016
Date Results Expected to be Reported	29/04/2016

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	14 Soils 1 Material
Turnaround Time Requested	Standard
Temperature on receipt (°C)	17.8
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Total Phenolics (as Phenol)	pH 1:5 soil:water	CEC	Asbestos ID - soils	Asbestos ID - materials
BH01-0.3-0.4	\checkmark	\leq	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<			\checkmark	
BH02-0.25- 0.35	\checkmark	\checkmark	\leq	\checkmark	\checkmark	\leq	\leq	\leq	\leq	\leq	\checkmark	
BH03-0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
BH04-0.3-0.4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
BH05-0.3-0.4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
BH06-0.5-0.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH07-0.35- 0.45	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH08-0.3-0.4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
BH09-0.3-0.4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
BH10-0.4-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\leq			\checkmark	
BH11-0.45- 0.55	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
BH12-0.2-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BD1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
BD1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
T3 A01												\checkmark

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

	CERTIFICATE OF ANALY	SIS	15	4230
Client:				
Douglas Partners Pty Ltd				
96 Hermitage Rd				
West Ryde				
NSW 2114				
Attention: Michael Whittake	r			
Sample log in details:				
Your Reference:		85374.02, AH	IPS & F	PPS
No. of samples:		6 Waters		
Date samples received / comp	leted instructions received	26/9/16	/	26/9/16
Analysis Details:				
Please refer to the following pa	ages for results, methodology	summary and o	quality	control data.
Samples were analysed as rea	ceived from the client. Results	s relate specifica	ally to t	he samples as received.
Results are reported on a dry	weight basis for solids and on	an as received	basis f	or other matrices.
Please refer to the last page	of this report for any comn	nents relating to	o the r	esults.
Report Details:				
Date results requested by: / Is	sue Date:	4/10/16	/	4/10/16
Date of Preliminary Report:		Not Issued		
NATA accreditation number 29	001. This document shall not	be reproduced e	except i	n full.
Accredited for compliance with	ISO/IEC 17025 - Testing	Tests n	ot cov	ered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

85374.02, AHPS & PPS

VOCs in water				
Our Reference:	UNITS	154230-1	154230-2	154230-3
Your Reference		MW1	102	103
Date Sampled		16/09/2016	16/09/2016	16/09/2016
Type of sample		Water	Water	Water
Date extracted		27/09/2016	27/09/2016	27/09/2016
	-			
Date analysed	-	27/09/2016	27/09/2016	28/09/2016
Dichlorodifluoromethane	µg/L	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1
Chloroform	µg/L	16	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1
Benzene	µg/L	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1
Trichloroethene		<1	<1	<1
Bromodichloromethane	µg/L	4	<1	<1
	µg/L			
trans-1,3-dichloropropene	µg/L	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1
Toluene	µg/L	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
Bromoform	µg/L	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2
Styrene	µg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1
o-xylene	µg/L	<1	<1	<1
· ·			I	

Envirolab Reference: 154230 Revision No: R 00

VOCs in water				
Our Reference:	UNITS	154230-1	154230-2	154230-3
Your Reference		MVV1	102	103
Date Sampled	-	16/09/2016	16/09/2016	16/09/2016
Type of sample		Water	Water	Water
1,2,3-trichloropropane	µg/L	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	1
1,3-dichlorobenzene	µg/L	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	124	123	125
Surrogate toluene-d8	%	99	97	98
Surrogate 4-BFB	%	121	120	126

