Alliance Geotechnical

Engineering | Environmental | Testing

Geotechnical Investigation Report
Prepared for Department of Education & Communities

Arthur Phillip High School and Parramatta Public School Macquarie Street, Parramatta

Project Number: 1915

Report Number: 1915-GR-1-1 Report date: 31st July 2015 Attention: Mr Roland Marshall

We give you the right information to make the right decisions

Alliance Geotechnical Pty Ltd - Phone: 02 9675 1777 - Web: www.allgeo.com.au

Report Number: 1915-GR-1-1

TABLE OF CONTENTS

INTRODUCTION AND SCOPE	3
SITE DESCRIPTION AND REGIONAL GEOLOGY	3
FIELDWORK	3
Methods	
Results	
Groundwater	
LABORATORY TESTING	
COMMENTS AND RECOMMENDATIONS	
Excavation Conditions	
Excavation Stability and Batter Slopes	
Retaining Structures	
-	
Shallow Foundations	
Bored Pile Foundations	
Groundwater Control	11
References	11

APPENDICES

APPENDIX A Site Plan

Explanatory Notes Borehole Logs Core Photographs

APPENDIX B Soil Laboratory Test Results

APPENDIX C Rock Laboratory Test Results

INTRODUCTION AND SCOPE

This report presents the findings of a geotechnical investigation undertaken by Alliance Geotechnical Pty Ltd (AG) of Arthur Phillip High School and Parramatta Public School at Macquarie Street, Parramatta. It is understood redevelopment of the schools is proposed and will involve demolition of the existing buildings with the exception of the heritage buildings and the construction of new buildings. The new Arthur Phillip High School buildings will comprise a fifteen plus storey block and low rise buildings along Macquarie Street, whilst the new Parramatta Public School building will comprise a four to six storey building.

Geotechnical investigation was undertaken to provide information for the design of the new building footings, lot classification, soil aggressivity for steel and concrete structures. The investigation was commissioned by the Department of Education and Communities.

The geotechnical investigation comprised the drilling of thirteen (13) machine drilled geotechnical boreholes with insitu testing and sampling, followed by laboratory testing, engineering analysis and reporting. The results of the assessment are presented herein together with comments on the encountered subsurface profile, suitable foundation systems and design parameters for structures and potential geotechnical constraints.

SITE DESCRIPTION AND REGIONAL GEOLOGY

The schools are currently in use and are located on either side of Macquarie Street, and are bounded by Charles Street to the east; Smith Street and Barrack Lane to the west; existing commercial buildings to the north; and the Lancer Barracks and Little Street to the south. The combined site has an irregular shape with major dimensions of approximately 250m by 215m. Ground surface levels across the site typically fall to the north east from around RL 14m AHD in the south western corner to RL 7m AHD in the north eastern corner of the site.

Reference to the Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) 1983 indicates that the site is underlain by Ashfield Shale of Triassic Age. The Ashfield Shale is described as comprising black to dark grey shale and laminite. Quaternary Alluvium is indicated in areas to the south and east of the site.

The boreholes confirmed the geological mapping with Ashfield Shale encountered in the cored boreholes. Quaternary Alluvium was also encountered in the boreholes in the north eastern corner of the site.

FIELDWORK

Methods

The field investigation was undertaken between 30 June and 8 July 2015 and comprised the drilling of thirteen (13) geotechnical boreholes using a truck mounted Envirodrill drilling rig operated by Total Drilling. The boreholes were drilled using 100mm solid flight augers fitted with a TC (Tungsten Carbide) drill bit. Rotary coring of the upper highly weathered bedrock was undertaken at BH12 to advance the borehole to the top of sound rock. Diamond coring of the bedrock was then undertaken in eight (8) of the boreholes (BH1, BH2, BH3, BH5, BH8, BH10, BH12 and BH13). The recovered rock core was boxed and logged on site and then returned to our office for core photography, point load and UCS testing. A geotechnical engineer from AG was on site full time and directed the insitu testing, sampling, tactile assessment and logging of the subsurface strata profile. The approximate borehole locations are shown on the Drawing 1915 provided in Appendix A.

The borehole co-ordinates and surface levels were obtained using a DGPS Rover and are tabulated in Appendix A. The surface levels are also recorded on the borehole logs.

Results

For details of the conditions encountered in the boreholes reference should be made to the borehole logs provided in Appendix A.

The general subsurface profile encountered at the borehole locations is summarised below:

- FILL Encountered at all locations to depths of 0.3m (BH7, BH10, BH11 in pavement areas) to 1.5m (BH2 playing fields). Generally comprising sandy gravel in pavement areas (BH1, BH7, BH8, BH11, BH12 and BH13) and gravelly, silty and sandy clay elsewhere.
- ALLUVIUM Encountered in BH3 and BH6 only to depths of 4.7m and 5.1m respectively. Comprising interbedded Silty Clay firm and stiff, grey and brown; and Silty and Clayey Sand- loose and medium dense, grey and brown.
- RESIDUAL SOILS Encountered in all boreholes except those with alluvium, to depths of 1.5m (BH5 and BH11) to 5.0m (BH2). Comprising Silty Clay – stiff to very stiff, grey, brown, orange brown and red brown, with SPT N values ranging from 12 to 36 with an average N value of 19.
- SHALE the boreholes typically encountered a relatively deeply weathered profile in the cored boreholes except for those overlain by alluvium, with the thickness of extremely low to low strength bedrock ranging from 2.8m in BH1 to 5.8m in BH13. Where alluvium was encountered the highly weathered rock was relatively thin (0.8m thick in BH3). Below the deeply weathered extremely low to low strength profile, the shale was medium to high strength with some very high strength bands.

Groundwater

Groundwater observations during auger drilling are presented in Table 1. Note that the use of drilling fluids during coring and wash boring does not readily allow groundwater observations during drilling.

Table 1 - Groundwater Observations During Drilling

Borehole	Depth (m)	RL (m AHD)	Strata
BH2	1.7	5.9	Residual
вн3	1.7	5.0	Alluvium
вн6	3.6	3.3	Alluvium

LABORATORY TESTING

The following laboratory tests were undertaken:

Soil

Particle Size Distribution (PSD) and Hydrometer: (6)

Moisture Content: (6)

Atterberg Limits and Linear Shrinkage: (6)

• Emerson Class Number: (6)

Shrink Swell Index: (1)Soil Aggressivity: (10)

Rock

• Point Load Testing: (80)

• UCS: (12)

Soil Laboratory Test Results

The results of the soil laboratory tests are summarised presented in Table 2. The laboratory test certificates are presented in Appendix B.

Table 2 - Soil Laboratory Test Results

Borehole	Depth	Strata		Atte	rberg	Limit	:s + LS	5 (%)		pF)		
			Moisture Content (%)	FMC (%)	٦٦ (%)	PL (%)	PI (%)	rs (%)	Emerson Class Number	Shrink Swell Index (% per pF)	PSD + Hydrometer	Soil Aggressivity
BH1	1.5-2.5	Silty Clay, red brown	-	16.6	48	19	29	13.0	-	-	-	•
BH2	2.0	Silty Clay, brown	-	22.5	25	13	22	5.5	-	-	-	•
BH2	4.0	Silty Clay, grey and brown	17.7	1	-	-	-	ı	2	-	•	-
BH3	1.0	Fill – silty clay	-	12.9	19	13	6	3.0	-	-	-	-
BH3	2.5	Clayey Sand, brown	-	-	-	-	-	-	-	-	-	•
BH5	0.5-1.0	Silty Clay, red brown	-	10.0	34	19	15	9.0	-	-	-	-
BH5	1.0	Silty Clay, red brown	12.1	-	-	-	-	-	1	-	•	-
BH5	1.5-1.8	Siltstone, red brown	-	10.6	35	20	15	7.0	-	-	-	•
BH6	1.0	Fill – Silty Clay, grey and brown	19.8	-	-	-	-	-	2	-	•	-
BH6	4.0	Clayey Sand, brown	-	-	-	-	-	-	-	-	-	•
ВН9	1.0	Gravelly Clay, dark grey	15.4	-	-	-	-	-	1	-	•	-
BH9	U ₅₀ 1.5	Silty Clay, red brown and grey	-	-	-	-	-	-	-	2.4	-	-
ВН9	1.5-1.9	Silty Clay, red brown and grey	-	18.6	43	22	21	9.0	-	-	-	•
ВН9	2.5-3.0	Silty Clay, grey	-	-	-	-	-	-	-	-	-	•
BH10	1.0	Silty Clay, light grey and brown	-	-	-	-	-	-	-	-	-	•
BH10	1.45-1.6	Silty Clay, light grey and brown	19.7	-	-	-	-	-	3	-	•	•
BH12	1.5	Silty Clay, orange brown	-	-	-	-	-	-	-	-	-	•
BH12	3.0	Silty Clay, light grey	17.9	-	-	-	-	-	2	-	•	-

[•] Test Performed, results described further

The Atterberg Limit tests indicate that the test soils are in the range of low to medium plasticity, which is consistent with the logging.

The shrink swell test indicates that the soils are moderately reactive, and this information is relevant to the lot classification and design of residential type structures. Two tests were originally scheduled, however, one of the samples broke on extrusion rendering it unsuitable to be tested.

The Emerson Class Numbers 1, 2 and 3 indicate that the tested soils exhibit partial to complete dispersion, which indicates that the soils should be protected in surface exposures.

The PSD and Hydrometer test results confirm that the soils are predominantly silty clays, which is consistent with the logging.

Soil Aggressivity

Soil Samples collected during the field investigation were analysed for the following chemical parameters in accordance with the AS2870 – 2011 and AS2159 – 2009 for steel and concrete exposure classifications.

- pH;
- EC;
- · Chloride;
- Sulphate; and
- Resistivity

Electrical Conductivity

Salt separates into positively and negatively charged ions when dissolved in water, the electrical conductivity of the water increases as the amount of salt increases. To test the electrical conductivity of soil one part of soil is mixed with 5 parts of water. The result is then multiplied by the soil texture conversion factor to give the final extract electrical conductivity (ECe) figure.

Table 3 - Electrical Conductivity Exposure Classification

Class	ECe (ds/m)	Effects	Exposure Classification for Concrete (AS 2870 – 2011 from Tables 5.1 & 5.3)
Non Saline	< 2	Salinity effects mostly negligible	A1 (min. F'c = 20 MPa)
Slightly Saline	2-4	Yields of very sensitive crops may be affected	A1 (min. F'c = 20 MPa)
Moderately Saline	4-8	Yields of many crops affected	A2 (min. F'c = 25 MPa)
Very Saline	8-16	Only tolerant crops yield Satisfactorily	B1 (min. F'c = 32 MPa)
Highly Saline	>16	Only a very few tolerant crops yield satisfactorily	B2 (min. F'c = 40MPa)

The EC result recorded by SGS was converted to extract electrical conductivity (EC_e; having units of dS/m), by multiplying it by the adopted soil texture conversion factor. For silty clay, a texture conversion factor of 8.5 was adopted (NSW Department of Primary Industries). The EC_e values (0.357 to 2.635) indicate that the examined site soils were variable in soluble salt content, with non-saline to slightly saline figures being recorded.

pН

Measures acidity or alkalinity of soil and is important in determining the aggressiveness of the soil to building materials.

Table 4 – pH Exposure Classification

Concrete Structure		Steel Structures		
рН	Classification	рН	Classification	
>5	Non Aggressive	>4	Non Aggressive	
4.5 – 5	Mild	3 – 4	Mild	
4.0 – 4.5	Moderate	<3	Moderate	
<4.0	Severe	-	-	

Analysis of the acidity (pH) found the material had an acidity of 4.3 to 6.7 pH units (1:5 – Soil:Water) which is considered to be mildly aggressive to concrete however non aggressive to steel.

Chlorides and Sulphates

Chlorides and Sulphates are negatively charged ions (anions) which are corrosive to building material, particularly steel and concrete.

Table 5 - Chloride and Sulphate Exposure Classification

Concrete Structure		Steel Structures		
Sulphate (SO4) Units (mg/kg)	Classification	Chloride Units (mg/kg)	Classification	
<5000	Non Aggressive	<20000	Non Aggressive	
5000 –10000	Mild	20000-50000	Mild	
10000 – 20000	Moderate	>50000	Moderate	
>20000	Severe	-	-	

Sample test results indicate that both the sulphate (5.9 to 350 mg/kg) and chloride (1.1 to 89 mg/kg) concentrations are within the non-aggressive range to both concrete and steel.

Resistivity

Resistivity values were calculated based on raw EC values. Resistivity values for the soil samples ranged from 3200 to 24000 ohm.cm. The soil resistivity values indicate that the soils are non aggressive to concrete and steel.

Based on the findings from this assessment it was concluded that:

- The excavated material is considered non saline to slightly saline.
- The excavated material is considered mildly aggressive to concrete however non aggressive to steel.

Rock Laboratory Test Results

The results of the soil laboratory tests are summarised presented in Table 6. The laboratory test certificates are presented in Appendix C.

Table 6 - Rock Laboratory Test Results

Borehole	Depth	Rock Type	UCS (MPa)	PL (MPa)	Rock Strength	Ratio UCS/PL
BH2	3.086-6.320	Shale	78	-	Very High	14.2
BH2	6.04	Shale	-	5.44	Very High	14.3
BH2	7.800-7.988	Shale	76	-	Very High	22
BH2	7.61	Shale	-	2.36	High	32 25.8
BH2	8.04	Shale	-	2.95	High	23.6
BH3	7.31-7.46	Shale	57	-	High	2.2
BH3	7.24	Shale	-	1.78	High	32 24.6
BH3	7.88	Shale	-	2.32	High	24.0
BH3	9.24-9.51	Shale	72	-	High	26.0
BH3	9.19	Shale	-	1.95	High	36.9
BH5	5.32-5.65	Shale	15	-	Medium	30 F
BH5	5.63	Shale	-	0.38	Medium	39.5
BH5	7.69-7.88	Shale	27	-	High	14.4
BH5	7.88	Shale	-	1.88	High	14.4
BH8	7.54-7.84	Shale	12	-	Medium	25.2
BH8	7.87	Shale	-	0.34	Medium	35.2
BH8	9.54-9.71	Shale	17	-	Medium	11.0
BH8	9.79	Shale	-	1.54	High	11.0
BH10	10.34-10.52	Shale	14	-	Medium	21.0
BH10	10.49	Shale	-	0.64	Medium	21.9
BH13	11.16-11.32	Shale	19	-	Medium	10.3
BH13	11.20	Shale	-	1.85	High	10.3
					Average	24.8

COMMENTS AND RECOMMENDATIONS

It is understood that the proposed development will involve the demolition of the existing non-heritage building and the construction of new multi-storey buildings. No basement or significant extents of cut or fill have been proposed.

It is noted that along Smith Street, in the vicinity of the heritage buildings, open playing fields are proposed and hence significant excavation or the use of deep foundations is not considered likely in that area.

At the other end of the site in the north eastern corner near Charles Street, firm and loose alluvium was encountered with the water table at 1.7m depth in BH3. If deep excavations were to be considered in this area, temporary dewatering or installation of cut off walls to rock and tanking of the structures would likely be required. Hence, deep excavations are not recommended in the eastern areas of the site that are or may be underlain by alluvium.

The construction of shallow excavations, involving the use of temporary and/or permanent batter slopes or low retaining walls may be required across the site.

Excavation Conditions

Any shallow excavations would likely be in clayey fill, stiff to very stiff silty clays and possibly extremely low strength siltstone / shale (for excavations in the south eastern corner). Fill and water charged alluvium would be expected in the north eastern corner of the site. The fill soils and extremely low strength rock are expected to be readily excavatable using conventional earthmoving equipment such as dozers, excavators or other mechanical plant.

The soil laboratory test results indicate that the site soils are liable to full or partial dispersion. It is therefore recommended that the soils be protected from erosion and dispersion during construction by covering them with a 100mm thick granular working platform. In the long term, otherwise unprotected soils should be covered with topsoil and vegetated.

Excavation Stability and Batter Slopes

Temporary batter slopes could be appropriate for excavations not encountering groundwater seepage and provided the excavations are set back sufficiently from the site boundaries. The recommended maximum slopes for excavated batters are presented in Table 7.

Table 7 - Recommended Maximum Batter Slopes

Unit	Maximum Batter Slope (H : V)			
Offic	Permanent	Temporary		
Stiff to very stiff clay / compacted cohesive fill to 2.5m maximum height	2.5 : 1*	1:1		
Extremely Low Strength Rock	Inspection Required	1:1*		

^{*} All batter slopes should be inspected by an experienced geotechnical engineer

It must be noted that the above recommended batter slopes are only applicable for excavations where the battered or benched soils do not extend below the "zone of influence" of adjacent structures ie. a line drawn 45° down from the foundation level of adjacent neighbouring buildings and structures or features (including paths, fences, stairs etc). Where there is insufficient space for batter construction and excavations extend below this line then the proposed excavations must be retained prior to excavation and excavations should be supported by means of temporary or permanent retaining structures. These structures should be designed to withstand the applied lateral pressures of the subsurface soils layer, the existing surcharges in their zone of influence, and hydrostatic pressures due to possible water inflow or seepage.

20

Retaining Structures

It is anticipated that low retaining walls up to 2.5m could be considered. Suitable support should be designed for all boundary walls. These structures should be designed to withstand the applied lateral pressures of the subsurface soils layer, surcharges in their zone of influence, and hydrostatic pressures if appropriate, using a triangular pressure distribution using the following formula:

$$p_h = \gamma kH + qk$$

where specified:

 p_h = Horizontal pressure (kN/m²) γ = Unit weight of soil (kN/m³)

k_a = Coefficient of earth pressure

H = Retained height (m)

g = Surcharge pressure on the high side of a retaining wall (kN/m²)

For the design of flexible retaining structures, where some lateral movement is acceptable, an active lateral earth pressure coefficient is recommended (Ka). If it is critical to limit the horizontal deformation of a retaining of an earth pressure coefficient "at rest" should be considered (Ko). Recommended parameters for the design of earth retaining structures in the underlying sand layers are as follows in Table 8 below.

Controlled Fill -**Extremely Low Strength** Stiff Clay (St-VSt) **Paramaters** cohesive **Rock** Ka 0.4 0.4 0.4 Ко 0.58 0.58 0.58 Poisson Ratio (v) 0.3 0.3 0.3 25 Effective Cohesion c' (kPa) 2 0 Effective Internal Friction Angle (degrees) 25 25 25

18

18

Table 8 – Preliminary Geotechnical Design Parameters for Retaining Walls

Shallow Foundations

Bulk Unit Weight (kN/m³)

The investigation has encountered filling, which was predominantly cohesive clay, across the site to depths of 0.3 – 1.5m. In the absence of compaction records or a detailed assessment demonstrating adequate compaction, moisture content and materials composition, the filling is considered uncontrolled and hence unsuitable for the support of structures. For parts of the site underlain by uncontrolled fill, the applicable lot classification would be Class P "Problem Site" in accordance with AS2870 "Residential Slabs and Footings".

