Appendix F

Surface Water Flow and Geomorphology Assessment

HUME COAL

Surface Water Flow and Geomorphology Assessment

HUME COAL PROJECT

Surface Water Flow and Geomorphology Assessment Hume Coal

Project no: 2200540A-SFW-REP-001 RevI.docx Date: 16/01/2017

REV	DATE	DETAILS
A	02/02/2016	In progress draft report
В	12/08/2016	Draft report
С	14/09/2016	Second draft report addressing comments from HEC and EMM
D	17/09/2016	Updated draft following HEC review
E	30/09/2016	Updated draft following HEC review
F	17/10/2016	Final draft for HEC, EMM and Hume Coal review
G	25/11/2016	Final draft for submission
н	19/12/2016	Final report
I	16/01/2017	Updated final report to address flow impact value error

AUTHOR, REVIEWER AND APPROVER DETAILS

Prepared by:	Louisa Rochford	Date: 16/01/2017	Signature:	L.M. Rochfol.
Reviewed by:	Rob Leslie	Date: 16/01/2017	Signature:	fob bestie
Approved by:	Rob Leslie	Date: 16/01/2017	Signature:	fob herdie

TABLE OF CONTENTS

ii.

GLOSS	ARY	V
ABBRE	VIATIONS	VI
EXECUT	FIVE SUMMARY	.vii
1	INTRODUCTION	1
1.1	Project location	1
1.2	Project description	4
1.3	Study area	7
1.4	Environmental assessment requirements	9
2	REGULATORY FRAMEWORK	.13
2.1	NSW Water Management Act 2000	13
2.2	NSW State Rivers and Estuary Policy 1993	15
2.3	NSW Water Quality and River Flow Objectives 2006	15
2.4	WaterNSW Principles for Managing Mining and Coal Seam Gas Impacts in Declared Catchment Areas 2014	15
3	EXISTING ENVIRONMENT	.16
3.1	Catchment overview	16
3.1.1 3.1.2	Stream network	-
3.1.2 3.1.3	Stream order Catchment delineation	
3.2	Climate records	19
3.3	Stream gauge records	22
3.4	Geomorphology assessment	25
3.4.1	Approach	-
3.4.2 3.4.3	Site selection Field survey results	
3.4.4	Geomorphic characterisation	38
3.4.5	River behaviour	38
4	WATER RELATED VALUES AND ASSETS	.41
4.1	Environmental values	41
4.2	Surface water assets	
4.2.1	Storages used for town water supply	
4.2.2 4.2.3	Local water users Ecosystems reliant on streamflow	

5 5.1 Water management system......46 5.1.1 5.1.2 5.1.3 5.1.4 Potential impacts associated with changes in flow regime51 5.2 5.2.1 5.2.2 5.2.3 5.3 Flow impact assessment methodology......54 Medway Rivulet and Oldbury Creek catchments......54 5.3.1 5.3.2 Impact assessment results......55 5.4 5.4.1 5.4.2 5.4.3 6 6.1 Monitoring62 6.2 7 8

LIST OF TABLES

Table 1.1	Flow and geomorphology related SEARs	9
Table 1.2	Agency requirements	9
Table 1.3	Supplementary SEARs	
Table 3.1	Management zone areas	17
Table 3.2	Medway Rivulet sub-catchment areas	17
Table 3.3	Summary climate statistics for Hume Coal Project site — Data Drill (1889 to 2015)	
Table 3.4	Stream gauging data in vicinity of Hume Coal Project site	
Table 3.5	Field geomorphic survey results	29
Table 3.6	River Styles® classifications found within the study area	
Table 3.7	River behaviour for river styles within the study area	40
Table 4.1	Environmental values for surface water in the study area	
Table 4.2	Water management zones	45
Table 5.1	Reduction in catchment area associated with project storage dams	
Table 5.2	Yield impacts for Medway Rivulet	60
Table 5.3	Reduction in yield due to intercepted baseflow	61

LIST OF FIGURES

Figure 1.1	Project location	2
Figure 1.2	Project area	3
Figure 1.3	Surface infrastructure layout	6
Figure 1.4	Study area	8
Figure 2.1	Surface water management zones	14
Figure 3.1	Strahler network	18
Figure 3.2	Climate data	20
Figure 3.3	Annual rainfall for Hume Coal Project site — Data Drill (1889 to 2015)	21
Figure 3.4	Average daily evaporation for Hume Coal Project site — Data Drill (1889 to 2015)	21
Figure 3.5	Hume coal stream gauges and catchments	24
Figure 3.6	Flow duration curves for WaterNSW gauging stations on the Wingecarribee River (1989 to 2015)	25
Figure 3.7	Geomorphology assessment locations	27
Figure 4.1	Surface water users	43
Figure 4.2	Number of surface water diversion works and storages by purpose (LPI 2016)	44
Figure 5.1	Intercepted baseflow	
Figure 5.2	Stream reaches at risk of erosion due to changes in flow regime	53
Figure 5.3	Flow duration curves for Medway Rivulet excluding Moss Vale STP discharges (wet and dry climate sequences)	56
Figure 5.4	Flow duration curves for Medway Rivulet including Moss Vale STP discharges (wet and dry climate sequences)	57
Figure 5.5	Flow duration curves for Oldbury Creek (wet and dry climatic sequence)	

LIST OF APPENDICES

APPENDIX A – GEOMORPHOLOGY ASSESSMENT FIELD SHEETS

GLOSSARY

Catchment	Land area draining through the main stream, as well as tributary streams, to a
Catchinent	Land area draining through the main stream, as well as tributary streams, to a particular site. It always relates to an area above a specific location.
Digital terrain model (DTM)	Digital representation of ground surface topography or terrain. It is also widely known as a digital elevation model (DEM).
Discharge	Rate of flow of water measured in terms of volume per unit time — for example, cubic metres per second (m^3/s). Discharge is different from the speed or velocity of flow, which is a measure of how fast the water is moving — for example, metres per second (m/s).
Erosion	The action of surface processes such as water flow that remove soil, rock, or dissolved material from one location on the Earth's crust, then transport it away to another location.
Flow	Water moving steadily and continuously in a current or stream.
Geomorphology	The scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or near the Earth's surface.
Light detection and ranging (LiDAR)	Optical remote-sensing technology that can measure the distance to, or other properties of, a target by illuminating the target with light (often pulses from a laser).
Model	Mathematical representation of the physical processes involved in runoff generation and streamflow. Models are often run on computers, due to the complexity of the mathematical relationships between runoff, streamflow and the distribution of flows across the floodplain.
Overland flow	The movement of water over the land, downslope toward a surface water body.
Runoff	Amount of rainfall that actually ends up as streamflow; also known as rainfall excess.
Scour	The removal of sediment such as sand or silt from around objects which disturb the flow, causing local high velocities which can remove the sediment particles and leave a local depression.
Yield	The total outflow from a drainage basin through surface channels within a given period of time.

ABBREVIATIONS

AWBM	Australian Water Balance Model
BOM	Bureau of Meteorology
CPP	Coal preparation plant
DP&E	NSW Department of Planning and Environment
DPI	NSW Department of Primary Industries
DSITIA	Queensland Department of Science, Information Technology, Innovation and the Arts
DTM	Digital terrain model
EIS	Environmental impact statement
EPA	NSW Environment Protection Authority
EV	Environmental value
ha	Hectares
HRC	Healthy Rivers Commission
km	Kilometres
LiDAR	Light detection and ranging
LGA	Local government area
LPI	NSW Land and Property Information
MHRDC	Maximum harvestable right dam capacity
ML	Megalitres
mm/day	Millimetres per day
Mtpa	Million tonnes per annum
NSW	New South Wales
PWD	Primary water dam
ROM	Run of mine
SCA	Sydney Catchment Authority
SEARs	Secretary's environmental assessment requirements
WAL	Water access licence
WTP	Water treatment plant
WM Act	NSW Water Management Act 2000
WSC	Wingecarribee Shire Council

EXECUTIVE SUMMARY

A surface water flow and geomorphology impact assessment was undertaken for the Hume Coal Project (or 'the project'), a proposed underground coal mine in the Southern Coalfield, New South Wales.

The Hume Coal Project has been designed to avoid or minimise potential impacts on flow and bed and bank stability in local streams. Key aspects of the design that achieve these outcomes are as follows:

- \rightarrow the project does not involve the take of water directly from streams
- → the project does not involve any stream diversions
- → the project will use low impact underground mining methods, which have negligible subsidence impacts
- → only minor instream works across Medway Rivulet are proposed for the project
- → the water management system for the project will involve maximising the reuse of water on-site to minimise off-site discharge of water to local streams.

Aspects of the project which have the potential to impact on flow and bed and bank stability in local streams include:

- \rightarrow loss of catchment area due to the capture of runoff by the water management system;
- → releases from selected stormwater basins following containment of the first flush within the water management system; and
- → reduction in stream baseflow due to aquifer depressurisation associated with underground coal mining.

These impacts were assessed for the Medway Rivulet catchment (including the Oldbury Creek catchment) where the project is located, as well as for the Lower Wingecarribee River, Lower Wollondilly River and Bundanoon Creek management zones where impacts to stream baseflow may occur.

Flow impacts were assessed as follows:

- → Existing flow conditions were established using the Australian Water Balance Model (AWBM) rainfallrunoff model.
- → The reduction in catchment area associated with project storages was calculated and the resulting changes in flow to Medway Rivulet and Oldbury Creek were assessed using the AWBM.
- → The releases from SB03 and SB04 to Oldbury Creek were estimated for dry and wet climate sequences using the GoldSim water balance model and the resulting changes in flow were applied to the flow duration curve for Oldbury Creek.
- The interception of natural baseflow to streams associated with depressurisation of groundwater systems during underground mining was estimated using the numerical groundwater flow model for the project and the resulting changes in flow were applied to the flow duration curves for streams.

The results show that the flow regimes in Medway Rivulet and Oldbury Creek during operation of the project will be similar to pre-mining conditions, assuming continuance of the constant low flow discharges from the Moss Vale and Berrima sewage treatment plants (STPs). When the low flow discharge from the Moss Vale STP is excluded from the analysis, changes in the low flow regime in Medway Rivulet below approximately 5 ML/day would occur, with the number of no flow days increasing by up to 30%. However, this is unlikely to occur given that the STP is likely to continue to operate throughout the period of mining.

The potential impacts to instream ecosystems associated with these predicted changes are discussed in the *Hume Coal Project Biodiversity Assessment Report* (EMM 2016b). Impacts to the flow regimes in Medway

Rivulet and Oldbury Creek during construction and rehabilitation of the project will be less than impacts during operation.

Local impacts on yield in the Oldbury Creek catchment will be up to 4.2%; however impacts will be less than 1.4% for the Medway Rivulet management zone overall (which includes the Oldbury Creek catchment).

Under wet conditions, the project will result in up to a 0.5% reduction in yield for the Medway Dam catchment, and under dry conditions the project will result in up to a 0.9% reduction in yield. This is an approximation for the reduction in yield to Medway Dam.

Under wet conditions, the project will result in a 0.1% reduction in yield for the Lower Wingecarribee River management zone, and under dry conditions the project will result in a 0.2% reduction in yield. Less than 0.001% reduction in yield is predicted for other catchments affected by groundwater depressurisation under wet and dry conditions.

The potential for stream bank erosion associated with the project is low considering the minimal change in flow regime and the confined valley setting of Medway Rivulet and Oldbury Creek adjacent to and downstream of the surface infrastructure area. Scour protection will be provided around the conveyor crossing pilings in Medway Rivulet and at the inlets and outlets of the culverts to prevent impacts to bed and bank stability. During construction, operation and rehabilitation, erosion and sedimentation control plans will be prepared to ensure the erosion and sedimentation induced by the project will not adversely affect the surrounding environment.

Proposed discharge of water to Oldbury Creek from SB03 and SB04 will be undertaken via pipe outlets incorporating rock protection to minimise the potential for erosion of downstream creek beds and banks. The discharge to Oldbury Creek will be upstream or into the existing instream storage on the creek, and therefore an assessment of the increased overtopping risk of the storage during times of discharge will need to be made during the detailed design phase to determine whether any reinforcement of the existing spillways may be necessary.

Cumulative impacts on flow and bed and bank stability associated with the Hume Coal Project and Berrima Rail Project will be negligible because the Berrima Rail Project will not involve take of water from streams or discharge to streams. The rail infrastructure will not reduce the volume flow as culvert structures will be constructed where the rail crosses waterways and mitigation measures will be implemented upstream and downstream of culvert structures to prevent erosion and scour impacts.

1 INTRODUCTION

Parsons Brinckerhoff was engaged by Hume Coal Pty Limited (Hume Coal) to undertake a surface water flow and geomorphology impact assessment for the Hume Coal Project (or 'the project'), a proposed underground coal mine in the Southern Coalfield, New South Wales (NSW).

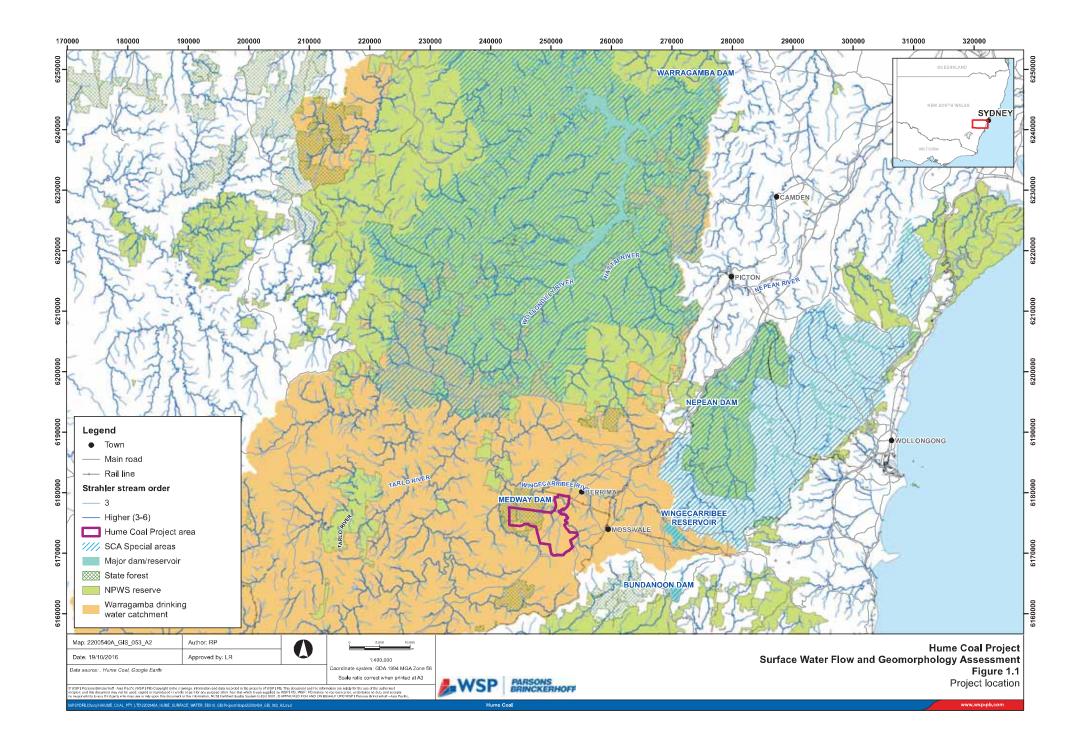
This report provides an assessment of the impacts of the project on streamflow and bed and bank stability in local catchments and mitigation measures required to minimise potential impacts.

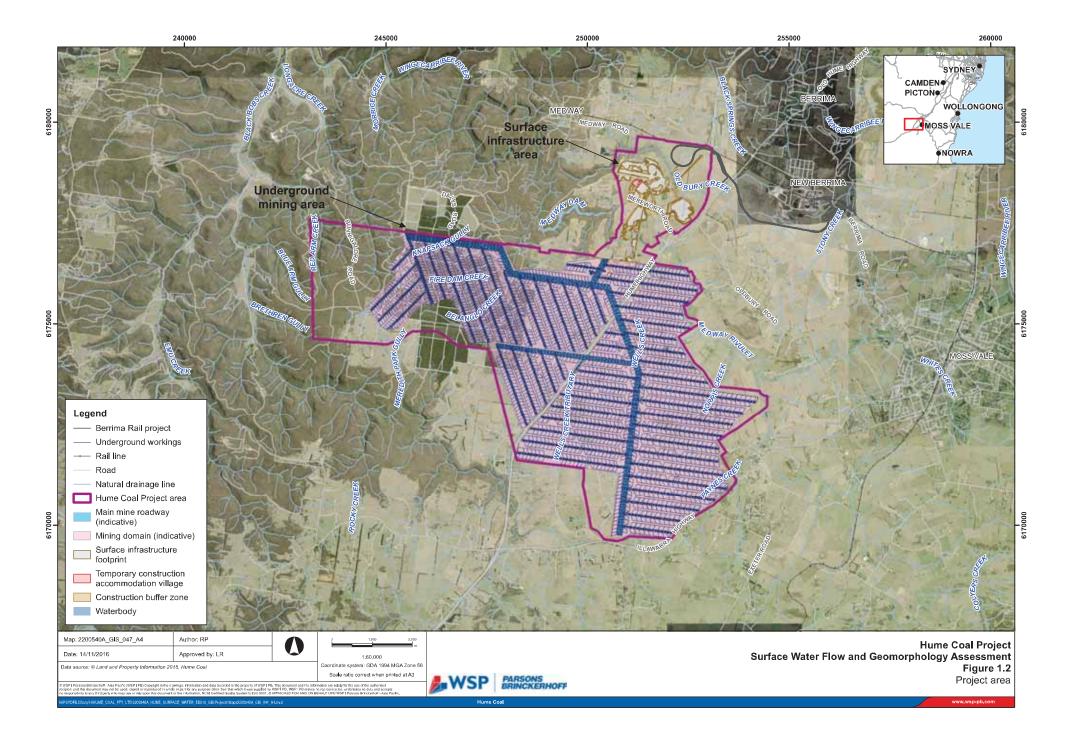
1.1 **Project location**

The project area is approximately 100 km south-west of Sydney and 4.5 km west of Moss Vale town centre in the Wingecarribee LGA (refer to Figure 1.1 and Figure 1.2). The nearest area of surface disturbance will be associated with the surface infrastructure area, which will be 7.2 km north-west of Moss Vale town centre. It is in the Southern Highlands region of NSW and the Sydney Basin Biogeographic Region.

The project area is in a semi-rural setting, with the wider region characterised by grazing properties, smallscale farm businesses, natural areas, forestry, scattered rural residences, villages and towns, industrial activities such as the Berrima Cement work and Berrima Feed Mill, and some extractive industry and major transport infrastructure such as the Hume Highway.

Surface infrastructure is proposed to be developed on predominately cleared land owned by Hume Coal or affiliated entities, or for which there are appropriate access agreements in place with the landowner. Over half of the remainder of the project area (principally land above the underground mining area) comprises cleared land that is, and will continue to be, used for livestock grazing and small-scale farm businesses. Belanglo State Forest covers the north-western portion of the project area and contains introduced pine forest plantations, areas of native vegetation and several creeks that flow through deep sandstone gorges. Native vegetation within the project area is largely restricted to parts of Belanglo State Forest and riparian corridors along some watercourses.


The project area is traversed by several drainage lines including Oldbury Creek, Medway Rivulet, Wells Creek, Wells Creek Tributary, Belanglo Creek and Longacre Creek, all of which ultimately discharge to the Wingecarribee River, at least 5 km downstream of the project area (Figure 1.2). The Wingecarribee River's catchment forms part of the broader Warragamba Dam and Hawkesbury-Nepean catchments. Medway Dam is also adjacent to the northern portion of the project area (Figure 1.2).


Most of the central and eastern parts of the project area have very low rolling hills with occasional elevated ridge lines. However, there are steeper slopes and deep gorges in the west in Belanglo State Forest.

Existing built features across the project area include scattered rural residences and farm improvements such as outbuildings, dams, access tracks, fences, yards and gardens, as well as infrastructure and utilities including roads, electricity lines, communications cables and water and gas pipelines. Key roads that traverse the project area are the Hume Highway and Golden Vale Road. The Illawarra Highway borders the south-east section of the project area.

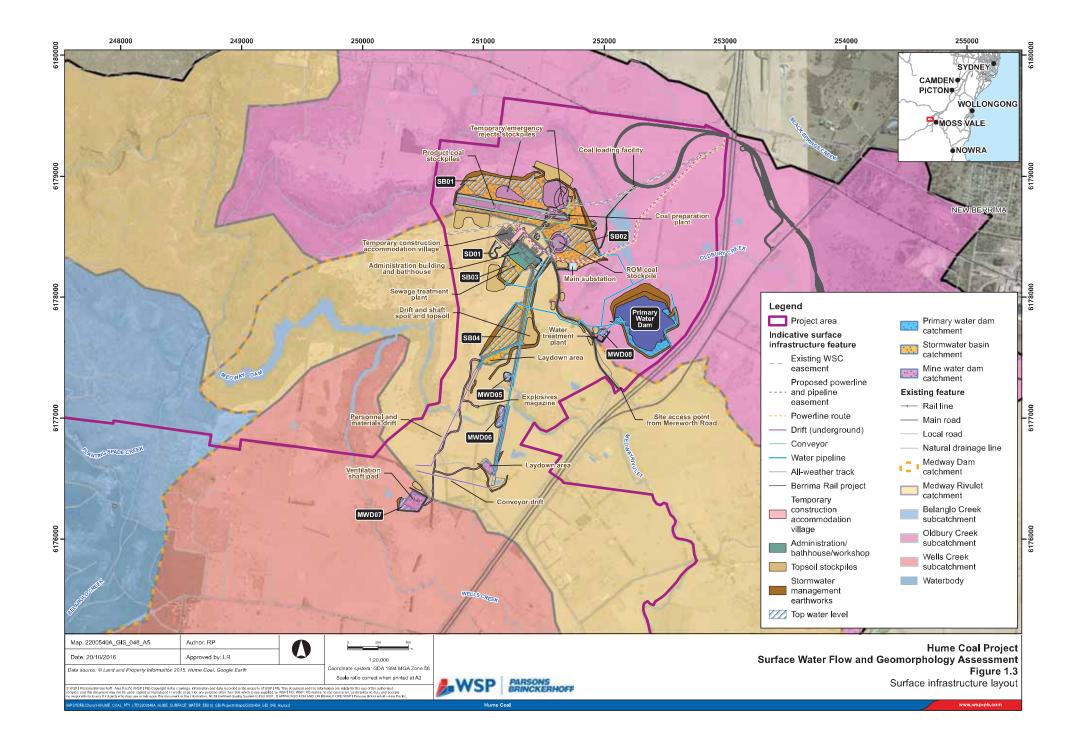
Industrial and manufacturing facilities adjacent to the project area include the Berrima Cement Works and Berrima Feed Mill on the fringe of New Berrima. Berrima Colliery's mining lease (CCL 748) also adjoins the project area's northern boundary. Berrima colliery is currently not operating with production having ceased in 2013 after almost 100 years of operation. The mine is currently undergoing closure.

1

1.2 **Project description**

The project involves developing and operating an underground coal mine and associated infrastructure over a total estimated project life of 23 years. Indicative mine and surface infrastructure plans are provided in Figure 1.2 and Figure 1.3. A full description of the project, as assessed in this report, is provided in Chapter 2 of the main EIS (EMM 2016a).

In summary it involves:


- → Ongoing resource definition activities, along with geotechnical and engineering testing, and other low impact fieldwork to facilitate detailed design.
- → Establishment of a temporary construction accommodation village.
- → Development and operation of an underground coal mine, comprising of approximately two years of construction and 19 years of mining, followed by a closure and rehabilitation phase of up to two years, leading to a total project life of 23 years. Some coal extraction will commence during the second year of construction during installation of the drifts, and hence there will be some overlap between the construction and operational phases.
- → Extraction of approximately 50 million tonnes (Mt) of run-of-mine (ROM) coal from the Wongawilli Seam, at a rate of up to 3.5 million tonnes per annum (Mtpa). Low impact mining methods will be used, which will have negligible subsidence impacts.
- → Following processing of ROM coal in the coal preparation plant (CPP), production of up to 3 Mtpa of metallurgical and thermal coal for sale to international and domestic markets.
- → Construction and operation of associated mine infrastructure, mostly on cleared land, including:
 - one personnel and materials drift access and one conveyor drift access from the surface to the coal seam;
 - ventilation shafts, comprising one upcast ventilation shaft and fans, and up to two downcast shafts installed over the life of the mine, depending on ventilation requirements as the mine progresses;
 - a surface infrastructure area, including administration, bathhouse, washdown and workshop facilities, fuel and lubrication storage, warehouses, laydown areas, and other facilities. The surface infrastructure area will also comprise the CPP and ROM coal, product coal and emergency reject stockpiles;
 - surface and groundwater management and treatment facilities, including storages, pipelines, pumps and associated infrastructure;
 - overland conveyors;
 - rail load-out facilities;
 - explosives magazine;
 - ancillary facilities, including fences, access roads, car parking areas, helipad and communications infrastructure; and
 - environmental management and monitoring equipment.
- → Establishment of site access from Mereworth Road, and minor internal road modifications and relocation of some existing utilities.
- → Coal reject emplacement underground, in the mined-out voids.
- → Peak workforces of approximately 414 full-time equivalent employees during construction and approximately 300 full-time equivalent employees during operations.
- → Decommissioning of mine infrastructure and rehabilitating the area once mining is complete, so that it can support land uses similar to current land uses.

The project area, shown in Figure 1.2, is approximately 5,051 hectares (ha). Surface disturbance will mainly be restricted to the surface infrastructure areas shown indicatively on Figure 1.3, though will include some

other areas above the underground mine, such as drill pads and access tracks. The project area generally comprises direct surface disturbance areas of up to approximately 117 ha, and an underground mining area of approximately 3,472 ha, where negligible subsidence impacts are anticipated.

A construction buffer zone will be provided around the direct disturbance areas. The buffer zone will provide an area for construction vehicle and equipment movements, minor stockpiling and equipment laydown, as well as allowing for minor realignments of surface infrastructure. Ground disturbance will generally be minor and associated with temporary vehicle tracks and sediment controls as well as minor works such as backfilled trenches associated with realignment of existing services. Notwithstanding, environmental features identified in the relevant technical assessments will be marked as avoidance zones so that activities in this area do not have an environmental impact.