vTRH(C6-C10)/BTEXN in Water Our Reference: Your Reference	UNITS 	154230-1 MW1	154230-2 102	154230-3 103	154230-5 Spike	154230-6 Blank
Date Sampled Type of sample		16/09/2016 Water	16/09/2016 Water	16/09/2016 Water	16/09/2016 Water	16/09/2016 Water
Date extracted	-	27/09/2016	27/09/2016	27/09/2016	26/09/2016	26/09/2016
Date analysed	-	28/09/2016	28/09/2016	28/09/2016	27/09/2016	27/09/2016
TRHC6 - C9	µg/L	15	<10	13	[NA]	[NA]
TRHC6 - C10	µg/L	15	<10	24	[NA]	[NA]
TRHC6 - C10 less BTEX (F1)	µg/L	15	<10	24	[NA]	[NA]
Benzene	µg/L	<1	<1	<1	99%	<1
Toluene	µg/L	<1	<1	<1	103%	<1
Ethylbenzene	µg/L	<1	<1	<1	109%	<1
m+p-xylene	µg/L	<2	<2	<2	110%	<2
o-xylene	µg/L	<1	<1	<1	112%	<1
Naphthalene	µg/L	<1	<1	<1	[NA]	[NA]
Surrogate Dibromofluoromethane	%	124	123	125	128	126
Surrogate toluene-d8	%	99	97	98	100	97
Surrogate 4-BFB	%	121	120	126	103	105

svTRH (C10-C40) in Water				
Our Reference:	UNITS	154230-1	154230-2	154230-3
Your Reference		MW1	102	103
	-			
Date Sampled		16/09/2016	16/09/2016	16/09/2016
Type of sample		Water	Water	Water
Date extracted	-	28/09/2016	28/09/2016	28/09/2016
Date analysed	-	29/09/2016	29/09/2016	29/09/2016
TRHC 10 - C14	μg/L	<50	<50	62
TRHC 15 - C28	µg/L	<100	<100	<100
TRHC29 - C36	µg/L	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50
TRH>C16 - C34	μg/L	<100	<100	<100
TRH>C34 - C40	μg/L	<100	<100	<100
Surrogate o-Terphenyl	%	64	88	96

PAHs in Water					
Our Reference:	UNITS	154230-1	154230-2	154230-3	154230-4
Your Reference		MW1	102	103	BD1
Date Sampled	-	16/09/2016	16/09/2016	16/09/2016	16/09/2016
Type of sample		Water	Water	Water	Water
Date extracted	-	28/09/2016	28/09/2016	28/09/2016	28/09/2016
Date analysed	-	29/09/2016	29/09/2016	29/09/2016	29/09/2016
Naphthalene	µg/L	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	68	97	94	98

OCP in water				
Our Reference:	UNITS	154230-1	154230-2	154230-3
Your Reference		MW1	102	103
Date Sampled	-	16/09/2016	16/09/2016	16/09/2016
Type of sample		Water	Water	Water
Date extracted	-	28/09/2016	28/09/2016	28/09/2016
Date analysed	-	29/09/2016	29/09/2016	29/09/2016
HCB	µg/L	<0.2	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2
beta-BHC	µg/L	<0.2	<0.2	<0.2
Heptachlor	µg/L	<0.2	<0.2	<0.2
delta-BHC	µg/L	<0.2	<0.2	<0.2
Aldrin	µg/L	<0.2	<0.2	<0.2
Heptachlor Epoxide	µg/L	<0.2	<0.2	<0.2
gamma-Chlordane	µg/L	<0.2	<0.2	<0.2
alpha-Chlordane	µg/L	<0.2	<0.2	<0.2
Endosulfan I	µg/L	<0.2	<0.2	<0.2
pp-DDE	µg/L	<0.2	<0.2	<0.2
Dieldrin	µg/L	<0.2	<0.2	<0.2
Endrin	µg/L	<0.2	<0.2	<0.2
pp-DDD	µg/L	<0.2	<0.2	<0.2
Endosulfan II	µg/L	<0.2	<0.2	<0.2
pp-DDT	µg/L	<0.2	<0.2	<0.2
Endrin Aldehyde	µg/L	<0.2	<0.2	<0.2
Endosulfan Sulphate	µg/L	<0.2	<0.2	<0.2
Methoxychlor	µg/L	<0.2	<0.2	<0.2
Surrogate TCMX	%	92	135	138

