WEST NOWRA RECYCLING AND WASTE FACILITY

Proposed Stage 4 Landfill Extension Concept Design Report

Prepared for:

Shoalhaven City Council 36 Bridge Street Nowra NSW 2541

SLR

SLR Ref: 610.15781-R01 Version No: v1.2 January 2019

PREPARED BY

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia) T: +61 2 9427 8100 E: sydney@slrconsulting.com www.slrconsulting.com

BASIS OF REPORT

This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Shoalhaven City Council (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Date	Prepared 0		Authorised
610.15781-R01-v1.2	17 January 2019	John Postlethwaite	Danielle O'Toole	John Postlethwaite
610.15781	8 January 2019	J Postlethwaite	D O'Toole	J Postlethwaite
610.15781	19 December 2018	J Postlethwaite	D O'Toole	J Postlethwaite
610.15781	13 June 2017	Danielle O'Toole	J Postlethwaite	Danielle O'Toole
610.15781	20 January 2017	Danielle O'Toole	Alan Dyer	Danielle O'Toole
610.15781	24 August 2016	Danielle O'Toole	I-hui Waung	
610.15781	27 June 2016	Danielle O'Toole / I-hui Waung	Alan Dyer	

CONTENTS

1	INTRODUCTION
1.1	Scope and Project Requirements
1.2	Regulatory Overview7
2	SITE DESCRIPTION
2.1	Site Location
2.2	Site History11
2.3	Topography and Hydrology11
2.4	Geology12
2.5	Hydrogeology12
3	SITE INVESTIGATION
3.1	Field Work13
3.2	Results14
3	CONCEPT LANDFILL DESIGN
3.1	Landfill Design Elements
3.2	Design Parameters and Assumptions16
3.3	Conceptual Landfill Geometry and Cell Layout17
3.3	Excavation Stability
3.4	Landfill Final Landform and Capacity20
3.5	Landfill Filling Sequence21
3.6	Groundwater Management
3.7	Lining System Requirements
3.8	Surface Water Management System28
3.9	Leachate Management System
3.10	Leachate Collection Pipework
3.11	Landfill Gas
4	CLOSURE CAPPING REQUIREMENTS 40
5	PRELIMINARY DESIGN DRAWINGS
6	VOLUMES AND AREAS
7	TECHNICAL SPECIFICATIONS
7.1	Earthworks43

CONTENTS

DOCUMENT REFERENCES

TABLES

Table 1	Minimum Design Requirements	7
Table 2	West Nowra Stage 4 Piezometer Details	.14
Table 3	Average Water Level in Monitoring Wells from 7 June, 2016 to 15 August, 2016	.15
Table 4	Shoalhaven Sediment Dam Capacity Details	.30
Table 5	Existing Leachate Infrastructure	.31
Table 6	Leachate Generation Summary – Stages 1-3	.32
Table 7	Leachate Generation Summary – Stage 4	.34
Table 8	Water Balance Design Parameters	.35
Table 9	Water Balance Parameters	.35
Table 10	List of Design Drawings	.41
Table 11	Estimated Material Quantities	.42
Table 12	Minimum Bentonite Specification	.45

FIGURES

Figure 1	Site Location	9
Figure 2	Current Landfill Layout	10
Figure 3	Proposed Stage 4 Extension Footprint	10
Figure 4	Site Topography	11
Figure 5	Site Investigation Test Location Plan	13
Figure 6	West Nowra Groundwater Monitoring and Daily Rainfall	15
Figure 7	Landfill Extension Footprint	18
Figure 8	Proposed Landfill Cell sub-Stages Layout	19
Figure 9	Conceptual Base Layout	19
Figure 10	Final Landform	20
Figure 11	Section Locations for Filling Profiles	21
Figure 12	Conceptual Final Landform and Filling Profiles (Design Development Plan)	22
Figure 13	Filling Plan – Sub-Cell 1	23
Figure 14	Filling Plan – Sub-Cell 2	23
Figure 15	Filling Plan – Sub-Cell 3	24
Figure 16	Filling Plan – Sub-Cell 4	24
Figure 17	Filling Plan – Sub-Cell 5	25
Figure 18	Filling Plan – Sub-Cell 6	25
Figure 19	Overlapping Liner Tie-in Detail Between Stage 4 and Stages 2 and 3 for CCL	28
Figure 20	Conceptual Erosion and Sediment Control Plan	29
Figure 21	Cumulative Leachate Pond Results	
Figure 22	Proposed Stage 4 Irrigation Area	37
Figure 23	Typical Landfill Gas Management System	39

CONTENTS

Figure 24	Typical Section through Extraction Well Sealing System	. 39
Figure 25	Typical Capping and Rehabilitation Detail	.40

APPENDICES

- Appendix A Regulatory Guidelines
- Appendix B Coffey Geotechnical and Hydrogeological Investigation Report
- Appendix C Concept Design Drawings
- Appendix D SLR Leachate Management Memo 2018

1 Introduction

1.1 Scope and Project Requirements

Shoalhaven City Council (SCC) is proposing to develop an extension to the existing landfill operation (the Proposal) at the West Nowra Recycling and Waste Facility (the Facility) at Flatrock Road, Mundamia.

The key components required for the Proposal are as follows:

- Prepare a Landfill Master Plan for the operation of the landfill extension;
- Revise the existing Landfill Environmental Management Plan (LEMP) to include the proposed Landfill Extension development at the Facility.
- Undertake the Conceptual Design for the proposed Landfill Extension, sufficient in detail to be incorporated within the Environmental Impact Statement (EIS) application to gain approval for a concept design.

This document presents the basis of the conceptual landfill design, including input data and assumptions, regulatory requirements, conceptual drawings and technical specifications. The Master Plan and Landfill Environmental Management Plan (LEMP) are presented under separate cover.

The concept design represents Stage 4 at the Facility, and is aligned to the east of the current landfill operation, and takes into account required buffer zones from residential dwellings and properties, and from an environmental exclusion and conservation areas (i.e. Nowra Heath Myrtle).

It should be noted that the concept design for the landfill extension is required to meet the needs of the EIS submission and inform the technical studies of its siting and environmental impacts. The concept design is not intended to be at a level of detail to allow for final construction or to be issued for tendering to a construction contractor. The concept design will provide sufficient detail to allow accurate predictions of waste void capacity, and estimate construction cut and fill volumes as well as to derive lining, drainage and leachate requirements.

The scope of work to be covered as part of the conceptual design includes consideration of:

- Void space maximisation within the nominated extension footprint, for maximum landfill life expectancy;
- Side slope geometry and stability;
- Materials suitability;
- Base liner requirements;
- Leachate collection and extraction infrastructure;
- Leachate treatment requirements (dams, localised storage, irrigation and evaporation infrastructure etc);
- Surface water management;
- Groundwater management;
- Consideration of gas control requirements;
- Local dimensional and construction methods requirements; and
- Final capping and rehabilitation profile.

1.2 Regulatory Overview

The concept design is required to conform to the Environmental Guidelines: Solid Waste Landfills (Environmental Guidelines) (NSW EPA, 2016). Appendix A provides a full summary of the minimum requirements for the design components, and these are summarised in **Table 1**.

Table 1 Minimum Design Requirements

Design Component	Minimum Requirements
Landfill Siting	To identify and rank those sites that require the fewest engineering and management controls to meet the objectives of all State environmental protection policies.
Leachate Barrier System	The landfill must have a leachate barrier system to contain leachate and prevent the contamination of surface and groundwater over the life of the landfill. The leachate barrier system ensures that pollutants are not permitted to migrate beyond the boundaries of the premises.
Leachate storage and disposal	Sufficient leachate storage and disposal must be provided in order to not cause harm to the environment.
Surface water Management	Controls should be implemented to reduce erosion and minimise sediment load in surface water that is discharged from site.
Landfill gas management and monitoring	A landfill gas management program must be established to ensure that the appropriate engineering controls are in place to ensure that methane and other gases produced by the landfill are properly managed.
Final capping and revegetation	A completed landfill cell must be final capped and revegetated to ensure that waste is properly covered and remediated.

To establish best practice for the landfill design where not covered specifically by the NSW EPA Environmental Guidelines, reference has been made to the EPA Victoria Best Practice Environmental Management (**BPEM**) – Siting, design, operation and rehabilitation of landfills (Victorian Guidelines) (EPA Victoria, 2014).

2 Site Description

2.1 Site Location

The primary solid waste landfill that services the Shoalhaven Local Government Area is the West Nowra Recycling and Waste Facility (Facility), and it is located at 120 Flatrock Road, Mundamia, approximately 4.5km west of Nowra. The Facility is operated by Shoalhaven City Council (Council). The Facility currently receives waste from nine waste transfer stations and a domestic waste collections service, as well as public and commercial drop-off direct to the Facility. The location of the Facility can be found in **Figure 1**.

The Facility is bordered to the south by rural residential properties, with the closest being approximately 65m from the site boundary. Other surrounding land is predominantly undeveloped bushland, including the Bamarang Nature Reserve.

The Facility is located on parcels of land owned by Council and includes 14.52ha of undeveloped land, part of which is proposed for the Stage 4 extension of the existing landfill, as well as for environmental offsets.

Figure 1 Site Location

The proposed Stage 4 landfill extension area is on Lot 1 DP 1104402, which is to the east of the stages 2 (Lot 1 DP 847203) and 3 (Lot 1 DP 870268) as can be seen in **Figure 2**.

The footprint of the proposed Stage 4 landfill extension (the Proposal) is limited by a number of existing features, including existing Facility infrastructure, environmental conservation areas and a residential buffer zone. The development of the Proposal footprint is discussed in greater detail in Section 3.3.1, and is shown here in Figure 3.

Figure 3 Proposed Stage 4 Extension Footprint

2.2 Site History

The Facility commenced operation in 1979. The current landfill operations were approved in 1988, under Environment Protection Licence (EPL) number 5877. The landfill originally received domestic, industrial and commercial liquid and solid wastes. Additionally, it has also received hazardous wastes such as asbestos and oil; however, with the exception of asbestos waste, the disposal of these wastes has been prohibited since 1996.

Historically, the landfill practices have consisted of the excavation and filling of a series of trenches. Operations have evolved over time to comply with the NSW EPA Guidelines. The development of the landfill has been divided into stages, which are:

- Stage 1 "old" landfill area, stockpile and irrigation areas, and landfill gas extraction;
- Stage 2 recently completed landfill area, currently utilised for stockpiling and landfill gas extraction;
- Stage 3 the active landfill disposal area(s) and wet weather tipping area; and
- Stage 4 proposed landfill extension area.

2.3 Topography and Hydrology

The Stage 4 landfill extension site is located approximately 1.5 km south and 2.5 km east of the Shoalhaven River. It is located on the eastern side of a ridge line, and is predominantly flat. There are several drainage features that border the extension site, with the area being predominantly drained by Cabbage Tree Creek, which flows northward to the Shoalhaven River.

The site area that is being investigated for the landfill extension proposal is approximately an area of 14.52 ha. The lowest point of the site is approximately RL 41 m, and the highest point of the site approximately RL 50m. The topography of the site is relatively flat with some undulatory variation. The surface drainage is predominantly to the north-west; however, the south-east portion of the site drains to the south east due to a localised bowl like feature. Within this bowl feature is a small drainage channel, and due to the presence of *Triplarina nowraensis* (Nowra Heath-Myrtle) it is to be protected. The site topography can be found in **Figure 4**.

Figure 4 Site Topography

2.4 Geology

The site of the existing landfill and the proposed extension is underlain by Nowra Sandstone and Wandrawandian Siltstone of the Permian age Shoalhaven Group. The Shoalhaven Groups form the basal part of the Sydney Basin succession in the southern onshore extremity. The Shoalhaven group is predominantly comprised of marine shelf to coastal plain sediments. The Sydney Basin is part of the larger Sydney-Gunnedah-Bowen Basin (Tye, 1995)¹.

A study by Maunsell, 1991 states that the site of the existing and proposed landfill is typically underlain by (from top to bottom):

- 50 mm to 100mm of grey loam;
- 200 mm layer of yellow/white silt clay
- 300 mm layer of yellow clay; and
- >1600 mm red/yellow/white clay

A historical drilling report by Forbes Rigby, 1996 states that the depth to bedrock is highly variable and the condition of the bedrock ranges from moderately to heavily weathered.

SCC recently commissioned a geotechnical investigation of the proposed extension site (refer Section 3) and the findings are consistent with this existing information.

2.5 Hydrogeology

A previous site investigation by Forbes Rigby, 1996 for the existing landfill site area have shown that there are aquifers underlying the area. Two aquifers were noted in the site area – a semi-confined aquifer that follows the bedrock/overburden contact, and one within the sandstone unit. The depth to the groundwater table within both aquifers was typically found to be 2 m to 3 m below ground surface.

The Stage 1 area was noted to have a deep weathered sandstone profile that provides a highly permeable aquifer that bears water seasonally. The groundwater is believed to flow from northeast to southwest towards Sandy Creek.

Groundwater was noted during the recent site investigation as discussed in Section 3.

¹ http://passthrough.fw-notify.net/download/239097/http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2983&context=theses

3 Site Investigation

3.1 Field Work

A site investigation was conducted by Coffey from 23 May 2016 to 1 July 2016. The field investigation comprised:

- Drilling of six (6) geotechnical boreholes (BH1-BH6), to a maximum depth of 10m;
- Excavation of 10 test pits (TP1-TP10) to a maximum depth of 6m;
- The drilling and installation of seven (7) standpipe piezometers to varying depths; and
- Laboratory testing on selected samples.

A copy of the Coffey report can be found in **Appendix B.**

The boreholes, piezometers and test pits were logged and sampled by Coffey's geotechnical engineer on site. The locations of the test locations can be found in **Figure 5**.

Boreholes GW1/GW1A and GW2/GW2A are very proximal as GW1A and GW2A contain shallow piezometers and GW1 and GW2 contain deep piezometers. The piezometers have been nested to ensure that groundwater variability, if present, is captured along the soil / bedrock interface.

3.2 Results

3.2.1 Ground Conditions

The top of bedrock was found to be between 6 and 7 m below ground surface and was found to be highly to moderately weathered sandstone. The groundwater table ranged from 5.5 m to 12 m below natural ground level. The overburden material is typically sandy or silty clay of low to high plasticity, overlying clayey sand, which is underlain by bedrock, comprising variably weathered sandstone. Excavator refusal occurred on bedrock in six of the test pits, ranging in depths from 2.5m to 4.5m.

3.2.2 Laboratory Testing

Laboratory testing has been conducted on selected recovered soil materials and indicates:

- Low dispersivity;
- Plasticity ranges from low to high plasticity, however the majority are of medium plasticity (i.e. liquid limit ranging from 35 to 50);
- High fines content; and
- Permeability results ranging from 5x10⁻⁹ m/s to 2x10⁻¹⁰ m/s.

3.2.3 Groundwater Conditions

The details of the piezometer installations can be found in Table 2.

Piezometer ID	Total Depth (mbgs)	Screen Depth (mbgs)	Depth to Water 15/8/2016 (mbgs)		
GW1A	9.95	5.95 – 8.95	51.26	Dry	
GW1	18.96	14.95 – 17.95	51.09	9.263	
GW2A	9.93	5.93 – 8.93	47.71	Dry	
GW2	17.94	13.94 – 16.94	47.84	8.04	
GW3	18.91	14.91 – 17.91	47.06	6.503	
GW4	13.78	9.78 – 12.78	49.26	9.984	
GW5	18.88	14.88 – 17.88	49.77	9.455	

Table 2 West Nowra Stage 4 Piezometer Details

The piezometers have been consistently monitored from 7 June, 2016 to 15 August, 2016. The average water levels of each piezometer over this time period can be found in **Table 3**.

Piezometer ID	Average Water Table Elevation (RL m)
GW1A	Dry
GW1	41.5
GW2A	Dry
GW2	39.9
GW3	40.6
GW4	38.5
GW5	40.4

Table 3 Average Water Level in Monitoring Wells from 7 June, 2016 to 15 August, 2016

The water monitoring data has also been plotted with the local rainfall data to show any fluctuations due to surface water infiltration; this can be found in **Figure 6**.

Figure 6 West Nowra Groundwater Monitoring and Daily Rainfall

3 Concept Landfill Design

3.1 Landfill Design Elements

Concept design considerations include:

- Develop the geometry of the extension footprint to maximise void space and landfill life expectancy while considering safe construction and operational areas;
- Side slope geometry and stability;
- Materials suitability;
- Base liner requirements;
- Leachate collection and extraction infrastructure;
- Leachate treatment requirements (dams, localised storage, irrigation and evaporation infrastructure etc);
- Surface water control;
- Groundwater management;
- Consideration of landfill gas control requirements;
- Local dimensional and construction methods requirements; and
- Final capping and rehabilitation profile.

The following sections discuss the individual design components.

3.2 Design Parameters and Assumptions

The concept design has been based on the following supplied design parameters and assumptions:

- To maximise capacity, the landfill cells are to be formed by excavating below the natural ground level. The level of excavation will be subject to the level of the groundwater table (see below).
- The groundwater table varies across the site, with an apparent divide approximately one third of the way between the north and south of the available extension footprint area. Based on the piezometer data available to date it is apparent that the average water table level can be defined as follows:
 - South average of RL 41.5mAHD (approximately 9.5m below natural ground level)
 - North average of RL 40.5mAHD (approximately 6.5 to 10.5m below natural ground level)
- In accordance with Victorian Guidelines (BEPM), the top of the basal liner must be greater than 2m above the average groundwater level, therefore the top of the basal liner will be at the following approximate levels:
 - South RL 43.5mAHD
 - North RL 42.5mAHD
- Excavation below the above RLs will be required to install the basal liner, the depth of which will be subject to the type of lining system.

- Excavation of batter side slopes is assumed to be as per current site conditions, i.e. 1 Vertical to 2 Horizontal (1V:2H).
- The maximum height of the final landform (at top of batter slope) is to be RL 59m. As agreed with SCC, the maximum height has been established based on a slope of 1% falling from the highest point on Stages 2 and 3 (RL 61m) to Stage 4.
- The access road between Stages 2 and 3 and the Stage 4 extension is to remain in place until final filling and closure.
- Leachate management is to be incorporated into existing site infrastructure and includes the development of a proposed new irrigation disposal area located over the existing closed Stage 2 landfill area. There is no sewer connection nearby therefore the leachate must be managed on site. It is understood this may change in the future, with the introduction of a nearby sewer system connection. Typical geology in the area comprises sandstone overlain by up to 7.0m of sandy clay. The bedrock profile has been described as being variable, ranging from moderately to heavily weathered.

3.3 Conceptual Landfill Geometry and Cell Layout

3.3.1 Site Layout

To maximise void space for the proposed Stage 4 landfill extension, the largest footprint available within the area constraints has been considered. The footprint boundary constraints are:

- Western boundary existing Stages 2 and 3. There is an access road running between the existing stages and Stage 4 and it is proposed to fill over this in the final stages of filling, hence it will form part of the Stage 4 footprint.
- Northern boundary Staff amenities building, including carpark.
- Eastern boundary a biodiversity corridor, plus an environmental conservation area set aside for *Triplarina Nowraensis* vegetation. A 10m fire break has also been included which allows for the construction of an access / service road for fire management purposes as recommended in the SCC provided Bushfire Protection Plan.
- Southern boundary there is a residential dwelling located at an approximate distance of 65m from the southern site boundary. In accordance with NSW EPA Environmental NSW Guidelines, the distance from the edge of the waste deposition area to the nearest environmentally sensitive location, which includes residences and dwellings is 250m. A buffer zone has therefore been set up from the nearest residential dwelling, making the closest point of the deposition area approximately 185m inside the site boundary.

The proposed landfill extension layout is therefore as shown in Figure 7.

Figure 7 Landfill Extension Footprint

It is proposed to develop the landfill in 6 cell sub-stages, sequentially filled and moving from south (Landfill Cell 1) to north (Landfill Cell 6) with progressive side slope excavation and liner construction as required. Landfill Cell 1 lies to the south of the groundwater divide and therefore will have a top of basal liner at a level of 43.5m AHD, while the remaining landfill cells lie to the north of the divide and will have the top of the basal liner at level of 42.5m AHD. The development will allow for a gradient drop between each cell to allow for leachate and surface water to be directed to (separate) low points progressively until Landfill Cell 6. Longitudinal and transverse basal slopes of 1% and 3% as required in the EPA Guidelines shall be incorporated.

The layout of the landfill cells sub-stages is shown in Figure 8 and in 3D in Figure 9.

3.3 Excavation Stability

The base excavations will be performed in a staged manner with Cells 1 and 2 being excavated during the initial development phase, and Cells 3 to 6 progressively excavated during the life of Stage 4. The side walls will have an angle of 1V:2H. The open excavation areas will be covered with an engineered lining system comprising a 200mm thick compacted subgrade, 1,000 mm of compacted clay liner (or an alternative geosynthetic clay liner), a 2.0 mm thick HDPE flexible geomembrane and a minimum 300 mm of leachate drainage material, which will provide added slope stability and protection from erosion.

The side wall batter slope angle has been determined utilising the ground conditions provided in Coffey's May 2016 geotechnical investigation. If ground conditions vary significantly from the conditions described in the Coffey investigation, re-evaluation of side slope angle may be required, (for example, if a layer of loose sand is found upon excavation).

The maximum depth of excavation will be approximately 7.1 m for the southern landfill cell stage, and 7.0 m for the northern landfill cell stages below the natural ground level. Groundwater infiltration is not anticipated, as the excavation levels will be above the assumed groundwater levels.

3.4 Landfill Final Landform and Capacity

The stage 4 landfill final landform can be found in **Figure 10**. The completed batter slopes shall have a gradient no greater than (1V:3H) and an approximate height of RL59m, which is equivalent to the maximum height on the Stage 3 development at the top of the batter slope.

The final landfill capacity will be approximately 1,385,600m³ upon completion, at an approximate maximum elevation of RL 59m at the top of the batter slope.

3.5 Landfill Filling Sequence

The waste landfilling sequence is to be developed from south to north. As each landfill cell stage is developed to nearing final waste filling design capacity, construction of an adjacent landfill cell stage shall commence. Access to each landfill cell stage is proposed via access ramps from road infrastructure between Stages 2 and 3, and Stage 4. These access ramps will be maintained until construction of each landfill cell stage is completed.

Earthen bunds shall be constructed between each landfill cell stage to provide stability while waste is placed in the active landfill cell, and to provide surface water management during construction. These bunds will incorporate a geomembrane liner overlap design with anchor trenches to ensure continuity in the geomembrane is present and that there is minimal slippage of the liner when loaded.

The location of the filling profile sections is shown in **Figure 11**. The profiles associated with the final landform are shown in **Figure 12**. The proposed landfilling plans can be found in **Figure 13** to **Figure 18**.

Figure 11 Section Locations for Filling Profiles

Figure 12 Conceptual Final Landform and Filling Profiles (Design Development Plan)

Figure 18 Filling Plan – Sub-Cell 6

3.6 Groundwater Management

The proposed subgrade level of the landfill extension area has taken into consideration the local groundwater table. The excavation will not exceed 100 mm within the average depth to groundwater in the area and the base of the landfill cell floor (i.e. top of leachate drainage layer) will be greater than 2m above the average groundwater table.

Seven (7) piezometers have been placed in and around the perimeter of the proposed landfill footprint. It is recommended that the piezometers be monitored regularly throughout the year to assess seasonal variation in the groundwater table as well as its response to wet weather events. This monitoring should be performed near the detailed design phase to ensure that the data is accurate.

For the purposes of this concept design it has been assumed that the groundwater table in the area of landfill cell 1 is at an average of RL41.5 m AHD, and an average of RL40.5 m AHD in the area of landfill cells 2 to 6. These average groundwater elevations are based on the current piezometer readings. A hydrogeological risk assessment (HRA) may be required if the groundwater is found to be inconsistent in depth and vary widely between readings; however, contingency has been provided for in the design elevations. If a HRA is required, it should address the following:

- Quality and behaviour of regional groundwater table;
- Likely inflow rate of groundwater to the landfill;
- Impact on the liner design;
- Impact on leachate development; and
- Treatment, disposal and / or reuse options for groundwater and surface water.

3.7 Lining System Requirements

Development of the lining system shall be in accordance with NSW regulatory requirements and be supported by best practice considerations.

3.7.1 Regulatory Requirements for Lining Systems

The Environmental Guidelines recommends the lining system comprise the following as a minimum:

- A compacted sub-base 200 mm thick to provide a firm, stable, smooth surface of high bearing strength on which to install the liner.
- A composite liner, comprising:
 - A compacted clay liner (CCL) at least 1,000 mm thick, with an in situ hydraulic conductivity of less than 1 x 10^{-9} m/s. The clay should contain no rock or soil clumps greater than 50 mm in any dimension;
 - A flexible membrane liner of high density polyethylene (HDPE) at least 2 mm thick;
 - The base liner should have gradients of greater than 1% longitudinally and 3% in transverse directions; and
 - An approved geosynthetic clay liner (GCL) may be used as an alternative to a CCL.

- Geosynthetic clay liners (GCLs) used as alternatives to a CCL shall:
 - Consist of a thin layer of bentonite 'sandwiched' between layers of geotextiles with a hydraulic conductivity less than 5 x 10⁻¹¹ m/s;
 - Be reinforced (i.e. the geotextile layers are bonded by needle punching or stitching to enhance the internal shear strength of the geosynthetic clay liner compared with that of unreinforced products);
 - Have adequate strength, flexibility and durability to maintain performance over the entire life of the landfill (including the operating and post-closure periods); and
 - Meet or exceed the requirements for manufacture and performance contained in the relevant specifications published by the Geosynthetic Research Institute (GRI) (Folsom, PA, USA) from time to time, or in equivalent recognised industry standard specifications. Refer to GRI-GCL3 (Geosynthetic Research Institute, 2010).
- A protection or cushion geotextile to protect the flexible membrane liner from damage by construction equipment and overlying materials.
- A leachate collection layer comprising a minimum 300 mm thick gravel drainage layer including collection pipework, which slopes to a sump or other extraction point from which leachate can be conveyed from the landfill cell. The central (spine) leachate pipe should be a minimum diameter of 200mm while the spur pipes should be at least 150 mm in internal diameter. The spur drains are to be placed on the floor at intervals of not more than 25 m (running the length of the landfill cell), and be laid at gradients of at least 1% longitudinally into the sump and 3% in transverse directions.
- A separation geotextile comprising a non-woven geotextile fabric filter to reduce the ingress of fines from the overlying waste.
- A groundwater relief layer may be required below the leachate barrier in the event where high groundwater levels could affect the stability and performance of the barrier. Where required, the materials used in this system shall be of the same quality as the materials used in the barrier's drainage layer.

3.7.2 Recommended Basal Liner

The recommended base liner should include:

- Compacted subgrade formation level.
- The average groundwater level shall be greater than 2 m below the base of the waste (i.e. top of leachate drainage level), thus a groundwater extraction layer is not anticipated to be required.
- Composite liner for the base and side batter slopes. The composite liner shall comprise (from subgrade up):
 - A 1,000 mm thick CCL or alternatively an approved GCL. The excavated clay material from site has been found in the past to be generally suitable for use in the CCL, and this has been confirmed by the field investigation results (refer Section 3.2.2), which indicates the in-situ clay to be of low to moderate plasticity with a permeability of less than 1x10⁻⁹ m/s for the majority of the samples.
 - HDPE Liner A 2 mm thick double-rough HDPE liner overlain by a protection geotextile shall be
 placed over the CCL or GCL, to provide a relatively impermeable barrier to leachate migration. At
 this concept design stage and based on information available, a double rough HDPE is
 recommended. Further investigation could be undertaken in the detailed design phase to establish
 if an alternative liner, such as smooth both sides, would be appropriate.

- Leachate collection layer and Separation Geotextile A minimum 300 mm thick layer of drainage aggregate with perforated HDPE drainage pipes shall be placed over the protection geotextile layer, which shall promote the flow of leachate under the landfill and into the leachate collection system. The central drain and spur drains pipes shall have a minimum internal diameter of 200 mm and 150 mm respectively, and the spur drains placed at a maximum of 25 m intervals. The leachate collection system should be graded at a minimum of 1% longitudinally into the sump and 3% in the transverse direction. A separation geotextile shall be placed over the leachate collection layer to minimise fines migration.
- Leachate pipework is discussed in Section 3.10.

3.7.3 Overlapping Liner between Stage 4 and Existing Stages 2 and 3

Stage 4 will overlap the eastern edges of existing Stages 2 and 3. The Stage 4 lining system shall tie into the existing liner to ensure integrity of the system. The tie in detail is shown in **Figure 19**.

The CCL for Stage 4 may be replaced with a GCL if required.

There are existing leachate pipework inspection openings located between the eastern edges and the access road of Stages 2 and 3. These will need to be cut back to subgrade and capped off prior to construction of the liner in this location.

3.8 Surface Water Management System

Appropriate surface water management controls shall be applied to ensure clean surface water runoff is intercepted and diverted from the landfill footprint prior to entering the waste mass and thus becoming leachate. Stormwater (rain) that falls directly onto the landfill footprint is considered to be leachate.

Surface water management controls to be put in place will include:

- Sediment dams to manage potential sediment-laden runoff from the open and closed landfill cells
- Sediment erosion control measures (e.g. sediment fences etc.); and
- Surface diversion bunds and swale drains around open excavations (unfilled) and active landfill cells.

A conceptual erosion and sediment control plan has been developed and is shown in Figure 20.

Figure 20 Conceptual Erosion and Sediment Control Plan

The required storage capacity of the dams has been determined in accordance with the requirements of the Blue Book (Managing Urban Stormwater: Soils and Construction, Volume 1 and Volume 2B Waste Landfills (Landcom, 2004 and DECC, 2008)) with the following design criteria and assumptions:

- Upslope catchment areas as shown in Figure 20 and Table 4;
- Capacity calculations based on a 5 day, 90th percentile rainfall depth of 67.0mm as listed in Table 6.3a of the Blue Book for Kangaroo Valley (closest listed location);
- The dams were designed as type F/D dams due to the nature of the soil in the area which contains some clay materials (in accordance with the Blue Book);
- Disturbed runoff coefficient of 0.79 in accordance with Table F2 of the Blue Book for a type D hydrological group with rainfall between 61 – 80mm;
- The sediment storage zone was based on a management period of 12 months (i.e. the sediment dam would be desilted once a year) and equates to 50% of the settling zone storage capacity of the dams.

The dams are to be regularly drawn down following rainfall (within 5 days). This is to ensure that the dams are operated in accordance with the requirements of the Blue Book to minimise the chances of an uncontrolled release. Suitably sized dam spillways shall be designed in accordance with the Blue Book requirements prior to construction.

The results of the dam capacity calculations are provided in **Table 4**.

Table 4 Shoalhaven Sediment Dam Capacity Details

Dam	Catchment Area (ha)	Settling Zone Volume (ML)	Sediment storage zone (ML)	Total Dam Storage Volume (ML)		
Dam 1	3.0ha	1.58	0.79	2.37		
Dam 2	6.5ha	3.46	1.73	5.19		

3.9 Leachate Management System

Leachate can be defined as a liquid that passes through a landfill waste mass and has extracted dissolved and suspended matter from the waste.

The primary sources of leachate generation are:

- Stormwater infiltration into the waste mass during periods of prolonged rainfall;
- Surface water run-off that has come into contact with the landfill waste; and
- Leachate generated by the moisture content, and degradation of the received and emplaced waste.

The existing leachate collection system for Stages 2 and 3 involves diverting leachate to a leachate collection dam. The stored leachate is then disposed - on-site via spray irrigation over the designated irrigation area over the closed Stage 1 landfill area. It is proposed to collect and convey Stage 4 leachate to the existing leachate management infrastructure.

3.9.1 Leachate Collection and Disposal

The proposed leachate collection system will allow leachate to be collected and temporarily stored within the basal granular leachate drainage blanket. The design components shall include:

- The base of the leachate collection layer graded to direct leachate to specific leachate collection sumps;
- Perforated leachate collection pipe network within the collection layer, to promote the flow of leachate to the sumps;
- From the sumps, a series of inclined leachate extraction pipes shall be designed to draw leachate from the base of the landfill cell to the surface by a series of submersible pumps; and
- The pumped leachate shall be directed to the existing leachate dam for storage prior to being pumped to a newly established irrigation area for controlled disposal via spray irrigation.

The new irrigation area is proposed to be located within the area of the existing lined Stage 2 cell. Indicative area shown on Figure 22 Proposed Stage 4 Irrigation Area

3.3.2 Existing Site Leachate Management Infrastructure

Existing leachate management infrastructure at the site is detailed within Table 5.

Table 5 Existing Leachate Infrastructure

Parameter	Comment
Existing Irrigation System	On average since December 2015, Council has pumped 1257.84 m ³ of leachate to the irrigation area per year. (Shoalhaven City Council, 15/10/18)
Existing Leachate Dam Storage Capacity	Maximum storage capacity of Pond of 8.9 ML (Memorandum to David Hojem from Giordano Bianco 14/9/17)

3.3.3 Leachate Quantity

3.3.3.1 Existing Site Data

Council provided leachate generation data from Landfill Stages 1 - 3 (2013 - 2014) for potential use within the Site leachate generation water balance. Council also noted that no data was available for landfill Stages 1 and 2 (old unlicensed areas, and prior to any record keeping). Several months within the historical data set were noted to be missing with other years not available.

Due to the historical and incomplete nature of the site leachate generation data, estimates of leachate produced by Stages 1 - 3 were determined by the use of the Hydrologic Evaluation of Landfill Performance (HELP) computer program.

3.3.3.2 HELP Input Parameters

HELP input parameters developed for the Site leachate generation assessment is included within **Appendix D**.

3.3.3.3 Stages 1 - 3 Leachate Generation Summary

For the purposes of leachate generation modelling the HELP model conservatively incorporates 90th percentile annual rainfall volumes from historically wetter years. The monthly infiltration percentage rates are in accordance with associated capping arrangements (detailed within **Table 10**) and the monthly rainfall.

Where areas have been temporarily capped, an infiltration rate of 25 - 30% is typically attained and infiltration rates in restored (final capping areas) are typically in the range of 2 - 10% (Environmental Protection Agency, 2000).

Estimated leachate generation produced by Stages 1 - 3 is detailed in **Table 6**.

3.3.3.4 Stage 4 Leachate Generation Summary

The monthly infiltration percentage rates vary in accordance with associated capping arrangements and the associated monthly rainfall. Estimated leachate generation produced by Stage 4 is detailed in **Table 7**.

Table 6Leachate Generation Summary – Stages 1-3

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total (m ³)
	Monthly Precipitation (mm)	63.5	81.5	93.4	96.0	87.3	70.5	98.5	121.5	138.3	108.0	106.8	115.6	1170.9
	Monthly Infiltration (mm)	3.2	3.2	3.1	3.2	3.12	3.2	3.2	2.9	3.3	3.2	3.3	3.2	
Stage 1 Closure Area	Monthly Infiltration Percentage (%)	4.8%	3.0%	3.2%	2.8%	2.6%	3.6%	2.3%	1.6%	1.7%	2.0%	2.4%	1.8%	
	Leachate Production (m ³)	92.3	91.2	88.3	92.3	88.9	90.9	91.5	82.6	92.9	89.8	93.5	90.9	1,085.3
	Monthly Infiltration (mm)	1.3	0.9	1.7	1.4	0.9	0.5	0.7	0.7	1.1	1.2	1.8	1.4	
Stage 2 Closure Area	Monthly Infiltration Percentage (%)	2.0%	1.1%	2.0%	1.4%	1.0%	0.7%	0.7%	0.6%	0.8%	1.1%	1.7%	1.2%	
	Leachate Production (m ³)	106.6	76.26	136.12	111.52	73.8	37.72	59.86	59.86	88.56	95.94	145.9	111.5	1103.7
	Monthly Infiltration (mm)	1.0	1.0	1.5	1.4	1.0	0.6	0.8	0.7	0.8	1.0	1.4	1.2	
Stage 3 Closure Area	Monthly Infiltration Percentage (%)	1.6%	1.3%	1.8%	1.5%	1.2%	0.9%	0.8%	0.6%	0.6%	0.9%	1.3%	1.1%	
	Leachate Production (m ³)	105.0	106.0	155.0	145.8	104.0	67.3	81.6	70.3	87.7	103.0	139.7	125.4	1291.3
	Monthly Infiltration (mm)	26.5	23.1	20.2	23.1	25.7	27.9	27.2	25.6	28.5	26	26.6	27.1	

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total (m ³)
	Monthly Precipitation (mm)	63.5	81.5	93.4	96.0	87.3	70.5	98.5	121.5	138.3	108.0	106.8	115.6	1170.9
Stage 3 Operational Area	Monthly Infiltration Percentage (%)	41.7%	28.3%	24.2%	24.0%	29.4%	39.5%	27.6%	21.0%	20.6%	24.0%	24.9%	23.4%	
	Leachate Production (m ³)	212	184.8	161.6	184.8	205.6	223.2	217.6	204.8	228	208	212.8	216.8	2460
Estimated Monthly Stage 1 -3 leachate production (m ³)		516.0	458.3	541.1	534.5	472.4	419.2	450.5	417.7	497.2	496.7	592.0	544.7	5940.3

Table 7 Leachate Generation Summary – Stage 4

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total (m³)
	Precipitation (mm)	63.5	81.5	83.4	96.0	87.3	70.5	98.5	121.5	138.3	108.0	106.8	115.6	1170.9
Closure 8.9 Ha	Monthly Infiltration (mm)	4.7	4.7	4.5	4.7	4.5	4.6	4.6	4.2	4.6	4.5	4.7	4.6	
	Monthly Infiltration Percentage (%)	7.5%	5.8%	5.5%	4.9%	5.2%	6.6%	4.7%	3.5%	3.4%	4.2%	4.4%	4.0%	
	Leachate Production (m ³)	422.7	420.9	406.7	420.0	404.0	413.8	412.0	376.4	416.5	404.9	422.7	409.4	4930.6
Operational 0.8 Ha	Monthly Infiltration (mm)	26.5	23.1	20.2	23.1	25.7	27.9	27.2	25.6	28.5	26	26.6	27.1	
	Monthly Infiltration Percentage (%)	41.7%	28.3%	24.2%	24.0%	29.4%	39.5%	27.6%	21.0%	20.6%	24.0%	24.9%	23.4%	
	Leachate Production (m ³)	212	184.8	161.6	184.8	205.6	223.2	217.6	204.8	228	208	212.8	216.8	2460
Stage 4 monthly leachate production (m ³)		634.7	605.7	568.3	604.8	609.6	637.0	629.6	581.2	644.5	612.9	635.5	626.2	7390.6

3.9.2 Water Balance for Leachate Assessment

A water balance is developed for the analysis of alternate leachate management scenarios at the Site. In accordance with NSW EPA Environmental Guidelines: Solid Waste Landfills, the water balance was conducted over a period of two consecutive wet years (90th percentile) to ensure that the proposed system has sufficient capacity to deal with all leachate generated during both the operational and closure periods of the landfill. The model accounts for all predicted leachate inputs and outputs from the leachate management system.

3.9.2.1 Modelling Parameters

The design parameters appropriate for this water balance assessment as defined within Section 2.3 of the NSW EPA Environmental Guidelines: Solid Waste Landfills, are summarised in **Table 8**.

Table 8	Water Balance	Design	Parameters
---------	---------------	--------	------------

Item	Requirement
General	Collected leachate must be stored in appropriately sized dams or tanks and disposed of so as not to cause environmental harm. There must be sufficient leachate disposal capacity to prevent the build-up of leachate and an increase in the risks of water pollution and offensive odours.
Water balance requirement	The model should account for all predicted leachate inputs and outputs from the leachate management system. The model should be run by using monthly time intervals, and it should estimate the changes in the cumulative volume with each month. The maximum cumulative volume may not be reached until many months into the landfill's operation.
Water balance duration	In deciding on any of the above management options, a water balance should be modelled over <u>at least two consecutive wet years</u> (90 th percentile) to ensure that the proposed system has sufficient capacity to deal with all leachate generated over the operational life of the landfill.
Pan Coefficient	The evaporation from the leachate dam should be estimated by using a pan coefficient of 70%.
Storage	The dam must have a freeboard that can accept rainfall directly on the dam from a 24hour rainfall event with a 1-in-25-year average recurrence interval without overflowing.

The water balance parameters and input parameters are provided in Table 9 and Table 10 respectively.

Table 9Water Balance Parameters

Scenario	Purpose	Assumptions							
1	Determine the sufficiency of the existing leachate management system to accommodate two consecutive wet years (90th percentile rainfall) and predicted leachate production from Stages $1 - 4$.	 Leachate management by the use of the existing leachate storage dam and a revised irrigation system constructed on Stage 2. Irrigation system is able to dispose of 730mm/m² over the irrigation area per year at a rate of (851 m³/month). The clay cap in Stage 2 where the irrigation system is proposed requires removal and is to be re-instated with 1400mm depth of silty sand and 200mm of topsoil to allow for infiltration. 							

Inputs												
	January	February	March	April	May	June	ylul	August	September	October	November	December
Average Monthly Rainfall (mm)	396	719	339	343	178	427	322	265	249	376	316	403
90th Percentile Rainfall	427	547	560	645	586	474	662	816	929	726	717	777
Total Leachate Production (m ³)	1151	1064	1109	1139	1082	1056	1080	999	1142	1110	1228	1171
Outputs												
Dam Evap (m³)	908	724	642	483	376	316	358	488	604	749	800	953
Irrigation Use (m ³ /month)	852	852	852	852	852	852	852	852	852	852	852	852

3.9.2.2 Preliminary Irrigation Area Sizing

The irrigation area was iteratively sized in accordance with the findings of the SEEP/W model. The irrigation modelling determined 730mm of leachate per m² can be applied over the irrigation area. The irrigation system to be constructed on Stage 2 is required to be at least 14,000 m² in size. The findings of the preliminary irrigation modelling and conceptual sizing of the disposal area are included in **Appendix D**. The water balance (average and 90th percentile rainfall events) is depicted within **Figure 21 Cumulative Leachate Pond Results**

As shown in **Figure 21** the water balance confirms sufficient capacity of the current leachate storage pond to accommodate two consecutive 90th percentile rainfall years and leachate generated by Stages 1-4 if a new irrigation area of 14,000m² is constructed.

The proposed location for the Stage 4Landfill Irrigation Area is presented in Figure 22 and Appendix C.

