Geotechnical Investigation

Proposed channel Re-Alignment, Mamre Road Orchard Hills

G09-2756-A

Prepared for HB&B Property Group 18/06/2018

Contact Information

Network Geotechnics Pty Ltd A Construction Sciences Company ABN 35 069 211 561

31 Anvil Road Seven Hills NSW 2147

Telephone: + 612 8646 2000 Facsimile: + 612 8646 2025

www.constructionsciences.net

Document Information

Prepared for	HB&B Property Group				
Project Name	Proposed channel Re- Alignment, Mamre Road Orchard Hills				
File Reference	Document2				
Job Reference	G09-2756-A				
Date	18/06/2018				

Document History

Version	Effective Date	Description of Revision	Prepared by:	Reviewed by:
1	18.06.18	Original	Vipul de Silva	V de Silva

© Construction Sciences 2018. Copyright in the whole and every part of this document belongs to Construction Sciences and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Construction Sciences.

This document is produced by Construction Sciences solely for the benefit and use by the client in accordance with the terms of the engagement. Construction Sciences does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1.0 Introduction	1
2.0 Site Conditions and Geology	1
3.0 Field Investigation	1
4.0 Laboratory testing	1
5.0 Subsurface Conditions.	2
6.0 Discussion and Recommendations	2

Appendices

- Appendix A Site plan , and Borehole logs
- Appendix B Laboratory tset results
- Appendix C information sheets

1.0 Introduction

Construction Sciences was commissioned by HB&B Group to assess soil conditions at the proposed channel re alignment at Mamre Road Orchard Hills in order to assess the soil salinity and topsoil characteristics. The investigation was triggered by an observation by officers from the Department of Environments and Conservation, NSW that vegetation has not been established on a similar channel in the property. The investigation was carried out in accordance with Network Geotechnics Pty Ltd (a Construction Science Company) proposal 8870r dated 23 may 2018.

2.0 Site Conditions and Geology

The site is located to the west of Mamre Road opposite Erskine Park Road within the proposed Stage 2 of the Mamre Road Industrial Park. The site is generally flat and is covered by patchy grass and isolated trees.

Surface soil contain clayey topsoil.

Geological maps for Penrith indicates that the area is underlain by Quaternary Deposits containing fine grained sand, Silt and Clay. It is likely that the deposits are of fluvial origin.

3.0 Field Investigation

Field investigation comprised drilling 5 boreholes (BH1 to BH5) drilled with a Utility mounted drill rig attached with solid flight augurs each to about 3m depth assumed to be 0.5m to 1.0m below the proposed channel bed. Soil samples were collected from augur cuttings in approximately 0.5m depth intervals. In addition three topsoil samples were collected from along the length of the proposed channel alignment.

Fieldwork was carried out by a geotechnical engineer from Construction Sciences on 1 June 2018. Approximate borehole locations are included in the Drawing No G09/2756-1 and the borehole logs are included in Appendix A.

4.0 Laboratory testing

The following laboratory tests were carried out on samples collected:

- 1. 30 Soil samples for pH and electrical Conductivity
- 2. 3 Soil samples for cation exchange capacity
- 3. One composite sample of topsoil for complete chemical analysis for assessment of plant growth

Laboratory test results are included in Appendix 2.

5.0 Subsurface Conditions.

Subsurface profile exposed in the boreholes BH1 to BH5 may be summarised as shown in table 1 below;

Layer	Description	Depth to base of layer m
TOPSOIL	Clayey SILT, low plasticity, brown	0.2-0.4
FLUVIAL	CLAY, Medium to high plasticity, orange mottled grey, becoming wetter with depth. Mottling increased with depth	>3.0

Groundwater table was not encountered during drilling of boreholes. However it should be noted that the depth to groundwater table and seepage could fluctuate with changes in the environmental factors.

For details of subsurface profile, reference should be made to borehole logs included in Appendix 1.

6.0 Discussion and Recommendations

Laboratory test results for composite topsoil sample recorded Electrical conductivity 3.2dS/m indicating extremely high saline (ECe>16dS/m).

Samples at depth recorded varying degree of salinity with Bh1 indicating Moderately saline and highly saline soils over the full 3m depth. BH3, Bh4 and BH5 recorded Non to Slightly saline soils for the full depth.

Cation Exchange capacity of three samples tested range from 8.0meq/100g to 11.0meq/100g with sodium and magnesium being the dominant cation much less than calcium and potassium.

Test results suggest only the most salt tolerant plants are likely to be able to grow in the soil

It is recommended that channel banks and bases be covered with treated topsoil after excavation. Topsoil on site should be modified by adding 0.9kg/m2 of gypsum and heavily irrigated to leach out sodium. Further recommendations are included in SESL soil analysis report in Appendix B.

This report should be read in conjunctions with the attached Explanation Sheets

CONSTRUCTION SCIENCES PTY LTD

5

Vipul de Silva Principal Geotechnical Engineer 0411720045 Vipul.desilva@constructionsciences.net