OP Pesticides in water Our Reference: Your Reference	UNITS	154230-1 MW1	154230-2 102	154230-3 103
Date Sampled Type of sample		16/09/2016 Water	16/09/2016 Water	16/09/2016 Water
Date extracted	-	28/09/2016	28/09/2016	28/09/2016
Date analysed	-	29/09/2016	29/09/2016	29/09/2016
Azinphos-methyl (Guthion)	µg/L	<0.2	<0.2	<0.2
Bromophos ethyl	µg/L	<0.2	<0.2	<0.2
Chlorpyriphos	µg/L	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	µg/L	<0.2	<0.2	<0.2
Diazinon	µg/L	<0.2	<0.2	<0.2
Dichlorovos	µg/L	<0.2	<0.2	<0.2
Dimethoate	µg/L	<0.2	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2	<0.2
Fenitrothion	µg/L	<0.2	<0.2	<0.2
Malathion	µg/L	<0.2	<0.2	<0.2
Parathion	µg/L	<0.2	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2	<0.2
Surrogate TCMX	%	92	135	138

PCBs in Water				
Our Reference:	UNITS	154230-1	154230-2	154230-3
Your Reference		MW1	102	103
Date Sampled Type of sample		16/09/2016 Water	16/09/2016 Water	16/09/2016 Water
Date extracted	-	28/09/2016	28/09/2016	28/09/2016
Date analysed	-	29/09/2016	29/09/2016	29/09/2016
Aroclor 1016	µg/L	<2	<2	<2
Aroclor 1221	µg/L	<2	<2	<2
Aroclor 1232	µg/L	<2	<2	<2
Aroclor 1242	µg/L	<2	<2	<2
Aroclor 1248	µg/L	<2	<2	<2
Aroclor 1254	µg/L	<2	<2	<2
Aroclor 1260	µg/L	<2	<2	<2
Surrogate TCLMX	%	92	135	138

Total Phenolics in Water				
Our Reference:	UNITS	154230-1	154230-2	154230-3
Your Reference		MW1	102	103
	-			
Date Sampled		16/09/2016	16/09/2016	16/09/2016
Type of sample		Water	Water	Water
Date extracted	-	27/09/2016	27/09/2016	27/09/2016
Date analysed	-	27/09/2016	27/09/2016	27/09/2016
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05

HM in water - dissolved					
Our Reference:	UNITS	154230-1	154230-2	154230-3	154230-4
Your Reference		MW1	102	103	BD1
	-				
Date Sampled		16/09/2016	16/09/2016	16/09/2016	16/09/2016
Type of sample		Water	Water	Water	Water
Date prepared	-	27/09/2016	27/09/2016	27/09/2016	27/09/2016
Date analysed	-	27/09/2016	27/09/2016	27/09/2016	27/09/2016
Arsenic-Dissolved	µg/L	2	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	0.2	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1
Copper-Dissolved	µg/L	2	<1	23	<1
Lead-Dissolved	µg/L	<1	<1	2	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	12	1	53	1
Zinc-Dissolved	µg/L	65	12	340	11

Perfluoroalkylated Substances in Waters				
Our Reference:	UNITS	154230-1	154230-2	154230-3
Your Reference		MW1	102	103
Date Sampled Type of sample		16/09/2016 Water	16/09/2016 Water	16/09/2016 Water
Date prepared	-	04/10/2016	04/10/2016	04/10/2016
Date analysed	-	04/10/2016	04/10/2016	04/10/2016
Perfluorohexanesulfonic acid	µg/L	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	µg/L	<0.01	<0.01	<0.01
Perfluorooctanoic acid PFOA	µg/L	<0.01	<0.01	<0.01
6:2FTS	µg/L	<0.01	<0.01	<0.01
8:2FTS	µg/L	<0.01	<0.01	<0.01
Surrogate ¹³ C4 PFOS	%	98	99	99

Cations in water Dissolved				
Our Reference:	UNITS	154230-1	154230-2	154230-3
Your Reference		MW1	102	103
	-			
Date Sampled		16/09/2016	16/09/2016	16/09/2016
Type of sample		Water	Water	Water
Date digested	-	27/09/2016	27/09/2016	27/09/2016
Date analysed	-	27/09/2016	27/09/2016	27/09/2016
Calcium - Dissolved	mg/L	11	23	10
Magnesium - Dissolved	mg/L	18	33	130
Hardness	mgCaCO 3/L	100	190	540

Client Reference: 85374.02, AHPS & PPS

Method ID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-035	Soil samples are extracted with Methanol, evaporated and reconsistuted. Waters are directly injected and/or concentrated after SPE. Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.
Metals-020	Determination of various metals by ICP-AES.