Figure 22 Proposed Stage 4 Irrigation Area

3.10 Leachate Collection Pipework

The landfill generated leachate shall be pumped from the sump of each landfill cell to the existing leachate dam. Leachate extraction pipework shall be progressively installed on the eastern and western perimeters of the Stage 4 landfill cells upon a compacted fill apron placed above the engineered lining system. The fill apron shall support the leachate extraction pipework over the series of rock benches. The leachate extraction risers per cell shall be placed within a recessed trench within the crown of the compacted fill apron.

The NSW EPA Environmental Guidelines: Solid Waste Landfills, 2016, section 1.5 require that leachate collector pipes should:

- Be flexible pipes (typically high density polyethylene) at least 150 millimetres in internal diameter (water balance and pipe flow calculations should confirm the pipe size needed to convey peak leachate flow rates)
- Be perforated such that the size, frequency and layout of the perforations are sufficient to facilitate leachate inflow and extraction without clogging, prevent entry of drainage gravel, and maintain adequate pipe strength

- Be strong enough to maintain performance under the maximum loads likely to be imposed in service, complying with the requirements of Australian standard as 2566.11998 buried flexible pipelines – structural design (standards Australia, various dates)
- Be joined by using techniques and materials recommended by the pipe manufacturer
- Loading calculations are required to determine the pipe strength to provide a pipe that is sufficient to resist buckling and deformation caused by the excessive loading from the anticipated depth of waste complying with the requirements of Australian standard as 2566.11998 buried flexible pipelines – structural design (standards Australia, various dates).

3.11 Landfill Gas

There is an existing landfill gas (LFG) extraction, cogeneration (generator) and treatment (flare) system operating at the Facility, which manages LFG generated from Stages 1 to 3. LFG generated from Stage 4 is expected to be managed by the existing system.

As part of the detailed design for Stage 4, the following shall be addressed:

- Establish the likely LFG generation from Stage 4 and assess if the existing LFG extraction system has the ability and capacity to manage the additional LFG expected to be generated from Stage 4;
- If an upgraded LFG management system is required then:
 - Design the LFG management system to ensure compliance with LFG hierarchy;
 - The LFG design shall include allowance for progressive installation; and
 - Provide details of ongoing monitoring required.

A typical landfill gas management system suitable for the landfill extension is shown in **Figure 23** and would include:

- Gas extraction wells laid out evenly across the extension area, at typical spacings of between 50m and 100m. The spacing will vary depending on the morphology of the landfill and efficiency of the gas extraction, cogeneration and treatment systems;
- Well head stations connected to the extraction wells to collect the gas; and
- A ring main system connecting the well heads back to the cogeneration and treatment systems.

Figure 23 Typical Landfill Gas Management System

It is essential to ensure that the extraction wells are fully sealed when installed to maintain the integrity of the capping system. A typical section through the sealing detail is shown in **Figure 24**.

4 **Closure Capping Requirements**

The design of the final cap should prevent groundwater pollution and degradation of air quality, and should be capable of protecting the environment in the event of several components of the system failing.

The design objectives for the final cap, or surface, of the landfill are to:

- Isolate the deposited waste from the immediate environment;
- Reduce leachate generation by limiting water infiltration;
- Reduce surface emissions of landfill gas and assist in odour management; and
- Provide a stable and sustainable landform fit for its intended future purpose.

Development of the capping system is in accordance with NSW EPA Guidelines and is supported by best practice considerations.

The recommended system shall comprise the following as a minimum (from bottom to top):

- A seal bearing surface 300mm thick to provide a firm, stable, smooth surface of high bearing strength on which to install the cap. Engineered fill shall be used.
- A sealing layer comprising:
- A 2mm thick low density polyethylene flexible membrane (i.e. LDPE) or approved alternative and a GCL;A 1,000 mm revegetation layer, comprising a top 200mm of which should be topsoil (and may include compost to support vegetation growth), underlain by an 800mm thick infiltration layer.

A typical section through the capping layer is shown in **Figure 25**.

Figure 25 Typical Capping and Rehabilitation Detail

Alternative landfill caps are also options that will be considered, such as evapotranspiration caps (also referred to as 'ET caps') or phytocaps shall be assessed, as well as the conventional geomembrane capping system. The final design of the capping system shall be based on the outcomes from the hydrogeological, stability and landfill gas risk assessments for the site, and addressed as part of the Landfill Closure Plan for the Facility.

5 Preliminary Design Drawings

The concept design drawings are contained in **Appendix C**, and are summarised in Table 10.

Table 10List of Design Drawings

Drawing No.	Description
610.15781 – Figure 00	General Arrangement and Drawing List
610.15781 – Figure 01	Site Master Plan
610.15781 – Figure 02	Existing Site Survey Layout
610.15781 – Figure 03	Landfill Location and Buffer Layout
610.15781 – Figure 04	Proposed Base of Landfill Layout
610.15781 – Figure 05	Proposed Final Landform Layout
610.15781 – Figure 06	Typical Sections Through Stage 4
610.15781 – Figure 07	Typical Lining System Sections
610.15781 – Figure 08	Proposed Leachate Drainage Layout
610.15781 – Figure 09	Leachate Drainage Typical Sections
610.15781 – Figure 10	Filling Plan Stage 4 Cell 1
610.15781 – Figure 11	Filling Plan Stage 4 Cell 2
610.15781 – Figure 12	Filling Plan Stage 4 Cell 3
610.15781 – Figure 13	Filling Plan Stage 4 Cell 4
610.15781 – Figure 14	Filling Plan Stage 4 Cell 5
610.15781 – Figure 15	Filling Plan Stage 4 Cell 6
610.15781 – Figure 16	Proposed Landfill Base 3D Layout
610.15781 – Figure 17	Proposed Final Landform 3D Layout
610.15781 – Figure 18	Monitoring Locations Layout
610.15781 – Figure 19	Typical Gas Management – Layout and Details
610.15781 – Figure 20	Disturbance Footprint For Landfill and Firebreak Layout
610.15781 – Figure 21	Proposed Filling Plan Layouts
610.15781 – Figure 22	Total Disturbance Area – Stage 4 Extension Layout
610.15781 – Figure 23	Conceptual Erosion Sediment Control Plan
610.15781 – Figure 24	Proposed Leachate Irrigation Area

6 Volumes and Areas

The estimated quantities of the primary material(s) that will be required for the development of Stage 4 are shown in **Table 11.** Material quantities to be confirmed at detail Design stage following project approval

Table 11 Estimated Material Quantities

Item	Volume (m ³) and Areas (m ²)				
Total excavated material to below clay liner	509,780 m ³				
300 mm leachate drainage blanket	17,807 m ³				
1,000 mm CCL	81,910 m ³				
GCL	81,910 m ²				
HDPE membrane	81,910 m ²				
Geotextiles	141,270 m ²				
Leachate collection pipework	1, 250 lin. m				
Waste fill void up to RL 59m	1,385,600 m ³				

7 Technical Specifications

The design and material specifications are as set out in the following sections.

7.1 Earthworks

7.1.1 Subgrade Preparation

All excavation work shall be undertaken using conventional earthmoving equipment and methods e.g. dozers, excavators, rock breakers, and other equipment typical to this type of project.

Clearing and grubbing (removal of tree roots) shall only be undertaken in the approved disturbance area for construction (Works area) or to allow access to the Works area. Appropriate disposal and / or re-use of all materials that have been cleared and grubbed must also be undertaken as part of these Works. All natural landscape features, including natural rock outcrops, natural vegetation, soil and watercourses are to remain undisturbed except where affected by the Works. Cleared vegetation material shall be retained on site (chipped/re-used). If required, vegetation to be disposed of offsite shall be transported to an appropriately licenced facility.

Stripping of organic material may be required from the Works area. Material that is stripped shall be stockpiled for future use.

The finished design subgrade surface shall be trimmed, where applicable, to provide a smooth surface, free from debris, roots, angular or sharp rocks. The subgrade surface shall ensure a sufficiently compacted surface to allow for the movement of vehicles without causing rutting or other deleterious effects. It shall have no sharp or abrupt changes in grade, and 'soft spots' shall be removed and replaced with complying materials. All excavated or fill surfaces shall be graded to provide good drainage and prevent ponding of water. Surface water shall be managed to avoid damage to adjoining properties or to the finished work on the site.

Any soft or heave areas shall be excavated down to at least 0.5m and backfilled with appropriate approved excavated materials compacted in loose 150mm thick layers to the equivalent density of 98% of Standard Maximum Dry Density at a moisture content within the range of $\pm 2\%$ of Standard Optimum Moisture Content. General Construction Fill shall be compacted to a dry density of not less than 98% of standard maximum dry density (AS 1289.5.4.1). The final filled general subgrade shall be compacted and trimmed to provide a smooth final design surface. Any soft or heaving areas shall be removed and replaced as per above.

7.1.2 Earth Separation Bunds

The earth separation bunds shall comprise of clean soil free from roots, woody materials, vegetation, and other unsuitable material. Contaminated materials may be used for internal bunds that will not form part of the final landform profile.

Soil material shall be placed in lifts of not greater than 300 mm and compacted to the equivalent density of 95% to 98% of Standard Maximum Dry Density at a moisture content within the range of ±2% of Standard Optimum Moisture Content.

Where fill material is placed against in situ deposits, the surface of the existing material shall be cleared of any soft material. Each lift of fill placed shall be benched into the in situ deposits to ensure that a good key is achieved.

The final filled general subgrade shall be compacted to provide a smooth final design surface. Any soft or heaving areas shall be removed and replaced as per above.

Fill materials shall be placed with due regard to moisture conditioning and compaction, as necessary, to produce a fill material possessing the fill quality and performance, as specified.

Fill batter slopes shall be neatly trimmed and left without excessive loose surface materials. Fill batter slopes steeper than 20% gradient shall be overfilled as necessary and trimmed back with smooth blade to ensure that all fill in the slope is adequately compacted.

Compaction shall be undertaken in accordance with AS 3798-2007 Guidelines on Earthworks for Commercial and Residential Developments.

7.1.3 Survey

Prior to commencing the construction works and throughout the construction progress detailed field surveys shall be undertaken to confirm the construction works is being carried out in accordance with the design specifications.

Upon completion of the construction final 'works as constructed' drawings shall be prepared utilising construction records and detailed field surveys.

7.2 Construction Material Specifications

7.2.1 Compacted Clay Liner (CCL)

The low permeability layer shall be at least 1,000 mm thick, with the following properties:

- Hydraulic conductivity no less than 1x10⁻⁹ m/sec;
- Be of high plasticity; and
- Have a suitable particle size distribution, with no particles greater than 50mm in any dimension.

The clay material shall be placed in uniform 150 mm thick layers, compacted to the equivalent density of 98% of Standard Maximum Dry Density at a moisture content within the range of 0% to +2% of Standard Optimum Moisture Content.

A low permeability alternative GCL layer may be used in lieu of a CCL.

7.2.2 Geosynthetic Clay Liner (GCL)

A GCL may be used as an alternative to a compacted clay liner. The GCL shall exhibit the following properties:

- Consist of a thin layer of bentonite 'sandwiched' between layers of geotextiles with a hydraulic conductivity less than 5 x 10⁻¹¹ m/s;
- Be reinforced (i.e. the geotextile layers are bonded by needle punching or stitching to enhance the internal shear strength of the geosynthetic clay liner compared with that of unreinforced products);
- Have adequate strength, flexibility and durability to maintain performance over the entire life of the landfill (including the operating and post-closure periods); and

- Meet or exceed the requirements for manufacture and performance contained in the relevant recognised industry standard specifications such as GRI-GCL3.
- Be made from bentonite that has been formulated for landfill applications; the bentonite should meet the specifications contained in Table 1 of the *Landfill Guidelines* (NSW EPA, 2016) as detailed in **Table 12** below.

Table 12 Minimum Bentonite Specification

Property	Range or value
Montmorillonite content	70 wt%
Carbonate content*	1 to 2 wt%
Bentonite form	Natural Na-bentonite, or
	80 wt % sodium as activated bentonite
Particle size	Powdered (e.g. 80% passing 75-micron sieve), or
	Granulated (e.g. 1% passing 75-micron sieve)
Cation exchange capacity	70 meq/100 g (or cmol/kg)
Free swell index	24 cm ³ /2 g

7.2.3 Drainage Layers

Drainage layers should be 300 mm thick and constructed from clean, durable, and sound gravel, rock or aggregate. It should have the following properties:

- Hydraulic conductivity greater than 1 x 10⁻³ m/sec;
- Material particle size should be less than 50mm and greater than 20 mm;
- Fines content less than 1%;
- Be relatively non-reactive, and uniform in grain size.

The aggregate may be sourced from numerous locations as long as each source meets these requirements.

7.2.4 Geomembranes

A geomembrane layer is required in the basal liner, and may be required the final capping. Alternative (EPA approved) options could be considered during the subsequent Detail Design phase of the project.

The basal liner geomembrane shall consist of 2.0mm thick, high density polyethylene (HDPE) unlaminated material, textured or untextured on both sides and shall comply with GRI GM13. The material should be produced from pure (non-recycled) resins and contain no fillers, plasticisers or additives of any kind with the exception of carbon black.

The geomembrane used in the final capping shall consist of a 2.0mm thick smooth, low density polyethylene (LDPE) unlaminated material that shall comply with GRI GM17.

7.2.5 Geotextiles

Geotextiles are required above and below the drainage layer in the basal liner. The separation geotextile is designed to prevent fines from clogging the drainage aggregate and the protection geotextile is designed to prevent damage to the geomembrane.

Geotextiles shall be comprised of polyester or polypropylene (with the exception of inhibitors and/or carbon black added for UV resistance), non-woven and needle-punched materials. Polypropylene materials shall be UV stabilised.

The geotextile shall be non-woven, needle punched, resin or heat bonded and manufactured from polyester, polyethylene or polypropylene. The geotextile shall comprise polymeric yarns or fibres, seamed or drawn strands orientated into a stable network which retains its structure during handling, placement and long term service. The geotextile filaments shall be rot-proof, chemically stable, with no water absorbency and the filaments being able to resist delamination.

8 Ongoing Design Considerations

The preliminary design philosophy utilises the available techniques to meet the NSW EPA Environmental Guidelines, 2016. Alternative techniques shall also be considered. However, information regarding the subsurface site conditions is limited thus several conservative preliminary design assumptions have been made based on literature and data provided from reports made on this and other parts of the site.

Regulatory Guidelines

The concept design is required to consider the requirements of the Environmental Guidelines: Solid Waste Landfills (NSW EPA, 2016) which are outlined in the table below.

Design Component	Minimum Requirements
Landfill Siting	
	• Within 250 m of an area of significant environmental or conservation value (including residential dwellings, schools, hospitals etc.)
	Within specially reserved drinking water catchments
To identify and rank those sites that require the fewest	• In or within 40 m of a permanent or intermittent water body or in an areas overlying an aquifer that contains drinking water quality groundwater that is vulnerable to pollution
engineering and management controls to meet the objects of all State environmental	• Within a karst region or with substrata that are prone to land slip or subsidence
protection policies.	• Within a floodway that may be subject to washout during a major flood event (a 1-in-100-year event)
	• In the case of large putrescible waste landfills (more than 50 000 tonnes of putrescible waste per year), buffers of at least 1000 m should be provided where practicable to residential zones, schools and hospitals to protect the amenity of these land uses from odour, noise, and other impacts
Leachate Barrier System	·
The landfill must have a leachate barrier system to contain leachate and precent the contamination of surface and ground water over the life of the landfill. The leachate barrier system ensures that pollutants are not permitted to migrate beyond the boundaries of the premises.	 The primary barrier system should include the following components, from bottom to top: A compacted sub-base 200mm thick; A composite liner, comprising a lower compacted clay liner and an upper flexible membrane liner. A geosynthetic clay liner may be used as an alternative to the compacted clay liner. Protection and separation geotextile layers above and below the 300 mm thick gravel drainage layer including leachate collection pipework.
Leachate storage and disposal	
Sufficient leachate storage and disposal must be performed in order to not cause harm to the environment	 The design, construction and operation of a new leachate storage dam must meet the following requirements: The dam must have sufficient leachate storage volume and freeboard that can accept rainfall directly on the dam from a 24h rainfall event with a 1-in-25 year average recurrence interval without overflowing. Leachate storage areas should not be constructed over previously landfilled areas, except in exceptional circumstances;

Design Component	Minimum Requirements					
	 If above-ground tanks are used, the tanks and associated connection points must be surrounded by a bund with a capacity of at least 110% of the tanks. 					
	• The disposal and treatment of the leachate must meet the following:					
	 Untreated leachate must not be disposed of to an off-site location and utilised to supply water needs for any process; 					
	 Stored leachate must be: discharged to a sewer, tankered off site to a licensed treatment facility, evaporated, irrigated, or reinjected back into the waste, or spray irrigated over an existing licenced utilisation area 					
	• Leachate management shall be supported by water balance calculations that provide robust estimates of the required leachate storage capacity. A water balance should be conducted when a new landfill or cell is proposed					
	• Leachate quality should be monitored to establish the composition and volume of leachate produced by each landfill cell, as well a record any irregular discharges or overflows of the leachate					
Surface Water Management						
	The following erosion control measures shall be taken into consideration:					
	Minimise the area of exposed soils					
	Stabilise exposed soil					
	Reduce erosive effects of surface water					
	Protect soil stockpiles					
Controls should be	Manage unsealed roads					
implemented to reduce erosion and minimise	Site exit controls					
sediment load in surface	Maintain erosion control structures					
water that is discharged from site.	• Sediment control measures shall be taken, to ensure that sediment- laden surface water runoff passes through an appropriate sediment control structure. Sediment control structures include vegetative buffers, silt fences, fibre rolls, turbidity or silt curtains, and sedimentation dams					
	• Surface water monitoring shall also be undertaken to detect excess sediment loads and detect if cross contamination of surface water with leachate is occurring.					
Landfill gas management and mon	itoring					
A landfill gas management	Landfill gas practices must be adopted to:					
program must be established to ensure that	 Minimise emissions of untreated landfill gas to air and through sub-surface strata and services 					

Design Component	Minimum Requirements					
the appropriate engineering controls are in place to ensure that methane and other gases produced by the landfill are properly managed.	 Minimise greenhouse gas emissions Minimise emissions of offensive odour Minimise the explosive risk to humans from gas build-up i confined spaces Ensure that, wherever feasible, landfill gas is sustainably utilise for energy recovery Minimise emissions of air pollutants from the combustion of landfill gas in flaring or electricity-generating equipment A landfill gas monitoring program must be established to detect surface emissions of gas, sub-surface migration of gas, or accumulation of gas in buildings and other structures at potentiall dangerous levels. Monitoring must also be able to demonstrate that the gas treatment technologies are effective in destroying methan and other potential air pollutants in landfill gas. Appropriat response action must be taken if the trigger or limit values specifie 					
Final capping and revegetat	in these guidelines are exceeded.					
A completed landfill cell must be capped and revegetated to ensure that waste is properly covered and remediated	 All landfill cells must be capped and revegetated within 6 months of the final delivery of waste to the cell. The final capping must: Reduce surface water infiltration into the waste and thus minimise the generation of leachate (Ideally rainfall infiltration should be less than 5% of the annual rainfall) Stabilise the surface of the completed part of the landfill Reduce suspended sediment and contaminated runoff Minimise the escape of untreated landfill gas Minimise odour emissions, dust, litter, the presence of scavengers and vermin, and the risk of fire Prepare the site for its future use; this includes protection of people, fauna and flora or near the site from exposure to pollutants still contained in, or escaping from, the landfill The final capping of general solid waste landfills should comprise as a minimum, from bottom to top: A seal-bearing surface consisting of properly designed and engineered layer. The material should meet recognised specifications for engineered materials. A composite sealing layer, comprising a lower compacted clay layer and an upper flexible membrane liner. The flexible membrane liner should be a high density polyethylene or linear low density polyethylene liner at least 2 mm thick. A geosynthetic clay liner may be used as an alternative to the compacted clay component. 					

Design Component	Minimum Requirements
	 A revegetation layer at least 1000 mm thick and comprising clean soils and vegetation with root systems that will not penetrate into lower layers. The upper 200 mm shall be a topsoil layer, which can include compost to help with vegetative establishment and growth. The revegetation layer shall promote water removal by evapotranspiration and runoff; protect the sealing layer from desiccation and / or damage; and sustain microbial populations that oxidise a proportion of any methane passing up through the cap
	• For final capping installed on steep slopes, the capping elements shall be demonstrated to have adequate slope stability. A slope stability analysis shall demonstrate that there are adequate factors of safety for all relevant potential failure mechanisms (e.g. veneer and global stability), both at the proposed final landform and at interim stages during construction.
	• A construction quality assurance program shall be implemented during construction of the final capping.
	• To assess the continued integrity and performance of the final capping, post-closure monitoring should be undertaken.

APPENDIX B

Coffey Geotechnical and Hydrogeological Investigation Report

Shoalhaven City Council

Geotechnical and Hydrogeological Investigation

West Nowra Recycling and Waste Facility

27 July 2016

Experience comes to life when it is powered by expertise This page has been left intentionally blank

Geotechnical and Hydrogeological Investigation

Prepared for Shoalhaven City Council PO Box 42 Nowra NSW 2541

Prepared by Coffey Geotechnics Pty Ltd 118 Auburn St Wollongong NSW 2500 Australia t: 02 4201 1400 f: 02 4201 1401 ABN: 93 056 929 483

27 July 2016

Document authorisation

Our ref: GEOTWOLL03957AA-AB

Attention: Giordano Bianco

Dear Giordano,

RE: Geotechnical and Hydrogeological Investigation - West Nowra Recycling and Waste Facility Stage 4 Landfill Extension Project

Coffey Geotechnics Pty Ltd (Coffey) is pleased to present the final geotechnical and hydrogeological report for the West Nowra Recycling and Waste Facility Stage 4 landfill extension project. The work was commissioned by Shoalhaven City Council (SCC) in response to our proposal GEOTWOLL03957AA-PAB, dated 6 May 2016.

Further advice on the uses and limitations of this report is presented in the attached document, *'Important information about your Coffey Report'.*

Should you require further information regarding this report please contact the undersigned or Jon Thompson on 02 4201 1400.

For and on behalf of Coffey

(plastro

Corinna De Castro Senior Hydrogeologist

Coffey Geotechnics Pty Ltd ABN: 93 056 929 483

Quality information

Revision history

Revision	Description	Description Date Autho		Reviewer	Signatory	
AA	Original	22/07/2016	Corinna De Castro	Jon Thompson	Corinna De Castro	
AB	Final	27/07/2016	Corinna De Castro	Jon Thompson	Corinna De Castro	

Distribution

Report Status	No. of copies	Format	Distributed to	Date
AA - Original	1	PDF	Giordano Bianco	22/07/2016
AB - Final	1	PDF	Giordano Bianco	27/07/2016

Table of contents

1.	Introd	luction1							
	1.1.	Objectives1							
2.	Scope	e of work1							
3.	Site setting2								
	3.1.	Topography and surface water2							
	3.2.	Geology and soil landscape2							
	3.3.	Hydrogeology							
4.	Field	work							
	4.1.	Borehole drilling							
	4.2.	Test pit excavations							
	4.3.	Piezometer installation4							
	4.4.	Laboratory testing4							
5.	Resu	Its of investigation5							
	5.1.	Subsurface conditions							
	5.2.	Groundwater							
	5.3.	Laboratory testing							
6.	Discu	ssion							
	6.1.	Geotechnical							
	6.2.	Hydrogeological							
7.	Conc	lusions14							
8.	Reco	mmendations14							
9.	Limitations15								

Important information about your Coffey Report

Tables

- Table 1 Lithological summary
- Table 2 Piezometer completion details
- Table 3 Groundwater levels
- Table 4 Emerson and moisture content results
- Table 5 Atterberg results
- Table 6 Particle size distribution results
- Table 7 Permeability and compaction testing results

Figures

Figure 1 - Pressure head profile on 30 June 2016

Drawings

- Drawing 1 Locality plan
- Drawing 2 Site plan
- Drawing 3 Hydraulic head surface (m AHD) 7 June 2016
- Drawing 4 Hydraulic head surface (m AHD) 30 June 2016

Appendices

- Appendix A Engineering Logs and Explanatory Notes
- Appendix B ENRS Hydrographs
- Appendix C Geotechnical Laboratory Test Reports

1. Introduction

Coffey Geotechnics Pty Ltd (Coffey) was commissioned by Shoalhaven City Council (SCC) to provide geotechnical and hydrogeological services in relation to the proposed Stage 4 landfill extension to the current West Nowra Recycling and Waste Facility (WNRWF), located at Lot 1 DP 1104402, Flatrock Road, Mundamia, NSW. The general site locality is shown in Drawing 1.

The proposed Stage 4 landfill extension (the Project) will create new landfill cells to accommodate waste management for a growing population. The proposed Stage 4 land area is approximately 14.5 ha and is classified under Zone SP2 Infrastructure – Waste/Resource Management Facilities.

WNRWF is licensed as a general solid waste (putrescible and non-putrescible) facility. Operations commenced in 1975. The disposal of hazardous and toxic waste, with the exception of asbestos, has been prohibited since 1986. Landfill waste staging is detailed below:

- Stage 1 closed and rehabilitated after commencing in 1975;
- Stage 2 operational with partial rehabilitation;
- Stage 3 operational and landfilling, HDPE lined; and
- Stage 4 preparation of an Environmental Impact Statement (EIS) for future landfill extension.

1.1. Objectives

The objectives of the geotechnical and hydrogeological investigation were to:

- Assess geotechnical conditions and provide descriptions of the sub-surface soil and rock conditions within the proposed Stage 4 landfill area;
- Provide recommendations in relation to excavation conditions;
- Assess permeability of the onsite materials to be used as clay liner fill at the base and final cap of the landfill;
- Install a groundwater monitoring network to assess soil and rock groundwater levels within and surrounding the proposed landfill cells;
- Provide recommendations in relation to groundwater monitoring frequency; and
- Provide a factual geotechnical and hydrogeological report discussing the findings of the investigation and our recommendations in relation to the above objectives.

2. Scope of work

To address the above objectives, the following scope of work was conducted:

- Field investigations from 23 May to 1 July 2016 including (locations as presented in Drawing 2):
 - Drilling of six geotechnical boreholes (BH1-BH6) within the footprint of the proposed landfill cells to a maximum depth of 10 m;
 - Excavation of 10 test pits (TP1-TP10) within the proposed landfill cells to a maximum depth of 6 m; and
 - Drilling and installation of seven piezometers (monitoring wells) at five locations within and surrounding the proposed landfill cells. Five piezometers (GW1-GW5) were drilled in sandstone to a maximum depth of 18 m and two piezometers (GW1A and GW2A) were drilled in residual soil and sandstone to a maximum depth of 9 m.

- Collection of soil samples from boreholes and test pits for subsequent laboratory testing comprising:
 - 15 Emerson dispersion tests (AS1289.3.8.1);
 - 11 particle size distribution (PSD) tests including hydrometer for fine particle analyses;
 - 21 moisture content tests (AS1289.2.1.1);
 - 15 Atterberg limits (liquid limit, plastic limit, plastic index) and linear shrinkage tests;
 - 8 standard compaction tests; and
 - 9 constant head permeability tests.
- Preparation of a geotechnical and hydrogeological factual report addressing the following objectives:
 - Assessment of geotechnical conditions including descriptions of the sub-surface soil and rock within the proposed Stage 4 landfill area;
 - Assessment of permeability of the onsite materials to be used as clay liner fill at the base of the proposed landfill;
 - Assessment of groundwater levels within and surrounding the proposed landfill cells;
 - Provision of recommendations in relation to excavation conditions; and
 - Provision of recommendations in relation to groundwater monitoring frequency.

3. Site setting

3.1. Topography and surface water

Topography in the Stage 4 Project area generally slopes east from a north-south ridgeline of around 50 m AHD towards Cabbage Tree Creek at an elevation of around 30 m AHD, approximately 500 m east of the Project area. Surface water in Cabbage Tree Creek flows north-east discharging into the Shoalhaven River approximately 1.5 km from the Project area. West of the ridgeline topography generally slopes west discharging towards Sandy Creek at an elevation of around 30 m AHD.

3.2. Geology and soil landscape

Reference to the 1:250,000 Wollongong Geological Series Sheet (SI 56-9), second edition prepared by the NSW Department of Mines (1966) indicates that the Project area is underlain by the Megalong Conglomerate of the Shoalhaven Group described as quartz sandstone with particular reference to Nowra Sandstone.

Reference to the 1:100,000 Kiama Soil Landscape Series Sheet (9028) prepared by the Department of Conservation and Land Management of NSW (1993) indicates that the Project area is located within the Nowra Depositional Landscape grouping with Disturbed Terrain. The Nowra Depositional Landscape is described as moderately to gently undulating rising to low hills on Nowra Sandstone with broad ridges and crests, benched sandstone outcrops and extensive to moderately cleared tall open-forest. Disturbed Terrain is generally described as varying topography ranging from level plains to undulating terrain which has been disturbed by human activity.

3.3. Hydrogeology

Groundwater in the Project area is within the Nowra Sandstone at depths ranging from around 5 m to 12 m below ground level. Current groundwater elevations range from approximately 42 m AHD along the ridgeline to 37 m AHD towards the eastern boundary of the proposed landfill cells.

East of the ridgeline groundwater currently flows east, discharging at Cabbage Tree Creek. West of the ridgeline groundwater flows west. Evaporation consumes groundwater within the Stage 3 landfill excavation, the remainder of groundwater flow discharges at Sandy Creek.

At lower elevations groundwater will occur within the alluvial sediments of Cabbage Tree Creek and Sandy Creek.

Recharge to the groundwater system is reliant on rainfall recharge. Rainfall infiltration is typically about 6% of rainfall. In virgin sandstone catchments, about half of this recharge (about 3% of rainfall) would report to drainage channels. The remainder (about 3%) would be consumed by evapotranspiration, hill slope discharge (mostly evapotranspiration), and down gradient groundwater flow.

4. Fieldwork

The field program conducted did not encroach into the designated environmental zone on the Stage 4 eastern boundary and the proposed wildlife corridor on the south western boundary.

Drilling and excavation works were organised by SCC and carried out by Highland Drilling and Normans Plant Hire.

Borehole, test pit and piezometer locations are provided in Drawing 2.

The following sections provide a general methodology of the adopted fieldwork investigation.

4.1. Borehole drilling

Six boreholes (BH1-BH6) were drilled from 23 to 30 May 2016 using a track mounted Hanjin DB8 drilling rig. All boreholes were advanced using solid flight augers and a Tungsten Carbide drill bit to refusal, then continued below refusal depth using diamond coring techniques to a maximum depth of 10 m. Standard penetration tests (SPTs) were undertaken at regular intervals down to auger refusal, to assess soil consistency or relative density.

SCC located the boreholes, a Coffey geotechnical engineer recorded test results, logged samples from the boreholes and noted soil moisture changes. No groundwater was observed within the augered soils. Water was used for rock coring therefore no observations were recorded for groundwater inflows within the sandstone.

SCC organised survey of each borehole location. Coordinates and ground levels are noted on the engineering logs of the boreholes in Appendix A.

4.2. Test pit excavations

Ten test pits (TP1-TP10) were excavated from 28 June to 1 July 2016 using a 35 tonne excavator PC350, to a maximum depth of 6 m.

SCC located the test pits, a Coffey geotechnical engineer logged samples from the test pits and noted soil moisture changes. No groundwater was observed within the soils and highly to moderately weathered sandstone encountered.

SCC organised survey of each test pit location. Coordinates and ground levels are noted on the engineering logs of the test pits in Appendix A.

4.3. Piezometer installation

Seven piezometers at five locations were drilled and installed from 26 May to 1 June 2016 using a track mounted Hanjin DB8 drilling rig and down hole air hammer drilling techniques. Five piezometers (GW1-GW5) were drilled in sandstone to a maximum depth of 18 m and two shallow nested piezometers (GW1A and GW2A) were drilled in residual soil and sandstone to a maximum depth of 9 m.

Piezometer construction included a 1 m sump at the base of each piezometer using solid 50 mm PVC, a 3 m length of 50 mm PVC screen followed by solid casing to above the ground surface. A 2 mm sand filter pack was added from the base of the borehole annulus to at least 1 m above the screen interval, followed by a bentonite plug of at least 1 m and a grout mix to the surface. Each piezometer was completed using a steel lockable monument concreted at the ground surface.

SCC located the piezometers, a Coffey geotechnical engineer logged cuttings during drilling and noted soil and rock moisture changes. Groundwater was observed within highly to moderately weathered sandstone.

SCC organised survey of each piezometer. Coordinates and ground levels are noted on the engineering logs of the piezometers attached in Appendix A.

4.4. Laboratory testing

To aid in the assessment of material re-use, the following laboratory analysis was conducted on collected soil samples:

- 15 Emerson dispersion tests (AS1289.3.8.1);
- 11 particle size distribution (PSD) tests including hydrometer for fine particle analyses;
- 21 moisture content tests (AS1289.2.1.1);
- 15 Atterberg limits (liquid limit, plastic limit, plastic index) and linear shrinkage tests;
- 8 standard compaction tests; and
- 9 constant head permeability tests.

Internal geotechnical testing was provided by our NATA registered laboratories in Nowra, Sydney and Melbourne.

5. Results of investigation

5.1. Subsurface conditions

Detailed subsurface conditions are provided in the engineering logs attached in Appendix A. The depth of topsoil is relatively shallow (up to 0.4 m), however we note that there are many trees over the Project area and the root zone will extend into the residual soils. The Project area is underlain by residual sandy or silty clays ranging from low to high plasticity, with clayey sand layers generally towards the base of the extremely weathered material in some areas. Highly to moderately weathered sandstone was encountered at all locations except for test pit TP8. Excavator refusal occurred in six of the test pits at depths ranging from 2.5 m to 4.5 m.

A summary of the lithology from the field investigation is presented in **Table 1**.

Location	Ground surface level (m AHD)	Base of topsoil (depth m)	Base of residual (depth m)	Base of extremely weathered material / top of rock (depth m)	Top of rock level (m AHD)	Total depth (m)	Comment
TP1	49.834	0.2	0.8	2.0	47.8	3.3	Excavator refusal on rock
TP2	48.978	0.3	0.7	5.0	44.0	6.0	Excavator extent - target depth on rock
TP3	48.973	0.2	0.8	5.0	44.0	5.5	Target depth on rock
TP4	47.552	0.25	0.8	5.0	42.6	5.6	Target depth on rock
TP5	47.008	0.25	0.7	3.0	44.0	4.5	Excavator refusal on rock
TP6	48.531	0.3	0.6	3.5	45.0	4.4	Excavator refusal on rock
TP7	48.691	0.3	0.7	3.5	45.2	4.0	Excavator refusal on rock
TP8	48.609	0.25	0.55	-	-	5.75	Excavator extent - no rock
TP9	48.259	0.25	0.8	3.0	45.3	3.8	Excavator refusal on rock
TP10	47.444	0.25	0.55	1.75	45.7	2.5	Excavator refusal on rock
BH1	48.25	0.35	1.0	7.6	40.6	10.0	Target depth on rock
BH2	49.31	0.3	2.0	6.7	42.6	9.5	Target depth on rock
BH3	48.913	0.3	1.5	7.0	41.9	9.3	Target depth on rock
BH4	49.11	0.3	2.0	7.0	42.1	10.0	Target depth on rock
BH5	46.35	0.3	2.0	8.3	38.1	9.39	Target depth on rock
BH6	48.92	0.35	1.75	6.275	42.6	9.57	Target depth on rock
GW1A	51.264	0.4	2.0	6.0	45.3	9.0	Target depth
GW1	51.109	0.3	2.0	6.5	44.6	18.0	Target depth
GW2A	47.709	0.3	3.0	7.0	40.7	9.0	Target depth
GW2	47.841	0.3	2.0	6.0	41.8	17.15	Target depth
GW3	47.057	0.4	2.0	7.0	40.1	18.0	Target depth
GW4	49.259	0.35	3.0	7.2	42.1	13.0	Target depth
GW5	49.771	0.3	3.0	7.0	42.8	18.0	Target depth

Table 1 - Lithological summary

5.2. Groundwater

A groundwater monitoring network has been installed to assess soil and rock groundwater levels within and surrounding the proposed landfill cells. Assessment of groundwater quality will be conducted by others. Piezometer completion details are provided in **Table 2**.

Piezometer ID	Easting (m MGA)	Northing (m MGA)	Ground level (m AHD)	Top of casing PVC (m AHD)	PVC stickup (m)	Drilled depth (m bgl)	Screen interval (m bgl)	Sand filter pack (m bgl)	Bentonit e (m bgl)	Grout (m bgl)	Screen lithology
GW1A	276110.8	6136841.1	50.434	51.264	0.83	9	5-8	3.85-9	2.7-3.85	0-2.7	Sandy clay/clayey sand, HW to MW sandstone
GW1	276107.4	6136839.0	50.439	51.109	0.67	18	14-17	12.4-18	10.3-12.4	0-10.3	HW to MW sandstone
GW2A	276266.5	6136960.1	46.899	47.709	0.81	9	5-8	4.02-9	2.75-4.02	0-2.75	Clayey sand, HW to MW sandstone
GW2	276262.7	6136958.1	47.031	47.841	0.81	17.15	13.15-16.15	12-17.15	10.8-12	0-10.8	HW to MW sandstone
GW3	276257.5	6137248.1	46.312	47.057	0.745	18	14-17	13.1-18	12-13.1	0-12	HW to MW sandstone
GW4	276400.7	6137112.8	48.509	49.259	0.75	13	9-12	8.0-13	7.4-8	0-7.4	HW to MW sandstone
GW5	276238.2	6137084.4	49.171	49.771	0.6	18	14-17	7.5-18	6-7.5	0-6	HW to MW sandstone

Table 2 - Piezometer completion details

m AHD - metres Australian Height Datum

m bgl - metres below ground level

HW - highly weathered

MW - moderately weathered

Selected groundwater depths below ground level measured by ENRS in the piezometers are provided in **Table 3**. Groundwater elevations shown are based on survey data provided by SCC.

Piezometer ID		dwater depth (r ates measured	• •	Ground D	Water level logger		
	7-Jun-16	30-Jun-16	5-Jul-16	7-Jun-16	30-Jun-16	5-Jul-16	installation date
GW1A	Dry	Dry	Dry	Dry	Dry	Dry	28 June 2016
GW1	8.66	8.44	9.72	41.78	42.00	40.72	3 June 2016
GW2A	Dry	Dry	Dry	Dry	Dry	Dry	28 June 2016
GW2	6.95	7.08	7.03	40.08	39.96	40.00	3 June 2016
GW3	5.61	5.68	5.60	40.70	40.63	40.71	7 June 2016
GW4	12.23	9.24	11.15	36.28	39.27	37.36	7 June 2016
GW5	8.63	8.72	8.65	40.54	40.45	40.52	7 June 2016

Table 3 - Groundwater levels

Hydraulic head surfaces for 7 June 2016 and 30 June 2016 are illustrated in Drawing 3 and Drawing 4 respectively.

Water level loggers were installed in the piezometers by ENRS between 3 June and 28 June 2016. Groundwater hydrographs prepared by ENRS are provided in Appendix B.

The pressure head profile based on hydraulic heads measured on 30 June 2016 is illustrated in Figure 1. The interpolated water table depth (where pressure head equals zero) is approximately 9 m below ground level.

Further discussion regarding the water table and drawdown impacts from the adjacent Stage 3 excavation is provided in Section 6.2.

5.3. Laboratory testing

Geotechnical laboratory test reports are attached in Appendix C.

Summary results are provided in Table 4 to Table 7.