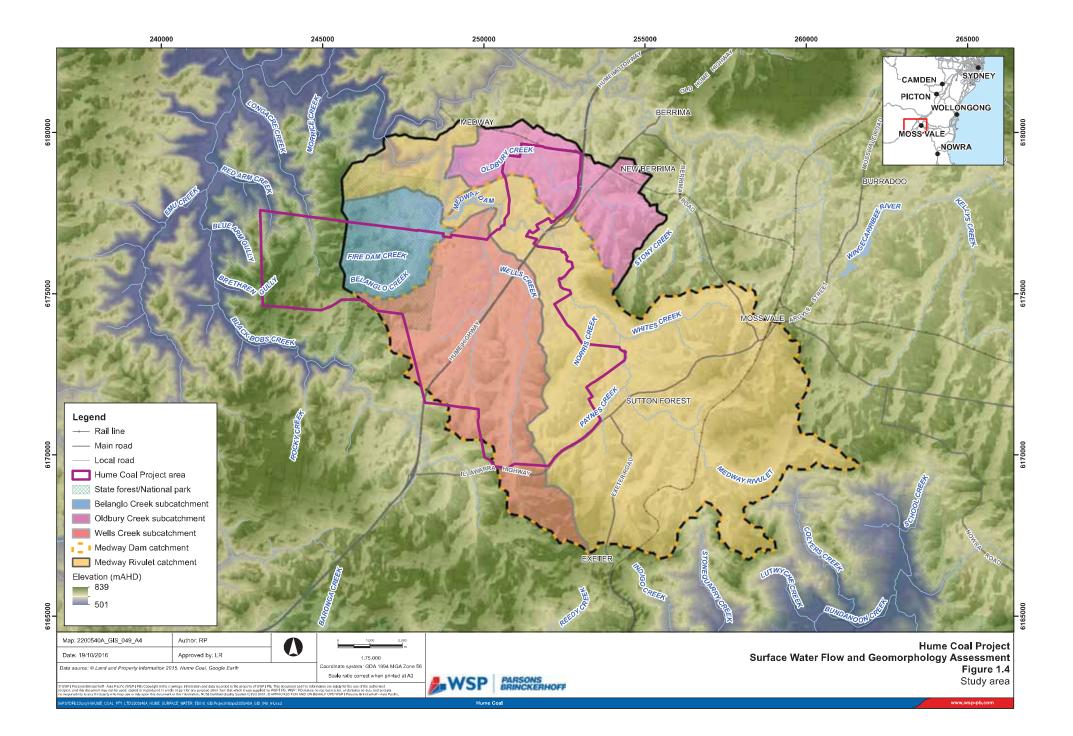
Product coal will be transported by rail, primarily to Port Kembla terminal for the international market, and possibly to the domestic market depending on market demand. Rail works and use are the subject of a separate EIS and State significant development application for the Berrima Rail Project.

1.3 Study area

The study area for the flow and geomorphology impact assessment comprises the streams with potential to be impacted by the project. The project has the potential to impact on the flow regime and geomorphology of local streams through:

- → loss of catchment area due to the capture of runoff by the water management system, resulting in a reduction in runoff and streamflow;
- → releases from selected stormwater basins following containment of the first flush within the water management system; and
- → reduction in stream baseflow due to aquifer depressurisation associated with underground coal mining.

The potential impacts on streamflow and geomorphology that have been considered in this assessment include:


- → bed scour and bank instability associated with change in streamflow and local flooding due to mining operations;
- → reduced access for downstream water users; and
- → reduced availability of water for instream and riparian ecosystems associated with a reduction in streamflow.

Surface water taken directly from streams will not be used as a water supply for the project; therefore impacts associated with take directly from streams do not need to be addressed.

The underground mine workings will result in negligible impacts on flow and geomorphology in overlying catchments. Worst case estimates of subsidence associated with the proposed first workings mining system predict 'imperceptible' surface disturbance due to mining (Mine Advice 2016). Such disturbances are sufficiently low in magnitude as to not impact on streamflow regimes or geomorphology.

The study area therefore comprises:

- → streams adjacent to and downstream of the surface infrastructure areas within the Medway Rivulet and Oldbury Creek catchments; and
- → streams affected by loss of baseflow due to aquifer depressurisation.

1.4 Environmental assessment requirements

This assessment has been prepared in accordance with the relevant governmental assessment requirements, guidelines and policies, and in consultation with the relevant government agencies. Guidelines and policies considered are as follows:

- → Greater Metropolitan Region Unregulated Water Sources Water Sharing Plan 2011
- → NSW State Rivers and Estuary Policy 1993
- → NSW Government Water Quality and River Flow Objectives 2006
- → WaterNSW Principles for Managing Mining and Coal Seam Gas Impacts in Declared Catchment Areas 2014.

Further details of these guidelines and policies, and how they apply to this assessment, are provided in Section 2 of this report.

The Secretary's Environmental Assessment Requirements (SEARs) related to flow and geomorphology, and the section of this report where the requirement is addressed, are provided in Table 1.1.

Table 1.1 Flow and geomorphology related SEARs

REQUIREMENT	SECTION ADDRESSED
An assessment of the likely impacts of the development on the quantity of the region's surface water resources, having regard to the EPA's, DPI's and WaterNSW's requirements and recommendations (see Attachment 2)	Section 5.4
An assessment of the likely impacts of the development on watercourses, water- related infrastructure and other water users	Section 5.4

To inform preparation of the SEARs, the NSW Department of Planning and Environment (DP&E) invited other government agencies to recommend matters for address in the Environmental Impact Statement (EIS). These matters were then taken into account by the Secretary for DP&E when preparing the SEARs. Copies of the government agencies' advice to DP&E was attached to the SEARs.

Two agencies, the NSW Department of Primary Industries (DPI), WaterNSW and the NSW Office of Environment and Heritage (OEH), raised matters relevant to the flow and geomorphology assessment. These were mainly their standard requirements for projects of this nature, though included some project-specific requirements. These matters are listed in Table 1.2 and have been taken into account in preparing this report, as indicated.

Table 1.2 Agency requirements

REQUIREMENT	SECTION ADDRESSED
DPI, FISHERIES NSW	
Impacts on flow from subsidence and groundwater interactions resulting from surface and underground construction and ongoing operation of the coal mine.	Section 1.3 (subsidence) Section 5.4 (groundwater interactions)
Analysis of impacts of subsidence on water flow within and downstream of all waterways within the proposal area	Section 1.3
Analysis of impacts of groundwater interference and drawdown on water flow within and downstream of all waterways within the proposal area	Section 5.4

REQUIREMENT	SECTION ADDRESSED
Safeguards to mitigate any impacts upon water flow within and downstream of all waterways within the proposal area during construction and ongoing operation of the proposed coal mine. In particular provide details on proposals for erosion and sediment control (to be incorporated into a Construction Environmental Management Plan – CEMP) and proposed stormwater and ongoing drainage management measures.	Section 6.1
Details of ongoing monitoring programs to assess any impacts upon water flow within and downstream of all waterways within the proposal area.	Section 6.2
DPI WATER	
Assessment of impacts on surface water sources (including quantity), related infrastructure, adjacent licensed water users, basic landholder rights and watercourses, and measures proposed to reduce and mitigate these impacts	Section 5 (impacts) Section 6 (mitigation measures)
Full technical details and data of all surface water modelling	Section 5.3 (technical details) Section 3 (data)
Proposed surface water monitoring activities and methodologies	Section 6.2
Assessment of any potential cumulative impacts on water resources, and any proposed options to manage the cumulative impacts	Section 5.4.3
Consideration of relevant policies and guidelines	Section 2
Identification of all surface water features including watercourses, wetlands and floodplains transected by or adjacent to the proposed project.	Section 3.1
Identification of all surface water sources as described by the relevant water sharing plan.	Section 2.1
Detailed description of dependent ecosystems and existing surface water users within the area, including basic landholder rights to water and adjacent/downstream licensed water users	Section 4.2
Assessment of predicted impacts on the flow of surface water, sediment movement, channel stability and hydraulic regime	Section 5.4.1 (flow impacts) Section 5.2.1 (channel stability)
Assessment of predicted impacts on existing surface water users	Section 5.4.2
It is recommended the EIS provides details on all watercourses potentially affected by the proposal, including scaled plans showing the location of	There are no wetlands/swamps in the project area
wetlands/swamps and watercourses, the site boundary and the footprint of the proposal in relation to the watercourses.	Figure 1,4 (watercourse and project footprint)
Photographs of the watercourses/wetlands and a map showing the point from which the photos were taken.	Section 3.4
A detailed description of all potential impacts on the watercourses/riparian land.	Section 5.4.1
A detailed description of all potential impacts on the wetlands, including potential impacts to the wetlands hydrologic regime.	There are no wetlands in the project area (other than natural drainage lines)
A description of the design features and measures to be incorporated to mitigate potential impacts.	Section 6
Geomorphic and hydrological assessment of watercourses including details of stream order (Strahler System), river style and energy regimes both in channel and on adjacent floodplains	Section 3.1.2 (Strahler stream order) Section 3.4 (river style and energy
	regimes)

REQUIREMENT	SECTION ADDRESSED
OFFICE OF ENVIRONMENT AND HERITAGE	
The EIS must map rivers, streams, wetlands, estuaries	There are no wetlands or estuaries in the project area Figure 1,4 (rivers and streams)
The EIS must describe background conditions for any water resource lia affected by the development, including hydrology.	kely to be Section 3.3
The EIS must assess the impact of the development on hydrology, inclu	uding:
→ Effects to downstream rivers, wetlands, estuaries, marine waters at floodplain areas	nd Section 5.4.1
→ Changes to environmental water availability, both regulated/license unregulated/rules based sources of such water	ed and Section 5.4.2
Mitigating effects of proposed stormwater and wastewater manager during and after construction on hydrological attributes such as volu rates, management methods and re-use options	
\rightarrow Identification of proposed monitoring of hydrological attributes.	Section 6.2

The Hume Coal Project was declared as a controlled action on 1 December 2015 by the then Commonwealth Department of the Environment (now Department of Environment and Energy). The project will be assessed under the Bilateral Agreement between the NSW Government and the Commonwealth Government. Accordingly, the Commonwealth Department of the Environment and Energy has issued supplementary SEARs to address matters of national environmental significance relevant to the project. These matters are provided in Table 1.3, and have been taken into account in preparing this report, as indicated in the table.

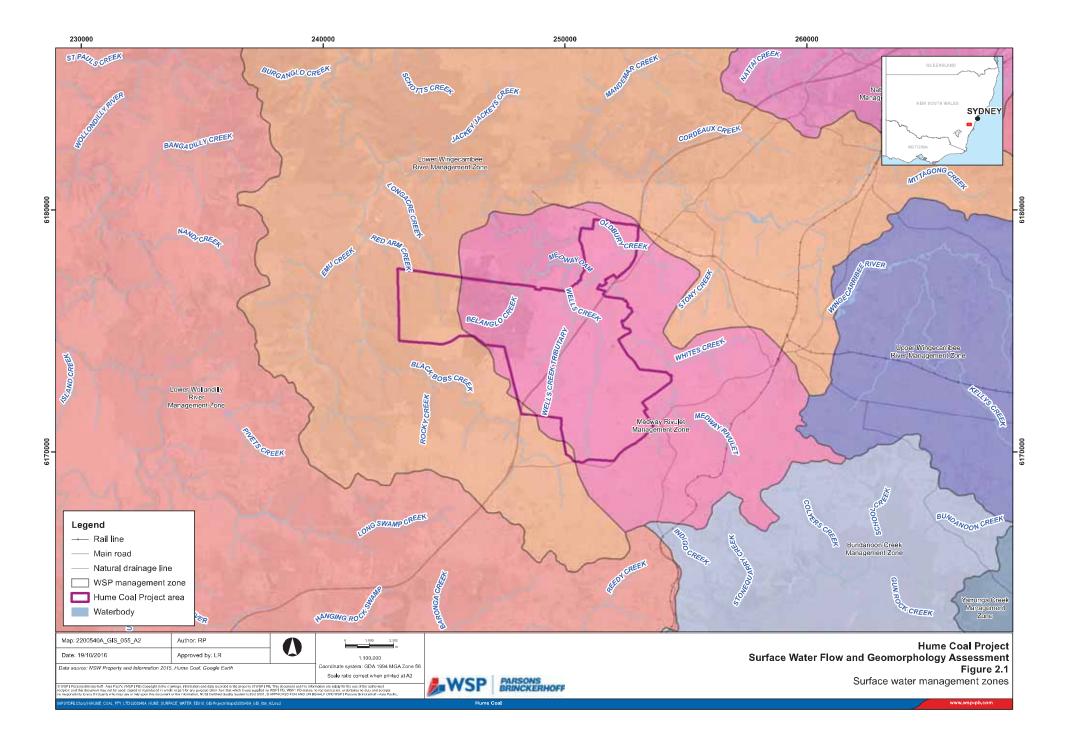
Table 1.3 Supplementary SEARs

RE	QUIREMENT	SECTION ADDRESSED
An	assessment of the relevant impacts of the action on water resources, including:	
÷	A description and detailed assessment of the nature and extent of the likely direct, indirect and consequential impacts, including short terms and long-term relevant impacts	Section 5.4
→	A statement whether any relevant impacts are likely to be known, unpredictable or irreversible, and analysis of the significance of the impacts	Section 5.4
→	Any technical data and other information used or needed to make a detailed assessment of the impacts.	Sections 3 and 4
	prmation on proposed avoidance and mitigation measures to manage the relevant impacts he action including:	
→	A description of the proposed avoidance and mitigation measures to address the impacts of the action	Section 6.1
\rightarrow	Assessment of the expected or predicted effectiveness of the mitigation measures	Section 6.1
→	The cost of the mitigation measures	Refer to the EIS Economic Report
→	A description of the outcomes that the avoidance and mitigation measures will achieve.	Section 6.1
cha	e assessment of impacts should include information on any substantial and measurable anges to the hydrological regime of the water resources, for example a substantial change he volume, timing, duration or frequency of surface water flows.	Section 5.4

	SECTION ADDRESSED
The assessment of impacts should include information on substantial and measurable change in the quantity of the water resource.	Section 5.4

2 REGULATORY FRAMEWORK

2.1 NSW Water Management Act 2000


The *NSW Water Management Act 2000* (WM Act) recognises the need to allocate and provide water for the environmental health of our rivers and groundwater systems, while also providing licence holders with access to water. The main tool the WM Act provides for managing the state's water resources are water sharing plans. These are used to set out the rules for the sharing of water in a particular water source between water users and the environment and rules for the trading of water in a particular water source.

Surface water in the project area is managed under the *Greater Metropolitan Region Unregulated Water Sources Water Sharing Plan 2011*. The project area is located largely within the Upper Nepean and Upstream Warragamba Water Source, mostly within the Medway Rivulet management zone with small sections located in the Lower Wingecarribee River management zone (Figure 2.1).

Surface water users (other than stock or domestic) must hold a water access licence (WAL) to take water from streams in the project area. The WAL specifies the annual volume that may be taken and the conditions under which water may be taken. In the Medway Rivulet management zone, WALs have an Environmental Flow Protection Rule that prevents pumping when there is no visible flow at the pump site. In the Lower Wingecarribee River management zone, WALs are divided into classes (A, B and C) and have flow conditions that indicate when pumping may commence and/or must cease. A class WAL holders are subject to daily flow sharing within a total daily extraction limit to protect instream values from risks associated with over extraction.

Water trading is not permitted between management zones. Water trading within the management zones is allowed subject to assessment.

Water may be taken for stock or domestic purposes without a licence under basic water rights. Landholders can take water from streams, or collect a proportion of the rainfall runoff on their property and store it in one or more dams, up to a certain size. The total dam capacity allowed on a property under a harvestable right is determined by calculating the maximum harvestable right dam capacity (MHRDC) for a particular property.

2.2 NSW State Rivers and Estuary Policy 1993

The *NSW State Rivers and Estuary Policy 1993* aims to encourage the sustainable management of the State's rivers, estuaries, wetlands and adjacent riverine plains. The overall objectives are to manage NSW rivers and estuaries in ways which:

- \rightarrow slow, halt or reverse the overall rate of degradation in their systems;
- → ensure the long-term sustainability of their essential biophysical function; and
- \rightarrow maintain the beneficial use of these resources.

A set of component policies has been developed, identifying management needs and opportunities and providing clear management principles and guidelines.

In applying the *NSW State Rivers and Estuary Policy 1993*, the Hume Coal Project must prevent damage to river banks and channels and maintain the beneficial use of surface water resources, including for the environment.

2.3 NSW Water Quality and River Flow Objectives 2006

The NSW Water Quality and River Flow Objectives (OEH 2006) are the agreed high-level goals for surface water quality and flow management for catchments throughout the state. The river flow objectives identify the key elements of the flow regime that protect river health and water quality for ecosystems and human uses.

River flow objectives are not available for the Hawkesbury-Nepean Basin. At the time the water quality and river flow objectives were approved by the NSW government (September 1999) the Healthy Rivers Commission (HRC) had completed public inquiries for the Hawkesbury-Nepean river catchment. The HRC recommended water quality objectives in its final report for the catchment, however river flow objectives were not provided.

2.4 WaterNSW Principles for Managing Mining and Coal Seam Gas Impacts in Declared Catchment Areas 2014

WaterNSW has an obligation to protect water quality, quantity and its infrastructure within its land and Sydney drinking water catchments. WaterNSW has established a comprehensive governance framework to protect water supply infrastructure and access conditions for mining activities via development of the report *WaterNSW Principles for Managing Mining and Coal Seam Gas Impacts in Declared Catchment Areas* (ie the WaterNSW Principles) (WaterNSW 2014).

Underground longwall mining occurs under much of the Metropolitan Special Area. WaterNSW is particularly focused on the potential for impacts on ground and surface water quality and quantity. During 2007–08 the Southern Coalfields Independent Inquiry sought submissions from stakeholders. Focus areas included the medium and long-term impacts of mining related subsidence on water resources and ecosystems, risks to groundwater and aquifers from subsidence, and the possible remediation of the impacts of mining.

New research and scientific understanding of mining impacts has enabled greater cooperation and coordination of actions between WaterNSW, other government departments and companies involved in mining operations.

In applying the WaterNSW Principles, the Hume Coal Project must provide for the protection of water quantity. In Declared Catchment Areas, mining companies must demonstrate a very low risk of water loss from catchment streams or storages and that appropriate safeguards are in place to prevent or minimise any loss. Predicted impacts to surface water quantity are presented in Section 5 of this report and safeguards to prevent or minimise loss are discussed in Section 6.

3 EXISTING ENVIRONMENT

3.1 Catchment overview

Medway Rivulet and its tributary Oldbury Creek are the primary waterways that flow through the project area. The combined catchment area of both creek systems (including the Wells Creek and Belanglo Creek tributaries) is 12,264 ha to the confluence with Wingecarrribee River (refer to Table 3.2). The major tributaries of Medway Rivulet are Wells Creek, Whites Creek, Paynes Creek, Oldbury Creek and Belanglo Creek (refer to Figure 1.4).

Medway Rivulet has its headwaters near Moss Vale, NSW and flows in predominantly west to north-west direction towards the Wingecarribee River. Land use in the upper reaches of the catchment is highly disturbed and cleared for agriculture. River behaviour east of the Hume Highway is characterised by several instream storages that impede the natural flow within the upper catchment and ponded water connected by run/riffle sequences. Medway Rivulet and its major tributaries receive runoff from adjacent farm land. Whites Creek receives urban stormwater and treated sewage effluent from the suburb of Moss Vale.

West of the Hume Highway, Medway Rivulet is confined by steep gullies formed by Hawkesbury Sandstone. Downstream of the project area, Medway Rivulet has been dammed to create a 1,350 ML reservoir. The reservoir is commonly referred to as 'Medway Dam' and is ordinarily part of Wingecarribee Shire Council's (WSC's) water supply system (although Medway Water Treatment Plant, which treats water from the reservoir, is not currently operational – refer Section 4.2.1.1). Approximately 5.5 km downstream from the reservoir, Medway Rivulet joins the Wingecarribee River.

Oldbury Creek joins Medway Rivulet approximately 1.5 km downstream from the reservoir. The upper reaches of Oldbury Creek commence near New Berrima, NSW. East of the Old Hume Highway, in the upper reaches, the creek is characterised by disconnected instream storages used for agricultural water supply. A large instream farm dam is located adjacent to the proposed CPP precinct. To the north of the proposed CPP the creek becomes confined in gullies formed by the Hawkesbury Sandstone. From the proposed CPP downstream, the creek is characterised by pools connected with run and riffle sequences.

Belanglo Creek joins the Medway Rivulet approximately 300 m downstream of Medway Dam and receives runoff from the Belanglo State Forest (refer to Figure 1.4). The upper reaches of Belanglo Creek are predominately ephemeral with isolated disconnected pools during low flow conditions.

3.1.1 Stream network

The stream network was identified as those streams marked with a blue line on the regional topographic data provided by Land and Property Information (2014). The streams in the project area generally drain in a north-west direction and flow into the Wingecarribee River. The Wingecarribee River joins the Wollondilly River downstream of the project area.

3.1.2 Stream order

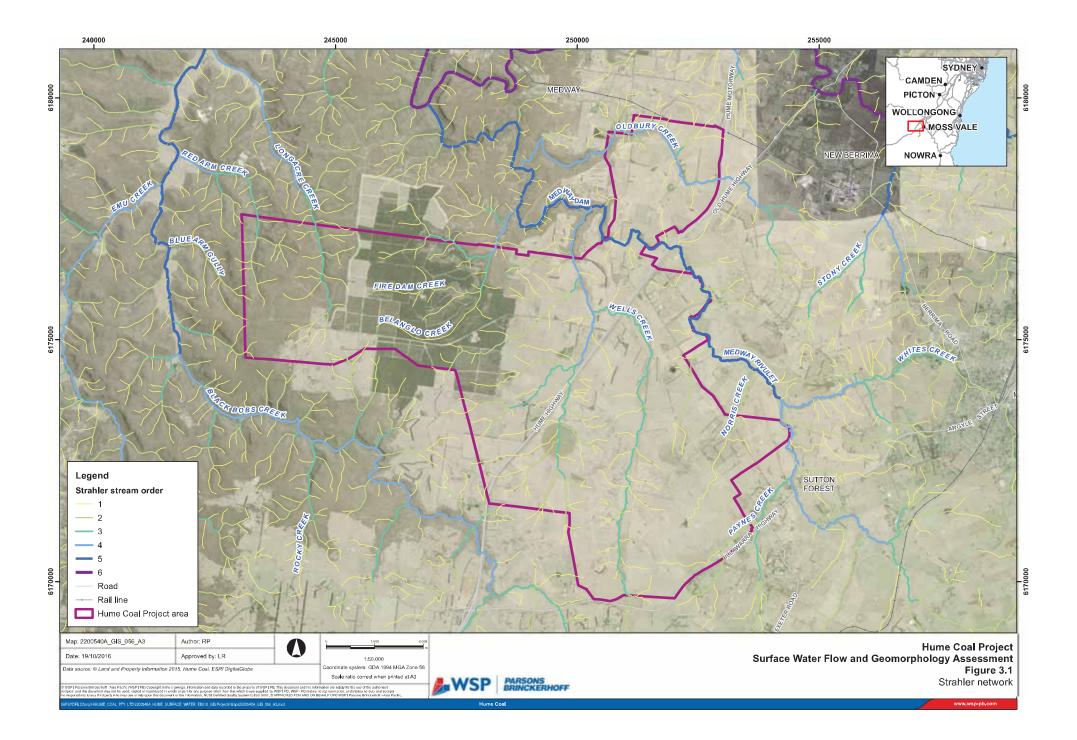
The Strahler stream classification system is a method of classifying waterways according to the number of tributaries associated with each waterway (Strahler 1957). Small tributaries at the top of the catchment are assigned as first order streams. Where two first order streams join, the waterway downstream of the junction is referred to as a second order stream and so on. Higher order streams are found in the lower parts of the catchment.

The Strahler stream classification was applied to the stream network (LPI 2014) within the study area and considered when identifying river styles for the geomorphology assessment (refer Section 3.4). The Strahler classification within the study area is presented in Figure 3.1.

3.1.3 Catchment delineation

Areas for the management zones in Figure 2.1 are provided in Table 3.1. The management zones are the catchments in the *Greater Metropolitan Region Unregulated Water Sources Water Sharing Plan 2011*.

Table 3.1 Management zone areas


MANAGEMENT ZONE	AREA (HA)
Medway Rivulet	12,347
Lower Wingecarribee	50,546
Lower Wollondilly	265,763
Bundanoon Creek	31,947

A more detailed catchment delineation of the Medway Rivulet catchment, where the project is to be located, has been undertaken to provide for more detailed analysis of potential impacts. Light detection and ranging (LiDAR) data obtained from aerial laser survey of the project area on 25 October 2013 (Hume Coal 2013) and publically available topographic contour data has been used to delineate the Medway Rivulet catchment and its sub-catchments. The Medway Rivulet catchment and its sub-catchments are shown on Figure 1.4 and catchment areas are provided in Table 3.2.

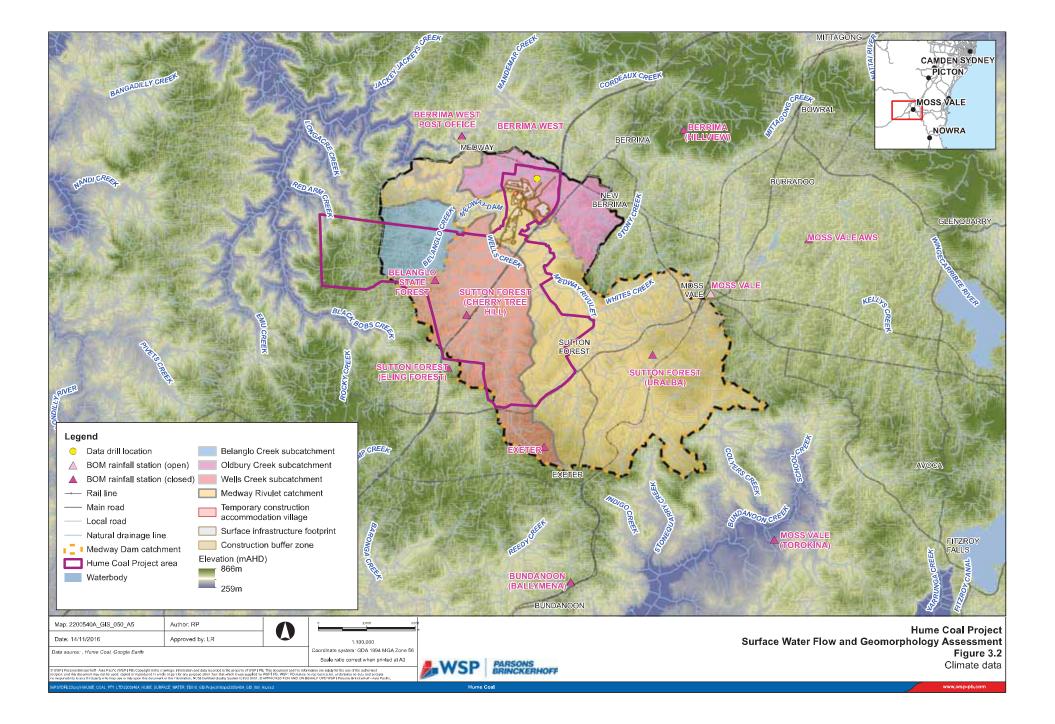
Table 3.2 Medway Rivulet sub-catchment areas

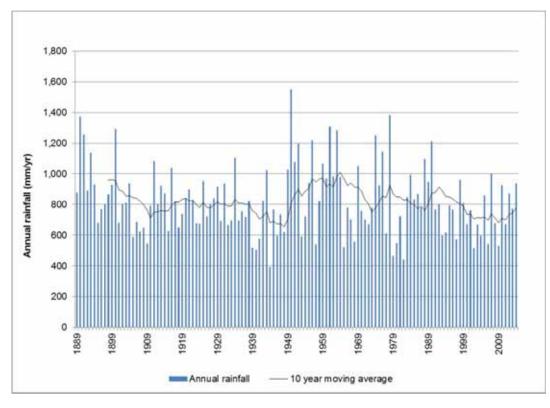
SUB-CATCHMENT	AREA (HA)
Medway Rivulet upstream of Medway Dam	6,529
Medway Rivulet downstream of Medway Dam	626
Oldbury Creek (to the confluence with Medway Rivulet)	1,355
Wells Creek, including Wells Creek Tributary (to the confluence with Medway Rivulet)	2,869
Belanglo Creek	885
TOTAL	12,264

The LiDAR and contour data was used together with aerial photography to estimate surface parameters in the hydrological models developed for the project (Parsons Brinckerhoff 2016a and 2016c).