Based on the results of the one shrink swell test result for the site, an indicative lot classification can be provided however, further testing would be required to confirm the classification at the specific locations. The indicative lot classification for where the natural soils are exposed is Class M "Moderately Reactive".

Shallow footings bearing in residual clays of stiff to very stiff consistency may be designed for a maximum allowable bearing pressure of 150kPa. Footings bearing in extremely low strength rock or stronger may be designed upon an allowable bearing pressure of 600kPa.

Bored Pile Foundations

It is expected that the structural loads from the multi-storey buildings will be taken and the use of bored and cast insitu reinforced concrete piles are considered appropriate. The piles should be socketed within the medium to high strength Class III sandstone underlying the site. Recommended parameters for the design of piled foundations are provided in Table 9.

Table 9 - Recommended Parameters for the Design of Piled Foundations

Dook Stuomath	Bearing Pre	essure (kPa)	Shaft Adhesion (kPa)		
Rock Strength	SLS	ULS	SLS	ULS	
Extremely Low to Very Low	600	3,000	20	75	
Low Strength	1,200	6,000	75	150	
Medium Strength	6,000	30,000	350	700	

SLS - Serviceability Limit State

ULS - Ultimate Limit State

Expected settlements are <1% of the footing diameter at the SLS bearing pressures.

In the areas underlain by alluvium, in the north eastern corner of the site, it is expected that temporary casings installed down to and sealed into the top of the rock will be required to prevent side wall collapse and significant groundwater inflow.

Shaft adhesion should be reduced or ignored if the socket lengths are smeared or fail to satisfy the socket requirements. Concrete should be placed within 24 hours of excavation as the weathered bedrock may deteriorate rapidly upon exposure.

If part of the footing system is founded on rock it is strongly recommended that all footings be founded on the rock to reduce the potential for differential movements. All foundations should be inspected for the quality and material type including the base cleanliness by a geotechnical engineer prior to placement of concrete.

Groundwater Control

It is expected the seepage may occur within shallow excavations during periods of high rainfall during earthworks on the site. It is anticipated that such seepage can be easily controlled using sump-and-pump techniques, and should not adversely affect adjoining properties provided that sufficient drainage is implemented during and after earthworks. It should be noted that groundwater levels may fluctuate due to rainfalls and seasonal weather conditions and the conditions across the surrounding landscape. It is recommended potential seepage water levels be investigated if construction is undertaken during or following adverse weather.

Should you need any further information, please do not hesitate to contact us.

Regards,

Reviewed By,

David Duff BE(Hons) MEngSc MIEAust CPEng Principal Geotechnical Engineer Alliance Geotechnical Pty Ltd

Thomas Dale BE (Civil) Hon. Geotechnical Engineer Alliance Geotechnical Pty Ltd

REFERENCES

Aanil Jeff

References

- AS1726-1993 Geotechnical Site Investigations
- The 1:100,000 NSW Department of Mines, Geological Map for Sydney

APPENDIX A

- Site Plan Geotechnical Borehole Locations
- Explanatory Notes
- Borehole Logs
- Core Photographs

Report Number: 1915-GR-1-1

Borehole Co-ordinates and Levels

Borehole	Easting	Northing	Level (m AHD)
BH1	315568.571	6256533.243	9.735
BH2	315631.553	6256507.705	7.568
вн3	315677.928	6256494.505	6.678
BH4	315558.207	6256504.413	10.739
BH5	315625.083	6256470.690	7.812
вн6	315668.319	6256453.391	6.886
ВН7	315637.142	6256424.862	10.202
вн8	315663.172	6256412.153	8.166
вн9	315633.394	6256383.191	11.080
BH10	315600.240	6256359.543	12.732
BH11	315660.554	6256374.616	9.146
BH12	315465.874	6256451.696	11.485
BH13	315517.413	6256400.255	12.955

Geotechnical Borehole Locations

Not To Scale

Source: SIX Maps (www.maps.six.nsw.gov.au)

Your On-Site Geotechnical Specialists
Phone Us Today - 02 9675 1777

Client: Department of Education and Communities Project: Arthur Phillip High School and Parramatta Public School

Job Number: 1915

EXPLANATORY NOTES - DRILL & EXCAVATION LOGS

GENERAL

Information obtained from site investigations is recorded on log sheets. The "Cored Drill Hole Log" presents data from an operation where a core barrel has been used to recover material - commonly rock. The "Non-Core Drill Hole - Geological Log" presents data from an operation where coring has not been used and information is based on a combination of regular sampling and insitu testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Excavation - Geological Log" presents data and drawings from exposures of soil and rock resulting from excavtion of pits, trenches, etc.

The heading of the log sheets contains information on Project Identification, Hole or Pit Identification, Location and Elevation. The main section of the logs contains information on methods and conditions, material substance description and structure presented as a series of columns in relation to depth below the ground surface which is plotted on the left side of the log sheet. The common depth scale is 8m per drill log sheet and about 3-5m for excavation logs sheets.

As far as is practicable the data contained on the log sheets is factual. Some interpretation is inevitable in the identification of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classifications are based on SAA Site Investigation Code AS 1726 - 1993 with some modifications as defined below.

These notes contain an explanation of the terms and abbreviations commonly used on the log sheets.

DRILLING

Drilling & Casing

AS	Auger Screwing	
AD/V	Auger Drilling with V-Bit	
AD/T	Auger Drilling with TC Bit	
WB	Wash-bore drilling	
RR	Rock Roller	
NMLC	NMLC core barrel	
NQ	NQ core barrel	
HMLC	HMLC core barrel	
HQ	HQ core barrel	

Drilling Fluid/Water

The drilling fluid used is identified and loss of return to the surface estimated as a percentage.

Drilling Penetration/Drill Depth

Core lifts are identified by a line and depth with core loss per run as a percentage. Ease of penetration in non-core drilling is abbreviated as follows:

VE	Very Easy
E	Easy
F	Firm
Н	Hard
VH	Very Hard

Groundwater Levels

Ψ

Date of measurement is shown.

Standing water level measured in completed borehole

Level taken during or immediately after drilling

Samples/Tests

D	Disturbed
U	Undisturbed
C	Core Sample
SPT	Standard Penetration Test
N	Result of SPT (*sample taken)
VS	Vane Shear Test
IMP	Borehole Impression Device
PBT	Plate Bearing Test
PZ	Piezometer Installation
HP	Hand Penetrometer Test

EXCAVATION LOGS

Explanatory notes are provided at the bottom of drill log sheets. Information about the origin, geology and pedology may be entered in the "Structure and other Observations" column. The depth of the base of excavation (for the logged section) at the appropriate depth in the "Material Description" column. Refusal of excavation plant is noted should it occur. A sketch of the exposure may be added.

MATERIAL DESCRIPTION - SOIL

Classification Symbol - In accordance with the Unified Classification System (AS 1726-1993, Appendix A, Table A1)

Material Description - In accordance with AS 1726-1993, Appendix A2.3

Moisture Condition

D	Dry, looks and feels dry
M	Moist, No free water on remoulding
W	Wet, free water on remoulding

Consistency - In accordance with AS 1726-1993, Appendix A2.5

VS	Very Soft	< 25kPa
S	Soft	25 - 50kPa
F	Firm	50 - 100kPa
St	Stiff	100 - 200kPa
VSt	Very Stiff	200 - 400kPa
Н	Hard	≥ 400kPa

Strength figures quoted are the approximate range of Unconfined Compressive Strength for each class.

Density Index. (%) is estimated or is based on SPT results. Approximate N Value correlation is shown in right column.

VL	Very Loose	< 15%	0 - 4		
L	Loose	15 - 35%	4 - 10		
MD	Medium Dense	35 - 65%	10 - 30		
D	Dense	65 - 85%	30 - 50		
VD	Very Dense	> 85%	> 50		

MATERIAL DESCRIPTION -ROCK

Material Description

Identification of rock type, composition and texture based on visual features in accordance with AS 1726-1993, Appendix A3.1-A3.3 and Tables A6a, A6b and A7.

Core Loss

Is shown at the bottom of the run unless otherwise indicated.

Bedding

Description	Spacing (mm)
Thinly Laminated	< 6
Laminated	6 - 20
Very Thinly Bedded	20 - 60
Thinly Bedded	60 - 200
Medium Bedded	200 - 600
Thickly Bedded	600 - 2000
Very Thickly Bedded	> 2000

Weathering - No distinction is made between weathering and alteration. Weathering classification assists in identification but does not imply engineering properties.

Fresh (F)	Rock substance unaffected by weathering
Slightly Weathered (SW)	Rock substance partly stained or discoloured. Colour and texture of fresh rock recognisable.
Moderately Weathered (MW)	Staining or discolouration extends throughout rock substance. Fresh rock colour not recognisable.
Highly Weathered (HW)	Stained or discoloured throughout. Signs of chemical or physical alteration. Rock texture retained.
Extremely Weathered (EW)	Rock texture evident but material has soil properties and can be remoulded.

Strength - The following terms are used to described rock strength:

Rock Strength Class	Abbreviation	Point Load Strength Index, Is(50) (MPa)
Extremely Low	EL	< 0.03
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	M	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	ЕН	≥ 10

Strengths are estimated and where possible supported by Point Load Index Testing of representative samples. Test results are plotted on the graphical estimated strength by using:

- Diametral Point Load Test
- Axial Point Load Test

Where the estimated strength log covers more than one range it indicates the rock strength varies between the limits shown.

MATERIALS STRUCTURE/FRACTURES

ROCK

Natural Fracture Spacing - A plot of average fracture spacing excluding defects known or suspected to be due to drilling, core boxing or testing. Closed or cemented joints, drilling breaks and handling breaks are not included in the Natural Fracture Spacing.

Visual Log - A diagrammatic plot of defects showing type, spacing and orientation in relation to core axis.

Defects	 Defects open in-situ or clay sealed
	 Defects closed in-situ
	 Breaks through rock substance

Additional Data - Description of individual defects by type, orientation, in-filling, shape and roughness in accordance with AS 1726-1993, Appendix A Table A10, notes and Figure A2.

Type	BP	Bedding Parting
	JT	Joint
	SM	Seam
	FZ	Fracture Zone
	SZ	Shear Zone
	VN	Vein
	FL	Foliation
	CL	Cleavage
	DL	Drill Lift
	HB	Handling break
	DB	Drilling break

Orientation - angle relative to the plane normal to the core axis.

Infilling	CN	Clean
	X	Carbonaceous
	Clay	Clay
	KT	Chlorite
	CA	Calcite
	Fe	Iron Oxide
	Qz	Quartz
	MS	Secondary Mineral
	MU	Unidentified Mineral
Shape	PR	Planar
	CU	Curved
	UN	Undulose
	ST	Stepped
	IR	Irregular
	DIS	Discontinuous
Roughness	POL	Polished
	SL	Slickensided
	S	Smooth
	RF	Rough
	VR	Very Rough

SOIL

Structures - Fissuring and other defects are described in accordance with AS 1726-1993, Appendix A2.6, using the terminology for rock defects.

Origin - Where practicable an assessment is provided of the probable origin of the soil, eg fill, topsoil, alluvium, colluvium, residual soil.

24 November 2008

02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH01 PAGE 1 OF 2 Job No:1915

Borehole Log

Client: Department of Education **Started:** 1/7/15 Project: Proposed Education Development **Finished:** 1/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

			TD10				Logg			
KL :	Suri	ace:	9.735			Bearing:	Checl	ked:	DF	D
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
ADT	gering		-			Sandy GRAVEL, low plasticity, dark brown		М	L	Fill
	NFGWO during augering	9	- - 1		CL	Silty CLAY, low to medium plasticity, dark grey		М	St	Residual
	NFGV	8	- - -		CL	Silty CLAY, low to medium plasticity, red-brown, trace of Ironstone gravel	SPT 4, 6, 8 N=14	М	St	
			<u>2</u> -		CL	Increase in Ironstone Content		D	VSt	
		7	- 3		CL	Silty CLAY, low plasticity, grey and brown mottled, trace of Ironstone gravel, low 'TC' bit resistance	SPT 15, 15, 21 N=36		Vst	
			-		CL	Silty CLAY, low to medium plasticity, trace of EW Siltstone		SM	VSt	
	6 4		4	× × × × × × × ×		SILTSTONE, light grey and brown, low strength, infrequent clay bands, trace of Ironstone gravel, low 'TC' bit resistance at 4.0m Moderate 'TC' bit resistance				Bed Rock
			-	× × × × × × × × × ×		High 'TC' bit resistance at 4.5m	SPT 16, 22, R			
		5	<u>5</u>			Borehole BH01 continued as cored hole				
		4	6 -							
		3	- - 7 -							
		2	- - 8							
		1	- - 9							

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH01
PAGE 2 OF 2
Job No:1915

Cored Borehole Log

Client: Department of EducationStarted:1/7/15Project: Proposed Education DevelopmentFinished:1/7/15

Location: Arthur Phillip High School & Parramatta Public School

Borehole Size: 110mm Dia

					High School & Parramatta Public School									Borehole Size: 110mm Dia
			TD104											Logged: PC
RL	Surf	face:	9.735		Bearing:		-							Checked: DFD
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description	Weathering		mate ength	h	Is ₍₅₀₎ MPa D- diam- etral A- axial	RQD %	Spa n	efect acing nm	Detect Description
		9	- - - 1											
		8												
		7	3											
		6	4											
					Continued from non-cored borehole									40.40.57.534.134.555
NMLC		5	_ <u>5</u> _		SHALE, dark grey with orange and ligh grey laminations, extremely low strength	HW				A_ 0.05 A_ 0.07	0			4.6 4.8, FZ, EW HW zone 4.95, BP, HZ PR, CN, RF, OP 4.97, BP, HZ PR, CN, RF, OP 5.13, BP, HZ, PR, RF, OP 5.23, CS, HW zone, 20mm 5.39, BP, HZ, PR, RF, OP
		4	- - 6 -		SHALE, light grey and dark grey, extremely low	EW				A_ 0.05 A_ 0.03				~ 5.47, BP, HZ, PR, SO,CL ~ 5.59, BP, HZ, PR, SO,CL 5.7, BP, HZ, PR, SO,CL 5.75, SM, HZ, CLAY, 10mm ↑ 5.85, BP, HZ, PR, CN, CL ↑ 5.95, BP, HZ, PR, CN, CL ↑ 6.08, BP, HZ, PR, MS, OP ↑ 6.22-6.80, FZ, EW zone, IR + BP & SM
		3	- - 7 -		strength SHALE, dark grey and orange, extremely low to very low strength	HW				A_ 0.1 A-	10			6.85, JT, 30°, CN, CL, FE 6.9-7.0, JT, 90°, VT, ST, FE, RF, CL 7.08, JT, 5°, FE, RF, CL 7.21, BP, HZ, UN, FE, OP
		2	- - 8		SHALE, dark grey and orange, very low to low strength SHALE, dark grey, low to moderate strength	MW				0.2 A_ 0.53 A - 0.72				7.23, BP, HZ, UN, FE, OP 7.25, BP, HZ, PR, CN, CL 7.28, BP, HZ, PR, CN, CL 7.31, BP, HZ, UN, RF, OP 7.35, BP, HZ, UN, RF, OP 7.40, JT, 30°, CU, FE, RF 7.51, BP, HZ, PR, FE, OP 7.65, CS, EW zone, 15mm 7.89, CS, EW zone, 10mm
		1	9		BH01 terminated at 8.85m					A 1.12 A_ 1.3		5		17.92, BP, HZ, CU, CN, RF, CL 8.20, DB, HZ, UN, CN, RF, OP 8.22, JT, 45°, CN, CL 8.28, JT, 40°, FE, OP 8.35, BP, HZ, PR, CN, SO, CL 8.72, CB, HZ, ST, MS, RF, OP 8.78, BP, HZ, PR, CN, RF, CP

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH02 PAGE 1 OF 2 Job No:1915

Borehole Log

Client: Department of EducationStarted:2/7/15Project: Proposed Education DevelopmentFinished:2/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

			TD10-			Bearing:	Logg Checl			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
ADI		7	_ _ _			Gravelly CLAY, brown, with grass roots SAND, light brown, coarse grained Silty CLAY, low to medium plasticity, brown, trace of sand		SM W	L F	Topsoil Fill
			<u>1</u>			Silty CLAY, low plasticity, dark grey and black, some fine to coarse grained sand	SPT 0, 0, 0 N=0	W	L/S	5
	7m¶	6	- - 2		СН	Silty CLAY, medium plasticity, brown and dark brown mottled	N=0	M	St	Residual
	Inflow at 1.7m▼	5	- - - 3		CH	Silty CLAY, medium to high plasticity, red-brown,	SPT 5, 7, 10 N=17	VM	VS	t
		4	- - - -							
		3	- - -		СН	Silty CLAY, medium plasticity, grey and brown mottled, low 'TC' bit resistance	SPT 4, 6, 8 N=14	VM	VS	t
			<u>5</u>	× × × × × ×		SILTSTONE, very low to low strength, light grey, trace of clay bands, low to moderate 'TC' bit resistance				Bed Rock
_		2	6	x x		SILTSTONE, moderate strength, grey and light grey, moderate to high 'TC' bit resistance Borehole BH02 continued as cored hole				
		1	- - - 7							
		0	- - -							
		<u>-1</u>	8 -							
		-2	9 -							
		-3	1 <u>0</u> 11							

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH02 PAGE 2 OF 2 Job No:1915

Cored Borehole Log

Client: Department of EducationStarted:2/7/15Project: Proposed Education DevelopmentFinished:2/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

	Equipment: TD104 RL Surface: 7.568 Bearing:															Logged: PC Checked: DFD
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description	Weathering	ū	St	renç	ited gth	Is ₍₅₀₎ MPa D- diam- etral A- axial	RQD %	S	Defect pacir mm	ng	Defect Description
NMLC			1		Continued from non-cored borehole SHALE, dark grey with light grey laminations, low to medium strength, thinly laminated SHALE, dark grey, high strength, with a very high strength band SHALE, dark grey, high strength, with some very high strength bands	SW					A_2.4§ A_2.4§ A_2.4§ A_3.0§ A_2.3§ A_2.5§ A-3.8§ -2.8§	82 86				5.45.56, FZ, OP 5.59, BP, HZ, PR, CN, RF, CL 5.62, BP, HZ, PR, CN, RF, CL 5.72, BP, HZ, PR, CN, SO, CL 5.82, BP, HZ, PR, CN, RF, OP 6.08, BP, HZ, PR, CN, RF, OP 6.41-6.47, JT, OP, PR, CN, RF, CL 6.58, BP, HZ, PR, CN, RF, CL 6.58, BP, HZ, PR, CN, RF, CL 6.59, BP, HZ, PR, CN, SO, CL 6.91, BP, HZ, PR, CN, SO, CL 7.10, BP, HZ, PR, CN, SO, CL 7.22, BP, HZ, PR, CN, SO, CL 7.67, BP, HZ, PR, CN, SO, CL 7.67, BP, HZ, PR, CN, SO, CL 7.60, BP, HZ, PR, CN, SO, CL 8.08, BP, HZ, PR, CN, SO, CL 8.08, BP, HZ, PR, CN, SO, CL 8.56, BP, HZ, PR, CN, SO, CL 8.56, BP, HZ, PR, CN, SO, CL 8.56, BP, HZ, PR, CN, SO, CL 9.06, BP, HZ, PR, CN, SO, CL 9.06, BP, HZ, PR, CN, SO, CL 9.15, JT, 45°, PR, CN, SO, CL