Location and depth (m)	Moisture content (%)	Dispersion test - Emerson Class Number
BH1, Depth: 4.00-4.45m	9.1	-
BH2, Depth: 4.00-4.45m	7.9	-
BH3, Depth: 5.50-5.92m	7.4	-
BH4, Depth: 4.00-4.35m	4.7	-
BH5, Depth: 5.50-5.85m	9.9	-
BH6, Depth: 4.00-4.35m	6.9	-
TP1, Depth: 1-2m	15.7	5
TP2, Depth: 1-2m	15.7	-
TP2, Depth: 2-3m	10.7	-
TP2, Depth: 3-4m	9.0	-
TP2, Depth: 4-5m	13.6	5
TP3, Depth: 1-2m	-	5
TP3, Depth: 4-5m	-	5
TP4, Depth: 2-3m	11.1	5
TP4, Depth: 4-5m	-	5
TP5, Depth: 1-2m	-	6
TP5, Depth: 2-3m	6.4	5
TP6, Depth: 1-2m	11.2	5
TP6, Depth: 2-3m	10.3	-
TP6, Depth: 3-4m	10.8	-
TP6, Depth: 4-5m	6.7	-
TP7, Depth: 1-2m	-	6
TP7, Depth: 2-3m	6.9	-
TP7, Depth: 3-4m	-	6
TP8, Depth: 2-3m	-	6
TP8, Depth: 3-4m	10.5	-
TP8, Depth: 4-5m	-	5
TP9, Depth: 2-3m	9.8	6
TP10, Depth: 1-1.5m	10.9	6

Table 4 - Emerson and moisture content results

Location	Depth (m)	Plasticity Index	Liquid Limit	Plastic Limit	Linear Shrinkage	Classification*
BH1	4.00-4.45	15	34	19	8	L-MP
BH2	4.00-4.45	17	33	16	7	L-MP
BH3	5.50-5.92	16	31	15	7	L-MP
BH4	4.00-4.35	10	25	15	4	LP
BH5	5.50-5.85	6	21	15	3	LP
BH6	4.00-4.35	12	26	14	5	LP
TP1	1.0-2.0	28	48	20	8	M-HP
TP2	4.0-5.0	16	35	19	8	MP
TP4	2.0-3.0	23	42	19	10	M-HP
TP5	2.0-3.0	11	26	15	5	LP
TP7	2.0-3.0	13	27	14	5	L-MP
TP7	3.9-4.0	8	22	14	3	LP
TP8	3.0-4.0	23	36	13	9	MP
TP9	2.0-3.0	21	39	18	7	MP
TP10	1.0-1.5	13	28	15	5.5	L-MP

Table 5 - Atterberg results

*Classification

LP - low plasticity clay: plasticity index <13, liquid limit <35

MP - medium plasticity clay: plasticity index 13-22, liquid limit 35-50

HP - high plasticity clay: plasticity index >22, liquid limit >50

Geotechnical and Hydrogeological Investigation West Nowra Recycling and Waste Facility - Stage 4 Landfill Extension Project

Table 6 - Particle size distribution results

Location	Location Depth (m)	Natural Moisture Content (MC)	<37.5 mm	<26.5 mm	<19 mm	<13.2 mm	<9.5 mm	<6.7 mm	<4.75 mm	<2.36 mm	<1.18 mm	<600 µm	<425 µm	<300 µm	<150 µm	<75 μm	<2 µm
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
TP1	1.0-2.0m	13.9	100	100	98	96	93	90	87	84	80	77	74	71	64	59	29
TP2	4.0-5.0m	13.6	100	99	98	96	94	94	93	91	87	83	82	80	77	73	19
TP3	2.0-3.0m	11.5	100	100	100	99	97	94	92	89	84	80	78	76	73	69	22
ТР3	3.0-4.0m	12.8	100	100	98	96	94	92	90	88	85	82	80	79	74	70	31
TP4	2.0-3.0m	15.1	100	100	99	99	96	94	93	91	89	87	86	84	82	78	36
TP5	1.0-2.0m	12.7	100	100	99	98	94	92	89	87	83	80	77	74	65	56	24
TP5	2.0-3.0m	6.9	100	100	99	97	95	91	89	84	79	74	71	67	59	51	16
TP7	2.0-3.0m	7.0	100	97	97	96	95	94	94	93	91	88	85	80	66	48	16
TP8	3.0-4.0m	11.9	100	100	100	100	99	99	98	97	95	93	91	89	84	80	32
TP9	2.0-3.0m	10.1	100	98	95	93	88	85	83	80	77	75	72	69	62	55	23
TP10	1.0-1.5m	14.7	100	100	100	99	98	96	95	94	91	87	86	83	77	64	25

Sample Location	Sample Depth (m)	Natural Moisture Content (MC)	Compactio	on testing	Permeability (constant head laboratory testing)	Permeability NSW EPA Iandfill guidelines	
		(%)	SMDD (t/m ³)	OMC (%)	m/s	m/s	
BH4	5.5-7.0m	-	-	-	2 x 10 ⁻⁹	1 x 10 ⁻⁹	
BH6	5.5-7.0m	-	2.01	11.0	5.2 x 10 ⁻⁹	1 x 10 ⁻⁹	
TP1	1.0-2.0m	13.9	1.80	16.0	3 x 10 ⁻¹⁰	1 x 10 ⁻⁹	
TP2	4.0-5.0m	13.6	1.76	15.5	5 x 10 ⁻¹⁰	1 x 10 ⁻⁹	
TP3	3.0-4.0m	12.8	1.75	17.0	2 x 10 ⁻¹⁰	1 x 10 ⁻⁹	
TP4	2.0-3.0m	15.1	1.72	18.0	2 x 10 ⁻¹⁰	1 x 10 ⁻⁹	
TP5	2.0-3.0m	6.9	1.91	11.5	1 x 10 ⁻⁹	1 x 10 ⁻⁹	
TP9	2.0-3.0m	10.1	1.84	13.5	4 x 10 ⁻¹⁰	1 x 10 ⁻⁹	
TP10	1.0-1.5m	14.7	1.82	15.0	7 x 10 ⁻¹⁰	1 x 10 ⁻⁹	

Table 7 - Permeability and compaction testing results

SMDD - Standard Maximum Dry Density

OMC - Optimum Moisture Content

6. Discussion

6.1. Geotechnical

The results of the geotechnical investigation indicate the following:

- The depth to rock is variable across the site and is relatively shallow in some areas compared to the typical landfill cell depth of 7 m adopted for previous stages of the West Nowra Recycling and Waste Facility. Excavator refusal depths on rock occurred in six of the test pits at depths ranging from 2.5 m to 4.5 m below ground surface;
- The laboratory testing indicates that the residual soils and extremely weathered materials at the depths sampled have a clay component and range from low to high plasticity. The samples selected for permeability testing were remoulded at densities similar to that required for a clay liner. The results of the permeability tests indicate that of the nine samples tested, seven were at or lower than the required 10⁻⁹ m/s for material re-used as clay liner, with two results being higher ie. seven out of nine results were complying. As the samples tested had natural moisture contents drier than optimum moisture content, where these materials are re-used for lining of landfill cells, they will need moisture conditioning and suitable re-working with a padfoot roller to break down weathered rock materials;
- The near surface silty topsoil materials, root affected materials and highly to moderately weathered rock or less weathered rock encountered will not be suitable for re-use in low permeability liners or as capping material. The removal of trees and root affected materials will disturb the soils to possibly more than 1 m deep; and
- All soils and the weathered rock will soften or weaken when exposed to moisture ingress, particularly if in a disturbed condition.

6.2. Hydrogeological

Screen depths or hydraulic intervals are important when assessing groundwater levels measured in piezometers.

GW4 is the shallowest of the saturated piezometers. The hydraulic head surface from 30 June 2016 shows a significantly changed hydraulic gradient compared to the hydraulic head surface from 7 June 2016. The response to rainfall is greater at GW4 as it is shallower.

The hydrographs show the greatest response to rainfall was a 2.9 m rise in groundwater level recorded at piezometer GW4 approximately three weeks following the rain event. The deeper piezometers registered minimal increases in groundwater level, whereas below the shallow dry piezometers the water table probably increased.

Response to the significant rainfall event in early June 2016 was not captured in the shallow piezometers GW1A and GW2A, therefore no data characterising the water table rise is available to date.

Based on the pressure head profile on 30 June 2016, the interpolated water table depth (where pressure head equals zero) is approximately 9 m below ground level. However it is important to note that current groundwater levels are drawn down due to the Stage 3 landfill cell void to the west of the ridgeline. The maximum depth of the void is around 40 m AHD, below the maximum groundwater level of 42 m AHD, therefore evaporation is consuming groundwater. Once the Stage 3 excavation is filled and capped, groundwater levels will rise. Therefore the long-term average groundwater levels will be higher than what is currently being measured.
7. Conclusions

Based on the outcomes of the investigation conducted, the following conclusions are made:

- The depth to rock is variable across the site and is relatively shallow in some areas;
- The results of the permeability tests indicate that of the nine samples tested, seven were at or lower than the required 10⁻⁹ m/s for material re-used as clay liner, with two results being higher ie. seven out of nine results were complying;
- The near surface silty topsoil materials, root affected materials and highly to moderately
 weathered rock or less weathered rock encountered will not be suitable for re-use in low
 permeability liners or as capping material;
- All soils and the weathered rock will soften or weaken when exposed to moisture ingress, particularly if in a disturbed condition;
- Groundwater in the Project area is within the Nowra Sandstone at depths ranging from around 5 m to 12 m below ground level;
- Current groundwater elevations range from approximately 42 m AHD along the ridgeline to 37 m AHD towards the eastern boundary of the proposed landfill cells;
- East of the ridgeline groundwater flows east, discharging at Cabbage Tree Creek;
- West of the ridgeline groundwater flows west. Evaporation consumes groundwater within the Stage 3 landfill excavation, the remainder of groundwater flow discharges at Sandy Creek;
- Hydrographs show the greatest response to rainfall was a 2.9 m rise in groundwater level recorded at piezometer GW4 approximately three weeks following the early June 2016 rain event;
- The deeper piezometers registered minimal increases in groundwater level, whereas below the shallow dry piezometers the water table probably increased following the early June 2016 rain event;
- The water table may fluctuate up to 5 m with rainfall and seasons; and
- The interpolated water table depth is approximately 9 m below ground level however it is important to note that current groundwater levels are drawn down due to the Stage 3 landfill cell void to the west of the ridgeline. Once the Stage 3 excavation is filled and capped, groundwater levels will rise. Therefore the long-term average groundwater levels will be higher than what is currently being measured.

8. Recommendations

Based on the outcomes of the investigation conducted, the following recommendations are made:

- Further testing of selected materials will be required prior to final design and construction where excavated materials are proposed for re-use during construction of the cells;
- Baseline groundwater monitoring should be conducted to capture seasonal changes in groundwater levels and quality. A minimum monitoring period of six months is recommended; and
- Water level loggers should remain in the shallow piezometers GW1A and GW2A until a significant rain event is recorded showing the water table rise.

9. Limitations

The comments and recommendations provided within this report have been made on the basis of limited details of the proposed development. If details of the proposed development differ from those assumed in the preparation of this report, Coffey should be contacted for further geotechnical advice.

The findings in this report are the result of observations made at discrete test pit and borehole locations and observations of the surface conditions of the site. Due to the large site area, subsurface conditions could vary significantly across the site. Should different subsurface conditions to those expected be encountered during construction, Coffey should be contacted immediately.

We draw your attention to the attached sheets titled "Important information about your Coffey Report" which must be read in conjunction with this report.

Important information about your **Coffey** Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how gualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore vour report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Important information about your Coffey Report

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

Data should not be separated from the report*

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims lodaed against consultants, beina which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

* For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical information in Construction Contracts" published by the Institution of Engineers Australia, National headquarters, Canberra, 1987.

Drawings

size

le: Localit	y Plan
oject no: GEOTWOLL03957AA	Drawing no: 1

	11	6	12 N	I
			в	
			= 	
			-	
			D	
				\longrightarrow
Easting 276107.374 276107.374 276110.840 276510.840 276282.862 276285.682 276285.537 276285.537 276285.537	Northing 6136839.030 6136839.030 61368341.106 61368341.106 6136958.080 6136958.080 6136958.080 6136958.080 6136950.075 6136950.075	Elevation 61,109 60,439 51,264 90,334 47,841 47,031 47,031 45,889 45,889 45,889	E	
278257.533 276257.533 276400.664 276400.664 276238.169 276238.169 276238.169 276134.712 276134.712 276134.712 276134.741 276135.553	6137248.077 613712.751 6137112.751 6137112.751 6137084.391 6137084.391 6136885.794 6136885.196 6136985.196 6137007.424 6136985.717	47.057 45.312 49.259 48.509 48.771 49.171 49.171 49.824 48.978 48.978 48.975 47.552	F	
276355.271 276192.145 276392.145 276373.675 276373.675 276326.740 276226.754 276226.754 276126.943 276126.943	8137023.158 6137094.303 6137130.365 6137102.563 6137202.563 6137202.454 6136878.657 6136878.657 6136849.571 6136449.571	47,008 48,831 48,891 48,809 48,269 47,444 48,250 49,310 49,310 49,310 49,310 49,310 49,310 49,310 49,310 49,310 49,310 49,310 40,310	-	
276281.165 276178.244 276372.890	6137109.243 6137214.947 6137188.075	49.110 45.330 48.920	G	
for A3 size plot	DIRECTO	DR ASSETS & WORKS:	DATE:	
r to start of construction. right therein are the prope en produced by the Asset not be used, reproduced i salon of the Project Delive 10	as & Works - or copied	- PLAN REFERENC 2824_281	СЕ- В 12	1

Appendix A – Engineering Logs and Explanatory Notes

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	fine	2.36 mm to 6 mm
Sand	coarse	600 μm to 2.36 mm
	medium	200 μm to 600 μm
	fine	75 μm to 200 μm

MOISTURE CONDITION

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH S _U (kPa)	FIELD GUIDE			
Very Soft	<12	A finger can be pushed well into the soil with little effort.			
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.			
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.			
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.			
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.			
Hard	>200	The surface of the soil can be marked only with the thumbnail.			
Friable	_	Crumbles or powders when scraped by thumbnail.			

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils: <15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%

SOIL STRUCTURE

	ZONING	CE	MENTING
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.
Pockets	Irregular inclusions of different material.		

GEOLOGICAI WEATHERED Extremely weathered material	L ORIGIN IN PLACE SOILS Structure and fabric of parent rock visible.
Residual soil	Structure and fabric of parent rock not visible.
TRANSPORT	
TRANSPORTE	DSOILS
Aeolian soil	Deposited by wind.
Alluvial soil	Deposited by streams and rivers.
Colluvial soil	Deposited on slopes (transported downslope by gravity).
Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.
Lacustrine soil	Deposited by lakes.
Marine soil	Deposited in ocean basins, bays, beaches and estuaries.

coffey **>**

Soil Description Explanation Sheet (2 of 2)

(Exclu	Iding				ON PROCEDURE and basing fractions		USC	PRIMARY NAME														
	arse 36 mm	CLEAN GRAVELS (Little or no fines)		range in grain size a Ints of all intermediat		GW	GRAVEL															
3 mm i		/ELS than 2.	CLE GRA (Lit or fin		ominantly one size or nore intermediate siz		GP	GRAVEL														
solls than 6	eye)	GRAVELS More than half of coarse ction is larger than 2.36 m	/ELS FINES ciable unt nes)		plastic fines (for ident		GM	SILTY GRAVEL														
COARSE GRAIINED SOILS 0% of materials less than 6 larger than 0.075 mm	e naked	GRAVELS More than half of coarse fraction is larger than 2.36 mm	GRAVELS WITH FINES (Appreciable amount of fines)		c fines (for identificat L below)	ion procedures	GC	CLAYEY GRAVEL														
CUARSE GRAIINED SUILS More than 50% of materials less than 63 mm is larger than 0.075 mm	and the carterious of material of material of the contract of		EAN UDS tile ss)	Wide amou	range in grain sizes a ints of all intermediat	and substantial e sizes	SW	SAND														
COA 1 50% of larg cle visit OS	DS f of coa than 2.3	CLEAN SANDS (Little or no fines)	Predominantly one size or a range of sizes with some intermediate sizes missing.		SP	SAND																
More the	Aore than 5 est particle SANDS than half of smaller tha	SAN than hal s smaller	SANDS More than haif of coarse fraction is smaller than 2.36 mm SANDS ANDS (Appreciable amount of fines) fines)	Non-j proce	Non-plastic fines (for identification procedures see ML below).		SM	SILTY SAND														
	(A 0.075 mm particle is about the smallest particle visible to the	More fraction i			c fines (for identificat L below).	tion procedures	SC	CLAYEY SAND														
	out		IDENTIFICAT		ROCEDURES ON FR	ACTIONS <0.2 mm.																
nan n	s ab		DRY STREN	GTH	DILATANCY	TOUGHNESS																
less th 175 mr	rticle i	SILTS & CLAYS Liquid limit less than 50	SILTS & CLAYS Liquid limit less than 50	SILTS & CLAYS Liquid limit less than 50	SILTS & CLAYS Liquid limit less than 50	None to Low	,	Quick to slow	None	ML	SILT											
ED SC aterial ian 0.0	nm pa					SILTS & Liquid less tha	LTS & Liquid ess th:	LTS & Liquid ess th	LTS & Liquid ess the	_TS & _iquid ess the	LTS & Liquid ess the	LTS & Liquid ess the	TS & _iquid ess the	TS & iquid ess the	LTS & Liquid ess the	TS & _iquid ess the	Medium to H	ligh	None	Medium	CL	CLAY
sRAIN of ma aller th	of me of me 075 rr SIL						Low to medi	um	Slow to very slow	Low	OL	ORGANIC SILT										
FINE GRAINED SOILS in 50% of material less is smaller than 0.075 i (A 0.075 mm particle	CLAYS I limit than 50	Low to medi	um Slow to very slow		Low to medium	MH	SILT															
FINE GRAINED SOILS More than 50% of material less than 63 mm is smaller than 0.075 mm		∞	High	gh None		High	СН	CLAY														
Х 9		SILTS Liqu greate	Medium to H	ligh	None	Low to medium	ОН	ORGANIC CLAY														
HIGHL' SOILS	Y OF	RGANIC	Readily ident frequently by	tified b / fibrou	y colour, odour, spon s texture.	gy feel and	Pt	PEAT														

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

• Low plasticity – Liquid Limit w_{L} less than 35%. • Medium plasticity – w_{L} between 35% and 50%. • High plasticity – w_{L} greater than 50%.

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM	TERM	DEFINITION	DIAGRAM
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.		SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	ALTON COLONIAL
JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.		TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter	
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.		INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

Rock Description Explanation Sheet (1 of 2)

DEFINITIONS	Roc	k substance, defect and mass are defined as follows:					
Rock Substan	disi	ngineering terms rock substance is any naturally occurn ntegrated or remoulded by hand in air or water. Other i nogenous material, may be isotropic or anisotropic.					
Defect Mass	Diso Any	continuity or break in the continuity of a substance or s body of material which is not effectively homogeneous. I e substances with one or more defects.		two or m	ore substances	without defects, or one or	
SUBSTANCE	DESC	RIPTIVE TERMS:	ROCKS	UBST	ANCE STRE	NGTH TERMS	
ROCK NAME		pple rock names are used rather than precise logical classification.		Abbrev- iation	Point Load Index, I _{s(50)} (MPa)	Field Guide	
PARTICLE SIZE Coarse grained Medium graine Fine grained	d Mai ed Mai	in size terms for sandstone are: nly 0.6mm to 2mm nly 0.2mm to 0.6mm nly 0.06mm (just visible) to 0.2mm	Very Low	VL	Less than 0.1	Material crumbles under firm blows with sharp end of pick can be peeled with a knife; pieces up to 30mm thick can	
FABRIC		ns for layering of penetrative fabric (eg. bedding, avage etc.) are:				be broken by finger pressure	
Massive		ayering or penetrative fabric.	Low	L	0.1 to 0.3	Easily scored with a knife;	
Distinct Layering		ring or fabric just visible. Little effect on properties. ering or fabric is easily visible. Rock breaks more ily parallel to layering of fabric.				indentations 1mm to 3mm show with firm bows of a pick point; has a dull sound under hammer. Pieces of	
	reviati RS	DF WEATHERING PRODUCTS on Definition Soil derived from the weathering of rock; the mass structure and substance fabric are no				core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	
Extremely	xw	longer evident; there is a large change in volume but the soil has not been significantly transported. Material is weathered to such an extent that it	Medium	М	0.3 to 1.0	Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficult	
Weathered Material		has soil properties, ie, it either disintegrates or can be remoulded in water. Original rock fabric still visible.	High	н	1 to 3	A piece of core 150mm long by 50mm can not be broker	
Highly Weathered Rock	нw	Rock strength is changed by weathering. The whole of the rock substance is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Some minerals are decomposed to clay minerals. Porosity may be increased by				by hand but can be broken by a pick with a single firm blow; rock rings under hammer.	
Moderately	MW	leaching or may be decreased due to the deposition of minerals in pores. The whole of the rock substance is discoloured,	Very High	n VH	3 to 10	Hand specimen breaks afte more than one blow of a pick; rock rings under hammer.	
Weathered Rock		usually by iron staining or bleaching , to the extent that the colour of the fresh rock is no longer recognisable.	Extremely High	y EH	More than 10	Specimen requires many blows with geological pick to	
Slightly Weathered Rock	SW	Rock substance affected by weathering to the extent that partial staining or partial discolouration of the rock substance (usually by limonite) has taken place. The colour and texture of the fresh rock is recognisable; strength properties are essentially those of the fresh rock substance.			ubstance Stre	break; rock rings under hammer. ngth: p strength applies to the strengt	
Fresh Rock Notes on Weath		Rock substance unaffected by weathering.	break rea 2. The term	dily parall "extremel	el to the planar ar y low" is not used	n strength anisotropic rocks may hisotropy. d as a rock substance strength 26-1993, the field guide therein	
AS1726 sugges substance weat not practical to advantage in ma	ts the te hering c delineat aking su	rm "Distinctly Weathered" (DW) to cover the range of onditions between XW and SW. For projects where it is e between HW and MW or it is judged that there is no ch a distinction. DW may be used with the definition	makes it o engineerin 3. The unco anisotrop	clear that ng terms. nfined cor ic rocks w	materials in that s mpressive strengt rhich fall across th	strength range are soils in th for isotropic rocks (and ne planar anisotropy) is typically	
associated with	and che	emical changes were caused by hot gasses and liquids a rocks, the term "altered" may be substituted for a abbreviations XA, HA, MA, SA and DA.	10 to 25 t	imes the p ock types	ooint load index l	s(50). The ratio may vary for rocks often have lower ratios	

Rock Description Explanation Sheet (2 of 2)

ROCK MA		Diagram		aphic Log Note 1)	DEFECT SHAPE Planar	TERMS The defect does not vary i orientation
Term	Definition				.	
Parting	A surface or crack across which the rock has little or no tensile strength. Parallel or sub parallel to layering		20 Bedding		Curved	The defect has a gradual change in orientation
	(eg bedding) or a planar anisotropy in the rock substance (eg, cleavage).		20 Cleavage	(Note 2)	Undulating	The defect has a wavy surface
	May be open or closed.			(NOLE 2)	Stepped	The defect has one or mo well defined steps
Joint	A surface or crack across which the rock has little or no tensile strength. but which is not parallel or sub				Irregular	The defect has many shar changes of orientation
	parallel to layering or planar anisotropy in the rock substance.		60	(Note 2)		ment of defect shape is partly by the scale of the observation
	May be open or closed.			(1010 2)	ROUGHNESS Slickensided	FERMS Grooved or striated surfac usually polished
Sheared Zone	Zone of rock substance with roughly parallel near planar, curved or				Polished	Shiny smooth surface
(Note 3)	undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of		35		Smooth	Smooth to touch. Few or r surface irregularities
	the defects are usually curved and intersect to divide the mass into lenticular or wedge shaped blocks.	·/· · · ·		~	Rough	Many small surface irregulariti (amplitude generally less tha 1mm). Feels like fine to coars sand paper.
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		40	いいがの	Very Rough	Many large surface irregularities (amplitude generally more than 1mm Feels like, or coarser than ve coarse sand paper.
Crushed Seam	Seam with roughly parallel almost planar boundaries, composed of				COATING TER Clean	MS No visible coating
(Note 3)	disoriented, usually angular fragments of the host rock substance which may be more				Stained	No visible coating but surfaces are discoloured
	weathered than the host rock. The seam has soil properties.			17 1	Veneer	A visible coating of soil or mineral, too thin to measur may be patchy
Infilled Seam	Seam of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1mm thick may be described as veneer or coating on joint surface.		65		Coating	A visible coating up to 1mi thick. Thicker soil material usually described using appropriate defect terms (e infilled seam). Thicker roc strength material is usuall described as a vein.
					BLOCK SHAPE Blocky	Approximately
Extremely Weathered Seam	Seam of soil substance, often with gradational boundaries. Formad by weathering of the rock substance in		32	5114	Tabular	equidimensional Thickness much less than length or width
	place.	Seam	-	1.1.1	Columnar	Height much greate than cross section

2. Partings and joints are not usually shown on the graphic log unless considered significant.

^{3.} Sheared zones, sheared surfaces and crushed seams are faults in geological terms.

A TETRA TEC	H COMPANY			Borehole ID.	BH1
Ena	incoring Log	Do	rabala	sheet:	1 of 2
Eng	ineering Log	- 00	brenoie	project no.	GEOTWOLL03957AA
client:	Shoalhaven City Co	ouncil		date started:	23 May 2016
principal:	-			date completed:	23 May 2016
project:	Geotechnical and H	lydroge	ological Investigation	logged by:	MB
location:	West Nowra Recyc	ling and	d Waste Facility, Mundamia NSW	checked by:	CDC
position: E	:: 276230; N: 6136879 (MGA94 Z	one 56)	surface elevation: 48.25 m (AHD)	angle from horizontal: 90°	
drill model:	Hanjin DB8, Track mounted		drilling fluid: water	hole diameter : 114 mm	
drilling in	formation	material su			

Ľ	ariiii	ng infor	mati	on			mate	rial sub	stance		1		
mathod &	support	¹ 2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	class ification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetr meter (kPa) ୁ ରୁ ରୁ	additional observations
•	•			SPT 4, 9, 15 N*=24	-48	-			Sandy CLAY: medium plasticity, brown, fine grained sand, trace of sub-angular gravel, trace of organics (rootlets). CLAY: high plasticity, red, orange, brown, grey mottled, trace of fine grained sand, trace of organics (rootlets), trace of sub-angular to angular gravel.	D -	F St - VSt		TOPSOIL -
				SPT 6, 15, 22 N*=37	-47	1.0			Sandy CLAY: medium plasticity, red, brown, grey mottled, fine grained sand, trace of sub-angular to angular gravel. colour change to grey, red, orange mottled	-	VSt / H		EXTREMELY WEATHERED
J16 10:40					- -46	2.0-							
.GPJ < <drawingrile>> 21/U/12/</drawingrile>			Not Observed	SPT 9, 28, 32/105mm N*=R	-45	- 3.0 - -			CLAY: medium plasticity, grey, brown, orange mottled, trace of fine grained sand, trace of sub-rounded gravel.				
KEU GWU399/AA_UATABASE. AD/T			Not 0	SPT 14, 40, 22/50mm N*=R	-44	4.0			Sandy CLAY: low to medium plasticity, brown, grey, orange mottled, fine to medium grained sand.				
inary ige fevami log cof bureficie: nun cured gwussoraa_da_driabase.gf. < AD/T AD/T 				SPT 42, 20/30mm N*=R	-43 	5.0			CLAYEY SAND : fine to medium grained, brown grey, medium plasticity clay, trace of sub-angular gravel.				
				SPT 20/50mm N*=R	-41	- 7.0			Borehole BH1 continued as cored hole		— <u>н</u> –		HIGHLY TO MODERATELY
	methe AD AS HA W DHH M e.g. B T V	od auger dr auger gr hand au washbor downhol bit show AD/T blank bit TC bit V bit	rewin ger re e han n by s	ıg* nmer	•	tration N ∞ r r V ∞ r V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	N no resi ranging refusal Dct-12 was on date er inflow er outflow	g to ter shown	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample	based Classific bisture dry moist wet p plastic	lescriptio I on Unifie cation Sys	n d	WEATHERED SANDSTONE consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

ATE	TRA TE	ECH CC	MPANY								Borehol	e ID.	BH1	
C	n	nin		rin	aloa Coro	d Boro	hal	•			sheet:		2 of 2	
_	пć	-			g Log - Core			7			project	no.	GEOTWO	LL03957AA
clie	ent:	9	Shoa	lhave	en City Council						date sta	irted:	23 May 20	16
prir	ncipa	al: -									date co	mpleted:	23 May 20	16
pro	ject:	. (Geote	echn	ical and Hydrogeolog	gical Investig	gation				logged	by:	MB	
loc	atior	ו:	West	t Nov	wra Recycling and Wa	aste Facility	, Muna	lamia N	vsw		checked	d by:	CDC	
pos	ition:	E: 27	6230; 1	N: 6136	879 (MGA94 Zone 56)	surface elevation:	48.25 m (AHD)		angl	e from horiz	ontal: 90°		
				8, Trac	k mounted	drilling fluid: water				hole	diameter :	114 mm	vane id	l.:
dri	lling	inform	nation	mate	erial substance material descript	lion	ళ	estimated	samples,	rock	defect		ditional observation	sand
ø ₽ ±			Ê	c log	ROCK TYPE: grain chai	acterisics,	ering 8	strength & Is50	field tests & Is(50)	<u>ج</u> "	spacing (mm)		defect description ation, planarity, roug	s hness, coating,
method &	water	RL (m)	depth (m)	graphic log	colour, structure, minor c	omponents	weathering	X = axial; O = diametral	(MPa) a = axial; d = diametral	core run details	300 300 300 300	particular	thickness, other)	general
		-			start coring at 7.62m SANDSTONE: fine to medium	grained, brown.	HW					₽— JT, 15°, F	PL, RO, VN	3
			8.0-		colour change to grey		MW / SW						CU, RO, VN	_
		-40	-											-
	erved		-		colour change to brown							JT, 10°, F	PL, RO, VN	-
NMLC -	Not Observed	F	-					;;;;;				IT 400 4	CU, RO, VN	
	Z		9.0		colour change to grey		HW / MW				┠┅┪┊┊┆		CU, RO, VN CU, RO, Sand CO	-
		-39	-		colour change to brown		MW /				╺<u>╺</u>╼╜╵╷╎	⊒— JT, 10°, F	PL, RO, VN	-
			-		colour change to grey		SW							-
		-	-					! ! ! ! ! !						-
┢			10.0		Borehole BH1 terminated at 10).00 m								
		-38	_		Target depth									-
			-											-
.			-					; ; ; ; ; ;						-
		-37	11.0											
			-											-
			-					liiii						-
			12.0											_
		-36	-											-
			-											-
		-		1				liiii						1
			13.0											-
		-35	-											-
5				1										1
		F	-					! ! ! ! ! !						-
			14.0	1										
		-34		1										1
			-	-										-
		F	-	1				;;;;;						
1		20	15.0	1										-
		-33	-	-										-
		& sup		1	water	graphic log / co	ore recove	ry	weathering RS residu	g & alter ual soil	ation*	defect type PT parting		arity planar
AS AE CE) au	iger scr iger dril			10/10/12, water level on date shown		ecovered		XW extremed HW highly	mely we / weathe	red	JT joint SZ shear:	CU zone UN	curved undulating
W	wa ALONI	ashbore MLC co	e re (51.9	mm)	water inflow		symbols indicate		DW distin MW mode	ctly weat ctly weater	thered eathered	SS shear CO contac	t IR	stepped Irregular
NO HO	wi ע wi	reline c reline c	ore (47. ore (63.	6mm) 5mm)	complete drilling fluid loss		re recovere	U	SW slight FR fresh *W replaced v strength	ly weath		CS crushe SM seam	ed seam	
PC SF		andard	ore (85. penetra			core run detail	s withdrawn		Strength VL very lo L low	w		roughness SL slicke	ensided CN	i ng clean
Dł	H do	wnhole	e hamme	er	uter pressure test result (lugeons) for depth	I I TCR = Total C	ore Recove	ery (%)	M mediu H high			POL polish SO smoo	ned SN oth VN	stain veneer
1					interval shown	SCR = Solid C RQD = Rock C	ore Recov	ery (%)	VH very h	igh 1ely hiah		RO rough VR very r		coating

drawn	MB		client: Shoalhaven C	ity Council			
approved	JPT		project: Geotechnical and	Geotechnical and Hydrogeological			
date	3/6/2016	coffey	Investig	Investigation			
scale	N.T.S.	A TETRA TECH COMPANY	title: Core photog	raph BH1			
original size	A4		project no: GEOTWOLL03957AA	figure no: 1			

TETR	A TECH (COMP	ANY							Boreh	nole ID		BH2	—
Fr	nai	n۵	orin	n I		a -	R٥	rehole		sheet	:		1 of 2	
								lenoie		proje			GEOTWOLL0395	57A
clien	t:	Sho	balhave	en C	ity C	Coun	cil			date s	started		24 May 2016	
princ	ipal:	-								date of	comple	ted:	24 May 2016	
proje	ect:	Gee	otechni	ical	and	Hydi	rogeo	logical Investigation		logge	d by:		MB	
locat	tion:	We	est Nov	vra H	Recy	cling	g and	Waste Facility, Mundamia NSW		check	ed by:		CDC	
positio	on: E:2	27612	9; N: 6136	950 (N	/IGA94	Zone §	56)	surface elevation: 49.31 m (AHD)	angle	e from ho	orizontal	90°		
drill m	nodel: H	anjin	DB8, Trac	k mou	nted			drilling fluid: water	hole	diametei	: 114 m	nm		
drilli	ing info	rmati	on			mate	erial sub			>				_
a T T S	penetration		samples & field tests		Ê	c log	catior	material description SOIL TYPE: plasticity or particle characteristic,	e u	ency / densit	hand penetro meter	-	structure and additional observations	
method & support	penel	water		RL (m)	depth (m)	graphic log	classification symbol	colour, secondary and minor components	moisture condition	consistency / relative density	(kPa)	,		
<u> </u>	3 5 7	5		Ľ.			ပို	Gravelly Sandy CLAY: medium plasticity, pale	D	F - St	30,000	TOF	SOIL	_
				-49	-			brown, fine grained sand, sub-angular to angular \ gravel, trace of organics (rootlets).	-	St - VSt				
			SPT					Sandy CLAY: medium plasticity, brown, red to grey mottled, fine grained sand, trace of organics,					NB ONE	-
			4, 10, 14 N*=24	-	-			trace of sub-angular gravel.						-
			SPT		1.0-									-
			4, 3, 9 N*=12	-48		\mathbb{V}/\mathbb{V}								-
					-									-
				-	-									-
					2.0-			Sandy CLAY: low to medium plasticity, pale	-	VSt / H				
				-47				brown, grey mottled, red mottled, fine grained sand, trace of sub-angular to angular gravel.				WIA	TERIAL	-
			SPT		-									-
		5	7, 20, 21 N*=41	-	-									-
		Not Observed			3.0-									-
- T/D		Vot Ob		-46										-
					-			colour change to pale brown, grey, red to orange mottled						-
				-	-			motueu						-
			SPT 8, 22, 35		4.0-									
			N*=57	-45	-									-
					-			colour change to grey, pale brown						-
				-	-									-
					5.0-			Sandy CLAY: medium plasticity, pale brown, grey, red mottled, fine grained sand, trace of sub-angular						
				-44	-			to angular gravel.						-
			SPT 18/90mm	r	-				M					-
			<u>N*=R</u>	F	6.0-	¥////			_					-
				42				CLAYEY SAND: fine grained, brown, grey.		VD				-
				-43	-						111			
¥				L	+			Borehole BH2 continued as cored hole		+		HIG	HLY TO MODERATELY	
					7.0-	4							ATHERED SANDSTONE	-
				-42	-	{								-
					-	1								-
				L]								-
	liii				<u> </u>				classifica	tion svm	Li i i			
Meth AD AS	auger of auger s		a*	Mi	port mud casing	N	l nil	samples & field tests B bulk disturbed sample D disturbed sample	soil d	escriptio	n		S very soft soft	
HA W	hand a washbo	uger	с С		etration	n		E environmental sample SS split spoon sample		ation Sys		F		
DHH			nmer				sistance na to	U## undisturbed sample ##mm diameter mo	dry				/St very stiff	
		water variable varia					N standard penetration test (SPT) M	dry moist wet			F	Thata To friable /L very loose		
* e.g.	AD/T	shown by suffix ▼ 10-Oct-12 water N* SPT - sample recovered							p plastic liquid lir			L		
В						tor inflow		R refusal				Ē		

Binder: 2 of 2 might be mi	A TE	TRA T	ECH CO	OMPANY									Bore	ehole	e ID.	BH2		
client: Shoalhaven City Council uste started: 24 May 2016 project: Geotechnical and Hydrogeological Investigation logged by: MB totation: West Nowa Recycling and Waste Facility, Mundamia NSW checked by: CDC project: West Nowa Recycling and Waste Facility, Mundamia NSW checked by: CDC protect: 24 May 2016 ustged by: MB model: 1000 model: 1000 model: 1000 model: 1000 model: 1000 model: 1000 model: model: 1000 1000 model: 1000 model: 1000 model: model: 1000 1000 1000 model: 1000 model: <td< th=""><th>c</th><th>'n</th><th>ain</th><th></th><th>rin</th><th>aloa Coro</th><th>d Borol</th><th>hal</th><th>`</th><th></th><th></th><th></th><th>shee</th><th>et:</th><th></th><th>2 of 2</th><th></th><th></th></td<>	c	'n	ain		rin	aloa Coro	d Borol	hal	`				shee	et:		2 of 2		
primit discretion 24 dot 2012 primit Machine Machine Machine Machine Statum Machine Machine Machine Machine Machine Statum Machine		ļ							5				proje	ect n	0.			<u>3957A</u> A
prod Bottom Mathematical and hydrogeological Investigation Logical mathematical Structure Mathematical Structure Drating in the structure of the st	clie	ent:	S	Shoa	lhav	en City Council							date	star	ted:	24 Ma	ay 2016	
Inclusion: Water Neuron Recycling and Water Sectility, Mundarin MSM cprediation: cprediation: <thcml> cprediation:</thcml>	pri	ncip	al: -										date	con	npleted:	24 Ma	ay 2016	
position: E: 278128. N B138850 (MAG44 Zone B0) auflice elevation: 49.31 m (MED) angle hom homounds 60° homounds for ware 61. diffing information matching background in the description	pro	oject	: (Geote	echn	ical and Hydrogeolog	ical Investig	gation					logg	ed b	y:	MB		
Definitional sector material substance original substance recent sector recent sector material substance su	loc	atio	n:	West	Nov	wra Recycling and Wa	ste Facility,	Mund	damia	a N	SW		cheo	ked	by:	CDC		
deming information material substance material decipion material substance nock mass defects statical decipion gt	pos	sition	: E: 27	6129; N	N: 6136	6950 (MGA94 Zone 56) si	urface elevation: 4	49.31 m (AHD)			angl	e from h	norizo	ontal: 90°			
Image: Section in the sectio							illing fluid: water										vane id.:	
Second Participant Second Participant Part Loss Part Lo	dri	lling	inform	hation	mate		on	øð	estima	ited		rock				ditional obs	ervations and	
1 70 70 Fit UP, PL, BO, Chey sand CO 1 10 10 10 10 10 1 10 10 10 10 10 10 10 1 10	% pd		Ê	E)	ic log			tion	& ls5	50	& ls(50)	un s			(type, inclina	ation, planar	ity, roughness,	coating,
1 70 70 Fit UP, PL, BO, Chey sand CO 1 10 10 10 10 10 1 10 10 10 10 10 10 10 1 10	metho	water	RL (n	depth	graph			weath altera			a = axial;	core r detai	30 300	3000	particular	UNICKINES	s, ourier)	general
and a support provel. more provel. more provel. provel. <t< td=""><td></td><td></td><td>-</td><td>-</td><td>· · · · ·</td><td>SANDSTONE: fine to coarse gra</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>PT, 10°, I</td><td>PL, RO, Clay</td><td>yey sand CO</td><td></td></t<>			-	-	· · · · ·	SANDSTONE: fine to coarse gra									PT, 10°, I	PL, RO, Clay	yey sand CO	
100 100				7.0-	· · · · ·		or ous angula	MW		İİ					← PT, 10°, I ← PT, 10°, I	PL, RO, Cla PL, RO, Cla	yey sand CO yey sand CO	
y y			-42	-	· · · · ·					ii								-
-41 -41 -41 -77		ed		-	· · · · ·			1.0.4/							— JT, 10°, F	PL, RO, Clay	ey sand CO	-
-41 -41 -41 -77		Observ	-	8.0 -											CO - Clay	ey sand		
method & support	NML –	Not		-	· · · · ·									H	₋、 JT, 10°, F	PL, RO, Clay	ey sand CO	-
method & support Address for the support			1.	-	· · · · ·								│ │ │ ⊔⊤─┤		— JT. 10°. F	L. RO. Clav	vev sand CO	1
40 90 110			-	-	· · · · ·				1111	ii					_, [∟] SM, 10°,	PL, RO, Cla	yey sand CO	-
Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth Borehole BH2 terminated at 9.50 m Barget depth	48			9.0 —	· · · · · · · · · ·					ii								-
method & support As auger screwing A aug	016 10		-40		· · · · ·													1
-39 -39 -39 -30				-			0 m	_	++++	++				+++				
method & support As auger correing & about both and the information of the inform			-	-														-
method & support image: supp	rawingr			10.0 -						ii								
method & support valuer graphic log / core recovery water findow method & support me			-39	-														-
method & support valuer graphic log / core recovery water findow method & support me	SE.GF																	1
-38 -38 -38 -1000	1 AB/			11.0 -														_
method & support - 36 water - 4.0 - - 36 water - 10.0 - - 36 water - 10.0 - - 36 graphic log / core recovery - 10.0 - - 36 water - 10.0 - - 36 graphic log / core recovery - 10.0 - - 36 water - 10.0 - - 36 graphic log / core recovery - 10.0 - - 36 water - 10.0 - - 36 graphic log / core recovery - 10.0 - - 36 water - 10.0 - - 36 graphic log / core recovery - 10.0 - - 36 water - 10.0 - - 36 graphic log / core recovery - 10.0 - - 36 water - 10.0 - - 36 graphic log / core recovery - 10.0 - - 36 water - 10.0 - - 36 graphic log / core recovery - 10.0 - - 36 water - 10.0 - - 10.0			-38	-						::								-
method & support as as as<	W0395																	1
method & support -37 <td>KED</td> <td></td> <td>-</td> <td>- </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	KED		-	-														-
method & support 13.0 - -36 -36 14.0 - -36 -35 -36 14.0 - -36 -35 -36 14.0 - -36 -35 -36 -36 -36 -37 -36 -36 -36 -37 -36 -36 -36 -37 -36 -36 -36 -37 -36 -38 -37 -39 -36 -36 -36 -37 -36 -38 -37 -39 -36 -36 -36 -37 -37 -38 -38 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39 -39				12.0 —														-
method & support -36 -36 -36 -36 -11.0 -36 -11.0 -36 -11.0 -36 -11.0 -37 -11.0 -38 -11.0 -39 -11.0 -31 -11.0 -35 -11.0 -36 -11.0 -37 -11.0 -38 -11.0 -39 -11.0 -30 -11.0 -31 -11.0 -32 -11.0 -33 -11.0 -34 -11.0 -35 -11.0 -36 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 -11.0 <	KEHO		-37						1 : : :	111								1
method & support auger screwing AS auger screwing AS auger screwing AS auger screwing AS auger screwing AD auger screwing	5			-					1 : : :	1 1 1								-
method & support As auger screwing As auger screwing method & support MLCOMULC core (51.9 mm) moder screwing NMLCOMULC core (647.6mm) moder screwing Netter intere core (85.0mm) mo core recovered <td>Log C</td> <td></td> <td>-</td> <td>12.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i i</td> <td></td> <td></td> <td></td> <td>ii </td> <td></td> <td></td> <td></td> <td>_</td>	Log C		-	12.0						i i				ii				_
method & support 14.0 -35 -35 method & support 11.0 -35 10.0 -35 10.0 11.0 11.0	ev:AM									ij								-
method & support 35 14.0 114.0 1111111 1111111 1111111<	Y.GLB		-36	-														-
method & support -35 -35 Image of the symbolic indicate material) Image of the symbolic indicate material)<	IBKAK																	1
method & support AS auger screwing AD auger drilling I/1/10/12, water level on date bit water inflow core recovered RS residual soil NQ wireline core (61.9 mm) infling fluid loss core recovered DW distinctive weathered DW distinctive weathered SS shear sone SS shear sone UN undulating SP standard penetration partial drilling fluid loss core run details core run details Core run details SS Shear sone SS Shear sone SS Shear sone SS Shear sone CS Shear sone CS Shear sone SS Shear sone SS Shear sone UN undulating SS Shear sone SS Shear sone UN undulating SS Shear sone SS Shear sone UN undulating SS Shear sone SS Shear sone SS Shear sone SS Shear sone UN undulating SS Shear sone UN undulating SS Shear sone SS <td< td=""><td>- 00-</td><td></td><td></td><td>14.0</td><td></td><td></td><td></td><td></td><td>1 : : :</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>	- 00-			14.0					1 : : :									_
method & support AS auger screwing AS auger screwing graphic log / core recovery RS residual soil AD auger drilling 10/10/12, water core recovered RS residual soil W washbore 10/10/12, water core recovered W Wishbore UN UN NMLCNMLC core (51.9 mm) water inflow core recovered core recovered DW distinctly weathered SS shear zone UN undulating NQ wreline core (63.5 mm) partial drilling fluid loss core run details core run details Core run details SS shear sufface SC shear sufface Very low test water pressure test result barrel withdrawn L low SL slickensided SN Seam	0 0		-35	-						11				i i l				-
Mentod & support AS auger screwing RS residual soil PT parting PL planar AS auger screwing M M M RS residual soil PT parting PL planar AS auger screwing M	5																	1
AD auger drilling CB claw or blade bit W washbore NMLCNMLC core (51.9 mm) NQ wireline core (64.5 mm) PQ wireline core (65.5 mm) PD with the partial drilling fluid loss partial drilling fluid loss PT standard penetration test DHH developed harmone test DHH developed harmone test						water	graphic log / co	ore recove	ry		RS residu	al soil			PT parting		PL planar	
W washbore NMLCNMLC core (51.9 mm) NQ wireline core (63.5 mm) PQ wireline core (63.5 mm) PQ wireline core (63.5 mm) PD wireline core (63.5 mm) PD wireline core (64.5 mm) PD wireli	AI CI	Da Bcl	uger dril law or bl	lling lade bit		level on date shown			material)		HW highly	weathe	red		SZ shear:		UN undula	ating
INC Wireline core (47.01ml) Image: Simple core (63.5mm) SM seam PQ wireline core (85.0mm) Image: Simple core (85.0mm) SM seam SPT standard penetration trength roughness coating test barrel withdrawn L low SL slickensided SN stain	N	MLON	IMLC co	re (51.9	mm)						MW moder SW slightly	ately we	eathered		CO contac CS crushe	t		
SPT standard penetration test	H(P(Q w Q w	rireline c rireline c	ore (63.5 ore (85.0	5mm) Omm)						FR fresh *W replaced w strength	ith A for a						
Circle ground control and product control and	SF	PT st te	tandard est	penetrat	ion	water pressure test result					VL very lov L low	N			SL slicke	nsided	CN clean	
Interval shown SCR = Solid Core Recovery (%) VH very high RO rough CO coating RQD = Rock Quality Designation (%) EH extremely high VR very rough				, namine	•	금 (lugeons) for depth	SCR = Solid C	ore Recov	ery (%)		H high VH very hig	gh			SO smoo RO rough	th ו	VN venee	

drawn	МВ		client: Shoalhaven City	y Council
approved	JPT		project: Geotechnical and Hy	drogeological
date	3/6/2016	coffey	Investigat	ion
scale	N.T.S.	A TETRA TECH COMPANY	title: Core photogra	ph BH2
original size	A4		project no: GEOTWOLL03957AA	figure no: 2