3.2 Climate records

The flow impact assessment used outputs from the modelling undertaken for the water balance assessment (Parsons Brinckerhoff 2016c) to assess the potential impacts of the project on streamflow. The climate data used for the water balance assessment was based on historical daily data sourced from the Data Drill database (DSITIA 2015).


Data Drill is a daily time series of data at a point location consisting entirely of interpolated estimates. The data are taken from the gridded datasets and are available at any grid point over the land area of Australia. Data Drill is considered superior to individual Bureau of Meteorology (BOM) station records and site observations for water balance modelling purposes because it draws on a greater dataset, both spatially and in time, and does not contain gaps.


The Data Drill for the water balance assessment was obtained for latitude -34.50 and longitude 150.30 (in decimal degrees), which is 0.5 km north of SB01 and SB02. Figure 3.2 shows the Data Drill location and BOM rain gauges located around the Medway Rivulet and Oldbury Creek catchments. The available data for the Data Drill location is for a 127 year period from 1889 to 2015.

A plot of the Data Drill annual rainfall is provided in Figure 3.3. This plot also contains a 10-year moving average time series, which identifies the period from 1949 to1969 as the wettest period. Similarly the period from 1999 to 2015 appears to be one of the sustained dry periods.

A plot of monthly distribution of average daily evaporation from the Data Drill for the site is provided in Figure 3.4. Lake evaporation data was used in the water balance assessment to estimate evaporation from storages and evapotranspiration data was used for other areas. In the project area, lake evaporation and evapotranspiration is lowest in winter months and highest in summer months.

Summary statistics for rainfall and evaporation are provided in Table 3.3. Further details of the climate data used for the water balance assessment are provided in the water balance assessment report (Parsons Brinckerhoff 2016c).

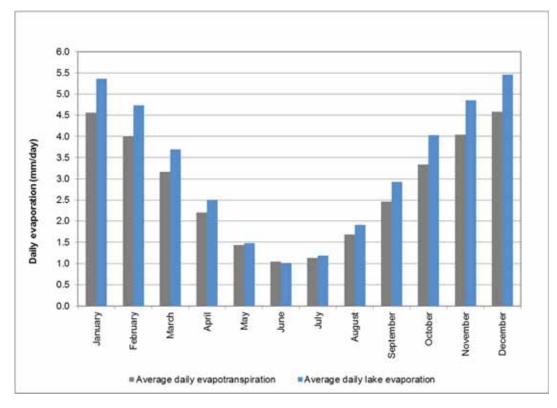


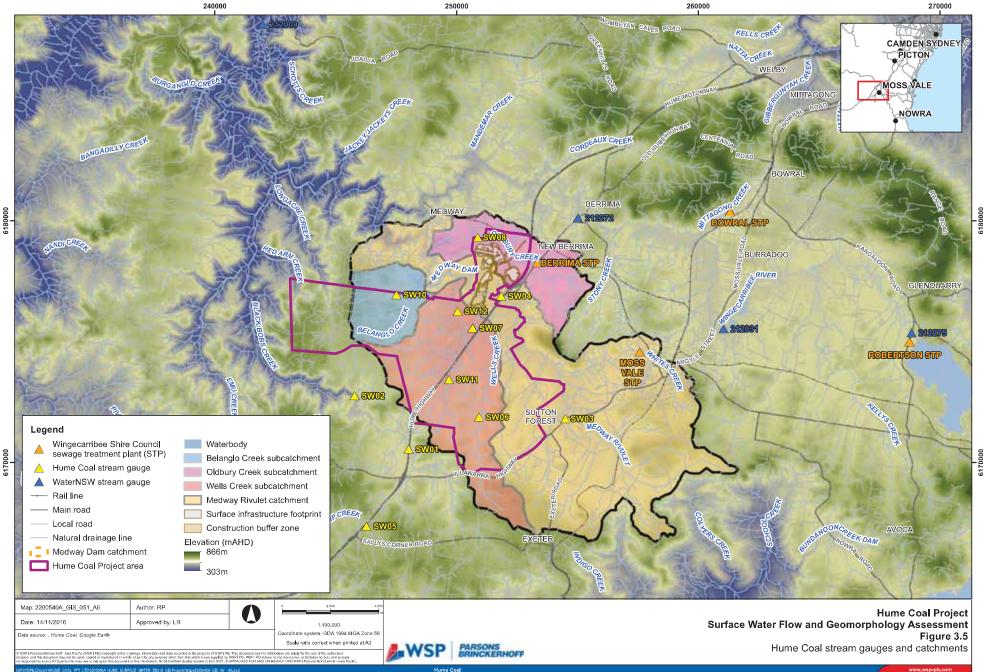
Figure 3.4 Average daily evaporation for Hume Coal Project site — Data Drill (1889 to 2015)

STATISTIC	ANNUAL RAINFALL (MM)	ANNUAL POTENTIAL EVAPOTRANSPIRATION ¹ (MM)	ANNUAL LAKE EVAPORATION ² (MM)
Minimum	393	878	1,034
5 th percentile (dry)	525	930	1,095
10 th percentile	564	946	1,114
50 th percentile (median)	800	1,016	1,190
90 th percentile	1,120	1,109	1,264
95 th percentile (wet)	1,256	1,122	1,275
Maximum	1,550	1,180	1,306
Average	824	1,021	1,187
Standard deviation	220	60	57

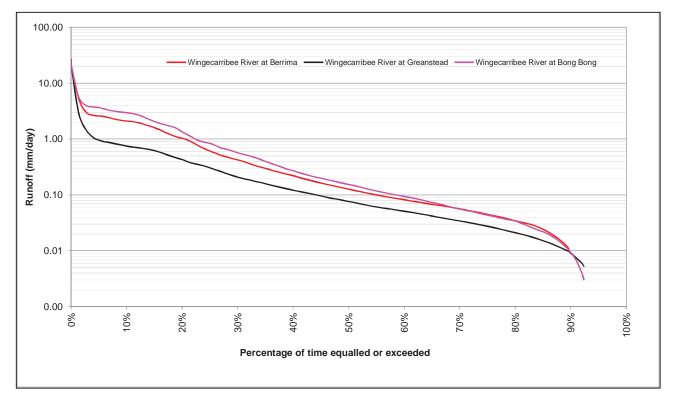
 Table 3.3
 Summary climate statistics for Hume Coal Project site — Data Drill (1889 to 2015)

(1) Potential evapotranspiration calculated using the Penman-Monteith formula (Food and Agriculture Organization of the United Nations, 1998)

(2) Lake evaporation calculated using the Morton formula for shallow lakes (Morton, 1983)


3.3 Stream gauge records

Stream gauging stations in the vicinity of the project area are operated by WaterNSW and Hume Coal. The locations of the stream gauges are shown on Figure 3.5 and available stream gauging data is summarised in Table 3.4.


STATION ID	OPERATOR	LOCATION	APPROX. CATCHMENT AREA (km²)	PERIOD OF RECORD
212009	WaterNSW	Wingecarribee River at Greenstead	587	26/10/1989 to 3/12/2015
212272	WaterNSW	Wingecarribee River at Berrima	201	22/08/1975 to 1/01/2016
212031	WaterNSW	Wingecarribee River at Bong Bong (downstream of Bong Boing Reservoir)	134	07/06/1989 to 1/01/2016
SW01	Hume Coal	Black Bobs Creek near Hume Hwy	21	21/1/2012 to 8/10/2015
SW02	Hume Coal	Black Bobs Creek near Belanglo Forest	12	06/09/2012 to 3/07/2015
SW03	Hume Coal	Medway Rivulet near Illawarra Hwy	0.02	22/01/2012 to 8/10/2015
SW04	Hume Coal	Medway Rivulet near Hume Hwy	37	21/1/2012 to 8/10/2015
SW05	Hume Coal	Long Swamp Creek near Hume Hwy	3	22/06/2015 to 8/10/2015
SW08	Hume Coal	Oldbury Creek adjacent to proposed mine surface infrastructure area	10.52	14/05/2015 to 8/10/2015

Stream gauge records were obtained from WaterNSW for the Wingecarribee River at Bong Bong (No. 212031), Berrima (No. 212272) and Greenstead (No. 212009) gauging stations. Stream gauge water level data was obtained from Hume Coal for SW04 and SW08. Water level data was converted to flow data using

rating curves developed for each site using the respective hydraulic models (refer to the Flooding Assessment Report (Parsons Brinckerhoff 2016a) for further details). The streamflow data were analysed using flow duration curves and volumetric runoff coefficients.

Daily flow duration curves for the gauging stations in the Wingecarribee River for the data period from 1989 to 2015 are provided in Figure 3.6. Flows are represented as runoff depths (volume per unit area) to allow comparison between the three gauging stations. Only 1% of the daily runoff depths are greater than 7 mm/day at all gauging sites. For 99% of the data points the Bong Bong (No. 212031) and Berrima (No. 212272) gauging sites were greater than the Greenstead (No. 212009) gauging site, the former being the greatest. This is potentially due to the relative proportion of instream weir volume capacity per unit catchment area and illustrates the effects of river streamflow regulation by weir structures.

3.4 Geomorphology assessment

The objective of the field geomorphological survey was to verify desktop assessments, which used aerial imagery and topographic data, and obtain sufficient information to enable identification of river styles and geomorphic features within the study area. The geomorphology assessment was completed using principles and terminology of the River Styles® Framework (Brierly and Fryirs 2005). Field assessments of watercourses at several locations were completed between May 2012 and October 2015. The timing of field assessments was based on land access approvals and development and refinement of the mine layout plan. The geomorphological survey provides a snapshot of the current geomorphic conditions and identifies the various river styles within the study area.

3.4.1 Approach

The River Styles® framework was designed to cover all Australian stream types, and can be applied at a large scale, where a range of different styles would be expected. The River Styles® classification is based on valley setting, level of floodplain development, bed materials and geomorphic units.

Characterisation of the fluvial geomorphology of the study area was approached at two measurement scales:

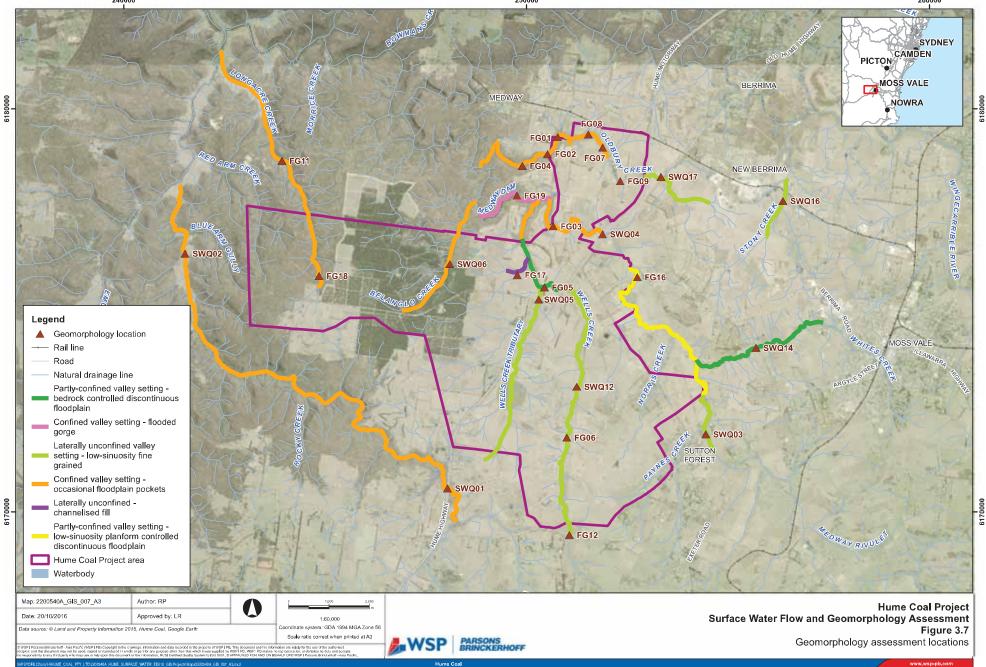
- → Catchment scale predominately a desktop assessment of the study area and downstream to the confluence between Black Bobs Creek and the Wingecarribee River (100s to 1,000s of metres).
- → Reach scale field verification and assessment at geomorphology survey locations (10s to 100s of metres).

Procedures to identify river styles were broadly based on the following parameters:

- → Degree of valley confinement;
- \rightarrow Presence and continuity of a channel;
- → Channel planform (number of channels, sinuosity); and
- → Geomorphic units and features.

3.4.2 Site selection

The geomorphology assessment focussed on the project area, including surface infrastructure areas and streams above the proposed underground mining area. In addition, streams surrounding the project area and downstream of surface infrastructure were included in the assessment.


The approach to the assessment was to select representative reaches or reaches with noteworthy geomorphic features based on the desktop selection criteria. Site selection for geomorphic field assessment was based on the following criteria:

- → Headwaters originating within the project area;
- Underlying geology;
- → Representative reach based on desktop assessment;
- → Underlying groundwater levels based on preliminary groundwater modelling;
- → Spatial land use characteristics;
- → Stream order; and/or
- → Unique areas of interest identified in aerial photography.

Geomorphological assessments were also completed at existing surface water quality monitoring sites (Parsons Brinckerhoff 2016d).

The geomorphology site assessment locations are shown in Figure 3.7.

www.wsp-pb

3.4.3 Field survey results

The results of the field geomorphic surveys are summarised in Table 3.5. Photographs of the sites visited are provided in Photos 3.1 to 3.49 and include photographs taken facing upstream (US), downstream (DS) and across stream (AS). Detailed field survey results are provided in Appendix A.

STREAM	VALLEY SETTING	RIVER STYLE	SINUOSITY	GEOMORPHIC UNITS	BED AND BANK COMPOSITION		RIVER BEHAVIOUR		CONTROLS	
				LOW	BANK FULL	OVERBANK	-			
Oldbury Creek	Confined valley setting	Occasional floodplain pockets	Low	Flood runners, bank scour, bench onto floodplain, riffle	Bedrock, sands, boulders, cobbles	Irregular	Supply, maintenance, sediment transport	Mobilise sand, minimal rework, bank erosion	Active channel, deposit on benches, flood chutes activated, erosion in channel	Valley, vegetated sandy bank, flood runners
Oldbury Creek	Confined valley setting	Occasional floodplain pockets	None	Bedrock outcrop, attached sandy bank/bar, channel scour	Sands	Symmetrical	Scarcely perceptible flow, pooled water	Active channel	Reworking, erosion/deposition on banks	Riparian vegetation, bedrock margins
Medway Rivulet	Confined valley setting	Occasional floodplain pockets	Low	Bedrock outcrop, bench up to floodplain, flood runners	Bedrock, silty sand, sand	Asymmetrical	Pooled water	Active channel	Flood runners activate, erosion/deposition	Bedrock, instream trees, upstream weir/causeway
Oldbury Creek	Confined valley setting	Occasional floodplain pockets	Low	Bedrock outcrop	Bedrock, clay, sand	Symmetrical	Scarcely perceptible flow, pooled water	Active channel	Reworking, erosion/deposition on banks	Riparian vegetation, bedrock margins, submerged log
Wells Creek	Partly-confined valley setting	Bedrock- controlled discontinuous floodplain	Low	pools, chute channels,		Asymmetrical	Scarcely perceptible flow, pooled water	Active channel	Erosion of banks, deposition on floodplain	Riparian vegetation (grass), bedrock margins, instream reeds, submerge block
Wells Creek	Laterally unconfined valley setting	Low-sinuosity fine grained	Low	Pools, man-made rock weirs, island, bank attached bars, nick points, disconnected pool, abandoned channel	Clay	Symmetrical	Scarcely perceptible flow, pooled water	Active channel, bank erosion	Erosion of banks, deposition on floodplains	Rock weirs (man-made), riparian vegetation (grass)
Oldbury Creek	Confined valley setting	Occasional floodplain pockets	Low	Bedrock outcrop, pools. benches, instream trees, chute channels, undercutting	Silt clay, sand	Asymmetrical	Scarcely perceptible flow, pooled water	Active channel	Deposition on floodplain	Upstream farm dam (instream storage), bedrock margins, instream trees, riparian vegetation
Oldbury Creek	Confined valley setting	Occasional floodplain pockets	Low	Sandy bar, bedrock outcrop, run, benches, dense riparian vegetation	Bedrock, overlying sand	Asymmetrical	Standing water	Maintenance, transport	Minimal rework, some erosion/deposition	Bedrock margins, riparian vegetation
Oldbury Creek	Partly-confined valley setting	Low-sinuosity planform- controlled discontinuous floodplain	Low	High flow chute, dense instream reeds	Sand, silt, clay	Incised symmetrical	Standing water	Mobilised sediment	Overbank floodplain deposition, channel erosion	Planform controlled, dense instream reeds, riparian vegetation
Longacre Creek	Confined valley setting	Occasional floodplain pockets	None	Riffle, runs, chutes, pooled water, dense instream vegetation	Sand, silt, clay bedrock visible	Undefined channel	Standing water	Active channel	Slight reworking	Dense instream vegetation, fire trail crossing stream
Wells Creek	Confined valley setting	Occasional floodplain pockets	None	Riffle, bank scour, dense instream vegetation, benches	Sand	Symmetrical	Standing water	Active channel, bank erosion	Deposition	Dense instream reeds, instream trees, riparian vegetation (grass/trees), fence across stream
	Oldbury Creek Oldbury Creek Medway Rivulet Oldbury Creek Wells Creek Wells Creek Oldbury Creek Oldbury Creek Oldbury Creek Longacre Creek	SETTINGOldbury CreekConfined valley settingOldbury CreekConfined valley settingMedway RivuletConfined valley settingOldbury CreekConfined valley settingOldbury CreekConfined valley settingWells CreekPartly-confined valley settingWells CreekLaterally unconfined valley settingOldbury CreekConfined valley settingNegacre CreekConfined valley settingWells CreekConfined valley setting	SETTINGOldbury CreekConfined valley settingOccasional floodplain pocketsOldbury CreekConfined valley settingOccasional floodplain pocketsMedway RivuletConfined valley settingOccasional floodplain pocketsOldbury CreekConfined valley settingOccasional floodplain pocketsOldbury CreekConfined valley settingOccasional floodplain pocketsWells CreekPartly-confined valley settingBedrock- controlled discontinuous floodplainWells CreekLaterally unconfined valley settingLow-sinuosity fine grainedOldbury CreekConfined valley settingOccasional floodplain pocketsOldbury CreekConfined valley settingOccasional floodplain pocketsOldbury CreekConfined valley settingOccasional floodplain pocketsOldbury CreekConfined valley settingOccasional floodplain pocketsOldbury CreekConfined valley settingCoccasional floodplain pocketsOldbury CreekConfined valley settingCocasional floodplain pocketsOldbury CreekConfined valley settingCocasional floodplain pocketsOldbury CreekConfined valley settingCocasional floodplain pocketsOldbury CreekConfined valley settingCocasional floodplain pocketsMediaConfined valley settingCocasional discontinuous floodplain pocketsOldbury CreekConfined valley valley settingCocasional discontinuous flo	SETTINGSETTINGOldbury CreekConfined valley settingOccasional floodplain pocketsLowOldbury CreekConfined valley settingOccasional floodplain pocketsNoneMedway RivuletConfined valley settingOccasional floodplain pocketsLowOldbury CreekConfined valley settingOccasional floodplain pocketsLowOldbury CreekConfined valley settingOccasional floodplain pocketsLowWells CreekPartly-confined valley settingBedrock- controlled discontinuous floodplainLowWells CreekLaterally unconfined valley settingCocasional floodplain pocketsLowOldbury CreekConfined valley settingOccasional floodplain pocketsLowOldbury CreekConfined valley settingOccasional floodplain pocketsLowOldbury CreekConfined valley settingOccasional floodplain pocketsLowOldbury CreekConfined valley settingOccasional floodplain pocketsLowOldbury CreekPartly-confined valley settingLow-sinuosity portrolled discontinuousLowOldbury CreekConfined valley valley settingDoccasional floodplain pocketsLowOldbury CreekConfined valley valley settingDoccasional floodplain pocketsLowOldbury CreekConfined valley valley settingDoccasional floodplain pocketsLowOldbury CreekConfined valley valley settingDoccasional f	SETTINGInstantion of the settingInstantion of the settingInstantion of the settingOldbury CreekConfined valley settingOccasional floodplain pocketsLowFlood runners, bank scour, bench onto floodplain, riffleOldbury CreekConfined valley settingOccasional floodplain pocketsNoneBedrock outcrop, attached sandy bank/bar, channel scourMedway RivuletConfined valley settingOccasional floodplain pocketsLowBedrock outcrop, bench up to floodplain, flood runnersOldbury CreekConfined valley settingOccasional floodplain pocketsLowBedrock outcrop, bench up to floodplain, flood runnersVells CreekPartly-confined valley settingBedrock- controlled discontinuous floodplainLowBedrock outcrop, pools, chute channels, benches, undercuttingWells CreekLaterally unconfined valley settingLow-sinuosity fine floodplain pocketsLowBedrock outcrop, pools, chute channels, undercuttingOldbury CreekConfined valley settingOccasional floodplain pocketsLowBedrock outcrop, pools, chute channels, undercuttingOldbury CreekConfined valley settingOccasional floodplain pocketsLowBedrock outcrop, pools, benches, instream trees, chute channels, undercuttingOldbury CreekConfined valley settingOccasional floodplain pocketsLowSandy bar, bedrock outcrop, pools, benches, oels benches, reparian vegetationOldbury CreekPartly-confined v	SETTING Instruction UNITS COMPOSITION Oldbury Creek Confined valley setting Occasional floodplain pockets Low Flood runners, bank scour, bench onto floodplain, nfffe Bedrock nutrop, and tached sandy bank/bar, channel scour Bedrock nutrop, tached valley setting Sands Oldbury Creek Confined valley setting Occasional floodplain pockets Low Bedrock nutrop, tached valley setting Sands Medway Rivulet Confined valley setting Occasional floodplain pockets Low Bedrock nutrop, tached valley setting Bedrock clay, sand Bedrock nutrop, thend plain, flood runners Bedrock nutrop, tached valley setting Bedrock, clay, sand Wells Creek Party-confined valley setting Bedrock- controlled discortinuous floodplain pockets Low Bedrock outcrop, benches, undercutting benches, undercutting Bedrock, clay, sand Oldbury Creek Confined valley setting Doccasional floodplain pockets Low Bedrock outcrop, pools, chute channels, sand Bedrock, clay, sand Oldbury Creek Confined valley setting Occasional floodplain pockets Low Bedrock outcrop, pools, betrocks, clay, sand Silt clay, sand pools, betrock, sinck pools, dute channels, undercrutting Ol	SETTING Name of all operations UNITS COMPOSITION GEOMETRY Oldbury Creek Confined valley setting Occasional floodplain pockets Low Flood runners, bank scour, bench notto Bedrock, sands, boulders, cobbles Irregular Oldbury Creek Confined valley setting Occasional floodplain pockets None Bedrock outcrop, attached sandy bankbar, channel Sands Symmetrical Medway Rivulet Confined valley setting Occasional floodplain pockets Low Bedrock outcrop, floodplain, flood Bedrock, silty sand, sand Asymmetrical Oldbury Creek Confined valley setting Occasional floodplain pockets Low Bedrock outcrop, floodplain, flood Bedrock, clay, sand Symmetrical Wells Creek Partly-confined valley setting Bedrock- controlled discontinuous floodplain Low Bedrock outcrop, pools, chue channels, sand Asymmetrical Wells Creek Laterally unconfined valley setting Occasional floodplain pockets Low Bedrock outcrop, points, diacs, index points, diacs, ind	SETTING Inductional Processional Sections Sections Sections Sections Sections <td>SETTING Partner Distance Partner COMPOSITION GEOMETRY Partner Partner Partner Oldbury Creek Confined valley sating Occasional toodplain pockets Low Flood runners, bank toodplain, book Bedrock, sands, source Ifregular Supply, maintenance, sediment tansport Mobiles sand, minimal revork, bank erosion Oldbury Creek Confined valley sating Occasional toodplain pockets None Bedrock outcrop, source Sands Symmetrical Scarcely perceptible flow, pocket water Active channel cooled water Medway Rividet Confined valley sating Occasional toodplain pockets Low Bedrock outcrop, sand, sand Symmetrical Scarcely perceptible flow, pocket water Active channel Oldbury Creek Confined valley sating Cocasional toodplain pockets Low Bedrock outcrop, sand, sand Symmetrical Scarcely perceptible flow, pocket water Active channel sand Wells Creek Party-confined unconfined valley sating Bedrock outcrop, rifts disconfinuous Bedrock outcrop, rifts bedrock outcrop, rifts disconfinuous Bedrock outcrop, rifts bedrock outcrop, rifts bedrock outcrop, rifts bedrock outcrop, rifts bedrock outcrop, rifts distored hannel Scarcely perceptible flow, pockel</td> <td>SETTING Instrume DATE COMPOSITION GEOMETRY Instrume Composition GEOMETRY Instrume Oldoury Creek Certified valley Occasional foodplain pockets Low Pood runners, bain foodplain, uffie boodplain, uffie boodplain, uffie composition Bedrock, sands, sands Irregular segment management segment management pockets Mobilise sand, minimal Active channel Active cha</td>	SETTING Partner Distance Partner COMPOSITION GEOMETRY Partner Partner Partner Oldbury Creek Confined valley sating Occasional toodplain pockets Low Flood runners, bank toodplain, book Bedrock, sands, source Ifregular Supply, maintenance, sediment tansport Mobiles sand, minimal revork, bank erosion Oldbury Creek Confined valley sating Occasional toodplain pockets None Bedrock outcrop, source Sands Symmetrical Scarcely perceptible flow, pocket water Active channel cooled water Medway Rividet Confined valley sating Occasional toodplain pockets Low Bedrock outcrop, sand, sand Symmetrical Scarcely perceptible flow, pocket water Active channel Oldbury Creek Confined valley sating Cocasional toodplain pockets Low Bedrock outcrop, sand, sand Symmetrical Scarcely perceptible flow, pocket water Active channel sand Wells Creek Party-confined unconfined valley sating Bedrock outcrop, rifts disconfinuous Bedrock outcrop, rifts bedrock outcrop, rifts disconfinuous Bedrock outcrop, rifts bedrock outcrop, rifts bedrock outcrop, rifts bedrock outcrop, rifts bedrock outcrop, rifts distored hannel Scarcely perceptible flow, pockel	SETTING Instrume DATE COMPOSITION GEOMETRY Instrume Composition GEOMETRY Instrume Oldoury Creek Certified valley Occasional foodplain pockets Low Pood runners, bain foodplain, uffie boodplain, uffie boodplain, uffie composition Bedrock, sands, sands Irregular segment management segment management pockets Mobilise sand, minimal Active channel Active cha