Proposed channel Re-Alignment, Mamre Road Orchard Hills

APPENDIX

SITE PLAN , AND BOREHOLE LOGS

31 Anvil Road, SEVEN HILLS NSW 2147 Tel: (02) 8438 0300 Fax: (02) 8438 0310 Email: engineering@netgeo.com.au

MAMRE ROAD ORCHARD HILLS Sheet: Drawing No: G09/2756-1 1 of 1

SITE PLAN

ACN 069 211 561 31 Anvil Road Seven Hills NSW 2147 02 8468 2000

Geotechnics Pty Ltd							ACN 069 211 561 31 Anvil Road Seven Hills NSW 2147	Job	Job No: G09/2756		
	UIL		63				02 8468 2000 02 8468 2025	Hole	No:	BH1	
								Shee	et:	PAGE 1 / 1	
Clie	ent:			HB + B	Prop	erty		Star	ted:	01/06/18	
Pro	ject	t:		Propos	ed Ch	anne	Re Alignment	Finis	hed:	01/06/18	
_00	catio	on:		Mamre		jed:	ZK				
				GPS (-))			Che	cked:	VDS	
Ξqı	uipn	nent T	ype:			Ute N	ounted Drill Rig	RL S	Surface:		
Borehole Diameter: 100mm(O.D.) Inclination:					.D.)	Inclination: Bearing:	Datu	im:			
							Material Description			comments	
		samples, tests etc	s mr	ĥ	Бо	lodn		e e	Consistency/ Consistency/ relative density	connenta	
method	water	etc.	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol		Moisture	isister ve de		
Ĕ	-	sam	DC per	de	gra	nsc			Con	notes, structure, and additional	
										observations	
				_	. <u>x' //</u> .	ML	Clayey SILT, low plasticity, brown	D		TOPSOIL	
				_		СІ/СН	CLAY, medium to high plasticity, medium to high plasticity, orange		p	FLUVIAL	
		D	$\left \right $	_							
				_		CI/CH	CLAY, medium to high plasticity, orange mottled grey, traces of fine gravel				
	-	D		1.0							
				_		СІ/СН	CLAY, medium to high plasticity, orange mottled grey, traces of fine gravel		p		
_	-	D		_							
AU				_							
				_							
	-	D		2.0							
				_							
	-	D		_							
	-			_		СИСН	CLAY, medium to high plasticity, orange mottled grey, traces of fine grained sand, fine gra	avel ≥W			
	Ţ			_					P		
		D		3.0			3H1 Terminated at 3 m				
				_							
				_							
				_							
				-							
				4.0							
				_							
				_							
				_							
				 5.0							
				_							
				_							
				_							
				6.0							
				_							
				_							
				_							
				_							
				7.0							
				_							
				_							

ACN 069 211 561 31 Anvil Road Seven Hills NSW 2147

Geotechnics Pty Ltd					td		31 Anvil Road Seven Hills NSW 2147	Job No: G09/2756			
				1			02 8468 2000 02 8468 2025	Hole N	0:	BH2	_
								Sheet:		PAGE 1 / 1	
Clie	ent:			HB + B	Prop	erty		Started	d:	01/06/18	
Pro	ojec	t:		Propose	ed Ch	anne	I Re Alignment	Finishe	ed:	01/06/18	
.00	catio	on:		Mamre	mre Road, Orchard Hills Logged: ZK						
				GPS (-))			Check	ed:	VDS	
Ξαι	uipr	nent T	vpe			Ute N	founted Drill Rig	RL Sur	face:		-
		ole Dia					Inclination: Bearing:	Datum	:		-
							Material Description				-
		ests	s E	Ê	D D	lodr		0 5	cy/ sity	comments	
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol		Moisture condition	Consistency/ relative density		
me	>	samp	per DC	deb	gra	nsc		ĕ S	Cons elativ	notes, structure, and additional	
										observations	
	per				<u></u>	ML	Clayey SILT, low plasticity, brown, low to medium plasticity clay, traces of fine to medium gravel	D		TOPSOIL	-
	ounte			-	1/						_
	None Encountered	D	1	-		CI	Silty CLAY, medium plasticity, low plasticity silt	≤Wp		FLUVIAL	
	None			_		СІ/СН	CLAY, medium to high plasticity, orange, traces of fine gravel	1			
		D									
			1	0							
				_							
AUI		D	1	_							
•				_		СІ/СН	CLAY, medium to high plasticity, orange, traces of fine gravel	≥Wp	1		
		D		2.0							
			1	0							
				_							
		D	1	_		СІ/СН	CLAY, medium to high plasticity, orange-brown, traces of fine gravel	1			
						CI/CH	CLAY, medium to high plasticity, grey with some orange, traces of fine grained sand, fine gravel	-			
		D	-	3.0		0011					
							BH2 Terminated at 3 m				
				L							
				4.0							
				_							
				_							
				_							
				_							
				5.0							
				_							
				_							
				_							
				6.0							
				—							
				—							
				_							
				7.0							
				—							

BOREHOLE LOG ACN 069 211 561

Ge	ote	chni	cs i	Pty Li	td		31 Anvil Road Seven Hills NSW 2147 02 8468 2000 02 8468 2025	Job No	:	G09/2756		
				-			02 8468 2000 02 8468 2025	Hole N	0:	BH3		
								Sheet:		PAGE 1 / 1		
	ent:			HB + B				Starteo	:	01/06/18		
	ojec						el Re Alignment	Finishe	ed:	01/06/18		
Lo	catio	on:		Mamre GPS (-)		, Oro	chard Hills	Logged: ZK				
								Checke	ed:	VDS		
		nent T					Nounted Drill Rig	RL Sur				
Bo	reho	ole Dia	met	er: 100	mm(O. T	D.)	Inclination: Bearing:	Datum		r		
		ts				0	Material Description		, it	comments		
por	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol		Moisture condition	Consistency/ relative density			
method	Ŵ	ample e	DCP per 1	dept	graph	ISCS		Mois	Consis	notes, structure,		
		ŭ				ر			Le	and additional observations		
	ed	D			<u></u>	ML	Clayey SILT, low plasticity, brown, low to medium plasticity clay, traces of fine to medium gravel	D		TOPSOIL		
	None Encountered			_	1/					-		
	e Enc	D		_		CI/CH	CLAY, medium to high plasticity, brown-orange, traces of fine gravel	≤Wp		FLUVIAL		
	Non			_						_		
		D		1.0								
				_						_		
⊢		D		_		CI/CH	CLAY, medium to high plasticity, orange mottled grey, traces of fine gravel	≥Wp		_		
ADT				_						-		
				_						_		
		D		2.0								
				_						_		
		D		_						_		
				_		CI/CH	CLAY, medium to high plasticity, orange with some grey, traces of fine grained sand, fine gravel			_		
		D		3.0								
				_			BH3 Terminated at 3 m			_		
				_						_		
			-	_						_		
				_						_		
				4.0								
				_						_		
				_						_		
				_						_		
				5.0								
				_						_		
			-	_						_		
				_						_		
				6.0						_		
				0.0								
				_						_		
				_								
				_						_		
				7.0								
				_						_		
				_						-		
							Pofer To Evaluation Shorts For Description Of Terms And Symbols Used					

Refer To Explanation Sheets For Description Of Terms And Symbols Used.