A TETRA TECH	H COMF	PANY							Bore	hole ID.	BH3	
Enai	ina	oring	. I	~	~	Da	rahala		shee	t:	1 of 2	
Engi	me	enné	<u>ן ו</u>	-0	<u>J -</u>	DU	rehole		proje	ct no.	GEOTWOLL03957AA	
client:	Sh	oalhave	n C	ity C	coun	cil			date	started:	24 May 2016	
principal:	incipal: -									completed	1: 24 May 2016	
project:	Ge	otechnie	cal	and	Hydı	rogec	ological Investigation		logge	ed by:	МВ	
location:	W	est Now	ra F	Recy	cling	g and	Waste Facility, Mundamia NSW		chec	ked by:	CDC	
position: E:	: 2761	63; N: 61370	37 (N	1GA94	Zone 5	56)	surface elevation: 48.91 m (AHD)	angle from horizontal: 90°				
drill model: Hanjin DB8, Track mounted drilling fluid: water							hole	diamete	er : 114 mm			
drilling inf	format	ion			mate	erial sub	ostance					
l & t ration	samples & E S material description							9 6	ency / density	hand penetro-	structure and additional observations	

	method & support	penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations
ŀ	s ⊒ ∎	2 1 2 1 2 1	wa		RL	de -	ß	cla syr	Gravelly Sandy CLAY: medium plasticity, pale brown, fine grained sand, sub-angular gravel, trace	Ĕ 8 D	อีซี MD	100 200 300 400	TOPSOIL -
				SPT 5, 11, 11 N*=22 SPT 2, 12, 22 N*=34	-48	- - - 1.0 -			 of organics. Sandy CLAY: medium plasticity, brown, orange mottled, fine grained sand, trace of sub-angular gravel, trace of organics. colour change to brown, orange to red mottled 	-	F - St		RESIDUAL
27/07/2016 10:46					-47	- - 2.0 -			Sandy CLAY: medium plasticity, brown, red to grey to orange mottled, fine grained sand, trace of sub-angular gravel.	-			EXTREMELY WEATHERED
DrawingFile>>	AD/T		Not Observed	SPT 8, 22, 31 N*=53	-46	- 3.0 -			colour change to grey, brown, red to orange mottled				
GPJ	AC		No	SPT 10, 19, 26 N*=45	-45	- 4.0							
DLE: NON CORED GW					-44	- 5.0— -							
LIBRARY.GLB rev.AM Log COF BOREHOLE: NON CORED GW03957AA_DATABASE.				SPT 15, 23, 30/120mm N*=R	-43	- - 6.0 - - -			Sandy CLAY: medium to high plasticity, brown, grey mottled, fine to medium grained sand, trace of sub-angular to sub-rounded gravel. ironstone fragments		- — –		
8	↓				-42	- 7.0 -			Borehole BH3 continued as cored hole	-			HIGHLY WEATHERED SANDSTONE
CDF_0_9				T	-41	-			1	classifica	tion over		
	meth AD AS HA W DHH * e.g. B T V	hod auger di auger si hand au washbo d downho bit show AD/T blank bi TC bit V bit	crewir iger re le har n by s	ng* nmer	pen wat	mud casing etration er er leve wat	1	ater shown	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample	based Classific Disture dry moist wet p plastic l	escription on Unifie ation Syst	n d	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

ATET	ra te	ECH CO	OMPANY								Borehol	e ID.	BH3	
F	n	rir		rin	g Log - Coi	red Bore	hold				sheet:		2 of 2	
	<u> </u>	-				eu Dore					project	no.	GEOTWOL	
clie	nt:		Shoa	lhav	en City Council						date sta	arted:	24 May 201	16
prin	icipa	al: -									date co	mpleted:	24 May 201	16
pro	ject:	. (Geote	echn	ical and Hydrogeo	logical Investig	gation				logged	by:	MB	
loca	atior	ו:	West	t Nov	wra Recycling and	Waste Facility,	Mune	damia N	ISW		checked	d by:	CDC	
posi	tion:	E: 27	'6163; I	N: 6137	7037 (MGA94 Zone 56)	surface elevation: 4	18.91 m ((AHD)		angl	e from horiz	ontal: 90°		
			-	B, Trac	ck mounted	drilling fluid: water				_	diameter : ?		vane id.	:
dril	ling i	inforn	nation	mate	erial substance material dese	cription	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	estimated	samples,	rock	defect	1	ditional observations	and
α γ ν			Ê	ic log	ROCK TYPE: grain colour, structure, min	characterisics,	weathering { alteration	strength & Is50	field tests & Is(50)	un s	spacing (mm)		defect descriptions ation, planarity, rough	6
method & support	water	RL (m)	depth (m)	graphic log	start coring at 7.00m		weath	X = axial; O = diametral J ⊒ ≅ ± 5 ⊞	(MPa) a = axial; d = diametral	core run details	30 100 300 3000 3000	particular	thickness, other)	general
1	-			/	NO CORE: 1.00 m									
														-
			-	Å										-
	served	-41	-	$/ \setminus$										-
- NMLC	Not Observed		8.0-		SANDSTONE: fine to media trace of sub-angular to ang		XW						PL, RO, Sand CO	-
		-	-					 -					PL, RO, Sand CO PL, RO, Sand CO	-
			-		colour change to brown		XW					SM, 10°, JT, 10°, F	PL, RO, Gravel CO - PL, RO, Sand CO	Sand -
		-40	9.0		colour change to red [iron s	stained at 8.7 to 8.8mj						- \└ JT, 45°, F	PL, RO, Sand CO PL, RO, Sand CO	-
			-		colour change to orange, b	rown with grey bands						_\ [_] SM, 10°,	PL, RO, Sand CO PL, RO, Gravel CO - PL, RO, Sand CO	Sand _
		-	-		Borehole BH3 terminated a Target depth	t 9.30 m						<u> </u>	PL, RO, Gravel CO - S	Sand -
														-
		-39	10.0					!!!!!						-
			-											-
		-	-											-
														-
		-38	11.0	-										
			-											-
		-												-
		07	-											
		-37	12.0											
														-
		Γ						! ! ! ! ! !						-
		-36	-											-
			13.0											_
		Ļ												-
														-
		-35	-											-
			14.0	1										-
		F	-											-
			-											-
		-34	-											-
AS	au	& sup	rewing		water	graphic log / co	ore recove	ery		J & alter ual soil mely wea		PT parting JT joint) PL p	rity blanar curved
AD CB	cla		lade bit		10/10/12, water level on date shown		ecovered	e material)	HW highly DW distin	v weathe	red hered	SZ shear SS shear	zone UN u surface ST s	undulating stepped
W NM NG	ILONN	ashbor MLC co reline c	e ore (51.9 core (47.9	mm) 6mm)	water inflow complete drilling fluid los		e recovere		MW mode SW slight		eathered	CO contac CS crushe		rregular
HC PQ) wii wii	reline o reline o	ore (63. ore (85.	5mm) 0mm)	partial drilling fluid loss	core run details			FR fresh *W replaced v strength	vith A for a	alteration	SM seam		
SP	T sta tes	andard st	penetra	tion		barrel	withdrawn		VL very lo L low	W		SL slicke	ensided CN of	clean
υH	in 00	wnnole	e hamme	;1	ےں water pressure test resu (lugeons) for depth interval shown	TCR = Total Co			M mediu H high			POL polish SO smoo RO rough	th VN ۱	stain veneer coating
						SCR = Solid C RQD = Rock C			VH very hi EH extrem			VR very		Joanny

drawn	MB		client:	Shoalhaven Cit	y Council		
approved	JPT		project:	Geotechnical and Hy	drogeological		
date	3/6/2016	coffey		Investigation			
scale	N.T.S.	A TETRA TECH COMPANY	title:	Core photogra	iph BH3		
original size	A4		project no: GEOTV	OLL03957AA	figure no: 3		

TETRA TEC	HCOM	PANY							Borel	hole ID.	BH4
Fna	inc	orin	u I		a -	Ro	rehole		sheet	t:	1 of 2
LIIY	IIIC		<u>y</u> ı	LUį	<u>y -</u>		Tenole		proje	ct no.	GEOTWOLL03957A
client:	Sh	oalhave	en C	ity C	Coun	cil			date	started:	30 May 2016
rincipal:	-								date	complete	ed: 30 May 2016
oroject:	Ge	otechn	ical	and	Hyd	rogec	ological Investigation		logge	ed by:	MB
ocation:	W	est Nov	vra I	Recy	cling	g and	Waste Facility, Mundamia NSW		checl	ked by:	CDC
osition: E	: 2762	81; N: 6137	109 (N	/IGA94	Zone	56)	surface elevation: 49.11 m (AHD)	angl	le from h	orizontal:	90°
ill model:	Hanjin	DB8, Trac	k mou	inted	_		drilling fluid: water	hole	diamete	r : 114 mn	n
drilling in	format	ion			mate	erial sub	ostance				
support support 2 penetration		samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa) କୁ ଝୁ ଝୁ ଙ୍କୁ	structure and additional observations
			-49		$ \rangle$		Gravelly Sandy CLAY: medium plasticity, pale brown, fine grained sand, sub-angular to angular	D	F		TOPSOIL
	li I					<u> </u>	∖ gravel, trace of organics.	1	St - VS	ŧ į į į į į	RESIDUAL -
		SPT 9, 17, 25 N*=42					Sandy CLAY: medium to high plasticity, brown, red to orange mottled, fine grained sand, trace of sub-angular to sub-rounded gravel, trace of organics.	~			
		SPT 4, 18, 21 N*=39	-48	1.0-			Sandy CLAY: medium to high plasticity, brown, red, grey to orange mottled, trace of sub-angular gravel.	_			
		SPT	-47	2.0-			colour change to grey brown, orange to red mottled		— <u>—</u> –		EXTREMELY WEATHERED
	Not Observed	25, 30/30mm <u>N*=R</u>	-46 -46	3.0-							
		SPT 9, 20, 26/100mm N*=R	-45	4.0-			Sandy CLAY: low plasticity, brown grey, orange mottled, fine to coarse grained sand, trace of sub-angular to sub-rounded gravel.		VSt		
			-44	5.0-		· · · · · · · · · · · · · · · · · · ·	CLAYEY SAND: fine to coarse grained, brown, grey, orange mottled, low plasticity clay, trace of sub-angular to sub-rounded gravel.		D		
		SPT 16, 28/40mm N*=R	-			<u> </u>	Sandy Silty CLAY: low to medium plasticity, yellow brown, fine to coarse grained sand.		VSt		

Borehole BH4 continued as cored hole

samples & field tests B bulk disturbed sample

refusal

hammer bouncing

D E

SS

U##

HP N N*

Nc VS

R HB

disturbed sample environmental sample

environmental sample split spoon sample undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) SPT - sample recovered SPT with solid cone when short penetration and (kPa)

vane shear; peak/remouded (kPa)

1111 ||||| $| \ | \ | \ |$ |||||

||||||| | | |

|||||1111

iii

S F

. St VSt

H Fb

VL

L MD

D VD

classification symbol &

soil description

based on Unified

Classification System

moisture D dry M mois W wet

D dry M moist W wet Wp plastic limit WI liquid limit

HIGHLY TO MODERATELY WEATHERED SANDSTONE

consistency / relative density VS very soft

very soft soft firm

stiff very stiff hard

friable

loose

dense

very loose

very dense

medium dense

||

| | |

||111

method AD auger drilling* AS auger screwing*

hand auger

DHH downhole hammer

bit shown by suffix

washbore

AD/T

blank bit

TC bit

Vbit

AS HA W

*

e.g. B T

43

-42

support M mud

C casing

⊻

water

Þ

penetration

<u>ات</u>

N nil

no resistance ranging to
 refusal

10-Oct-12 water level on date shown

water inflow

water outflow

7.0

Beneficiency Log - Corect Bonellone after the set of the s	A TET	'RA TE	ECH CC	MPANY										Boreho	le ID.	BH4		
client: Shoalhaven City Council oute stanted: 30 May 2016 project: Geological and Hydrogeological Investigation togget by: MB coate stanted: 30 May 2016 date complete: 30 May 2016 togget by: MB coate stanted: by coate stanted: 30 May 2016 togget by: MB coate stanted: 30 May 2016 togget by: MB togget by	F	nr	nin		rin	a Loa - Coro	d Roral	nola	`					sheet:		2 of 2		
principie : checken in an Audre george in an Ausse Aus		ΠĆ							5					project	no.			<u>57A</u> A
Import Endertmical and Hydrogeological Investigation Logge by Max Instance Max Hower Rocycling and Watch Facility, Mundamin KSW network in the comparison of	clie	nt:	S	Shoa	lhav	en City Council								date sta	arted:	30 May 2	2016	
Mext Now Recycling and Wast Pacifity, Mundani ASW cacked by DCC pallot:::::::::::::::::::::::::::::::::::	prir	ncipa	al: -											date co	mpleted:	30 May 2	2016	
position: E. 27023 I. N. 0137100 (MGAH Zono 60) surface develor. 40.11 m (AHD) angle from hotizotal . 50" total model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck mounted and model Humpin DBS. Tinck Mounted and model Hum	pro	ject:	C	Geote	echn	ical and Hydrogeolog	ical Investig	ation						logged	by:	MB		
Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitte Settement Hampie Dieg. True muteriel absolution: Outfitt	loc	ation	1:	West	t Nov	wra Recycling and Wa	ste Facility,	Muno	dan	nia I	NSW			checke	d by:	CDC		
offiling information matched auberace matched auberace matched auberace matched auberace v = set information matched auberace match	pos	ition:	E: 27	6281; N	N: 6137	'109 (MGA94 Zone 56) su	Irface elevation: 4	9.11 m (AHD)		ar	ngle	e from horiz	zontal: 90°			
Status Status<							illing fluid: water									van	e id.:	
Image: Second second							on	ø				les,		defect				
Image: Second second	nod &	5	Ê	(ш) Ч	hic log			thering	& ×	ls50 = axial:	& ls(5 (MP)		ails		(type, inclin	ation, planarity, r	oughness, coa	ating,
Image: 1	meth	wate	RL (dept	grap	start coring at 7.00m			- ۲	≥г≯		ial; ietral	deta		particular		g	eneral
Image: 1			-42	-			rained, brown,							រ ភ្នា				_
motion of a support - 40 80 - 41 - 41 - 4				-											JT. 10 - 1	5°. PL. RO. Clav	ev sand CO	-
Image: Add and a support of a support o			F					SW -	ļii							,,	-,	
under state and any performed any perfor				8.0-		colour onlange to groy								i 🛃 i i	H			_
3 3		served	-41	-														-
-40 90 -7.4°, PL SO, VN -10 90 -7.4°, PL SO, VN -10 -7.4°, PL SO, VN -10 -7.4°, PL SO, VN -30 100 -30 100 -31 -7.7 -35 11.0 -36 130 -36 130 -36 130 -36 130 -36 130 -36 100 -37 120 -38 100 -36 130 -37 100 -38 100 -37 120 -38 100 -39 100 -30 100 -31 100 -36 130 -37 100 -38 100 -39 1000 -30 1000 -30 1000 -30 1000 -30 1000 -30 1000 -30 1000 <td>NMLC</td> <td>Vot Ob</td> <td></td> <td>1</td>	NMLC	Vot Ob																1
-40 8.0	Ī			-	· · · · ·				!!	İİ				iiii				4
method & support A auger of auger of stars auger of stars between table bit weaking of stars bit in disc stars bit in din disc stars bit in disc stars bit in disc s			-40	9.0										i Fiji			and CO	
-39 10.0 Borchole BH4 terminated at 10.00 m 11.0.1 -37. PL. RO. Clayey and CO -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 11.0 -38 13.0 -38 13.0 -38 12.																		1
Image: state in the support As a support and a support of the support of the support of the support and a supp			Ļ	-											SM, PL, I	RO, Clayey sand	со]
-39 -39 -39 -30				-						iii				ι Gi i i	JT, PL, R	O, Clayey sand	00	-
method & support As auger screwing Bauger screw			-39	10.0			00 m	500										
a -38 -				-		l arget depth]
a -38 -			-	-														
a -38 -				-					!!	iii								
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain			-38	-														4
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain				-														
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain			F	-														1
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain				12.0														_
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain			-37	-					1									-
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain				-														- 1
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain			Γ]
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain			-36	13.0 —					!!	11								
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain									i i	iii				1111				1
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain			Ļ	-														
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain				-					1 2 2									
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain			-35	14.0					!!	11								-
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain										11								
method & support water graphic log / core recovery weathering & alteration* defect type planarity AS auger screwing auger drilling 10/10/12, water core recovered RS residual soil J joint CU curved W washbore NMLCNMLC core (51.9 mm) water inflow core recovered mo core recovered DW distinctly weathered DW distinctly weathered SS shear surface ST stepped NQ wireline core (63.5mm) partial drilling fluid loss partial drilling fluid loss core run details Core run details W regressure test result Image: transment with drawn TCR = Total Core Recovery (%) VL very low SL slickensided CN clean DHH downhole hammer TCR = Total Core Recovery (%) SCR = Solid Core Recovery (%) H high RO rough SN stain			F	-														-
AS auger drilling PL planar AS auger drilling into de shown XW extremely weathered JT point CU curved AD auger drilling into de shown water inflow core recovered W water inflow core recovered W water inflow UN undulating VW water inflow core recovered into core (51.9 mm) NG ore recovered DW distinctly weathered SS shear zone ST stepped VW water inflow core recovered no core recovered SW slightly weathered SS shear zone ST stepped VW partial drilling fluid loss partial drilling fluid loss core run details VV reglaced with A for alteration SM seam VU very low L low SL slickensided CN clean DHH downhole hammer veter pressure test result TCR = Total Core Recovery (%) VH very low SO so smooth VN veneer SCRSclid Core Recovery (%) VH very ligh SO <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>				-					1									-
AD auger drilling CB claw or blade bit W washbore NMLCNMLC core (51.9 mm) NQ wireline core (63.6mm) PQ wireline core (85.0mm) SPT standard penetration test DHH downhole hammer M M M M M M M M M M	AS	au	ger scr	ewing			graphic log / co	re recove	ry		RS r	esidual so	il		PT parting) P	L planar	
Water inflow NMLCNHLC core (51.9 mm) NQ wireline core (47.6mm) PQ wireline core (85.0mm) SPT standard penetration test DHH downhole hammer water inflow complete drilling fluid loss partial drilling fluid loss Image: Complete drilling fluid loss partial drilling fluid loss Image: Complete drilling fluid loss partial drilling fluid loss Image: Complete drilling fluid loss </td <td>CE</td> <td>s cla</td> <td>w or bl</td> <td>ade bit</td> <td></td> <td>level on date shown</td> <td></td> <td></td> <td>material</td> <td>)</td> <td>HW h DW d</td> <td>ighly weat listinctly we</td> <td>ther eatl</td> <td>red nered</td> <td>SZ shear SS shear</td> <td>zone U surface S</td> <td>IN undulating T stepped</td> <td>9</td>	CE	s cla	w or bl	ade bit		level on date shown			material)	HW h DW d	ighly weat listinctly we	ther eatl	red nered	SZ shear SS shear	zone U surface S	IN undulating T stepped	9
HQ wireline core (63.5mm) Image: core (82.5mm) Image: core (82	NN	ILONN	ALC co	re (51.9	mm) 6mm)	complete drilling fluid loss	no core	e recovere	ed		MW n SW s	noderately lightly wea	/ we	athered	CO contac CS crushe	t IF		
test DHH downhole hammer DHH downhole hammer G Ulugeons) for depth interval shown C C DHH downhole hammer Ulugeons) for depth interval shown C C DHH downhole hammer C C DHH downhole hammer C C DHH downhole hammer C C DHH downhole hammer C C DH C C DH C C C C C C C C C C C C C	HC PC) wir) wir	eline c' eline c	ore (63. ore (85.	5mm) 0mm)	< partial drilling fluid loss	core run details				*W repla streng	iced with A f th	for a	Iteration			ootin-	
Image: Constraint of the period TCR = Total Core Recovery (%) H high SO smooth VN veneer Interval shown SCR = Solid Core Recovery (%) VH very high RO rough CO coating		tes	st			water pressure test result	barrel v	vithdrawn			L lo	w			SL slicke	ensided C	N clean	
		20				口 (lugeons) for depth	SCR = Solid Co	ore Recov	ery (%	6)	H hi VH ve	gh ery high			SO smoo RO rough	oth V ר C	'N veneer	

A TETRA TECH									Borel	nole ID.	BH5		
				1		_			sheet	t:	1 of 2		
Engi	ne	erin	g I	_O (g -	BO	rehole		proje	ct no.	GEOTWOLL03957A		
client:	Sh	oalhav	en C	ity C	coun	cil			date	started:			
principal:	-			-					date	complet	ted: 25 May 2016		
project:		otochn	ical	and	Hvd	~~~~~	logical Investigation	logged by:			MB		
					-	-				•			
location:				-			Waste Facility, Mundamia NSW			ked by:	CDC		
position: E: drill model:					Zone	o6)	surface elevation: 46.35 m (AHD) drilling fluid: water	-		orizontal: r : 114 mr			
drilling inf					mate	erial sub	•						
tion		samples &			D	tion	material description		y / nsity	hand	structure and		
method & support	water	field tests	RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture	consistency / relative density	penetro- meter (kPa) $\stackrel{\circ}{\scriptscriptstyle \sim}$ $\stackrel{\circ}{\scriptscriptstyle \sim}$ $\stackrel{\circ}{\scriptscriptstyle \sim}$ $\stackrel{\circ}{\scriptscriptstyle \sim}$	additional observations		
	Not Observed	SPT 7, 14, 21 N*=35 SPT 3, 24, 22 N*=46 SPT 8, 21, 25 N*=46 SPT 17, 16, 19 N*=35	-46 -45 -44 -43 -42				Gravelly Sandy CLAY: medium plasticity, pale brown, orange mottled, fine to medium grained sand, sub-angular to angular gravel, trace of organics. Sandy CLAY: medium plasticity, pale brown, orange to red mottled, fine to coarse grained sand, trace of sub-angular to angular gravel. colour change to pale brown, grey to red to orange mottled Sandy CLAY: medium plasticity, pale brown, grey, red to orange mottled, trace of sub-angular to sub-rounded gravel. colour change to grey, red, orange mottled		F - St F - St VSt / H		TOPSOIL RESIDUAL EXTREMELY WEATHERED MATERIAL		
P P		SPT 28, 28, 36/100mm N*=R	-40 -39 -38 -38	5.0 			CLAYEY SAND: fine to medium grained, grey, brown, red, orange mottled, low plasticity clay, trace of sub-angular gravel. SAND: fine to medium grained, brown, grey, orange, trace of sub-angular gravel. Borehole BH5 continued as cored hole		VD		HIGHLY WEATHERED SANDSTONE		
AD auger AS auger HA hand W washl DHH down	oore nole ha own by bit	ing* ammer	M C pen wat	er ∎ 10- 10- er 10- lev wat	ı	al ater e shown	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone	soil base	descriptio ed on Unifie ication Sys	n ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

ATETR	RA TE	CH CC	MPANY								Borehol	e ID.	BH5	
с.	~	nin		rin	alaa Cara	d Barah		•			sheet:		2 of 2	
	ΠĆ	_			g Log - Core						project	no.	GEOTWOLL	<u>03957A</u> A
clier	nt:	S	Shoa	lhave	en City Council						date sta	arted:	25 May 2016	5
prin	cipa	ul: -									date co	mpleted:	25 May 2016	;
proj	ect:	C	Geote	echn	ical and Hydrogeolog	ical Investig	ation				logged	by:	МВ	
loca	tion	:	West	t Nov	vra Recycling and Wa	ste Facility,	Munc	damia N	SW		checke	d by:	CDC	
					. ,	Irface elevation: 46	6.35 m (AHD)		angl	e from horiz	ontal: 90°		
			njin DB8 nation		k mounted dr	illing fluid: water				-	diameter :		vane id.:	
					material descriptio	on	8	estimated strength	samples, field tests	100.	defect spacing		ditional observations ar defect descriptions	nd
method & support	ы Г	(E	th (m)	graphic log	ROCK TYPE: grain chara colour, structure, minor col		weathering alteration	& Is50 X = axial; O = diametral	& ls(50) (MPa)	core run details	(mm)	(type, inclina	ation, planarity, roughne thickness, other)	ss, coating,
met	water	-38	depth	. grag	start coring at 8.30m			ליצר⊱	a = axial; d = diametral	core	3000 3000 3000	particular		general
Ī	Not Observed	50	-	· · · · ·	SANDSTONE: fine to coarse gra grey, orange, trace of sub-angul		HW						PL, RO, SN PL RO, SN	1
NMLC	Not Ob	-	-				<u>xw</u> Hw -				┉┓	T\\└ JT, 20°, F	PL, RO, SN PL, RO, Sand CO PL, RO, SN	-
			9.0 -		black rounded pebble at 8.9m		MW					\ ^L SS, 10°, I	PL, RO, SN PL, RO, SN CU, RO, SN	
		-37			Borehole BH5 terminated at 9.39 Target depth	9 m		 					CU, RO, SN	
		-	-											-
			10.0											-
		-36	-											-
		L	-											-
			11.0											-
		-35	-											-
			-											-
			12.0 —											-
		-34	-											-
			-											-
		-	13.0											_
		-33												-
			-											-
		-	14.0 —											_
		-32												-
			-											-
		-	- 15.0											_
		-31	-											-
		0.	-											-
		-	- 16.0											-
			- 10.0											-
		-30	-											-
		_	-											-
			17.0 —											-1
AS AD CB W NM NQ HQ PQ SPT	au au cla wa LONM wir wir sta tes	shbore ALC co reline c reline c reline c ndard	ewing ling ade bit	8mm) 5mm) 0mm) tion	water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss water pressure test result	e recover covered nbols indicate recovere rithdrawn	material)	MW moder	al soil nely weathe ctly weath rately we y weath vith A for a w	athered red hered eathered ered	CO contac CS crushe SM seam roughness SL slicke POL polish	g PL plar CU cun zone UN und surface ST step et IR Irreg ed seam ensided CN clea	har ved lulating oped gular an n	
					(lugeons) for depth interval shown	TCR = Total Cor SCR = Solid Cor ROD = Bock Ou	ery (%)	H high VH very hig			SO smoo RO rough VR verv	th VN ven N CO coa	eer	

CDF_0_9_06_LIBRARY.GLB rev:AM_Log_COF BOREHOLE:CORED_GW03957AA_DATABASE.GPJ_<<DrawingFile>> 27/07/2016 10:48

drawn	MB		client: Shoalhaven Cit	y Council
approved	JPT		project: Geotechnical and Hy	vdrogeological
date	3/6/2016	coffey 🔧	Investigat	ion
scale	N.T.S.	A TETRA TECH COMPANY	title: Core photogra	aph BH5
original size	A4		project no: GEOTWOLL03957AA	figure no: 5

TETRA T	ECH C	OMPA	NY							Boreł	nole ID.	BH6
End	air		orin	a I	~	N _	R۵	robolo		sheet	:	1 of 2
EUŰ	<u>yn</u>	Ie	enn	<u>y</u> ı	-0(<u>y -</u>		rehole		proje	ct no.	GEOTWOLL03957A
client:		Sho	alhave	en C	ity C	coun	cil			date s	started:	27 May 2016
princip	al: •									date of	complet	ed: 27 May 2016
project	: (Geo	otechn	ical a	and	Hydı	rogec	ological Investigation		logge	d by:	MB
ocatio	n:	We	st Nov	vra F	Recy	cling	g and	Waste Facility, Mundamia NSW		check	ked by:	CDC
			3; N: 6137			Zone 5	6)	surface elevation: 48.92 m (AHD)	•		orizontal:	
lrill mod drilling		-	DB8, Trac	k moui	nted	mate	rial sub	drilling fluid: water	hole	diameter	r : 114 mr	n
								material description		/ sity	hand	structure and
support	² penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE : plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	penetro- meter (kPa) € & & & &	additional observations
					-	$ \rangle$		Gravelly Sandy CLAY: medium plasticity, brown, orange mottled, fine to medium grained sand,	D	F		TOPSOIL -
			SPT 7, 16, 44 N*=60	-48	-			Sub-angular gravel, trace of organics.	-	 St - VSI	liii	RESIDUAL
		-	SPT 3, 9, 29 N*=38		1.0 - -			Sandy CLAY: medium plasticity, brown, grey to red to orange mottled, fine grained sand, trace of sub-angular to sub-rounded gravel.		VSt / H		
				-47	- 2.0 -			colour change to brown, red, orange to grey mottled				EXTREMELY WEATHERED
		Not Observed	SPT 7, 23, 36 N*=59	46	- 3.0 -							
		-	SPT 10, 41, 26/55mm N*=R	45	- - 4.0 - -			CLAYEY SAND: fine to medium grained, brown, grey, red to orange mottled, low plasticity clay, trace of sub-angular gravel.		VD		
				-44	- - 5.0-			SAND: fine to coarse grained, brown, grey, orange, trace of sub-angular gravel.				
,				-43	- - 6.0-			Sandy Silty CLAY: low to medium plasticity, yellow brown, fine to coarse grained sand.		VSt		
				-42	- - 7.0-			Borehole BH6 continued as cored hole				MODERATELY WEATHERED SANDSTONE
				- -41	-				alaac ifi r	tion		
AS au HA ha	uger dri uger sc and aug ashbor	rewin ger e	-	pene		ı	nil	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample	based	Ition sym Iescriptio I on Unifie ation Sys	n ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff

refusal

hammer bouncing

T

water

<u>ار ا</u>

no resistance ranging to

10-Oct-12 water level on date shown

water inflow

water outflow

HP N N* VS R HB

AD/T blank bit

TC bit V bit

*

e.g. B T

bit shown by suffix

environmental sample split spoon sample undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear; peak/remouded (kPa) refueal

moisture D dry M mois W wet

D dry M moist W wet Wp plastic limit WI liquid limit

H Fb VL

L MD

D VD

stiff very stiff hard

friable

loose

dense

very loose

very dense

medium dense

ATET	RA TE	ECH CC	MPANY								Bo	rehol	e ID.	BH6	
F	nr	nir		rin	g Log - Cored Borehole							eet:		2 of 2	
	-	_								ject		GEOTWOLL			
clie			snoa	inav	en City Council								rted:	27 May 2016	
prin	cipa	al: -											mpleted:	27 May 2016	5
proj	ect:				ical and Hydrogeolog	-					log	ged	by:	MB	
loca	ation	n:	West	t Nov	wra Recycling and Wa	ste Facility,	Muno	damia N	ISW	checked by: CDC					
L						urface elevation: 48 illing fluid: water	8.92 m (AHD)		-			ontal: 90° I 14 mm	vane id.:	
		inform			erial substance	ining india. water				-	mass			vane id	
ø				Бо	material description ROCK TYPE: grain chara		ng &	estimated strength	samples, field tests		spa	fect cing		Iditional observations ar defect descriptions	
method a	water	RL (m)	depth (m)	graphic log	colour, structure, minor col		weathering 8 alteration	& Is50 X = axial; O = diametral	& ls(50) (MPa)	core run details		im)		ation, planarity, roughne thickness, other)	ss, coating,
≝ ⊒s	e N	RL	de		start coring at 6.28m SANDSTONE: fine to coarse gra	ained brown	af ≷ WM	╡┘ᇗᅚѮ┇	a = axial; d = diametral	8 8	9 ² 3		particular		general
		-	-		trace of sub-angular to angular g									PL, RO, VN	1
		-42	-								lii.	l i i			-
			7.0-										JT, 10°, P	PL, RO, VN PL, RO, Clayey sand CO	
		-	-		colour change to grey brown									FL, RO, Clayey Saliu Co	´ -
	Not Observed		-								╎╎╏		↓ ↓── JT, 10 - 1	5°, CU, RO, VN	-
NMLC	Not Ob	-41	8.0-									 h	↓ ↓ JT, 10°, P	PL, RO, VN	-
			-	· · · · ·											-
		F	-								Li i	ili i	— PT, 10°, F	PL, RO, VN	-
			-				MW /								-
		-40	9.0				SW						— PT, 10°, F	PL, RO, VN	
			-												-
. _♥			-		Borehole BH6 terminated at 9.5	7 m									
		-39	- 10.0 —		Target depth										
			-								Lii.				-
		-	-												-
			-												-
		-38	11.0												_
															1
		Γ	-												-
		-37	-	-				iiiii			ιi.	i i i			-
			12.0												_
		+	-												-
			-												-
		-36	13.0	ļ											_
			-												-
		F	-	1											1
			-	-											-
		-35	14.0												-
		& supp		<u>I</u>	water	graphic log / cor	e recove	ry	weathering RS residu	al soil			defect type PT parting	PL plar	nar
AS AD CB	au cla	ger scr ger dril aw or bl	ling ade bit		10/10/12, water level on date shown	core rec	covered mbols indicate	material	XW extremed AW highly	nely weathe	red	l	JT joint SZ shear z	zone UN und	/ed ulating
W	wa	shbore	re (51.9 pre (47.0	mm)	water inflow		recovere		MW mode SW slight	ctly weat rately w y weath	eathere	ed	SS shears CO contact CS crushe	t IR Irre	oped gular
NQ HQ PQ	wir	reline c	ore (47.) ore (63.) ore (85.)	5mm)	partial drilling fluid loss	core run details			FR fresh *W replaced w strength	•		ı	SM seam		
SP	T sta tes	andard st	penetra	tion			vithdrawn		VL very lo L low	w			roughness SL slicke	nsided CN clea	
	н do	wnnole	hamme	er"	water pressure test result (lugeons) for depth interval shown	TCR = Total Con SCR = Solid Co	re Recov	ery (%) ery (%)	M mediur H high VH very hi				POL polish SO smoot RO rough	th VN ven	eer
						RQD = Rock Qu	ality Des	ignation (%)	EH extrem	ely high			VR very r		5

;	approved	JPT		Geotechnical and Hy	drogeological					
	date	3/6/2016	coffey	Investigat	ion					
;	scale	N.T.S.	A TETRA TECH COMPANY	title: Core photograph BH6						
	original size	A4		project no: GEOTWOLL03957AA figure no: 6						

T

support

shoring

Ν none

S

level on date shown

water inflow

water outflow

Nc VS

R

SPT with solid cone vane shearpeak/remouded

refusal

(uncorrected kPa)

w wet

W, liquid limit

W_P plastic limit

VL

MD

D

VD

L

very loose

very dense

medium dense

loose

dense

Shoalhaven City Council client:

principal: -

Geotechnical and Hydrogeological Investigation project:

West Nowra Recycling and Waste Facility, Mundamia NSW

CDC location. checked by: position: E: 276135; N: 6136887 (MGA94 Zone 56) surface elevation: 49.83 m (AHD) pit orientation: equipment type: 35 Tonne Excavator PC350 excavation method: excavation dimensions: 7.0 m long 2.0 m wide excavation information material substance consistency / relative density material description hand structure and additional observations class ification ğ penetro meter samples & Ē penetra SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components field tests method graphic I moisture conditior support symbol Ē depth (water (kPa) R 00 30 0 10 30 0 0 0 Τ Silty CLAY: medium plasticity, brown, trace of fine F TOPSOIL Μ grained sand, trace of sub-rounded gravel, trace of RESIDUAL organics (rootlets). F - St ||49.5 11 Sandy CLAY: medium to high plasticity, brown, 1 + 1fine grained sand, trace of sub-rounded gravel, trace of organics. ||||||||11 ||11 49.0 ||||EXTREMELY WEATHERED MATERIAL Sandy CLAY: medium to high plasticity, red, grey, brown orange mottled, fine grained sand, trace of sub-rounded to sub-angular gravel, trace of St - VSt |||||||||1.0 |||||11 1 organics. 111 |||||48.5 Not Observed ||||1111 CLAYEY SAND: fine to coarse grained, grey, brown, orange, trace of sub-angular gravel, trace of VD D ||||||organics. 48.0 111 ||||||||2.0 SANDSTONE: fine to coarse grained, grey, brown, HIGHLY WEATHERED orange, with some ironstone, trace of sub-angular SANDSTONE gravel 11 47.5 ||||||||HIGHLY TO MODERATELY WEATHERED SANDSTONE |||||47.0 ||||||3.0 GPJ 111 ||||||DATABASE 11 46.5 Test pit TP1 terminated at 3.3 m Refusal ||||||111 GW03957AA |||||||||111 ||-46.0 111 |||||||4.0 LIBRARY.GLB rev:AM Log COF EXCAVATION |||||-45.5 111 111 |||||||||||||||-45.0 ||||||||||| | | |5.0 ||||||111 | | |-44.5 |||||||||0 9 06 111 ||||||Ę -44.0 11 ||||||classification symbol & samples & field tests consistency / relative density penetration method soil description undisturbed sample ##mm diameter U## VS very soft 00 based on Unified Ν natural exposure D disturbed sample s soft no resistance Classification System existing excavation bulk disturbed sample В firm BН backhoe bucket ranging to St F environmental sample stiff refusal moisture в bulldozer blade HP hand penetrometer (kPa) VSt very stiff dry moist R ripper Ν standard penetration test (SPT) D н hard water SPT - sample recovered Fb Е excavator N' М friable 10-Oct-12 water

Excavation ID.

date excavated:

date completed:

sheet:

project no.

logged by:

TP1

1 of 1

MB

GEOTWOLL03957AA

28 Jun 2016

28 Jun 2016

Ę

Engi	neering Log - Excavation	sheet:
Lingi		project no.
client:	Shoalhaven City Council	date excavated:
principal:	-	date completed:

Geotechnical and Hydrogeological Investigation project:

West Nowra Recycling and Waste Facility, Mundamia NSW location:

position: E: 276189; N: 6136966 (MGA94 Zone 56) surface elevation: 48.98 m (AHD) pit orientation: equipment type: 35 Tonne Excavator PC350 excavation method: excavation dimensions: 7.0 m long 2.0 m wide excavation information material substance consistency / relative density material description hand structure and additional observations class ification g penetro meter samples & Ē penetra SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components field tests method graphic I moisture conditior support symbol Ē depth (water (kPa) Ч 00 30 0 10 30 0 0 0 Τ Silty Sandy CLAY: medium plasticity, brown, Μ F TOPSOIL orange mottled, fine grained sand, trace of sub-angular gravel, trace of organics (rootlets). ||F - St RESIDUAL 11 Sandy CLAY: medium to high plasticity, brown, ||||48.5 1 + 1orange mottled, fine to medium grained sand, trace of sub-angular gravel, trace of organics. ||||Sandy CLAY: medium to high plasticity, red, grey, brown to orange mottled, fine grained sand, trace of EXTREMELY WEATHERED St - VSt |||MATERIAL 48.0 sub-rounded gravel, trace of organics. 1.0 ||||||D ||||11 |||||47.5 1111 ||11 ||||||111 1111 47.0 2.0 111 Sandy CLAY: medium to high plasticity, grey, red, brown to orange mottled, fine to medium grained sand, trace of sub-rounded gravel. VSt ||||| | | |11 ||||||| | |46.5 11 ||||||||| | | | |Not Observed ||||||||||| | | | |46.0 3.0 Sandy CLAY: medium plasticity, grey, orange to brown mottled, fine to medium grained sand, trace VSt - H 111 of sub-rounded gravel. GW03957AA DATABASE.GPJ 111 ||||||45.5 ||||||||||||||| | |||||||||||1111 45.0 4.0 111 |||||111 111 | | | | |rev:AM Log COF EXCAVATION 44.5 111 44.0 111 50 HIGHLY WEATHERED SANDSTONE: fine to medium grained, grey, orange, brown, trace of sub-rounded gravel, trace of SANDSTONE 11 ||||medium plasticity clay. | | ||||||GLBr 43.5 11 -IBRARY. 11 ||| |111 ||||90 43.0 60 Test pit TP2 terminated at 6.0 m MODERATELY WEATHERED ||||Machine limit SANDSTONE 11 classification symbol & samples & field tests consistency / relative density penetration method soil description undisturbed sample ##mm diameter U## VS very soft 0 0 based on Unified Ν natural exposure D disturbed sample s soft no resistance Classification System existing excavation bulk disturbed sample В firm BН ranging to backhoe bucket St F environmental sample stiff refusal moisture в bulldozer blade HP hand penetrometer (kPa) VSt very stiff dry moist R ripper Ν standard penetration test (SPT) D н hard water SPT - sample recovered Fb Е excavator N' М friable 10-Oct-12 water V Nc VS W wet W_P plastic limit SPT with solid cone VL very loose level on date shown vane shearpeak/remouded support loose water inflow L W, Ν none (uncorrected kPa) liquid limit MD medium dense water outflow R refusal D S shoring dense VD very dense

checked by:

logged by:

Excavation ID.