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH03 PAGE 1 OF 2 Job No:1915

Borehole Log

Client: Department of Education **Started:** 2/7/15 Project: Proposed Education Development **Finished: 2/7/15**

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Equipment: TD104 Logged: PC

			TD10			Paguing.	Logg			
L	Sur	race:	6.678			Bearing:	Chec	kea:	DF	D
5000	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
5						Gravelly CLAY, brown, with grass roots		SM		Topsoil
ξ		6	-			Gravelly CLAY, low plasticity, dark grey and black, trace of sand and medium to low graded angular gravel		М	_	Fill
			-	\bigotimes		Silty CLAY, low plasticity, black, trace of gravel	SPT 4, 4, 6 N=10	M	F	
	►u		-		CL	Silty CLAY, low to medium plasticity, grey and brown-grey	N=10	М	St	Alluvial
	Seepage at 1.7m▼		2		SC	Clayey SAND, brown, fine to coarse grained sand, infrequent silty clay band		SM	MD	
	Seeps	4	_				SPT 5, 7, 8 N=15			
	∮m9		_		CL	Sandy CLAY, low to medium plasticity, grey and brown		VM W	St .	
	flow At 3.		4		CL	Silty SAND, grey and light grey, fine to coarse grained sand,	SPT 4, 5, 10 N=15	W	L	
	Water Inflow At 3.6m▼	2	_	× × × × × × × ×		SILTSTONE, extremely low to low strength, low 'TC' bit resistance				Bed Rock
				× ×		SILTSTONE, medium to high strength, moderate to high 'TC' bit resistance				
		0	<u>6</u> - - 8							
		-2	_							
			1 <u>0</u>							
		-4	_							
			-							
			1 <u>2</u>							
		-6	_							

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH03
PAGE 2 OF 2
Job No:1915

Cored Borehole Log

CORED BOREHOLE 1915 BOREHOLE LOGS.GPJ GINT STD AUSTRALIA.GDT 31/7/15

Client: Department of EducationStarted:2/7/15Project: Proposed Education DevelopmentFinished:2/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

E	quip	uipment: TD104 Surface: 6.678 Bearing:														Logged: PC
F	L Su	rface:	6.678		Bearing:		_									Checked: DFD
	Water	RL (m)	Depth (m)	Graphic Log	Material Description	Weathering		Stre	nateongth	1	Is ₍₅₀₎ MPa D- diam- etral A- axial	RQD %	Sp	efe bac mm	ing	Defect Description
	NWIFT C	4	2 2 4		Continued from non-cored borehole SHALE, dark grey with light grey laminations, highly weathered, medium strength, thinly laminated to	HW		***************************************			A					5.5-5.66, FZ, EW HW zone, IR, FE, OP 5.72, BP, HZ, PR, CN, SO, OP
		0 -2	8		weathered, medium strength, thinly laminated to laminated SHALE, dark grey, moderately weathered, medium strength SHALE, dark grey, moderately weathered, high strength SHALE, slightly weathered, high strength	MW - SW		***************************************			0.55 A 0.69 A 1.41 A 1.78 A 2.32 A 1.55 A 4 2	0 99				5.78-5.8, CS, HZ, PR, CN, RF, OP 1-5.83, JT, 10°, PR, RF, OP 1-5.83, JT, 10°, PR, RF, OP 1-5.83, BP, HZ, PR, CN, SO CL 1-5.91, BP, HZ, PR, CN, SO CL 1-5.95, BP, HZ, PR, CN, SO CL 1-6.08-6.15, FZ, HW zone, IR 1-6.20, SM, HZ, UN, 5mm 1-6.24, BP, HZ, PR, CN, SO, CL 1-6.30, BP, HZ, PR, CN, SO, CL 1-6.34, BP, HZ, PR, CN, SO, CL 1-6.34, BP, HZ, PR, CN, SO, CL 1-6.35, BP, HZ, PR, CN, SO, CL 1-6.35, BP, HZ, PR, CN, SO, CL 1-6.36, BP, HZ, PR, CN, RF, OP 1-6.54, BP, HZ, PR, CN, RF, OP 1-6.54, BP, HZ, PR, CN, RF, OP 1-6.55, BP, HZ, PR, CN, RF, OP 1-6.69, BP, HZ, PR, CN, RF, OP 1-6.73, CB, ST, HZ, CN, RF, CP 1-6.71, CB, SO, CL 1-7.11, BP, BP, HZ, PR, CN, SO, CL 1-7.20, BP, HZ, PR, CN, SO, CL
		<u>-4</u>			BH03 terminated at 9.91m						1.9 <u>5</u> A 1.17	100				- 7.29, CS, HZ, 5mm - 7.64, BP, HZ, PR, CN, SO, CL - 7.96, BP, HZ, PR, CN, SO, CL - 8.10, BP, HZ, CU, CN, SO, CL - 8.3-8.33, CS/FZ, HW zone - 8.4-8.45, JT, 45°, PR, CN, CL - 9.07, BP, HZ, PR, CN, SO, OP - 9.24, BP, HZ, PR, CN, SO, CL - 9.50, BP, HZ, PR, CN, SO, CL - 9.60, BP, HZ, PR, CN, SO, CL - 9.77, BP, HZ, PR, CN, SO, CL

Alliance Geotechnical Pty Ltd

T: 02 9675 1777 F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH04 Sheet: 1 of 1 Job No:1915

Borehole Log

Client: Department of Education Started: 29/6/15 Project: Proposed Education Development Finished: 29/6/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Equipment: TD104 Logged: PC

			TD10			Decrine	Logged: Checked			
⟨∟ ;	our	race:	10.73	9		Bearing:	Cneck	ea:	υH	<u>ر</u>
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
- AD	ing			<u> </u>		Silty CLAY, medium plasticity, grey and dark grey		М	F	Topsoil
1	uger		_	1/ 1/						
	ing a	10		\bowtie		Sandy CLAY, low plasticity, light brown, fine to medium grained, Sity CLAY, medium plasticity, orange-brown, trace of fine to medium grained		M	F	Fill Residual
	NFGWO during augering		-			sand		101		residual
	NFG		2		СН	Silty CLAY, medium to high plasticity, brown and grey mottled	SPT 3, 5, 7 N=12	М	St	
					CL	Silty CLAY, low to medium plasticity, brown and grey		D	St	
		8	-		CL	Gravelly CLAY, low plasticity, brown, trace of EW Siltstone, low 'TC' bit resistance		D	St	
			-	× × × × ×		SILTSTONE, grey and brown, low strength, moderate 'TC' bit resistance				Bed Rock
			4	X X X X X X X X X X X X X X X X X X X		Some light grey clay bands, high 'TC' bit resistance				
				××		Borehole BH04 terminated at 4m				Borehole Refusal at 4.0m
		6_	_							
			_							
			-							
			6							
		4	-							
			-							
			_							
			8							
			-							
		2	_							
			_							
			1 <u>0</u>							
			_							
		0								
			1 <u>2</u>							
			12							
		-2	-							

F: 02 9675 1888 E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH05
PAGE 1 OF 2
Job No:1915

Borehole Log

BOREHOLE / TEST PIT 1915 BOREHOLE LOGS.GPJ GINT STD AUSTRALIA.GDT 31/7/15

Client: Department of EducationStarted:3/7/15Project: Proposed Education DevelopmentFinished:3/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Equipment: TD104 Logged: PC
RL Surface: 7.812 Bearing: --- Checked: DFE

RL	Sur	face:	7.812			Bearing:	Chec			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ADT	пg			71 18. 7		Gravelly CLAY, low plasticity, brown and dark brown, with grass roots		D	F	Topsoil
₹	gerii			XXX		Gravelly CLAY, low plasticity, light grey and brown, trace of silt		D	F	Fill
	NFGWO during augering		_		CL	Silty CLAY, low plasticity, red-brown, some coarse grained gravel	SPT	D	St	Residual
	0 0				CL	Silty CLAY, grey with red-brown mottled, trace of Ironstone	6, 14, 16 N=30	М	VSt	
	FG.	6	-	× × ×		SILTSTONE, red-brown, very low strength, low 'TC' bit resistance	11-30	\vdash		Bed Rock
		0	2	× × × × × ×		SILTSTONE, grey and light grey, low strength, low 'TC' bit resistance				
			_	× × × × × × × × × × × × × × × × × × ×		SILTSTONE, grey and dark grey, medium strength, moderate 'TC' bit resistance	SPT R			
		4	4	× × × × × ×		Moderate to high 'TC' bit resistance				
				××		SILTSTONE, dark grey, high strength, high 'TC' bit resistance				
		2	6 8							
		<u>-2</u>	10							
			1 <u>2</u> –							

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH05
PAGE 2 OF 2
Job No:1915

Cored Borehole Log

Client: Department of EducationStarted:3/7/15Project: Proposed Education DevelopmentFinished:3/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

iipment: TD		Logged: PC						
Surface: 7.8	7.812	Bearing:			1			Checked: DFD
Water RL De	Depth (m) Oraphic Log	Material Description	Weathering	Estimated Strength	Is ₍₅₀₎ MPa D- diam- etral A- axial	RQD %	Space	Defect Description
6								
2		Continued from non-cored borehole SHALE, dark grey with light grey laminations, very low to low strength, thinly laminated SHALE, dark grey, moderately weathered, medium strength with high strength band	EW		A_ 0.4 A_ 0.74 A_ 0.38 A_ 1.12	52	7	
0	8	SHALE, dark grey, moderate weathered, medium and high strength, thinly laminated BH05 terminated at 8.78m	-		0.63 A_ 1.89 A_ 1.88 A 0.71 A_ 1.14	14 60		6.73, BP, HZ, CU, CN, RF, OP 6.78, BP, HZ, PR, CN, SO, CL 6.97, FZ, HW zone, 30mm 7.10, BP, HZ, PR, CN, RF, OP 7.12, JT, 45°, CU, CN, RF, CL 7.27, BP, HZ, PR, CN, SO, CL 7.47, JT, 45°, PR, CN, SO, CL 7.47, JT, 45°, PR, CN, SO, CL 7.69, BP, HZ, PR, CN, SO, CL 8.05, BP, HZ, PR, CN, SO, CL 8.11, BP, HZ, PR, CN, SO, CL 8.13, BP, HZ, PR, CN, SO, CL 8.13, BP, HZ, PR, CN, SO, CL 8.13, BP, HZ, PR, CN, SO, CL 8.14, BP, HZ, PR, CN, SO, CL
-2	10							- 8.28, BP, HZ, PR, SO, CL - 8.39, BP, HZ, PR, SO, CL - 8.39, BP, HZ, PR, RF, OP - 8.49, SM, CLAY, 10mm - 8.54, CS, HZ, PR, 5mm - 8.59, BP, HZ, PR, SO, CL - 8.63, BP, HZ, UN, RF, CL - 8.64, BP, HZ, UN, RF, CL - 8.69, BP, HZ, PR, SO, CL
-4	10							- 8.30, BP, HZ, PR, SO, CL - 8.39, BP, HZ, PR, RF, OP - 8.49, SM, CLAY, 10mm - 8.54, CS, HZ, PR,5mm - 8.59, BP, HZ PR, SO, CL - 8.63, BP, HZ, UN, RF, CL - 8.64, BP, HZ, UN, RF, CL

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH06 Sheet: 1 of 1 Job No:1915

Borehole Log

Client: Department of Education **Started:** 2/7/15 Project: Proposed Education Development **Finished: 2/7/15**

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

			TD10			Logg				
RL :	Surf	face:	6.886			Bearing:	Checl	ked:	DF	D
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ADT			_			Gravelly CLAY, low plasticity, dark brown, trace of sand		М	L	Fill
		6				Clayey GRAVEL, black		VM		
				\bowtie	CL	Sitty CLAY, low to medium plasticity, grey and brown-grey Sitty CLAY, medium plasticity, light brown and orange mottled	SPT 0.0.2	M	F F	Alluvial
					CL	Silly CLAT, medium plasticity, light brown and drange motited	0, 0, 2 N=2	IVI	F	Alluvial
					CL	Silty CLAY, medium plasticity, light brown, trace of fine grained sand	SPT	M	F St	
		4	_		CL	Silty CLAY, low to medium plasticity, light grey and brown mottled, trace of Ironstone gravel and fine grained sand	4, 4, 7 N=11	IVI	51	
	•		4		SC	Clayey SAND, brown, increase in sand content	SPT	W	L	
		2	_		SM	Silty SAND, brown, fine to coarse grained sand, low 'TC' bit resistance from 4.7	7, 7, 8 N=15	W	MD	
		2	_	× × × × × × × × × × × ×		SILTSTONE, light brown, low to medium strength, with high 'TC' bit resistance from 5.5m				Bed Rock
			6	× × × ×						
		0	_			Borehole BH06 terminated at 6m				Borehole Refused at 6.0i
			8							
		-2	_							
			10							
		<u>-4</u>	_							
			1 <u>2</u>							
			_							
		-6								

Alliance Geotechnical Pty Ltd

T: 02 9675 1777 F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH07 Sheet: 1 of 1 Job No:1915

Borehole Log

Client: Department of Education **Started:** 8/7/15 Project: Proposed Education Development **Finished:** 8/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Fauinment: TD104 Logged: PC

	ent: TD104 ace: 10.202 Bearing:								
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observations
ing augering	10	_		CL	Asphalt pavement, bitumen Gravelly SAND Silty CLAY, low to medium plasticity, brown and light grey mottled, some gravel bands at 0.8m		D M	L)F	Fill Residual
NFGWO duri		_			Silty CLAY, low plasticity, light grey with brown mottled, Ironstone Band at 1.45m	SPT 5, 7, 14 N=21	М	VSt	
	8		× × × × × × × ×		SILTSTONE, light brown and light grey, embedded with clay bands, extremely low strength, low to moderate 'TC' resistance				Bed Rock
			× × × × × ×		High 'TC' resistance from 2.75m				Borehole Refused at 3.0n
		_			Boreriole Brio/ terminated at 3m				Borenole Relused at 3.00
	6	4							
		_							
		_							
		_							
	4	<u> </u>							
		_							
	2	8							
	_	_							
		_							
		-							
	0	10							
		_							
	-2	12							
-		_							
	NFGWO during augering Water In	NFGWO during augering Water	RL Depth (m) Mater 10.20 RL Depth (m) 10	Surface: 10.202 RL (m) Depth (m) 2	Surface: 10.202 New Control of	Bearing: Material Description Asphalt pavement, bitumen C. Gravelly SAND Silty CLAY, low low low dum plasticity, brown and light grey mottled, some gravel bands at 0.8m Silty CLAY, low plasticity, light grey with brown mottled, ironstone Band at 1.45m Silty CLAY, low plasticity, light grey, embedded with clay bands, extremely low strength, low to moderate TC resistance High TC resistance from 2.75m Borehole BH07 terminated at 3m 4. 4. 6. 6. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	Burlace: 10.202 Bearing: — Check Barring	Bearing: — Checked: Checked:	Bearing: — Checked: DFI Remarks Remar

Alliance Geotechnical Pty Ltd

T: 02 9675 1777 F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH08 PAGE 1 OF 2 Job No:1915

Borehole Log

Client: Department of Education **Started:** 8/7/15 Project: Proposed Education Development **Finished:** 8/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Equipment: TD104 Logged: PC

			TD10			Popuings	Logge			
KL	ouri	ace:	8.167	ı		Bearing:	Check	ea:	υŀ	ט ו
Ivietriod	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation
٦ ا	ng	8		$\Rightarrow \Rightarrow$		Asphalt pavement, bitumen		М		Fill
∢	augeri		_			Sandy GRAVEL, brown Sandy CLAY, low plasticity, orange-brown and dark brown, trace of coarse grained gravel			F	
	during		_		CL	Silty CLAY, low to medium plasticity, light grey and red mottled, Ironstone band at 1.2m	SPT	М	St	Residual
	NFGWO during augering		_		CL	Silty CLAY, low plasticity, light brown and light grey mottled, with frequent Ironstone band	3, 6, 7 N=13	М	St	
		6	2			iloistorie partu				
			_		CL	Silty CLAY, low plasticity, light grey and orange-brown mottled, Ironstone band at 2.6m, low 'TC' bit resistance	SPT 5, 7, 13	D	VSt	
			-	/////		SILTSTONE, lightbrown and grey-brown, extremely low strength, moderate 'TC'	N=20			Bed Rock
		_	× × × × × ×		SILTSTONE, ilgntbrown and grey-brown, extremely low strength, moderate TC bit resistance SILTSTONE, grey and dark grey, low to medium strength, moderate to high 'TC'				Dea Lock	
		4	4	× × × ×		bit resistance, High 'TC' bit resistance from 4.0m				
		-	_	× × × × × × × × × × × × × × × × × × ×						
			_			Borehole BH08 continued as cored hole				
			-							
		2	6							
			-							
			-							
			_							
		0	8							
			-							
			-							
			10							
		-2								
			_							
			_							
		-4	12							
		-	_							

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH08

PAGE 2 OF 2

Job No:1915

Cored Borehole Log

Client: Department of EducationStarted:8/7/15Project: Proposed Education DevelopmentFinished:8/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