ACN 069 211 561 31 Anvil Road Job No: G09/2756

Ge	ote	echni	CS .	Pty Li	td		Seven Hills NSW 2147		-	000/2100
				-			Seven Hills NSW 2147 02 8468 2000 02 8468 2025	Hole N	0:	BH4
								Sheet:		PAGE 1 / 1
Clie	ent:			HB + B	Prop	erty		Started	1:	01/06/18
Pro	ojec	t:		Propose	ed Ch	anne	el Re Alignment	Finishe	ed:	01/06/18
Lo	catio	on:				l, Orc	chard Hills	Loggeo	1:	ZK
				GPS (-))			Checke	ed:	VDS
Eq	uipn	nent T	ype			Ute N	Nounted Drill Rig	RL Sur	face:	
Bo	reho	ole Dia	met	er: 100	mm(O.	.D.)	Inclination: Bearing:	Datum	:	
							Material Description			comments
q	5	samples, tests etc	ows	(E	bol	USCS symbol		ion e	Consistency/ relative density	
method	water	nples, etc	DCP Blows per 150 mm	depth (m)	graphic log	CS s)		Moisture condition	insiste tive d	notos otructuro
-		sar		0	6	n			rela	notes, structure, and additional observations
	7	D			<u>, , , , , , , , , , , , , , , , , , , </u>	ML	Clayey SILT, low plasticity, brown, low to medium plasticity clay, traces of fine to medium gravel			TOPSOIL
	None Encountered		1	_			CLAY, medium to high plasticity, orange, traces of fine gravel	D ≤Wp		FLUVIAL -
	Encou	D								-
	lone I			_						-
	2	D	4	_						-
			1	1.0						
				_						-
ADT		D	-	_			CLAY, medium to high plasticity, orange, traces of fine gravel	≥Wp		_
				_		CI/CH	CLAY, medium to high plasticity, orange-brown, traces of fine gravel			_
	-	D		2.0						
				_						-
	-	D	-	_						-
				_						-
				_						-
		D	-	3.0		1	BH4 Terminated at 3 m			
				_						-
				_						-
										_
				4.0						
				_						_
				_						-
				_						-
				_						-
				5.0						
				_						-
				_						-
				_						-
				6.0						
				_						_
										_
				_						_
				_						-
				7.0						
				_						-
				_						-
			1				Defer To Evaluation Shoots For Description Of Terms And Symbols Lload	I		

BOREHOLE LOG LOGS.GPJ NETWORK GEOTECHNICS PTY LTD.GDT 18/6/18

ACN 069 211 561 31 Anvil Road Seven Hills NSW 2147 02 8468 2000

30	ate	chni	etw cs	Ork Ptv I:	td			ACN 069 211 561 31 Anvil Road Seven Hills NSW 21	47	Job No	c	G09/2756
10	010		63					02 8468 2000 02 8468 2025		Hole N	o:	BH5
										Sheet:		PAGE 1 / 1
Clie	ent:			HB + B	Prop	erty				Started	1:	01/06/18
Pro	ject	t:		Propose	ed Ch	anne	l Re Alignment			Finishe	ed:	01/06/18
.00	atic	on:				l, Orc	hard Hills			Loggeo	1:	ZK
				GPS (-))					Checke	ed:	VDS
Ξqι	Jipn	nent T	ype			Ute N	lounted Drill Rig			RL Sur	face:	
		ole Dia			mm(O.	.D.)	Inclination:		Bearing:	Datum	:	
							Mater	ial Description				comments
		samples, tests etc	s mu	Ê	bo	lodn				e L	Consistency/ relative density	commente
method	water	oles, t etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol				Moisture condition	sister /e de	
me		samp	per DCI	de	gra	usc				ĕS	Con: elativ	notes, structure, and additional
											-	observations
	red	D			<u>×1 1//</u>	ML	Silty CLAY, medium plasticity, low plasticity	silt		D		TOPSOIL
	ounte			_		CI/CH	CLAY, medium to high plasticity, grey, trace			≤Wp		FLUVIAL
	None Encountered	D		_								
	Non			_								
	╞	D		1.0	<i>[]]</i>	СІ/СН	CLAY, medium to high plasticity, grey mottle	d orange, traces of fine gravel				
	Ī] [
				_								
AUI	F	D]		<i>[]]]</i>	СІ/СН	CLAY, medium to high plasticity, grey mottle	d orange, traces of fine gravel		≥Wp		
-												
	┝	D		2.0	<i>[]]</i>	СІ/СН	CLAY, medium to high plasticity, grey- brow	n, traces of fine gravel				
				_	V///							
] [_								
	F	D		_								
				_		CI/CH	CLAY, medium to high plasticity, brown, tra	ces of fine gravel		>Wp		
		D	1	3.0	¥///							
				_			BH5 Terminated at 3 m					
				_								
				_								
				_								
				4.0								
				_								
				_								
				_								
				_								
				5.0								
				_								
				_								
				_								
				_								
				6.0								
				-								
				_								
				_								
				-								
				7.0								
				_	1							
			1 1									

Proposed channel Re-Alignment, Mamre Road Orchard Hills

APPENDIX B

LABORATORY TSET RESULTS

Sample N°: 1

Batch N°: 48228

Soil Chemistry Profile

Mehlich 3 - Multi-nutrient Extractant

 Sample Drop Off:
 16 Chilvers Road Thornleigh NSW 2120
 Tel:
 1300 30 40 80

 Mailing Address:
 PO Box 357 Pennant Hills NSW 1715
 Em:
 info@sesl.com.au

 Web:
 www.sesl.com.au

Client Name:	Construction Sciences - NSW	Project Name: SESL Quote N°	G09/2756 Mamre Rd, Orchard Hills	
Client Contact:	Vipul Desilva	Sample Name:	Composite (SS1, BH3, BH5)	
Client Order N°	:	Description:	Soil	
Address:	31 Anvil Road Seven Hills NSW 2147	Test Type:	FSC	

Date Received: 12/6/18

RECOMMENDATIONS

This soil sample was submitted to SESL by the client for full soil chemistry analysis. Recommendations are provided on this soil's suitability for revegetation. The pH is moderately acidic with **extreme salinity**. The source of this salinity originates from sodium and chloride which dominates the exchangeable cation percentage. The eCEC is not representative of the soil as it is strongly influenced by sodicity. This soil is also magnesic and combined with sodicity, will lead to severe structural decline and hard setting. The soil is deficient in potassium, calcium, copper and boron. All other nutrients are at appropriate levels for plant growth, with the exception of magnesium and manganese, which are extreme. This soil may cause magnesium toxicity in plants by restricting potassium and calcium uptake.