SITE ID	STREAM	VALLEY SETTING	RIVER STYLE	SINUOSITY	GEOMORPHIC UNITS	BED AND BANK COMPOSITION	CHANNEL GEOMETRY	RIVER BEHAVIOUR			CONTROL
								LOW	BANK FULL	OVERBANK	-
FG16	Medway Rivulet	Laterally unconfined valley setting	Low-sinuosity fine grained	Low	Pooled water, riffle downstream of causeway, riparian predominantly grass, some trees	Sandy clay/silt	Symmetrical	Maintenance, pooled water, settling	Supply, entrainment of sediment	Erosion, deposition on floodplain	Causeway, instream trees, fence, riparian vegetation
FG17	Small tributary of Wells Creek	Laterally unconfined valley setting	Channelised fill	Low	Pooled water, bank scour	Sand, silt, clay	Symmetrical/ undefined channel	Standing water	Active channel, reworking	Channel erosion / floodplain deposition	Riparian vegetation (grass), instream vegetation (grass). Pipe culvert and crossing
FG18	Longacre Creek	Confined valley setting	Occasional floodplain pockets	None	Bedrock outcrop, pooled water, dense instream vegetation	Bedrock, sand, silt, clay	Asymmetrical/ undefined channel	Standing water	Slight reworking	Floodplain deposition, flood runners activate	Bedrock outcrop, fire trail and pipe culvert, dense vegetation
FG19	Medway Dam	Confined valley setting	Flooded gorge	Low	Flooded gorge, bedrock outcrop, benches	Bedrock, silt, clay, sand	Asymmetrical	Standing water (reservoir)	Bank erosion, reworking	Floodplain pocket deposition	Bedrock margins, riparian vegetation (trees), Medway Dam downstream
SWQ01	Black Bobs Creek	Confined valley setting	Occasional floodplain pockets	Low	Bedrock outcrop, pools, riffles, benches, gravel bars, steep banks	Bedrock with silt/sand infill in pools	Symmetrical	Scarcely perceptible flow, pooled water	Transport	Deposition on benches	Bedrock margins, riparian vegetation, bridge abutments
SWQ02	Black Bobs Creek	Confined valley setting	Occasional floodplain pockets	Intermediate	Benches, riffles, chutes, spillway, fallen tree	Bedrock with gravel/sand infill in pools	Asymmetrical	Supply, riffles, chutes, high sediment load and iron staining suggests local erosion and potentially groundwater baseflow to the stream	Flood runners engaged	Bed erosion, floodplain deposition	Vegetation on benches (mosses/sedges/grass), riparian vegetation (trees/grass), some bedrock, fallen tree log and spillway
SWQ03	Medway Rivulet	Laterally unconfined valley setting	Low-sinuosity fine grained	Low	Pools and riffles, bank scour, benches	Gravel, sand, silt/clay	Symmetrical/ irregular	Dry, boggy	Bank erosion	Erosion, floodplain deposition	Instream vegetation (reeds/woody debris), riparian vegetation (grass/trees), riffles and pipe culvert, bridge abutments
SWQ04	Medway Rivulet	Confined valley setting	Occasional floodplain pockets	None	Bedrock outcrop, pools, runs, benches	Sand, silt/clay, exposed boulders and bedrock	Irregular	Supply, maintenance, sediment transport	Mobilise sand, minimal rework, bank erosion, active channel	Bench deposition, activated flood chutes, erosion in channels	Boulders, bedrock outcrop, instream vegetation (grass/reeds), bridge abutment and piers
SWQ05	Wells Creek tributary	Laterally unconfined valley setting	Low-sinuosity fine grained	None	Pools, bank scour, riffles	Gravel, clay/silt	Symmetrical/ irregular	Scarcely perceptible flow	Active channel, bank erosion	Erosion, deposition on banks, flood runners activate	Instream vegetation (reeds), riparian vegetation (grass), riffles, forest track and pipe culverts
SWQ06	Belanglo Creek	Confined valley setting	Occasional floodplain pockets	Low	Pools, bedrock outcrop, gravel bars, fallen tree log	Bedrock, sand, clay/silt	Irregular	Pooled water	Active channel	Erosion, deposition on floodplain pockets	Bedrock margins, instream and riparian vegetation (grasses, shrubs, trees), fallen tree log and crossing and pipe culvert
SWQ12	Wells Creek	Laterally unconfined valley setting	Low-sinuosity fine grained	None	Bank scour, pools, gravel bars, nick points	Clay, sand	Asymmetrical	Standing pooled water	Bank erosion, sediment transport	Erosion, deposition on floodplain	Man-made rock weirs, riparian vegetation (grass)

SITE ID	STREAM	VALLEY SETTING	RIVER STYLE	SINUOSITY	GEOMORPHIC UNITS	BED AND BANK COMPOSITION	CHANNEL GEOMETRY	RIVER BEHAVIOUR		CONTROL	
								LOW	LOW	LOW	
SWQ14	Whites Creek		Low-sinuosity planform- controlled discontinuous floodplain	Low	Pools, sand bars	Silt/clay	Symmetrical/ irregular	Pooled water	Active channel	Erosion, deposition on floodplain pockets	Causeway, man-made rock weirs, instream and riparian trees and reeds, bridge abutment
SWQ16	Stony Creek	Laterally unconfined valley setting	Low-sinuosity fine grained	None	Pools, bank scour	Sands and silts	Symmetrical	Standing water	Mobilise sediment, bank erosion	Floodplain deposition, bank erosion	Instream and riparian vegetation (grass/reeds), rail crossing, crossway and culverts
SWQ17	Oldbury Creek	Laterally unconfined valley setting	Low-sinuosity fine grained	None	Pools	Fine sands, silts, clay	Symmetrical	Maintenance, pooled, settling	Supply, entrainment of sediment	Erosion of banks, deposition on floodplains	Instream and riparian vegetation (grass/reeds), bridge abutments

Photo 3.1 Oldbury Creek FG01 (DS)

Photo 3.4 Oldbury Creek FG02 (US)

Oldbury Creek FG01 (DS) Photo 3.2

Photo 3.3 Oldbury Creek FG02 (DS)

Medway Rivulet FG03 (US)

Photo 3.6

Medway Rivulet FG03 (DS)

Photo 3.7 Oldbury Creek FG04 (US)

Photo 3.8

Photo 3.5

Oldbury Creek FG04 (AS)

Photo 3.9 Wells Creek FG05 (DS)

Wells Creek FG06 (DS)

Photo 3.12 Wells Creek FG06 (DS)

Photo 3.13 Oldbury Creek FG07 (US)

Photo 3.16 Oldbury Creek FG08 (DS)

Photo 3.14 Oldbury Creek FG07 (DS)

Photo 3.11

Photo 3.17 Oldbury Creek FG08 (US)

Photo 3.18 Oldbury Creek FG09 (US)

WSP | Parsons Brinckerhoff Project No 2200540A

Photo 3.21

Wells Creek FG12 (DS)

Photo 3.23 Medway Rivulet FG16 (DS) Photo 3.24

Photo 3.25 Small tributary of Wells Creek FG17 (DS)

Photo 3.26 Small tributary of Wells Creek FG17 (US)

Photo 3.27 Longacre Creek FG18 (DS)

Black Bobs Creek SWQ01 Photo 3.30

Black Bobs Creek SWQ02 (US)

Photo 3.31 Black Bobs Creek SWQ02 (US)

Photo 3.28 Longacre Creek FG18 (DS)

Photo 3.34 Medway Rivulet SWQ04 (DS)

Photo 3.32 Medway Rivulet SWQ03 (US) Photo 3.33

Medway Rivulet SWQ03 (US)

Photo 3.35 Medway Rivulet SWQ04 (US)

Photo 3.36 Wells Creek Tributary SWQ05 (DS)

Photo 3.37 Wells Creek Tributary SWQ05 (US)

Wells Creek Tributary SWQ05 (DS)

Photo 3.39 Belanglo Creek SWQ06 (DS)

Photo 3.40 Belanglo Creek SWQ06 (US)

and the second second

Photo 3.38

Photo 3.41 Wells Creek SWQ12 (DS)

Photo 3.42 Wells Creek SWQ12 (DS)

Photo 3.43 Whites Creek SWQ14 (DS)

Photo 3.44 Stony Creek SWQ16 (US)

Photo 3.45 Stony Creek SWQ16 (DS)

Photo 3.46 Oldbury Creek SWQ17 (DS)

Photo 3.47 Oldbury Creek SWQ17 (US)

Photo 3.48 Inline storage on Oldbury Creek (AS)

Photo 3.49 Inline storage on Oldbury Creek (DS)

3.4.4 Geomorphic characterisation

Watercourses and other waterbodies were classified into groups of similar geomorphic characters using the River Style® framework (Brierley & Fryirs 2005). River Style® classifications found within the study area are presented in Table 3.5.

VALLEY SETTING	RIVER STYLE	LOCATIONS WITHIN THE PROJECT AREA	
Laterally Unconfined Valley Setting	Low-sinuosity fine grained	FG06, SWQ03, SWQ05, SWQ12, SWQ16 and SWQ17	
	Channelised fill	FG17	
Confined Valley Setting	Occasional floodplain pockets	FG01, FG02, FG03, FG04, FG07, FG11, FG12, FG18, SWQ01, SWQ02, SWQ04 and SWQ06	
	Gorge (flooded by Medway Dam)	FG19 (Medway Rivulet immediately upstream of Medway Dam)	
Partly-confined valley setting	Bedrock-controlled discontinuous floodplain	FG05	
	Low-sinuosity planform-controlled discontinuous floodplain	FG08, FG09, FG16 and SWQ14	

 Table 3.6
 River Styles® classifications found within the study area

In the east of the project area, the valley setting is predominately an alluvial valley setting, characterised by low stream power and fine grained materials. River morphology is largely controlled by the low gradient and low stream power.

As the streams flow to the north, river styles transition to confined valley settings. Before transitioning to a confined valley, the streams move through a section with partly-confined valley setting. Both planform controlled and bedrock controlled river styles were observed, although bedrock control is the predominant river style. Wells Creek and Wells Creek Tributary go through a gradual transition zone whereas Oldbury Creek has a more abrupt transition zone.

3.4.5 River behaviour

The groundwater level in the project area is typically higher than the beds of streams, hence the streams in the area are classified as streams that receive baseflow from groundwater (Coffey 2016). In much of the project area the streams are also considered ephemeral. Ephemeral streams are defined as those streams that do not flow continuously year round, and mainly flow following precipitation events. This is confirmed by analysis of the stream gauge data (refer to Parsons Brinckerhoff 2016d) which indicates significant periods of no flow. During periods of no or low rainfall, the groundwater contribution to the streams is therefore likely to manifest as persistent connected or unconnected pools rather than continuous streamflow.

River behaviour varies markedly at differing flow stages, and low flow, bank full and overbank stages are used to define the behavioural regime (Fryirs and Brierley 2013). The variety of valley settings encountered in the project area will result in changes to river behaviour. River behaviour is governed by bed and bank composition and vegetation characteristics.

The upper reaches of the watercourses have low gradients resulting in low flow energy. The capacity for change in the channel geometry and erosional forces are limited as the channel does not generate sufficient energy to cause bank erosion or major changes to instream geomorphic features. As the river transitions to partly-confined valley settings, geometry change is localised and erosion is restricted to reaches where flow

energy increases. Channels with non-cohesive bed and bank materials are particularly prone to adjustment. River behaviour for the sites visited for the geomorphic survey are shown on Figure 3.7. River behaviour for the valley settings within the study area, as described in Fryirs and Brierley (2013), is presented in Table 3.6.

Table 3.7 River behaviour for river styles within the study area

VALLEY SETTING	LOW FLOW	BANK FULL	OVERBANK
Laterally unconfined valley setting	Typically disconnected pools, sometimes dry and boggy with no apparent flow between pools. Cohesive sediments comprised of fine grained material generally restrict lateral channel movement.	Channel activates and the system is predominately a suspended-load system supplying fine grained materials downstream. Channels do not generate enough energy to cause substantial erosion due to the low gradients.	Vertical accretion of fine grained material on floodplains will occur during the waning stages of a flood event.
	Instream geomorphic features generally include vegetation, woody debris, tree stumps and roots and man-made structures such as dams and weirs. Pools with standing water will accumulate sediments and may partially infill behind geomorphic features.	There is lack of geomorphic features given the lack of material	Low levees and back swamps may form. There is little capacity for the channel to migrate in shallower channels.
Partly confined valley setting	Low flow stages are confined to run-riffle and pool sequences caused by geomorphic units within the channel. Fine grained materials (such as silts and clays) accumulate in low energy environments such as pools and standing water. Channel adjustment will depend on the cohesiveness of sediments in planform controlled rivers. Fine grained silts and clays within the study area are more cohesive than sand dominated rivers.	Channel activates mobilising fine grained materials. Erosion and channel adjustment is restricted to local reaches adjacent to floodplain pockets. Instream geomorphic features (such as benches and ledges) can be created and reworked at bank full stages. Pools can be scoured of accumulated material.	Instream and floodplain features are formed and reworked during overbank flows. Flood channels may be scoured or infilled. Floodplain pockets may be stripped in high magnitude events, however, vertical accretion occurs during the waning stages of a flood event as flow magnitude decreases and fine grained sediment settles.
Confined valley setting	Flow paths are restricted by instream geomorphic units and bedrock. Reworking of finer grained sediment by erosional and depositional processes is generally negligible, and localised. Flow is constrained by the confined nature of the river.	Rivers in confined valley settings do not have readily definable channel banks and floodplains, bank full and overbank includes flows that span the valley. Bed materials may be locally redistributed with coarse cobbles or boulders the only materials retained for any length of time. Fine-grained materials that locally accumulate behind instream geomorphic features are flushed by higher magnitude flow events. Channel size and shape is imposed by bedrock and bank erosion is negligible.	See bank full river behaviour.

Source: Adopted from Fryirs and Brierley (2013)

4 WATER RELATED VALUES AND ASSETS

4.1 Environmental values

Environmental values (EVs) are values that the community considers important for water use (HRC 1998). EVs for the Hawkesbury River Catchment are set out in the *Healthy Rivers Commission Inquiry into the Hawkesbury-Nepean River System* (HRC 1998).

Regional EVs are assigned based on land use regions within the Hawkesbury-Nepean catchment. The land use regions within the study area and applicable EVs are provided in Table 4.1.

LAND USE REGIONS	REGIONAL ENVIRONMENTAL VALUES
Predominately forested	Aquatic ecosystems
	Primary contact recreation
	Secondary contact recreation
	Visual amenity
	Homestead water supply
	Livestock water supply
Mixed-use Rural and Drinking Water with Clarification and	Aquatic ecosystems
Disinfection	Primary contact recreation
	Secondary contact recreation
	Visual amenity
	Drinking water – clarification and disinfection
	Irrigation water supply
	Homestead water supply
	Aquatic foods (cooked)

 Table 4.1
 Environmental values for surface water in the study area

Source: Healthy Rivers Commission Inquiry into the Hawkesbury-Nepean River System (HRC 1998)

Downstream of the confluence of the Wollondilly and Wingecarribee Rivers, the land use region is predominantly drinking water catchment where EVs include; aquatic ecosystems, visual amenity, drinking water – disinfection only, and drinking water - groundwater.

4.2 Surface water assets

The surface water-related assets with potential to be impacted by the project are located in the Medway Rivulet, Lower Wingecarribee River, Lower Wollondilly River and Bundanoon Creek management zones and include:

- → Storages used for town water supply, including Medway Reservoir (Medway Dam), Lake Burragorang (Warragamba Dam) and Bundanoon Creek Reservoir;
- → Diversion works (pumps) and instream storages used by local water users to extract surface water for water supply;
- → Landholders with basic water rights; and
- → Ecosystems reliant on streamflow, including:

Riparian ecosystems dependent on overbank flows and flooding.

Further details of surface water-related assets in the study area are provided in Sections 4.2.1, 4.2.2 and 4.2.3. Potential risks to surface water-related assets associated with the project are discussed in Section 5.

4.2.1 Storages used for town water supply

4.2.1.1 MEDWAY RESERVOIR (MEDWAY DAM)

Medway Dam is located on Medway Rivulet and has a storage capacity of 1,350 ML. The dam was constructed in 1964 and is operated by WSC. Water from the reservoir is ordinarily treated at Medway Water Treatment Plant which has a capacity of 8 ML/day, and supplies the village of Berrima and western parts of Bowral and Mittagong.

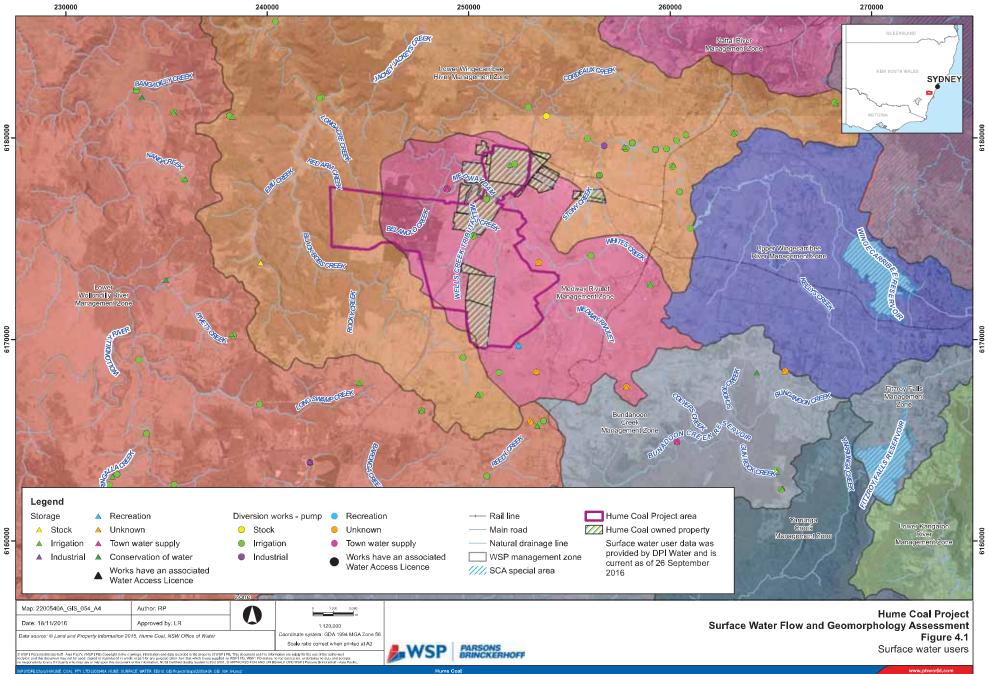
WSC hold a 900 ML WAL to take water for town water supply from Medway Dam. Available information from WSC indicates that in the year 2012-2013, Medway Water Treatment Plant (WTP) treated 414 ML of water from the dam; however the plant was shut down in June 2013. The shutdown, which lasted nearly two years, was used to change the filter media and install a temporary Poly Aluminium Chloride plant to help reduce taste and odour effects from released algal toxins (Beca 2010). Medway Dam is prone to algal blooms in summer due to catchment runoff and nutrient loading, including from Moss Vale Sewage Treatment Plant (STP) upstream. Toxic cyanobacteria (blue-green algae) species have been demonstrated to be present and have been prevalent in historic blooms, resulting in the Medway WTP having to be shut down for prolonged periods (Beca 2010). It is understood that WSC has plans to upgrade the plant over the next 3 years.

Medway Dam is located downstream of the administration and workshop area precinct and receives runoff from pasture lands in the upper and lower reaches of the Medway Rivulet catchment, as well as from the Moss Vale urban area via the Whites Creek tributary.

The location of Medway Dam is shown on Figure 4.1.

4.2.1.2 LAKE BURRAGORANG (WARRAGAMBA DAM)

Lake Burragorang is located on the Wollondilly River downstream of the project. The lake is WaterNSW's largest reservoir with a total capacity of more than two million megalitres (SCA 2013). It sits behind Warragamba Dam and has a catchment area of 9,051 km².


Lake Burragorang has the capacity to supply up to 80% of Sydney's water. One quarter of the catchment is a declared Special Area, where public access is restricted to protect water quality.

Since the 1970s, during times of drought, water from the Shoalhaven catchment to the south has been pumped to Wingecarribee Reservoir and the Wingecarribee River channel has been used to transport bulk water to Warragamba Dam.

4.2.1.3 BUNDANOON CREEK RESERVOIR (BUNDANOON CREEK DAM)

Bundanoon Creek Dam is located on Bundanoon Creek and has a storage capacity of approximately 2,000 ML. The dam was constructed in the mid 1960s and is operated by WSC. Water from the reservoir is treated at Bundanoon Creek Water Treatment Plant which has a capacity of 10 ML/day, and provides supply to Bundanoon, Moss Vale, Bowral and Mittagong.

WSC hold a 1,000 ML WAL to take water for town water supply from Bundanoon Creek Reservoir. The location of Bundanoon Creek Reservoir is shown on Figure 4.1.

4.2.2 Local water users

Surface water users in the study area were identified using data obtained directly from the Land and Property Information WAL Register and are current as of 26 September 2016.

4.2.2.1 DIVERSION WORKS AND STORAGES

Figure 4.1 shows the location of surface water diversion works (pumps) and storages (dams) in the Medway Rivulet, Lower Wingecarribee River, Lower Wollondilly River and Bundanoon Creek management zones current as at 26 September 2016. The number of surface water diversion works (pumps) and storages dams in each management zone is summarised in Table 4.2.

There are 6 dams and 11 pumps in the Medway Rivulet management zone. Of these, only Medway Dam and its associated pumps are located downstream of the project area. An additional dam and 2 pumps are located on properties owned by Hume Coal or subsidiaries of Hume Coal.

Figure 4.2 shows the number of pumps and dams in the Medway Rivulet, Lower Wingecarribee River, Lower Wollondilly and Bundanoon Creek management zones by purpose. Most pumps and dams in the study area are used for irrigation purposes or a combination of irrigation, stock and domestic purposes.

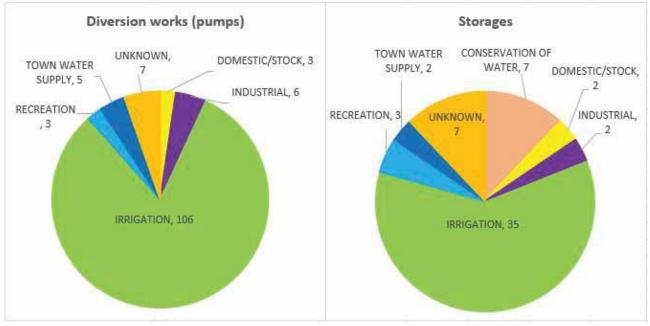


Figure 4.2 Number of surface water diversion works and storages by purpose (LPI 2016)

4.2.2.2 WATER ACCESS LICENCES

Figure 4.1 shows the location of pumps and dams with associated WALs in the Medway Rivulet, Lower Wingecarribee River, Lower Wollondilly River and Bundanoon Creek management zones. A breakdown of the WAL volumes by water source and management zone is presented in Table 4.2.

Table 4.2 Water management zones

WATER SOURCE AND MANAGEMENT ZONE	NUMBER OF DIVERSION WORKS (PUMPS)	NO OF STORAGES	TOTAL VOLUME ML/A			
UPPER NEPEAN AND WARRAGAMBA WATER SOURCE						
Medway Rivulet management zone	13	7	1,027			
Lower Wingecarribee River management zone	29	12	1,072			
Lower Wollondilly River management zone	86	32	4,138			
SHOALHAVEN WATER SOURCE						
Bundanoon Creek management zone	5	4	1,007			

4.2.2.3 BASIC WATER RIGHTS

Basic water rights for landholders in the study area include:

- → Domestic and stock rights Owners or occupiers of land which has stream frontage can take water without a licence. Water taken under a domestic and stock right may be used for normal household purposes and garden and/or for drinking water for stock.
- → Harvestable rights Landholders are allowed to build dams on minor streams that capture 10% of the average regional rainfall-runoff on their property without a licence to take water.

Figure 4.1 shows properties owned by Hume Coal or subsidiaries of Hume Coal. There are a number of properties downstream of the project area on Medway Rivulet and Oldbury Creek that may be taking water under basic water rights. There are no native title rights with respect to water in the study area.

The Greater Metropolitan Region Unregulated Water Sources Water Sharing Plan 2011, estimates the water requirements of persons entitled to domestic and stock rights to be:

- → 13.6 ML/day in the Shoalhaven River Water Source; and
- → 21 ML/day in the Upper Nepean and Warragamba Water Source.

4.2.3 Ecosystems reliant on streamflow

Ecosystems reliant on streamflow in the project area include:

- → Instream ecosystems dependent on streamflow; and
- → Riparian ecosystems dependent on overbank flows and flooding.

Details of these ecosystems are provided in the *Hume Coal Project Biodiversity Assessment Report* (EMM 2016b).