1 '	-		TD10- 8.167		Bearing:									Logged: PC Checked: DFD
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description	Weathering		eng	Is ₍₅₀₎ MPa D- diam- etral A- axial	RQD %	Sp	efect acin nm	g	Defect Description
		6												
NMLC		2			Continued from non-cored borehole SHALE, grey and red-brown, very low strength, thinly laminated to laminated, SHALE, dark grey, low strength, high strength band from 5.8m to 6.0m SHALE, dark grey with light grey laminations, medium strength, high strength from 9.0m	EW HW HW HW MW/SV	N N		A_ 0.27 A_ 0.23 A_ 0.54 A_ 0.35 A_ 0.35	53 0		-		4.90-5.00, FZ, OP 5.05, BP, HZ, PR, CLAY, SO, OP 5.22, SM, HZ, PR, CLAY, CL, 15mm 5.27, SM, HZ, PR, CLAY, CL, 10mm 1-5.29, JT, 30°, PR, CN, OP 1-5.30-5.43, EW-HW Band, FZ, SM, CLAY 1-5.53, SM, HZ, PR, CLAY, CL 1-5.74-5.80, EW-HW Seam, FZ 1-5.74-5.80, EW-HW Seam, FZ 1-5.86-6.00, JT, 70°, UN, FE, SO, OP 1-6.11, BP, HZ, PR, CN, SO, CL 1-6.16, BP, HZ, PR, CN, SO, CL 1-6.11, BP, HZ, PR, CN, SO, CL 1-6.25, BP, HZ, PR, CN, SO, CL 1-6.25, BP, HZ, PR, CN, SO, CL 1-6.25, BP, HZ, PR, CN, SO, CL
GS.GPJ GINI STD AUSTRALIA.GDT 317775			8 - - 10						A_ 0.34 A 0.66 A_ 1.33 A_ 1.54 A_ 1.57	53 75				1-6.31, BP, 5°, PR, CLAY, RF, CL 1-6.41, BP, HZ, PR, CLAY, RF, CL + EW ZONE 1-6.48, JT, 45°, PR, CN, OP 1-6.53, BP, HZ, PR, CN, SO, CL 1-7.22, BP, HZ, PR, CN, SO, CL 1-7.29, FZ, EW, 5mm 1-7.38, BP, HZ, PR, CN, SO, CL 1-7.57, SM, HZ, PR, CN, SO, CL 1-7.57, SM, HZ, PR, CN, SO, CL 1-7.57, SM, HZ, PR, CN, SO, CL 1-8.11, BP, HZ, PR, CN, RF, CL 1-8.04, BP, HZ, UN, CN, RF, CL 1-8.11, BP, HZ, PR, CN, SO, CL 1-8.21, FZ, BPS, HZ, PR, CN, SO, CL 1-8.51, BP, HZ, PR, CN, SO, CL 1-8.51, BP, HZ, PR, CN, SO, CL 1-8.71, BP, HZ, PR, CN, SO, CL 1-8.94, BP, HZ, PR, CLAY, RF, OP 1-9.99, BP, HZ, PR, CLAY, SO, CL 1-8.71, BP, CLAY, SO, CL 1-8.71, BP, CLAY, SO, CL 1-8.71, BP, CLAY, SO, CL 1-8.70, BP, CLAY, SO, CL
CORED BOREHOLE 1915 BOREHOLE LUGS.GFJ		-4	12		BH08 terminated at 10.52m				A 1.29					1-9.30, CS, HZ, PR, SO, CL, 3mm 1-9.5289.53, BP, HZ, PR, CN, RF, CL 1-9.79, BP, HZ, PR, CN, SO, CL 1-9.81-9.87, FZ, IR, CN, OP 1-9.95, BP, HZ, PR, CN, SO, CL 1-10.08, BP, HZ, PR, CN, SO, CL 1-10.13, CS, HZ, PR, SO, CL, 3mm 1-10.16, BP, HZ, PR, CN, SO, CL 1-10.23, BP, HZ, PR, CN, SO, CL 1-10.30, BP, HZ, PR, CN, SO, CL 1-10.37, BP, HZ, PR, CN, SO, CL 1-10.44, BP, HZ, PR, CN, SO, CL 1-10.47, BP, HZ, PR, CN, SO, CL

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH09 Sheet: 1 of 1 Job No:1915

Borehole Log

BOREHOLE / TEST PIT 1915 BOREHOLE LOGS.GPJ GINT STD AUSTRALIA.GDT 31/7/15

Client: Department of Education **Started:** 1/7/15 Project: Proposed Education Development **Finished:** 1/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Equipment: TD104 Logged: PC

Eq	uipn	nent:	TD10	4		Logg	ed:	PC		
RL	Sur	face:	11.08	0		Bearing:	Chec	ked:	DFI	D
Method	+	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	
ADT	ring			XXX		Asphalt pavement, bitumen Gravelly SAND, brown and yellow		М	MD	FIII
`	ange		-	\bowtie		Clavelly of the policy and yellow				
	ing				CL	Gravelly CLAY, dark grey		М	F-S	Residual
	dur	10			02	Statistify of the state of the		"		
	NFGWO during augering		_		СН	Silty CLAY, medium to high plasticity, red-brown and grey mottled		М	St	
	불									
			2		CL	Silty CLAY, low to medium plasticity, light grey, trace of Ironstone gravel	SPT	М	St	
							5, 6, 8 N=14			
					CL	Silty CLAY, low plasticity, grey, trace of fine sand and gravel		М	St	
		8	_							
				///// × ×		SILTSTONE, red-brown, extremely low strength, with clay band, light grey and				Bed Rock
			<u>4</u>	× × × × × ×		brown SILTSTONE red-brown low strength trace of transfone graveL moderate 'TC' bit				
				× ×		SILTSTONE, red-brown, low strength, trace of Ironstone gravel, moderate 'TC' bit resistance, High 'TC' bit resistance from 4.5				
			_	× × × × × × × × × × × × × × ×						
		6_	_			Borehole BH09 terminated at 4.8m				Borehole Refused at 4.8m
			_							
			<u>6</u>							
			_							
		4	_							
2										
			_							
3			<u>8</u>							
			_							
		2	_							
5			_							
5			10							
)										
			_							
j S		0								
2		Ť								
			-							
			12							
:										
			-							

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH10 PAGE 1 OF 2 Job No:1915

Borehole Log

Client: Department of Education **Started:** 7/7/15 Project: Proposed Education Development **Finished:** 7/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Fauinment: TD104 Logged: PC

			TD10-			Bearing:	Logg Chec			
Method	Water	RL (m)	Depth (m)	hic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition		
ADT	g angering		_		CL	Asphalt pavement, bitumen Gravelly CLAY, dark grey Silty CLAY, low to medium plasticity, dark grey, trace of fine gravel,		M	L St	Fill Residual
	NFGWO during augering				CL	Silty CLAY, low plasticity, light grey and brown mottled, trace of extremely weathered coarse grained siltstone, Siltstone Boulder from 1.6m-2.7m	SPT 3, 6, 19 N=25	D	VSt	
		10	-		CL	Silty CLAY, medium plasticity, light grey and light brown mottled, with Siltstone bands and coarse grained gravel	SPT 12, 8, 11 N=19	M	VSt	
			4	× × × × × × × ×		SILTSTONE, dark grey, low strength, some clay bands, low to moderate 'TC' bit resistance				Bed Rock
		6	<u>6</u>			Borehole BH10 continued as cored hole				
		4	- - 1 <u>0</u>							
		2	- 1 <u>2</u>							
		0	-							

02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH10 PAGE 2 OF 2 Job No:1915

Cored Borehole Log

Client: Department of Education **Started:** 7/7/15 Project: Proposed Education Development **Finished:** 7/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

1			TD104 12.73		Bearing:								Logged: PC Checked: DFD
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description	Weathering		stima Stren	Is ₍₅₀₎ MPa D- diam- etral A- axial	RQD %	Spa n	efect acing nm	Detect Description
		10											
NMLC NMLC		8	6		Continued from non-cored borehole SHALE, dark grey with brown Iron indurated lamination, very low strength, low strength from 5.8m Fragmented extremely weathered to highly weathered band	EW HW	-		A 0.09 A 0.14 A 0.06	51 0 0			4.65, BP, HZ, IR, EW ROCK, VR 4.80, CB, 50°, ST, CN, RF 4.86, BP, 5°, PR, CN, RF 4.94, BP, PR, CN, RF 5.09, DB 5.22, BP, HZ, PR, FE, RF 5.60, BPHZ, FE, PR, SO 5.69, BP, HZ, PR, CN, SO 5.80, FZ, 10mm 5.94, BP, HZ, PR, FE, SO 6.05, BP, HZ, CN, CUSO 6.14, BP, 10°, IR/ST, CN, RF 6.18, BP, 10°, IR/ST, CN, RF 6.33, CB, ST, FE, RF 6.63, CB, ST, FE, RF 6.66, BP, PR, CN, SO 7.38, JT, 45°, FE, PR, SO, CL 7.47, BP, 10°, CN, FE, SO 7.56, BP, HZ, PR, CN, SO
1915 BUKEHULE LUGS.GPJ GINI STD AUSTRALIA.GD		2	- - 1 <u>0</u> -		SHALE, dark grey with light grey laminations, medium strength, thinly laminated	MW	_		A_0.23 A_0.55 A-0.43 A_0.38 A_0.64 A_0.45	99			8.30-8.73, BP, HZ, PR, CN, SO 9.19, BP, HZ, PR, CN, SO 9.28, BP, HZ, PR, CN, SO 9.46, BP, HZ, PR, CN, SO 9.55, BP, HZ, PR, CN, SO 9.77, BP, HZ, PR, CN, SO 9.85, BP, HZ, PR, CN, SO 9.92, DB 10.12, BP, HZ, ST, CN, SO 10.28, BP, HZ, PR, CN, RF, OP 10.30, BP, HZ, PR, CN, RF, OP 10.40, BP, HZ, PR, CN, RF, OP 10.40, BP, HZ, PR, CN, SO 10.42, BP, HZ, PR, CN, SO 10.45, SM, HZ, PR, CLAY, 2mm 10.49, BP, HZ, CU, CN, SO
		0	1 <u>2</u>		BH10 terminated at 11.7m				0.43 A_ 0.38				10.55, EW SWIFZ, 20mm 10.71, BP, HZ, PR, CN, SO 11.22, BP, HZ, PR, CN, SO 11.33, BP, HZ, PR, CN, SO 11.52, BP, 10°, PR, CLAY, SO @ 10 mm spacing 11.57, BP, 10°, PR, CLAY, SO @ 10 mm spacing

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH11 Sheet: 1 of 1 Job No:1915

Borehole Log

Client: Department of Education **Started:** 7/7/15 Project: Proposed Education Development **Finished:** 7/7/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Fauinment: TD104 Logged: PC

			TD10-			Bearing:	Logged: PC Checked: DFD					
Method	Water	RL (m)	Depth (m)	hic Log	5			Moisture Condition				
ADT	ing			XXX		Asphalt pavement, bitumen Gravelly CLAY/ Clayey GRAVEL, brown,		М	MD	Fill		
	NFGWO during augering		-		CH	Silty CLAY, medium to high plasticity, dark grey and light brown, trace of gravel		М	F	Alluvial		
	SWO dur	8	_		СН	Silty CLAY, medium plasticity, light grey and brown mottled, Ironstone band at 1.4m	SPT 3, 7, 10 N=17	М	Vst	Residual		
	NFO			× × ×		SILTSTONE, light grey and light brown, extremely low strength, low 'TC' bit resistance		D		Bedrock		
			2	× × × × × × × × × × × × × × × × × × ×		from 1.9m, light grey, medium strength, moderate 'TC' bit resistance		D				
			-	× × × × × ×		from 2.5m, medium to high strength, high 'TC' resistance						
		6	-			Borehole BH11 terminated at 2.9m				Borehole Refused at 2.9		
			-									
			4									
			-									
		4_	_									
			-									
			6									
			_									
		2	_									
		_	_									
			8									
			_									
			_									
		0	_									
			1 <u>0</u>									
			_									
		_2	_									
		-2	_									
			1 <u>2</u>									
			_									

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH12 PAGE 1 OF 2 Job No:1915

Borehole Log

Client: Department of Education **Started:** 30/6/15 Project: Proposed Education Development Finished: 30/6/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Fauinment: TD104 Logged: PC

			TD10			Bearing:	Logg Chec			
Method	Water	RL (m)	Depth (m)	hic Log	Classification Symbol	Material Description	Samples Tests Remarks		Consistency/ Density Index	
ADT	NFGWO during augering		-			Asphalt pavement, bitumen Sandy GRAVEL, brown Gravelly CLAY, medium plasicity, dark grey Silty CLAY, medium plasticity, brown and dark grey mottled		M M M	MD MD	Fill
	NFGWO	10	2		CL	Silty CLAY, medium plasticity, orange-brown, trace of gravel	SPT 5, 5, 7 N=12	M	St	Residual
			_		CH	Silty CLAY, medium to high plasticity, red-brown and grey mottled		M	St	
		8	-		CL	Silty CLAY, low to medium plasticity, light grey with some brown bands, Ironstone band at 3.5m	SPT 6, 7, 16 N=23	М	VSt	
			<u>4</u> -	××		SILTSTONE, extremely low strength siltstone and shaly CLAY, siltstone boulder from 4.5-4.8m, siltstone boulder from 5.2-5.9m	SPT 20, 25, R			Bed Rock
		6	- 6	××××××××××××××××××××××××××××××××××××××		from 4.5-4.8m, siltstone boulder from 5.2-5.9m				
WASH BORING			-	× × × × × × × × × × × × × × × × × × ×						
		4	<u>8</u>	× × × × × × × × × × × × × × × × × × ×						
		2	-	× × × × × × × × × × × × × × × × × × ×						
			10	× × × ×		Borehole BH12 continued as cored hole				
			-							
		0	- 1 <u>2</u>							
			_							

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH12 PAGE 2 OF 3 Job No:1915

Cored Borehole Log

Client: Department of Education **Started:** 30/6/15 Project: Proposed Education Development Finished: 30/6/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

Equipment: TD104 Logged: PC

			TD10 ⁴ 11.48		Bearing:									Logged: PC Checked: DFD
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description	Weathering		imate ength	Is ₍₅₀₎ MPa D- diam- etral A- axial	RQD %	Sp	efectoric mm	ng	Defect Description
		10	_ _ _ _ 2											
		8												
		6	6											
		4	<u>8</u>											
		2	- - 10		Continued from non-cored borehole									
NMLC		0	- 12		SHALE, light grey and dark grey laminations, medium to high strength and thinly laminated	MW			A	28 57]] 		10-10.03, SM, HZ, CLAY, 30mm 10.12, BP, HZ, PR, CN, SO, CL 10.20, BP, HZ, PR, CN, SO, CL 10.25, BP, HZ, PR, CN, SO, CL 10.30, BP, HZ, PR, CN, SO, CL 10.33, BP, HZ, PR, CN, SO, CL 10.34-10.38, FZ, HW-EW zone, 35mm 10.53, BP, HZ, PR, CN, SO, OP 10.71-10.81, FZ, EW-HW zone 90mm 11.03, JT, 10°, PR, CN, SO, CL 11.120, BP, HZ, PR, CN, SO, CL 11.120, BP, HZ, PR, CN, SO, CL 11.28, BP, HZ, PR, CN, SO, CL 11.29, BP, HZ, PR, CN, SO, CL 11.41, TT, TT, 40°, PR, CN, RF, OP 11.51, BP, HZ, UN, CN, RF, CL 11.59, BP, HZ, UN, CN, RF, CL 11.68, JT, 20°, CU, CN, RF, CL 11.74, BP, HZ, PR, CN, SO, CL 11.77, JT, 45°, CU, CN, RF, CL 11.80, JT, 20°, CU, CN, RF, CL 11.80, JT, 20°, CU, CN, RF, CL
_					BH12 terminated at 12.42m			1 ES	 0.94		□	Ш		11.68, JT, 20°, CU, CN, RF, CL 11.74, BP, HZ, PR, CN, SO,CL 11.77, JT, 45°, CU, CN, RF, CL 11.80, JT, 20°, CU, CN, RF, CL

02 9675 1888 E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH12 PAGE 3 OF 3 Job No:1915

Cored Borehole Log

Client: Department of Education Project: Proposed Education Development

Location: Arthur Phillip High School & Parramatta Public School

Started: 30/6/15 Finished: 30/6/15

Borehole Size: 110mm Dia

			TD104		Bearing:				Logged: PC Checked: DFD
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description	Weathering	Estimated Is ₍₅₀₎ Strength MPa D- diametral ゴラコミェデザ A- axial	Defect Spacing mm Defect Spacing 0000 mm	Defect Description
		<u>-2</u>	1 <u>4</u>						11.91, BP, HZ, PR, CN, SO, CL 12.00, JT, 30°, CU, CN, RF, OP 12.10, BP, HZ, PR, CN, SO, CL 12.13, BP, HZ, PR, CN, SO, CL 12.24, BP, HZ, PR, CN, SO, CL 12.32, BP, HZ, PR, CN, SO, CL 12.39, BP, HZ, PR, CN, SO, CL
			_						
		<u>-4</u>	1 <u>6</u>						
		-6	_ _ _ 1 <u>8</u>						
		<u>-8</u>	_ _ _ _ 20						
		<u>-1</u> 0	22						
		<u>-1</u> 2	- -						
			2 <u>4</u> -						
		<u>-1</u> 4	_ 26						

Alliance Geotechnical Pty Ltd T: 02 9675 1777

F: 02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au BH No: BH13
PAGE 1 OF 2
Job No:1915

Borehole Log

Client:Department of EducationStarted:30/6/15Project:Proposed Education DevelopmentFinished:30/6/15

Location: Arthur Phillip High School & Parramatta Public School Borehole Size: 110mm Dia

			TD10			Bearing:	Logge Check			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Samples Tests Remarks	Moisture Condition	Consistency/ Density Index	Additional Observation:
ADT	NFGWO during augering		_			Asphalt pavement, bitumen Gravelly CLAY, brown and dark grey		D	L	Bitumen FILL
	during a	12	_		CL	Silty CLAY, low plasticity, orange-brown, trace of gravel		М	St	Residual
	3WO (_		CH	Silty CLAY, medium plasticity, orange-brown and grey mottled, trace of Ironstone		М	VSt	
	N N		2				SPT 4, 8, 16 N=24			
			-							
		10	-	××		SANDSTONE/SILTSTONE, orange-brown, extremely low strength, embedded with clay bands Borehole BH13 continued as cored hole	SPT 11			Bedrock
			-			Boleriole Biris continued as cored note	/80mm Bouncing			
			4							
			_							
		8								
			_							
			6							
			-							
		6_	_							
			_	_						
			8							
		4								
			-							
			-	_						
			1 <u>0</u>	1						
			_							
		2	_	-						
			_							
			12							
				1						
			-	1						
		0								

Alliance Geotechnical Pty Ltd T: 02 9675 1777

F: 02 9675 1888 E: office@allgeo.com.au

W: www.allgeo.com.au

BH No: BH13
PAGE 2 OF 3
Job No:1915

Cored Borehole Log

Client: Department of EducationStarted:30/6/15Project: Proposed Education DevelopmentFinished:30/6/15