Overall, it is likely that this soil will not support healthy growth of most species that are not highly salt tolerant and most likely will present severe structural stability issues.

- Add gypsum at 900 g/m² followed by heavy irrigation to attempt to leach out sodium from the soil

- Repeat gypsum application in 6 months time

Gypsum will increase salinity further until leaching reduces it so choose moderately salt tolerant plants for the first sowing.

- Add muriate of potassium and urea at 20 g/m^{2 each} to improve nitrogen and potassium.

CATION RATIOS

-									
Ratio	1	Result	Tar	get Rai	nge				
Ca:M	g	0.7 4.1 – 6.0							
Comment: Potential Calcium deficiency									
Mg:K	,	15.2	2	2.6 – 5.0)				
Comr	ment: P	otential	Potass	ium def	iciency				
K/(Ca	a+Mg)	0.04		< 0.07					
Comr	Comment: Acceptable								
K:Na		0		N/A					
EXC	HANGEA		TIONS (cmol(+)	/kg)				
Na:	K:	Ca:	Mg:	H:	AI:				
16.22	0.68	7.59	10.33						
eCEC does not include correction for soluble salts as standard. Where exchangeable calcium exceeds 80 % of eCEC and/or salinity exceeds 0.75 dS/m, alternative methods are recommended to determine true eCEC. The units of eCEC <i>cmol</i> (+)/kg are the SI unit and are equivalent to <i>meq/100g</i> .									

A member of the Australian Soil and Plant Analysis Council (ASPAC) This laboratory participates in, and is awarded certification based on results of the scores returned in, ASPAC inter-laboratory proficiency routes. For detailed current certification tabus and for more information on the ASPAC inter-laboratory proficiency testing programs, see the ASPAC website: http://www.aspac-australasia.com

Disclaimer Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the samples collected or received by SESL. Due to the spatial and temporal variability of soils within a given site, and the variability of sampling techniques, environmental conditions and managerial factors, SESL does not accept any liability for a lack of general compliance or performance based on the interpretation and recommendations given (where applicable). This document must not be reproduced except in full.

ANALYTICAL REPORT

CLIENT DETAILS	·	LABORATORY DE	TAILS
Contact Client Address	Zubair Khan NETWORK GEOTECHNICS PTY LTD 31 Anvil Rd Seven Hills NSW 2147	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4257 4458	Telephone	+61 2 8594 0400
Facsimile	02 4257 4463	Facsimile	+61 2 8594 0499
Email	zubair.khan@constructionsciences.net	Email	au.environmental.sydney@sgs.com
Project	G09-2756	SGS Reference	SE179897 R0
Order Number	(Not specified)	Date Received	1/6/2018
Samples	30	Date Reported	8/6/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

Kamrul Ahsan Senior Chemist

ronz

Shane McDermott Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group Page 1 of 7

SE179897 R0

pH in soil (1:5) [AN101] Tested: 4/6/2018

			BH1 0.4-0.5	BH1 0.9-1.0	BH1 1.4-1.5	BH1 1.9-2.0	BH1 2.4-2.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				1/6/2018	1/6/2018		1/6/2018
PARAMETER	UOM	LOR	SE179897.001	SE179897.002	SE179897.003	SE179897.004	SE179897.005
pH	pH Units	0.1	6.1	6.0	6.6	6.9	7.2

			BH1 2.9-3.0	BH2 0.4-0.5	BH2 0.9-1.0	BH2 1.4-1.5	BH2 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							1/6/2018
PARAMETER	UOM	LOR	SE179897.006	SE179897.007	SE179897.008	SE179897.009	SE179897.010
рН	pH Units	0.1	7.8	7.2	7.3	6.9	7.3

			BH2 2.4-2.5	BH2 2.9-3.0	BH3 0.4-0.5	BH3 0.9-1.0	BH3 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							1/6/2018
PARAMETER	UOM	LOR	SE179897.011	SE179897.012	SE179897.013	SE179897.014	SE179897.015
рН	pH Units	0.1	7.7	7.9	7.5	7.5	7.1

			BH3 1.9-2.0	BH3 2.4-2.5	BH3 2.9-3.0	BH4 0.4-0.5	BH4 0.9-1.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				1/6/2018	1/6/2018		1/6/2018
PARAMETER	UOM	LOR	SE179897.016	SE179897.017	SE179897.018	SE179897.019	SE179897.020
pH	pH Units	0.1	7.0	7.3	7.7	7.0	5.7

			BH4 1.4-1.5	BH4 1.9-2.0	BH4 2.4-2.5	BH4 2.9-3.0	BH5 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				1/6/2018	1/6/2018		1/6/2018
PARAMETER	UOM	LOR	SE179897.021	SE179897.022	SE179897.023	SE179897.024	SE179897.025
pH	pH Units	0.1	5.9	6.0	7.0	7.2	6.9

			BH5 0.9-1.0	BH5 1.4-1.5	BH5 1.9-2.0	BH5 2.4-2.5	BH5 2.9-3.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							1/6/2018
PARAMETER	UOM	LOR	SE179897.026	SE179897.027	SE179897.028	SE179897.029	SE179897.030
рН	pH Units	0.1	6.8	8.6	9.0	9.0	8.9

SE179897 R0

Conductivity and TDS by Calculation - Soil [AN106] Tested: 4/6/2018

			BH1 0.4-0.5	BH1 0.9-1.0	BH1 1.4-1.5	BH1 1.9-2.0	BH1 2.4-2.5
			SOIL	SOIL	SOIL	SOIL	SOIL
				1/6/2018	1/6/2018		
PARAMETER	UOM	LOR	SE179897.001	SE179897.002	SE179897.003	SE179897.004	SE179897.005
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	600	970	1100	1100	960

			BH1 2.9-3.0	BH2 0.4-0.5	BH2 0.9-1.0	BH2 1.4-1.5	BH2 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							1/6/2018
PARAMETER	UOM	LOR	SE179897.006	SE179897.007	SE179897.008	SE179897.009	SE179897.010
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	1000	20	89	180	390