5 IMPACT ASSESSMENT

5.1 **Project activities with potential to impact on flow**

The natural flow regimes of Medway Rivulet, Oldbury Creek and their tributaries are highly disturbed as the catchments have been extensively cleared for agriculture and multiple instream storages, which impede the natural flow, have been constructed along the length of the streams. The Hume Coal Project has the potential to further impact on the flow regime of local streams due to:

- → Reduction in catchment area and runoff associated with the water management system for the project;
- → Releases from selected stormwater basins following containment of the first flush within the water management system; and
- → Interception of natural baseflow to streams associated with depressurisation of groundwater systems during underground mining.

Details of these project activities and how they may impact on the flow regime of local streams are provided below.

5.1.1 Water management system

The surface infrastructure for the Hume Coal Project is shown on Figure 1.3. The infrastructure located in the Medway Rivulet catchment includes:

- → administration and workshop area;
- → overland conveyor and conveyor portal;
- man and materials portal;
- \rightarrow ventilation shaft; and
- \rightarrow construction camp.

The infrastructure located in the Oldbury Creek catchment includes:

- product stockpiles;
- → CPP;
- → ROM stockpile;
- \rightarrow site WTP;
- → pipeline for discharge of surplus water; and
- → train load out.

Runoff from operational areas of the site within the Medway Rivulet catchment will be captured in five project storages; SB03, SB04, MWD05, MWD06 and MWD07 (refer to Figure 3.5). Runoff from operational areas of the site within the Oldbury Creek catchment will be captured in two project storages; SB01 and SB02.

MWD08 is a provisional storage dam associated with the site WTP that would be used to store excess water prior to treatment. It does not receive direct runoff from operational areas. As discussed in detail in the water balance assessment (Parsons Brinckerhoff 2016c), the project includes the site WTP as a provision to treat surplus water from the Primary Water Dam (PWD) before release to local creeks; however, the water

balance modelling demonstrates that this facility is unlikely to be needed and it has therefore not been assessed in this report.

The PWD is located in the Oldbury Creek catchment and will store runoff from the local catchment, water pumped from the SBs and MWDs and underground mine sump dewatering.

The water management system for the project is detailed in the Water Balance Assessment Report (Parsons Brinckerhoff 2016c). The water management philosophy adopted for the project can be summarised as follows:

- → Runoff from undisturbed catchments will be diverted around the mine infrastructure areas and into natural watercourses via diversion drains as much as practical.
- \rightarrow Runoff from operational areas of the site will be directed to the project storages:
 - Runoff from high risk coal contact areas will be transferred to the PWD for storage and reuse.
 - Runoff from other operational areas, including low risk coal contact areas, may be discharged to local creeks if rainfall exceeds the adopted first flush criteria – this applies to SB03 and SB04.

The first flush criteria adopted for the Hume Coal Project are based on the NSW Environmental Protection Authority (EPA) guidance provided at <u>http://www.epa.nsw.gov.au/mao/stormwater.htm</u>:

- → The first flush is assumed to have occurred once the daily rainfall exceeds 20 mm in one day. The first flush volume from SB03 and SB04 is pumped to the PWD for reuse. Runoff after this rainfall is exceeded is allowed to be released from SB03 and SB04 to Oldbury Creek.
- → From the day of occurrence of the first flush, any subsequent rainfall amount less than 20 mm/day for the next four days is assumed to produce clean runoff and is allowed to be released to Oldbury Creek.
- → If the daily rainfall depth remains less than 10 mm/day after the fifth day, no runoff is released to Oldbury Creek until the next first flush event.

5.1.2 Reduction in catchment area

Containment and reuse of water from operational areas of the site will result in a reduction in catchment area and runoff to local streams. A reduction in runoff has the potential to alter the flow regime of the stream.

The catchment areas associated with the project storages are provided in Table 5.1. The reduction in catchment area for Medway Rivulet is estimated to be 26.6 ha, which represents 0.2% of the catchment area to its confluence with Wingecarribee River. A reduction in catchment area for Oldbury Creek is estimated to be 67.6 ha, which is 5.0% of the total catchment area. The Medway Rivulet and Oldbury Creek catchments are shown on Figure 1.4.

DAM	DESCRIPTION	STORAGE CATCHMENT AREA (HA)	DRAINS TO	TOTAL CATCHMENT AREA (HA)	% REDUCTION IN CATCHMENT AREA
SB03	Proposed SB capturing runoff from administration and workshop area	5.91	Medway Rivulet (including Wells Creek and Belanglo Creek sub-	10,909	0.2%
SB04	Proposed SB capturing runoff from mine road and conveyor embankment	14.73	- catchments)		
MWD05	Proposed MWD capturing runoff from north of Medway Rivulet - overland conveyor no. 1	0.64			
MWD06	Proposed MWD capturing runoff from south of Medway Rivulet - conveyor portal	2.69			
MWD07	Proposed MWD capturing runoff from ventilation shaft pad dam	2.60			
SB01	Proposed SB capturing runoff from product stockpile area	26.36	Oldbury Creek	1,355	5.0%
SB02	Proposed SB capturing runoff from CPP and ROM areas	22.64			
MWD08	Stores water before treatment and release to Oldbury Creek	0.27			
PWD	Dam storing water pumped from SBs and MWDs and underground	18.28			

Table 5.1 Reduction in catchment area associated with project storage dams

5.1.3 Releases from stormwater basins to Oldbury Creek

mine sump dewatering

A water balance model was developed for the Hume Coal Project water management system using GoldSim software (Parsons Brinckerhoff 2016c). The GoldSim model was used to calculate the volume of water in storages at the end of each day by taking into account daily rainfall-runoff inflow, groundwater inflow, reinjection to the mine void, evaporation from the storage, water usage, pumping between storages and storage overflow. A key output of the model was an estimation of water surpluses and deficits for the mining duration.

Medway Rivulet and

Oldbury Creek

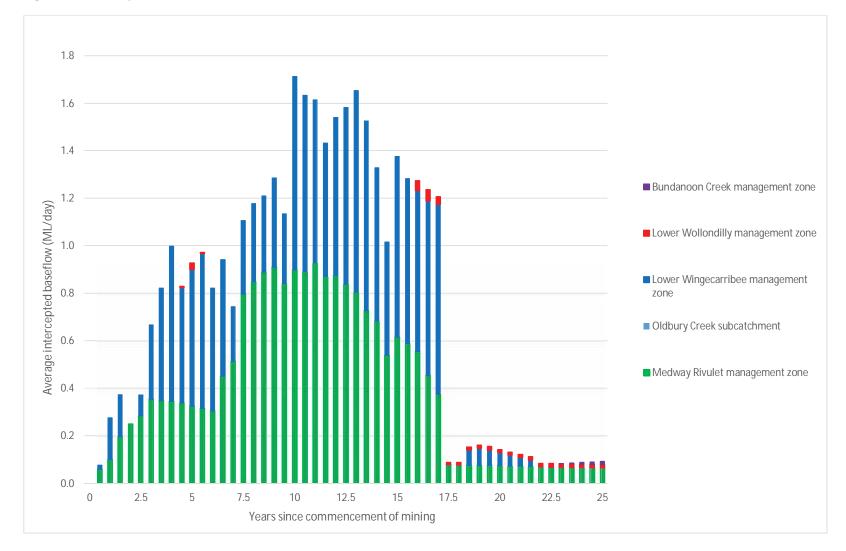
94.12

Total Medway Rivulet and Oldbury Creek

12,264

0.8%

In undertaking the water balance for the project, it has been assumed that water from SB03 and SB04 can be released to Oldbury Creek, once the first flush criteria have been met (refer Section 5.1.1). Details of the releases from SB03 and SB04 are presented in the Water Balance Assessment Report (Parsons Brinckerhoff 2016c). Wet year annual releases are expected to be in the ranges from 29 ML to 31 ML from SB03 and 38 ML to 41 ML from SB04. Dry year releases are expected to be less than 1 ML per year.


5.1.4 Depressurisation of groundwater systems for underground mining

The groundwater level in the project area is typically higher than the beds of streams, hence the streams in the area are classified as streams that receive baseflow from groundwater (Coffey 2016), which will manifest as persistent unconnected or connected pools in dry conditions.

Depressurisation of groundwater systems will occur during underground mining. Dewatering of an unconfined or semi confined groundwater system will result in water level drawdown of the water table (ie lowering of piezometric pressures). In areas where there are overlying streams that receive baseflow from groundwater, this will mean some level of interception of natural baseflow resulting in reduced streamflow, particularly during low flows.

The interception of natural baseflow due to underground mining has been calculated for stream reaches in the project area (Figure 1.4) using the numerical groundwater flow model for the project (Coffey 2016). The interception of natural baseflow was provided for 6 monthly intervals for 50 years from the commencement of mining. Figure 5.1 presents intercepted baseflow for the period of mining and 5 years after mining. A sharp decline in intercepted baseflow occurs after 17 years of mining when dewatering ceases and groundwater levels recover in mine voids (Coffey 2016).

Figure 5.1 Intercepted baseflow

Surface Water Flow and Geomorphology Assessment Hume Coal

WSP | Parsons Brinckerhoff Project No 2200540A

50

5.2 Potential impacts associated with changes in flow regime

Potential impacts associated with changes in flow regime that have been assessed include:

- → Erosion of stream banks associated with an increase in stream energy and bank full flow events (due to water releases from SB03 and SB04);
- → Reduced access for water users associated with a reduction in streamflow (due to reduced catchment area and intercepted baseflow); and
- → Reduced availability of water for instream and riparian ecosystems associated with a reduction in streamflow (due to reduced catchment area and intercepted baseflow).

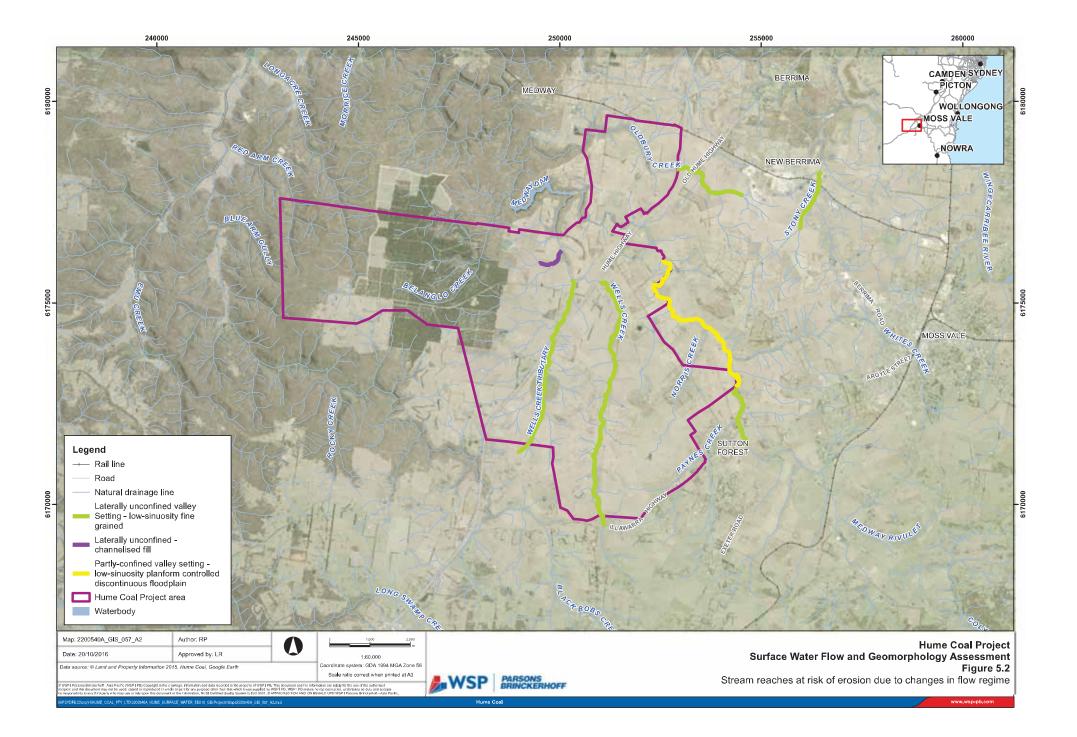
5.2.1 Stream bank erosion

All watercourses in the study area identified as prone to erosion are located upstream of the surface infrastructure area for the project (refer to Figure 5.2). Adjacent to and downstream of the surface infrastructure area, Medway Rivulet and Oldbury Creek are in confined valley settings and the channels are bedrock controlled.

5.2.1.1 OPERATION

The discharges to Oldbury Creek would occur in a reach classified as Confined Valley Setting – Occasional Floodplain Pockets (refer to Figure 3.7). The discharge would be in the form of piped outflows from SB03 and SB04 (combined) into or just upstream of the existing instream storage. Scour protection will be required at the outlet and an assessment of the increased overtopping risk of the storage during times of discharge will need to be made to determine whether any reinforcement of the existing spillways from the storage may be necessary. The channel of Oldbury Creek downstream of the discharge point is bedrock controlled and the risk of stream bank erosion due to this discharge is considered to be negligible.

5.2.1.2 CONSTRUCTION AND REHABILITATION


An erosion and sedimentation control plan, developed in accordance with Landcom (2004) and DECC (2008) guidelines, will be prepared to ensure the erosion and sedimentation induced by the project will not adversely affect the surrounding environment. With the implementation of this plan, erosion and sedimentation impacts during the construction and rehabilitation phases are expected to be minimal.

Temporary erosion and sedimentation controls applicable to the construction and rehabilitation phases include sediment basins, sediment fences, diversions banks (for on and off-site water), check dams, batter chutes, temporary culverts and scour protection. Depending on the construction staging and the extent of disturbance at each stage, the temporary works may involve local controls, such as sediment fences and diversion berms that are expected to be utilised by the civil works contractor in day to day management, or more extensive measures such as temporary sediment basins.

The intent of the erosion and sediment control practices used on site will be to:

- → Minimise the extent of disturbance, by clearing only as required, by clearing and grubbing to leave the surface rough and by minimising the time in which watercourses are disturbed.
- → Control stormwater flows onto, through and from the site by separating runoff from disturbed and undisturbed areas, by constructing drainage structures early including sediment basins, cut-off drains and drainage culverts and by minimising runoff down batters by using batter drains.
- \rightarrow Minimise scour in waterways by using linings as appropriate.
- \rightarrow Have surfaces revegetated as soon as possible to minimise the duration of disturbance.

- → Have the civil works contractor utilise local controls such as diversion banks and sediment fences to minimise erosion and sediment transport and have them progressively update these measures as required during construction.
- → Have the civil works contractor maintain and inspect the erosion and sediment control measures to ensure their effectiveness remains intact.

5.2.2 Reduced access for water users

Reduction in streamflow associated with project storage catchments and interception of baseflow due to underground mining has the potential to reduce access to surface water for downstream water users.

As described in Section 4.2.1.1, Medway Dam is located downstream of the project area and was operated prior to 2013 by WSC for town water supply. The associated water treatment plant is currently not operational but may be upgraded by WSC in the future.

There are no other licensed surface water users in the Medway Rivulet catchment that are located downstream of the project (Figure 4.1). Landholders with basic water rights are located downstream of the project and there is potential for these landholders to be impacted by a reduction in streamflow in Oldbury Creek and Medway Rivulet – this is addressed in Section 5.4.1.

5.2.3 Ecological impacts

Reduction in streamflow associated with project storage catchments and interception of baseflow due to underground mining has the potential to reduce streamflows available to instream ecosystems and overbank flows and flooding available to riparian ecosystems. Potential ecological impacts associated with the predicted changes in flow regime and sedimentation processes have been assessed in the *Hume Coal Project Biodioversity Assessment Report* (EMM 2016b).

5.3 Flow impact assessment methodology

Flow impacts have been assessed for:

- → The Medway Rivulet and Oldbury Creek catchments where the surface and underground infrastructure for the mine is located; and
- The Lower Wingecarribee River, Lower Wollondilly River and Bundanoon Creek management zones (Figure 5.1). These catchments are located outside the project area, however interception of natural baseflow to surface water systems in these catchments is predicted to occur as a result of depressurisation associated with underground mining for the project.

5.3.1 Medway Rivulet and Oldbury Creek catchments

Existing flow conditions for Medway Rivulet and Oldbury Creek were established using the AWBM rainfallrunoff model as outlined in the Water Balance Assessment Report (Parsons Brinckerhoff 2016c). The flow conditions during operation of the mine were assessed and the resulting changes in flow were analysed by comparing flow duration curves for existing conditions and operational mining conditions. A flow duration curve represents how often any given flow discharge is likely to be equalled or exceeded. The x axis corresponds to probabilities of exceedance, while the y axis corresponds to streamflow discharges.

Changes in flow were assessed due to the following operational impacts:

- \rightarrow The reduction in catchment area associated with project storages.
- → The discharge of water from SB03 and SB04 to Oldbury Creek was estimated for dry and wet years using the GoldSim water balance model developed for the Water Balance Assessment (Parsons Brinckerhoff 2016c).
- The interception of natural baseflow to streams associated with depressurisation of groundwater systems during underground mining was estimated using the numerical groundwater flow model for the project.

5.3.2 Other catchments

Existing case (pre-mining) flows for the Lower Wingecarribee River, Lower Wollondilly River and Bundanoon Creek management zones were approximated using the AWBM runoff for the Medway Rivulet management zone scaled to the subject catchment area. This was considered a reasonable approach given that the AWBM model was calibrated to observed flows at gauge 212009 on the Wingecarribee River, which receives runoff from a total catchment area of 58,700 ha and is therefore representative of regional scale flows (refer to the Water Balance Assessment Report (Parsons Brinckerhoff 2016c) for details). These pre-mining flows were then compared against the intercepted baseflow volumes estimated by the groundwater model (see Section 5.1.5) to assess the potential change in yield for these catchments.

5.4 Impact assessment results

Impact assessment results are presented for two climate sequences:

- → Climate sequence 58 (1946 to 1964), which is the climate sequence with the maximum volume of water discharged to Oldbury Creek form SB03 and SB04 of the 107 realisations simulated in GoldSim.
- → Climate sequence 103 (1991 to 2009), which is the climate sequence with the lowest simulated rainfallrunoff volume of the 107 realisations simulated in GoldSim.

5.4.1 Flow impacts

5.4.1.1 MEDWAY RIVULET CATCHMENT

The Medway Rivulet catchment extends to the confluence with Wingecarribee River and includes the Wells Creek, Belanglo Creek and Oldbury Creek sub-catchments (Figure 1.4).

Flow duration curves for the wet and dry climate scenarios in the Medway Rivulet catchment (excluding the Oldbury Creek catchment) are presented in Figures 5.3 and 5.4. The flow duration curves for the operation case include the impacts of a reduction in catchment area associated with project storages and the interception of natural baseflow to Medway Rivulet and its tributaries associated with depressurisation of groundwater systems during underground mining. The flow duration curves in Figure 5.4 include low flow discharges from the Moss Vale sewage treatment plant (STP) located on Whites Creek for both the existing and operation cases, which are approximated at 2.3 ML/day based on effluent data provided by WSC.

The results show that with constant low flow discharges from the Moss Vale STP, the flow regimes in Medway Rivulet for the existing and operation cases are similar. If the constant discharges from the Moss Vale STP are excluded, changes in the low flow regime below approximately 5 ML/day may occur and the number of no flow days may increase by approximately 20% under the wet climatic scenario and by approximately 30% under the dry climatic scenario. Yield impacts for Medway Rivulet are discussed in Section 5.4.2.1.

The potential impacts to the low flow regime are mainly attributable to the interception of baseflow associated with depressurisation of groundwater systems for underground mining. The interception of baseflow in the Medway Rivulet catchment will decrease to less than 0.1 ML/day 17 years after the commencement of mining (Figure 5.2) and will decrease to 0 ML/day 38 years after the commencement of mining as groundwater levels recover (Coffey 2016).

The reduction in low flows in the Medway Rivulet catchment if discharges from the Moss Vale STP do not occur has the potential to reduce the connectivity of pools and increase the potential for pools to dry out. This has the potential to impact on access for landholders with basic water rights. However, the Moss Vale STP discharges are likely to continue throughout the mining operational period and therefore impacts on access for landholders with basic vater rights to instream ecosystems associated with these predicted changes are discussed in the *Hume Coal Project Biodiversity Assessment Report* (EMM 2016b).

The reduction in low flows in the Medway Rivulet catchment excluding the discharges from the Moss Vale STP also has the potential to increase sedimentation and infilling of pools. As the discharges are likely to continue through the mining period and the high flow regime will remain unaltered and high flow events will flush these sediments through the system, the impacts of sedimentation on the flow regime are considered low. Potential impacts to instream ecosystems associated with an increase in siltation under low flow conditions are discussed in the *Hume Coal Project Biodiversity Assessment Report* (EMM 2016b).

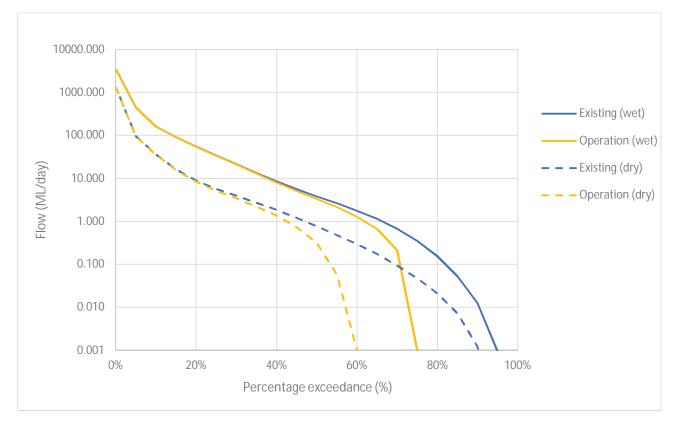


Figure 5.3 Flow duration curves for Medway Rivulet excluding Moss Vale STP discharges (wet and dry climate sequences)

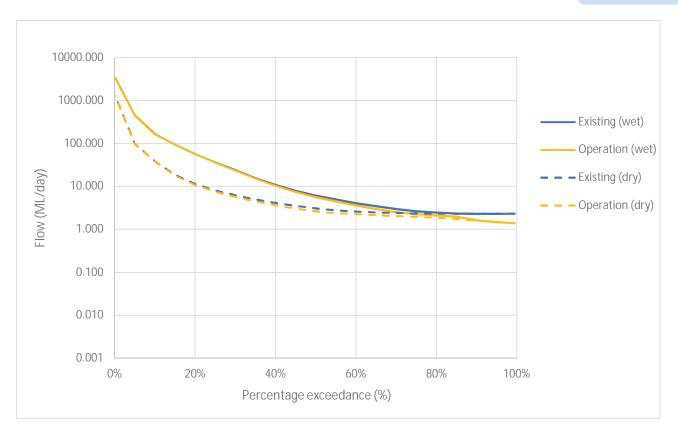
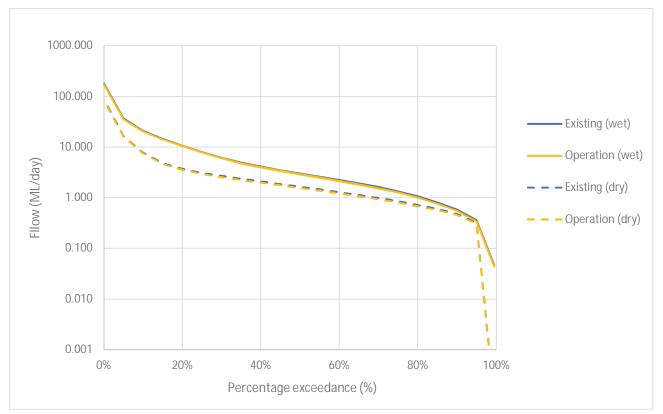



Figure 5.4 Flow duration curves for Medway Rivulet including Moss Vale STP discharges (wet and dry climate sequences)

5.4.1.2 OLDBURY CREEK

Flow duration curves for the wet and dry climate scenarios in Oldbury Creek are presented in Figure 5.4. The flow duration curves for the operation case include the impacts of a reduction in catchment area associated with project storages, discharge of water from SB03 and SB04 after the first flush and the interception of natural baseflow to Oldbury Creek associated with depressurisation of groundwater systems during underground mining. The flow duration curves for Oldbury Creek with and without constant low flow discharges from the Berrima STP are approximately the same. This is because discharges from the Berrima STP to Oldbury Creek are low, at approximately 0.2 ML/day.

The results show that alteration of the flow regime in Oldbury Creek during operation of the mine will be minor compared to pre-mining conditions, with discharges from SB03 and SB04 to some extent offsetting impacts to flow associated with a reduction in catchment for project storages and interception of baseflow associated with depressurisation of groundwater systems. Yield impacts for Oldbury Creek are discussed in Section 5.4.2.2.

5.4.2 Yield impacts

5.4.2.1 MEDWAY RIVULET MANAGEMENT ZONE AND MEDWAY DAM

The change in streamflow due to the project with and without STP discharges has been estimated for wet and dry climate sequences to assess the change in surface water yield for:

- → the Medway Dam catchment
- → the Medway Rivulet catchment, excluding the Oldbury Creek sub-catchment
- → the Oldbury Creek sub-catchment
- → the Medway Rivulet management zone.

The catchments are shown on Figure 1.4 and the results are presented in Table 5.2. The results indicate that under wet conditions, the project will result in a 0.8% reduction in yield for the Medway Rivulet management zone, and under dry conditions the project will result in a 1.4% reduction in yield. Locally impacts to yield will be greater in the Oldbury Creek sub-catchment, with up to a 4.1% reduction in yield under wet conditions and up to a 4.2% reduction in yield under dry conditions.

Under wet conditions, the project will result in up to a 0.5% reduction in surface water yield in the Medway Dam catchment, and under dry conditions the project will result in up to a 0.9% reduction in yield. These values represent the approximate reduction in yield to Medway Dam.

The Hume Coal Project Groundwater Assessment Volume 2: Numerical Modelling and Impact Assessment (Coffey 2016) indicates that under existing (pre-mining) conditions, Medway Dam loses approximately 0.5 ML/day to underlying aquifers. The numerical groundwater flow model for the project predicts that during

operation of the mine, losses from Medway Dam to underlying aquifers will increase to 0.6 ML/day. These additional losses from Medway Dam over the life of the project are approximated at 37 ML/year.

Evaporative losses from Medway Dam are approximately 100 ML/year. This is a conservatively low estimate of the losses based on the lake evaporation data used in the assessment and the water surface area of the Medway Dam waterbody from the DPI Water dataset, with a reduction factor applied to the dam water surface area based on monthly variation in the lake evaporation data.

The additional losses from Medway Dam therefore constitute approximately 37% of the yearly evaporative loss from the dam.