Location: Arthur Phillip High School & Parramatta Public School

Borehole Size: 110mm Dia

Location: Arthur Phillip High School & Parramatta Public School												Borehole Size: 110mm Dia			
									Logged: PC						
RL Surface: 12.955 Bearing:						Checked: DFD					Checked: DFD				
Method	Water	RL (m)	Depth (m)	Graphic Log	Material Description	Weathering		Estir Stre	engt	h	Is ₍₅₀₎ MPa D- diam- etral A- axial	RQD %	Spa n	efect acing nm	Defect Description
		12	2												
		10	_	××	Continued from non-cored borehole SILTSTONE, brown, very low strength, indistinctly	HW		888						Ш	
NMLC		8	6	× × × × × × × × × × × × × × × × × × ×	bedded Coreloss-250mm SILTSTONE, grey, very low strength, indistinctly bedded Coreloss-100mm SILTSTONE, grey, extremely low to very low strength, Coreloss-120mm SILTSTONE, grey, very low strength SILTSTONE, grey, very low strength SILTSTONE, light grey, extremely low strength and moderately weathered red Sandstone, indistinctly bedded Coreloss-350mm	EW HW			333		A_0.03	0 0			3.28, BP, HZ, PR, CLAY, RF, CL — 3.42-3.47, JT, 45°, + CS PR, 45°, OP 3.80-4.45, SM, IR, CLAY, OP 4.72, CB, 20°, UN, CN, RF, CL 4.93, BP, HZ, PR, CN, RF, OP 5.47, JT, 10°, CN, CL 5.81, BP, HZ, PR, RF, OP 6.08-6.63, FZ, EW/HW zone, FE + CS, IR, FE
		4	8		SANDSTONE, orange-brown and yellow, medium strength SANDSTONE, red and grey, extremely low strength, with medium strength ironstone bands SHALE, dark grey with light grey laminations, low strength, thinly laminated to laminated	HW EW					A_ 0.46 A_ 0.57 A_ 0.51				7.16, BP, HZ, PR, FE, CL 7.27, BP, HZ, PR, FE, CL 7.327, SB, HZ, PR, FE, CL 7.33-7.36, FZ, HW zone, FE, OP 7.42-8.42, series of BP + JT, 10-40mm, IR, FE, RF + FZ, EW zone 8.43, JT, 30°, PR, CL 8.55, BP, HZ, PR, CN, RF, CL 8.72, BP, HZ, PR, CN, RF, CL 8.75, BP, HZ, PR, CN, RF, CL 8.77, BP, HZ, PR, CN, RF, CL
		2	1 <u>0</u> 1 <u>2</u>		SHALE, dark grey with light grey laminations, high strength BH13 terminated at 11.93m	MW					A 0.37 A 0.48 A 0.83 A 1.85 A 1.07	60 22			8.79.8.91, FZ, EW,HW Zone, IR, FE 9.20, BP, HZ, PR, CLAY, RF, CL 9.31, BP, HZ, PR, CN, RF, OP 9.37, BP, HZ, PR, CN, RF, OP 9.937, BP, HZ, PR, CN, RF, OP 9.94, BP, HZ, PR, ES, O, CL 9.80, BP, HZ, PR, FE, SO, CL 9.80, BP, HZ, PR, FE, SO, CL 10.10, JT, 10°, PR, FE, SO, CL 10.10, JT, 10°, PR, FE, CL 10.24, BP, HZ, PR, CN, SO, CL 10.36, BP, HZ, PR, CN, SO, CL 10.36, BP, HZ, PR, CN, SO, CL 10.37, BP, HZ, PR, CN, SO, CL 10.38, BP, HZ, PR, CN, SO, CL 10.38, BP, HZ, PR, CN, SO, CL 10.39, BP, HZ, PR, CN, SO, CL 10.39, BP, HZ, PR, CN, SO, CL 10.71, BP, HZ, PR, CN, SO, CL 10.77, BP, HZ, PR, CN, SO, CL 10.78, BP, HZ, PR, CN, SO, CL 10.99, BP, HZ, PR, CN, SO, OP 11.21, BP, HZ, PR, CN, RF, OP
		0	-												-11.62, BP, HZ, PR, CN, SO, CL -11.62, BP, HZ, PR, CN, SO, CL -11.72, BP, HZ, PR, CN, SO, CL -11.81, BP, HZ, PR, CN, SO, CL

Alliance Geotechnical Pty Ltd T: 02 9675 1777

02 9675 1888

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: BH13 PAGE 3 OF 3 Job No:1915

Cored Borehole Log

Client: Department of Education Project: Proposed Education Development

Location: Arthur Phillip High School & Parramatta Public School

Equipment: TD104

Started:	30/6/15
Finished:	30/6/15
Danahala	0: 44

Borehole Size: 110mm Dia

Logged: PC

		12.95		Bearing:						Checked:	
Method		Depth (m)	Graphic Log	Material Description	Weathering	Estimated Strength D	Is ₍₅₀₎ MPa - diam- etral - axial	RQD %	Defect Spacing mm		Defect Description
										ч 11.89, вр, н	Z, PR, CN, SO, CL
		_									
		1 <u>4</u>									
	-2										
		1 <u>6</u>									
		-									
	-4	_									
		1 <u>8</u>									
	-6	-									
		-									
		20									
2											
31/7/1	-8										
A.GD.											
STRAL											
ID AU		22									
SINIS		-									
.GPJ	<u>-1</u> 0	-									
SOOT											
EHOLE		24									
15 BOR											
LE 197	10										
KEHO	<u>-1</u> 2										
CORED BOREHOLE 1915 BOREHOLE LOGS,GPJ GINT STD AUSTRALIA GDT 317715											
00 R		26									

BH1 - 4.6m to 8.8m

BH2 - 5.4m to 9.2m

BH3 - 5.5m to 10.0m

BH5 - 4.6m to 8.8m

BH8 - 4.7m to 9.0m

BH8 - 9.0m to 10.52m

BH10 - 4.5m to 9.0m

BH10 - 9.0m to 11.68m

BH12 - 10.0m to 12.42m

BH13 - 3.1m to 8.0m

BH13 - 8.0m to 11.93m

APPENDIX B

Soil Laboratory Test Results

- Shrink Swell Index Test Report Alliance Geotechnical 1915-ST-1-1
- Moisture Content Alliance Geotechnical 1915-ST-1-2
- Plasticity Index Test Report Alliance Geotechnical 1915-ST-1-3
- Plasticity Index Test Report Alliance Geotechnical 1915-ST-1-4
- Plasticity Index Test Report Alliance Geotechnical 1915-ST-1-5
- Plasticity Index Test Report Alliance Geotechnical 1915-ST-1-6
- Plasticity Index Test Report Alliance Geotechnical 1915-ST-1-7
- Plasticity Index Test Report Alliance Geotechnical 1915-ST-1-8
- Emerson Class Number Alliance Geotechnical 1915-ST-1-9
- Emerson Class Number Alliance Geotechnical 1915-ST-1-10
- Emerson Class Number Alliance Geotechnical 1915-ST-1-11
- Emerson Class Number Alliance Geotechnical 1915-ST-1-12
- Emerson Class Number Alliance Geotechnical 1915-ST-1-13
- Emerson Class Number Alliance Geotechnical 1915-ST-1-14
- Particle Size Distribution SGS 15-AC-1468
- Particle Size Distribution SGS 15-AC-1469
- Particle Size Distribution SGS 15-AC-1470
- Particle Size Distribution SGS 15-AC-1471
- Particle Size Distribution SGS 15-AC-1472
- Particle Size Distribution SGS 15-AC-1473
- Analytical Report SGS SE141392 RO

Report Number: 1915-GR-1-1

We give you the right information to make the right decisions

PO Box 1028 St Marys NSW 1790

Ph: (02) 9675 1777

Fax: (02) 9675 1888

Email: office@allgeo.com.au

Website: www.allgeo.com.au

Shrink Swell Index Test Report

Client Name:	Department of Education & Communities	Project Number:	1915
Client Address:	GPO Box 4037, Sydney NSW 2001	Report Number:	1915-ST-1-1
Project Name:	Arthur Phillip High School	Sample Number:	2549
Project Location:	Parramatta	Date Reported:	28/07/2015
Sample Source:	BH9 U50@ 1.5m	Date Sampled:	13/Jul/15
Sample Description:	CLAY: Grey	Date Tested:	21/Jul/15
Test Methods:	AS1289 7.1.1, 2.1.1	Sampled By:	Alliance
Sample Condition:	Moist		

Procedure	Units	Test Result
Shrink Sample - Initial Moisture Content:	%	17.4
Swell Sample - Initial Moisture Content:	%	17.4
Swell Sample - Final Moisture Content:	%	20.9
Swell Strain:	E _{sw}	3.1
Shrinkage Strain:	Esh	2.7

Shrink/Swell Index: I _{SS}	2.4
-------------------------------------	-----

Estimated % of inert inclusions in the sample	%	<5
Extent of soil crumbling during shrinkage:	%	N/A
Extent of cracking of the shrinkage specimen:	%	<1

Accredited for compliance with ISO/IEC 17025

Simon Thomas **Approved Signatory** NATA Accreditation: 15100 Alliance Geotechnical Pty Ltd Office Phone: (02) 9675 1777 Office Fax: (02) 9675 1888 Email: office@allgeo.com.au

Website: www.allgeo.com.au

Manage the earth, eliminate the risk - Phone Us Today - (02) 9675 1777

This report shall not be reproduced except in full without the written expression of Alliance Geotechnical

Issue Date: 02/04/2015 Issue: 2 Original Proformas/Reports/Rep 30

Determination of Moisture Content of a Soil

Client:	Department of Education & Communities	Job No:	1915
Project:	Arthur Phillip High School	Report Date:	28/7/15
Project Location:	Parramatta	Report No:	1915-ST-1-2
Test Methods:	AS 1289.2.1.1		

Laboratory Number:	BH10	BH12	BH2	вн6
Sample Location:	1.45 – 1.6m	3.0m	4.0m	1.0m
Sampled By:	Alliance	Alliance	Alliance	Alliance
Date Sampled:	13/7/15	13/7/15	13/7/15	13/7/15
Material Description:	-	-	-	-
Moisture Content (%):	19.7	17.9	17.7	19.8

Laboratory Number:	вн9	BH5	
Sample Location:	1.0m	1.0m	
Sampled By:	Alliance	Alliance	
Date Sampled:	13/7/15	13/7/15	
Material Description:	1	-	
Moisture Content (%):	15.4	12.1	

Notes:

Your On-Site Sydney & NSW Geotechnical Specialists Phone Us Today - (02) 9623 1588

Accredited for compliance with ISO/IEC 17025

0 48

Approved Signatory: Simon Thomas

PO Box 1028 St Marys NSW 1790

Ph: (02) 9675 1777

Fax: (02) 9675 1888

Email: office@allgeo.com.au

Web: www.allgeo.com.au

Plasticity Index Test Report

Client Name:	Department of Education	on & Communities	Project Number:	1915
Client Address:	GPO Box 4037, Sydney	NSW 2001	Report Number:	1915-ST-1-3
Project Name:	Arthur Phillip High Scho	ool	Report Date:	28/7/15
Project Location:	Parramatta		Page Number:	1 of 1
Test Methods:	AS1289 🔀 1.1	2.1.1 3.1.1	3.1.2 🔀 3.2.1	⊠ 3.3.1 ⊠ 3.4.1
	Sample Number:	2549		
	Sample Method Used:	-		
	Sample Identification:	BH1 1.5 – 2.5m		
	Date Sampled:	13/7/15		
	Sampled By:	Total Drilling		
	Material Description:	CLAY: red/brown		
	Preparation Method:	Dry Sieved		
	Sample History:	Oven Dried		
Shrinka	ge Mould Length (mm):	250		
Linear S	Shrinkage Observations:	-		
Sample	e Moisture Content (%)	16.6		
	Liquid Limit (%)	48		
	Plastic Limit (%)	19		
	Linear Shrinkage (%)	13.0		

Comments:

We give you the right information to make the right decisions

29

Plastic Index (%)

Accredited for compliance with ISO/IEC 17025

V AB

Approved Signatory:

Alliance Geotechnical Pty Ltd | NATA Accreditation: 15100 Website: www.allgeo.com.au | Email: office@allgeo.com.au Mobile: 0407 551 455 | Office Phone: (02) 9675 1777 Office Fax: (02) 9675 1888 | PO Box 1028 St Marys NSW 1790

 $This \ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ permission\ of\ Alliance\ Geotechnical$

PO Box 1028 St Marys NSW 1790

Ph: (02) 9675 1777

Fax: (02) 9675 1888

Email: office@allgeo.com.au

Web: www.allgeo.com.au

Plasticity Index Test Report

Client Name:	Department of Education	on & Communities	Project Number:	1915	
Client Address:	GPO Box 4037, Sydney	NSW 2001	Report Number:	1915-ST-1-4	
Project Name:	Arthur Phillip High Scho	ool	Report Date:	28/7/15	
Project Location:	Parramatta		Page Number:	1 of 1	
Test Methods:	AS1289 🔀 1.1	2.1.1 3.1.1	3.1.2 🔀 3.2.1	⊠ 3.3.1 ⊠ 3.4.1	
	Sample Number:	2549			
	Sample Method Used:				
	Sample Identification:				
	Date Sampled:				
	Sampled By:				
	Material Description:				
	Preparation Method:				
	Sample History:		Oven Dried		
Shrinka	Shrinkage Mould Length (mm):				
Linear S	Linear Shrinkage Observations:				
Sample	Sample Moisture Content (%)				
	Liquid Limit (%)				
	Plastic Limit (%)	13			
	Linear Shrinkage (%)	5.5			

Comments:

We give you the right information to make the right decisions

Plastic Index (%)

Accredited for compliance with ISO/IEC 17025

O AB

Approved Signatory:

Alliance Geotechnical Pty Ltd | NATA Accreditation: 15100 Website: www.allgeo.com.au | Email: office@allgeo.com.au Mobile: 0407 551 455 | Office Phone: (02) 9675 1777 Office Fax: (02) 9675 1888 | PO Box 1028 St Marys NSW 1790

 $This \ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ permission\ of\ Alliance\ Geotechnical$

PO Box 1028 St Marys NSW 1790 Ph: (02) 9675 1777 Fax: (02) 9675 1888 Email: office@allgeo.com.au Web: www.allgeo.com.au

Plasticity Index Test Report

	riasticity	mack rest nept	,,,,		
Client Name:	Department of Education	on & Communities	Project Number:	1915	
Client Address:	GPO Box 4037, Sydney	NSW 2001	Report Number:	1915-ST-1-5	
Project Name:	Arthur Phillip High Scho	ool	Report Date:	28/7/15	
Project Location:	Parramatta		Page Number:	1 of 1	
Test Methods:	AS1289 🔀 1.1	2.1.1 3.1.1	3.1.2 🔀 3.2.1	⊠ 3.3.1 ⊠ 3.4.1	
		I			
	Sample Number:	2549			
	Sample Method Used:				
	Sample Identification:				
	Date Sampled:		13/7/15		
	Sampled By:		Total Drilling		
	Material Description:				
	Preparation Method:				
	Sample History:		Oven Dried		
Shrinka	Shrinkage Mould Length (mm):				
Linear S	Shrinkage Observations:	-			
		12.9			
Sample	. , ,				
	Liquid Limit (%)	19			
	Plastic Limit (%)	13			
	Linear Shrinkage (%)	3.0			
	51	_			

Comments:

We give you the right information to make the right decisions

Plastic Index (%) 6

Accredited for compliance with ISO/IEC 17025

V AB

Approved Signatory:

Alliance Geotechnical Pty Ltd | NATA Accreditation: 15100 Website: www.allgeo.com.au | Email: office@allgeo.com.au Mobile: 0407 551 455 | Office Phone: (02) 9675 1777 Office Fax: (02) 9675 1888 | PO Box 1028 St Marys NSW 1790

 $This \ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ permission\ of\ Alliance\ Geotechnical$

PO Box 1028 St Marys NSW 1790 Ph: (02) 9675 1777 Fax: (02) 9675 1888 Email: office@allgeo.com.au Web: www.allgeo.com.au

Plasticity Index Test Report

Client Name:	Department of Education	on & Communities	Project Number:	1915
Client Address:	GPO Box 4037, Sydney	NSW 2001	Report Number:	1915-ST-1-6
Project Name:	Arthur Phillip High Scho	ool	Report Date:	28/7/15
Project Location:	Parramatta		Page Number:	1 of 1
Test Methods:	AS1289 🔀 1.1	2.1.1 3.1.1	3.1.2 🔀 3.2.1	⊠ 3.3.1 ⊠ 3.4.1
		I		
	Sample Number:	2549		
	Sample Method Used:			
	Sample Identification:			
	Date Sampled:			
	Sampled By:			
	Material Description:			
	Preparation Method:			
	Sample History:			
Shrinka	Shrinkage Mould Length (mm):			
Linear S	Shrinkage Observations:	-		
Sample Moisture Content (%) 10.0				
23	Liquid Limit (%)			
	Plastic Limit (%)	19		
	Linear Shrinkage (%)	9.0		
	Ellicai Sililikage (70)			

Comments:

We give you the right information to make the right decisions

15

Plastic Index (%)

Accredited for compliance with ISO/IEC 17025

V AB

Approved Signatory:

Alliance Geotechnical Pty Ltd | NATA Accreditation: 15100 Website: www.allgeo.com.au | Email: office@allgeo.com.au Mobile: 0407 551 455 | Office Phone: (02) 9675 1777 Office Fax: (02) 9675 1888 | PO Box 1028 St Marys NSW 1790

This report shall not be reproduced except in full without the written permission of Alliance Geotechnical

PO Box 1028 St Marys NSW 1790

Ph: (02) 9675 1777

Fax: (02) 9675 1888

Email: office@allgeo.com.au

Web: www.allgeo.com.au

Plasticity Index Test Report

	_	-		
Client Name:	Department of Education	on & Communities	Project Number:	1915
Client Address:	GPO Box 4037, Sydney	NSW 2001	Report Number:	1915-ST-1-7
Project Name:	Arthur Phillip High Scho	ool	Report Date:	28/7/15
Project Location:	Parramatta		Page Number:	1 of 1
Test Methods:	AS1289 🔀 1.1	2.1.1 3.1.1	3.1.2 🔀 3.2.1	⊠ 3.3.1 ⊠ 3.4.1
	Sample Number:	2549		
	Sample Method Used:			
	Sample Identification:			
	Date Sampled:			
	Sampled By:			
	Material Description:			
	Preparation Method:			
	Sample History:			
Shrinka	Shrinkage Mould Length (mm):			
Linear S	Linear Shrinkage Observations:			
Sample	Sample Moisture Content (%)			
	Liquid Limit (%)			
	Plastic Limit (%)	20		
	Linear Shrinkage (%)	7.0		

Comments:

We give you the right information to make the right decisions

15

Plastic Index (%)

Accredited for compliance with ISO/IEC 17025

V 48

Approved Signatory:

Alliance Geotechnical Pty Ltd | NATA Accreditation: 15100 Website: www.allgeo.com.au | Email: office@allgeo.com.au Mobile: 0407 551 455 | Office Phone: (02) 9675 1777 Office Fax: (02) 9675 1888 | PO Box 1028 St Marys NSW 1790

 $This \ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ permission\ of\ Alliance\ Geotechnical$

PO Box 1028 St Marys NSW 1790

Ph: (02) 9675 1777

Fax: (02) 9675 1888

Email: office@allgeo.com.au

Web: www.allgeo.com.au

Plasticity Index Test Report

Client Name:	Department of Education	on & Communities	Project Number:	1915	
Client Address:	GPO Box 4037, Sydney	NSW 2001	Report Number:	1915-ST-1-8	
Project Name:	Arthur Phillip High Scho	ool	Report Date:	28/7/15	
Project Location:	Parramatta		Page Number:	1 of 1	
Test Methods:	AS1289 🔀 1.1	2.1.1 3.1.1	3.1.2 🔀 3.2.1	⊠ 3.3.1 ⊠ 3.4.1	
	Sample Number:	2549			
	Sample Method Used:				
	Sample Identification:				
	Date Sampled:		13/7/15		
	Sampled By:		Fotal Drilling		
	Material Description:				
	Preparation Method:				
	Sample History:		Oven Dried		
Shrinka	Shrinkage Mould Length (mm):				
Linear S	Linear Shrinkage Observations:				
Comple	- Maisture Content (9/)	18.6			
Sample	Sample Moisture Content (%)			_	
	Liquid Limit (%)	43			
	Plastic Limit (%)	22			
	Linear Shrinkage (%)	9.0			