			BH2 2.4-2.5	BH2 2.9-3.0	BH3 0.4-0.5	BH3 0.9-1.0	BH3 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							1/6/2018
PARAMETER	UOM	LOR	SE179897.011	SE179897.012	SE179897.013	SE179897.014	SE179897.015
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	520	670	48	79	130

			BH3 1.9-2.0	BH3 2.4-2.5	BH3 2.9-3.0	BH4 0.4-0.5	BH4 0.9-1.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				1/6/2018	1/6/2018		1/6/2018
PARAMETER	UOM	LOR	SE179897.016	SE179897.017	SE179897.018	SE179897.019	SE179897.020
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	150	140	96	18	48

			BH4 1.4-1.5	BH4 1.9-2.0	BH4 2.4-2.5	BH4 2.9-3.0	BH5 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				1/6/2018	1/6/2018		1/6/2018
PARAMETER	UOM	LOR	SE179897.021	SE179897.022	SE179897.023	SE179897.024	SE179897.025
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	45	55	57	35	89

			BH5 0.9-1.0	BH5 1.4-1.5	BH5 1.9-2.0	BH5 2.4-2.5	BH5 2.9-3.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							1/6/2018
PARAMETER	UOM	LOR	SE179897.026	SE179897.027	SE179897.028	SE179897.029	SE179897.030
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	500	280	210	190	110

ANALYTICAL RESULTS

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 7/6/2018

			BH1 1.9-2.0	BH3 0.9-1.0	BH5 2.9-3.0
			SOIL - 1/6/2018	SOIL - 1/6/2018	SOIL - 1/6/2018
PARAMETER	UOM	LOR	SE179897.004	SE179897.014	SE179897.030
Exchangeable Sodium, Na	mg/kg	2	890	130	730
Exchangeable Sodium, Na	meq/100g	0.01	3.9	0.58	3.2
Exchangeable Sodium Percentage*	%	0.1	41.8	7.3	28.7
Exchangeable Potassium, K	mg/kg	2	68	68	110
Exchangeable Potassium, K	meq/100g	0.01	0.17	0.17	0.29
Exchangeable Potassium Percentage*	%	0.1	1.9	2.2	2.6
Exchangeable Calcium, Ca	mg/kg	2	92	960	340
Exchangeable Calcium, Ca	meq/100g	0.01	0.46	4.8	1.7
Exchangeable Calcium Percentage*	%	0.1	5.0	60.2	15.3
Exchangeable Magnesium, Mg	mg/kg	2	580	300	720
Exchangeable Magnesium, Mg	meq/100g	0.02	4.7	2.4	5.9
Exchangeable Magnesium Percentage*	%	0.1	51.4	30.3	53.3
Cation Exchange Capacity	meq/100g	0.02	9.2	8.0	11

SE179897 R0

Moisture Content [AN002] Tested: 6/6/2018

			BH1 0.4-0.5	BH1 0.9-1.0	BH1 1.4-1.5	BH1 1.9-2.0	BH1 2.4-2.5
			SOIL	SOIL	SOIL	SOIL	SOIL
				1/6/2018	1/6/2018		
PARAMETER	UOM	LOR	SE179897.001	SE179897.002	SE179897.003	SE179897.004	SE179897.005
% Moisture	%w/w	0.5	13	13	15	15	17

			BH1 2.9-3.0	BH2 0.4-0.5	BH2 0.9-1.0	BH2 1.4-1.5	BH2 1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			1/6/2018	1/6/2018	1/6/2018	1/6/2018	1/6/2018
PARAMETER	UOM	LOR	SE179897.006	SE179897.007	SE179897.008	SE179897.009	SE179897.010
% Moisture	%w/w	0.5	16	4.9	8.3	8.4	12

			BH2 2.4-2.5	BH2 2.9-3.0	BH3 0.4-0.5	BH3 0.9-1.0	BH3 1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE179897.011	SE179897.012	SE179897.013	SE179897.014	SE179897.015
% Moisture	%w/w	0.5	15	16	6.5	7.1	10

			BH3 1.9-2.0	BH3 2.4-2.5	BH3 2.9-3.0	BH4 0.4-0.5	BH4 0.9-1.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				1/6/2018	1/6/2018		1/6/2018
PARAMETER	UOM	LOR	SE179897.016	SE179897.017	SE179897.018	SE179897.019	SE179897.020
% Moisture	%w/w	0.5	10	13	14	6.5	12

			BH4 1.4-1.5	BH4 1.9-2.0	BH4 2.4-2.5	BH4 2.9-3.0	BH5 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				1/6/2018	1/6/2018		1/6/2018
PARAMETER	UOM	LOR	SE179897.021	SE179897.022	SE179897.023	SE179897.024	SE179897.025
% Moisture	%w/w	0.5	9.0	12	14	14	11

			BH5 0.9-1.0	BH5 1.4-1.5	BH5 1.9-2.0	BH5 2.4-2.5	BH5 2.9-3.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							1/6/2018
PARAMETER	UOM	LOR	SE179897.026	SE179897.027	SE179897.028	SE179897.029	SE179897.030
% Moisture	%w/w	0.5	13	10	13	14	13

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1.5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below : ESP < 6% non-sodic ESP 6-15% sodic
	ESP >15% strongly sodic ESP >15% strongly sodic Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1

FOOTNOTES

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding ** time exceeded

Not analysed. NVL Not validated. Insufficient sample for analysis. IS I NR Sample listed, but not received. UOM Unit of Measure. Limit of Reporting. LOR Raised/lowered Limit of î↓ Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sqs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

Soil Chemistry Profile

Mehlich 3 - Multi-nutrient Extractant

Mailing Address:

Sample Drop Off: 16 Chilvers Road Thornleigh NSW 2120 PO Box 357

Tel: Fax: Em: Pennant Hills NSW 1715

1300 30 40 80 1300 64 46 89 info@sesl.com.au Web: www.sesl.com.au

Batch N°: 48228

Sample N°: 1

Date Received: 12/6/18

EFFECTIVE AM	ELIORATIO		l (mm): ● 100 ○ 150 ○ 200 DESIRE	D FERTILITY CL		Modera	ate O Hir
Major Nutrients	Unit	Result		dequate High	Result (g/sqm)	Desirable (g/sqm)	Adjustrr (g/sqn
Nitrate-N (NO ₃)	mg N/kg	22	/////		2.9	4	1.1
Phosphorus (P)	mg P/kg	105			14	8.4	Drawdo
Potassium (K)	mg/kg	265			35.2	51.6	16.4
Sulphur (S)	mg S/kg	178			23.7	9	Drawdo
Calcium (Ca)	mg/kg	1520			202.2	367.5	165.3
Magnesium (Mg)	mg/kg	1255			166.9	38.4	Drawdo
Iron (Fe)	mg/kg	303			40.3	73.4	33.1
Manganese (Mn)	mg/kg	137			18.2	5.9	Drawdo
Zinc (Zn)	mg/kg	14			1.9	0.7	Drawdo
Copper (Cu)	mg/kg	2.5			0.3	0.8	0.5
	mg/kg	0.5			0.3	0.0	0.3
Boron (B) Explanation of gra	0.0	0.0			0.1	0.4	0.5
Severely depressed and deficiency symptoms present. Large application for soil building purposes are usually recommender Potential response to nutrient addition is >90 %	u.	Sub-Clinical Potential o nutrient 60 to 90 %.		evel is excessive and be detrimental to plant h (i.e. phytotoxic) and contribute to pollution of d and surface waters. down is recommended. tial response to nutrient on is <2 %.	Adequate.	bjective nutrient ma nutrients. There is tilliser when soil tes nents are based on effective ameliorati	t levels exceed
Phosphorus Sa	turation In	dex	Exchangeable Acidity	••	ication Rate	(g/sqm)	
0.15			Adams-Evans Buffer pH (BpH): -	- to achiev	•		0
High			Sum of Base Cations (cmol(+)/kg): 34.8 Eff. Cation Exch. Capacity (eCEC): 34.8	– to neutra	lise Al.		-
0.06 Adequate	Excessive		Base Saturation (%): 100		I Gypsum A	••	•
Low		≥0.4	Exchangeable Acidity (cmol(+)/kg): -	(g/sqm) to	achieve 67.5	5 % excn. Ca	1. 1020
m	mol/kg 21	-011	Exchangeable Acidity (%): -		R is corre melioration c		
Excessive. Exceeds	environmental the				on to achiev		iniy and a
Implement improved potential for no	P management to onpoint P pollution						
•			PHYSICAL DESCRIPTION	ON			
			- Munsell Colour:	- Organic Car	bon (OC %):		
Texture:			- Structure Size:	- Organic Mat			
Texture: Estimated clay cor	ntent:			1	anacity (% w	ater):	
Estimated clay cor Tactually gravelly:			- Structural Organisation:	- Est. Field C			
Estimated clay cor Tactually gravelly: Tactually organic:			- Structural Unit:	- Est. Permar	ent Wilting F	Point (% wate	
Estimated clay con Tactually gravelly: Tactually organic: Calculated EC _{SE} (or	dS/m):		Structural Unit:Potential infiltration rate:	- Est. Permar - Est. Plant A	ent Wilting F vailable Wate	Point (% wate er (% water)	
Estimated clay con Tactually gravelly: Tactually organic:	dS/m):	e result.	 Structural Unit: Potential infiltration rate: Est. Permeability Class (mm/hr): 	- Est. Permar	ent Wilting F vailable Wate	Point (% wate er (% water)	
Estimated clay con Tactually gravelly: Tactually organic: Calculated EC _{SE} (d	dS/m):	e result.	Structural Unit:Potential infiltration rate:	- Est. Permar - Est. Plant A	ent Wilting F vailable Wate	Point (% wate er (% water)	
Estimated clay con Tactually gravelly: Tactually organic: Calculated EC _{SE} (or	dS/m):	e result.	 Structural Unit: Potential infiltration rate: Est. Permeability Class (mm/hr): 	- Est. Permar - Est. Plant A	ient Wilting F vailable Wate vailable Wate	Point (% wate er (% water)	:
Estimated clay con Tactually gravelly: Tactually organic: Calculated EC _{SE} (or	dS/m): Soil Texture	e result.	 Structural Unit: Potential infiltration rate: Est. Permeability Class (mm/hr): 	- Est. Permar - Est. Plant A - Est. Plant A	eent Wilting F vailable Wate vailable Wate Date Repor	Point (% water) er (% water) er (mm/m): t Generated	:
Estimated clay cor Tactually gravelly: Tactually organic: Calculated EC _{SE} (o Requires EC and	dS/m): Soil Texture	e result.	 Structural Unit: Potential infiltration rate: Est. Permeability Class (mm/hr): Additional comments: 	Est. Permar Est. Plant A Est. Plant A Est. Plant A	eent Wilting F vailable Wate vailable Wate Date Repor	Point (% water) er (% water) er (mm/m): t Generated	15/06/20
Estimated clay cor Tactually gravelly: Tactually organic: Calculated EC _{SE} (o Requires EC and	dS/m): Soil Texture	e result.	 Structural Unit: Potential infiltration rate: Est. Permeability Class (mm/hr): Additional comments: 	Est. Permar Est. Plant A	eent Wilting F vailable Wate vailable Wate Date Repor	Point (% wate er (% water) er (mm/m): t Generated hs 4A1-2011 uns 4B4-2011 u1-2011 15A1-2011 u1-2011 15A1-2011 u1-201	15/06/20

- "Structure analysed in the laboratory is conducted on a disturbed sample, therefore is only a representation of the macro-structures that may be present in the field, which provide an indication of the soil physical characteristics and behaviours that may exist.

A member of the Australian Soil and Plant Analysis Council (ASPAC) This laboratory participates in, and is awarded certification based on results of the scores returned in, ASPAC inter-laboratory proficiency routes. For detailed current certification based and are information on the ASPAC inter-laboratory proficiency testing programs, see the ASPAC website: http://www.aspac-australasia.com

Disclaimer Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the samples collected or received by SESL. Due to the spatial and temporal variability of soils within a given site, and the variability of sampling techniques, environmental conditions and managerial factors, SESL does not accept any liability for a lack of general compliance or performance based on the interpretation and recommendations given (where applicable). This document must not be reproduced except in full.