Client Reference: 85374.02, AHPS & PPS										
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
VOCs in water						Base II Duplicate II % RPD				
Date extracted	-			27/09/2 016	154230-1	27/09/2016 28/09/2016	LCS-W1	27/09/2016		
Date analysed	-			27/09/2 016	154230-1	27/09/2016 28/09/2016	LCS-W1	27/09/2016		
Dichlorodifluoromethane	µg/L	10	Org-013	<10	154230-1	<10 <10	[NR]	[NR]		
Chloromethane	µg/L	10	Org-013	<10	154230-1	<10 <10	[NR]	[NR]		
Vinyl Chloride	µg/L	10	Org-013	<10	154230-1	<10 <10	[NR]	[NR]		
Bromomethane	µg/L	10	Org-013	<10	154230-1	<10 <10	[NR]	[NR]		
Chloroethane	µg/L	10	Org-013	<10	154230-1	<10 <10	[NR]	[NR]		
Trichlorofluoromethane	µg/L	10	Org-013	<10	154230-1	<10 <10	[NR]	[NR]		
1,1-Dichloroethene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
1,1-dichloroethane	µg/L	1	Org-013	<1	154230-1	<1 <1	LCS-W1	107%		
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Bromochloromethane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Chloroform	µg/L	1	Org-013	<1	154230-1	16 16 RPD:0	LCS-W1	107%		
2,2-dichloropropane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
1,2-dichloroethane	µg/L	1	Org-013	<1	154230-1	<1 <1	LCS-W1	107%		
1,1,1-trichloroethane	µg/L	1	Org-013	<1	154230-1	<1 <1	LCS-W1	107%		
1,1-dichloropropene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Cyclohexane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Carbon tetrachloride	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Benzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Dibromomethane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
1,2-dichloropropane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Trichloroethene	µg/L	1	Org-013	<1	154230-1	<1 <1	LCS-W1	114%		
Bromodichloromethane	μg/L	1	Org-013	<1	154230-1	4 4 RPD:0	LCS-W1	109%		
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
1,1,2-trichloroethane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Toluene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
1,3-dichloropropane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Dibromochloromethane	µg/L	1	Org-013	<1	154230-1	<1 <1	LCS-W1	107%		
1,2-dibromoethane	μg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Tetrachloroethene	µg/L	1	Org-013	<1	154230-1	<1 <1	LCS-W1	104%		
1,1,1,2- tetrachloroethane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Chlorobenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Ethylbenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
Bromoform	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
m+p-xylene	μg/L	2	Org-013	~2	154230-1	<2 <2	[NR]	[NR]		
Styrene	μg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
1,1,2,2- tetrachloroethane	μg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		
o-xylene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]		

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		,
1,2,3-trichloropropane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
Isopropylbenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
Bromobenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
n-propyl benzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
2-chlorotoluene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
4-chlorotoluene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
Tert-butyl benzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
1,3-dichlorobenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
Sec-butyl benzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
1,4-dichlorobenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
4-isopropyl toluene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
1,2-dichlorobenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
n-butyl benzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
Hexachlorobutadiene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
Surrogate Dibromofluoromethane	%		Org-013	118	154230-1	124 117 RPD:6	LCS-W1	103%
Surrogate toluene-d8	%		Org-013	99	154230-1	99 97 RPD:2	LCS-W1	99%
Surrogate 4-BFB	%		Org-013	123	154230-1	121 121 RPD:0	LCS-W1	99%