Comments:

We give you the right information to make the right decisions

21

Plastic Index (%)

Accredited for compliance with ISO/IEC 17025

V AB

Approved Signatory:

Alliance Geotechnical Pty Ltd | NATA Accreditation: 15100 Website: www.allgeo.com.au | Email: office@allgeo.com.au Mobile: 0407 551 455 | Office Phone: (02) 9675 1777 Office Fax: (02) 9675 1888 | PO Box 1028 St Marys NSW 1790

 $This \ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ permission\ of\ Alliance\ Geotechnical$

Determination of Emerson Class Number of a Soil

Client:	Department of Education & Communities	Job No: 1915
Project:	Arthur Phillip High School	Report Date: 28/7/15
Project Location:	Parramatta	Report Number: 1915-ST-1-9
Test Methods:	AS1141.3.8.1	

Sample Number:	BH2 SPT@4.0m
Sample Location:	BH2 SPT@4.0m
Sampled By:	Total Drilling
Source of Material:	-
Date Sampled:	13/7/15
Material Description:	CLAY: Grey
Water Type Used:	Distilled
Water Temperature:	17

Emerso	n Class Number:	2	

Notes:			

Your On-Site Sydney & NSW Geotechnical Specialists Phone Us Today - (02) 9623 1588

Accredited for compliance with ISO/IEC 17025

N AR

Approved Signatory: Simon Thomas

Determination of Emerson Class Number of a Soil

Client:	Department of Education & Communities	Job No: 1915
Project:	Arthur Phillip High School	Report Date: 28/7/15
Project Location:	Parramatta	Report Number: 1915-ST-1-10
Test Methods:	AS1141.3.8.1	

Sample Number:	BH5 SPT@1.0m
Sample Location:	BH5 SPT@1.0m
Sampled By:	Total Drilling
Source of Material:	-
Date Sampled:	13/7/15
Material Description:	CLAY: White
Water Type Used:	Distilled
Water Temperature:	17

Emerson Class Number: 1

Notes:			

Your On-Site Sydney & NSW Geotechnical Specialists Phone Us Today - (02) 9623 1588

Accredited for compliance with ISO/IEC 17025

N AA

Approved Signatory: Simon Thomas

Determination of Emerson Class Number of a Soil

Client:	Department of Education & Communities	Job No: 1915
Project:	Arthur Phillip High School	Report Date: 28/7/15
Project Location:	Parramatta	Report Number: 1915-ST-1-11
Test Methods:	AS1141.3.8.1	

Sample Number:	BH6 SPT@1.0m
Sample Location:	BH6 SPT@1.0m
Sampled By:	Total Drilling
Source of Material:	-
Date Sampled:	13/7/15
Material Description:	CLAY: Brown
Water Type Used:	Distilled
Water Temperature:	17

Emerson Class Number:	2

Notes:		

Your On-Site Sydney & NSW Geotechnical Specialists Phone Us Today - (02) 9623 1588

Accredited for compliance with ISO/IEC 17025

N AR

Approved Signatory: Simon Thomas

Determination of Emerson Class Number of a Soil

Client:	Department of Education & Communities	Job No: 1915
Project:	Arthur Phillip High School	Report Date: 28/7/15
Project Location:	Parramatta	Report Number: 1915-ST-1-12
Test Methods:	AS1141.3.8.1	

Sample Number:	BH9 SPT@1.0m
Sample Location:	BH9 SPT@1.0m
Sampled By:	Total Drilling
Source of Material:	-
Date Sampled:	13/7/15
Material Description:	CLAY: Grey with yellow mottling
Water Type Used:	Distilled
Water Temperature:	17

Emerson Class Number:	1

Notes:		

Your On-Site Sydney & NSW Geotechnical Specialists Phone Us Today - (02) 9623 1588

Accredited for compliance with ISO/IEC 17025

N AR

Approved Signatory: Simon Thomas

Determination of Emerson Class Number of a Soil

Client:	Department of Education & Communities	Job No: 1915
Project:	Arthur Phillip High School	Report Date: 28/7/15
Project Location:	Parramatta	Report Number: 1915-ST-1-13
Test Methods:	AS1141.3.8.1	

Sample Number:	BH10 1.45 – 1.6m
Sample Location:	BH10 1.45 – 1.6m
Sampled By:	Total Drilling
Source of Material:	-
Date Sampled:	13/7/15
Material Description:	CLAY: Brown
Water Type Used:	Distilled
Water Temperature:	17

|--|

Notes:			

Your On-Site Sydney & NSW Geotechnical Specialists Phone Us Today - (02) 9623 1588

Accredited for compliance with ISO/IEC 17025

N AR

Approved Signatory: Simon Thomas

Determination of Emerson Class Number of a Soil

Client:	Department of Education & Communities	Job No: 1915
Project:	Arthur Phillip High School	Report Date: 28/7/15
Project Location:	Parramatta	Report Number: 1915-ST-1-14
Test Methods:	AS1141.3.8.1	

Sample Number:	BH12 SPT@3.0m
Sample Location:	BH12 SPT@3.0m
Sampled By:	Total Drilling
Source of Material:	-
Date Sampled:	13/7/15
Material Description:	CLAY: Grey
Water Type Used:	Distilled
Water Temperature:	17

Emerson Class Number:	2

Notes:			

Your On-Site Sydney & NSW Geotechnical Specialists Phone Us Today - (02) 9623 1588

Accredited for compliance with ISO/IEC 17025

N AR

Approved Signatory: Simon Thomas

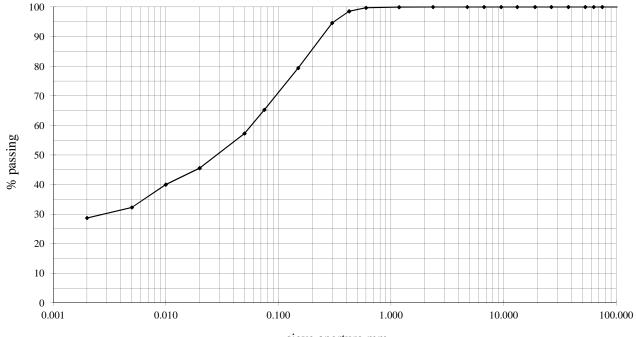
ABN 44 000 964 278 ph: +61 (0)2 8594 0481 fax: +61 (0)2 8594 0499 This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

PARTICLE SIZE DISTRIBUTION

Client: Alliance Geotechnical Pty Ltd


Address: Unit 3/155 Glendenning Road Glendenning NSW 2761

Project: Smith Street, Parramatta

Location:

Test Method: **AS 1289 3.6.1 / 3**

Job Number:15-32-181Lab Number:15-AC-1468Sample Source:BH2 4.00mDate Tested:20/07/2015Sampled By:ClientChecked By:ME

sieve aperture mm

Clay	Silt	Sand	Gravel
1			

Sample Description: SANDY SILTY CLAY: Grey

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0		1.18	
75.0		0.600	100
63.0		0.425	99
53.0		0.300	95
37.5		0.150	79
26.5		0.075	65
19.0		0.050	57
13.2		0.020	46
9.5		0.010	40
6.7		0.005	32
4.75		0.002	29
2.36			

Hydrometer Type: ASTM 152H

Dispersant Type: Sodium Hexametaphosphate

Pretreatment: None Loss on Pretreatment: None

Remarks:

Approved Signatory: Aaron Lacey Date: 20/07/2015

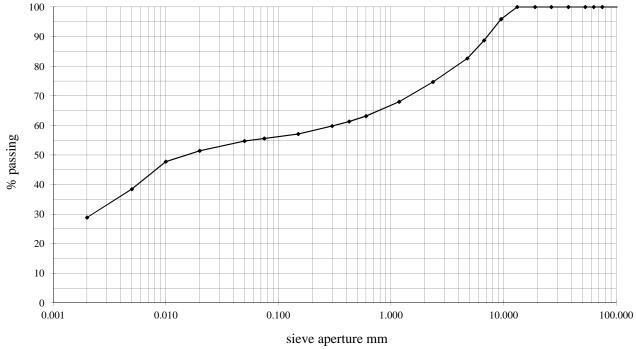
ABN 44 000 964 278 ph: +61 (0)2 8594 0481 fax: +61 (0)2 8594 0499 This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

PARTICLE SIZE DISTRIBUTION

Client: Alliance Geotechnical Pty Ltd


Address: Unit 3/155 Glendenning Road Glendenning NSW 2761

Project: Smith Street, Parramatta

Location:

Test Method: **AS 1289 3.6.1 / 3**

Job Number:15-32-181Lab Number:15-AC-1469Sample Source:BH5 1.00mDate Tested:16/07/2015Sampled By:ClientChecked By:ME

Sand Gravel

Sample Description: SILTY CLAY:Red-Brown/Grey

Silt

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0	· ·	1.18	68
75.0		0.600	63
63.0		0.425	61
53.0		0.300	60
37.5		0.150	57
26.5		0.075	56
19.0		0.050	55
13.2	100	0.020	51
9.5	96	0.010	48
6.7	89	0.005	38
4.75	83	0.002	29
2.36	75		

Hydrometer Type: ASTM 152H

Dispersant Type: Sodium Hexametaphosphate

Pretreatment: None Loss on Pretreatment: None

Clay

Remarks:

Approved Signatory: Aaron Lacey Date: 20/07/2015

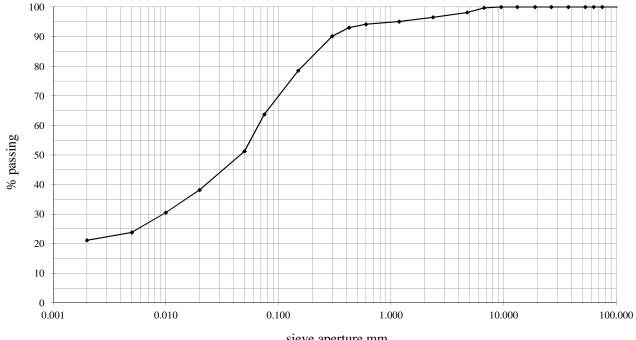
ABN 44 000 964 278 ph: +61 (0)2 8594 0481 fax: +61 (0)2 8594 0499 This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

PARTICLE SIZE DISTRIBUTION

Client: Alliance Geotechnical Pty Ltd


Address: Unit 3/155 Glendenning Road Glendenning NSW 2761

Project: Smith Street, Parramatta

Location:

Test Method: **AS 1289 3.6.1 / 3**

Job Number:15-32-181Lab Number:15-AC-1470Sample Source:BH6 1.00mDate Tested:15/07/2015Sampled By:ClientChecked By:ME

sieve aperture mm

Clav	Silt	Sand	Gravel
1	75	75 11-11	

Sample Description: SANDY SILTY CLAY: Grey

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0		1.18	95
75.0		0.600	94
63.0		0.425	93
53.0		0.300	90
37.5		0.150	79
26.5		0.075	64
19.0		0.050	51
13.2		0.020	38
9.5		0.010	31
6.7	100	0.005	24
4.75	98	0.002	21
2.36	97		

Hydrometer Type: ASTM 152H

Dispersant Type: Sodium Hexametaphosphate

Pretreatment: None Loss on Pretreatment: None

Remarks:

Approved Signatory: Aaron Lacey Date: 20/07/2015

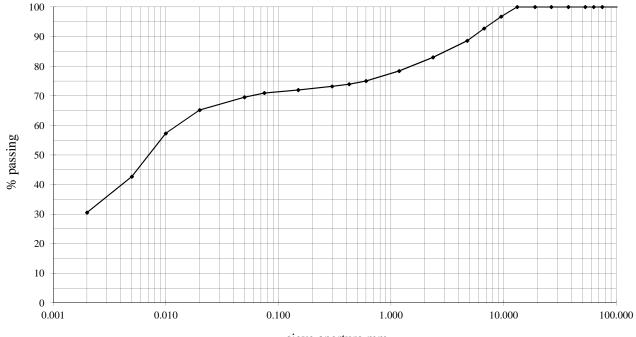
ABN 44 000 964 278 ph: +61 (0)2 8594 0481 fax: +61 (0)2 8594 0499 This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

PARTICLE SIZE DISTRIBUTION

Client: Alliance Geotechnical Pty Ltd


Address: Unit 3/155 Glendenning Road Glendenning NSW 2761

Project: Smith Street, Parramatta

Location:

Test Method: **AS 1289 3.6.1 / 3**

Job Number:15-32-181Lab Number:15-AC-1471Sample Source:BH9 1.00mDate Tested:16/07/2015Sampled By:ClientChecked By:ME

sieve aperture mm

Clay	Silt	Sand	Gravel
1			

Sample Description: SILTY CLAY:Grey

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0		1.18	78
75.0		0.600	75
63.0		0.425	74
53.0		0.300	73
37.5		0.150	72
26.5		0.075	71
19.0		0.050	70
13.2	100	0.020	65
9.5	97	0.010	57
6.7	93	0.005	43
4.75	89	0.002	31
2.36	83		

Hydrometer Type: ASTM 152H

Dispersant Type: Sodium Hexametaphosphate

Pretreatment: None Loss on Pretreatment: None

Remarks:

Approved Signatory: Aaron Lacey Date: 20/07/2015

ABN 44 000 964 278 ph: +61 (0)2 8594 0481 fax: +61 (0)2 8594 0499 This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

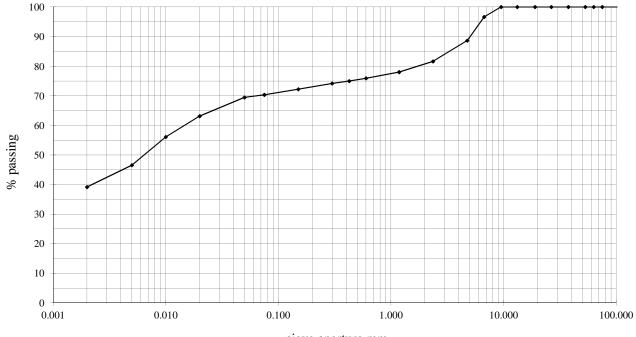
SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

PARTICLE SIZE DISTRIBUTION

Client: Alliance Geotechnical Pty Ltd

Address: Unit 3/155 Glendenning Road Glendenning NSW 2761

Project: Smith Street, Parramatta


Location:

Test Method: **AS 1289 3.6.1 / 3**

 Job Number:
 15-32-181
 Lab Number:
 15-AC-1472

 Sample Source:
 BH10 1.45-1.60m
 Date Tested:
 16/07/2015

 Sampled By:
 Client
 Checked By:
 ME

sieve aperture mm

Clay	Silt	Sand	Gravel
1			

Sample Description: SILTY CLAY:Brown

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0		1.18	78
75.0		0.600	76
63.0		0.425	75
53.0		0.300	74
37.5		0.150	72
26.5		0.075	70
19.0		0.050	69
13.2		0.020	63
9.5	100	0.010	56
6.7	97	0.005	47
4.75	89	0.002	39
2.36	82		

Hydrometer Type: ASTM 152H

Dispersant Type: Sodium Hexametaphosphate

Pretreatment: None Loss on Pretreatment: None

Remarks:

Approved Signatory: Aaron Lacey Date: 17/07/2015

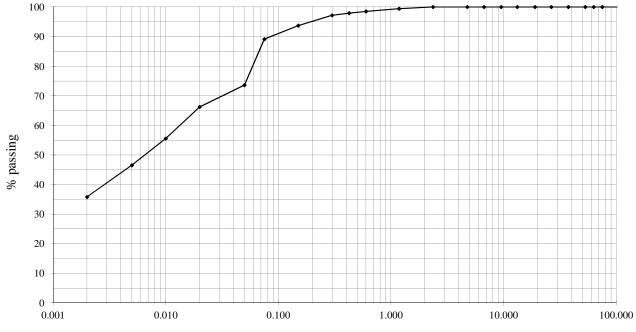
This document is issued by the Company subject to its General Conditions of Service www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

PARTICLE SIZE DISTRIBUTION

Client: Alliance Geotechnical Pty Ltd


Address: Unit 3/155 Glendenning Road Glendenning NSW 2761

Project: Smith Street, Parramatta

Location:

Test Method: AS 1289 3.6.1 / 3

15-AC-1473 Job Number: 15-32-181 Lab Number: BH12 3.00m Sample Source: Date Tested: 16/07/2015 Sampled By: Client Checked By: ME

sieve aperture mm

Clay	Silt	Sand	Gravel
	17	1-11	

SILTY CLAY:Grey Sample Description:

Sieve Size (mm) 150.0	% Passing	Sieve Size (mm) 1.18	% Passing 99
75.0		0.600	98
63.0		0.425	98
53.0		0.300	97
37.5		0.150	94
26.5		0.075	89
19.0		0.050	74
13.2		0.020	66
9.5		0.010	56
6.7		0.005	47
4.75		0.002	36
2.36	100		

ASTM 152H Hydrometer Type:

Dispersant Type: Sodium Hexametaphosphate

Pretreatment: None Loss on Pretreatment: None

Remarks:

Approved Signatory:

Aaron Lacey Date: 17/07/2015

ANALYTICAL REPORT

CLIENT DETAILS ______ LABORATORY DETAILS

Contact Paul Haslam Manager Huong Crawford

Client Alliance Geotechnical Pty Ltd Laboratory SGS Alexandria Environmental

Unit 4 / 22-24 Anne Street Address Unit 16, 33 Maddox St ST MARYS Alexandria NSW 2015

NSW 2760

 Telephone
 0407 551 455
 Telephone
 +61 2 8594 0400

 Facsimile
 02 9675 1888
 Facsimile
 +61 2 8594 0499

Email office@allgeo.com.au Email au.environmental.sydney@sgs.com

Project1915 - Smith Street ParramattaSGS ReferenceSE141392 R0Order Number(Not specified)Report Number0000116091Samples10Date Reported21 Jul 2015