Table 5.2 Yield impacts for Medway Rivulet

CATCHMENT	INCLUDED SUB-	IMPACT DUE TO	YIELD	IMPACT
	CATCHMENTS		WET CLIMATE SEQUENCE	DRY CLIMATE SEQUENCE
Medway Dam	 → Medway Rivulet → Wells Creek 	 Reduction in catchment area due to project storages (SB03, SB04, MWD05, MWD06 and MWD07) Intercepted baseflow for Medway Rivulet (scaled to catchment area) and Wells Creek 	0.5%	0.9%
Medway Rivulet at the confluence with Wingecarribee River (excluding Oldbury Creek)	 → Medway Rivulet → Wells Creek → Belanglo Creek 	 → Reduction in catchment area due to project storages (SB03, SB04, MWD05, MWD06 and MWD07) → Intercepted baseflow for Medway Rivulet, Wells Creek and Belanglo Creek 	0.6%	1.1%
Oldbury Creek	→ Oldbury Creek	 Reduction in catchment area due to project storages (SB01, SB02, MWD08 and PWD) Releases from SB03 and SB04 after a first flush Intercepted baseflow for Oldbury Creek 	4.1%	4.2%
Medway Rivulet management zone		 → Reduction in catchment area due to project storages (SB01, SB02, SB03, SB04, MWD05, MWD06, MWD07, MWD08 and PWD) → Releases from SB03 and SB04 to Oldbury Creek after a first flush → Intercepted baseflow for Medway Rivulet, Wells Creek, Belanglo Creek and Oldbury Creek 	0.8%	1.4%

5.4.2.2 LOWER WINGECARRIBEE RIVER MANAGEMENT ZONE AND WARRAGAMBA DAM

Existing case (pre-mining) flows in the Lower Wingecarribee River management zone were approximated using the AWBM runoff for the Medway Rivulet management zone scaled to the Lower Wingecarribee River management zone area (50,546 ha) (refer to Section 5.3.2).

The interception of natural baseflow associated with depressurisation of groundwater systems during underground mining was estimated using the numerical groundwater flow model for the project (Coffey 2016). The resulting changes in flow were applied to the existing case flow duration curve for the Lower Wingecarribee River to assess the percentage change in surface water yield for the catchment.

The results indicate that under wet conditions, the loss of baseflow will result in a 0.1% reduction in yield for the Lower Wingecarribee River catchment, and under dry conditions the loss of baseflow will result in a 0.-2% reduction in yield.

The Medway Rivulet management zone is upstream of the Lower Wingecarribee River management zone. Under wet conditions the project will result in a 0.8% reduction in yield for the Medway Rivulet management zone, and under dry conditions the project will result in a 1.4% reduction in yield. These changes in the Medway Rivulet management zone would produce negligible impacts downstream in the substantially larger Lower Wingecarribee management zone.

5.4.2.3 LOWER WOLLONDILLY AND BUNDANOON CREEK MANAGEMENT ZONES

Existing case (pre-mining) flows in the Lower Wollondilly River and Bundanoon Creek management zones were approximated using the AWBM runoff for the Medway Rivulet catchment scaled to the area of each catchment (refer to Section 5.3.2).

The interception of natural baseflow associated with depressurisation of groundwater systems during underground mining was estimated for each water management zone using the numerical groundwater flow model for the project (Coffey 2016). The resulting changes in flow were applied to the existing case flow duration curves to assess the percentage change in surface water yield for the catchments. The results are presented in Table 5.3 below.

The results indicate that under wet and dry conditions, the project would result in up to a 0.0004% reduction in yield for the Lower Wollondilly River management zone and no reduction in yield in the Bundanoon Creek management zone.

WATER MANAGEMENT ZONE	••••••		REDUCTION IN YIELD (DRY CONDITIONS)
Lower Wollondilly River	265,763	0.0001%	0.0004%
Bundanoon Creek	31,947	None	None

Table 5.3 Reduction in yield due to intercepted baseflow

5.4.3 Cumulative impacts

The proposed Berrima Rail Project is located upstream of the Hume Coal Project in the Oldbury Creek catchment (Figure 1.2). Surface water flows will not be impacted by construction, operation or rehabilitation of the Berrima Rail Project. The Berrima Rail Project will not involve take of water from streams, water discharge to streams or groundwater impacts that would reduce baseflow to streams. In addition, the rail infrastructure for the Berrima Rail Project will not reduce the volume of flow as culvert structures will be constructed where the rail crosses waterways. Cumulative impacts to flow and bed and bank stability associated with the Hume Coal and Berrima Rail projects is predicted to be negligible – refer to the Berrima Rail Project EIS (EMM 2016c).

6 MITIGATION MEASURES AND MONITORING

6.1 Mitigation measures

The Hume Coal Project has been designed to avoid or minimise potential impacts to flow and associated erosion and scour impacts in local streams hence mitigation measures are minimal. Key aspects of the design that avoid or minimise impacts are as follows:

- → The project does not involve the take of water directly from streams as a water supply for the project.
- → The project does not involve any stream diversions.
- → The project involves the use of low impact underground mining methods, which will have negligible subsidence impacts.
 - Worst case estimates of surface subsidence associated with the proposed first workings mining system predict 'imperceptible' surface disturbance due to mining (Mine Advice 2016). Such disturbances are sufficiently low in magnitude as to not impact on streamflow regimes or geomorphology.
 - The proposed first workings mining system will minimise overburden fracturing and potential impacts to groundwater resources, thereby limiting the interception of baseflow to streams.
- → The project infrastructure is located outside floodplains with the exception of an existing embankment crossing Oldbury Creek and proposed minor instream works across Medway Rivulet: a conveyor crossing and a road crossing. Pilings will be used for the conveyor crossing and culvert structures will be constructed where the road crosses the stream so that the downstream flow volume will not be reduced.
- → The water management system for the project will involve:
 - diverting water from undisturbed areas around mine infrastructure areas and into local streams via diversion drains to minimise flow impacts associated with loss of catchment area; and
 - maximising the reuse of water on-site to minimise off-site discharge of water to local streams, which could alter the natural flow regime.

The impact assessment has shown that impacts to flow and geomorphology in Medway Rivulet, Oldbury Creek and surrounding catchments will be limited. The following mitigation measures will be implemented to further reduce the potential for impacts in these catchments:

- → Scour protection will be provided around conveyor crossing pilings in Medway Rivulet.
- → Scour protection will be provided at the upstream and downstream end of the culverts under the road across Medway Rivulet so that localised increases in outlet velocity do not cause erosion of the channel lining downstream of the culvert.
- → The discharge point for water from SB03 and SB04 to Oldbury Creek will be designed with appropriate rock protection at outlet pipes and channels to prevent scour due to high outlet velocities.

6.2 Monitoring

A surface water flow and quality monitoring program will be implemented in local catchments during construction, operation and rehabilitation of the Hume Coal Project.

The flow monitoring program will involve:

- → monitoring of stream gauges in Medway Rivulet and Oldbury Creek upstream and downstream of surface infrastructure areas
- → monitoring of the volume of water discharged from SB03 and SB04 to Oldbury Creek.

Results of the flow monitoring will be compared to the pre-mining baseline flow statistics. The objective of the program will be to confirm that flow impacts during mining operation are negligible.

The surface water quality monitoring program will involve surface water quality monitoring in Medway Rivulet and Oldbury Creek upstream and downstream of surface infrastructure areas. The objective of the program will be to confirm the effectiveness of the mitigation measures implemented to minimise erosion and scour in local streams. Details of the program are provided in the *Hume Coal Project Surface Water Quality Impact Assessment* (Parsons Brinckerhoff 2016b).

7 CONCLUSIONS

The flow regimes in Medway Rivulet and Oldbury Creek during operation of the project will be similar to premining conditions, assuming constant low flow discharges from the Moss Vale and Berrima STPs. Without constant discharges from the Moss Vale STP, changes in the low flow regime in Medway Rivulet below approximately 5 ML/day are predicted with the number of no flow days increasing by up to 30%, however, this is unlikely to occur given that the STP is likely to continue to operate throughout the mining period. The potential impacts to instream ecosystems associated with these predicted changes are discussed in the *Hume Coal Project Biodiversity Assessment Report* (EMM 2016b).

Impacts to the flow regimes in Medway Rivulet and Oldbury Creek during construction and rehabilitation of the project will be less than impacts during operation. No take from streams or discharge to streams is proposed during construction and rehabilitation.

Local impacts on yield in the Oldbury Creek sub-catchment will be up to 4.2%; however impacts will be less than 1.4% for the Medway Rivulet management zone overall (which includes the Oldbury Creek catchment).

Under wet conditions, the project will result in up to a 0.5% reduction in yield for the Medway Dam catchment, and under dry conditions the project will result in up to a 0.9% reduction in yield. These values represent the approximate reduction in yield to Medway Dam.

Under wet conditions, the project will result in a 0.1% reduction in yield for the Lower Wingecarribee River management zone, and under dry conditions the project will result in a 0.2% reduction in yield. Less than 0.001% reduction in yield is predicted for other catchments under wet and dry conditions.

The potential for stream bank erosion associated with the project is low considering the minimal change in flow regime and the confined valley setting of Medway Rivulet and Oldbury Creek adjacent to and downstream of the surface infrastructure area. Scour protection will be provided around the conveyor crossing pilings in Medway Rivulet and at the upstream and downstream end of the culverts under the road across Medway Rivulet to prevent impacts to bed and bank stability. During construction, operation and rehabilitation, erosion and sedimentation control plans will be prepared to ensure the erosion and sedimentation induced by construction activities will not adversely affect the surrounding environment. With the implementation of this plan, erosion and sedimentation impacts during the construction, operation and rehabilitation phases are expected to be minimal.

Discharge of water to Oldbury Creek will occur via channel/pipe outlets and spillways with rock protection measures to prevent scouring at the discharge point. The discharge will be upstream or into the existing instream storage on the creek, and therefore an assessment of the increased overtopping risk of the storage during times of discharge will need to be made during the detailed design phase to determine whether any reinforcement of the existing spillways may be necessary.

Impacts on flow and bed and bank stability associated with the Berrima Rail Project will be negligible hence cumulative impacts will be limited to those identified for the Hume Coal Project.

8 REFERENCES

Arkhill Engineers 2016. Revised Surface Infrastructure Plan 3713G0910. 29 May 2016.

Beca (2010) Medway Water Treatment Plant Viability Study, August 2010

Boughton, W. C., 1993. A hydrograph based model for estimating the water yield of ungauged catchments, Proceedings of the Hydrology and Water Resources Symposium, June 30 - July 2 1993, Institute of Engineers, Newcastle, Australia, 93/14, pp.317-324.

Brierly, G, J. and Fryirs, K. A. 2005. Geomorphology and River Management, Applications of the River Styles Framework. Blackwell Publishing, Oxford, UK, 398pp.

Coffey Geotechnics Pty Ltd (Coffey) 2016. Hume Coal Project Groundwater Assessment Volume 2: Numerical Modelling and Impact Assessment. GEOTLCOV25281AB-ACB

Department of Environment and Climate Change (NSW) 2008 Managing Urban Stormwater: Soils and Construction. Volume 2. DECC Sydney (the 'Blue Book' Volume 2).

Department of Science, Information Technology, Innovation and the Arts (DSITIA) 2015. Data Drill Long Paddock website <u>https://www.longpaddock.qld.gov.au/silo/about.html</u>

EMM 2016a. Hume Coal Project Environmental Impact Statement. Prepared for Hume Coal Pty Limited.

EMM 2016b Hume Coal Project Biodiversity Assessment Report. Prepared for Hume Coal Pty Limited.

EMM 2016c. Berrima Rail Project Environmental Impact Statement. Prepared for Hume Coal Pty Limited.

Fryirs, K.A. and Brierley, G.J. 2013. Geomorphic Analysis of River Systems: An Approach to Reading the Landscape. John Wiley and Sons, Chichester, UK, 345pp

Food and Agriculture Organization of the United Nations 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements, Irrigation and Drainage. Paper no. 56.

Healthy Rivers Commission (HRC) 1998. Healthy Rivers Commission Inquiry into the Hawkesbury Nepean River. Final report. August 1998.

Hume Coal 2013. Light detection and ranging (LiDAR) data obtained from aerial laser survey of the project area. 25 October 2013.

Land and Property Information (LPI) 2014. Topographic dataset - Hydroline featureclass

Land and Property Information (LPI) 2016. Water Access Licence Register data. 26 September 2016.

Landcom 2004 Managing Urban Stormwater: Soils and Construction. Volume 1. 4th Edition. Landcom Sydney (the 'Blue Book' Volume 1).

Mine Advice 2016, Environmental Impact Statement Subsidence Assessment, Report prepared by Kent McTyer and Trephon Stambolie for EMM.

Morton, F. I. (1983). Operational Estimates of Lake Evaporation. Journal of Hydrology, volume 66.

NSW Environment Protection Authority (EPA) 2016. Stormwater first flush pollution, http://www.epa.nsw.gov.au/mao/stormwater.htm 66

Office of Environment and Heritage (OEH) 2006 NSW Water Quality and River Flow Objectives. <u>http://www.environment.nsw.gov.au/ieo/</u>, page last updated 28 June 2006

Parsons Brinckerhoff 2016a. Hume Coal Project Flooding Assessment Report. Document reference 2200540A-SW-REP-51221 RevD. 16 September 2016.

Parsons Brinckerhoff 2016b. Hume Coal Project Surface Water Quality Impact Assessment. Document reference 2200539A-RES-REP-004 RevA1. 16 September 2016.

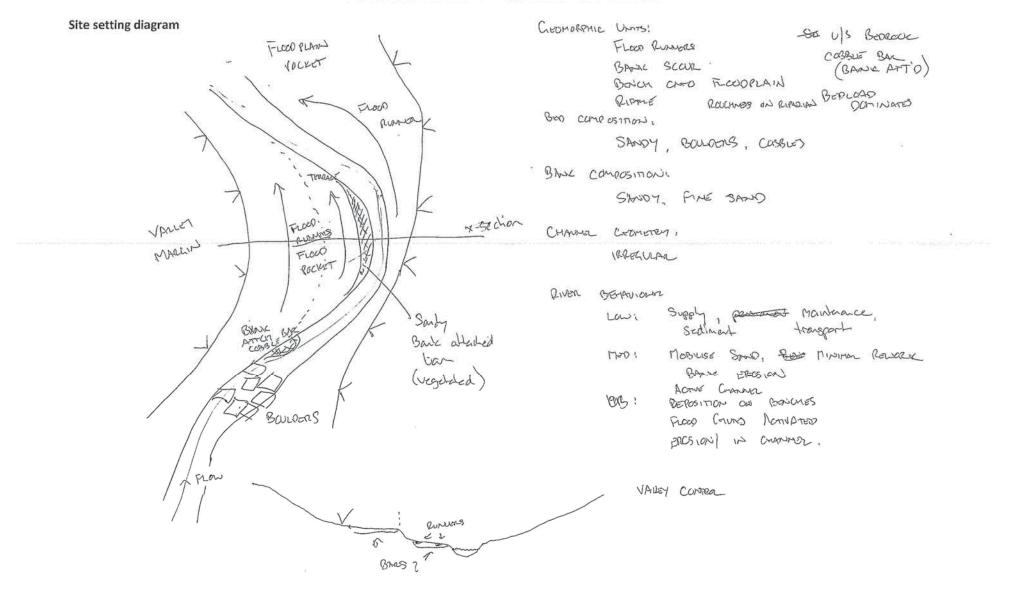
Parsons Brinckerhoff 2016c. Hume Coal Project Water Balance Assessment. Document reference 2200539A-WAT-REP-001 Rev5. 15 September 2016.

Parsons Brinckerhoff 2016d. Hume Coal Project Water Fieldwork and Monitoring Report. Document reference 2200539A-RES-REP-7812 RevC. 7 July 2016.

Thompson, P. L. and Kilgore, R. T. 2006. HEC 14 – Hydraulic design of Energy dissipators for Culverts and Channels. Hydraulic Engineering Circular Number 14, Third Edition. July 2006.

Thomson, J. P., Taylor, M. P., Fryirs, K. A. and Brierley, G. J. 2001. A geomorphological framework for river characterization and habitat assessment, Marine and Freshwater Ecosystems, 11(5): 373-389.

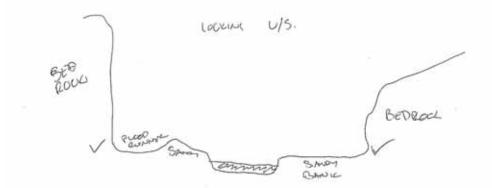
Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology, Transactions of the American Geophysical Union, 38 (6): 913–920.


Sydney Catchment Authority (SCA) 2013. Annual Water Quality Monitoring Report, 2011-12. NSW Government.

WaterNSW (no date). WaterNSW Principles for Managing Mining and Coal Seam Gas Impacts in Declared Catchment Areas, http://www.waternsw.com.au/__data/assets/pdf_file/0019/68014/Mining-principles.pdf

Appendix A

GEOMORPHOLOGY ASSESSMENT FIELD SHEETS

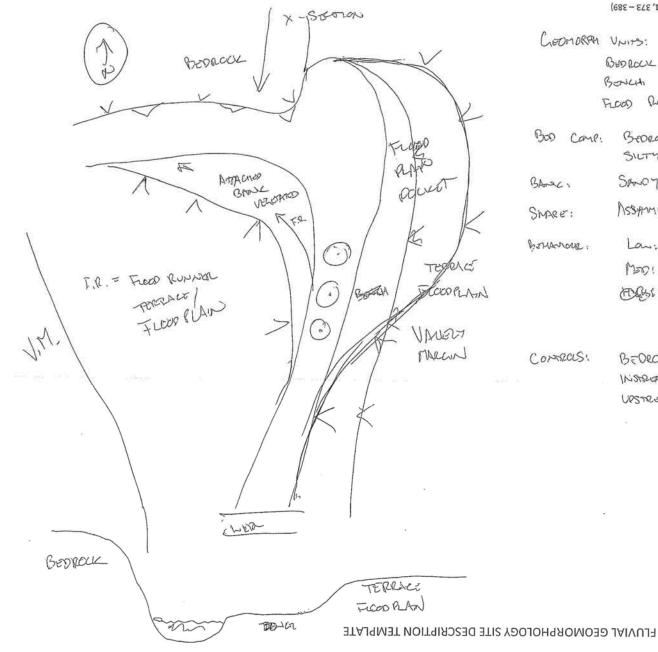

Project	Huo	1E									Date		.0	6/09/2012
Surveyor	CR	Reach coo	le: C	103	FGO			Creek	_		Time		2	230 9100
Drainage	channel	Cre	eek	Ri	iver	Es	tuary		Pond		٧	/etland		Lake
	Ľ.	6	a') ii										
Weather co	onditions		Overca	ast, d	rizzle			U-S Grid re	ef			D-S grid ref		6179304
Upstream e	elevation (m)		630	, 		1	Downstrea	am elevati	ion (m)	634			Slope
+							Watercours	e attribute	35					
Dimensions	s Wid	th (m)	4m			Max. de					Velocity (ms	1)	N-Y/A	i i i i i i i i i i i i i i i i i i i
Shape desc							ess Height (m)	and the second second	TUKS	194182	Bank erosion			
		5%	Bank vegetation		Crasse Shribs		Bench veg (% cover)		/				ic matter ♂ Twigs / Leaves ⊑ Detritus □	
							Flow	type						
Smooth surface flow	Contract menorgy	standing aves	Unbrol standing	2512	Chute	Rip	pled	Scarcely Upwer perceptible flow			g	Free fall		Standing water
🗆 (н1)	C][н2]	□(нз		(H4)		(HS)	[н6]		🗆 [Н7]		[н8]		[нэ]
							Channel	Planform						
Sinuosity (straight, low, inte	ermediate,	Low Into	med:	Form		Si	ingle	For	94743	ľ	Braide	d		Open
high)	Sand bars			Gravel ba	rs		Rock'ou			Ripari	an strip	Floodplain		
		*										connectivity		
Floodplain	loodplain land use Forest Crazing				ing							Bank structure (concave, convex, stralgh undercut) height & angle	it,	
							Bed ch							
% composition		во u-s 40	ulder D-S	Cobi	D-S	Grave	p-S	50 80	and ^{D-S}	Fi 20 26			Silt / clay U-S D-S	
Bed stabilit	V (packed & are	oured, packed not							Su	pply	Deposition	Erosion		Conveying
armoured, mod con	mpaction, low con	paction, no packing	E) La	s comp	action									

.

Project		HUME								Date		0670	972012
Surveyor		Reach con	de: LED	2 F	602	Oldbury	Cree	K		Time		12:3	and the second se
Drainage ch	nannel	- 2	eek S		iver 🗆	Estuary J			ond D	W	etland		Lake
Weather con	ditions		CLASS	r 03	1248		U-S Gr	rid ref	56H ± 6	6250517	D-S grid re	f	
Upstream ele	evation (m)					Down	stream el	evation (m)			2.10	Slope
	_		_			Watero	ourse attri	ibutes					
Dimensions	Widt	th (m)	1	2-3 m		Max. depth (m)		<1		Velocity (ms ⁻¹)	O	
Shape descri	ption		RELTI	HALVUAR-		Roughness Height	(m)		(OSCARCY	Bank erosion			
nstream vegetation K cover [emergent, floating, utmergent, algae, mass[]			Bank vegetation (% over)		100% Crosses (Shalo	(% cover)	vegetatio	n		Ð		natter 'wigs / Leaves 🗆 etritus 🗆	
						F	low type						
Smooth surface flow	w	aves	Unbrol standing	waves	Chute	Rippled	percepti	North Contraction	Upwellir	ng	Free fall	St	anding water
[] [pia]][H2]	[]]ba	Divat Divel		D (HS)	ା nel Planfo		[нт]		(HII)		[H0]
Sinuosity		Low		Form		Single		Forked		Braided		_	0
(straight, low, intern high)				0.059-000-02		V.				Draided			Open D
S	and bars			Gravel ba	rs	Rock	outcrops		Ripar		loodplain onnectivity	No	ne
loodplain land use		Forest			Scrb					Sank structur oncave, convex, straig ndercat) height & ingle	he.		
de a como a teta			De	dates			l characte	r	Same Constants	1			
% compositio	'n		US	DION'T	Cob US NASPE	0-5 U-5	avel ⊳s S <i>⊼</i> o⊶©⊐	sea	Sand US DS CSSCANAE	U-5	e sand ^{D-S}		Silt / clay
Bed stability									Supply	Deposition	Erosion		Conveying
and the standard	1000	particular in participation	50 L						19	B			

Coomorph :	No. of the second s	Created 04/08/2011 Dan Evans (after Thompson et al, 2011, Aq Conserve, 11, 373 – 389)
ATTA	10000 Smary Charle DAC	
	we capable	
NO	INSTRUCT RECTORER	
Bro BANK	reads	A b.
NO SINC	15177:	I'M KK BONDOL
SHAPE. S.	TMMoreute	
BEHMICUE :	Low: Scheway honcomme Law	>1/11/12/2 7
Dervineor:	POOLED WENDL	(D) K K L
	MEP: CHANNEL ACTIVATES	
	OB: RANGELING - MOSION/ PAROSINGN and BANKS	>/A SEL
CONRELSI	RIPARIAN VOL	3 //// g
	Broeack Margins	L'ALLER CONCELL
BEDROOK	CONTROLISS	So accu

mergelb gnittes eti2


X-Section

FLUVIAL GEOMORPHOLOGY SITE DESCRIPTION TEMPLATE

/

Project										Date		06/09/2012
Surveyor		Reach cod	e: Cre	03 7	FGO3	Medu	ay f	Rivulet		Time		12:30
Drainage ch	annel	Cre	ek	Riv	/er	Estuary		Pon	d	W	etland	Lake
Weather con	ditions		OCAST				U-9	S Grid ref		0250201	D-S grid ref	0250662 61770824
Upstream ele	evation (m)			6.38		Do	wnstream ele	vation (m)	6-	36	Slope
						Water	course a	attributes				
Dimensions	Widt	th (m)	/	210n		Max. depth (m)				Velocity (ms-1)	
Shape descrip				METRICA	~	Roughness Height (m) NO INSTRUM				Bank erosion		
nstream vegetation & cover [emergent, floating, ubmerged, algae, moss]) IN GPCE			the local	Bank vege (% cover)	etation	Crasses 100%		nch vegetatior	1	/		Organic matter .ogs □ Twigs / Leaves 교 Detritus 교~
							Flow ty	/pe				1.000 (00-00 (10-00 (10-00))
Smooth surface flow	0.0000000000000000000000000000000000000	standing aves	Unbrok standing w	5.5125	Chute	Rippled				ng	Free fall	Standing water
(H1)	C](H2)				П [H5]	21 	(He)	П (н7)		🔲 [Н8]	П(на)
	Contraction of the					Cha	nnel Pla	anform				
Sinuosity (straight, low, interm high)	nediate,	Low		Form		Single		Forked		Braided		Open □
and the second sec	and bars	;		Gravel bar	s	Ro	ck outcr	rops	Ripar	ian strip	Floodplain	
											connectivity	
loodplain land use Forest Granning									(Bank structure concave, convex, straight, undercut) height & angle		
							ed chara	acter				
% composition U.S D.S REPROCIL			D-S		obble Gravel D-S U-S D-S			Sand u-s o-s	U-S	ne sand	Silt / cláy)	
Bed stability (packed & armoured, packed not									Supply	Deposition	Erosion	Conveying
armoured, mod compa												

. . .