Client Reference: 85374.02, AHPS & PPS								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II % RPD		
Date extracted	-			26/09/2 016	154230-1	27/09/2016 28/09/2016	LCS-W1	26/09/2016
Date analysed	-			27/09/2 016	154230-1	28/09/2016 28/09/2016	LCS-W1	27/09/2016
TRHC6 - C9	µg/L	10	Org-016	<10	154230-1	15 15 RPD:0	LCS-W1	107%
TRHC6 - C10	µg/L	10	Org-016	<10	154230-1	15 15 RPD:0	LCS-W1	107%
Benzene	µg/L	1	Org-016	<1	154230-1	<1 <1	LCS-W1	99%
Toluene	µg/L	1	Org-016	<1	154230-1	<1 <1	LCS-W1	107%
Ethylbenzene	µg/L	1	Org-016	<1	154230-1	<1 <1	LCS-W1	110%
m+p-xylene	µg/L	2	Org-016	~2	154230-1	<2 <2	LCS-W1	109%
o-xylene	µg/L	1	Org-016	<1	154230-1	<1 <1	LCS-W1	113%
Naphthalene	µg/L	1	Org-013	<1	154230-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	129	154230-1	124 117 RPD:6	LCS-W1	126%
Surrogate toluene-d8	%		Org-016	98	154230-1	99 97 RPD:2	LCS-W1	103%
Surrogate 4-BFB	%		Org-016	106	154230-1	121 121 RPD:0	LCS-W1	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in Water					SIT#	Base II Duplicate II % RPD		Recovery
Date extracted	-			28/09/2 016	[NT]	[NT]	LCS-W3	28/09/2016
Date analysed	-			29/09/2 016	[NT]	[NT]	LCS-W3	29/09/2016
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W3	119%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	116%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	111%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W3	119%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	116%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	111%
Surrogate o-Terphenyl	%		Org-003	79	[NT]	[NT]	LCS-W3	68%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		
Date extracted	-			28/09/2 016	[NT]	[NT]	LCS-W3	28/09/2016
Date analysed	-			29/09/2 016	[NT]	[NT]	LCS-W3	29/09/2016
Naphthalene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W3	73%
Acenaphthylene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W3	82%
	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W3	87%
Phenanthrene		1	U U					[NR]
Phenanthrene Anthracene		1	Org-012	<1		INTI	INKI	
	µg/L	1	Org-012 Org-012	<1 <1	[NT] [NT]	[NT] [NT]	[NR] LCS-W3	
Anthracene			Org-012 Org-012 Org-012		[NT] [NT]	[TV] [NT] [TV]	LCS-W3	80% 81%

Client Reference: 85374.02, AHPS & PPS								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Water					Sm#	Base II Duplicate II % RPD		Recovery
Chrysene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Benzo(b,j +k)fluoranthene	µg/L	2	Org-012	2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W3	84%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012	80	[NT]	[NT]	LCS-W3	79%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water						Base II Duplicate II % RPD		
Date extracted	-			28/09/2 016	[NT]	[NT]	LCS-W1	28/09/2016
Date analysed	-			29/09/2 016	[NT]	[NT]	LCS-W1	29/09/2016
HCB	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	82%
gamma-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
beta-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	77%
Heptachlor	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	84%
delta-BHC	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Aldrin	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	77%
Heptachlor Epoxide	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	LCS-W1	77%
gamma-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan I	µg/L	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[NR]

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

%

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

Org-005

<0.2

<0.2

<0.2

<0.2

<0.2

<0.2

<0.2

<0.2

<0.2

103

[NT]

LCS-W1

LCS-W1

LCS-W1

LCS-W1

[NR]

[NR]

[NR]

LCS-W1

[NR]

LCS-W1

pp-DDE

Dieldrin

Endrin

pp-DDD

Endosulfan II

pp-DDT

Endrin Aldehyde

Endosulfan Sulphate

Methoxychlor

Surrogate TCMX

74%

77%

71%

73%

[NR]

[NR]

[NR]

79%

[NR]