TP2

GEOTWOLL03957AA

29 Jun 2016

29 Jun 2016

1 of 1

MB

CDC

Engineering	Log -	- Excavation
	3	

Shoalhaven City Council client:

principal: -

project: Geotechnical and Hydrogeological Investigation

West Nowra Recycling and Waste Facility, Mundamia NSW location:

Excavation ID.

po	sitio	n: E:2	7614	5; N: 61370	007 (M	GA94	Zone 5	6)	surface elevation: 48.97 m (AHD)		pit ori	entation:			
				5 Tonne Ex	cavato	r PC3			excavation method:		excavation dimensions: 7.0 m long 2.0 m wide				
ex	cav		infor	mation			mate	rial subs							
method	support	 penetration 	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	:	moisture condition	consistency / relative density	hand penetro- meter (kPa) ତ୍ରିର୍ଭ୍ଭତ୍ସ	structure and additional observations	
			Not Observed		-48.5 -48.0 -47.5 -47.0 -46.5 -46.0 -45.5 -45.0 -44.5 -44.0 -44.5				Silty Sandy CLAY: medium plasticity, dark brow fine grained sand, trace of sub-rounded gravel, trace of organics. Sandy CLAY: medium to high plasticity, brown, fine grained sand, trace of organics (rootlets). Sandy CLAY: medium to high plasticity, red, gre brown, orange mottled, fine grained sand, trace organics. Sandy CLAY: medium to high plasticity, grey, re orange mottled, fine grained sand, trace of ironstone fragments, trace of sub-angular grave Sandy CLAY: medium plasticity, grey, brown to red to orange mottled, fine grained sand, trace to ironstone fragments, trace of sub-angular grave SANDSTONE: fine to medium grained, grey, brown, orange, trace of sub-angular gravel. Test pit TP3 terminated at 5.5 m	ed, el.	M 	F F-St St-VSt		TOPSOIL RESIDUAL EXTREMELY WEATHERED MATERIAL HIGHLY WEATHERED HIGHLY WEATHERED HIGHLY WEATHERED	
r N E E F E	netho 3 3 4 upp o	natural existing backho bulldoz ripper excava	e xca e bucl er blad	sure vation ket de	vater	, , , , , , , , , , , , , , , , , , ,		to er	Samples & field tests U## undisturbed sample D disturbed sample B bulk disturbed sample E environmental sample HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS van e shearpeak/remouded (uncorrected kPa) R	Cl: moistu D dr	soil de based assifica ure y oist et astic lir		n d	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

sheet: 1 of 1 GEOTWOLL03957AA project no. date excavated: 28 Jun 2016 date completed: 28 Jun 2016 logged by: MB CDC checked by:

TP3

	Engineering	Log - Excavation
--	-------------	------------------

Shoalhaven City Council client:

principal:

в

R ripper

Е

Ν

S

support

none

shoring

bulldozer blade

excavator

water

V

10-Oct-12 water

water inflow

water outflow

level on date shown

-

Geotechnical and Hydrogeological Investigation project:

West Nowra Recycling and Waste Facility, Mundamia NSW

CDC location. checked by: position: E: 276258; N: 6136990 (MGA94 Zone 56) surface elevation: 47.55 m (AHD) pit orientation: equipment type: 35 Tonne Excavator PC350 excavation method: excavation dimensions: 5.0 m long 2.0 m wide excavation information material substance consistency / relative density material description hand structure and additional observations class ification ğ penetro meter samples & Ē SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components penetra field tests method graphic I moisture conditior support symbol Ē depth (water (kPa) R 00 30 0 10 30 0 0 0 Τ 47.5 Silty CLAY: medium plasticity, dark brown, trace F TOPSOIL Μ of fine grained sand, trace of sub-rounded gravel, trace of organics (rootlets). F - St RESIDUAL 11 Sandy CLAY: medium to high plasticity, brown, 1 + 1orange mottled, fine to medium grained sand, trace of sub-rounded to sub-angular gravel, trace of ||||47.0 11 organics (rootlets). |||||||||EXTREMELY WEATHERED MATERIAL Sandy CLAY: medium to high plasticity, red, grey, brown to orange mottled, fine to medium grained St - VSt |||||||||1.0 46.5 sand, trace of sub-rounded to sub-angular gravel, ||||111 trace of organics. 1111 ||46.0 trace of ironstone fragments 11 |||||||111 11 ||||2.0 45.5 D VSt colour change to grey, red, orange mottled 11 11 11 ||||||||Not Observed 45.0 |||||||||||111 3.0 44 5 Sandy CLAY: medium plasticity, grey, red to GPJ 111 ||||||orange to brown mottled, fine grained sand, trace of sub-rounded gravel, trace of ironstone fragments. |||||||||||DATABASE | | |||||||44.0 1111 3W03957AA 11 |||||11 111 | | | | |4.0 **EXCAVATION** 43.5 CLAYEY SAND: fine to medium grained, grey, VD orange, brown, medium plasticity clay, trace of sub-rounded gravel, trace of ironstone fragments. |||||111 COF 43.0 Бg 11 | | | |ev:AM 11 | | | || | |GLB 5.0 42.5 SANDSTONE: fine to coarse grained, brown, grey, orange, trace of sub-rounded gravel, trace of low to medium plasticity clay. HIGHLY WEATHERED SANDSTONE 11 RARY 11 ||||||||||||||||||||8 ||||42.0 Test pit TP4 terminated at 5.6 m Ę Refusal 11 111 classification symbol & samples & field tests consistency / relative density penetration method soil description undisturbed sample ##mm diameter U## vs very soft 2 0 based on Unified Ν natural exposure D disturbed sample s soft no resistance Classification System existing excavation bulk disturbed sample В firm BН ranging to backhoe bucket St F environmental sample stiff refusal moisture

HP

Ν

N'

Nc VS

R

hand penetrometer (kPa)

SPT - sample recovered

refusal

SPT with solid cone vane shearpeak/remouded

standard penetration test (SPT)

(uncorrected kPa)

VSt

н

Fb

VL

MD

VD

L

D

dry moist

W wet W_P plastic limit

liquid limit

D

М

W,

very stiff

very loose

very dense

medium dense

hard

friable

loose

dense

Engineering	Log -	Excavation
	3	

principal:

-

Geotechnical and Hydrogeological Investigation project:

West Nowra Recycling and Waste Facility, Mundamia NSW CDC location. checked by: position: E: 276351; N: 6137023 (MGA94 Zone 56) surface elevation: 47.01 m (AHD) pit orientation: equipment type: 35 Tonne Excavator PC350 excavation method: excavation dimensions: 8.0 m long 2.0 m wide excavation information material substance consistency / relative density material description hand structure and additional observations class ification ğ penetro meter samples & Ē penetra SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components field tests method graphic I moisture conditior support symbol Ē depth water (kPa) Ч 00 30 0 10 30 0 0 0 Sandy CLAY: medium plasticity, dark brown, fine F TOPSOIL Μ grained sand, trace of sub-rounded gravel, trace of organics (rootlets). F - St RESIDUAL 11 Sandy CLAY: medium to high plasticity, brown, | | | || | |46.5 orange mottled, fine grained sand, trace of sub-rounded gravel, trace of organics (rootlets). ||||11 11 Sandy CLAY: medium to high plasticity, grey, red, St - VSt EXTREMELY WEATHERED 11 ||||brown, orange mottled, fine grained sand, trace of organics, trace of sub-rounded gravel. MATERIAL |||||||||1.0 46.0 |||||||||111 1111 45.5 111 111 |||||||||1111 ||| | |Not Observed 2.0 45.0 Sandy CLAY: low plasticity, grey, brown, red mottled, orange mottled, fine to medium grained sand, trace of sub-rounded gravel. D VSt - H ||||||||||||||| || | |||||-44.5 CLAYEY SAND: fine to medium grained, grey, brown, orange, low plasticity clay, trace of organics, ||||VD ||||||||trace of sub-rounded gravel. 111 3.0 44.0 SANDSTONE: fine to medium grained, grey, HIGHLY WEATHERED GW03957AA DATABASE.GPJ 111 ||brown, orange, trace of sub-rounded gravel. SANDSTONE ||||||||| | ||||||43.5 ||||||||||||111 111 ||||4.0 43.0 LIBRARY.GLB rev:AM Log COF EXCAVATION ||||HIGHLY TO MODERATELY |||||WEATHERED SANDSTONE 111 ++<u>49</u> F Test pit TP5 terminated at 4.5 m 111 Refusal ||||||||||||||||||||-42.0 5.0 ||||||11 |||||||||||0 9 06 -41.5 111 ||||||Ę 11 ||||||classification symbol & samples & field tests consistency / relative density penetration method soil description undisturbed sample ##mm diameter U## vs very soft 0 0 based on Unified Ν natural exposure D disturbed sample s soft no resistance Classification System existing excavation bulk disturbed sample В firm BН ranging to backhoe bucket St

F

HP

Ν

N'

Nc VS

R

refusal

level on date shown

10-Oct-12 water

water inflow

water outflow

water

V

в

R ripper

Е

Ν none

S

support

bulldozer blade

excavator

shoring

environmental sample

hand penetrometer (kPa)

SPT - sample recovered

refusal

SPT with solid cone vane shearpeak/remouded

standard penetration test (SPT)

(uncorrected kPa)

moisture

D

М

W,

dry moist

W wet W_P plastic limit

liquid limit

Excavation ID.

date excavated:

date completed:

sheet:

project no.

logged by:

TP5

01 Jul 2016

01 Jul 2016

stiff

hard

friable

loose

dense

very stiff

very loose

very dense

medium dense

VSt

н

Fb

VL

MD

VD

L

D

GEOTWOLL03957AA

1 of 1

MB

Engineering	Log - Excavation

principal:

в

R ripper

Е

Ν none

S

support

bulldozer blade

excavator

shoring

water

V

10-Oct-12 water

water inflow

water outflow

level on date shown

-

Geotechnical and Hydrogeological Investigation project:

West Nowra Recycling and Waste Facility, Mundamia NSW

CDC location: checked by: position: E: 276150; N: 6137094 (MGA94 Zone 56) surface elevation: 48.53 m (AHD) pit orientation: equipment type: 35 Tonne Excavator PC350 excavation method: excavation dimensions: 7.0 m long 2.0 m wide excavation information material substance consistency / relative density material description hand structure and additional observations class ification g penetro meter samples & Ē penetra SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components field tests method graphic I moisture conditior support symbol Ē depth (water (kPa) R 00 30 0 10 30 0 0 0 48. Sandy CLAY: medium plasticity, dark brown, fine F TOPSOIL Μ grained sand, trace of sub-rounded gravel, trace of organics (rootlets). ||St RESIDUAL 11 Sandy CLAY: medium to high plasticity, brown, | | |orange mottled, fine grained sand, trace of sub-rounded gravel, trace of organics. 48.0 11 EXTREMELY WEATHERED St - VSt Sandy CLAY: medium to high plasticity, red, grey, brown orange mottled, fine grained sand, trace of 11 MATERIAL 11 ||||sub-angular gravel. |||||||||1.0 47.5 | | | |111 ||111 111 -47.0 D VSt 111 |||||||||||Not Observed | | ||||||2.0 46.5 ||||||||| || | ||||||||46.0 |||||||||||||||| | | | |3.0 45.5 Sandy CLAY: medium plasticity, grey, orange mottled, fine grained sand, trace of sub-rounded gravel including ironstone. VSt - H GW03957AA DATABASE.GPJ 111 ||||||||| | |45.0 SANDSTONE: fine to medium grained, brown to HIGHLY WEATHERED grey, trace of clay, trace of sub-angular gravel. SANDSTONE 11 11 | | |||||4.0 44.5 LIBRARY.GLB rev:AM Log COF EXCAVATION ||||HIGHLY TO MODERATELY |||||WEATHERED SANDSTONE Test pit TP6 terminated at 4.4 m 1 | | -44.0 Refusal 111 |||||| | ||||||5.0 -43.5 ||||||11 11 | | ||||||0 9 06 -43.0 111 ||||||Ę 11 ||||||classification symbol & samples & field tests consistency / relative density penetration method soil description undisturbed sample ##mm diameter U## VS very soft 20 based on Unified Ν natural exposure D disturbed sample s soft no resistance Classification System existing excavation bulk disturbed sample В firm BН backhoe bucket ranging to St F environmental sample stiff refusal

HP

Ν

N'

Nc VS

R

hand penetrometer (kPa)

SPT with solid cone vane shearpeak/remouded

refusal

standard penetration test (SPT) SPT - sample recovered

(uncorrected kPa)

moisture

D

М

W,

dry moist

W wet W_P plastic limit

liquid limit

VSt

H Fb

VL

MD

VD

D

L

very stiff

very loose

very dense

medium dense

hard

friable

loose

dense

Excavation ID.

date excavated:

date completed:

sheet:

project no.

logged by:

TP6

1 of 1

MB

GEOTWOLL03957AA

30 Jun 2016

30 Jun 2016

Engineering	Log	- Excavation
	J — - J	

principal: -

method

GW03957AA DATABASE.GPJ

LIBRARY.GLB rev:AM Log COF EXCAVATION

0 9 06

Ę

Geotechnical and Hydrogeological Investigation project:

West Nowra Recycling and Waste Facility, Mundamia NSW location:

position: E: 276192; N: 6137130 (MGA94 Zone 56) surface elevation: 48.69 m (AHD) pit orientation: equipment type: 35 Tonne Excavator PC350 excavation method: excavation dimensions: 6.0 m long 2.0 m wide excavation information material substance consistency / relative density material description hand structure and additional observations class ification g penetro meter samples & Ē penetra SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components moisture field tests graphic I conditior support symbol Ē depth (water (kPa) R 00 30 0 10 30 0 0 0 Silty CLAY: medium plasticity, dark brown, fine F TOPSOIL Μ grained sand, trace of sub-rounded gravel, trace of 48.5 organics (rootlets). St - VSt RESIDUAL 11 Sandy CLAY: medium to high plasticity, brown ||||1 + 1mottled, orange mottled, fine grained sand, trace of sub-angular gravel, trace of organics. ||||11 48.0 11 ||Sandy CLAY: medium to high plasticity, red, VSt EXTREMELY WEATHERED 11 brown, grey mottled, orange mottled, trace of sub-rounded gravel. MATERIAL |||||||||1.0 ||||||111 -47.5 D VSt - H ||||||111 ||VD CLAYEY SAND: fine to medium grained, brown, -47.0 Not Observed ||grey, orange, red, low to medium plasticity clay, 111 ||trace of sub-angular gravel including ironstone. |||||||||||2.0 | | |||||46.5 | | || |||||| | || | | | |||||1 + 1|||||||46.0 3.0 111 ||||||45.5 ||||||| | |||||SANDSTONE: fine to medium grained, brown, HIGHLY TO MODERATELY ||||grey, some ironstone bands. WEATHERED SANDSTONE -45.0 111 ||||111 111 | | | | |Test pit TP7 terminated at 4.0 m 111 |||||||Refusal -44.5 111 111 1111 -44 0 |||||||||||||||| | ||||||5.0 1111 111 -43.5 | |

|||||||||111 ||||||-43011 ||||||classification symbol & samples & field tests consistency / relative density penetration method soil description undisturbed sample ##mm diameter U## VS very soft 2 0 based on Unified Ν natural exposure D disturbed sample s soft no resistance Classification System existing excavation bulk disturbed sample В firm BН backhoe bucket ranging to St F environmental sample stiff refusal moisture в bulldozer blade HP hand penetrometer (kPa) VSt very stiff standard penetration test (SPT) SPT - sample recovered dry moist H Fb R ripper Ν D hard water Е excavator N' М friable 10-Oct-12 water V Nc VS SPT with solid cone vane shearpeak/remouded W wet W_P plastic limit VL very loose level on date shown support loose water inflow L Ν none (uncorrected kPa) W, liquid limit MD medium dense water outflow R refusal D S shoring dense VD very dense

Excavation ID. TP7 sheet: 1 of 1 GEOTWOLL03957AA project no. 29 Jun 2016 date excavated: 29 Jun 2016 date completed: logged by: MB CDC checked by:

Engineering Log - Excavatio	eering Log - Exca	vation
------------------------------------	-------------------	--------

principal:

-

Geotechnical and Hydrogeological Investigation project:

ranging to

refusal

level on date shown

10-Oct-12 water

water inflow

water outflow

water

V

F

HP

Ν

N'

Nc VS

R

environmental sample

hand penetrometer (kPa)

SPT - sample recovered

refusal

SPT with solid cone vane shearpeak/remouded

standard penetration test (SPT)

(uncorrected kPa)

West Nowra Recycling and Waste Facility, Mundamia NSW

CDC location. checked by: position: E: 276374; N: 6137103 (MGA94 Zone 56) surface elevation: 48.61 m (AHD) pit orientation: equipment type: 35 Tonne Excavator PC350 excavation method: excavation dimensions: 7.0 m long 2.0 m wide excavation information material substance consistency / relative density material description hand structure and additional observations class ification ğ penetro meter samples & Ē penetra SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components field tests method graphic I moisture conditior support symbol Ē depth (water (kPa) R 00 30 0 10 30 0 0 0 Τ Sandy CLAY: medium plasticity, brown, fine F TOPSOIL Μ 48.5 grained sand, trace of sub-angular gravel, trace of organics (rootlets). F - St RESIDUAL 11 Sandy CLAY: medium to high plasticity, brown, 1 + 1fine grained sand, trace of sub-rounded gravel, trace of organics (rootlets). 48.0 St - VSt EXTREMELY WEATHERED Sandy CLAY: medium to high plasticity, red, brown, grey to orange mottled, fine grained sand, trace of organics, trace of sub-rounded gravel. MATERIAL 11 ||||||1.0 ||||||11 47.5 ||||||||||||||D VSt trace of ironstone fragments 47.0 11 1 1 1 111 11 ||||2.0 CLAYEY SAND: fine to medium grained, grey, D 11 46.5 ||||brown, orange, medium plasticity clay, trace of sub-angular gravel. 11 11 ||||CLAYEY SAND: fine to medium grained, grey, brown, medium plasticity clay, with some sandstone VD Not Observed 46.0 | | ||||fragments. | | | | |3.0 Sandy CLAY: medium to high plasticity, grey, VSt - H 45.5 orange to red mottled, with some ironstone fragments. 111 ||||||||||||||||||||| | |||||||45.0 11 ||||11 111 | | | | |4.0 44.5 111 11 -44.0 1111 11 1111 | | ||||||5.0 Sandy CLAY: medium plasticity, grey, brown, fine to medium grained sand, trace of sub-angular 1111 43.5 11 aravel. 11 111 |||||43.0 | | | |||||Test pit TP8 terminated at 5.75 m ||||||111 Machine limit classification symbol & samples & field tests consistency / relative density penetration method soil description undisturbed sample ##mm diameter U## vs very soft 0 0 based on Unified Ν natural exposure D disturbed sample s soft no resistance Classification System existing excavation bulk disturbed sample В firm

Excavation ID.

date excavated:

date completed:

sheet:

project no.

logged by:

TP8

1 of 1

MB

St

н

Fb

VL

MD

VD

D

L

VSt

moisture

D

М

W,

dry moist

W wet W_P plastic limit

liquid limit

stiff

hard

friable

loose

dense

very stiff

very loose

very dense

medium dense

01 Jul 2016

01 Jul 2016

GEOTWOLL03957AA

GPJ DATABASE 3W03957AA **EXCAVATION** COF Log ev:AM GLB BRARY 90 Ę

BН

в

R ripper

Е

Ν none

S

support

backhoe bucket

bulldozer blade

excavator

shoring

Engineering Log - Excavation	Engine	ering	Log -	Excavation
-------------------------------------	--------	-------	-------	------------

principal:

Ę

R ripper

Е

Ν none

S

support

excavator

shoring

water

T

10-Oct-12 water

water inflow

water outflow

level on date shown

-

Geotechnical and Hydrogeological Investigation project:

West Nowra Recycling and Waste Facility, Mundamia NSW

CDC location. checked by: position: E: 276312; N: 6137206 (MGA94 Zone 56) surface elevation: 48.26 m (AHD) pit orientation: equipment type: 35 Tonne Excavator PC350 excavation method: excavation dimensions: 7.0 m long 2.0 m wide excavation information material substance consistency / relative density material description hand structure and additional observations class ification g penetro meter samples & Ē penetra SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components field tests method graphic I moisture conditior support symbol Ē depth (water (kPa) R 00 30 0 10 30 0 0 0 Τ Sandy CLAY: medium plasticity, dark brown, fine F TOPSOIL М grained sand, trace of sub-rounded gravel, trace of 48.0 organics (rootlets). F - St RESIDUAL 11 Sandy CLAY: medium to high plasticity, brown, ||||1 + 1orange mottled, fine grained sand, trace of organics (rootlets). ||||11 colour change to grey, red, orange mottled St 11 47.5 11 ||||EXTREMELY WEATHERED MATERIAL CLAYEY SAND: fine to medium grained, brown, П |||||||||grey, red, orange, trace of sub-angular gravel. 1.0 |||||11 1 11 | | | | |47.0 1111 111 VSt - H Sandy CLAY: medium plasticity, brown, grey, orange mottled, trace of sub-angular gravel Not Observed ||||||46.5 including ironstone. ||||||2.0 | | |||||||| | |46.0 | |||||||||CLAYEY SAND: fine to medium grained, brown, grey, orange, low plasticity clay, trace of VD 1 + 1| | |45.5 sub-angular gravel. 3.0 SANDSTONE: fine to medium grained, brown, HIGHLY TO MODERATELY GPJ 111 ||grey, orange, trace of low plasticity clay, trace of sub-angular gravel. WEATHERED SANDSTONE ||||||45.0 DATABASE | | ||||||| | ||||||GW03957AA |||| | | |44 6 +Test pit TP9 terminated at 3.8 m |||||||111 Refusal 4.0 COF EXCAVATION |||||||-44.0 111 111 1111 LIBRARY.GLB rev:AM Log ||||||||||-43.5 |||||| | | | ||||||||||5.0 ||||||111 ||||||-43.0 |||||||||||0 9 06 111 ||||||-42.5 11 ||||||classification symbol & samples & field tests consistency / relative density penetration method soil description undisturbed sample ##mm diameter U## VS very soft 00 based on Unified Ν natural exposure D disturbed sample s soft no resistance Classification System existing excavation х bulk disturbed sample В firm BН backhoe bucket ranging to St F environmental sample stiff refusal moisture в bulldozer blade HP hand penetrometer (kPa) VSt very stiff

Ν

N'

Nc VS

R

standard penetration test (SPT)

(uncorrected kPa)

SPT - sample recovered

vane shearpeak/remouded

SPT with solid cone

refusal

dry moist

W_P plastic limit

liquid limit

н

Fb

VL

MD

D

VD

L

hard

friable

loose

dense

very loose

very dense

medium dense

D

М

w wet

W,

Excavation ID.

date excavated:

date completed:

sheet:

project no.

logged by:

TP9

1 of 1

MB

GEOTWOLL03957AA

30 Jun 2016

30 Jun 2016

A TETRA TECH	COMPANY	Excavation ID.	TP10
Enai	nearing Lag Execution	sheet:	1 of 1
Engi	neering Log - Excavation	project no.	GEOTWOLL03957AA
client:	Shoalhaven City Council	date excavated:	30 Jun 2016
principal:	-	date completed:	30 Jun 2016
project:	Geotechnical and Hydrogeological Investigation	logged by:	MB
location:	West Nowra Recycling and Waste Facility, Mundamia NSW	checked by:	CDC

_		ion:				-			Waste Facility, Mundalina NSV	<u> </u>		oncor	ked by:	CDC
Ľ				87; N: 613	``			6)	surface elevation: 47.44 m (AHD)		•	entation		
⊢				5 Tonne E	xcavato	or PC3			excavation method:		exca	ation di	mensions	: 7.0 m long 2.0 m wide
e	xca	vation	nforr	nation			mate		ostance					
method	support	1 2 penetration 3	water	samples & field tests		depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	3	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations
			Not Observed		-47.0	- - - 1.0-			Sandy CLAY: medium plasticity, dark brown, f grained sand, trace of sub-angular gravel, trac organics (rootlets). Sandy CLAY: medium to high plasticity, brown orange mottled, trace of rootlets, trace of sub-rounded gravel. Sandy CLAY: medium plasticity, red, grey, ora to brown mottled, fine grained sand, trace of sub-rounded gravel.	xe of n,	Μ	F 		TOPSOIL RESIDUAL EXTREMELY WEATHERED MATERIAL
			V		-46.0 -45.5 -45.0	- - 2.0-			CLAYEY SAND: fine to medium grained, brow grey, orange, red, trace of fine to medium grav trace of low plasticity clay. SANDSTONE: fine to medium grained, brown, grey, orange, red, trace of sub-angular gravel, of low plasticity clay.	/el, 		VD		HIGHLY TO MODERATELY WEATHERED SANDSTONE
					-44.5				Test pit TP10 terminated at 2.5 m Refusal					
					-43.5	- 4.0 - -								
					-42.5 -42.0 -41.5	- 5.0 - - -								
	meth N BH B R E sup N S	natural existing backho bulldoz ripper excava	excav e buck er blac	vation ket	vater] 		to er	samples & field tests U## undisturbed sample ##mm diameter D disturbed sample B bulk disturbed sample E environmental sample HP hand penetrometer (kPa) N* SPT - sample recovered Nc SPT with solid cone VS vane shearpeak/remouded (uncorrected kPa) R refusal	mois D d M n W v W _P p	soil d based Classific		bol & n :d	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

TETRA TEC Eng		ineerina Loa - Monitorina Well									Hole IE sheet: project		GW1 1 of 1 GEOTWOLL03957A	
client:		Sho	oalhave	n City	Cou	Inc	1					date st		26 May 2016
principal	ul: -	-										date co	omplete	
project:		Geo	otechni	cal an	d Hy	/drc	geo	logic	al In	vestigation		logged	by:	, MB
ocation:					-		-	-		acility, Mundamia NSM		checke	-	CDC
position:	E: 2		7; N: 6136		•					evation: 50.44 m (AHD)		from hori		
equipmen	nt typ	e: Ha	anjin DB8,	Track mo	ounted			drill	ing fluid	l: none	hole di	ameter :	110 mn	ı
drilling i		mati	on	well de	etails	mat	erial s	ubstar					~	
method & support b nemetration	2 penetration	water	samples & field tests	GW1		RL (m)	depth (m)	graphic log	classification symbol	material descriptio SOIL TYPE: plasticity or particle colour, secondary and minor c	characteristic,	moisture condition	consistency / relative density	structure and additional observations
		91/90/10				-50 -49 -48 -47 -46 -47 -46 -47 -45 -44 -43 -44 -43 -44 -41 -42 -41 -40 -39 -38 -37 -38 -37 -36 -35 -35 -33 -33				Sandy CLAY: medium plasticit grained sand, trace of sub-angu- trace of organics. Sandy CLAY: medium to high 1 brown, red mottled, orange mot sub-angular gravel, trace of org some sub-angular to angular gr ironstone at 1m Sandy CLAY: low to medium p brown, grey. CLAYEY SAND: fine to medium brown, grey, low plasticity clay, sub-angular gravel. SANDSTONE: fine grained, bro sub-angular gravel, including iro colour change to grey colour change to brown, grey colour change to grey	ilar gravel, J olasticity, tied, trace of anics. avel, including lasticity, m grained, trace of wwn, trace of	_ D	Г <u>- st</u> St - vSt VSt - H 	EXTREMELY WEATHERED MATERIAL
	1 1 1					-32 - -31 - -30 -				Monitoring Well GW1 terminate Target depth				backfill details: 0.0-10.3m: Grout 10.3-12.4m: Bentonite 12.4-18.0m: Sand standpipe piezo. GW1 details: stickup: -0.67m 14.0-17.0m: screen
method AD auger drilling* AS auger screwing* HA hand auger W washbore DHH downhole hammer ★ bit shown by suffix e.g. AD/T B blank bit T TC bit V V bit				Support Samples & neur tests M mud N nil C casing D genetration S ranging to water no resistance ranging to level on date shown 10-Oct-12 water level on date shown N Statutes SPT with solid cone Refusal					based o Classifica moisture D dry M moist W wet Wp plastic lin	scription on Unified tion Syste		consistency / relative densityVSvery softSsoftFfirmStstiffVStvery stiffHhardFbfriableVLvery looseLlooseMDmedium denseDdenseVDvery dense		

TETRA				ng Log	J -	Мс	onit	tori	ing Well		Hole ID sheet: project		GW1A 1 of 1 GEOTWOLL03957A		
client		She	oalhave	en City Co	unc	il 🗌					date sta	arted:	26 May 2016		
orinci	pal:	-									date co	mplete	ed: 26 May 2016		
proje	ct:	Ge	otechni	ical and H	ydro	geo	logic	al In	vestigation		logged	by:	МВ		
ocati	on:	We	est Nov	vra Recycl	ling	and	Was	te Fa	cility, Mundamia NSW		checke	d by:	CDC		
positio	n: E:2	27611	1; N: 6136	841 (MGA94 Zo	one 56)	surf	ace ele	vation: 50.43 m (AHD)	angle f	rom horiz	zontal: 9	90°		
	-		-	Track mounted	-			ing fluid:	none	hole dia	ameter :	110 mm	1		
arillir	g info	rmati	on	well details	ma	erial s	ubstan		material description			ity	structure and		
method & support	1 2 penetration 3	water	samples & field tests	GW1A	RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle charact colour, secondary and minor compon		moisture condition	consistency / relative density	additional observations		
•						-	$ \rangle$		Gravelly CLAYEY SAND: fine to medium grained, brown, sub-angular	aravel.	D	F	TOPSOIL		
					-50	- - 1.0 - - -			Trace of organics. Sandy CLAY: medium to high plastic brown, red mottled, orange mottled, fi grained sand, trace of sub-angular gra	/ ity, ne		St	RESIDUAL -		
					-48	2.0						VSt	EXTREMELY WEATHERED MATERIAL		
					-47 	- 4.0- - - -							-		
					-45	5.0 — - - 6.0 —			CLAYEY SAND: brown, grey, low pla clay, trace of sub-angular gravel. SANDSTONE: fine grained, brown, tra			- <u>-</u> -	HIGHLY TO MODERATELY		
					-44	- - 7.0 - - -			sub-angular gravel.				WEATHERED SANDSTONE		
					-42	- 8.0 - - - - 9.0							GW1A was dry on 7 June 2016		
					-41 - -40	- - - 10.0 - -			Monitoring Well GW1A terminated at Target depth	9.00 m			backfill details: 0.0-2.7m: Grout 2.7-3.85m: Bentonite 3.85-9.0m: Sand standpipe piezo. GW1A details: stickup: -0.83m 5.0-8.0m: screen		
AD AS HA W DHH	nethod D auger drilling* V washbore DHH downhole hammer bit shown by suffix Support M mud C casing penetration water ↓ ↓ 10-0				t [*] mer mer mer mer mer mer mer mer mer mer				samples & field tests classifi B bulk disturbed sample soil D disturbed sample base E environmental sample Classi V## undisturbed sample Classi U## undisturbed sample Classi U## undisturbed sample moisture U## undisturbed sample ##mm diameter moisture HP hand penetrometer (kPa) D dry N standard penetration test (SPT) M moisture N* SPT - sample recovered W wet Nc SPT with solid cone Wp plasti				consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense		

TETR	A TECH	COMP	ANY								Hole ID).	GW2	
Ε	nai	ne	erin	a Loc	1 -	Mo	ni	tor	ing Well		sheet:		1 of 1 GEOTWOLL03957A	
					-						project			
clien			bainave	en City Co	unc	"					date sta		31 May 2016	
orinc	ipal:										date co	mplet	-	
oroje	ect:	Ge	otechni	ical and H	ydro	ogeo	logio	cal In	vestigation		logged	by:	MB	
ocat	ion:	We	est Nov	ıra Recyci	ling	and	Was	te Fa	acility, Mundamia NSW		checke	d by:	CDC	
				958 (MGA94 Zo		5)			evation: 47.03 m (AHD)	· ·	from horiz			
	ment ty		-	Track mounted	1	terial s		-	I: none	hole di	ameter :	110 mr	n	
	-			won dotano					material description			// isity	structure and	
support &	1 2 penetration	water	samples & field tests	GW2	iRL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle cha colour, secondary and minor com		moisture condition	consistency / relative density	additional observations	
		d 07/06/16			-44 -45 -44 -43 -44 -43 -44 -43 -44 -43 -44 -43 -44 -43 -44 -43 -44 -43 -44 -43 -44 -43 -44 -43 -44 -45 	2.0			Sandy Gravelly CLAY: medium p brown, sub-angular gravel, fine to grained sand, trace of organics. Sandy CLAY: medium to high pla- brown, red mottled, orange mottled sub-rounded gravel, trace of orgar Sandy CLAY: medium to high pla- brown, grey, red mottled, orange n sub-angular gravel. Sandy CLAY: low to medium plas orange mottled, fine to medium gra trace of sub-angular gravel. SANDSTONE: fine to medium gra brown, trace of sub-angular gravel. colour change to dark brown colour change to dark grey colour change to grey colour change to grey, brown mott colour change to dark grey	medium // /	- <u>M</u>	ΥSt	TOPSOIL RESIDUAL EXTREMELY WEATHERED MATERIAL HIGHLY TO MODERATELY WEATHERED SANDSTONE	
meth			T	support	- -29 -28 - -27 -	- 18.0 — - 20.0 — -		samuloo	Monitoring Well GW2 terminated a Target depth & field tests	classificati	on symbo	1&	backfill details: 0.0-10.8m: Grout 10.8-12.0m: Bentonite 12.0-17.15m: Sand standpipe piezo. GW2 details: stickup: -0.81m 13.15-16.15m: screen	
AD AS HA W	auger o auger s hand a washbo downho	whole hammer shown by suffix nk bit bit					samples 3 0 = SS J#P N N N VS ₹ HB	A field tests bulk disturbed sample disturbed sample environmental sample undisturbed sample undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear; peak/remouded (kPa) refusal hammer bouncing	soil des based o	scription on Unified tion System		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

CDF_0_9_06_LIBRARY.GLB rev.AM_Log_COF PIEZOMETER_GW03957AA_DATABASE.GPJ_<<DrawingFile>> 15/06/2016 15:00

TETRA T	TECH (COMP		ng Lo <u>c</u>	J -	Мс	oni	tori	ing Well		Hole ID sheet: project		GW2A 1 of 1 GEOTWOLL03957A
client:	-			en City Co	-				-		date sta		26 May 2016
princip	al:	-		-							date co	mplete	
project			otechni	ical and H	vdro	aeo	loaid	al In	vestigation		logged		MB
locatio					-	-	-		cility, Mundamia NSW		checke	-	CDC
				960 (MGA94 Z					-		from horiz	,	
				Track mounted		,		ing fluid		•	ameter :		
drilling	g info	rmatio	on	well details	mat	erial s	ubstan T						
s t s	penetration		samples & field tests			Ê	bol :	cation	material description	iatia	9 G	ency / density	structure and additional observations
support	3 benet	water		GW2A	RL (m)	depth (m)	graphic log	class ification symbol	SOIL TYPE: plasticity or particle characteris colour, secondary and minor component	its	moisture condition	consistency / relative density	
					-46				Sandy CLAY: medium plasticity, brown, grained sand, trace of sub-angular grave Sandy CLAY: medium to high plasticity, brown, orange mottled, red mottled, trac sub-angular gravel.	el^ ce of rey,	D	F - St	TOPSOIL RESIDUAL
					-40	7.0			SANDSTONE: fine to coarse grained, gra trace of sub-angular gravel.	 rey,		— — —	HIGHLY TO MODERATELY WEATHERED SANDSTONE GW2A was dry on 7 June 2016
				<u>perselle desse</u>		9.0			Monitoring Well GW2A terminated at 9.0 Target depth	00 m			backfill details:
					-37	- - - 10.0 - - -							0.0-2.75m: Grout 2.75-4.02m: Bentonite 4.02-9.0m: Sand standpipe piezo. GW2A details: stickup: -0.81m 5.0-8.0m: screen
bit shown by suffix e.g. AD/T B blank bit T Total				i -36 support M mud N nil C casing penetration penetration penetration ranging to refusal water level on date shown koit it				B bulk disturbed sample soil D disturbed sample base					- consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

TETRA EI				ng Loo	1 -	Мс	oni	tori	ing Well		Hole ID sheet:		GW3 1 of 1 GEOTWOLL03957A
client				en City Co	-				<u> </u>		project date sta		31 May 2016
princi						-					date co		
projec			otechn	ical and H	vdro	naeo	loair	al In	vestigation		logged	•	MB
locati					-	-	-		cility, Mundamia NSW		checke	-	CDC
				248 (MGA94 Z	-				vation: 46.31 m (AHD)		rom horiz		
				Track mounted		,		ing fluid:		· ·	ameter :		
drillin	ig info	rmati	on	well details	mat	terial s	ubstan					≥	-4
method & support	 penetration 	water	samples & field tests	GW3	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle c colour, secondary and minor co	haracteristic,	moisture condition	consistency / relative density	structure and additional observations
		07/06/16			46 45 44 44 42 42 41 40 39 38 37 36 37 36 37 36 37 36 37 36 37 37 36				Gravelly Sandy CLAY: medium brown, fine grained sand, sub-ar \trace of organics. Sandy CLAY: medium to high p brown, red mottled, orange mott medium grained sand, trace of s sub-rounded gravel. colour change to grey CLAYEY SAND: fine to medium brown, grey, trace of sub-angula SANDSTONE: fine to medium g brown, with some ironstone. colour change to brown, grey me colour change to grey colour change to grey colour change to grey, brown me	ngular gravel, / lasticity, led, fine to sub-angular to grained, a grained, a grained, b grained, b grained, b grained, b grained,	D	<u>-</u> <u>F</u> - <u>V</u> St	TOPSOIL RESIDUAL EXTREMELY WEATHERED MATERIAL HIGHLY TO MODERATELY WEATHERED SANDSTONE
AS HA W	I I I I	screwir uger ore	ıg*	support M mud C casing penetration	-32 -31 -31 -30 -29 -27 -27 -26 -		E	3 5 5 6 8 9	colour change to dark grey Monitoring Well GW3 terminated Target depth	classificati soil des based o Classificat	n Unified		Water at 15.3m approximate air lift- yield of 0.2 l/s
* e.g. B T	downh bit shơ AD/T blank t TC bit V bit	wn by s		level of water	no resist ranging t refusal t-12 wate on date s inflow outflow	to er	 	J## 1 1P 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	undisturbed sample ##mm diameter nand penetrometer (kPa) standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear; peak/remouded (kPa) refusal nammer bouncing	moisture D dry M moist W wet Wp plastic lim WI liquid limit	limit L nit C		VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

тетра				ng Lo	og -	Мс	onit	tori	ing Well		Hole IE sheet: project		GW4 1 of 1 GEOTWOLL03957A
client		She	oalhave	en City C	Counc	il					date st		01 Jun 2016
princi	pal:	-									date co	mplete	ed: 01 Jun 2016
projec	ct:	Ge	otechn	ical and	Hydr	ogeo	logic	al In	vestigation		logged by: MB		MB
locatio					-	-	-		cility, Mundamia NSW		checke		CDC
				113 (MGA94					vation: 48.51 m (AHD)		from horiz	,	
equipn	nent ty	pe: H	anjin DB8,	Track moun	ited		drilli	ing fluid:	none	hole di	ameter :	110 mm	1
drillin	-	rmati	on	well detai	ils ma	terial s	ubstan I					~	
method & support	1 2 penetration 3	water	samples & field tests	GW4	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle charac colour, secondary and minor compo		moisture condition	consistency / relative density	structure and additional observations
5		07/06/16			48 47 46 45 44 43 42 41 40 539 538 537	2.0 — 2.0 — 4.0 — 6.0 — 8.0 — 10.0 —			Sandy Gravelly CLAY: medium plass brown, fine to medium grained sand, sub-rounded gravel, trace of organic. Sandy CLAY: medium to high plasti brown, orange mottled, red mottled, i grained sand, trace of organics, trace sub-angular gravel. Sandy CLAY: medium to high plasti brown, red, orange mottled, grey mo trace of sub-angular gravel. colour change to brown, grey mottled SANDSTONE: fine to coarse grained	, // icity, fine city, titled,	М	F - St	TOPSOIL RESIDUAL
AS HA	auger (auger : hand a	screwir uger		support M mud C casing penetration		12.0	E	3 D E	Monitoring Well GW4 terminated at 1 Target depth	classificati soil de	scription on Unified		backfill details: 0.0-7.4m: Grout 7.4-8.0m: Bentonite 8.0-13.0m: Sand standpipe piezo. GW4 details: stickup: -0.75m 9.0-12.0m: screen
W DHH * e.g. B T	washb	ore ole har wn by s		lev wa	n or resist ranging -Oct-12 war rel on date tter inflow tter outflow	to	SU FNNN F	SS : J## HP N : N : NC : XS : XS :	split spoon sample mmm diameter mm indisturbed sample mmm diameter mand penetrometer (kPa) D standard penetration test (SPT) M SPT - sample recovered W SPT with solid cone W	dry moist moist wet	nit		F IIITI St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