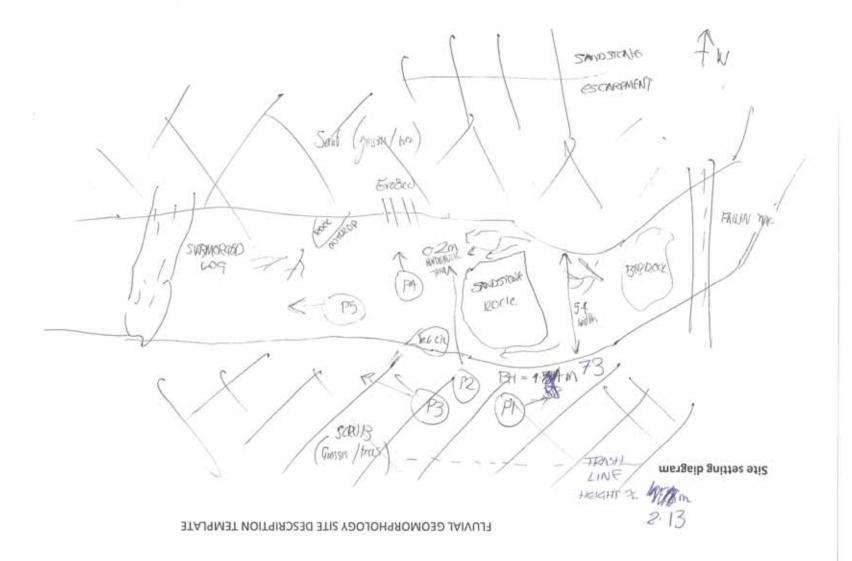
Created 04/08/2011 Dan Evans (after Thompson et al, 2011, Aq Conserve, 11, 373 - 389)

GEOMORAN UNITS:

BEDROCK conson UP TU FLOODPLANN Benilti FLOOD RUNNORS

BEDROCK Camp: SILTY SAND

- SANOT
- Assymmetican
 - ROOLED Law:
 - CHANNEL NOTIVE Mono!
 - FUCCO RUNNERS ACTIVATE ED Gust ERESICH DEPOSITION

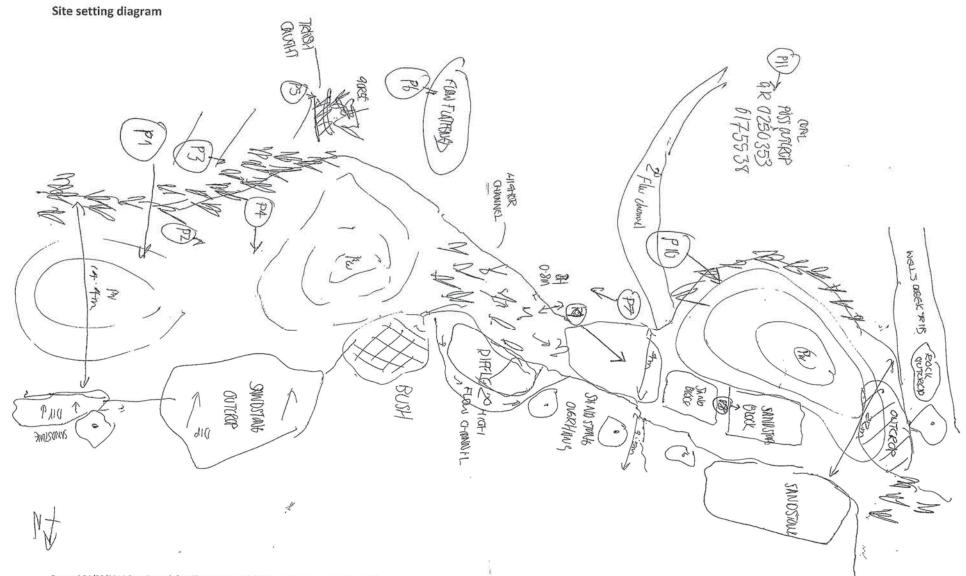

BEDROCK

INSTRUMEN TREES UPSTREAM WERR

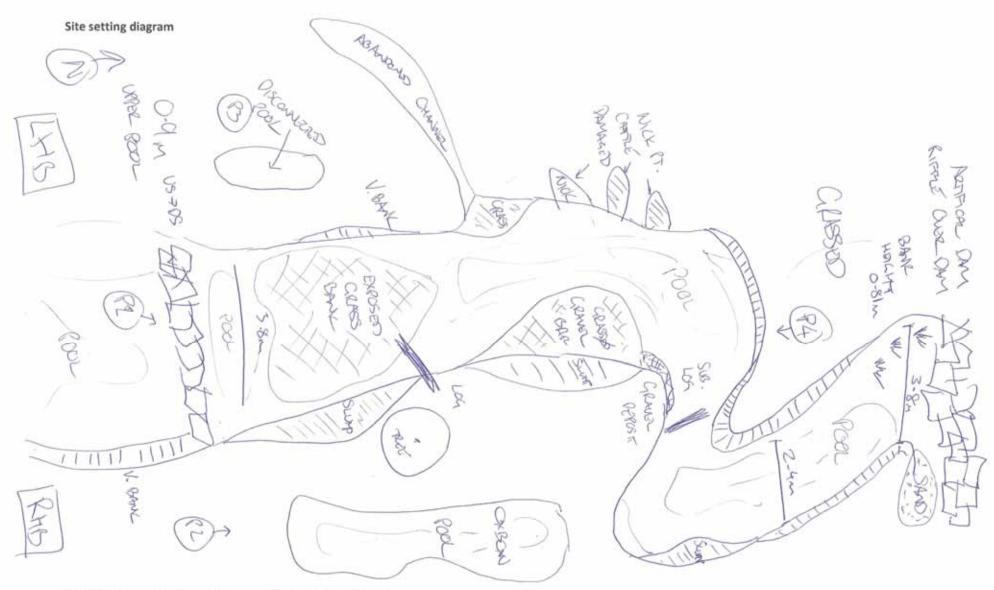
CAUSONAY

Site setting diagram

Project	STRANG	BS CREEK	REHABILITA	THOM	HUME	COA	HL.				Date			22/01/2013
Surveyor	DE	Reach co	de: RGS1	FGOU	e.	- 0	RECEVEN	C	REEVE		Time			2030 16:30
Drainage	channel	Cr	eek	Ri	ver	Es	tuary	-	Po	ond	W	etland		Lake
	1		Х	1					1					
Weather co	onditions		Bright suns	hine Imm in prev		ours at Bol	A-Castle Hill	US Cen	-Grid ref thal		0249893 6175554		f	
Upstream	elevation	(m)	1.0	-				Dov	wnstream el	evation (m)				Slope
C I I G		1.000	1000		6.114.11		Watercour	se at	ttributes					
Dimension	s Wid	th (m)	54	-		Max. de	pth (m)				Velocity (ms)	1	0.1
Shape desc	cription		U-shoped			Roughne	ess Height (n	1)	N/A		Bank erosion		10	6
Instream v (% cover (emergen submerged, algae,	rt, floating.	3)	1	Bank vege	etation	90	le	Ben	nch vegetati	on	100%			ganic matter gs 🛛 Twigs / Leaves 🗔 Detritus 🖾
	162715					-	Flor	w typ	be .	1 No. 2010	- 10 22 V		1	
Smooth surface flo		n standing vaves	Unbro		Chute	Rippled		Se	carcely ptible flow	Upwelli	ng	Free fall		Standing water
(H1)		[H2]	Пи	1	[[H4]	0	livisi		[][H6]	□(H7)		Dist		
	Ten	10 T 10			Sec.	State .	Channe	I Pla	nform	12 1 1992	1 1 1 1 1			
Sinuosity (straight, low, int high)	termediate,	LOW		Form		Single			Forked		Braide	d		Open
	Sand bar	s		Gravel ba	rs		Rock o	utere	ops	Ripa	rian strip	Floodplain connectivity	8	LOW CONFINED Deep CHANNEL
Floodplain	land use	3		- 4					0			Bank structu (concave, convex, stra undercut) & slope	ight,	CONVEX 70°
		1.0			A. 183	1000	Bed c	hara	cter		17/2011			
% composi	ition		Bo	oulder	Cob	ble	Grav	rel		Sand	F	ne sand		Silt / clay
			u-s	D-5	us 🗖	0.5	U-5	p.s	0	s 05 1D	u.s	0-5 20		u-s 0-s 70
Bed stabili armoured, mod co	ty (packed & an impaction, low co	moured, packed no mpaction, no pack	nd LOW C	OMPACTION)						Supply	Deposition	Erosio	n	Conveying
Created 04/08	8/2011 Dan E	vans (after Th	ompson et al,	2011, Aq Conse	erve, 11, 373	- 389)					X	ž		



.


Project	STRANGE	RSCREEK	REHABILITA	TION	HUME	COAL					Date			22/01/2013 03/04
Surveyor	DE	Reach co	de: RG\$1	F905			WELLS CR	EEK WU	TT		Time			10:80 11 . 10
Drainage	channel	C	reek	Ri	iver	Est	tuary		Pond		W	etland		Lake
C	3		Х	1										
Weather c	onditions		Bright suns No rain (6.4 #67100 site	4mm.in-pre	vious 48 he	ours at Boly	Contraction of the second s	U-S Grid r	ef		0250441 6175569	D-S grid ref	t	0290319 5175576
Upstream	elevation	(m)						Downstre	am elevat	tion (m)				Slope
		1 1.2				1111	Watercours	se attribut	es	1 20 20	1.200107	-		C OTON TON
Dimension	s Wid	th (m)	4	-22	<u>.</u>	Max. dep			LALLOW		Velocity (ms ⁻¹)	0	
Shape des			TRAPA	201PAL		and the second diversity of the second se	ss Height (m)	JA		Bank erosion		1.10	atter samily Basily
Instream v (% cover (emerger submerged, algae	/egetation nt, fisating, , moss]]			Bank veg (% cover)	etation	Sabat THICK	ARISS	Bench ver	getation	1	GRASS			anic matter s Twigs / Leaves Detritus
0.00							Flow	v type	1.8	8 N.	80	200		3. 1. 10
Smooth surface flo		n standing vaves	100 100	broken Chute ling waves		Rip	pled pr	Scarcel		Upwelli	ng	Free fall		Standing water
D (84)	1.	D(92)	При				(HS)	XIM		□[H7]				□ (peg)
		222	122 1				Channel	Planform						
Sinuosity (straight, low, in high)	itermediate,	Lan)	Form			ngle X		rked		Braideo	i		Open
	Sand bar	s		Gravel ba	irs		Rock ou	100-000-00		Ripa		Floodplain connectivity		SOUTH SIDE OPEN CONFINED NORTH
Floodplair	loodplain land use											Bank structur (concave, convex, strail undercut) & slope	ght,	5772WGHY NOETH 900
	S.C.			0.00			Bed ch	naracter			1	1200		
% compos	composition		Bo	oulder	Cob	ble	Grave	el		Sand	Fi	ne sand		Silt / clay
				0.5 [1]	₽\$[U] U\$[] 0\$[] 0\$[] 0\$		10	0-5 <i>3</i> /	0.5 20	u-s 2(7 ps 20		us 40 ps 40	
Bed stabil armoured, mod o	ity (packed & an ampaction, low co	moured, packed i impaction, no pac	nat king)	RAULL WALLYING PARED GLAY/SANN LORAN					S	iupply	Deposition	Erosio	n	Conveying

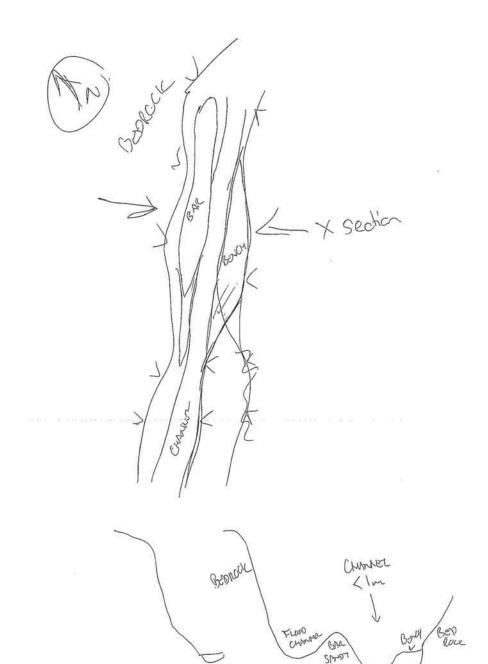
Created 04/08/2011 Dan Evans (after Thompson et al, 2011, Aq Conserve, 11, 373 - 389)

4

Project	STRANGE	RS GREEK	REHABILITA	TION<	HUME	COAL	L1E	215 (OFE	2	Date	Pr.	3/3/14		22/01/2013
Surveyor	DE	The second s	ode: RGS1	FGO					- articles		Time	140			10:30
Drainage	channel	C	reek		iver	Est	uary		Pond			We	tland		Lake
	3		Х	- 9											0
Weather c	onditions		Bright sunst No.ratir (6:4 #67100-site	tom/in pre	vibus 48 m	oyts at BOM		U-S Grid ref			025099		D-S grid re	f	0251007
Upstream	elevation	(m)						Downstream	n elevati	ion (m)					Slope
			-	-	1 2 7	China State	Watercours	e attributes	į.		The second	1		100	
Dimension	s Wid	th (m)	053-8m	20	3.8	Max. dep	and the second se	LON			Velocity	(ms ⁻¹)		ISCN	2003 PERCEPTIONE
Shape desc			Lowne	- S76			ss Height (m)		100	~ >S~	Bank ero			1	701.
Instream v (% cover (emergen submerged, algae,	nt, floating,	10% S Gras	ebnerged 5	Bank veg (% cover)	etation	30°/.	Carss	Bench veget (% cover)	tation		90% 10%		UADS UADS		anic matter Is 🖻 Twigs / Leaves 🗆 Detritus 🗆
	1	and and	The second	100.00	A.C.	1		type	20,00				and the	1	State and
Smooth surface flo		n standing /aves	standing v			Ripp VA CONC		Scarcely erceptible flo	w	Upwellin	ng		Free fall		Standing water
[pa]	1	[H4]	Dpag			26	HS]	12 [PH6]		[H7]			[HH]		C ren
1.5	211E		6				Channel	Planform			10 S. 1	1			
Sinuosity (straight, low, int high)	tarmediate,	Law	STEMENT	Form		Si	ngle	Fork	ed	Aspassion	Br	aided			Open
	Sand bar	s		Gravel ba	rs		Rock ou			Ripa	rian strip		loodplain onnectivity	1	HIGHLY CONNECTED
Floodplain	land use		Ga	2A210	50							to	ank structu oncave, convex, stra odercut) & slop	light,	STRAIGHT
1200				N			Bed ch	aracter	-						
% composi	ition		Bo	ulder	Cob	oble	Grave	21	5	and		Fin	e sand		Silt / clay
			u-s	D-5	u-s	D-5	us 5 p		us 15	05	i i	u-s	05		US 60 05 80
Bed stabilit	ty (packed & arr impaction, low cor	noured, packed n npaction, no pact	et kingl	ARMOU	4 . MOD	PELANE	Compactu	on	Su	upply	Depos		Erosio	n	Conveying

Project	1	AUME				06/09/2012>						
Surveyor	CR	Reach co	de: Cre	05	FGC	7 Oldi	un	1 Creek		Time		12:30 12.10
Drainage c	and the little of the second second	Cr	eek	i	River	Estuary	-) Pond		We	etland	Lake
		1	1							_		
Weather cor	nditions			CAST			U	-S Grid ref	56H 1.60	6178826	D-S grid ref	6179642
Upstream el	levation	(m)			653	2	D	ownstream elev	ation (m)	649		Slope
						Water	course	attributes				
Dimensions	Wid	th (m)	USI	10.5m		Max. depth (m)				Velocity (ms ⁻¹)		0
Shape descr	iption					Roughness Height (m) Scom Bank						
Instream vej (% cover jemergent, submerged, algae, m	floating.			Bank ve (% cover)	getation			ench vegetation				Drganic matter Logs Twigs / Leaves Detritus
							Flow t	vpe				
Smooth surface flow	/ w	n standing /aves □pa	Unbrol standing	waves	Chute	Rippled		Scarcely Upw perceptible flow		ng	Free fall	Standing water
-1 (MA)	-	m(m)	- Colut				nnel Pl	lanform	D [H7]		the funt	s=stuat
Sinuosity (straight, low, inter high)	mediate,	Low		Form		Single		Forked		Braided	1	Open
	Sand bar	s		Gravel b	ars	Ro	ck outo	crops	Ripa	19000 C 600	loodplain onnectivity	NONE
loodplain land use			Porest							(r 11	Bank structure oncave, convex, straight indercut) height & ingle	
			_				ed char	racter				
% compositi	ion		Bo U-S	ulder os	Cob	ble C	Gravel 5 D-5	. u	Sand 5 D-5	U-S	e sand	Silt / clay
								1	0	20		70
Bed stability					· · · · ·				Supply	Deposition	Erosion	Conveying
armoured, mod comp	paction, low cor	npaction, no packing	42									

Created 04/08/2011 Dan Evans (after Thompson et al, 2011, Aq Conserve, 11, 373 - 389)


RONNER: 0251967 56 0251955 6178925 6178925

BODROCK MORE RREMINENT > 3 SM Courso LASTROAM TROOS. CHUNE FLOW 4.6-BODLOGUL 1001 BASCH BROUDS GODROCK. FARVEL BONG STRACT NAREN Site setting diagram WZ'O arbara

FLUVIAL GEOMORPHOLOGY SITE DESCRIPTION TEMPLATE

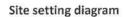
N

Project		Ins								Date			06/09/2012
Surveyor	CK	Reach code	e: CEO4	FG08	Oldbu	M Cr	eek			Time			12:30
Drainage cl	nannel	Cre	ek	River	Es	stuary		Pond		W	etland		Lake
		2					1						
Weather cor	ditions		O'CAST				U-S Grid	ref		0251529	D-S grid ret		0251485
Upstream el	evation (m)					Downstr	eam elevat	ion (m)	646	- -		Slope
		l			14	Watercou	urse attribu	ites					
Dimensions	Widt	:h (m)	1-2m		Max. de	pth (m)		NA		Velocity (ms-1	0		0
Shape descri	ption		A Syman	ICAL	Roughne	ess Height (m) 🕴	JA		Bank erosion			NA
Instream veg			Bai	nk vegetation			Bench ve	getation		CRASS, She	15S	Orga	nic matter
submerged, algae, mo				ver/			(2º cover)			WOOD?		Logs	Twigs / Leaves
		2								100	46		Detritus 🛛
	La constante da					Flo	ow type						
Smooth surface flow	10010000000000	standing aves	Unbroken standing wave	Chute	Rip	pled	Scarcely Upwe perceptible flow			g	Free fall	-	Standing water
(H1)][н2]	[нз]	[H4]		(H5)	15-(H6)	13 54 540 40 7.	🗆 [H7]		🔲 [нв]		П(нэ)
						Channe	el Planform	1					
Sinuosity (straight, low, intern high)	nediate,	Low	For	m		ingle	Fo	orked		Braided			Open
and the second se	and bars		Gra	vel bars		Rock	outcrops		Ripari	an strip	loodplain		
							□ 、		· ·		connectivity		
Floodplain la	podplain land use Forest										Bank structur concave, convex, straig ndercut) height & angle	ght,	
							character						
% compositio	NA US DIS US				bble _{D-S}	Gra u-s	vel _{D-S}	S U-S	and _{D-S}	Fin u-s	e sand _{D-S}		Silt / clay
	C		ecess	VOUT SER	20012 C	ionteor							
Bed stability	(packed & arm	oured, packed not						Su	pply	Deposition	Erosion	1	Conveying

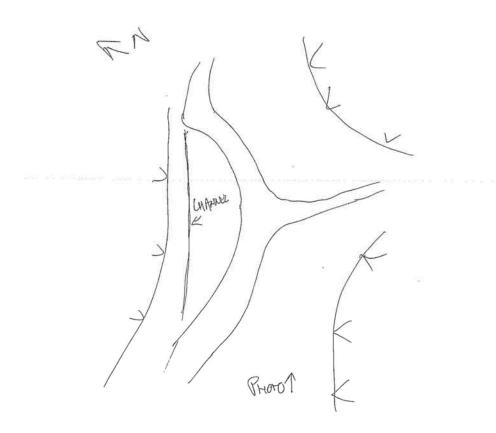
Created 04/08/2011 Dan Evans (after Thompson et al, 2011, Aq Conserve, 11, 373 - 389)

Cheoropeptic Units, BAR, BODROCK FORMOD (US BOUDDE) Du RAPARIAN DANSE, Strikuss, TROOS BOD BANC. BEDROCK SAND DEPOSITS CURLYING

GEOM: To ASTMONTORION

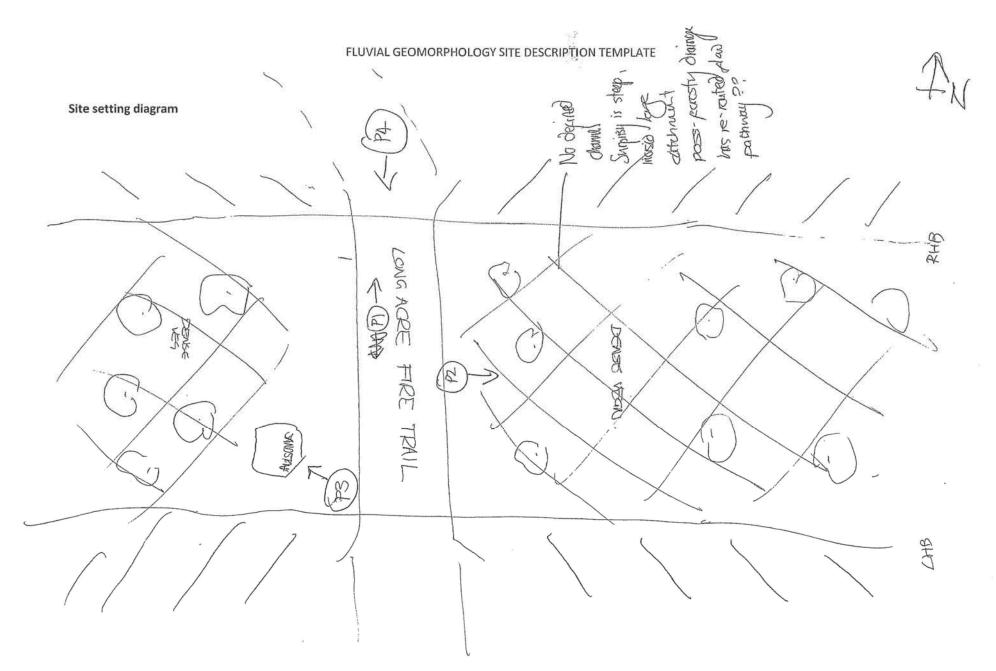

GERMA BOULAIRE: LOW: STANDING / MODI: MINITONANCE, TRADSPORT HIGH! MINITAN RANCEL Some BRESION/ DEPOSITION

mergeib gnittes eti2

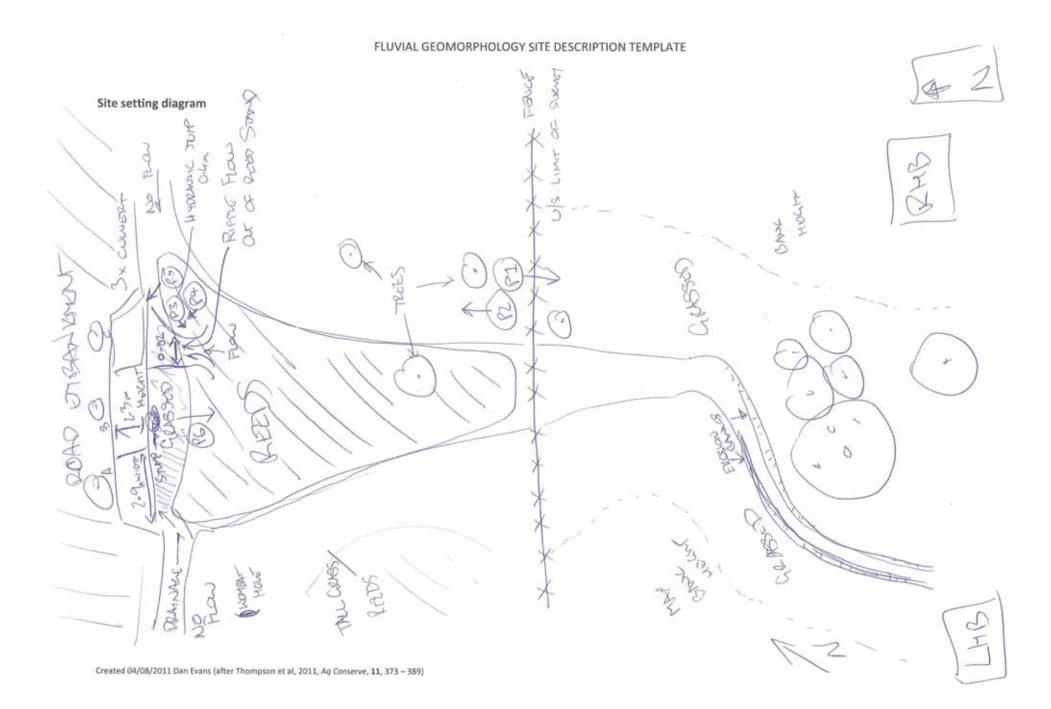

FLUVIAL GEOMORPHOLOGY SITE DESCRIPTION TEMERAFE

Project		HUME							Date		.06/09/2012
Surveyor	Cal	Reach cod	e: LET	>6 FGC	09 Old	an	Creek		Time		12:30
Drainage ch	annel	Cre	ek	River	Estuary		Pond	1	We	etland	Lake
		Ē	ſ								
Weather con	ditions		OCAST	OUZUÉ		U-5	5 Grid ref		/	D-S grid ret	617820
Upstream ele	vation (r	n)		ý.		Do	wnstream elev	ation (m)	6	357	Slope
					Wate	ercourse a	attributes		Construction of the second second		
Dimensions	Widt	h (m)	2-	10m	Max. depth (m)			Velocity (ms ⁻¹))	
Shape descrip	otion		N		Roughness Hei						
Instream veg (% cover [emergent, filo submerged, algae, mos	ating,	Emergy	239 100/6	Bank vegetation ^{% cover)}		Be (% co	 nch vegetation ^{wer)}		100% Coass	Rashver	Organic matter Logs □ Twigs / Leaves □ Detritus ⊡
				i ci norto	-	Flow ty	ре				
Smooth surface flow	1.111100052655	standing ives	Unbroke standing wa	S.M	Rippled		carcely eptible flow	Upwellin	g	Free fall	Standing water
(H1)		[H2]	 [H3]	(H4)	П (нร)		[[н6]	🗆 (H7)		🔲 [н8]	С
					C	nannel Pla	inform				
Sinuosity (straight, low, interm high)		Low	1	Form	Single		Forked		Braided	6	Open G
	and bars		0	Gravel bars	F	lock outcr	ops	Ripari		loodplain	
										connectivity	
Floodplain la	oodplain land use			Graning					(c u	Bank structur concave, convex, straig indercut) height & angle	int,
						Bed chara	acter	Cound			City / alars
% compositio	n		Boul u-s	der Co D-S U-S	bble _{D-S}	Gravel	U	Sand	Fin U-s	D-S	Silt / clay
										20	80
Bed stability	[packed & armo	ured, packed not	. No	pro pochin				Supply	Deposition	Erosion	Conveying
armoured, mod compa	ction, low comp	paction, no packing		is and	5					· P	

.