123%

Client Reference:	
-------------------	--

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OP Pesticides in water						Base II Duplicate II % RPD		,
Date extracted	-			28/09/2 016	[NT]	[NT]	LCS-W1	28/09/2016
Date analysed	-			29/09/2 016	[NT]	[NT]	LCS-W1	29/09/2016
Azinphos-methyl (Guthion)	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Bromophos ethyl	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	84%
Chlorpyriphos-methyl	μg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Diazinon	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Dichlorovos	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	98%
Dimethoate	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	[NR]	[NR]
Ethion	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	110%
Fenitrothion	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	104%
Malathion	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	85%
Parathion	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	116%
Ronnel	µg/L	0.2	Org-008	<0.2	[NT]	[NT]	LCS-W1	95%
Surrogate TCMX	%		Org-008	103	[NT]	[NT]	LCS-W1	122%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Water						Base II Duplicate II % RPD		
Date extracted	-			28/09/2 016	[NT]	[NT]	LCS-W1	28/09/2016
Date analysed	-			29/09/2 016	[NT]	[NT]	LCS-W1	29/09/2016
Aroclor 1016	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	µg/L	2	Org-006	~2	[NT]	[NT]	LCS-W1	75%
Aroclor 1260	µg/L	2	Org-006	~2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	103	[NT]	[NT]	LCS-W1	122%

Client	Reference:	853

			nt Referenc	<u></u>	5374.02, AHP			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base II Duplicate II % RPD		
Date extracted	-			27/09/2 016	[NT]	[NT]	LCS-W1	27/09/2016
Date analysed	-			27/09/2 016	[NT]	[NT]	LCS-W1	27/09/2016
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	LCS-W1	105%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		
Date prepared	-			27/09/2 016	[NT]	[NT]	LCS-W1	27/09/2016
Date analysed	-			27/09/2 016	[NT]	[NT]	LCS-W1	27/09/2016
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	101%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-W1	102%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	97%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	99%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	102%
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]	[NT]	LCS-W1	94%
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	101%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Perfluoroalkylated Substances in Waters						Base II Duplicate II % RPD		,
Date prepared	-			04/04/2 016	154230-1	04/10/2016 04/10/2016	LCS-W1	04/04/2016
Date analysed	-			04/04/2 016	154230-1	04/10/2016 04/10/2016	LCS-W1	04/04/2016
Perfluorohexanesulfonic acid	µg/L	0.01	Org-035	<0.01	154230-1	<0.01 <0.01	LCS-W1	103%
Perfluorooctanesulfonic acidPFOS	µg/L	0.01	Org-035	<0.01	154230-1	<0.01 <0.01	LCS-W1	103%
Perfluorooctanoic acid PFOA	µg/L	0.01	Org-035	<0.01	154230-1	<0.01 <0.01	LCS-W1	101%
6:2 FTS	µg/L	0.01	Org-035	<0.01	154230-1	<0.01 <0.01	LCS-W1	108%
8:2 FTS	µg/L	0.01	Org-035	<0.01	154230-1	<0.01 <0.01	LCS-W1	100%
Surrogate ¹³ C4 PFOS	%		Org-035	100	154230-1	98 100 RPD:2	LCS-W1	98%

		CI	ient Referenc	e: 85	5374.02, AHF	PS & PPS		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Cations in water Dissolved						Base II Duplicate II % RPD		
Date digested	-			27/09/2 016	[NT]	[NT]	LCS-W1	27/09/2016
Date analysed	-			27/09/2 016	[NT]	[NT]	LCS-W1	27/09/2016
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	LCS-W1	101%
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	LCS-W1	107%
Hardness	mgCaCO 3/L	3		[NT]	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNF	rs	Dup.Sm#		Duplicate	Spike Sm#	Spike % Rec	overy
Perfluoroalkylated Substances in Waters				Base+I	Duplicate+%RF	PD		
Date prepared	-		[NT]		[NT]	154230-2	04/04/201	6
Date analysed	-		[NT]		[NT]	154230-2	04/04/201	6
Perfluorohexanesulfonic acid	hð\	L	[NT]		[NT]	154230-2	101%	
Perfluorooctanesulfonic acid PFOS	µg∕	L	[NT]		[NT]	154230-2	98%	
Perfluorooctanoic acid PFOA	µg∕	L	[NT]		[NT]	154230-2	100%	
6:2 FTS	μg/	L	[NT]		[NT]	154230-2	103%	
8:2FTS	μg/	L	[NT]		[NT]	154230-2	92%	
Surrogate ¹³ C4 PFOS	%		[NT]		[NT]	154230-2	99%	