Proposed channel Re-Alignment, Mamre Road Orchard Hills

APPENDIX

INFORMATION SHEETS

LIMITATIONS

Scope of Services: The report has been prepared in accordance with the scope of services set out in CS's Proposal under CS's Terms of Engagement, or as otherwise agreed with the Client. The scope of services may have been limited and/or amended by a range of factors including time, budget, access and site constraints.

Specific Purpose: The report is provided for the specific development and purpose as described in the report. The report may not contain sufficient information for developments or purposes other than that described in the report.

Currency of Information: The information in this report is considered accurate at the date of issue with regard to the current conditions of the site.

Reliance on Information: In preparing the report CS has necessarily relied upon information provided by the Client and/or their Agents. Such data may include surveys, analyses, designs, maps and plans. CS has not verified the accuracy or completeness of the data except as stated in this report.

Copyright and Reproduction: The contents of this document are and remain the intellectual property of CS. This document should only be used for the purpose for which it was commissioned and should not be used for other projects or by a third party. This report shall not be reproduced either totally or in part without the permission of CS. Where information from this report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimise the likelihood of misinterpretation.

Construction Specifications: Unless otherwise stated, the report, or sections of the report, should not be used as part of a specification for a project, without review and agreement by CS.

Report Should Not be Separated: The report must be read in conjunction with the attached Information Sheets and any other explanatory notes and should be kept in its entirety without separation of individual pages or sections.

Review by Others: CS cannot be held responsible for interpretations or conclusions from review by others of this report or test data, which are not otherwise supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

GENERAL NOTES

Geotechnical and Environmental Reporting: Geotechnical and environmental reporting relies on the interpretation of factual information based on judgment and opinion and is far less exact than other engineering or design disciplines. Geotechnical and environmental reports are for a specific purpose, development and site as described in the report and may not contain sufficient information for other purposes, developments or sites (including adjacent sites) other than that described in the report.

Subsurface Conditions: Subsurface conditions can change with time and can vary between test locations. For example, the actual interface between the materials may be far more gradual or abrupt than indicated and contaminant presence may be affected by spatial and temporal patterns. Therefore, actual conditions in areas not sampled may differ from those predicted since no subsurface investigation, no matter how comprehensive, can reveal all subsurface details and anomalies. Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations can also affect subsurface conditions and thus the continuing adequacy of a geotechnical report. CS should be kept informed of any such events and should be retained to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Groundwater: Groundwater levels indicated on borehole and test pit logs are recorded at specific times. Depending on ground permeability, measured levels may or may not reflect actual levels if measured over a longer time period. Also, groundwater levels and seepage inflows may fluctuate with seasonal and environmental variations and construction activities.

Interpretation of Data: Data obtained from nominated discrete locations, subsequent laboratory testing and empirical or external sources are interpreted by trained professionals in order to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions in accordance with any relevant industry standards, guidelines or procedures.

Soil and Rock Descriptions: Soil and rock descriptions are based on AS 1726 – 1993, using visual and tactile assessment except at discrete locations where field and / or laboratory tests have been carried out. Refer to the accompanying soil and rock terms sheet for further information.

Further Advice: CS would be pleased to further discuss how any of the above issues could affect a specific project. We would also be pleased to provide further advice or assistance including:

- Assessment of suitability of designs and construction techniques;
- Contract documentation and specification;
- Construction control testing (earthworks, pavement materials, concrete);
- Construction advice (foundation assessments, excavation support).

Abbreviations, Notes & Symbols

SUBSURFACE INVESTIGATION

- ---- Probable
- Possible

SOIL

MOISTURE CONDITION

D	Dry
М	Moist
W	Wet
Wp	Plastic Limit
WI	Liquid Limit
MC	Moisture Content

CONSISTENCY

VS	Very Soft
S	Soft
F	Firm
St	Stiff
VSt	Very Stiff
н	Hard
Fb	Friable

DENSITY INDEX VL Verv Loose 1 Loose MD Medium Dense D VD

Dense	
Very Dense	

USCS SYMBOLS

Well graded gravels and gravel-sand mixtures, little or no fines GW GP Poorly graded gravels and gravel-sand mixtures, little or no

fines

GM Silty gravels, gravel-sand-silt mixtures

GC Clayey gravels, gravel-sand-clay mixtures

- Construction Sciences
- SW Well graded sands and gravelly sands, little or no fines
- SP Poorly graded sands and gravelly sands, little or no fines
- SM Silty sand, sand-silt mixtures
- SC Clayey sand, sand-clay mixtures
- Inorganic silts of low plasticity, very fine sands, rock flour, silty ML or clayey fine sands

STRENGTH

- CL Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays
- Organic silts and organic silty clays of low plasticity OL
- MH Inorganic silts of high plasticity СН
- Inorganic clays of high plasticity OH
- Organic clays of medium to high plasticity Peat muck and other highly organic soils PT

ROCK

WEATHERING

WEATHEINING		STRENGTH	
RS	Residual Soil	EL	Extremely Low
XW	Extremely Weathered	VL	Very Low
HW	Highly Weathered	L	Low
MW	Moderately Weathered	Μ	Medium
DW*	Distinctly Weathered	Н	High
SW	Slightly Weathered	VH	Very High
FR	Fresh	EH	Extremely High
*covers both HW & MW			

ROCK QUALITY DESIGNATION (%)

sum of intact core pieces > 100mm x 100 total length of section being evaluated

CORE RECOVERY (%)

core recovered x 100

core llft

NATURAL FRACTURES

Туре

JT	Joint
BP	Bedding plane
SM	Seam
FZ	Fractured zone

- FΖ SZ Shear zone
- VN Vein

Infill or Coating

Cn	Clean
St	Stained
Vn	Veneer
Co	Coating
CI	Clay
Ca	Calcite
Fe	Iron oxide
Mi	Micaceous
Qz	Quartz

Shape

\$

pl	Planar
cu	Curved
un	Undulose
st	Stepped
ir	Irregular

Roughness

pol	Polished
slk	Slickensided
smo	Smooth
rou	Rough

Soil & Rock Terms

SOIL

MOISTURE CONDITION

Term	Description
Dry	Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through the hand.
Moist	Feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet	As for moist, but with free water forming on hands when handled.