Date Started 16 Jul 2015 Date Received 14 Jul 2015

COMMENTS

Address

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Andy Sutton

Senior Organic Chemist

Ads Sitte

Dong Liang

Metals/Inorganics Team Leader

ANALYTICAL REPORT

SE141392 R0

	S	nple Number ample Matrix Sample Date ample Name	Soil 14 Jul 2015	SE141392.002 Soil 14 Jul 2015 BH2 2.0m	SE141392.003 Soil 14 Jul 2015 BH9 2.5m-3.0m	SE141392.004 Soil 14 Jul 2015 BH10 1.0m
Parameter	Units	LOR				
pH in soil (1:2) Method: AN101 Tested: 21/7/2015						
pH (1:2)	pH Units	-	4.7	5.7	4.6	4.3
Conductivity (1:2) in soil Method: AN106 Tested: 21/7/2015 Conductivity (1:2) @25 C*	μS/cm	1	150	94	310	90
Resistivity (1:2)*	ohm cm	-	6500	11000	3200	11000
Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatograp	hy Method	0.25	Tested: 15/7/2015	6.7	89	4.5
Sulphate	mg/kg	0.5	60	43	95	71
Moisture Content Method: AN002 Tested: 16/7/2015						
% Moisture	%w/w	0.5	15.9	22.4	13.9	17.3

Page 2 of 6 21-July-2015

ANALYTICAL REPORT

SE141392 R0

	S	mple Number ample Matrix Sample Date Sample Name	SE141392.005 Soil 14 Jul 2015 BH6 4.0m	SE141392.006 Soil 14 Jul 2015 BH3 2.5m	SE141392.007 Soil 14 Jul 2015 BH9 1.5m-1.9m	SE141392.008 Soil 14 Jul 2015 BH12 1.5m
Parameter	Units	LOR				
pH in soil (1:2) Method: AN101 Tested: 21/7/2015						
pH (1:2)	pH Units	-	6.4	6.7	5.0	4.8
Conductivity (1:2) in soil Method: AN106 Tested: 21/7/2015 Conductivity (1:2) @25 C*	μS/cm	1	55	42	110	200
Resistivity (1:2)*	ohm cm	-	18000	24000	9300	5100
Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatograp	hy Method	d: AN245 T	Tested: 15/7/2015	1.1	3.9	39
Sulphate	mg/kg	0.5	14	5.9	7.1	350
Moisture Content Method: AN002 Tested: 16/7/2015						
% Moisture	%w/w	0.5	13.6	11.5	18.8	22.5

Page 3 of 6 21-July-2015

% Moisture

ANALYTICAL REPORT

SE141392 R0

	S	nple Numbe ample Matrix Sample Date ample Name	c Soil e 14 Jul 2015	SE141392.010 Soil 14 Jul 2015 BH5 1.5-1.8m
Parameter	Units	LOR		
pH in soil (1:2) Method: AN101 Tested: 21/7/2015				
H (1:2)	pH Units	-	4.4	4.9
Conductivity (1:2) @25 C*	μS/cm	1	110	220
Conductivity (1:2) @25 C*	μS/cm	1	110	220
Resistivity (1:2)*	ohm cm	-	9300	4600
Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatograp	hy Method	l: AN245	Tested: 15/7/2015	
Chloride	mg/kg	0.25	3.7	32

Page 4 of 6 21-July-2015

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Conductivity (1:2) in soil Method: ME-(AU)-[ENV]AN106

Parameter	QC Reference	Units	LOR	DUP %RPD
Conductivity (1:2) @25 C*	LB081405	μS/cm	1	1 - 2%
Resistivity (1:2)*	LB081405	ohm cm	-	1 - 2%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC Units		LOR	DUP %RPD
	Reference			
% Moisture	LB081139	%w/w	0.5	0 - 2%

pH in soil (1:2) Method: ME-(AU)-[ENV]AN101

Parameter	QC Reference	Units	LOR	DUP %RPD
pH (1:2)	LB081404	pH Units	-	0 - 2%

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography Method: ME-(AU)-[ENV]AN245

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Chloride	LB081084	mg/kg	0.25	<0.25	99%
Sulphate	LB081084	mg/kg	0.5	<0.5	100%

Page 5 of 6 21-July-2015

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:2 and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+.

AN106

Conductivity: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:2 and the EC determined and reported on the extract basis after the 1 hour extraction (EC(1:2)) or after the 1 hour extraction and overnight aging (EC(1:2) aged). Reference APHA 2520 B

Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.

AN245

Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the

NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

LOR Limit of Reporting

Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance
The sample was not analyzed for this and

- The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Page 6 of 6 21-July-2015

APPENDIX C

Rock Laboratory Test Results

- Point load Strength Index Test Results Alliance Geotechnical
- UCS Test Results Resource Laboratories 15-0058

Report Number: 1915-GR-1-1

We Deliver, On Time & On Budget

Test Report - Point Load Strength Index - Core Sample

Client Name:	Department of Education	Report Number:	1915-GR-1-1
Project Name:	Proposed Education Development	Sample Date:	12/07/2015
Project Location:	Arthur Phillip High School & Parramatta Public School	Sampled By:	PC
Project Number:	1915	Sample Method:	NMLC Core
Testing Device:	45-D0550/E - Digital, 55kN capacity	Test Date:	17/07/2015
Test Method:	AS 4133.4.1—2007	Sample History:	Unsoaked

Borehole BH1

Sample Number	Sample Depth (m)	Lithology	Failure Type	Test Orientation (Diametric/Axial)	Plater DIAM (mm)	Point Height (mm)	Point Load Strength Is (MPa)	Point Load Strength Is (50) (MPa)	Rock Strength Class
1	4.88	HW Shale	FOB	Axial	50	50	0.05	0.05	Very Low
2	5.08	HW Shale	PF	Axial	50	48	0.07	0.07	Very Low
3	5.71	HW Shale	FOB	Axial	50	46	0.04	0.05	Very Low
4	6.03	HW Shale	FOB	Axial	50	47	0.03	0.03	Very Low
5	7.08	HW Shale	PF	Axial	50	38	0.10	0.10	Very Low
6	7.26	HW Shale	PF	Axial	50	35	0.20	0.20	Low
7	7.83	HW Shale	FI/FOB	Axial	50	48	0.50	0.53	Medium
8	8.00	HW Shale	FOB	Axial	50	48	0.69	0.72	Medium
9	8.31	HW Shale	FOB	Axial	50	48	1.07	1.12	High
10	8.72	HW Shale	FOB	Axial	50	42	1.28	1.30	High

Borehole BH2

Sample	Sample		Failure	Test Orientation	Plater	Point	Point Load	Point Load	Rock Strength
Number	Depth (m)	Lithology	Type (Diametric/Ax	(Diametric/Axial)	DIAM (mm)	Height (mm)	Strength Is (MPa)	Strength Is (50) (MPa)	Class
1	8.61	HW Shale	FOB	Axial	50	35	2.57	2.49	High
2	5.77	HW Shale	FOB	Axial	50	43	2.43	2.49	High
3	6.04	HW Shale	FI/FOB	Axial	50	39	5.45	5.44	Very High
4	6.83	HW Shale	FOB	Axial	50	42	1.84	1.87	High
5	7.17	HW Shale	FOB	Axial	50	49	2.87	3.03	Very High
6	7.61	HW Shale	FOB	Axial	50	49	2.23	2.36	High
7	8.04	HW Shale	FOB	Axial	50	46	2.84	2.95	High
8	8.79	HW Shale	FOB	Axial	50	39	2.56	2.55	High
9	9.00	HW Shale	FOB	Axial	50	35	4.01	3.89	Very High
10	9.24	HW Shale	FOB	Axial	50	37	2.93	2.89	High

Borehole BH3

Sample	Sample		Failure	Test Orientation	Platen	Point	Point Load	Point Load	Rock Strength
Number	Depth (m)	Lithology	Туре	(Diametric/Axial)	DIAM (mm)	Height (mm)	Strength Is (MPa)	Strength Is (50) (MPa)	Class
1	5.65	EW Shale	FI/FOB	Axial	50	44	0.51	0.53	Medium
2	6.23	HW Shale	FI/PF	Axial	50	50	0.65	0.69	Medium
3	6.85	HW Shale	FOB	Axial	50	43	1.38	1.41	High
4	7.24	MW Shale	FOB/EPF	Axial	50	49	1.68	1.78	High
5	7.88	MW Shale	FOB	Axial	50	40	2.31	2.32	High
6	8.09	MW Shale	FOB	Axial	50	49	1.47	1.55	High
7	8.80	MW Shale	FOB	Axial	50	50	1.88	2.00	High
8	9.19	MW Shale	FOB	Axial	50	49	1.84	1.95	High
9	9.87	MW Shale	FOB	Axial	50	48	1.11	1.17	High

Borehole BH5

Sample	Sample		Failure	Test Orientation	Platen	Point	Point Load	Point Load	Rock Strength
Number	Depth (m)	Lithology	Туре	(Diametric/Axial)	DIAM (mm)	Height (mm)	Strength Is (MPa)	Strength Is (50) (MPa)	Class
1	4.82	EW Shale	FOB	Axial	50	42	0.40	0.40	Medium
2	5.00	HW Shale	FOB	Axial	50	46	0.71	0.74	Medium
3	5.63	HW Shale	FOB	Axial	50	42	0.38	0.38	Medium
4	6.19	HW Shale	FOB	Axial	50	44	1.09	1.12	High
5	6.73	HW Shale	FOB	Axial	50	46	0.60	0.63	Medium
6	7.05	HW Shale	FOB	Axial	50	40	1.88	1.89	High
7	7.88	HW Shale	FOB	Axial	50	40	1.87	1.88	High
8	8.00	HW Shale	FOB	Axial	50	49	0.67	0.71	Medium
9	8.54	HW Shale	FOB	Axial	50	50	1.07	1.14	High

Borehole BH8

Sample	Sample		Failure	Test Orientation	Platen	Point	Point Load	Point Load	Rock Strength
Number	Depth (m)	Lithology	Туре	(Diametric/Axial)	DIAM (mm)	Height (mm)	Strength Is (MPa)	Strength Is (50) (MPa)	Class
1	5.05	HW Shale	FOB	Axial	50	43	0.26	0.27	Low
2	5.70	HW Shale	PF	Axial	50	49	0.21	0.23	Low
3	6.31	HW Shale	EPF	Axial	50	46	0.52	0.54	Medium
4	6.71	HW Shale	FOB	Axial	50	34	0.36	0.35	Medium
5	7.06	HW Shale	PF	Axial	50	42	0.34	0.34	Medium
6	7.87	HW Shale	PF	Axial	50	50	0.32	0.34	Medium
7	8.00	HW Shale	FOB	Axial	50	43	0.65	0.66	Medium
8	8.95	HW Shale	FOB	Axial	50	44	0.68	0.69	Medium
9	9.19	HW Shale	FOB	Axial	50	49	1.26	1.33	High

10	9.79	HW Shale	FOB/EPF	Axial	50	50	1.45	1.54	High
11	10.09	HW Shale	FOB/EPF	Axial		35	1.62	1.57	High
12	10.72	HW Shale	FOB	Axial		48	1.23	1.29	High

Borehole BH10

Sample		Lithology	Failure	Test Orientation		Point	Point Load Strength	Point Load Strength	Rock Strength
Number	Depth (m)	Littlology	Type	(Diametric/Axial)	DIAM (mm)	Height (mm)	Is (MPa)	Is (50) (MPa)	Class
1	4.94	HW Shale	PF	Axial	50	50	0.08	0.09	Very Low
2	5.94	HW Shale	PF	Axial	50	49	0.13	0.14	Low
3	6.87	HW Shale	FOB	Axial	50	50	0.06	0.06	Low
4	7.69	HW Shale	FOB	Axial	50	49	0.02	0.02	Extremely Low
5	8.22	HW Shale	FOB	Axial	50	49	0.22	0.23	Low
6	8.93	HW Shale	FOB	Axial	50	50	0.52	0.55	Medium
7	9.19	HW Shale	PF	Axial	50	50	0.41	0.43	Medium
8	9.81	HW Shale	PF	Axial	50	45	0.36	0.38	Medium
9	10.49	HW Shale	PF	Axial	50	48	0.61	0.64	Medium
10	10.78	HW Shale	FOB/PF	Axial	50	47	0.43	0.45	Medium
11	11.09	HW Shale	FOB	Axial	50	48	0.41	0.43	Medium
12	11.64	HW Shale	FOB	Axial	50	47	0.36	0.38	Medium

Borehole BH12

Sample	Sample	Likh alaasi	Failure	Test Orientation	Platen Point		Point Load	Point Load	Rock Strength	
Number	Depth (m)	Lithology	Type (Diametric/Axial)		DIAM (mm)	Height (mm)	Strength Is (MPa)	Strength Is (50) (MPa)	Class	
1	10.17	EW Shale	FI	Axial	50	39	0.34	0.34	Medium	
2	10.54	HW Shale	FOB	Axial	50	48	1.23	1.29	High	
3	11.07	HW Shale	FOB/FI	Axial	50	46	1.11	1.15	High	
4	11.68	HW Shale	FOB/FI	Axial	50	50	1.00	1.07	High	
5	12.09	HW Shale	FOB	Axial	50	44	0.85	0.88	Medium	
6	12.32	HW Shale	FOB	Axial	50	37	0.95	0.94	Medium	

Borehole BH13

Sample Number	Sample Depth (m)	Lithology	Failure Type	Test Orientation (Diametric/Axial)	Platen Point DIAM Height (mm) (mm)		Point Load Strength Is (MPa)	Point Load Strength Is (50) (MPa)	Rock Strength Class
1	3.37	HW Siltstone	FOB	Axial	50	48	0.03	0.03	Very Low
2	4.50	HW Siltstone	FOB	Axial	50	50	0.01	0.01	Extremely Low
3	5.25	HW Siltstone	FOB	Axial	50	50	0.02	0.02	Extremely Low
4	7.26	HW Siltstone	PF	Axial	50	50	0.43	0.46	Extremely Low
5	7.62	HW Siltstone	PF	Axial	50	50	0.54	0.57	Medium
6	8.54	HW Shale	FOB	Axial	50	48	0.49	0.51	Medium

7	9.27	HW Shale	FI	Axial	50	43	0.37	0.37	Medium	
8	9.85	HW Shale	FI	Axial	50	44	0.47	0.48	Medium	
9	10.19	HW Shale	FI	Axial	50	50	0.78	0.83	Medium	
10	10.76	HW Shale	FOB	Axial	50	47	0.78	0.81	Medium	
11	11.20	HW Shale	FOB	Axial	50	43	1.81	1.85	High	
12	11.81	HW Shale	FOB	Axial	50	49	0.96	1.01	High	
13	11.75	HW Shale	FOB	Axial	50	41	1.05	1.06	High	

Failure Type:

TS – Testing Stopped

FOB/NWP – Fracture of specimen oblique to bedding not influenced by weak planes.

EPF – Existing Plane Fracture.

FI – Fracture influenced by existing plane, vein, micro fracture.

PF – Partial fracture or chip only.

We give you the right information to make the right decisions. Phone Us Today - (02) 9675 1777

Simon Thomas – Laboratory Manager

Alliance Geotechnical Pty Ltd

Website: www.allgeo.com.aub | Email: office@allgeo.com.au

Mobile - 0400 545 805 | Office Phone: (02) 9675 1777 | Office Fax: (02) 9675 1888

| PO Postal Address: Box 1028 St Marys NSW 1790

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au

Test Report

Customer: Alliance Geotechnical Pty Ltd Job number: 15-0058

Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 1 of 9

Uniaxial Compressive Strength of Rock Core

Sampling method: Samples tested as received Test method(s): AS 4133.1.1.1, 4.2.2

	Results							
Laboratory sample no.	6502	6503	6504	6505				
Customer sample no.	BH2	BH2	ВН3	внз				
Sample depth	6.086-6.320m	7.800-7.988m	7.31-7.46m	9.24-9.51m				
Date sampled	02/07/2015	02/07/2015	02/07/2015	02/07/2015				
Date tested	28/07/2015	28/07/2015	24/07/2015	24/07/2015				
Lithological description	SHALE	SHALE	SHALE	SHALE				
Storage history, curing and environment		Sealed, dry, moisture condition as received	Sealed, moist, moisture condition as received	Sealed, moist, moisture condition as received				
Type of test machine used	Matest 1500kN - Grade A	Matest 1500kN - Grade A	Matest 1500kN - Grade A	Matest 1500kN - Grade A				
Description of failure	Tensile dominated	Tensile dominated	Tensile dominated	Tensile dominated				
Specimen average length (mm)	148.1	154.1	145.2	105.1				
Specimen average diameter (mm)	51.8	51.6	51.8	51.8				
Moisture content at time of test (%)	1.1	1.2	1.4	1.3				
Test duration (mins)	38	30	11	12				
Rate of displacement (mm/min)	<0.1	<0.1	<0.1	<0.1				
Uniaxial Compressive Strength (MPa)	78	76	57	72				

Notes: Where the measured strength using this method exceeds 50 MPa this method may result in a measured strength that is less than the strength obtained in test method AS 4133.4.2.1. 6505 length to diameter ratio 2.0

Approved Signatory: Elddand. E. Maldonado Date: 29/07/2015

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au

Test Report

Customer: Alliance Geotechnical Pty Ltd **Job number:** 15-0058

Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 2 of 9

Uniaxial Compressive Strength of Rock Core

Sampling method: Samples tested as received Test method(s): AS 4133.1.1.1, 4.2.2

	Results							
Laboratory sample no.	6506	6507	6508	6509				
Customer sample no.	BH5	BH5	ВН8	ВН8				
Sample depth	5.32-5.65m	7.69-7.88m	7.54-7.84m	9.54-9.71m				
Date sampled	03/07/2015	03/07/2015	08/07/2015	08/07/2015				
Date tested	24/07/2015	24/07/2015	24/07/2015	24/07/2015				
Lithological description	SHALE	SHALE	SHALE	SHALE				
Storage history, curing and environment	Sealed, moist, moisture condition as received							
Type of test machine used	Matest 1500kN - Grade A							
Description of failure	Tensile dominated	Tensile dominated	Tensile dominated	Tensile dominated				
Specimen average length (mm)	152.3	154.7	137.0	132.3				
Specimen average diameter (mm)	51.7	51.7	51.8	51.6				
Moisture content at time of test (%)	2.9	2.1	3.1	2.6				
Test duration (mins)	5	8	5	6				
Rate of displacement (mm/min)	<0.1	<0.1	<0.1	<0.1				
Uniaxial Compressive Strength (MPa)	15	27	12	17				

Notes:

Approved Signatory: Eldland. E. Maldonado Date: 29/07/2015

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au

Test Report

Customer: Alliance Geotechnical Pty Ltd Job number: 15-0058

Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 3 of 9

Uniaxial Compressive Strength of Rock Core

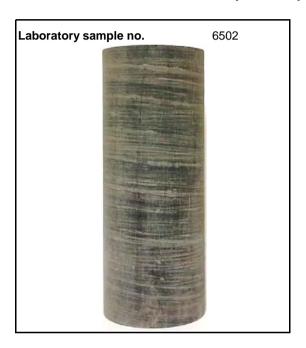
Sampling method: Samples tested as received Test method(s): AS 4133.1.1.1, 4.2.2

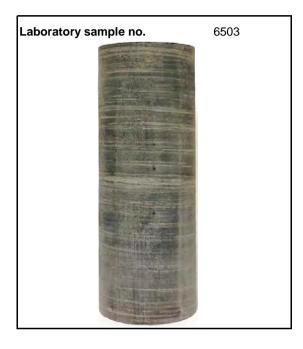
	Results						
Laboratory sample no.	6510	6511					
Customer sample no.	BH10	BH13					
Sample depth	10.34-10.52m	11.16-11.32m					
Date sampled	07/07/2015	30/06/2015					
Date tested	24/07/2015	24/07/2015					
Lithological description	SHALE	SHALE					
Storage history, curing and environment	Sealed, moist, moisture condition as received	Sealed, moist, moisture condition as received					
Type of test machine used	Matest 1500kN - Grade A	Matest 1500kN - Grade A					
Description of failure	Tensile dominated	Tensile dominated					
Specimen average length (mm)	141.1	112.7					
Specimen average diameter (mm)	51.8	51.7					
Moisture content at time of test (%)	3.1	2.6					
Test duration (mins)	5	10					
Rate of displacement (mm/min)	<0.1	<0.1					
Uniaxial Compressive Strength (MPa)	14	19					

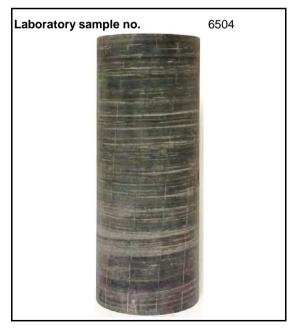
Notes: 6511 length to diameter ratio 2.2.