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

To: Environ Contact Person: Alleen Address: 12 Ash Address: 12 Ash Phone: 02 991 Fax: 02 991 Phone: 02 991 Fax: 02 991 Phone: 02 991 Particip ahle@integer Ash Splike + Balank Ash Splike + Balank Ash Splike + Splike + Ash	To: Contact Person: Address: Fixi Email: Laboratory Report No: Spike + Spike + Spike + Blank
Ethonic Michael Mitchae Point Fronic Allensis Allensis Allensis If:	Contract Person: Alleen Hie Address: 12 Ashley Street Address: 12 Ashley Street Exa:: 02 9910 6200 Phone: 02 9910 6200 Fax:: 02 9910 6200 Email: ahe@envirolab.com.au Laboratory Report No: 02 9910 6200 Spike + 02 9910 6200 Blank Comboo Spike + Comboo
Hor: Tm Wright BOID: 21.04 Control 21.04 Control Contr	Address: 12 Ashley Street Address: 12 Ashley Street Chatswood NSW 2068 Chatswood NSW 2068 Phone: 02 9910 6300 Fax: 02 9910 6300 Email: ahle@envirolab.com.au Laboratory Report No: 0 2 9910 6301 Spike + Combo Blank Combo X Combo X Combo Advection Combo
E. 6 Membrage Rad Endome Description Description <thdescription< th=""> <thdescription< th=""> <thdescrip< td=""><td>Chatswood NSW 2068 Phone: 02 9910 6200 Fax: 02 9910 6201 Email: ahle@entrolab.com.au Laboratory Report No: 0.2 9910 6201 Spike + Combo Blank Combo Spike + Combo Spike + Combo Blank Combo Spike Combo A X A Combo Old Old Old A Combo Combo A Combo <thcombo< th=""> Combo A Combo Combo Combo A Combo Combo Combo A Combo Combo Combo A Combo Combo <thcombo< th=""> A Co</thcombo<></thcombo<></td></thdescrip<></thdescription<></thdescription<>	Chatswood NSW 2068 Phone: 02 9910 6200 Fax: 02 9910 6201 Email: ahle@entrolab.com.au Laboratory Report No: 0.2 9910 6201 Spike + Combo Blank Combo Spike + Combo Spike + Combo Blank Combo Spike Combo A X A Combo Old Old Old A Combo Combo A Combo <thcombo< th=""> Combo A Combo Combo Combo A Combo Combo Combo A Combo Combo Combo A Combo Combo <thcombo< th=""> A Co</thcombo<></thcombo<>
cs 06 Nemthage Road Determinist Rosteriet Determinist Rosteriet </td <td>Phone: 02 9910 6201 Fax: 02 9910 6201 Fax: 02 9910 6201 Email: ahe@envirolab.com.au Laboratory Report No: ahe@envirolab.com.au Laboratory Report No: Combo Splike + Combo Blank Combo Splike + Combo</td>	Phone: 02 9910 6201 Fax: 02 9910 6201 Fax: 02 9910 6201 Email: ahe@envirolab.com.au Laboratory Report No: ahe@envirolab.com.au Laboratory Report No: Combo Splike + Combo Blank Combo Splike + Combo
Wett Net Nat 13.4 Net Reform 5 and 13.4 Net Reform 6 and 13.4 <th< td=""><td>Fax: 0.2 9910 6301 Email: ahle@entrolab.com.au Laboratory Report No: ahle@entrolab.com.au Lab Comments: Combo Splke + Combo</td></th<>	Fax: 0.2 9910 6301 Email: ahle@entrolab.com.au Laboratory Report No: ahle@entrolab.com.au Lab Comments: Combo Splke + Combo
960 666 Not: 047.32 057 Reprint contract and contract of a point of a	Laboratory Report No: Lab Comments: Splike + Splike + Combo Blank X X Combo Combo Blank Combo C
Instruction Control Contro Control Control	Spike + Comments: Spike + Combo Blank X X X X Combo Blank Combo Blank Combo Blank Combo Blank Combo Blank Combo Comb
Sample information Tests Required Depth Date analysis Type is marked FNS FNS Depth Date analysis Voc FNS FNS · 169 Battic Peacine Peacine · 169 Battic Noc Peacine · 169 Battic OW X X · 169 Batt	Spike + Blank X X X Environe Environe Ph. (02) 9
Depth Date sample Container Ypee of annual Container Ypee of process and process and proce	Spike + Combo
· 16:9 Beate GW X X X X · 17:0 17:0 11:0 11:0 11:0 11:0	x Nob No:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	x Nob No:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	x Nob No:
16/9 Bottle G/W X X X X 16/9 Bottle G/W N N X X 16/9 Bottle G/W N N X X 16/9 Bottle D D D D D 16/9 D D D D D D 17/9 </td <td>x Nob No:</td>	x Nob No:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Children Chi
Image: Section of the section of t	No:
Image: Second	No:
Image: Second Display="1">Image: Second Display="1" Image: Second Display="1">Image: Second Display= Second Image: Second Display="1">Image: Second Display= Second Image: Second Display="1">Image: Second Display= Display= Second Display= Display= Second Display= Display= Second Display= Dis	ROLAS No:
Image: Second	No:
Image: Second	No:
Image: Section of the section of t	No:
Image: Second	
Image: Normal System Image: Normal System <th< td=""><td></td></th<>	
Image: Second	
Image: Second	
Image: Second	Received:
Image: state	Received: n +1 -
Inters Intersection Intersection Intersection Intersection Intersection Sample Receipt Intersection Intersection Intersection Intersection Print Name: Intersection Intersection Intersection	ived by:
Image: state	
Inters Inters Intersective Intersective<	Cooling: Ice/Ibeback
ithers Sample Receipt Lab use only: Attents Sample Receipt Lab use only: Received by (Company): A A Samples Received: Cool or Ambient tch Cool or Ambient (circle) Print Name: Tch A A To A A Samples Received at: Date & Time: Tch A A A A A A A A A A A A A A A A A A A	Security: InfactBroken None
Ittners Sample Receipt Lab use only: Ittners Samples Received: Cool or Ambient circle) Samples Received: Cool or Ambient circle) Ittners Temperature Received at: Temperature Received at: Date & Time: Trincol N(L U.S.	
Iteres Sample Receipt Lab use only: rtners Samples Received by (Company): Question of Ambient stch Cool or Ambient (circle) Print Name: Trincol of Multiple of U.S. bate & Time: Trincol N.G. U.S.	
Received by (Company): AU Samples Received at: The Cool or Ambient (circle) Samples Received at: The Cool or Ambient (circle) Print Name: The Cool or Ambient (circle) The Print Name: The Cool or Ambient (circle) The Coo	Lab use only:
ttch Cool or Ambient (circle) Print Name: Print Name: TOUN TOUN TOUN Temperature Received at: Date & Time: NT/TOON UT: Transported by: Hand delivered /	Samples Received: Cool or Ambient (circle one)
Date & Time: 1771, Trod No 141	Temperature Received at: (if applicable)
	Transported by: Hand delivered / courier
Michael Wintcaker	
	t be i word
Michael Whittaker	

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Michael Whittaker

Sample Login Details					
Your Reference	85374.02, AHPS & PPS				
Envirolab Reference	154230				
Date Sample Received	26/09/2016				
Date Instructions Received	26/09/2016				
Date Results Expected to be Reported	04/10/2016				

Sample Condition							
Samples received in appropriate condition for analysis	YES						
No. of Samples Provided	6 Waters						
Turnaround Time Requested	Standard						
Temperature on receipt (°C)	6.6						
Cooling Method	Ice Pack						
Sampling Date Provided	YES						

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au						

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	OCP in water	OP Pesticides in water	PCBs in Water	Total Phenolics in Water	HM in water - dissolved	Perfluoroalkylated Substances in Waters	Cations in water Dissolved
MW1	\checkmark	<	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\leq	\checkmark
102	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
103	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BD1				\checkmark					\checkmark		
Spike		\checkmark									
Blank		\checkmark									