	A TECH					N <i>A</i> ~		t		-	Hole ID sheet:).	GW5 1 of 1
E	ng			<u> </u>	-		ni	tor	ing Well		project	no.	GEOTWOLL03957A
client	t:	Sho	oalhave	en City Co	unc	il					date sta	arted:	30 May 2016
princi	ipal:	-									date completed:		ed: 31 May 2016
proje	ct:	Geo	otechni	ical and H	ydro	ogeo	logic	cal In	vestigation		logged by:		MB
locati	ion:	We	est Nov	ıra Recyc	ling	and	Was	te Fa	cility, Mundamia NSV	V	checke	d by:	CDC
				084 (MGA94 Z		i)			vation: 49.17 m (AHD)	-	irom hori:		
	ment ty ng info			Track mounte	-	terial s		ing fluid	: none	hole di	ameter :	110 mr	n
	-		samples &						material descriptio	n		y / nsity	structure and additional observations
method & support	2 penetration	water	field tests	GW5	RL (m)	depth (m)	graphic log	class ification symbol	SOIL TYPE: plasticity or particle colour, secondary and minor of		moisture condition	consistency / relative density	additional observations
		91/30/16			-49 -48 -47 -44 -44 -44 -44 -44 -44 -44 -44 -44				Gravelly Sandy CLAY: medium brown, fine grained sand, sub-a trace of organics. Sandy CLAY: medium to high brown, red mottled, fine grained sub-angular gravel, trace of org Sandy CLAY: medium to high brown, red, orange mottled, gre trace of sub-angular gravel, colour change to grey colour change to pale brown, g colour change to brown, grey SANDSTONE: fine grained, dar trace of sub-angular gravel, inc ironstone. colour change to grey colour change to grey colour change to grey colour change to dark brown colour change to dark brown colour change to dark grey	Ingular grävel, / plasticity, sand, trace of l anics / plasticity, ry mottled, rey komm,	- D	 	TOPSOIL RESIDUAL EXTREMELY WEATHERED MATERIAL HIGHLY TO MODERATELY WEATHERED SANDSTONE
r					-31 -30 - -29 -	18.0 - - 20.0 -			Monitoring Well GW5 terminate Target depth	d at 18.00 m			backfill details: 0.0-6.0m: Grout 6.0-7.5m: Bentonite 7.5-18.0m: Sand standpipe piezo. GW5 details: stickup: -0.6m 14.0-17.0m: screen
AS HA W DHH * e.g. B T	od auger o hand a washbo downho bit show AD/T blank b TC bit V bit	crewin uger ore ole harr wn by s	nmer	level water	N no resis ranging refusal t-12 wat on date s inflow outflow	tance to er	E E S U H N N V F	3 5 5 5 5 5 5 5 5 5 7 7 7 7 7	& field tests bulk disturbed sample disturbed sample environmental sample split spoon sample undisturbed sample ##mm diameter hand penetrometer (kPa) standard penetration test (SPT) SPT - sample recovered SPT with solid cone vane shear; peak/remouded (kPa) refusal hammer bouncing		scription on Unified tion Syster nit		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

CDF_0_9_06_LIBRARY.GLB rev:AM_Log_COF PIEZOMETER_GW03957AA_DATABASE.GPJ_<<DrawingFile>> 15/06/2016 15:01

Appendix B – ENRS Hydrographs

Appendix B - ENRS Hydrographs

Appendix C – Geotechnical Laboratory Test Reports

Client:	Coffey Geotechnics Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	
Project No.:	INFOSNOW00518AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW BH01 Depth: 4.00-4.45m

SNOW16S-01862

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	9.1	
Date Tested		10/06/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	8.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	34	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	19	
Plasticity Index (%)	AS 1289.3.3.1	15	
Date Tested		15/06/2016	

Comments

N/A

South Nowra Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099 Fax:

Report No: SNOW16S-01862-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Beach Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 16/06/2016

Form No: 18909, Report No: SNOW16S-01862-1

Client:	Coffey Geotechnics Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	
Project No.:	INFOSNOW00518AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW BH02 Depth: 4.00-4.45m

SNOW16S-01863

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	7.9	
Date Tested		10/06/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	7.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	33	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	16	
Plasticity Index (%)	AS 1289.3.3.1	17	
Date Tested		15/06/2016	

Comments

N/A

Coffey Testing Pty Ltd ABN 92 114 364 046 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099 Fax:

Report No: SNOW16S-01863-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Beach Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 16/06/2016

Form No: 18909, Report No: SNOW16S-01863-1

Client:	Coffey Geotechnics Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	
Project No.:	INFOSNOW00518AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW BH03 Depth: 5.50-5.92m

SNOW16S-01864

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	7.4	
Date Tested		10/06/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	7.0	
Mould Length (mm)		250	
Cracking		Yes	
Liquid Limit (%)	AS 1289.3.1.1	31	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	16	
Date Tested		15/06/2016	

Comments

N/A

South Nowra Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099 Fax:

Report No: SNOW16S-01864-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA WORLD RECOGNISED

Beach

Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 16/06/2016

Form No: 18909, Report No: SNOW16S-01864-1

Client:	Coffey Geotechnics Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	
Project No.:	INFOSNOW00518AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW BH04 Depth: 4.00-4.35m

SNOW16S-01865

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	4.7	Linits
	AS 1209.2.1.1		
Date Tested		10/06/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	4.0	
Mould Length (mm)		250	
Cracking		Yes	
Liquid Limit (%)	AS 1289.3.1.1	25	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	10	
Date Tested		15/06/2016	

Comments

N/A

South Nowra Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099 Fax:

Report No: SNOW16S-01865-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Beach

Approved Signatory: Wayne Beach

(Senior Geotechnician)

NATA Accredited Laboratory Number:431 Date of Issue: 16/06/2016

Client:	Coffey Geotechnics Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	
Project No.:	INFOSNOW00518AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW BH05 Depth: 5.50-5.85m

SNOW16S-01866

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	9.9	
Date Tested		10/06/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	3.0	
Mould Length (mm)		253	
Liquid Limit (%)	AS 1289.3.1.1	21	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	6	
Date Tested		15/06/2016	

Comments

N/A

Coffey Testing Pty Ltd ABN 92 114 364 046 43 Quinns Lane South Nowra NSW 2541

South Nowra Laboratory

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099 Fax:

Report No: SNOW16S-01866-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Beach Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 16/06/2016

Form No: 18909, Report No: SNOW16S-01866-1

Client:	Coffey Geotechnics Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	
Project No.:	INFOSNOW00518AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW BH06 Depth: 4.00-4.35m

SNOW16S-01867

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	6.9	
Date Tested		10/06/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	5.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	26	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	14	
Plasticity Index (%)	AS 1289.3.3.1	12	
Date Tested		15/06/2016	

Comments

N/A

South Nowra Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099 Fax:

Report No: SNOW16S-01867-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Beach Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 16/06/2016

Form No: 18909, Report No: SNOW16S-01867-1

		Coffey Corporate Services Pty Ltd
coffe	\sim	ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541
	ey •	Phone: +61 2 4429 5000 Fax: +61 2 4429 5099
TETRA TECH COMP		Report No: SNOW16S-02193- Issue No:
Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500	Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are tracea to Australian/national standards.
Principal: Project No.: Project Name: Lot No.:	Shoalhaven City COuncil INFOSNOW00523AA GEOTWOLL03957AA - West Nowra Recycling and Waste Facility TRN:	WORLD RECOGNISED ACCREDITATION WORLD RECOGNISED ACCREDITATION WORLD RECOGNISED ACCREDITATION WORLD RECOGNISED ACCREDITATION WORLD RECOGNISED ACCREDITATION WORLD RECOGNISED ACCREDITATION WORLD RECOGNISED ACCREDITATION WORLD RECOGNISED ACCREDITATION WORLD RECOGNISED ACCREDITATION
Sample Det	tails	Particle Size Distribution
Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Meth Project Locatio Sample Locatio	: 01/07/2016 Not Specified Refer to Test Pit Logs No Specification hod: Submitted by client on: West Nowra. NSW	
Other Test Description Emerson Class Soil Description Type of Water Temperature of	MethodResultLimit6 NumberAS 1289.3.8.150Refer to test pit logs. Distilled	is
Date Tested	5/07/2016	
		Chart
Comments _{N/A}		

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Result

Distilled

5/07/2016

16.0

Limits

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

Date Tested

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP2 Depth: 4-5m

Test Results Description Method Emerson Class Number AS 1289.3.8.1 Soil Description Refer to test pit logs. Type of Water Temperature of Water (°C)

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP3 Depth: 1-2m

Test Results Description Method Result Limits Emerson Class Number AS 1289.3.8.1 Soil Description Refer to test pit log. Type of Water Distilled Temperature of Water (°C) 16.0 Date Tested 5/07/2016

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP3 Depth: 4-5m

Test Results

Description	Method	Result	Limits
Emerson Class Number	AS 1289.3.8.1	5	
Soil Description		Refer to test pit logs.	
Type of Water		Distilled	
Temperature of Water (°C)		16.0	
Date Tested		5/07/2016	

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP4 Depth: 2-3m

Test Results

Description	Method	Result	Limits
Emerson Class Number	AS 1289.3.8.1	5	
Soil Description		Refer to test pit log	
Type of Water		Distilled	
Temperature of Water (°C)		16.0	
Date Tested		5/07/2016	

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP4 Depth: 4-5m

Test Results

Method	Result	Limits
AS 1289.3.8.1	5	
	Refer to test pit log	
	Distilled	
	16.0	
	5/07/2016	
		AS 1289.3.8.1 5 Refer to test pit log Distilled 16.0

N/A

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP5 Depth: 1-2m

Test Results

Description	Method	Result	Limits
Emerson Class Number	AS 1289.3.8.1	6	
Soil Description		Refer to test pit log	
Type of Water		Distilled	
Temperature of Water (°C)		16.0	
Date Tested		5/07/2016	

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

coffey A TETRA TECH COMPANY Report No: SNOW16S-02200-1 Issue No: 1 **Material Test Report** Client: Accredited for compliance with ISO/IEC 17025. Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Wollongong NSW 2500 ΝΑΤΑ **Principal:** Shoalhaven City COuncil Beard Project No.: INFOSNOW00523AA Approved Signatory: Wayne Beach GEOTWOLL03957AA - West Nowra Recycling and Waste Facility **Project Name:** WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 6/07/2016 Sample Details Sample ID: SNOW16S-02200

Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP5 Depth: 2-3m

Test Results

Method	Result	Limits
AS 1289.3.8.1	5	
	Refer to test pit log	
	Distilled	
	16.0	
	5/07/2016	
		AS 1289.3.8.1 5 Refer to test pit log Distilled 16.0

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

coffey ? A TETRA TECH COMPANY Report No: SNOW16S-02201-1 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025. Client: Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Wollongong NSW 2500 NATA **Principal:** Shoalhaven City COuncil Beard Project No.: INFOSNOW00523AA Approved Signatory: Wayne Beach GEOTWOLL03957AA - West Nowra Recycling and Waste Facility **Project Name:** WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 6/07/2016 Sample Details Sample ID: SNOW16S-02201

Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP8 Depth: 2-3m

Test Results

Method	Result	Limits
AS 1289.3.8.1	6	
	Refer to test pit log	
	Distilled	
	16.0	
	5/07/2016	
		AS 1289.3.8.1 6 Refer to test pit log Distilled 16.0

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP8 Depth: 4-5m

Test Results Description Method Result Limits Emerson Class Number AS 1289.3.8.1 Soil Description Refer to test pit log Type of Water Distilled Temperature of Water (°C) 16.0 Date Tested 5/07/2016

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP6 Depth: 1-2m

Test Results Description Method Result Limits Emerson Class Number AS 1289.3.8.1 Soil Description Refer to test pit log Type of Water Distilled Temperature of Water (°C) 16.0 Date Tested 6/07/2016

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP7 Depth: 1-2m

Test Results Description Method Result Limits Emerson Class Number AS 1289.3.8.1 Soil Description Refer to test pit log Type of Water Distilled Temperature of Water (°C) 16.0 6/07/2016 Date Tested

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP7 Depth: 3-4m

Test Results Description Method Result Limits Emerson Class Number AS 1289.3.8.1 Soil Description Refer to test pit log Type of Water Distilled Temperature of Water (°C) 16.0 6/07/2016 Date Tested

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP9 Depth: 2-3m

Test Results Description Method Result Limits Emerson Class Number AS 1289.3.8.1 Soil Description Refer to test pit log Type of Water Distilled Temperature of Water (°C) 17.0 Date Tested 6/07/2016
Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW **TP10** Depth: 1-1.5m

Test Results Description Method Result Limits Emerson Class Number AS 1289.3.8.1 Soil Description Refer to test pit log Type of Water Distilled Temperature of Water (°C) 16.0 6/07/2016 Date Tested

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02210-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

1/ Beach

Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 11/07/2016

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location: SNOW16S-02210 -01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP1 Depth: 1-2m

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	15.7	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	8.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	48	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	20	
Plasticity Index (%)	AS 1289.3.3.1	28	
Date Tested		7/07/2016	

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Project Location:

Sample Location:

West Nowra. NSW

TP2 Depth: 1-2m

Description	Method	Result Limits
Moisture Content (%)	AS 1289.2.1.1	15.7
Date Tested		4/07/2016

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Test Results

Project Location:

Sample Location:

West Nowra. NSW

TP2 Depth: 2-3m

Description	Method	Result Limits
Moisture Content (%)	AS 1289.2.1.1	10.7
Date Tested		4/07/2016

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Test	Results	

Sampling Method:

Project Location:

Sample Location:

No Specification

TP2 Depth: 3-4m

Submitted by client

West Nowra. NSW

rootrioounto		
Description	Method	Result Limits
Moisture Content (%)	AS 1289.2.1.1	9.0
Date Tested		4/07/2016

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

-01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP2 Depth: 4-5m

SNOW16S-02214

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	13.6	
Date Tested		4/07/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	8.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	35	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	19	
Plasticity Index (%)	AS 1289.3.3.1	16	
Date Tested		7/07/2016	

Report reissued due to data entry error.

Comments

South Nowra Laboratory

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02214-1

Issue No: 2

This report replaces all previous issues of report no 'SNOW16S-02214-1'.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

11 Beach

Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 12/07/2016

Page 1 of 1

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02215-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Beach

Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 11/07/2016

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

SNOW16S-02215 01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP4 Depth: 2-3m

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	11.1	
Date Tested		4/07/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	10.0	
Mould Length (mm)		253	
Liquid Limit (%)	AS 1289.3.1.1	42	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	19	
Plasticity Index (%)	AS 1289.3.3.1	23	
Date Tested		7/07/2016	

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02216-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

a Beard

Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 11/07/2016

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

-01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP5 Depth: 2-3m

SNOW16S-02216

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	6.4	
Date Tested		4/07/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	5.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	26	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	11	
Date Tested		7/07/2016	

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02217-1 Issue No: 1

13506 110.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A W Beard

Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 11/07/2016

coffey

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location: SNOW16S-02217 -01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP8 Depth: 3-4m

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	10.5	
Date Tested		4/07/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	9.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	36	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	13	
Plasticity Index (%)	AS 1289.3.3.1	23	
Date Tested		7/07/2016	

Comments

N/A

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Test Results

Project Location:

Sample Location:

West Nowra. NSW

TP6 Depth: 1-2m

Description	Method	Result Limits
Moisture Content (%)	AS 1289.2.1.1	11.2
Date Tested		4/07/2016

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Test Results

Project Location:

Sample Location:

West Nowra. NSW

TP6 Depth: 2-3m

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	10.3	
Date Tested		4/07/2016	

Comments

N/A

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Toet	Docult	c
rest	Result	3

Sampling Method:

Project Location:

Sample Location:

No Specification

TP6 Depth: 3-4m

Submitted by client

West Nowra. NSW

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	10.8	
Date Tested		4/07/2016	

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Test Results

Depth: 4-5m

Description	Method	Result Limits
Moisture Content (%)	AS 1289.2.1.1	6.7
Date Tested		4/07/2016

N/A

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP7 Depth: 2-3m

SNOW16S-02222

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	6.9	
Date Tested		4/07/2016	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	5.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	27	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	14	
Plasticity Index (%)	AS 1289.3.3.1	13	
Date Tested		7/07/2016	

Comments

Report reissued due to data entry error.

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02222-1

Issue No: 2

This report replaces all previous issues of report no 'SNOW16S-02222-1'.

Accredited for compliance with ISO/IEC 17025.

measurements included in this document are traceable to Australian/national standards.

Beard

(Senior Geotechnician)

The results of the tests, calibrations and/or

Approved Signatory: Wayne Beach NATA Accredited Laboratory Number:431 Date of Issue: 12/07/2016

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02223-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Beach Approved Signatory: Wayne Beach

(Senior Geotechnician)

NATA Accredited Laboratory Number:431 Date of Issue: 11/07/2016

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

SNOW16S-02223 01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP7 Depth: 3.9-4.0m

Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	3.0	
Mould Length (mm)		250	
Liquid Limit (%)	AS 1289.3.1.1	22	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	14	
Plasticity Index (%)	AS 1289.3.3.1	8	
Date Tested		7/07/2016	

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02224-1 Issue No: 1

13506 100.

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A Beard

Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 11/07/2016

coffey

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location: SNOW16S-02224 -01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP9 Depth: 2-3m

Test Results

Description	Method	Result	Limits	
Moisture Content (%)	AS 1289.2.1.1	9.8		
Date Tested		4/07/2016		
Sample History	AS 1289.1.1	Oven-dried		
Preparation	AS 1289.1.1	Dry Sieved		
Linear Shrinkage (%)	AS 1289.3.4.1	7.0		
Mould Length (mm)		250		
Liquid Limit (%)	AS 1289.3.1.1	39		
Method		Four Point		
Plastic Limit (%)	AS 1289.3.2.1	18		
Plasticity Index (%)	AS 1289.3.3.1	21		
Date Tested		7/07/2016		

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 43 Quinns Lane South Nowra NSW 2541

Phone: +61 2 4429 5000 Fax: +61 2 4429 5099

Report No: SNOW16S-02225-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

11 Beach

Approved Signatory: Wayne Beach

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 11/07/2016

Material Test Report

Client:	Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street Wollongong NSW 2500
Principal:	Shoalhaven City COuncil
Project No.:	INFOSNOW00523AA
Project Name:	GEOTWOLL03957AA - West Nowra Recycling and Waste Facility
Lot No.:	TRN:

Sample Details

Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location: SNOW16S-02225 -01/07/2016 Not Specified Refer to Test Pit Logs No Specification Submitted by client West Nowra. NSW TP10 Depth: 1-1.5m

Test Results

Description	Method	Result	Limits	
Moisture Content (%)	AS 1289.2.1.1	10.9		
Date Tested		4/07/2016		
Sample History	AS 1289.1.1	Oven-dried		
Preparation	AS 1289.1.1	Dry Sieved		
Linear Shrinkage (%)	AS 1289.3.4.1	5.5		
Mould Length (mm)		250		
Cracking		Yes		
Liquid Limit (%)	AS 1289.3.1.1	28		
Method		Four Point		
Plastic Limit (%)	AS 1289.3.2.1	15		
Plasticity Index (%)	AS 1289.3.3.1	13		
Date Tested		8/07/2016		

Comments

N/A

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

This document is issued in accordance with NATA's accreditation requirements.

NATA

TECHNICAL

Accredited for compliance with ISO/IEC 17025. {This document may not be reproduced except in full} NATA Accredited Laboratory No. 431 Approved Signatory: Gayani Samaradiwakara Date: 20/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

PARTICLE S	SIZE DISTRIE	UTION & HY	DROMETER			elephone: +61 3 8413 6900 Facsimile: +	
Client:	Coffey Corporat	te Services Pty Lt	d (Wollongong)		Job No:	INFOABTM00688AA	
Principal:					Laboratory:	Abbotsford	
Project:	GEOTWOLL039	57AA - West Now	ra Recycling an	d Waste Facility	Report Date	21-Jul-16	
Location:					Test report No:	PSDH:ABTM16S-032	259
Test procedure:	AS1289.3.6.1	, 3.6.3			Client ref:		
	ABTM16S-03						
Sample Identification							
		/					
	•	S. sieve		8	<u> </u>	E E E E E E E	
	~	0. 31676	75 µm 150 µm	300 µm 425 µm 600 µm	2.36 mm	6.7 mm 9.5 mm 13.2 mm 19 mm 26.5 mm 37.5 mm 53 mm	75 mm 150 mm
			75 150	300 42 60		6.7 mm 9.5 mm 13.2 mr 19 mm 26.5 mm 37.5 mm 53 mm	75 150
100 %							
90 %							
90 %							
80 %							
00 /0							
70 %							
			1				
60 %							
ö							
% 05 beccentage finer % 05 beccentage finer % 06 beccentage finer							
thar							
ਮੂ 40 %							
je fi							
ŭ 30 %							
erce							
°-20 %							
· · · · · · · · · · · · · · · · · · ·							
10 %							
0 %							
0.001		0.01	0.1 ← pa	article size - mm -	→ · · · ·	10	¹⁰⁰ 150
	0.002	_ ilt	0.06 _		2	60	
Slay	S S		e fine	sand	a fina	gravel medium coarse	cobbles
	fine n	nedium coarse		medium coar	se fine	medium coarse	5 0
Sieve A	nalysis	Hydromete	r Analysis		Con	nments	
Sieve Size	% Passing	Particle Size	% Passing				
75 mm	100	50.6 µm	68				
53 mm	100	36.9 µm	64	-			
37.5 mm	100	26.9 µm	60	-			
26.5 mm	99	<u>19.7 µm</u>	54	-			
19 mm	98	<u>13.6 µm</u>	50	-			
13.2 mm	96	<u>10.3 µm</u>	45	-			
9.5 mm 6.7 mm	94	7.6 µm	40	-			
4.75 mm	<u>94</u> 93	5.5 μm 4.1 μm	<u>34</u> 28	NOTES:			
2.36 mm	<u>93</u> 91	4.1 μm 3 μm	20	Loss of mass in pr	etreatment.	No pretreatment.	
1.18 mm	87	2.1 µm	19	Dispersion method		Sodium hexametaphospha	ate and
600 µm	83	1.3 μm	14			Sodium carbonate	
425 μm	82			Type of hydromete	ər:	ASTM 152H	
300 µm	80			Soil Particle densi		2.65 g/cm3	
150 µm	77			Preparation metho		Wet analysis	
75 µm	73						nge 1 of 1
+Testing\Test Reports-Spe	cialized testing\Hydrometer A	nalysis\2016\INFOABTM00688	AA\[PSD+Hydro_ABTM16	S-03259.xls]Calculations			-

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

{This document may not be reproduced except in full}

TECHNICAL

NATA Accredited Laboratory No. 431 Approved Signatory: Gayani Samaradiwakara

Date: 21/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

PARTICLE S	SIZE DISTRII	BUTION & HY	DROMETER	2					
Client:	Coffey Corpora	ate Services Pty L	td (Wollongong)	Job N	lo:	INFOAB	TM00688	AA
Principal:					Labo	atory:	Abbotsf	ord	
Project:	GEOTWOLL03	ity Repo	rt Date	20-Jul-1	6				
Location:			, ,		-	report No:		BTM16S-	03260
Test procedure:	AS1289.3.6.	1 363			Clien	· ·	1 3011.4	D1101103-	03200
Sample No:	ABTM16S-0				Clien				
•									
Sample Identification	n TP3 (3.0-4.0	m)							
				-	~				
	A	AS. sieve	75 µm 150 µm	300 µm 425 µm 600 µm	1.18 mm	2.36 mm 4.75 mm	6.7 mm 9.5 mm 3.2 mm	19 mm 26.5 mm 37.5 mm	E E E
			75 µm 150 µm	300 µm 425 µm 600 µn	1.18	2.36 1.75	6.7 mm 9.5 mm 13.2 mm	19 mm 26.5 mm 37.5 mm	53 mm 75 mm 150 mm
100 %					` 	4		ର ନ ଜାନ	<u>e e e</u>
90 %									
					-				
80 %									
70 %									
60 %									
ö									
2 0 % 0.5 %									
thai									
ਬੂ 40 %									
ge fi									
ي 30 %									
erce									
<u>≏</u> 20 %									
10 %									
0 %									
0.001		0.01	0.1 ← D	article size - m	n n →		10		100 60 150
÷	0.002	-	0.06 _ ← p			2			
2.0	8	silt		sand			gravel		cobbles
	fine	medium coars	e fine	medium Co	arse	fine	medium	coarse	CO.
Sieve A	A					-	nments		
	Analysis	Hydromete	er Analysis			Cor			
Sieve Size	Analysis % Passing	Particle Size	er Analysis % Passing			Cor			
Sieve Size 75 mm	% Passing 100	Particle Size 52.3 µm	% Passing 66	_		Cor			
Sieve Size 75 mm 53 mm	% Passing 100 100	Particle Size 52.3 μm 37.6 μm	% Passing 66 64			Cor			
Sieve Size 75 mm 53 mm 37.5 mm	% Passing 100 100 100	Particle Size 52.3 μm 37.6 μm 27.3 μm	% Passing 66 64 60	-		Cor			
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm	% Passing 100 100 100 100 100 100	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm	% Passing 66 64 60 57	-		Cor			
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm	% Passing 100 100 100 100 98	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm	% Passing 66 64 60 57 54	-		Cor			
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm	% Passing 100 100 100 100 98 96	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm	% Passing 66 64 60 57 54 51			Cor			
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm	% Passing 100 100 100 98 96 94	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm	% Passing 66 64 60 57 54 51 48			Cor			
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm	% Passing 100 100 100 98 96 94 92	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm 5.3 μm	% Passing 66 64 60 57 54 51 48 44			Cor			
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm	% Passing 100 100 100 100 98 96 94 92 90	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm 5.3 μm 3.8 μm	% Passing 66 64 60 57 54 51 48 44 40	NOTES:					
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm	% Passing 100 100 100 100 98 96 94 92 90 88	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm 5.3 μm 3.8 μm 2.8 μm	% Passing 66 64 60 57 54 51 48 44 40 34	Loss of mass i			No pretrea		
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm	% Passing 100 100 100 100 98 96 94 92 90 88 85	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm 5.3 μm 3.8 μm 2.8 μm 2.8 μm 2 μm	% Passing 66 64 60 57 54 51 48 44 40 34 31				No pretrea Sodium he	exametapho	sphate and
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 µm	% Passing 100 100 100 100 98 96 94 92 90 88 85 82	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm 5.3 μm 3.8 μm 2.8 μm	% Passing 66 64 60 57 54 51 48 44 40 34	Loss of mass i Dispersion me	hod:		No pretrea Sodium he Sodium ca	exametaphos irbonate	sphate and
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 µm 425 µm	% Passing 100 100 100 100 98 96 94 92 90 88 85 82 80	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm 5.3 μm 3.8 μm 2.8 μm 2.8 μm 2 μm	% Passing 66 64 60 57 54 51 48 44 40 34 31	Loss of mass i Dispersion me Type of hydror	hod: neter:	ment:	No pretrea Sodium he Sodium ca ASTM 152	exametaphos Irbonate PH	sphate and
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 2.36 mm 1.18 mm 600 µm 425 µm 300 µm	% Passing 100 100 100 100 98 96 94 92 90 88 85 82 80 79	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm 5.3 μm 3.8 μm 2.8 μm 2.8 μm 2 μm	% Passing 66 64 60 57 54 51 48 44 40 34 31	Loss of mass i Dispersion me Type of hydror Soil Particle de	hod: neter: nsity(ass	ment:	No pretrea Sodium he Sodium ca ASTM 152 2.65 g/cm3	exametaphos irbonate 2H 3	sphate and
Sieve Size 75 mm 53 mm 37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 2.36 mm 1.18 mm 600 µm 425 µm	% Passing 100 100 100 100 98 96 94 92 90 88 85 82 80	Particle Size 52.3 μm 37.6 μm 27.3 μm 19.7 μm 13.4 μm 10 μm 7.3 μm 5.3 μm 3.8 μm 2.8 μm 2.8 μm 2 μm	% Passing 66 64 60 57 54 51 48 44 40 34 31	Loss of mass i Dispersion me Type of hydror	hod: neter: nsity(ass	ment:	No pretrea Sodium he Sodium ca ASTM 152	exametaphos irbonate 2H 3	sphate and Page 1 of

This document is issued in accordance with NATA's accreditation requirements.

NATA Accredited Laboratory No. 431 Approved Signatory: Gayani Samaradiwakara

Date: 20/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

PARTICLE S	SIZE DISTRI	BUTION & H	IDRON	IEIEK							
Client: Principal: Project: Location:	Coffey Corporate Services Pty Ltd (Wollongong) GEOTWOLL03957AA - West Nowra Recycling and Waste Faci					Facility	Job No: Laboratory: y Report Date Test report No:		INFOABTM00688AA Abbotsford 20-Jul-16 PSDH:ABTM16S-03261		
Test procedure:	AS1289.3.6.	1, 3.6.3					Client re	f:			
Sample No:	ABTM16S-0	3261									
Sample Identification	TP4 (2.0-3.0)m)									
	-	-									
	ŀ	AS. sieve	75 µm	150 µm	300 µm 425 µm	600 µm	2.36 mm	4.75 mm	6.7 mm 9.5 mm 13.2 mm	19 mm 26.5 mm 37.5 mm	53 mm 75 mm 150 mm
100 %											
90 %											
30 /8											
80 %											
70 %											
60 %											
in the second se											
‡ ਬੁੱ 40 %											
ge fir											
en 30 %											
0 0 20 %											
10 %											
0 %		0.01		.1					10		¹⁰⁰ 15
0.001 	0.002	-	0.06	-→ pa	article siz	e - mm -	→ _2				
618	8	silt			sand				gravel		101es
	fine	medium coa	rse f	ine	medium	coar	se	fine	medium	coarse	cobbles
Sieve &	Analysis	Hydrome	eter Analys	eie				Con	nments		
Sieve Size	% Passing	Particle Size		issing				001	intento		
75 mm	100	51.5 µm		73							
53 mm	100	37 µm		71	-						
00 11111		0. p									
37.5 mm	100	26.8 µm	6	67							
37.5 mm 26.5 mm	100 100	26.8 μm 19.4 μm	6	64	-						
37.5 mm 26.5 mm 19 mm	100 100 99	26.8 μm 19.4 μm 13.2 μm	e e	54 51							
37.5 mm 26.5 mm 19 mm 13.2 mm	100 100 99 99	26.8 μm 19.4 μm 13.2 μm 9.8 μm		54 51 58							
37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm	100 100 99 99 99 96	26.8 μm 19.4 μm 13.2 μm 9.8 μm 7.1 μm		54 51 58 54							
37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm	100 100 99 99 99 96 94	26.8 μm 19.4 μm 13.2 μm 9.8 μm 7.1 μm 5.2 μm		54 51 58 54 50							
37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm	100 100 99 99 96 94 93	26.8 μm 19.4 μm 13.2 μm 9.8 μm 7.1 μm 5.2 μm 3.8 μm		54 51 58 54 50 15	NOTES:		otroctm	t.		atmont	
37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm	100 100 99 99 96 94 93 91	26.8 µm 19.4 µm 13.2 µm 9.8 µm 7.1 µm 5.2 µm 3.8 µm 2.7 µm		54 51 58 54 50 45 41	Loss of n	nass in pr		ent:	No pretrea		solution and
37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm	100 100 99 99 96 94 93 91 89	26.8 μm 19.4 μm 13.2 μm 9.8 μm 7.1 μm 5.2 μm 3.8 μm 2.7 μm 2 μm		54 51 58 54 50 45 41 86	-	nass in pr		ent:	Sodium he	exametaphos	sphate and
37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 μm	100 100 99 99 96 94 93 91 89 87	26.8 µm 19.4 µm 13.2 µm 9.8 µm 7.1 µm 5.2 µm 3.8 µm 2.7 µm		54 51 58 54 50 45 41	Loss of n Dispersic	nass in pr n methoo	d:	ent:	Sodium he Sodium ca	exametaphos arbonate	sphate and
37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 μm 425 μm	100 100 99 99 96 94 93 91 89 87 86	26.8 μm 19.4 μm 13.2 μm 9.8 μm 7.1 μm 5.2 μm 3.8 μm 2.7 μm 2 μm		54 51 58 54 50 45 41 86	Loss of n Dispersic Type of h	nass in pr in methoo iydromete	d: er:		Sodium he Sodium ca ASTM 152	exametaphos arbonate 2H	sphate and
37.5 mm 26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 μm	100 100 99 99 96 94 93 91 89 87	26.8 μm 19.4 μm 13.2 μm 9.8 μm 7.1 μm 5.2 μm 3.8 μm 2.7 μm 2 μm		54 51 58 54 50 45 41 86	Loss of n Dispersic	nass in pr on methoo nydromete cle densit	d: er: ty(assum		Sodium he Sodium ca	exametaphos arbonate 2H 3	sphate and

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

TECHNICAL

NATA Accredited Laboratory No. 431 Approved Signatory: Gayani Samaradiwakara {This document may not be reproduced except in full}

Date: 20/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

PARTICLES		BUTION & HY							
Client:	Coffey Corpora	te Services Pty L	td (Wollongong	Job No:	INFOABTM00688AA				
rincipal:				Laboratory:					
Project:	GEOTWOLL039	957AA - West Nov	vra Recycling ar	nd Waste Facility	Report Date	21-Jul-16			
ocation:					Test report No:	PSDH:ABTM16S-	03262		
est procedure:	AS1289.3.6.	1, 3.6.3			Client ref:				
Sample No:	ABTM16S-03	3262							
ample Identification	TP5 (2.0-3.0)	m)							
		,							
	^	S. sieve	- F	ΕΕΕ	E E E	F			
	F	O. Sleve	75 µm 150 µm	300 µm 425 µm 600 µm	1.18 mm 2.36 mm 4.75 mm	6.7 mm 9.5 mm 13.2 mm 19 mm 26.5 mm 37.5 mm	53 mm 75 mm 150 mm		
			15 7	00 47 00	1.1 2.3 4.1	6. 9.9 13. 13. 26. 37.	53 75 150		
100 %									
90 %									
90 %									
80 %									
70 %			+++++++++++++++++++++++++++++++++++++++						
60 %									
Ze:									
20 %									
9 40 %									
8 8 30 %									
ceu	Arrow 1								
لم 20 %									
· · · ·									
10 %									
0 %		0.01	0.1	article size - mm	8 <u>18118</u>	10	¹⁰⁰ 15		
+	0.002	-	0.06 ← P	article size - mm	→ 2				
613	8	silt		sand		gravel	cobbles		
	fine	medium coars	e fine	medium coa	rse fine	medium coarse	CO ^D		
Sieve A	Analysis	Hydromete	er Analysis		Con	nments			
Sieve Size	% Passing	Particle Size	% Passing	1					
75 mm	100	57.4 µm	47						
53 mm	100	41.5 µm	43	1					
37.5 mm	100	29.9 µm	41	_					
26.5 mm	100	21.5 µm	38	-					
<u>19 mm</u> 13.2 mm	99 97	14.7 μm	36 34						
9.5 mm	97 95	10.9 μm 7.9 μm	34	-					
6.7 mm	91	5.7 μm	28	1					
4.75 mm	89	4.1 μm	25	NOTES:					
2.36 mm	84	3 µm	20	Loss of mass in p	pretreatment:	No pretreatment.			
1.18 mm	79	2.2 µm	18	Dispersion metho		Sodium hexametaphos	sphate and		
600 µm	74	1.3 µm	14	1		Sodium carbonate			
425 µm	71			Type of hydrome		ASTM 152H			
		1		Soil Particle dens	sity(assumed):	2.65 g/cm3			
300 µm	67								
	59 51			Preparation meth		Wet analysis	Page 1 of		

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Accredited for compliance with ISO/IEC 17025. {This document may not be reproduced except in full}

NATA Accredited Laboratory No. 431 Approved Signatory: Gayani Samaradiwakara

Date: 21/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Approved Signatory: Gayani Samaradiwakara {This document may not be reproduced except in full}

NATA Accredited Laboratory No. 431 4 Same

Date: 21/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

		BUTION & HY					
lient:	Coffey Corpora	te Services Pty L	td (Wollongong)	Job No:	INFOABTM00688AA		
Principal:				Laboratory:	Abbotsford		
Project:	GEOTWOLL039	957AA - West Now	ra Recycling an	Report Date	21-Jul-16		
Location:				Test report No: PSDH:ABTM16S-03264			
Fest procedure:	AS1289.3.6.1	1, 3.6.3			Client ref:		
Sample No:	ABTM16S-03						
Sample Identification	TP10 (1.0-1.	5m)					
		,					
	^	S. sieve	c	_		5 - 5 - 5 F -	
	P	O. Sleve	75 µm 150 µm	300 µm 425 µm 600 µm	1.18 mm 2.36 mm 4.75 mm	6.7 mm 9.5 mm 13.2 mm 19 mm 26.5 mm 37.5 mm 53 mm	75 mm 150 mm
			75	30(425 600	1.10 2.3(4.7(6.7 9.5 13 19 19 19 19 26. 37 53	75 150
100 %							î I -
90 %							
90 %							
80 %							
70 %							
							000000
60 %							
.e.							
20 %		- Common					
tha							
iji 40 %							
e Baa w							
8 30 %							
-20 %							
10 %							
0 %		0.01	0.1			10	100
0.001	0.002	0.01	0.06 _ ← p	article size - mm	→ 2	60	10015
2/0		silt		sand	Ī	gravel	Ses.
C.	fine	medium coars	e fine	medium coar	se fine	medium coarse	cobbles
	· · ·		· · ·				
Sieve A Sieve Size	Analysis % Passing	Hydromete Particle Size	er Analysis % Passing	-	Con	nments	
75 mm	100	56.5 µm	60	_			
53 mm	100	40.7 μm	57	1			
37.5 mm	100	29.4 µm	53	1			
26.5 mm	100	21.1 µm	51	-			
19 mm	100	14.3 µm	49	1			
13.2 mm	99	10.6 µm	47]			
9.5 mm	98	7.6 µm	44				
6.7 <i>mm</i>	96	5.5 µm	40				
175 mm	95	4 µm	36	NOTES:			
4.75 mm	94	2.9 µm	30	Loss of mass in p		No pretreatment.	
2.36 mm	A C C	2.1 µm	25	Dispersion metho	d:	Sodium hexametaphospha	ate and
2.36 mm 1.18 mm	91		40	1		Sodium carbonate	
2.36 mm 1.18 mm 600 µm	87	1.3 µm	19	Turne of building (
2.36 mm 1.18 mm 600 μm 425 μm	87 86		19	Type of hydromet		ASTM 152H	
2.36 mm 1.18 mm 600 μm 425 μm 300 μm	87 86 83		19	Soil Particle densi	ity(assumed):	ASTM 152H 2.65 g/cm3	
2.36 mm 1.18 mm 600 μm 425 μm	87 86		19		ity(assumed):	ASTM 152H 2.65 g/cm3 Wet analysis	age 1 o

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Approved Signatory: Gayani Samaradiwakara {This document may not be reproduced except in full}

NATA Accredited Laboratory No. 431 Date:

21/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

PARTICLE	SIZE DISTRI	BUTION & H	YDROME	TER				Telephone: +61 3		
Client:	Coffey Corpora	ate Services Pty	Ltd (Wollon	gong)			Job No:	INFOAE	BTM00688AA	
Principal:							Laboratory:	Abbots	ford	
Project:	GEOTWOLL03	957AA - West N	owra Recycli	ng an	d Waste	Facility	Report Date	21-Jul-1	16	
Location:							Test report No:	PSDH:A	ABTM16S-032	265
Test procedure:	AS1289.3.6.	1, 3.6.3					Client ref:			
Sample No:	ABTM16S-0	-								
Sample Identificatio	n TP8 (3.0-4.0									
•		/								
		A.Q					-	= E	EE	
	,	AS. sieve	Ę	E	300 µm 425 µm	600 µm 1 18 mm	2.36 mm	4. / 5 mm 6.7 mm 9.5 mm 13.2 mm	19 mm 26.5 mm 37.5 mm 53 mm	75 mm 150 mm
			75 µm	150 µm	300 µm 425 µm	600	7 2.3	4.7 6.7 9.5 13.	19 26.(37.(53	75 150
100 %				È T						1
90 %										
90 %				-						
80 %										
70 %										
60 %										
:e:										
:50 % beccent than size in the size in t										
9 40 %										
0 g 30 %										
cent										
20 %										
10 %										
0 %		0.01	0.1		article size	*****	<u>•</u> <u>•</u> • • •	10		100 150
+	0.002	-	0.06	← þa		- 11111 -	2		60	
55	18	silt			sand			gravel		ables
	fine	medium coa	rse fine)	medium	coar	se fine	medium	coarse	cobbles
Sieve	Analysis	Hydrom	eter Analysis				C	omments		
Sieve Size	% Passing	Particle Size	% Pass	ing			•			
75 mm	100	50.8 µm	77							
53 mm	100	36.4 µm	75		-					
			70							
37.5 mm	100	26.1 µm	73		-					
26.5 mm	100	18.8 µm	70		-					
26.5 mm 19 mm	100 100	18.8 µт 12.8 µт	70 66		-					
26.5 mm 19 mm 13.2 mm	100 100 100	18.8 μm 12.8 μm 9.7 μm	70 66 62		-					
26.5 mm 19 mm 13.2 mm 9.5 mm	100 100 100 99	18.8 μm 12.8 μm 9.7 μm 7.1 μm	70 66 62 56		-					
26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm	100 100 100 99 99	18.8 μm 12.8 μm 9.7 μm 7.1 μm 5.2 μm	70 66 62 56 51		NOTES:					
26.5 mm 19 mm 13.2 mm 9.5 mm	100 100 100 99	18.8 μm 12.8 μm 9.7 μm 7.1 μm 5.2 μm 3.8 μm	70 66 56 51 44 38		-		etreatment:	No pretre	atment.	
26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm	100 100 99 99 98 97 95	18.8 μm 12.8 μm 9.7 μm 7.1 μm 5.2 μm	70 66 56 51 44 38 32		-	nass in pr			atment. exametaphospha	ate and
26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 µm	100 100 99 99 98 97 95 93	18.8 μm 12.8 μm 9.7 μm 7.1 μm 5.2 μm 3.8 μm 2.8 μm	70 66 56 51 44 38		Loss of m Dispersio	nass in pr n methoo	:	Sodium h Sodium ca	exametaphospha arbonate	ate and
26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 µm 425 µm	100 100 99 99 98 97 95 93 91	18.8 μm 12.8 μm 9.7 μm 7.1 μm 5.2 μm 3.8 μm 2.8 μm 2 μm	70 66 56 51 44 38 32		Loss of m Dispersio Type of h	nass in pr n methoo ydromete	d: er:	Sodium h Sodium ca ASTM 15	exametaphospha arbonate 2H	ate and
26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 µm 425 µm 300 µm	100 100 99 99 98 97 95 95 93 91 89	18.8 μm 12.8 μm 9.7 μm 7.1 μm 5.2 μm 3.8 μm 2.8 μm 2 μm	70 66 56 51 44 38 32		Loss of m Dispersio Type of h Soil Parti	nass in pr n methoo ydromete cle densit	d: er: ty(assumed):	Sodium h Sodium ca ASTM 15 2.65 g/cm	exametaphospha arbonate 2H 3	ate and
26.5 mm 19 mm 13.2 mm 9.5 mm 6.7 mm 4.75 mm 2.36 mm 1.18 mm 600 µm 425 µm	100 100 99 99 98 97 95 93 91	18.8 μm 12.8 μm 9.7 μm 7.1 μm 5.2 μm 3.8 μm 2.8 μm 2 μm	70 66 56 51 44 38 32		Loss of m Dispersio Type of h	nass in pr n methoo ydromete cle densit	d: er: ty(assumed):	Sodium h Sodium ca ASTM 15	exametaphospha arbonate 2H 3 ⁄sis	ate and

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Approved Signatory: Gayani Samaradiwakara {This document may not be reproduced except in full}

NATA Accredited Laboratory No. 431 Date: 21/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

This document is issued in accordance with NATA's accreditation requirements.