For cohesive soils, moisture content may also be described in relation to plastic limit (W_P) or liquid limit (W_L). [>> much greater than, < greater than, < less than, << much less than].

CONSISTENCY

Term Very Soft Soft Firm Stiff	c_u (kPa) < 12 12 - 25 25 - 50 50 - 100	Term Very Stiff Hard Friable	c_u (kPa) 100 - 200 > 200 -
DENSITY INDEX Term Very Loose Loose Medium Dense	I b (%) < 15 15 – 35 35 – 65	Term Dense Very Dense	I⊳ (%) 65 – 85 > 85

Medium Dense PARTICLE SIZE

Name	Subdivision	Size (mm)
Boulders		> 200
Cobbles		63 - 200
Gravel	coarse	20 - 63
	medium	6 - 20
	fine	2.36 - 6
Sand	coarse	0.6 - 2.36
	medium	0.2 - 0.6
	fine	0.075 - 0.2
Silt & Clay		< 0.075

Silt & Clay

MINOR COMPONE	ENTS	
Term	Proportion by Mass coarse grained	fine grained
Trace	≤ 5%	≤ 15%
Some	5 - 2%	15 - 30%

SOIL ZONING

Layers	Continuous exposures
Lenses	Discontinuous layers of lenticular shape
Pockets	Irregular inclusions of different material

SOIL CEMENTING

۱

Weakly	Easily broken up by hand
Moderately	Effort is required to break up the soil by hand

SOIL STRUCTURE

Massive	Coherent, with any partings both vertically and horizontally spaced at greater than 100mm
Weak	Peds indistinct and barely observable on pit face. When disturbed approx. 30% consist of peds smaller than 100mm
Strong	Peds are quite distinct in undisturbed soil. When disturbed >60% consists of peds smaller than 100mm

ROCK

SEDIMENTARY ROCK TYPE DEFINITIONS

Rock Type	Definition (more than 50% of rock consists of)
Conglomerate	gravel sized (> 2mm) fragments
Sandstone	sand sized (0.06 to 2mm) grains
Siltstone	silt sized (<0.06mm) particles, rock is not laminated
Claystone	clay, rock is not laminated
Shale	silt or clay sized particles, rock is laminated

STRENGTH							
Term	ls50 (MPa)	Term	ls50 (MPa)				
Extremely Low	< 0.03	High	1 – 3				
Very Low	0.03 - 0.1	Very High	3 – 10				
Low	0.1 – 0.3	Extremely High	> 10				
Medium	0.3 – 1						
WEATHERING							
Term	Description						
Residual Soil	Soil developed or	Soil developed on extremely weathered rock; the mass					
	structure and substance fabric are no longer evident						
Extremely	Rock is weathere	Rock is weathered to such an extent that it has 'soil'					
Weathered	properties, i.e. it either disintegrates or can be						
	remoulded, in water. Fabric of original rock is still						
		visible					
Highly Weathered	Rock strength usually highly changed by weathering;						
		rock may be highly discoloured					
Moderately Weathered		Rock strength usually moderately changed by weathering; rock may be moderately discoloured					
Distinctly	See 'Highly Weat	hered' or 'Moderate	y Weathered'				
Weathered							
Slightly Weathered	Rock is slightly di change of strengt	scoloured but show h from fresh rock	s little or no				
Fresh	Rock shows no si	gns of decomposition	on or staining				
NATURAL FRAC	TUPES						
Туре	Description						
Joint	•	crack across which	the rock has little				
		ngth. May be open o					
Bedding plane	Arrangement in la or composition	Arrangement in layers of mineral grains of similar sizes or composition					
Seam	Seam with deposited soil (infill), extremely weathered insitu rock (XW), or disoriented usually angular						
	fragments of the I	nost rock (crushed)					
Shear zone	Zone with roughly parallel planar boundaries, of rock						
	material intersected by closely spaced (generally < 50mm) joints and /or microscopic fracture (cleavage)						
	planes	, or more coopie had	(clearage)				
Vein	Intrusion of any shape dissimilar to the adjoining rock						
	mass. Usually igneous						
Shape	Description						
Planar	-	ation					
Curved	Consistent orientation Gradual change in orientation						
Undulose	Wavy surface						
Stepped	One or more well defined steps						
Irregular	Many sharp changes in orientation						
la fill en	Decembration						
Infill or Coating	Description						
Clean	No visible coating	or discolouring					
Stained	No visible coating but surfaces are discoloured						
Veneer	A visible coating of may be patchy	A visible coating of soil or mineral, too thin to measure;					
Coating	Visible coating ≤ 1mm thick. Ticker soil material described as seam						
Roughness	Description						
Polished	Shiny smooth sur	face					
Slickensided		Grooved or striated surface, usually polished					
Smooth	Smooth to touch. Few or no surface irregularities						
Rough	Many small surface irregularities (amplitude generally <						
	1mm). Feels like fine to coarse sandpaper						

Note: soil and rock descriptions are generally in accordance with AS1726-1993 Geotechnical Site Investigations

Graphic Symbols Index

Soil		Rock	Water Measurements		
	Fill		Sandstone	<u>-</u>	Level at time of drilling
<u>11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 </u>	Peat, Topsoil		Shale	<u>+</u>	Level after drilling
	Clay		Clayey Shale	►	Inflow
	Silty Clay		Siltstone	-	Outflow
	Gravelly Clay		Conglomerate		
	Sandy Clay		Claystone		
	Silt		Dolerite, Basalt		
	Sandy Silt	+ + + + + + + + + + + + + + + + + + +	Granite		
	Clayey Silt		Limestone		
	Gravelly Silt		Tuff		
	Gravel		Coarse grained Metamorphic		
	Sandy Gravel		Medium grained Metamorphic		
	Clayey Gravel		Fine grained Metamorphic		
	Silty Gravel		Coal		
	Sand	Other			
	Gravelly Sand		Asphalt		
	Silty Sand		Concrete		
	Clayey Sand		Brick		

Contact

31 Anvil Road Seven Hills NSW 2147

Telephone: +612 8646 2000 Facsimile: +612 8646 2025

www.constructionsciences.net