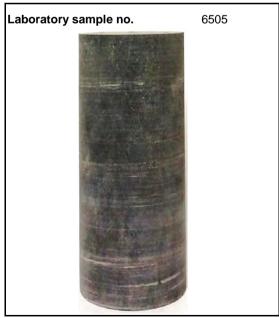
Approved Signatory: Eldland. E. Maldonado Date: 29/07/2015

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au


Test Report

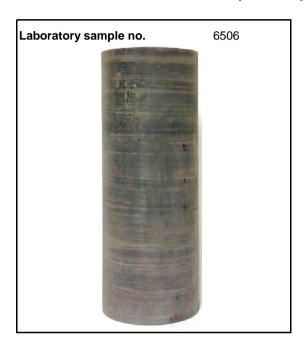

Customer: Alliance Geotechnical Pty Ltd **Job number:** 15-0058

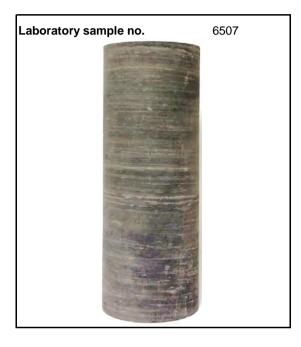

Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 4 of 9


Uniaxial Compressive Strength of Rock Core

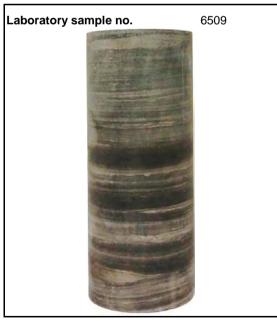
Specimen prior to testing

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au


Test Report

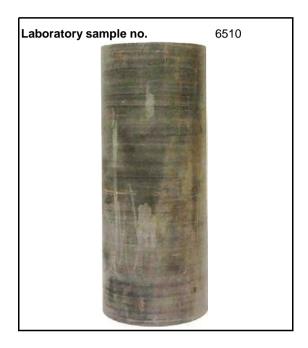

Customer: Alliance Geotechnical Pty Ltd **Job number:** 15-0058

Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 5 of 9


Uniaxial Compressive Strength of Rock Core

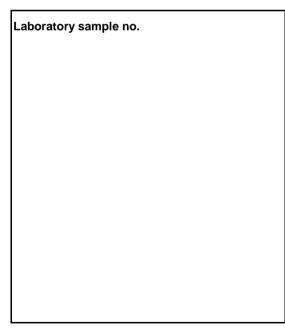
Specimen prior to testing

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au


Test Report

Customer: Alliance Geotechnical Pty Ltd **Job number:** 15-0058

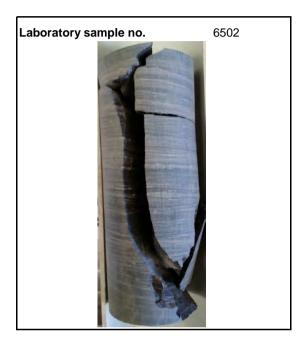
Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 6 of 9

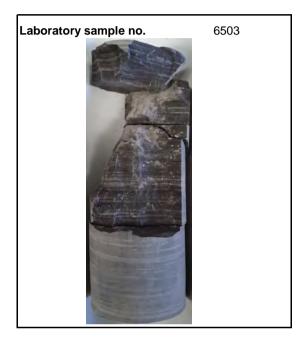

Uniaxial Compressive Strength of Rock Core

Specimen prior to testing

Laboratory sample no.

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au


Test Report

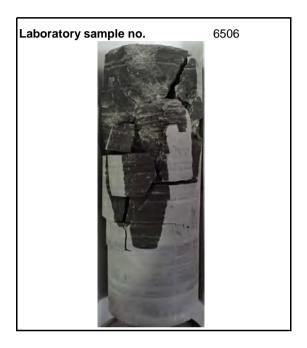

Customer: Alliance Geotechnical Pty Ltd **Job number:** 15-0058

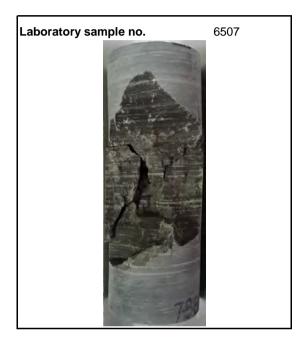
Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 7 of 9

Uniaxial Compressive Strength of Rock Core

Specimen after failure

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au


Test Report

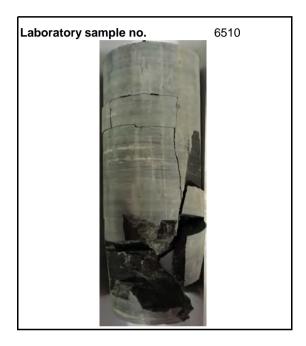

Customer: Alliance Geotechnical Pty Ltd **Job number:** 15-0058

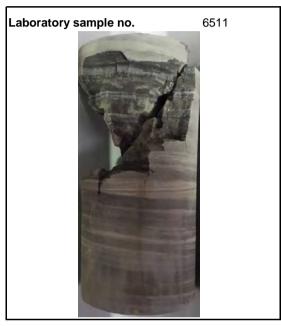

Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 8 of 9

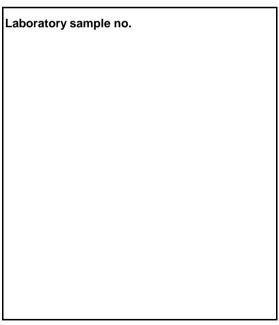
Uniaxial Compressive Strength of Rock Core

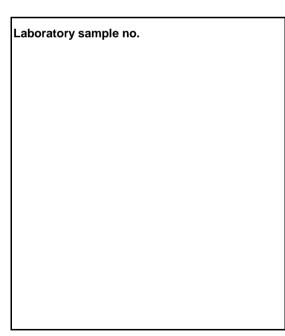
Specimen after failure

Sydney: 12/1 Boden Road Seven Hills NSW 2147 | PO Box 45 Pendle Hill NSW 2145 **Ph:** (02) 9674 7711 | **Fax:** (02) 9674 7755 | **Email:** info@resourcelab.com.au


Test Report


Customer: Alliance Geotechnical Pty Ltd **Job number:** 15-0058


Project:Parramatta - 1915Report number: 1Location:ParramattaPage: 9 of 9


Uniaxial Compressive Strength of Rock Core

Specimen after failure

Alliance Geotechnical

Engineering | Environmental | Testing

Addendum to Geotechnical Investigation Report Prepared for Department of Education & Communities

Arthur Phillip High School and Parramatta Public School Macquarie Street, Parramatta

Project Number: 1915

Report Number: 1915-GR-1-2 Report date: 2nd September 2015 Attention: Mr Roland Marshall

We give you the right information to make the right decisions

Alliance Geotechnical Pty Ltd - Phone: 02 9675 1777 - Web: www.allgeo.com.au

Report Number: 1915-GR-1-2

TABLE OF CONTENTS

ADDENDUM INTRODUCTION AND SCOPE	3
SINGLE BASEMENT	3
COMMENTS	3
Excavation Conditions	_
Excavation Stability and Batter Slopes	
Retaining Structures	
Rock Parameters	

ATTACHMENTS Drawing 1915-GR-2A

Geological Sections A-A, B-B and C-C

ADDENDUM INTRODUCTION AND SCOPE

This addendum is to be read in conjunction with the Alliance Geotechnical (AG) Geotechnical Investigation Report Number: 1915-GR-1-2 dated 31st July 2015. The purpose of this addendum is to provide additional comments and information for a possible single basement to be located within the site, with the actual basement location yet to be determined.

SINGLE BASEMENT

For a single basement, it is anticipated that the excavation depths would be approximately 3m, however, the actual basement location, extent and depths have yet to be determined.

There are several possible locations where a single basement could be located:

- In the north western corner of the site, adjacent to Barracks Lane on the northern side of Macquarie Street, under the proposed future playing field;
- In the south western corner of the site, under future open areas and playing fields to the south of the heritage buildings which are to remain;
- In the south eastern corner of the site, under the proposed new low rise Parramatta Public School; or
- In the north eastern corner of the site, under the proposed high rise Arthur Phillip High School;
- In between or a combination of the above.

With respect to excavation, in our earlier report it was noted that: "in the north eastern corner near Charles Street, firm and loose alluvium was encountered with the water table at 1.7m depth in BH3. If deep excavations were to be considered in this area, temporary dewatering or installation of cut off walls to rock and tanking of the structures would likely be required. Hence, deep excavations are not recommended in the eastern areas of the site that are or may be underlain by alluvium."

When the location, extent and levels of the basement have been determined, the drilling of additional boreholes and installation of standpipe piezometers may be advisable to provide additional subsurface information for design and to confirm groundwater levels.

COMMENTS

North western corner of the site

In the north western corner of the site, based on the borehole information, a 3m deep basement excavation would encounter residual soils with bedrock near the base of the excavation to 0.6m below the base of the excavation. Groundwater was not encountered in the boreholes (BH1 and BH4) whilst augering to depths of 4m and 4.6m.

South western corner of the site

In the south western corner of the site, based on the borehole information, a 3m deep basement excavation would encounter residual soils with bedrock near the base of the excavation to 1.5m below the base of the excavation. Groundwater was not encountered in the boreholes (BH12 and BH13) whilst augering to depths of 6m and 3.1m.

South eastern corner of the site

In the south eastern corner of the site, based on the borehole information, a 3m deep basement excavation would encounter residual soils and up to 1.5m of bedrock in some sections, with bedrock up to 0.8m below the base of the excavation in other sections. Groundwater was not encountered in the boreholes (BH7 to BH11) whilst augering to depths of between 2.9m and 4.8m.

North eastern corner of the site

In the north eastern corner of the site, based on the borehole information, a 3m deep basement excavation would encounter firm and loose alluvium with bedrock about 2m below the base of the excavation.

Groundwater seepage was encountered in the boreholes (BH2, BH3 and BH6) at depths ranging from 1.7m to 3.6m.

Based on these conditions, it is considered that excavation conditions may generally be similar across the site with the exception of the north eastern corner of the site.

Geological sections have been produced and these are attached together with Drawing 1915-2-1A which shows the section locations.

Excavation Conditions

Excavations to approximately 3m depth would be in clayey fill, stiff to very stiff silty clays and possibly extremely low strength siltstone / shale, or medium to high strength siltstone (for excavations in the south eastern corner). Fill and water charged alluvium would be expected in the north eastern corner of the site.

The fill, residual soils and extremely low strength rock are expected to be readily excavatable using conventional earthmoving equipment such as dozers, excavators or other mechanical plant. The medium to high strength siltstone would likely require heavy ripping and/or the use of hydraulic hammers.

The alluvium north eastern corner of the site would be readily excavated using conventional earthmoving equipment, however, trafficability under the excavation plant may be marginal, particularly close to or below the levels of groundwater and groundwater seepage.

The soil laboratory test results indicate that the site soils are prone to full or partial dispersion. It is therefore recommended that the soils be protected from erosion and dispersion during construction by covering them with a 100mm thick granular working platform. In the long term, otherwise unprotected soils should be covered with topsoil and vegetated.

Excavation Stability and Batter Slopes

As was noted in our earlier report for shallow excavations, temporary batter slopes could be appropriate for excavations not encountering groundwater seepage and provided the excavations are set back sufficiently from the site boundaries. The recommended maximum slopes for excavated batters are presented in Table 7 of our earlier report, together with limitations and assumptions on the adoption of such batter slopes.

Batter slopes in soft and loose alluvium close to or below the level of groundwater and groundwater seepage would be potentially unstable, even at reasonably shallow batter slopes. For an excavation in such alluvium in the north eastern corner of the site, specific assessment and stability analysis would be recommended, taking into account the proximity of adjacent structures to the excavation and their foundation types and levels. It would be anticipated that some dewatering spears and/or sumps may be required to enable the excavation of batter slopes in such materials. Alternatively, a cut off wall could be constructed by installing sheet piling or a secant pile wall taken into the top of the weathered rock.

Retaining Structures

It is anticipated that cantilever retaining walls could be considered as for the shallow excavations described in the earlier report.

Recommended parameters for the design of earth retaining structures were provided in Table 8 of the main report. Additional parameters are provided in Table AD1 for the alluvial soils.

Consideration may be given to the incorporation of cantilever piles socketed into the underlying bedrock. For a basement excavation in the north eastern corner of the site in alluvium, secant piles may be adopted to cut off groundwater inflow and provide lateral restraint. It is recommended also that consideration be given to at least partial tanking of any basements in the north eastern corner of the site.

Table AD1 - Preliminary Geotechnical Design Parameters for Retaining Walls

Parameters	Soft and Loose Alluvium
Ka	0.4
Ко	0.6
Poisson Ratio (v)	0.4
Effective Cohesion c' (kPa)	0
Effective Internal Friction Angle (degrees)	25
Bulk Unit Weight (kN/m³)	17

For the design of cantilever piles socketed into rock, computer modelling using either Wallap or Plaxis or similar is recommended to optimise the designs and accurately model the soil layers, resulting movements as well as shear forces and moments in the structures.

Rock Parameters

It is expected that the structural loads from the multi-storey buildings will be taken into the underlying rock stratum, and the use of bored and cast insitu reinforced concrete piles are considered appropriate. The piles should be socketed within the medium to high strength Class III sandstone underlying the site. Recommended parameters for the computer modelling and design of piled foundations are provided in Table AD2.

Table AD2 - Recommended Parameters for the Design of Piled Foundations

Rock Strength	Density kN/m³	c' kPa	Phi' Degrees	٧′	E' MPa
Extremely Low to Very Low	23	25	28	0.25	50
Low Strength	24	50	28	0.25	200
Medium Strength	25	100	31	0.25	700

Should you need any further information, please do not hesitate to contact us.

Regards,

Jamil Juff

Reviewed By,

David Duff BE(Hons) MEngSc MIEAust CPEng Principal Geotechnical Engineer Alliance Geotechnical Pty Ltd

Thomas Dale BE (Civil) Hon. Geotechnical Engineer Alliance Geotechnical Pty Ltd

Geotechnical Borehole and Geological Section Locations

Not To Scale

Source: SIX Maps (www.maps.six.nsw.gov.au)

Your On-Site Geotechnical Specialists
Phone Us Today - 02 9675 1777

Client: Department of Education and Communities
Project: Arthur Phillip High School and Parramatta Public School

Job Number: 1915-GR-2A

T: 02 9675 1777

F: 02 9675 1888

E: office@allgeo.com.au

W: www.allgeo.com.au

P: PO Box 1028

St Marys NSW, 1790

Client Name:	DEC	Project Number:	1915	Date: 2/9/15	Sheet (of 3
Project Name:	PARRAMATTA	SCHOOLS		Calculated By:	DED
FAMILES STAMM			2.		
N (keetle ns) HE EM (* * * *		
S(Fothe west)		X X X X X X X X X X X X X X X X X X X			
10 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
So of the sty	3-1	2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			SEC 1.00 N A-A
N (1240 ~21)	DH(7)	SILTSTONY	SHALE ?		
(2) MIN		8	2	•	\$\frac{1}{2}\$

T: 02 9675 1777

F: 02 9675 1888

E: office@allgeo.com.au

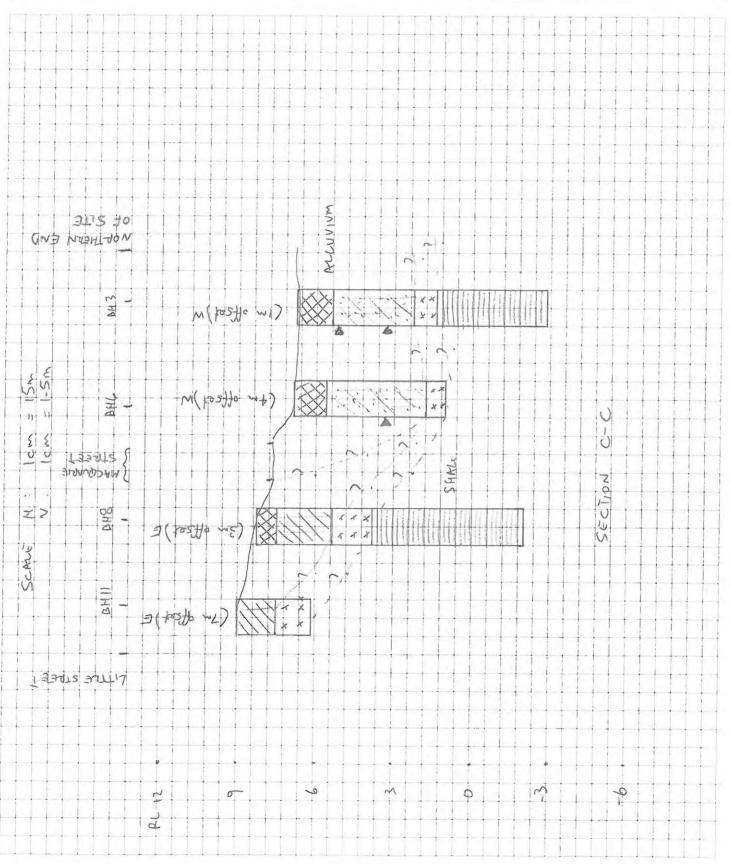
W: www.allgeo.com.au

P: PO Box 1028

St Marys NSW, 1790

T: 02 9675 1777

F: 02 9675 1888


E: office@allgeo.com.au

W: www.allgeo.com.au

P: PO Box 1028

St Marys NSW, 1790

Client Name:	DEC	Project Number:	1915	Date:	2/9/15	Sheet 3	of 3
Project Name:	: PARRAMATTA SCHOOLS			C	alculated By:	DFD	