NATA Accredited Laboratory No. 431 Approved Signatory: Gayani Samaradiwakara Date: 21/07/2016

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

PARTICLE	SIZE DISTRIE	BUTION & HY	DROMETE	R		elephone: +61 3 8413 6900 Facsim	
Client: Principal: Project: Location:		te Services Pty L 957AA - West Nov		ng) and Waste Facility	Job No: Laboratory: Report Date Test report No:	INFOABTM00688, Abbotsford 21-Jul-16 PSDH:ABTM16S-	
Test procedure:	AS1289.3.6.1	1, 3.6.3			Client ref:		
Sample No:	ABTM16S-03	3267					
Sample Identificatio	m TP7 (2.0-3.0 1	n)					
	A	S. sieve	75 µm 150 µm	300 µm 425 µm 600 µm	1.18 mm 2.36 mm 4.75 mm	6.7 mm 9.5 mm 13.2 mm 19 mm 26.5 mm 37.5 mm	53 mm 75 mm 150 mm
100 %			15	, 0, 4, 0	- 2, 4	9.0 37 13 0.0 37 37	
100 /0							
90 %							
80 %							
70 %							
60 %							
bercentage finer than size:							
10 %							
0 % +		0.01	0.1 0.06 ←	particle size - mm	\rightarrow 2	10	¹⁰⁰ 150
8	0.002 お S	- silt		sand	2	gravel	
C ^N	fine r	medium coars	e fine	medium coar	se fine	medium coarse	copples
		· ·					· · · · ·
Sieve Size	Analysis % Passing	Hydromete Particle Size	er Analysis % Passing		Cor	mments	
75 mm	100	57.8 µm	⁷⁰ Fassing 44				
53 mm	100	41.8 μm	41				
37.5 mm	100	30 µm	39				
26.5 mm	97	21.5 µm	37				
19 mm	97	14.7 µm	35				
13.2 mm	96	10.8 µm	34				
9.5 mm	95	7.8 µm	31				
6.7 mm	94	5.7 µm	27				
4.75 mm	94	<u>4.1 μm</u>	23	NOTES:		No sector to the	
2.36 mm	93	<u>3 µm</u>	19 16	Loss of mass in p		No pretreatment.	whoto and
1.18 mm	91	2.2 µm	10	Dispersion metho	u.	Sodium hexametaphos Sodium carbonate	spriate and
600 μm 425 μm	<u> </u>	1.3 µm	12	Type of hydromet	or.	ASTM 152H	
300 μm	80			Soil Particle dens		2.65 g/cm3	
300 μm 150 μm	66			Preparation meth		Wet analysis	
	48				00	WEL ANALYSIS	Page 1 of
75 µm	48						

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

TECHNICAL

Approved Signatory: Gayani Samaradiwakara {This document may not be reproduced except in full}

NATA Accredited Laboratory No. 431 Date:

Telephone: +61 3 8413 6900 Facsimile: +61 3 8413 6999

PARTICLE S	SIZE DISTRIE	BUTION & HY	DROMETER			elephone: +61 3 8413 6900 Facsim		
Client:						Job No: INFOABTM00688AA		
Principal:					Laboratory:	Abbotsford	Abbotsford	
Project:	GEOTWOLL039	57AA - West Now	ra Recycling an	d Waste Facility	Report Date	19-Jul-16		
Location:				Test report No:	rt No: PSDH:ABTM16S-03270			
Test procedure:	AS1289.3.6.1	, 3.6.3			Client ref:			
Sample No:	ABTM16S-03	3270						
Sample Identification	TP3 (2.0-3.0r	n)						
	•							
	AS. sieve E E E			- E E 8	εε	ε_ε_εε		
		0. 51070	75 µm 150 µm	300 µm 425 µm 600 µm	2.36 mm 4.75 mm	 6.7 mm 9.5 mm 13.2 mm 19 mm 26.5 mm 37.5 mm 	53 mm 75 mm 150 mm	
100.04			15 75	6 4 ¹	 2.3 4.7	6. 9.5 13. 19 26. 37.	53 75 150	
100 %								
90 %								
90 %								
80 %								
70 %								
60 %								
ö								
% 05 percentage finer than size: % 06 00 00 00 00 00 00 00 00 00 00 00 00								
thar								
ā 40 %	/							
je fii								
g 30 %								
erce								
<u>~</u> 20 %								
•								
10 %								
0 %								
0.001		0.01	0.1 ← Pá	article size - mm -	→ ·	10	100 60 150	
†	+ 0.002 - 0.00 -							
6/2	s S			sand	a a line	gravel	cobbles	
	finer	nedium coarse	e fine	medium coar	se fine	medium coarse	<u>0</u> ,	
Sieve A	Analysis	Hydromete	er Analysis		Cor	nments		
Sieve Size	% Passing	Particle Size	% Passing					
75 mm	100	52.3 µm	67					
53 mm	100	37.9 µm	64	_				
37.5 mm	100	27.5 µm	60	-				
26.5 mm	100	20.1 µm	55	-				
19 mm	100	13.8 µm	51	-				
13.2 mm	99	<u>10.4 µm</u>	46	-				
9.5 mm	97	7.6 µm	42	-				
6.7 mm	94	5.5 µm	36	NOTEO				
4.75 mm	92	<u>4 μm</u>	<u>32</u> 27	NOTES:	atroatment	No protroctment		
2.36 mm 1.18 mm	89 84	2.9 µm	27	Loss of mass in pretreatment: No pretreatment.				
600 μm	84	2.1 µm	14	Dispersion method: Sodium hexametaphosphate and				
425 μm	78	1.3 µm	71	Sodium carbonate Type of hydrometer: ASTM 152H				
300 μm	76					2.65 g/cm3		
150 μm	76 73			Soil Particle density(assumed): Preparation method		Wet analysis		
100 µm	69				and analysis			
75 μm	69						Page 1 of	

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

{This document may not be reproduced except in full}

NATA Accredited Laboratory No. 431 Approved Signatory: Gayani Samaradiwakara Date: 19/07/2016

Artarmon, Sydney Laboratory

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 31 Hope Street Melrose Park NSW 2114

Phone: +61 (2) 9352 5000

Comments

1.890 7.0

Form No: 18995, Report No: MDD:ARTA16S-00271

8.0

9.0

10.0

Moisture Content (%)

11.0

12.0

13.0

14.0

coffey Phone: +61 3 8413 6900 Fax: +61 3 8413 6999 A TETRA TECH COMPANY Report No: MDD:ABTM16S-03258 Issue No: 1 **Maximum Dry Density Report** Accredited for compliance with ISO/IEC 17025. Client: Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable Wollongong NSW 2500 to Australian/national standards ΝΑΤΑ **Principal:** Vater Project No.: INFOABTM00688AA Approved Signatory: Ketankumar Patel **Project Name:** GEOTWOLL03957AA - West Nowra Recycling and Waste Facility WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 12/07/2016 Sample Details Sample ID: ABTM16S-03258 Sampling Method: Submitted by client Date Sampled: 1/07/2016 Material: Date Submitted: 1/07/2016 Source: Date Tested: Specification: 11/07/2016 No Specification **Project Location:** Sample Location: TP1_1.00-2.00m Dry Density - Moisture Content Relationship **Test Results** 0% Air Voids 5% Air Voids AS 1289 5 1 1 Standard MDD (t/m³): 1.80 Standard OMC (%): 16.0 Dry Density (t/m³) Retained Sieve 19mm (%): 2 1.800 -1.790 1.780 1 770 ١ 1 760 1.750 ١ 1.740 ١. 1 ١ 1.730 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 Moisture Content (%)

Abbotsford, Melbourne Laboratory

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 3G Marine Parade Abbotsford VIC 3067

Comments

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 3G Marine Parade Abbotsford VIC 3067 coffey Phone: +61 3 8413 6900 Fax: +61 3 8413 6999 A TETRA TECH COMPANY Report No: MDD:ABTM16S-03259 Issue No: 1 **Maximum Dry Density Report** Accredited for compliance with ISO/IEC 17025. Client: Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable Wollongong NSW 2500 to Australian/national standards ΝΑΤΑ **Principal:** Vater Project No.: INFOABTM00688AA Approved Signatory: Ketankumar Patel **Project Name:** GEOTWOLL03957AA - West Nowra Recycling and Waste Facility WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 12/07/2016 Sample Details Sample ID: ABTM16S-03259 Sampling Method: Submitted by client Date Sampled: 1/07/2016 Material: Date Submitted: 1/07/2016 Source: Date Tested: Specification: 11/07/2016 No Specification **Project Location:** Sample Location: TP2_4.00-5.00m Dry Density - Moisture Content Relationship **Test Results** 0% Air Voids 5% Air Voids AS 1289 5 1 1 Standard MDD (t/m³): 1.76 Standard OMC (%): 15.5 Dry Density (t/m³) Retained Sieve 19mm (%): 2 1.760 T 1.750 ١ 1.740 1.730 ١ 1 ۱ 1.720 .١ ١ ١ 1.710 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 Moisture Content (%)

Abbotsford, Melbourne Laboratory

Comments

coffey Phone: +61 3 8413 6900 Fax: +61 3 8413 6999 A TETRA TECH COMPANY Report No: MDD:ABTM16S-03260 Issue No: 1 **Maximum Dry Density Report** Accredited for compliance with ISO/IEC 17025. Client: Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable Wollongong NSW 2500 to Australian/national standards NATA **Principal:** Vater Project No.: INFOABTM00688AA Approved Signatory: Ketankumar Patel **Project Name:** GEOTWOLL03957AA - West Nowra Recycling and Waste Facility WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 12/07/2016 Sample Details ABTM16S-03260 Sample ID: Sampling Method: Submitted by client Date Sampled: 1/07/2016 Material: Date Submitted: 1/07/2016 Source: Date Tested: Specification: 11/07/2016 No Specification **Project Location:** Sample Location: TP3_3.00-4.00m Dry Density - Moisture Content Relationship **Test Results** 0% Air Voids 5% Air Voids AS 1289.5.1.1. _ Standard MDD (t/m³): 1.75 Standard OMC (%): 17.0 Dry Density (t/m3) Retained Sieve 19mm (%): 1 1.750 1.740 1.730 1.720 ١١ 1.710 ١ ١ ١ 1.700 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 Moisture Content (%)

Abbotsford, Melbourne Laboratory

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 3G Marine Parade Abbotsford VIC 3067

Comments

coffey Phone: +61 3 8413 6900 Fax: +61 3 8413 6999 A TETRA TECH COMPANY Report No: MDD:ABTM16S-03261 Issue No: 1 **Maximum Dry Density Report** Accredited for compliance with ISO/IEC 17025. Client: Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable Wollongong NSW 2500 to Australian/national standards NATA **Principal:** Vate Project No.: INFOABTM00688AA Approved Signatory: Ketankumar Patel **Project Name:** GEOTWOLL03957AA - West Nowra Recycling and Waste Facility WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 12/07/2016 Sample Details ABTM16S-03261 Sample ID: Sampling Method: Submitted by client Date Sampled: 1/07/2016 Material: Date Submitted: 1/07/2016 Source: Date Tested: Specification: 11/07/2016 No Specification **Project Location:** Sample Location: TP4 (2.00-3.00m Dry Density - Moisture Content Relationship **Test Results** 0% Air Voids 5% Air Voids AS 1289 5 1 1 Standard MDD (t/m³): 1.72 Standard OMC (%): 18.0 Dry Density (t/m³) Retained Sieve 19mm (%): 1 1.720 • • 1.710 1.700 ł 1.690 1.680 1.670 1.660 ١ \ 1.650 ١ 1.640 1 1.630 -١ 1.620 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 Moisture Content (%)

Abbotsford, Melbourne Laboratory

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 3G Marine Parade Abbotsford VIC 3067

Comments

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 3G Marine Parade Abbotsford VIC 3067 coffey Phone: +61 3 8413 6900 Fax: +61 3 8413 6999 A TETRA TECH COMPANY Report No: MDD:ABTM16S-03262 Issue No: 1 **Maximum Dry Density Report** Accredited for compliance with ISO/IEC 17025. Client: Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable Wollongong NSW 2500 to Australian/national standards NATA **Principal:** Vater Project No.: INFOABTM00688AA Approved Signatory: Ketankumar Patel **Project Name:** GEOTWOLL03957AA - West Nowra Recycling and Waste Facility WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 12/07/2016 Sample Details Sample ID: ABTM16S-03262 Sampling Method: Submitted by client Date Sampled: 1/07/2016 Material: Date Submitted: 1/07/2016 Source: Date Tested: Specification: 11/07/2016 No Specification **Project Location:** Sample Location: TP5 (2.0-3.0m) Dry Density - Moisture Content Relationship **Test Results** 0% Air Voids 5% Air Voids AS 1289 5 1 1 _ Standard MDD (t/m³): 1.91 Standard OMC (%): 11.5 Dry Density (t/m³) Retained Sieve 19mm (%): 1 1.910 -----1.900 1.890 ١ 1 880 1 1.870 ١ 1.860 1.850 I V 1.840 1 1 1.830 1 ١ 1.820 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 Moisture Content (%)

Abbotsford, Melbourne Laboratory

Comments

coffey Phone: +61 3 8413 6900 Fax: +61 3 8413 6999 A TETRA TECH COMPANY Report No: MDD:ABTM16S-03263 Issue No: 1 **Maximum Dry Density Report** Accredited for compliance with ISO/IEC 17025. Client: Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable Wollongong NSW 2500 to Australian/national standards NATA **Principal:** Vate Project No.: INFOABTM00688AA Approved Signatory: Ketankumar Patel **Project Name:** GEOTWOLL03957AA - West Nowra Recycling and Waste Facility WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 12/07/2016 Sample Details ABTM16S-03263 Sample ID: Sampling Method: Submitted by client Date Sampled: 1/07/2016 Material: Date Submitted: 1/07/2016 Source: Date Tested: Specification: 11/07/2016 No Specification **Project Location:** Sample Location: TP9 (2.0-3.0m) Dry Density - Moisture Content Relationship **Test Results** 0% Air Voids 5% Air Voids AS 1289 5 1 1 Standard MDD (t/m³): 1.84 Standard OMC (%): 13.5 Dry Density (t/m³) Retained Sieve 19mm (%): 5 1.840 . 1.830 ۱ 1.820 4 1.810 ł ł 1 1.800 1 ١ ١ ١ 1.790 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 Moisture Content (%)

Abbotsford, Melbourne Laboratory

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 3G Marine Parade Abbotsford VIC 3067

Comments

coffey Phone: +61 3 8413 6900 Fax: +61 3 8413 6999 A TETRA TECH COMPANY Report No: MDD:ABTM16S-03264 Issue No: 1 **Maximum Dry Density Report** Accredited for compliance with ISO/IEC 17025. Client: Coffey Corporate Services Pty Ltd (Wollongong) 118 Auburn Street The results of the tests, calibrations and/or measurements included in this document are traceable Wollongong NSW 2500 to Australian/national standards NATA **Principal:** Vate Project No.: INFOABTM00688AA Approved Signatory: Ketankumar Patel **Project Name:** GEOTWOLL03957AA - West Nowra Recycling and Waste Facility WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: TRN: Date of Issue: 12/07/2016 Sample Details Sample ID: ABTM16S-03264 Sampling Method: Submitted by client Date Sampled: 1/07/2016 Material: Date Submitted: 1/07/2016 Source: Date Tested: Specification: 11/07/2016 No Specification **Project Location:** Sample Location: TP10 (1.0- 1.5m) Dry Density - Moisture Content Relationship **Test Results** 0% Air Voids 5% Air Voids AS 1289 5 1 1 Standard MDD (t/m³): 1.82 Standard OMC (%): 15.0 Dry Density (t/m³) Retained Sieve 19mm (%): 0 1.830 -----١ 1.820 1.810 1.800 1.790 <u>\</u> 1.780 ٠ ١ 1.770 ١ 1.760 ١ 1.750 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 Moisture Content (%)

Abbotsford, Melbourne Laboratory

Coffey Corporate Services Pty Ltd ABN 55 139 460 521 3G Marine Parade Abbotsford VIC 3067

Comments

Artarmon/ Melrose Park Laboratory

Coffey Testing Pty Ltd 31 Hope Street Melrose Park NSW 2114 ABN 92 114 364 046 Telephone: +61 2 9352 5000

Permeability Test Report

(Constant head method using a flexible wall permeameter)

Client:	COFFEY GEOTECHNICS PTY LTD
Principal: Project:	GEOTWOLL03957AA - WEST NOWRA LANDFILL EXTENSION
Location:	WEST NOWRA, NSW
Job No:	INFOARTA01460AA

Report No.:	IOLT 8739
	Issue No.: 1
WORLD RECOGNISED ACCREDITATION	Accredited for compliance with IOS/IEC 17025. {This document may not be reproduced except in full.}

Sample Detai	ils
Test Procedure: Sample ID:	AS1289.6.7.3 ARTA16S-00270
Client sample ID:	BH04 (5.50 to 7.00 m)
Date Sampled:	-
Sample type:	Recompacted to Standard Maximum Dry Density and at +2% to 3% of Standard Optimum Moisture Content.
Material:	(CL/CI) SANDY SILTY CLAY - low to medium plasticity, yellow brown, fine to coarse sand.

Sample Location: BH04 (5.50 to 7.00 m)

Permeant used		Distilled Water
Applied Pressure	kPa	10
Mean effective stress	kPa	30
Outlet pressure	kPa	890
Inlet pressure	kPa	900
Cell pressure	kPa	925

Test Results

Coefficient of permeability	(m/sec)	2.0×10^{-09}
Recompacted Specimen moisture content (after test)	%	13.6
Saturation (Bar B Response)	%	1.00
Recompacted Specimen dry density	t/m ³	1.93
Recompacted Specimen moisture content	%	13.0
Recompacted Specimen wet density	t/m ³	2.18
height to diameter ratio		1.97
Specimen Diameter	mm	63.6
Specimen height	mm	125.5

Comments:

Standard Maximum Dry Density = 2.01 t/m3; Standard Optimum Moisture Content = 11.0%

Artarmon/ Melrose Park Laboratory

Coffey Testing Pty Ltd 31 Hope Street Melrose Park NSW 2114 ABN 92 114 364 046 Telephone: +61 2 9352 5000

Permeability Test Report

(Constant head method using a flexible wall permeameter)

Client:	COFFEY GEOTECHNICS PTY LTD
Principal: Project:	GEOTWOLL03957AA - WEST NOWRA LANDFILL EXTENSION
Location:	WEST NOWRA, NSW
Job No:	INFOARTA01460AA

Report No.:	IOLT 8738
	Issue No.: 1
WORLD RECOGNISED ACCREDITATION	Accredited for compliance with IOS/IEC 17025. {This document may not be reproduced except in full.} Approved Signatory: Garry K Collins (Specialty Testing Manager, Sydney) NATA Accredited Laboratory Number: 431 Date of Issue: 13/07/2016

Sample Detai	ils
Test Procedure: Sample ID:	AS1289.6.7.3 ARTA16S-00271
*	BH06 (5.50 to 7.00 m)
Date Sampled:	-
Sample type: Material:	Recompacted to Standard Maximum Dry Density and at +2% to 3% of Standard Optimum Moisture Content. (CL/CI) SANDY SILTY CLAY - low to medium plasticity, yellow brown, fine to coarse sand.
	(CL/CI) SAND I SILI I CLAI - low to medium plasticity, yellow brown, fine to coarse sand.

Sample Location: BH06 (5.50 to 7.00 m)

Test conditions		
Cell pressure	kPa	925
Inlet pressure	kPa	900
Outlet pressure	kPa	890
Mean effective stress	kPa	30
Applied Pressure	kPa	10
Permeant used		Distilled Water

Test Results

Coefficient of permeability	(m/sec)	5.2 x 10 ⁻⁰⁹
Recompacted Specimen moisture content (after test)	%	13.8
Saturation (Bar B Response)	%	1.00
Recompacted Specimen dry density	t/m ³	1.92
Recompacted Specimen moisture content	%	13.4
Recompacted Specimen wet density	t/m ³	2.18
height to diameter ratio		1.97
Specimen Diameter	mm	63.6
Specimen height	mm	125.5

Comments:

Standard Maximum Dry Density = 2.01 t/m3; Standard Optimum Moisture Content = 11.0%

Coffey Testing Pty Ltd ABN 92 114 364 046 3G Marine Parade Abbotsford VIC 3067 Telephone: +61 8413 6900 Facsimile: +61 3 8413 6999

	lity Test Report nethod using a flexible wall pe	ermeameter)	Report No.:	: PERM:ABTM16S-03258
(Constant nead n	ietiloù usilig a liekible wali pe	inteameter)		Issue No.:
Client:	Coffey Corporate Services Pty Lt	d (Wollongong)		Accredited for compliance with ISO/IEC 17025.
Principal:				The results of the tests, calibrations and /or measurements included in this document are traceable to Australian/national
Job No.:	INFOABTM00688AA		NATA	standards.
	GEOTWOLO03957AA			hy Same
Project:	West Nowra Recycling and Waste Fa	cility	WORLD RECOGNISED	Approved Signatory: Gayani Samaradiwakar
Location:				(Associate Engineering Technician)
Lot No.:	TRN:			NATA Accredited Laboratory Number: 431 Date of Issue: 21/07/2016
Samula Datail	_			
Sample Details				
Test Procedure: Sample ID:	AS1289.6.7.3 ABTM16S-03258		Other Sample De	etails:
Client sample ID	TP1 (1-2m)			
Date Sampled:	28/06/2016			
Sample Type	Remoulded			
Sample Material	Sandy silty clay			
Sampling Method:	Submitted by client			
Test condition	S			
Cell pressure		kPa		600
Inlet pressure		kPa		520
Outlet pressure		kPa		480
Mean effective stre	SS	kPa		100
Saturation		%		96
Permeant used				De-aired Water
Test Results				
Specimen height		mm	1	62.2
Specimen Diameter		mm		63.2
height to diameter		-		0.98
Specimen wet densi		t/m ³		2.11
Specimen moisture	content	%		18.8
Specimen dry densi	ity	t/m ³		1.77
	ratio	%		99
Laboratory density	re ratio	%		102
Laboratory density Laboratory moistu				

Comments:

Remoulded condition: Sample remoulded to target of 100% SMDD and 2% -3% of SOMC. Compaction data provided in report MDD:ABTM16S-03258. SMDD=1.8 t/m3, SOMC=16 % (AS1289.5.1.1)

Coffey Testing Pty Ltd ABN 92 114 364 046 3G Marine Parade Abbotsford VIC 3067 Telephone: +61 8413 6900 Facsimile: +61 3 8413 6999

	lity Test Report	Report No.: PERM:ABTM16S-03259
(Constant head m	ethod using a flexible wall permea	ter) Issue No.:
Client:	Coffey Corporate Services Pty Ltd (We	gong) Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and /or measurements
Principal:		NATA included in this document are traceable to Australian/nation standards.
Job No.:	INFOABTM00688AA	4 Same
Project:	GEOTWOLO03957AA West Nowra Recycling and Waste Facility	WORLD RECOGNISED
Location:		ACCREDITATION Approved Signatory: Gayani Samaradiwaka (Associate Engineering Technician)
Lot No.:	TRN:	NATA Accredited Laboratory Number: 431 Date of Issue: 21/07/2016
Sample Details	7	
Test Procedure:		Other Semple Details
Sample ID:	AS1289.6.7.3 ABTM16S-03259	Other Sample Details:
Client sample ID	TP2 (4-5m)	
Date Sampled:	28/06/2016	
Sample Type	Remoulded	
Sample Material	Sandy silty clay	
Sampling Method:	Submitted by client	
Test conditions	S	
Cell pressure	kP	600
Inlet pressure	kF	520
Outlet pressure	kP	480
Mean effective stres	ss kF	100
Saturation		96
Permeant used		De-aired Water
Test Results		
Specimen height	J	61.5
Specimen Diameter	•	63.4
height to diameter 1	ratio	0.97
Specimen wet densi	ty	2.05
Specimen moisture	content	18.0
Specimen dry densi	ity	1.74
Laboratory density	ratio	99
Laboratory moistu	re ratio	100
Coefficient of perm	eability (r	5×10^{-10}

Comments:

Remoulded condition: Sample remoulded to target of 100% SMDD and 2% -3% of SOMC. Compaction data provided in report MDD:ABTM16S-03259. SMDD=1.76 t/m3, SOMC=15.5 % (AS1289.5.1.1)

Coffey Testing Pty Ltd ABN 92 114 364 046 3G Marine Parade Abbotsford VIC 3067 Telephone: +61 8413 6900 Facsimile: +61 3 8413 6999

	lity Test Report		Report No.:	: PERM:ABTM16S-03260 Issue No.:
Client:	Coffey Corporate Services Pty	Ltd (Wollongong)		Accredited for compliance with ISO/IEC 17025. The results of the tests,calibrations and /or measurements
Principal:			NATA	included in this document are traceable to Australian/nationa standards.
Job No.:	INFOABTM00688AA		NAIA	
Project:	GEOTWOLO03957AA	Facility	WORLD RECOGNISED	h Same
Location:	West Nowra Recycling and Waste	raciiity	ACCREDITATION	Approved Signatory: Gayani Samaradiwakan
Location.	TRN:			(Associate Engineering Technician) NATA Accredited Laboratory Number: 431 Date of Issue: 21/07/2016
~				
Sample Details	5			
Test Procedure: Sample ID:	AS1289.6.7.3 ABTM16S-03260		Other Sample De	etails:
Client sample ID	TP3 (3-4m)			
Date Sampled:	28/06/2016			
Sample Type	Remoulded			
Sample Material	Sandy silty clay			
Sampling Method:	Submitted by client			
Test condition	S			
Cell pressure		kPa		600
Inlet pressure		kPa		520
Outlet pressure		kPa		480
Mean effective stre	SS	kPa		100
Saturation		%		96
Permeant used				De-aired Water
Test Results				
Specimen height		mm		62.3
Specimen Diameter		mm		63.3
height to diameter	ratio			0.98
Specimen wet densi	ity	t/m ³		2.07
Specimen moisture	e content	%		19.3
Specimen dry densi	ity	t/m ³		1.73
Laboratory density	ratio	%		99
• • • • • • •	re ratio	%		99
Laboratory moistu				

Comments:

Remoulded condition: Sample remoulded to target of 100% SMDD and 2% -3% of SOMC. Compaction data provided in report MDD:ABTM16S-03260. SMDD=1.75 t/m3, SOMC=17 % (AS1289.5.1.1)

Coffey Testing Pty Ltd ABN 92 114 364 046 3G Marine Parade Abbotsford VIC 3067 Telephone: +61 8413 6900 Facsimile: +61 3 8413 6999

Permeability Test Report (Constant head method using a flexible wall permeameter)		r) Report No.: PERM:ABTM16S-03261
	ierioù using a nexisie wan perneamere	i) Issue No.: 1
Client:	Coffey Corporate Services Pty Ltd (Wollong	Accredited for compliance with ISO/IEC 1/025.
Principal:		The results of the tests, calibrations and /or measurements included in this document are traceable to Australian/national standards.
Job No.:	INFOABTM00688AA	
Project:	GEOTWOLO03957AA West Nowra Recycling and Waste Facility	WORLD RECOGNISED
Location:		ACCREDITATION Approved Signatory: Gayani Samaradiwakar
Lot No.:	TRN:	(Associate Engineering Technician) NATA Accredited Laboratory Number: 431 Date of Issue: 21/07/2016
G I. D. 4. 'I		
Sample Details		
Test Procedure: Sample ID:	AS1289.6.7.3 ABTM16S-03261	Other Sample Details:
Client sample ID	TP4 (2-3m)	
Date Sampled:	28/06/2016	
Sample Type	Remoulded	
Sample Material	Sandy silty clay	
Sampling Method:	Submitted by client	
Test condition	S	
Cell pressure	kPa	600
Inlet pressure	kPa	520
Outlet pressure	kPa	480
Mean effective stre	ss kPa	100
Saturation	%	96
Permeant used		De-aired Water
Test Results		
Specimen height	mm	62.4
Specimen Diameter	mm	63.3
height to diameter		0.99
Specimen wet densi		2.06
Specimen moisture	•	21.0
Specimen dry densi		1.70
~r····································	•	99
Laboratory density		102
- •	re ratio %	102

Comments:

Remoulded condition: Sample remoulded to target of 100% SMDD and 2% -3% of SOMC. Compaction data provided in report MDD:ABTM16S-03261. SMDD=1.72 t/m3, SOMC=18 % (AS1289.5.1.1)

Coffey Testing Pty Ltd ABN 92 114 364 046 3G Marine Parade Abbotsford VIC 3067 Telephone: +61 8413 6900 Facsimile: +61 3 8413 6999

	lity Test Report	Report No.: PERM:ABTM16S-03262
(Constant head m	nethod using a flexible wall permeameter)	Issue No.:
Client:	Coffey Corporate Services Pty Ltd (Wollongong)	Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and /or measurements
Principal:		NATA included in this document are traceable to Australian/nationa standards.
Job No.:	INFOABTM00688AA	h Grander L
Project:	GEOTWOLO03957AA West Nowra Recycling and Waste Facility	WORLD RECOGNISED
Location:		ACCREDITATION Approved Signatory: Gayani Samaradiwakar (Associate Engineering Technician)
Lot No.:	TRN:	NATA Accredited Laboratory Number: 431 Date of Issue: 21/07/2016
Sample Details	2	
Test Procedure:	AS1289.6.7.3	Other Sample Details:
Sample ID:	AS1289.0.7.5 ABTM16S-03262	Other Sample Details:
Client sample ID	TP5 (2-3m)	
Date Sampled:	28/06/2016	
Sample Type	Remoulded	
Sample Material	Sandy silty clay	
Sampling Method:	Submitted by client	
Test conditions	S	
Cell pressure	kPa	600
Inlet pressure	kPa	520
Outlet pressure	kPa	480
Mean effective stres	ss kPa	100
Saturation	%	96
Permeant used		De-aired Water
Test Results		
Specimen height	mm	62.0
Specimen Diameter	mm	63.3
height to diameter 1	ratio	0.98
Specimen wet densi	ity t/m ³	2.16
Specimen moisture	e content %	14.7
Specimen dry densi	ty t/m ³	1.88
Laboratory density	ratio %	99
Laboratory moistu	re ratio %	105
Coefficient of perm	eability (m/sec)	1 x 10 ⁻⁹

Comments:

Remoulded condition: Sample remoulded to target of 100% SMDD and 2% -3% of SOMC. Compaction data provided in report MDD:ABTM16S-03262. SMDD=1.91 t/m3, SOMC=11.5 % (AS1289.5.1.1)

Coffey Testing Pty Ltd ABN 92 114 364 046 3G Marine Parade Abbotsford VIC 3067 Telephone: +61 8413 6900 Facsimile: +61 3 8413 6999

Permeability Test Report (Constant head method using a flexible wall permeam		Report No.: PERM:ABTM16S-03263 Issue No.: 1
Client:	Coffey Corporate Services Pty Ltd (Wollongong)	Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and /or measurements
Principal:		Included in this document are traceable to Australian/national standards.
Job No.:	INFOABTM00688AA	
Project:	GEOTWOLO03957AA West Nowra Recycling and Waste Facility	WORLD RECOGNISED
Location:		ACCREDITATION Approved Signatory: Gayani Samaradiwakar
Lot No.:	TRN:	(Associate Engineering Technician) NATA Accredited Laboratory Number: 431 Date of Issue: 21/07/2016
Sample Details	2	
		Others Coursels, Date line
Test Procedure: Sample ID:	AS1289.6.7.3 ABTM16S-03263	Other Sample Details:
Client sample ID	TP9 (2-3m)	
Date Sampled:	28/06/2016	
Sample Type	Remoulded	
Sample Material	Sandy silty clay	
Sampling Method:	Submitted by client	
Test condition	S	-
Cell pressure	kPa	600
Inlet pressure	kPa	520
Outlet pressure	kPa	480
Mean effective stre	ss kPa	100
Saturation	%	96
Permeant used		De-aired Water
Test Results		
Specimen height	mm	61.4
Specimen Diameter	mm	63.3
height to diameter		0.97
Specimen wet densi	_	2.14
Specimen moisture		16.8
- Specimen dry densi	ity t/m ³	1.83
specifien ary densi		100
Laboratory density	re ratio %	105

Comments:

Remoulded condition: Sample remoulded to target of 100% SMDD and 2% -3% of SOMC. Compaction data provided in report MDD:ABTM16S-03263. SMDD=1.84 t/m3, SOMC=13.5 % (AS1289.5.1.1)

Coffey Testing Pty Ltd ABN 92 114 364 046 3G Marine Parade Abbotsford VIC 3067 Telephone: +61 8413 6900 Facsimile: +61 3 8413 6999

Permeability Test Report (Constant head method using a flexible wall permeameter)			Report No.:	Report No.: PERM:ABTM16S-03264	
(Constant head h	lethod using a heatble wa	i permeameter)		Issue No.:	
Client:	Coffey Corporate Services Pt	y Ltd (Wollongong)		Accredited for compliance with ISO/IEC 17025.	
Principal:			NATA	The results of the tests, calibrations and /or measurements included in this document are traceable to Australian/national	
Job No.:	INFOABTM00688AA		NAIA	standards.	
Project:	GEOTWOLO03957AA			4 Same	
-	West Nowra Recycling and Was	te Facility	WORLD RECOGNISED	Approved Signatory: Gayani Samaradiwakar	
Location:				(Associate Engineering Technician) NATA Accredited Laboratory Number: 431	
Lot No.:	TRN			Date of Issue: 21/07/2016	
Sample Details	5				
Test Procedure: Sample ID:	AS1289.6.7.3 ABTM16S-03264		Other Sample De	etails:	
Client sample ID	TP10 (1-1.5m)				
Date Sampled:	28/06/2016				
Sample Type	Remoulded				
Sample Material	Sandy silty clay				
Sampling Method:	Submitted by client				
Test condition	5			<00	
Cell pressure		kPa		600	
Inlet pressure		kPa		520	
Outlet pressure		kPa		480	
Mean effective stre	SS	kPa		100	
Saturation		%		97 De-aired Water	
Permeant used					
Test Results					
Specimen height		mm		63.5	
Specimen Diameter		mm		63.3	
height to diameter	ratio			1.00	
Specimen wet densi	ty	t/m ³		2.12	
Specimen moisture	content	%		17.9	
Specimen dry densi	ty	t/m ³		1.80	
	ratio	%		99	
Laboratory density	re ratio	%		102	
Laboratory density Laboratory moistur	c runo				

Comments:

Remoulded condition: Sample remoulded to target of 100% SMDD and 2% -3% of SOMC. Compaction data provided in report MDD:ABTM16S-03264. SMDD=1.82 t/m3, SOMC=15 % (AS1289.5.1.1)

APPENDIX C

Concept Design Drawings

AB

AB AD

AB AD

BY CHK

THIS DRAWING AND ITS CONTENTS ARE CONFIDENTIAL, ARE SUBJECT TO RETURN ON DEMAND AND MAY NOT BE COPIED OR DISCLOSED TO ANY THIRD PARTY OR USED DIRECTLY OR INDIRECTLY FOR ANY OTHER PURPOSE THAN AS EXPRESSLY DETERMINED IN WRITING BY METAGO ENVIRONMENTAL ENGINEERS (PN) LUI.

C 13.06.17 ADDITIONAL FIGURE ADDED

A 30.03.16 ISSUED FOR INFORMATION

No. DATE

DWG. NUMBER

TITLE

B 29.11.16 REVISED AFTER SCC FEEDBACK

DESCRIPTION

DRAWING LIST:

FIGURE 00 - GENERAL ARRANGEMENT AND DRAWING LIST FIGURE 01 - MASTER PLAN LAYOUT FIGURE 02 - EXISTING SITE SURVEY LAYOUT FIGURE 03 - PROPOSED LANDFILL EXTENSION LOCATION & BUFFER LAYOUT FIGURE 04 - PROPOSED BASE OF LANDFILL CELLS LAYOUT FIGURE 05 - PROPOSED FINAL LANDFORM LAYOUT FIGURE 06 - TYPICAL SECTIONS THROUGH STAGE 4 FIGURE 07 - TYPICAL LINING SYSTEM SECTIONS FIGURE 08 - PROPOSED LEACHATE DRAINAGE LAYOUT FIGURE 09 - LEACHATE DRAINAGE TYPICAL SECTIONS FIGURE 10 - FILLING PLAN STAGE 4 CELL 1 FIGURE 11 - FILLING PLAN STAGE 4 CELL 2 FIGURE 12 - FILLING PLAN STAGE 4 CELL 3 FIGURE 13 - FILLING PLAN STAGE 4 CELL 4 FIGURE 14 - FILLING PLAN STAGE 4 CELL 5 FIGURE 15 - FILLING PLAN STAGE 4 CELL 6 FIGURE 16 - PROPOSED LANDFILL BASE 3D LAYOUT FIGURE 17 - PROPOSED FINAL LANDFORM 3D LAYOUT FIGURE 18 - MONITORING LOCATIONS LAYOUT FIGURE 19 - TYPICAL GAS MANAGEMENT LAYOUT AND DETAILS FIGURE 20 - DISTURBANCE FOOTPRINT FOR LANDFILL AND FIREBREAK LAYOUT FIGURE 21 - PROPOSED FILLING PLAN LAYOUTS FIGURE 22 - TOTAL DISTURBANCE AREA STAGE 4 EXTENSION LAYOUT FIGURE 23 - CONCEPTUAL EROSION SEDIMENT CONTROL PLAN FIGURE 24 - PROPOSED LEACHATE IRRIGATION AREA RELOCATION PLAN

NOTE:

DATE NAME

AB

AD

SLR PROJE

DRAWN BY: NOV 2016

CHECKED: NOV 2016

1. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

ISSUED FOR INFORMATION					
SHOALHAVEN CITY COUNCIL					
	•			SHOW	N
VEST NOWRA RECYLING AND WASTE FACILITY					
· · · · · · · · · · · · · · · · · · ·					
GENERAL ARRANGEMENT & DRAWING LIST					
R PROJECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 00	REV:	С

Shoalhaven City Council					
NOTE: 1. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTH ISSUED FOR INFORMATION					_
SHOALHAVEN CITY COUNCIL				SCALE: 1:4000	-
ST NOWRA RECYLING AND WASTE FACILITY				SHEET:	
EXISTING SITE SURVEY LAYOUT				1 of 1	
OJECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 02	REV:	В

57 15	-01-WW			
	BH1-WN E 275936.4 N 6137765	64 1212		275943.50 6137814.
			s, N	6137814.
		*	1	
		jan Jan	1	
Ľ	Ŋ	-90-FE		
TAT	\mathbb{Z}). 18 18)		
TATED BAT	TER	V/		
*:00 :00 :00)))	\mathbb{W}		
00 -6+	00-00 REVEGETATED BATTER	E PARTIE A		
49.00				
	E 276382 N 61376	.656 75.719		
BH14-WN				

		NDFILL EXTE	
	SET OUT POINT REF	EASTING	NORTHING
	SOP 1	276,358.40	6,137,206.59
	SOP 2	276,370.53	6,137,127.26
	SOP 3	276,349.41	6,136,980.26
	SOP 4	276,284.16	6,136,965.64
	SOP 5	276,251.85	6,136,870.35
	SOP 6	276,154.85	6,136,819.87
	SOP 7	276,054.65	6,136,834.35
SOP 8		276,046.55	6,136,869.62
	SOP 9	276,099.27	6,137,201.42
	SOP 10	276,148.68	6,137,236.90

	NDFILL EXTE	
SET OUT POINT REF	EASTING	NORTHING
SOP 1	276,358.40	6,137,206.59
SOP 2	276,370.53	6,137,127.26
SOP 3	276,349.41	6,136,980.26
SOP 4	276,284.16	6,136,965.64
SOP 5	276,251.85	6,136,870.35
SOP 6	276,154.85	6,136,819.87
SOP 7	276,054.65	6,136,834.35
SOP 8	276,046.55	6,136,869.62
SOP 9	276,099.27	6,137,201.42
SOP 10	276,148.68	6,137,236.90

		7	
NOTE:			
1. ALL DIMEN	ISIONS ARE IN ME	ETRES UNLESS N	OTED OTHERWISE.
ISS	SUED FOR	INFORMA	TION ONLY
	-		_

S	SCALE:				
	1:4000)			
T NOWRA RECYLING AND WASTE FACILITY					
POSED LANDFILL EXTENSION LOCATION					
CT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 03	REV:	В

SHOALHAVEN CITY COUNCIL				SCALE:	
				SHOW	N
		AND WASTE			
NOWRA RECYLING AND WASTE FACILITY				SHEET:	
PROPOSED BASE OF LANDFILL CELLS				1 of 1	
LAYOUT					
T NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 04	REV:	В

SHOALHAVEN CITY COUNCIL			SCALE:		
				SHOW	N
NOWRA RECYLING AND WASTE FACILITY				SHEET:	
PROPOSED FINAL LANDFORM					
LAYOUT					
T NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 05	REV:	В

1. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

Council

ISSUED FOR INFORMATION ONL				ONL	1
SHOALHAVEN CITY COUNCIL			SCALE:		
	•			SHOW	N
	RA RECYLING	AND WASTE	FACILITY		
10011	·			SHEET:	
PROPOSED LEACHATE DRAINAGE				1 of 1	
LAYOUT					
NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 08	REV:	В
		_			

150mm ID PERFORATED HDPE (DUAL WALLED)

NOTE: 1. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

	ISSUED FOR INFORMATION ONLY				1
SHOALHAVEN CITY COUNCIL				SCALE:	
				SHOW	N
NOWRA RECYLING AND WASTE FACILITY				SHEET:	
LEACHATE DRAINAGE				1 of 1	
TYPICAL SECTIONS					
NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 09	REV:	В

ISSUED FOR INFORMATION ONLY					1
SHOALHAVEN CITY COUNCIL				SCALE	
				SHOW	N
		AND WASTE			
ST NOWRA RECYLING AND WASTE FACILITY				SHEET	
				1 of 1	
	FILLING	PLAN			
	STAGE 4 (CELL 1			
JECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 10	REV:	В

ISSUED FOR INFORMATION ONLY			
	0.121		
SHOALHAVEN CITY COUNCIL	SCALE:		
	SHOWI	N	
ST NOWRA RECYLING AND WASTE FACILITY			
· · · · · · · · · · · · · · · · · · ·	SHEET:		
	1 of 1		
FILLING PLAN			
STAGE 4 CELL 2			
JECT NUMBER: 610.15781 DRAWING NUMBER: FIGURE 11	REV:	В	

	STATE STATE	GE 3 DFILL SUB-CELL 2 FILL APPROX. RL 59.00m SUE APP 55 ONSERVATION AREA	EXISTING STAGE 2 LANDFILL CONCEPTION OF THE EXTENSION CONCEPTION OF THE EXTENSION OF THE EXTENSION CONCEPTION OF THE EXTENSION OF THE EXTENSION CONCEPTION OF THE EXTENSION OF THE EXTENSION OF THE EXTENSION CONCEPTION OF THE EXTENSION	
0 20m 50m 100m 150m SCALE 1:2,500		FILLING PLAN LAYOUT SCALE 1:2,500		
U U U U U U U U U U U U U U U U U U U	- - - - - -	Image: state of the state o	SLR Consulting Australia Pty Ltd Consulting Engineers & Scientists 589 Hay Street Jolimon 6014 Western Australia TS ARE CONFIDENTIAL, ARE SUBJECT TO RETURN ON DEMAND AND MAY TO ANY THIRD PARTY OR USED DIRECTLY OR INDIRECTLY FOR ANY OTHER SETEMINED IN WRITING BY WEITEOG ENVIRONMENTAL ENGINEERS (Pb) Ltd.	APPROVED DEPT. DATE SIGN Civil - - Engineering - - Production - - PROJ. ENG. - - PROJ. ENG. - - DATE NAME - DATE NAME - DRAWN BY: NOV 2016 AB CHECKED: NOV 2016 AD APPROVED: - SLR PROJ

ISSUED FOR INFORMATION ONLY					1
SHOALHAVEN CITY COUNCIL				SCALE	
				SHOW	N
		AND WASTE			
ST NOWRA RECYLING AND WASTE FACILITY				SHEET	
				1 of 1	
	FILLING	PLAN			
	STAGE 4 (CELL 3			
JECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 12	REV:	В

ISSUED FOR INFORMATION ONLY				1	
SHOALHAVEN CITY COUNCIL				SCALE:	
				SHOW	N
ST NOWRA RECYLING AND WASTE FACILITY				SHEET	
				1 of 1	
	FILLING	PLAN			
STAGE 4 CELL 4					
JECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 13	REV:	В
		-			

ISSUED FOR INFORMATION ONLY				1	
SHOALHAVEN CITY COUNCIL				SCALE:	
				SHOW	N
ST NOWRA RECYLING AND WASTE FACILITY				SHEET	
				1 of 1	
	FILLING	PLAN			
STAGE 4 CELL 5					
JECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 14	REV:	В

ISSUED FOR INFORMATION ONLY					1
SHOALHAVEN CITY COUNCIL				SCALE	
				SHOW	N
		AND WASTE			
ST NOWRA RECYLING AND WASTE FACILITY				SHEET	
				1 of 1	
	FILLING	PLAN			
STAGE 4 CELL 6					
JECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 15	REV:	В

STAGE 4 MONITORING LOCATION COORDINATES					
SETTING OUT POINT	EASTING	NORTHING	GROUND LEVEL		
GW1	276,107.00	6,136,839.00	50.37		
GW1A	276,111.00	6,136,841.00	50.39		
GW2	276,263.00	6,136,958.00	47.08		
GW2A	276,267.00	6,136,960.00	46.97		
GW3	276,258.00	6,137,248.00	46.25		
GW4	276,401.00	6,137,113.00	48.49		
GW5	276,238.00	6,137,084.00	49.13		
			-		

NOTE: 1. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.

ISSUED FOR INFORMATION ONLY					
SHOALHAVEN CITY COUNCIL				SCALE:	
				1:4000)
ST NOWRA RECYLING AND WASTE FACILITY					
ST NOWRA RECTLING AND WASTELACIENT				SHEET:	
MONITORING LOCATIONS				1 of 1	
LAYOUT					
OJECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 18	REV:	В

ISSUED FOR INFORMATION ONLY					
SHOALHAVEN CITY COUNCIL				SCALE:	
)
ST NOWRA RECYLING AND WASTE FACILITY				SHEET:	
DISTURBANCE FOOTPRINT FOR LANDFILL AND FIREBREAK				1 of 1	
LAYOUT					
DJECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 20	REV:	A

ISSUED FOR INFORMATION ONLY					
SHOALHAVEN CITY COUNCIL				SCALE:	
·					N
ST NOWRA RECYLING AND WASTE FACILITY					
ST NOWINA RECTEING AND WASTET AGIENT				SHEET:	
PROPOSED FILLING PLAN				1 of 1	
LAYOUTS					
DJECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 21	REV:	Α

ISSUED FOR INFORMATION ONLY					
SHOALHAVEN CITY COUNCIL				SCALE:	
				1:4000)
ST NOWRA RECYLING AND WASTE FACILITY				SHEET:	
TOTAL DISTURBANCE AREA STAGE 4 EXTENSION				1 of 1	
LAYOUT					
DJECT NUMBER:	610.15781	DRAWING NUMBER:	FIGURE 22	REV:	A

No. DATE

DWG. NUMBER

DESCRIPTION

BY CHKD

FOR DETAILS REFER TO FIGURE 2.

NOTES

- 1. THE ESC MEASURES HAVE BEEN DESIGNED IN ACCORDANCE WITH THE Blue Book' (MANAGING URBAN STORMWATER: SOILS AND CONSTRUCTION VOL. 1, 4TH EDITION AND VOL. 2B WASTE LANDFILLS (LANDCOM, 2004 AND DECC, 2008)). 2. ESC MEASURE LOCATIONS ARE INDICATIVE ONLY. FINAL
- LOCATIONS TO BE DETERMINED DURING THE DETAILED DESIGN PHASE OF THE WORKS.
- 3. ALL ESC MEASURES SHALL BE INSPECTED ON A DAILY BASIS AND MAINTAINED AS REQUIRED THROUGHOUT THE COURSE OF THE WORKS AND FOLLOWING EACH INCIDENCE OF RAIN.
- 4. ALL SEDIMENT COLLECTED SHALL BE REGULARLY REMOVED AND IF UNSUITABLE FOR REUSE DISPOSED OF IN AN APPROVED MANNER.
- 5. ESC MEASURES SHALL BE INSTALLED PRIOR TO ANY GROUND DISTURBANCE.
- ALL TEMPORARY ESC MEASURES SHALL BE REMOVED WHEN NO LONGER REQUIRED (I.E. 70% GRASS COVERAGE HAS BEEN ACHIEVED).
- 7. THE PROPOSED DROP STRUCTURES AND SEDIMENT DAM SPILLWAYS ARE TO BE DESIGNED DURING THE DETAILED DESIGN PHASE OF THE WORKS.

L DAM VOLUME IL)			5hoalh	ity Col	ınci	1		
37	NOTE: 1. ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE.							
9								
ISSUED FOR INFORMATION						1		
SHOALHAVEN CITY COUNCIL					SCALE:			
					SHOWN			
WEST NOWRA RECYLING AND WASTE FACILITY								
· · · ·				SHEET:				
CONCEPTUAL EROSION SEDIMENT CONTROL PLAN				1 of 1				
SLR PROJECT NUMBER:		610.15781	DRAWING NUMBER:	FIGURE 23	REV:	С		

APPENDIX D

SLR Leachate Management Memo 2018

Memorandum

То:	Zoe Wood	At:	Arcadis Australia Pacific Pty Ltd
From:	Sam Butler	At:	SLR Consulting Australia Pty Ltd
Date:	7 December 2018	Ref:	610.15781.00000-M01-v0.3_edits.docx
Subject:	West Nowra Recycling and Waste Fac	cility	

CONFIDENTIALITY

This document is confidential and may contain legally privileged information. If you are not a named or authorised recipient you must not read, copy, distribute or act in reliance on it. If you have received this document in error, please telephone our operator immediately and return the document by mail.

1 Introduction

Arcadis has engaged SLR Consulting (SLR) to determine suitable leachate management options for the West Nowra Recycling and Waste Facility (the Facility) as a result of Stage 4 landfilling activities.

1.1 Background

It is understood that the Facility is divided into several stages and leachate is managed as follows:

- Stage 1: "Old" unlined landfill, stockpile and irrigation areas, and landfill gas extraction comprising the northern portion of the Facility. It is understood that Stage 1 landfilling occurred in unlined trenches. A combination of gravel and concrete drains discharge leachate to the existing leachate dam.
- Stage 2: Completed lined landfill areas, are now used for stockpiling and landfill gas extraction. It is understood that Stage 2 leachate is currently discharged to the existing leachate dam.
- Stage 3: Active lined landfilling of solid waste and wet weather tipping areas, and future landfill gas extraction area. It is understood that Stage 3 leachate is currently discharged to the existing leachate dam.
- Stage 4: Proposed lined landfilling areas for solid waste, and future landfill gas extraction. Leachate management for Stage 4 is to be determined.

1.2 Site Leachate Management Infrastructure

Existing leachate management infrastructure at the Facility is detailed within Table 1.

Table 1: Existing Leachate Infrastructure

Parameter	Comment
Existing Irrigation System	On average since December 2015, Council has pumped 1257.84 m ³ of leachate to the irrigation area per year. (Shoalhaven City Council, 15/10/18)
Existing Leachate Storage Pond	Maximum storage capacity of Pond of 8.9 ML (Memorandum to David Hojem from Giordano Bianco 14/9/17)

SLR Consulting Australia Pty Ltd 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia) T: +61 2 9427 8100 E: sydney@slrconsulting.com

www.slrconsulting.com ABN 29 001 584 612

2 Leachate Generation

2.1 Existing Site Data

Council provided leachate generation data from Landfill Stages 1 - 3 (2013 - 2014) for potential use within the Site leachate generation water balance. Council also notes that no data was available for landfill Stages 1 and 2 (old unlicensed areas, and prior to any record keeping). Several months within the historical data set were noted to be missing with other years not available.

It is considered that due to the historical and incomplete nature of the site leachate generation data, estimates of leachate produced by Stages 1 - 3 should instead be determined by the use of the Hydrologic Evaluation of Landfill Performance (HELP) computer program.

2.2 HELP Input Parameters

HELP input parameters developed for the Site leachate generation assessment is included within **Appendix A**.

2.3 Stage 1 - 3 Leachate Generation Summary

For the purposes of leachate generation modelling the HELP model conservatively incorporates 90th percentile annual rainfall volumes from historically wetter years. The monthly infiltration percentage rates are in accordance with associated capping arrangements (detailed within Table 11) and the monthly rainfall.

Where areas have been temporarily capped, an infiltration rate of 25 - 30% is typically attained and infiltration rates in restored (final capping areas) are typically in the range of 2 - 10% (Environmental Protection Agency, 2000).

Estimated leachate generation produced by Stages 1 - 3 is detailed Table 2.

Table 2 Leachate Generation Summary – Stages 1 - 3

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Annual Total (m ³)
	Monthly Precipitation (mm)	63.5	81.5	83.4	96.0	87.3	70.5	98.5	121.5	138.3	108.0	106.8	115.6	1170.9
	Leakage (mm)	3.24	3.2	3.1	3.24	3.12	3.19	3.21	2.9	3.26	3.15	3.28	3.19	
Stage 1 Closure	Monthly Infiltration Percentage (%)	4.8%	3.0%	3.2%	2.8%	2.6%	3.6%	2.3%	1.6%	1.7%	2.0%	2.4%	1.8%	
Area	Leachate Production (m ³)	92.34	91.2	88.35	92.34	88.92	90.915	91.485	82.65	92.91	89.775	93.48	90.915	1,085.28
	Leakage (mm)	1.3	0.93	1.66	1.36	0.9	0.46	0.73	0.73	1.08	1.17	1.78	1.36	
Stage 2 Closure	Monthly Infiltration Percentage (%)	2.0%	1.1%	2.0%	1.4%	1.0%	0.7%	0.7%	0.6%	0.8%	1.1%	1.7%	1.2%	
Area	Leachate Production (m ³)	115.7	82.77	147.74	121.04	80.1	40.94	64.97	64.97	96.12	104.13	158.42	121.04	1,197.9
	Leakage (mm)	1.03	1.04	1.52	1.43	1.02	0.66	0.8	0.69	0.86	1.01	1.37	1.23	
Stage 3 Closure	Monthly Infiltration Percentage (%)	1.6%	1.3%	1.8%	1.5%	1.2%	0.9%	0.8%	0.6%	0.6%	0.9%	1.3%	1.1%	
Area	Leachate Production (m ³)	91.67	92.56	135.28	127.27	90.78	58.74	71.2	61.41	76.54	89.89	121.93	109.47	1,126.7
Change 2	Leakage (mm)	26.5	23.1	20.2	23.1	25.7	27.9	27.2	25.6	28.5	26	26.6	27.1	
Stage 3 Operational Area	Monthly Infiltration Percentage (%)	41.73%	28.34%	24.22%	24.06%	29.44%	39.57%	27.61%	21.07%	20.61%	24.07%	24.91%	23.44%	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Annual Total (m³)
Leachate Production (m ³)	212	184.8	161.6	184.8	205.6	223.2	217.6	204.8	228	208	212.8	216.8	2460
onthly Stage 1 -3 roduction (m ³)	511.7	451.3	533.0	525.5	465.4	413.8	445.3	413.8	493.6	491.8	586.6	538.2	5869.96

2.4 Stage 4 Leachate Generation Summary

The monthly infiltration percentage rates vary in accordance with associated capping arrangements (detailed within **Table 11**) and the associated monthly rainfall. Estimated leachate generation produced by Stage 4 is detailed in Table 3.

Table 3 Leachate Generation Summary – Stage 4

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Annual Total (m³)
	Precipitation (mm)	63.5	81.5	83.4	96.0	87.3	70.5	98.5	121.5	138.3	108.0	106.8	115.6	
	Leakage (mm)	4.75	4.73	4.57	4.72	4.54	4.65	4.63	4.23	4.68	4.55	4.75	4.6	
Closure 8.9 Ha	Monthly Infiltration Percentage (%)	7.5%	5.8%	5.5%	4.9%	5.2%	6.6%	4.7%	3.5%	3.4%	4.2%	4.4%	4.0%	
	Leachate Production (m³)	422.75	420.97	406.73	420.08	404.06	413.85	412.07	376.47	416.52	404.95	422.75	409.4	4930.6
	Leakage (mm)	26.5	23.1	20.2	23.1	25.7	27.9	27.2	25.6	28.5	26	26.6	27.1	
Operational 0.8 Ha	Monthly Infiltration Percentage (%)	41.73%	28.34%	24.22%	24.06%	29.44%	39.57%	27.61%	21.07%	20.61%	24.07%	24.91%	23.44%	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Annual Total (m³)
Leachate Production (m ³)	212	184.8	161.6	184.8	205.6	223.2	217.6	204.8	228	208	212.8	216.8	2460
e 4 monthly leachate production (m ³)	634.75	605.77	568.33	604.88	609.66	637.05	629.67	581.27	644.52	612.95	635.55	626.2	7390.6

3 Leachate Management Options

A summary of feasible leachate management options including typical advantages and disadvantages are listed within Table 4.

It should be noted that re-circulation is not considered a feasible leachate reduction option within this assessment, as once the absorptive capacity within the waste mass is reached, no source reduction of leachate is achieved.

Option	Option Description	Advantages	Disadvantages
1	Leachate Storage Pond	Simple – A storage pond provides a relatively simple and effective method of managing leachate	Cost - Ponds are required to be lined to the equivalent performance standard as the landfill and are subject to the same landfill construction approvals and auditing requirements.
		Storage - A leachate storage pond can be utilised in conjunction with other alternate leachate treatment methods such as physico- chemical treatment or thermal treatment.	Odour - If leachate ponds become anaerobic, or where odour is particularly critical due to surrounding sensitive land uses, leachate odours can become an issue. Where odour is an actual or potential issue, then the leachate pond may need to be covered or mechanically aerated. Other associated leachate measures such as irrigation will provide some source reduction, lowering the amount of leachate stored in the leachate storage pond, but should not be relied upon to reduce odour issues.
			Pond size – Large storage pond is necessary to ensure sufficient sizing in accordance with best practice NSW EPA requirements.
2	Reverse Osmosis (RO) Plant – leachate	Leachate reduction – Can achieve moderate reduction	Cost – High capital expenditure and potentially requiring a separate approval from EPA.
	treatment	in leachate for the site estimated at ~60%.	Power – High power consumption for operation
		dependant on leachate quality.	Maintenance –Involves regular on-going maintenance
			Leachate concentrate – Moderate levels of by- product volumes of leachate concentrate produced (~40%)
			Not a standalone system - Must be utilised in conjunction with other leachate management measures, such as leachate pond storage
3	Direct Evaporation Treatment System -	Leachate reduction - High reduction in leachate feed	Maintenance – Maintenance required, albeit minimal.
	Leachate is evaporated by the combustion of landfill gas.	volume ~90%. Leachate treatment rate of 35m³/day.	Not a standalone system - Must be utilised in conjunction with other leachate management measures, such as leachate pond storage.

Table 4 Leachate Management Option Summary

Option	Option Description	Advantages	Disadvantages
	Leachate combustion machines can either be portable or placed in fixed locations for long-term service.	Leachate concentrate – Low by-product levels of leachate concentrate produced (~10%) Operational Area – Minimal	 Landfill gas use –Consumption of landfill gas (180 m³/hr of LFG consumption for 35m³/day of leachate reduction) Leachate concentrate – Further management
	The system can be operated on a variety of fuels – natural gas,	space requirements in comparison to other infrastructure, i.e. in	measures may be required to deal with the high strength leachate concentrate. Moderate Cost – Moderate capital expenditure (~
	methane, propane, fuel oil or waste oil.	comparison to an additional leachate storage pond	\$0.5M). Cost effective in comparison to an RO plant
4	Surface irrigation of leachate over suitable areas at the landfill	Cost effective – Low construction and installation cost in comparison to other treatment systems. Leachate reduction – Moderate levels of leachate reduction.	Moderate application rate - The irrigation application rate must not exceed the capacity of the land to absorb the nutrient, salt, organic and hydraulic loadings supplied by the leachate. It must not compromise any future use of the land or productivity of the soil. The application rate must minimise runoff. It should not cause spray drift of leachate.
		Source reduction – Surface irrigation increases the level of evapotranspiration.	Must be utilised in conjunction with other measures - Occupiers must have contingency measures in place, should irrigation become unviable for any reason. This must include one or more of the other options discussed in this section, such as a leachate dam.
			Effectiveness - Spray irrigation over the active landfill surface may not be as effective in distributing the leachate throughout the waste mass in comparison to re-injection. It may also pose risks of increased odour impacts, surface runoff, and spray drift.
5	Solar system in conjunction with an RO Treatment Plant	Leachate reduction – High levels of leachate reduction achievable, leachate	Cost – High capital expenditure for Reverse Osmosis Plant and potentially requiring a separate approval from EPA.
		treatment rate of up to 100m³/day.	Power –Moderate to high power consumption for operation
			Maintenance –Involves regular on-going maintenance of filtration units
			Leachate concentrate – Moderate levels of by- product volumes of leachate concentrate produced (~20-40%)
			Not a standalone system - Must be utilised in conjunction with other leachate management measures, such as leachate pond storage

Option	Option Description	Advantages	Disadvantages
6	Leachate Storage Tank	 Simple – A storage tank provides a relatively simple and effective method of managing leachate Storage - A leachate storage pond can be utilised in conjunction with other alternate leachate treatment methods such as physico- chemical treatment or thermal treatment. 	 Cost – High capital expenditure required for the installation of suitably sized storage tanks. Bunding - Tanks and associated connection points must be surrounded by a bund with a capacity of at least 110% of the tanks. No Evaporation – If the storage tank is enclosed, no evaporation (source reduction) will occur.
7	Discharge to public sewer	Low impact – Sewer discharge typically has a low environmental impact for the landfill operation and does not have the same odour issues typically associated with leachate pond storage or irrigation.	 Approval - requires the approval of the local sewerage authority and a Trade Waste Agreement, which may impose restrictions on the quality of leachate permitted to be discharged Location – Assessment of feasibility required Cost – Connection costs and sewer discharge rates may make sewer discharge unfeasible. Treatment - Sewer discharge and treatment at the wastewater treatment plant can encounter issues if the leachate contains high levels of contaminants.

3.1 Leachate Management Recommendations

The performance rating for each criterion is determined as detailed within **Table 5**. Each leachate management option is rated using an Ordinal scale: 5 (*Excellent*) to 0 (*Very Poor*). Each criterion is weighted evenly in this brief analysis.

Table 5 Leachate Management Multi-Criteria Analysis

			Crit	eria		Total
	Option	Leachate Reduction	Capital Expenditure	On-going Maintenance	Energy Consumption	Score
1	Leachate Storage Pond	2	25	4	4	12
2	Reverse Osmosis (RO) Plant – leachate treatment	3	1	2	1	7
3	Direct Evaporation Treatment System - Leachate is evaporated by the combustion of landfill gas	4	2	4	3	13
4	Surface irrigation of treated leachate on suitable areas of the landfill subject to salinity management	3	4	4	4	15

			Crit	eria		Total
	Option	Leachate Reduction	Capital Expenditure	On-going Maintenance	Energy Consumption	Score
5	Solar system in conjunction with an RO Treatment Plant	5	21	2	2	110
6	Leachate Storage tank	1	2	4	5	12
7	Discharge to public sewer	4	1	4	3	12

Based upon Table 5, it is recommended that the following leachate management measures are given further consideration in conjunction with Option 1 within a Site Water Balance:

- Option 4 Construction of an Irrigation System (Constructed on-top of Cell 2)
- Option 3 Direct Evaporation Treatment System Evaporation by the combustion of landfill gas

4 Water Balance

A water balance is developed for the analysis of alternate leachate management scenarios at the Site. In accordance with NSW EPA Environmental Guidelines: Solid Waste Landfills, the water balance was conducted over a period of two consecutive wet years (90th percentile) to ensure that the proposed system has sufficient capacity to deal with all leachate generated during both the operational and closure periods of the landfill.

The site water balance considers the following scenarios, as described in Table 6.

Table 6: Scenario Summary

Scenario	Scenario Detail
1	Utilisation of the existing leachate storage pond (Option 1) and the construction of an irrigation system on the crest of Stage 2 (Option 4).
2	Utilisation of the existing leachate storage pond (Option 1) and the use of a direct evaporation treatment system (Option 3).

4.1 Design Parameters

The design parameters appropriate for this water balance assessment as defined within Section 2.3 of the NSW EPA Environmental Guidelines: Solid Waste Landfills, are summarised within Table 7.

Table 7	Water b	alance	design	parameters
---------	---------	--------	--------	------------

Item	Requirement
General	Collected leachate must be stored in appropriately sized dams or tanks and disposed of so as not to cause environmental harm. There must be sufficient leachate disposal capacity to prevent the build-up of leachate and an increase in the risks of water pollution and offensive odours.
Water balance requirement	The model should account for all predicted leachate inputs and outputs from the leachate management system. The model should be run by using monthly time intervals, and it should estimate the changes in the cumulative volume with each month. The maximum cumulative volume may not be reached until many months into the landfill's operation.
Water balance duration	In deciding on any of the above management options, a water balance should be modelled over <u>at least two consecutive wet years</u> (90 th percentile) to ensure that the proposed system has sufficient capacity to deal with all leachate generated over the operational life of the landfill.
Pan Coefficient	The evaporation from the leachate dam should be estimated by using a pan coefficient of 70%.
Storage	The dam must have a freeboard that can accept rainfall directly on the dam from a 24hour rainfall event with a 1-in-25-year average recurrence interval without overflowing.

4.2 Water Balance Scenarios

4.2.1 Scenario 1: Option 1 (Existing Leachate Storage Pond) and Option 4 (Proposed Irrigation Area over Stage 2)

An existing water balance is developed for Stages 1 - 4 to determine the sufficiency of the existing leachate storage pond and the construction of an irrigation system on the crown of Stage 2 to accommodate two consecutive wet years (90th percentile rainfall) and predicted leachate generation from Stages 1 - 4.

Parameters for the Scenario 1 water balance are provided within Table 8.

Table 8 Scenario 1 Water Balance Parameters

Scenario	Purpose	Assumptions
1	Determine the sufficiency of the existing leachate management system to accommodate two consecutive wet years (90th percentile rainfall) and predicted leachate generation from Stages $1 - 4$.	 Leachate management by the use of the existing leachate storage pond and a revised irrigation system constructed on Stage 2 (ie Option 1 and Option 4). Irrigation system is able to dispose of 730mm/m² over the irrigation area per year at a rate of (851 m³/month). The clay cap where the irrigation system is proposed for Cell 2 requires removal and is to be re-instated with 1400mm depth of silty sand and 200mm of topsoil to allow for infiltration.

Input parameters for Scenario 1 are provided within Table 9.

Table 9Water Balance Inputs

Inputs												
	January	February	March	April	May	June	ylul	August	September	October	November	December
Average Rainfall	396	719	339	343	178	427	322	265	249	376	316	403
90th Percentile Rainfall	427	547	560	645	586	474	662	816	929	726	717	777
Leachate from cell (m ³)	1151	1064	1109	1139	1082	1056	1080	999	1142	1110	1228	1171
Outputs												
Dam Evap (m ³)	908	724	642	483	376	316	358	488	604	749	800	953
Irrigation Use (m ³ /month)	852	852	852	852	852	852	852	852	852	852	852	852

4.2.1.1 Preliminary Irrigation Area Sizing

The irrigation area was iteratively sized in accordance with the findings of the SEEP/W model. The irrigation modelling determined 730mm of leachate per m² can be applied over the irrigation area. The irrigation system to be constructed Stage 2 is required to be at least 14,000 m² in size. The findings of the preliminary irrigation modelling and conceptual sizing of the disposal area are included in **Appendix B**. The water balance (average and 90th percentile rainfall events) for Scenario 1 is depicted within Figure 1.

Figure 1 Scenario 1 Results

As shown in **Figure 1**, the water balance for Scenario 1 confirms sufficient capacity of the current leachate storage pond to accommodate two consecutive 90th percentile rainfall years and leachate generated by Stages 1-4 if a new irrigation area of 14,000m² is constructed

4.2.2 Scenario 2 Option 1 (Existing Leachate Storage Pond) and Option 3 (Direct Evaporation Treatment System)

As included within **Table 6**, a water balance is developed for Stages 1 - 4 including the use of the existing leachate storage pond and a direct evaporation treatment system. Parameters and assumptions used for the Scenario 2 water balance is provided within **Table 10**.

Table 10 Scenario 2 Water Balance Parameters

Scenario	Purpose	Assumptions
2	Determine if the evaporation treatment system in conjunction with the existing leachate storage pond is able to accommodate two consecutive wet years (90 th percentile rainfall) and leachate generation from Stages 1 - 4.	 Leachate management by the use of the existing leachate storage pond (Option 1) and a Direct Evaporation Treatment System (Option 3)- Evaporation of leachate by the combustion of landfill gas is included within this scenario. The evaporation rate of removal is 35m³/day. Disposal via irrigation not required in this scenario

Input parameters for Scenario 1 are provided within Table 11.

Table 11Water Balance Inputs

Inputs												
	January	February	March	April	May	June	ylut	August	September	October	November	December
Average Rainfall	396	719	339	343	178	427	322	265	249	376	316	403
90th Percentile Rainfall	427	547	560	645	586	474	662	816	929	726	717	777
Leachate from cell (m ³)	1151	1064	1109	1139	1082	1056	1080	999	1142	1110	1228	1171
Outputs												
Dam Evap (m ³)	908	724	642	483	376	316	358	488	604	749	800	953
Direct Evaporation Treatment System (m ³ /month)	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050

Leachate generation for average and 90th percentile rainfall events for Stages 1 - 4 is depicted within Figure 2.

Figure 2: Scenario 2 Results

In this scenario, leachate generated by Stages 1 - 4 would be sufficiently dealt with via the direct evaporation treatment system and existing leachate storage pond.

5 Recommendation

Preliminary water balance modelling indicates that leachate volumes produced by Stages 1-4 is able to be managed by one of the following scenarios, as described in Table 12.

Table 12	Leachate	Management	Recommendations
----------	----------	------------	-----------------

Scenario	Description	Notes
1	Construction of an irrigation system on top of Cell 2. The irrigation system is to be utilised in conjunction with the existing leachate storage pond.	The clay cap where the irrigation system is proposed for Cell 2 will require removal and is to be re-instated with 1400mm of silty sand and 200mm of topsoil. The irrigation disposal area is required to be at least 14,000m ² in size with a maximum annual leachate application rate of 730mm/m ² at a rate of 851 m ³ /month over the irrigation area per year. Refer to Appendix B for proposed irrigation area preliminary assessment and concept design.
2	Installation of a direct evaporation treatment system The evaporation system is to be utilised in conjunction with the existing leachate storage pond.	Evaporation treatment is recommended as an alternate leachate management measure to provide high levels of leachate source reduction and low levels of leachate concentrate.

6 Bibliography

Environmental Protection Agency. (2000). Landfill Manuals: Landfill Site Design.

NSW EPA. (2016). Environmental Guidelines: Solid Waste Landfills.

SLR Consulting. (2017). West Nowra Recycling and Waste Facility Proposed Stage 4 Landfill Extension Concept Design Report.

SLR Consulting. (2017). West Nowra Recycling and Waste Facility Proposed Stage 4 Landfill Extension Soil, Water and Leachate Assessment.

APPENDIX A

HELP INPUT PARAMETERS

HELP Input Parameters

A water balance was conducted over a period of two consecutive wet years (90th percentile) as recommended within the NSW EPA landfill guidelines, to ensure that the proposed system has sufficient capacity to deal with all leachate generated during both the operational and closure periods of the landfill.

The following section contains the input parameters used within the Hydrological Evaluation of Landfill Performance (HELP) model.

Capping Arrangements

The capping arrangements for Stages 1 - 4 for the purposes of HELP generation modelling are detailed within Table 13.

Stage	Estimated Landfilled Area (ha)	Barrier Arrangement	Reference
1	9.5	Stage 1 Landfill is assumed to be covered with a compacted clay liner 600mm thick with a permeability of 10 ⁻⁹ m/s. Note: It is understood that Stage 1 landfilling occurred prior to regulatory licensing requirements, in unlined trenches. A combination of gravel and concrete drains discharge leachate to the existing leachate dam. It is estimated 30% of leachate produced is captured by the retro-fitted leachate system and discharged into the existing leachate storage pond.	Shoalhaven City
2	8.2	Stage 2 is assumed to be covered with a compacted clay liner with a permeability of 10^{-9} m/s and a geomembrane of 10^{-11} m/s.	Council (12 th /10/18)
3	10	Stage 3 lining is a combination of clay lining and synthetic lining. For the purposes of this assessment, it is assumed the barrier layer comprises a permeability of 10^{-9} m/s.	
	0.8	300mm intermediate cover soils assumed to be a compacted liner with a permeability of 10 ⁻⁶ m/s.	
4	9.7	A seal bearing surface 300mm thick A sealing layer comprising: A 2mm low density polyethylene flexible membrane (i.e. LDPE) or approved alternative; and A Geosynthetic Clay Liner; A 1,000 mm revegetation layer	West Nowra Recycling and Waste Facility Proposed Stage 4 Landfill Extension Concept Design Report (SLR,
	0.8	300mm intermediate cover soils	2017)

Table 13 Capping arrangements

Climate Data

Climate data for the model was obtained from SILO (Scientific Information for Land Owners) which contains a database of historical climate records for Australia, hosted by the Science Delivery Division of the Department of Science, Information Technology and Innovation. SILO contains Australian climate data from 1889 to the present date of this assessment. SILO datasets are constructed from observational records provided by the

Bureau of Meteorology. SILO was utilized to process the raw data, which may contain missing values, to derive a dataset for the Site which is both spatially and temporally complete.

SILO data was obtained for, maximum and minimum temperature, pan evaporation, vapor pressure, and relative humidity at the times of maximum and minimum temperature.

Rainfall

A data set of over 25 years was obtained for this assessment, including solar radiation, daily rainfall and average temperature.

Evaporative zone depth

The evaporative zone depth is the maximum depth from which water may be removed by evapotranspiration. The value specified influences the storage of water near the surface and therefore directly affects the computations for evapotranspiration and runoff. Where surface vegetation is present, the evaporative depth should at least equal the expected average depth of root penetration. The depth specified should be characteristic of the maximum depth to which the moisture changes near the surface due to drying over the course of a year, typically occurring during peak evaporative demand or when peak quantity of vegetation is present. It is assumed that the evaporative zone depth for the purpose of this assessment is 10 cm.

Maximum leaf area index

Leaf area index (LAI) is defined as the dimensionless ratio of the leaf area of actively transpiring vegetation to the nominal surface area of the land on which the vegetation is growing. The LAI for this assessment is 1.0 (poor stand of grass, utilised for the operational landfilled areas) and 3.5 (good stand of grass, utilised for the closed/rehabilitated landfilled areas).

Growing Season

The growing season input parameter influences the evapotranspiration rate within the HELP model. The start of the growing season is based on mean daily temperature and plant species. Typically, the start of the growing season for grasses is the Julian date (day of the year) when the normal mean daily temperature rises above 10 to 13 degrees Celsius. For the purpose of this assessment, the growing season is considered to be year-round.

Other Climate Data Inputs

Other climate data properties incorporated into the HELP model include the average yearly average wind speed is 12.4 km/hr and average relative humidity for the area is described within Table 14.

Quarter	Average Relative Humidity (%)
First Quarter	66
Second Quarter	62.7
Third Quarter	55.3
Fourth Quarter	58.0

Table 14 Average relative humidity

APPENDIX B

PRELIMINARY LEACHATE IRRIGATION AREA ASSESSMENT

Introduction

Arcadis has engaged SLR Consulting (SLR) to determine suitable leachate management options for the West Nowra Recycling and Waste Facility (the Facility) as a result of the proposed Stage 4 landfilling activities. As part of this scope of work a preliminary assessment of the volume of leachate that can be applied to the proposed irrigation area over the existing Stage 2 area has been carried out.

The purpose of the desk based irrigation assessment was to determine a preliminary sizing of the required onsite leachate irrigation area to adequately manage irrigation waters and to inform the concept design for the EIS stage of the proposed landfill extension. This assessment has not included any site specific investigations and does not cover detailed irrigation system design, which shall be carried out in the detailed design phase, once approval has been granted.

Background

To assess the quantity of leachate that can be applied to an area without generating run-off a water balance of the soil system should be developed, which takes into consideration:

- Precipitation;
- Evapotranspiration;
- Surface runoff;
- Topography;
- Soil and vegetation characteristics; and
- Soil moisture storage.

The soil system is considered to be in balance when the precipitation entering the soil equals the amount leaving through evapotranspiration. In this case the irrigation volume will contribute to the water balance of the soil.

The area proposed to be utilised for irrigation is located in the central area of Stage 2, as shown in **Figure 3** below. This area was previously used for waste disposal and has a liner underlying the waste. The area has been capped with 200mm topsoil, 800mm silty sand, and 600mm clay.

Climate

Climate data for the model was obtained from SILO (Scientific Information for Land Owners) which contains a database of historical climate records for Australia, hosted by the Science Delivery Division of the Department of Science, Information Technology and Innovation. SILO contains Australian climate data from 1889 to the present date of this assessment. SILO datasets are constructed from observational records provided by the Bureau of Meteorology. SILO was utilized to process the raw data, which may contain missing values, to derive a dataset for the Site which is both spatially and temporally complete.

SILO data was obtained for, maximum and minimum temperature, pan evaporation, vapor pressure, and relative humidity at the times of maximum and minimum temperature. SILO provides daily climate values which are required for input into the modelling programme.

Data for humidity, temperature, and solar radiation were obtained from the BOM website, with different stations providing different data sets:

- Humidity data was calculated quarterly using monthly percentages obtained for Nowra RAN Air Station AWS station (068072);
- Temperature data was obtained for Ulladulla AWS station (069138); and
- Solar radiation was obtained for Nowra Boat Shed station (068213).

Methodology

Geostudio is an integrated, multi-physics numerical analysis tool that has four components that simulate the flow of energy/mass. Geostudio SEEP/W coupled with thermal functionality has been utilised to simulate an average year of weather to the current layout of the Stage 2 capping profile. A 1D analysis of the soil profile can provide inputs to the evaporation potential of the system allowing for an estimate of additional loading to the system that can be undertaken. As this is a preliminary assessment to inform the concept design, no vegetation has been incorporated into this model, as it has been assumed that vegetation will not have been established at the outset of irrigation.

To ensure a conservative calculation of soil saturation potential prior to run off generation the profile utilised is shown in **Figure 2.2.1.** The current profile has an approximate slope of 3% and an approximate embankment slope of 23%. A land climate interaction boundary specifying the site specific climate data detailed in **Section 02**, has been applied to assess the evaporation potential of the soil system.

Land Climate Interaction Boundary Top Soil
Silty Sand
Clay
Waste

Figure 4: 1 Dimensional Analysis of the Capping Evaporation Potential

Figure 2.2 Shoalhaven Stage 2 landform profile modelled

It should be noted that site specific soil data for soil moisture curves were not provided and estimates established in literature have been used. Soil moisture curves provide the soil suction parameters of the model, which is the soils ability to retain water in an under unsaturated conditions. Confirmation of soil type and vegetation characteristics shall be carried out in the detail design phase.

Results

1D Soil Profile Analysis – Base Conditions

The cumulative runoff of the 1D soil column is indicative of the soil water balance, and whether the current system without additional irrigation would have any runoff generated. Based on the analysis the soil water balance the cumulative rainfall exceeds the cumulative evaporation; however, this does not mean that there is runoff generation as net percolation into the underlying soil layers contribute to the runoff potential and soil storage, **Figure 5**. Note that positive cumulative net infiltration is indicative of water moving into the soil and negative is indicative of water moving out of the soil.

Figure 5 Cumulative climate and infiltration rates

The soil saturation degree is shown in **Figure 6** below. The soil saturation has been set at the top node of the analysis to determine when the system would generate runoff and be capable of taking additional leachate. As can be seen in the Figure 4, the system has periods where the soil is saturated and would generate some runoff as a result of rain exceeding the storage capacity and evaporation potential of the system. These instances are the result of rain events that are sustained over periods of 24 hours or greater.

Figure 6 Soil Saturation over modelling period of 365 days

Application of leachate to the area at a rate 0.1mm per day over the course of the year, with days of precipitation excluded was modelled to assess the soil saturation with increased wetting. These results show that increasing the wetting of the soil horizon continually creates significantly greater soil saturation conditions, which are shown in **Figure 7**.

Figure 7 Soil Saturation at 0.1mm leachate application to the 1D column

The system was also modelled removing the clay liner component and replacing it with silty sand, the results of the degree of soil saturation running this simulation with just the environmental conditions are shown in **Figure 8** below. The simulation was also run with an application of 5mm of leachate applied to the area over each day that precipitation did not occur; these results are shown in **Figure 9** below. The results from the application of leachate at 2mm/day over 365 days show that run off is not likely to be generated.

Figure 9 Degree of Soil Saturation with clay removed and 2mm of leachate applied daily (except on days with rainfall)

Recommendations

Based on the modelling that was performed in Geostudio SEEP/W an accumulative application of 730mm of leachate over the selected irrigation area per year would be acceptable with the clay cap removed. It should be noted that leachate irrigation should be avoided on days that rainfall has occurred to reduce the potential for run-off. The irrigation area should be monitored to ensure the establishment of healthy flora and that the oversaturation of the ground is not an issue.

If the clay cap remains in place the area is unlikely to be able have leachate application without risk of leachate run off generation. Additionally, creating saturated soil conditions would result in difficult flora establishment.

Furthermore, it would be advisable that a buffer zone of 5m between the crest of the embankment and the irrigation zone be established and 0.5m bunding be placed on the downslope portions of the irrigation area. The bunding would prevent run-off leaving the area in the event that rainfall occurred on the same day that leachate irrigation had taken place.

ASIA PACIFIC OFFICES

BRISBANE

Level 2, 15 Astor Terrace Spring Hill QLD 4000 Australia T: +61 7 3858 4800 F: +61 7 3858 4801

МАСКАУ

21 River Street Mackay QLD 4740 Australia T: +61 7 3181 3300

ROCKHAMPTON

rockhampton@slrconsulting.com M: +61 407 810 417

AUCKLAND

68 Beach Road Auckland 1010 New Zealand T: +64 27 441 7849

CANBERRA

GPO 410 Canberra ACT 2600 Australia T: +61 2 6287 0800 F: +61 2 9427 8200

MELBOURNE

Suite 2, 2 Domville Avenue Hawthorn VIC 3122 Australia T: +61 3 9249 9400 F: +61 3 9249 9499

SYDNEY

2 Lincoln Street Lane Cove NSW 2066 Australia T: +61 2 9427 8100 F: +61 2 9427 8200

NELSON

5 Duncan Street Port Nelson 7010 New Zealand T: +64 274 898 628

DARWIN

5 Foelsche Street Darwin NT 0800 Australia T: +61 8 8998 0100 F: +61 2 9427 8200

NEWCASTLE

10 Kings Road New Lambton NSW 2305 Australia T: +61 2 4037 3200 F: +61 2 4037 3201

TAMWORTH

PO Box 11034 Tamworth NSW 2340 Australia M: +61 408 474 248 F: +61 2 9427 8200

NEW PLYMOUTH

Level 2, 10 Devon Street East New Plymouth 4310 New Zealand T: +64 0800 757 695

GOLD COAST

Ground Floor, 194 Varsity Parade Varsity Lakes QLD 4227 Australia M: +61 438 763 516

PERTH

Ground Floor, 503 Murray Street Perth WA 6000 Australia T: +61 8 9422 5900 F: +61 8 9422 5901

TOWNSVILLE

Level 1, 514 Sturt Street Townsville QLD 4810 Australia T: +61 7 4722 8000 F: +61 7 4722 8001