UNITS: DEODE HIGH FLOW CHUTE



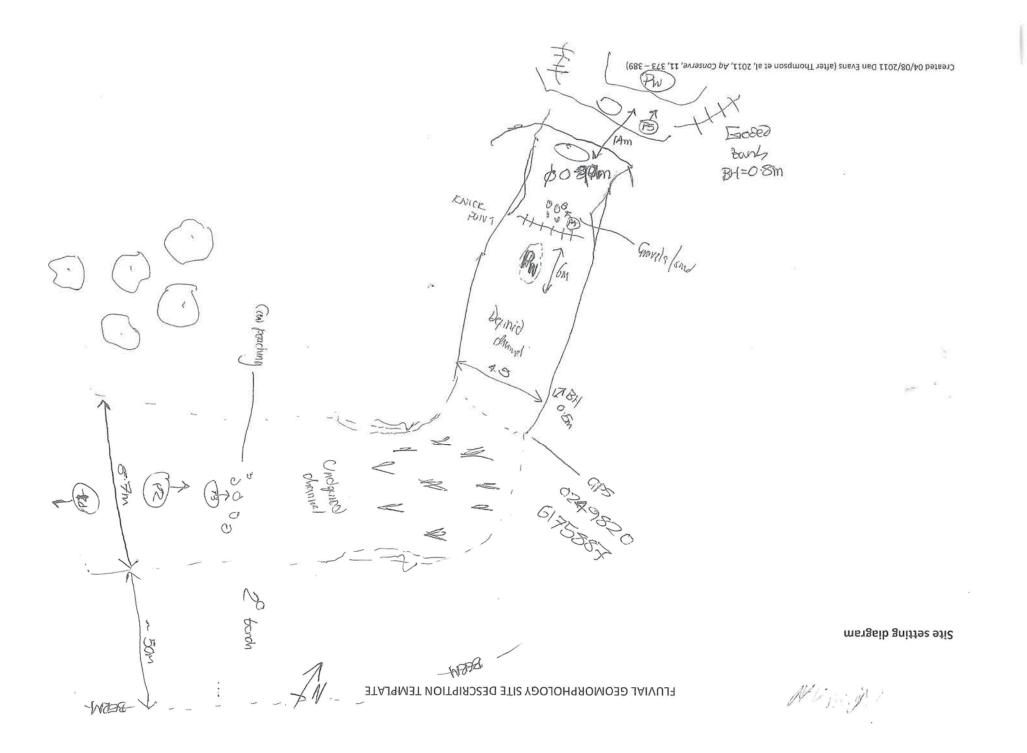
BED BAND	, SANDY SILF & CLAY
SHAPE !	Incised Symmetrican
	Law SINUOSITY PLANFORM CONTECL
DEHANIQUE.	Laur Stronomic Weron
	MUS! MOBILISCO STUDIOLUT MIGHI OB FLOCOPLAND DOODSW
	MIGHI US FLOODPULAD DECOSION CHAMAR DECOSION

Project	STRANG	RS CREEK								Date		-	22/01/2013 (4/04/14
Surveyor	DE	Reach co	de: RESS	-G 11		the second se	CRE			Time		-	10:30 09:10
Drainage	e channel	Cr	reek	Riv	/er	Estuary		Pond		w	etland		Lake
(3		Х	C	2								
Weather o	conditions		Bright sunst No rain (6:4 #67100 site)	mm in prev	ious 48 ho	Cod urs at BoM Castle Hill		Grid ref		024-392(61757713			
Upstream	elevation	(m)					Dov	wnstream eleva	ation (m)		1.		Slope
	- 10 J	1.1.1.1.1.1		and see a	10.8	Watercou	irse a	ttributes	1000	-	111201	-	
Dimension	ns -Wie	ith (m)	Valley Ace	500		Max. depth (m)		na		Velocity (ms	1)	na	
Shape des	cription	4	Brand U-	/	they	Roughness Height (n)	n/a		Bank erosion		n/c.	ł
(% cover [emerge	stream vegetation cover (emergent, floating, merged, algae, moss])			Bank vegetation (% cover)		n/~	Ben	nch vegetation		1009% Natural bus Guan tress +			nic matter n/n Twigs / Leaves D Detritus D
1		-	1. / PAR	1.000	-	Flo	w typ	pe / 1/14 \ N	o Beand of	witel ; any u	ally		1200 (SEC0)
Smooth surface flo	2 C - S - S - S - S - S - S - S - S - S -	n standing vaves	Unbrok standing v	1000	Chute	Rippled		carcely ptible flow	Upwelli	ng /	Free fall		Standing water
(H41)		Dp43				[HS]	lecters I						[ня]
	-			232	-	Chann	el Pla	nform					
Sinuosity (straight, low, in high)	ntermediate,	Shajift	il.	Form		Single		Forked		Braide	d		Open
	Sand ba	rs		Gravel bar	'S	Rock		ops	Ripa	rian strip	Floodplain connectivity		High
Floodplain	loodplain land use			1 Jud							Bank structur (concave, convex, straig undercut) & slope	pet,	11/9
	100.00	11 N	201	1000	1.11	Bed	chara	icter	N SEL				
% compos	sition	nlo	Bo	ulder	Cob	ble Gra	vel	ы	Sand	F	ine sand		Silt / clay
Bed stabi	lity (nacked & a	moured, packed n	ot pr /c	D-5	0.5	DS La US La	05	USE	Supply	Deposition		۱.	Conveying
annoures, nos i	noured, mod compaction, low compaction, no packing			(2)									

Project	STRANGE	RS CREEK	REHABILITA	TION	HUME	COAL				Date 33	14	2	2/01/2013
Surveyor	DE	Reach co	ode: RG51	Far		WELLS	CREEK	LEEV_		0	a	0:30	
Drainage channel Cree		reek	k River		Estuary		Pon	d	Wetland			Lake	
□ X		Х											
N		Bright suns No rain (69 #67100 site	4mm in-pre	ours at Both Castle Hill		U-S Grid ref F220 0251060			D-S grid ref		0251077 616949\$		
Upstream elevation (m)						Do	ownstream ele	vation (m)				Slope	
1125	12-22	100	19	20 ST		Waterco	urse	attributes			OR WE C	ares.	384
Dimensions Width (m) 3		3-10	Ferce 1	ne	Max. depth (m)				Velocity (ms	1)			
Shape des	cription		U- 5	Shaged		Roughness Height (m)		20		Bank erosion		80% 5/02 x	
Instream V (% cover (emerged submerged, algae	nt, floating,		usi arVS	Bank veg	etation			nch vegetation	n				ic matter ☐ Twigs / Leaves □ Detritus □
1000	Barch	100	1112	1 2 3	0.00	FI	ow ty	/pe				211.2	1
Smooth surface flo		n standing /aves	Unbroken Chute standing waves		Rippled		Scarcely Upv erceptible flow		ng Free fall			Standing water	
[] [H1]		[[H4]	Пре	1	[[H4]	C] (As)		Ed man	П(нт)		[H8]		(Diver)
Same	100	100			2		nel Pla	anform		151			
Sinuosity (straight, low, in high)	termediate,	Stead	SHY	Form		Single		Forked		Braide			Open □
Sand bars			Gravel bars		Rock out				rian strip Floodplain C connectivity			10)2	
Floodplain	n land use		C	razine)						Bank structur Icancave, convex, straig undercut) & slope	m. S	traight 45%
		1 A.	199			10.07.1	char	acter					
% compos	ition		Bo	oulder		oble Gr	avel Г	_	Sand	F	ine sand		Silt / clay
D . d . t . t . t	14		US	Des 🛄	US	DS US	D-5	Usl		0-5			
Bed stability (packed & armoured, packed not armoured, mod compaction, low compaction, no packing)		final	MOP. COMPACTION					Supply	Deposition	Erosion		Conveying	

Project		HUME								Date		06/09/2012	
Surveyor	ca	Reach co	de: 💪	toto and	to Ca	27 FG1	6	Medway	Rivule	Time		12:30	
Drainage	channel	C	Creek River			Estuary		Pond			Wetland		
		Ø	6	1									
Weather conditions		O'CA	5		along the state of		-S Grid ref			D-S grid ref			
Upstream elevation (m)							ownstream eleva	tion (m)		4	Slope		
						Wate	ercourse	attributes					
Dimensions	Wid	th (m)	11	24-		Max. depth (m)				Velocity (ms ⁻¹)	<u>(</u>		
Shape description					Roughness Heig		a lm		Bank erosion				
Instream vegetation (Ni cover (emergent, floating, submerged, algae, mossi)) 01902		L reeds L	Bank vegetation		Miniwal riportan. Sporse	Be	Bench vegetation		Padreur grass Some trees		Organic matter Logs - Twigs / Leaves Detritus -		
							Flow t	ype					
Smooth surface flov		n standing /aves		Unbroken Chute standing waves		Rippled		Scarcely Upwellin rceptible flow		ng Free fall		Standing water	
[101]	1] H2]	При	4	[[H4]	[] [HS]		Elwei	1471		[168]	[].	
							annel Pl	and the second					
Sinuosity (streight, low, inte high)	rmediate,	Low		Form		Single		Forked		Braided		Open	
Sand bars			Gravel bars	1	Rock outcr		10000000 10 1000000 10 1000000		rian strip Floodplain				
Floodplain land use		Forest					10.52		(c un	ank structure oncave, convex, straigh utercut) height & ngle	n.,		
							Bed char			-		and and a set	
% composition		Bo	D-S	Cobl us		Gravel			Fine sand		Silt / clay		
Bed stability	Y (packed & are	roured, packed no	4					S	upply	Deposition	Erosion	Conveying	
ermoured, mod com	description from con	npaction, no paco	-							B	B		

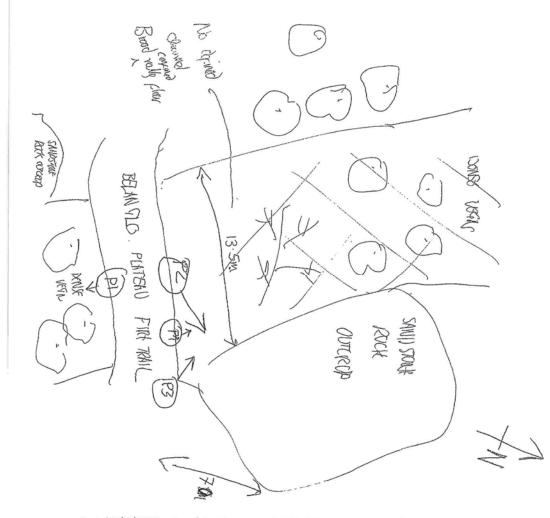
GEOMORPHIC UNITS: ROOTED WATER DIS CASEDAM IS A RIFFERE RUPARIAN RECOCHNICATED GROODS, SOME STREEDS BOD BANK: SANDT CLAY SILT GEOMETRY: STMMERRICAL BEHANIQUE: Las: MANNAUGULE, ROALED, SOMEWY MESS: SUBRY, ENTRAINMENT DE STOIMDAYS BDB: BROSION, PORDETT'N OF FLOCORDAN

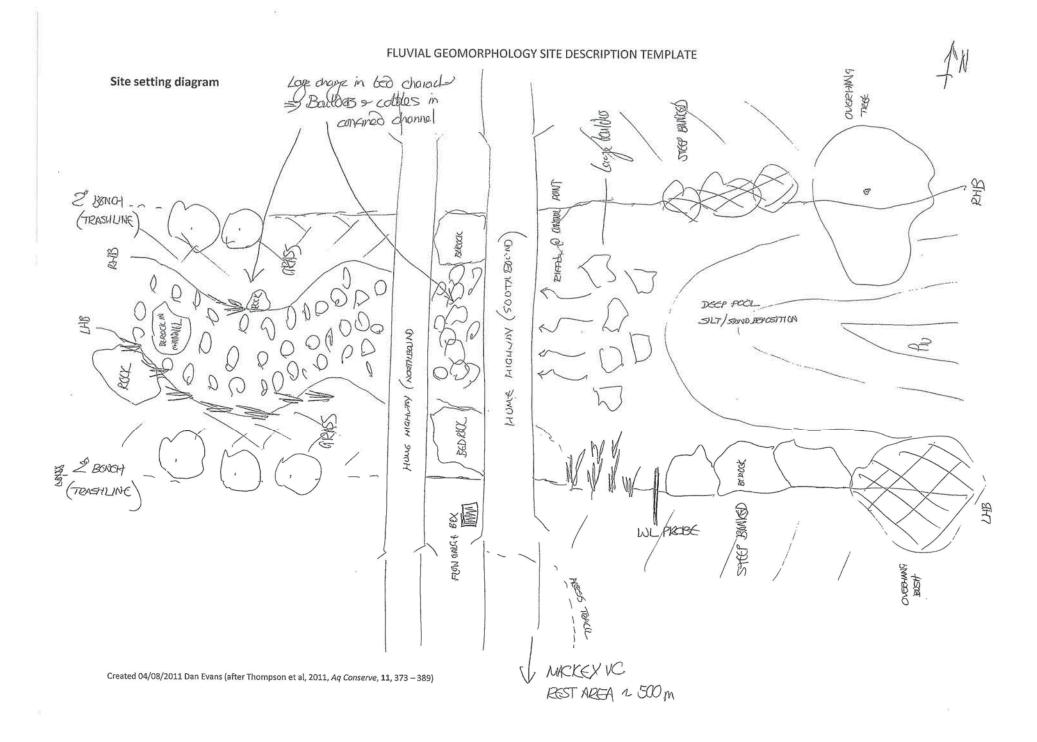

+50m UP TO + 50m UP TO FLOOPLAN FLOODPLAN U WATER CAUSENAY F

mergeib gnittes eti2

Created 04/08/2011 Dan Evans (after Thompson et al, 2011, Aq Conserve, 11, 373 - 389)

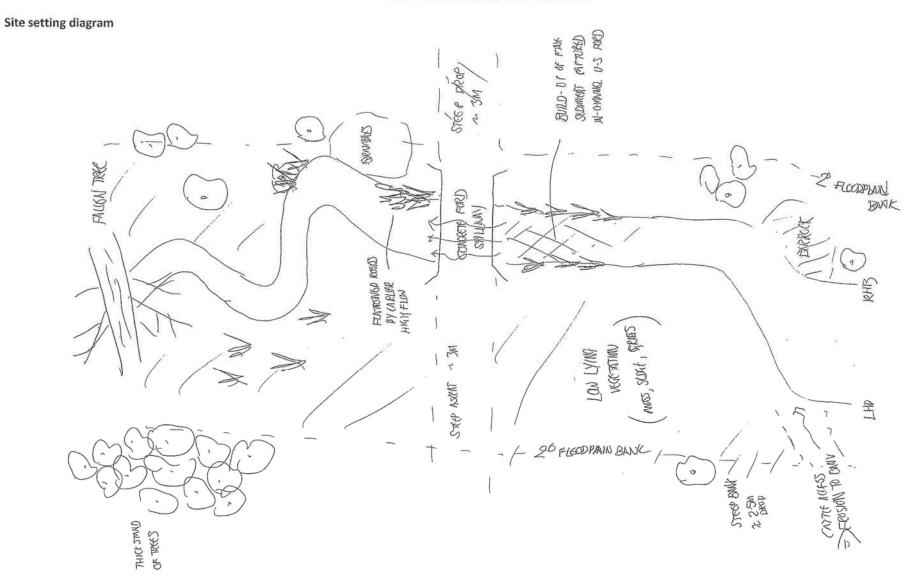
FLUVIAL GEOMORPHOLOGY SITE DESCRIPTION TEMPLATE


Project	STRANGE	RS-CREEK	REHABILITA	FION-	Hune C	od Small.	trib	stary of v	Jells Creek	Date			22/01/2013 09/04/
Surveyor	DE	Reach co	de: ROSS	FGA-7		CLOP	120.	1 Carbo	-	Time			10:30 09:45
Drainage channel Cre		reek	ek River		Estuary		Pond		Wetland			Lake	
		Х	(· 🗆	
Weather c	onditions		Bright sunsh No rain (6.4	m m in pre	vious 48 he	ours at BoM-Castle Hil		S Grid ref 51	51-1	0249772 617587		ef	024984-0 6175969
Upstream elevation (m)						Do	Downstream elevation (m)					Slope	
2015					1.0.5	Waterco	urse	attributes	C.W.				
Dimension	s Wid	th (m)	USNA			Max. depth (m)		U-SN/A		Velocity (ms	⁽¹)	N	
Shape des	ription	9	us bong	x quen		Roughness Height	m)	to Icon		Bank erosio	n	U-	S NJA
Instream v (% cover (emergen submerged, algae,	t, floating,	070.45×/3	=24E 50%	Bank veg (96 cover)	etation	N/A		ench vegetation		10046 02	AST .		ganic matter U-SA(a) gs Twigs / Leaves Detritus
119		1.1		0 0.0	1942	FI	ow ty	ype HID	DRY		and starts		
Smooth surface flo		n standing aves	Unbrol standing		Chute	Rippled		Scarcely ceptible flow	Upwelli	ng	Free fall		Standing water
(red 🖂		Deat	Dpa	e – U – s	[[H4]	Divisi		[]est	Dp/7		()m)		Deal
						Chanr	el Pl	anform	and the second				
Sinuosity (straight, low, int high)	ermediate,	Las		Form		Single		Forked		Braid	ed		Open
	Sand bar	S		Gravel ba	irs	Rock	outc	rops	Ripa	rian strip	Floodplain connectivity	,	U-S OPEN CHANN
Floodplain	land use		CANTE	(RAZIA)	9						Bank structu (concave, convex, structure) undercut) & slop	night,	D-5 N/A D-5 Shaght
						Bed	char	racter	-				1000
% composi	tion		Bo	ulder	Cob	ble Gra	ivel		Sand		Fine sand		Silt / clay
			us 🗖	D-5	u.s	D-5 US US	E	10 us	DS ZU	us[us 10 0s 10
Bed stabili armoured, mod co	ty (packed & arr mpaction, low cor	noured, packed r npaction, no pac	une) flic.land	nctornia	ued		_		Supply	Depositio	n Erosic	on	Conveying

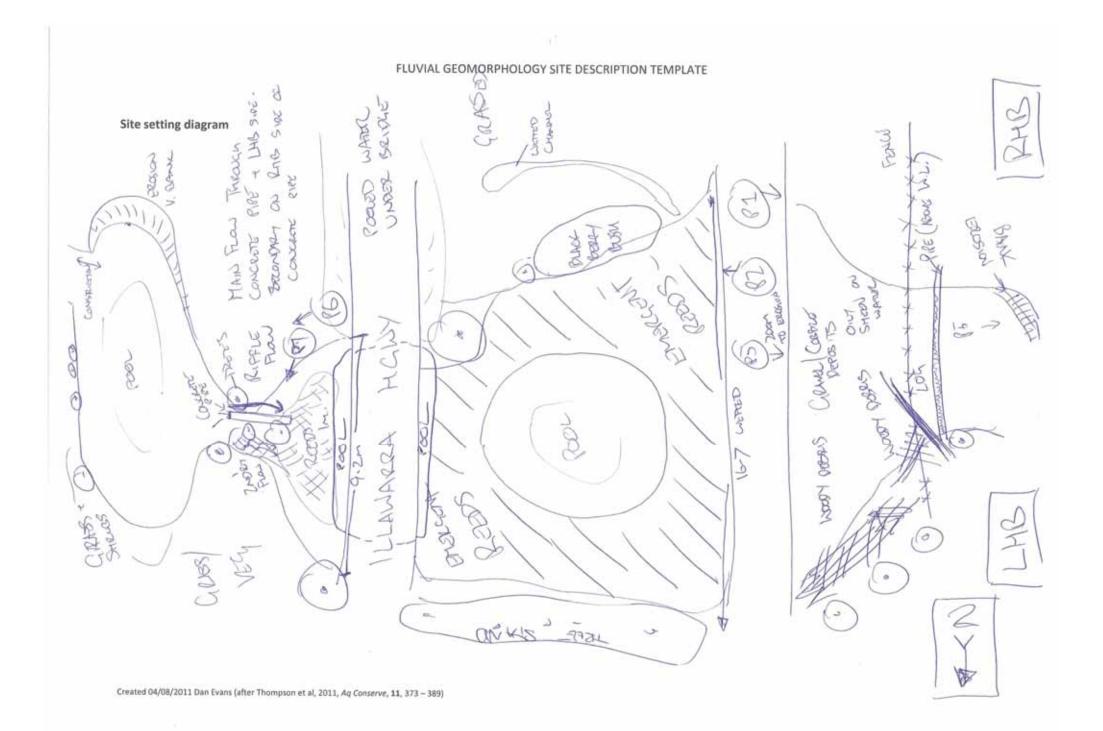

Project +	STRANGE	RS CREEK F	EHABILITA	TION_	HUME	COAL			Date		22/01/2013	
Surveyor I	DE	Reach co	de: RGS1	FGB		Lor	CACRE CRE	2~	Time		10:30	
Drainage channel C			Creek River				Pond		W	etland	Lake	
U Weather conditions			Bright sunshine Drzzk, (do) No rain (6.4mm in previous 48 ho #67100 site)				U-S Grid ref	<u></u>	0244853 6175855	D-S grid ref		
Jpstream el	levation (-1			Downstream elevation (m)				Slope	
	10 4 5		1.5.1.1			Watercou	irse attributes		17-2012		COLUMN TWO IS NOT	
Dimensions	Widt	th (m)			1.	Max. depth (m)			Velocity (ms ⁻¹)		
Shape descri				n/a		Roughness Height (m)		Bank erosion			
Instream vegetation (% cover [emergent, floating, submerged, algae, moss]]			Bank vegetation			Bench vegetati	nch vegetation over)		al pend 4 eucologet)	Organic matter Logs Twigs / Leaves Detritus		
Smooth	Broken	standing	Unbro	kan	Chute	Rippled	Scarcely	Do dwarul	vally plan	Free fall	Standing water	
surface flow		aves	standing		cnute		perceptible flow		is rice fair		Standing water	
□ (H4)	0	1(144)	Cipe	31	□ (peq	Divisi	[H6]	0107	(H0)		D(Hel)	
1.11.20	T						el Planform			1000	OT CHARLEN OF THE	
Sinuosity (straight, low, intermediate, Shite) (n			Int	Form		Single	Forked		Braided		Open	
Sand bars			Gravel bars		Rock	outcrops Rij		arian strip Floodplain □ connectivity		Open		
Floodplain land use		Notin	Antic L					Bank structur (concave, convex, strai undercut) & slope	igtet,			
		alka e		1		and the second se	character			6 12 July 1		
% compositi	ion N/A		B	oulder	د ە _{ي 1}	os us us	ps U u	Sand	Fi	ne sand	Silt / clay	
Bed stability (packed & armoured, packed not armoured, mod compaction, low compaction, no packing)				N/A				Supply	Deposition	Erosio	n Conveying	

4

Site setting diagram

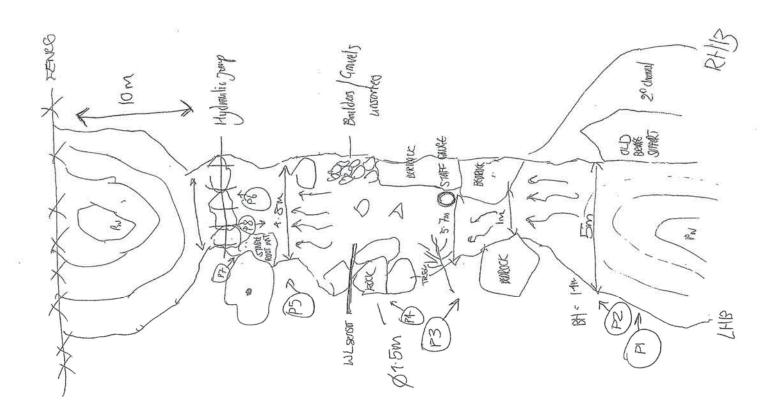


Project H	DAF COAL		-				Date		19/12/2013	
the second se		ode: SWON					Time		11:50	
Drainage ch		reek	the second se			Pond		Wetland	Lake	
Weather cond	litions	BRIGHTSONSHINE	= (8.2mm pin	LACIONS 7 ROPS)	U-S Grid ref		150.2536	D-S grid ref		
Upstream ele	vation (m)	/	Nos Vale	a Hodeins St. Adm	Downstream	n elevation (m)	~	\sim	Slope	
		Children (Children Children Chi		Waterco	ourse attributes	A PERSON NEW YORK OF A PERSON				
Dimensions	Width (m)	5.6(0-5) - 1	·8(D-S)	Max. depth (m)	1.25)	Velocity (m	s ⁻¹)	zø-0-2	
Shape descrip	otion	U-shope	. /	Roughness Height	(m) 0.5	3	Bank erosic	on	None	
Instream vege (% cover [emergent, flo submerged, algae, moss	ating,	VTHICALSHE (% cover)	A A	046 IDOS/AARA 046 971ASES 046 9729E 20161	(% cover)	(% cover)			Organic matter Logs Twigs / Leaves D Detritus	
	Territe A Third		AN OLS WOLLD		low type		的時間都認知			
Smooth surface flow	Broken standin waves	standing waves	Chute	Rippled	Scarcely perceptible flo	Upwelli סיי רווי	ng Free fall		Standing water	
[H1]	[H2]	Д(нз)	X[H4]		nel Planform					
Sinuosity (straight, low, interm high)	ediate, LOW	Form		Single		Forked		led	Open	
	and bars	Grave	bars	Roc	k outcrops	Ripa	Riparian strip Floodplai		ENTRENCE) CHANNEL US ENI-CREN D-S	
Floodplain la	nd use	Grazing D-S HUME HIGHU NATURAL BUST	/				Bank structure (concave, convex, straight undercut) height & angle		ght, (b-5)	
				Be	d character					
% composition		Boulder	Cob	ble G	ravel	Sand		Fine sand	Silt / clay	
		US 20 DS 20	D	D-5 40 U-5 20		U-5 30 D-5 10	U-S	10 D-5 10	U-5 2C D-5	
	[packed & armoured, packed ction, low compaction, no pa			5		Supply	Depositio	on Erosio	n Conveying	



Project	HUNG	COAL								Date		22/05	3/2012
	DE	Reach cod	le: SUG	202					- 1.1	Time		12:4	
Drainage o	channel	Cre	eek X	Rive	r	1.000	tuary		Pond	1.00	etland		Lake
Weather co	nditions	14	DINNY, A	101_ (o.	2mm E	PAIN IN PREVIOUS U-S Grid r				521948;	D-S grid ret		21554;150
Jpstream e	levation ((m)	. /	7 I HOS	HANS 'S E	3000G)	SVILE @	Downstrea	m elevation (m) <i>へら</i> (·18405 ′		5	Slope
	5		S of States				Watercour	se attribute	S				
Dimensions	Wid	th (m) 📑	32(0-5)	9 1.9/D	.51	Max. dep	oth (m)	0.	24	Velocity (ms ⁻¹)	0.1 - 0	0:3
Shape desci	ription	7	RAPAZOIE	· · ·		Roughne	ss Height (m) 0.2	3	Bank erosion		5% AT CATTO FOUNT 0-S	is access
nstream ve % cover [emergent, ubmerged, algae, n	floating,	ED96 ES		Bank vegeta (% cover)	ation	95% NO 95=DGE	55, 9US	Bench veg (% cover)	etation	100% 52/m 2-72155	BE, TREES	Organic matter Logs Twigs / Leaves [Detritus	
		ON GANNAR					Flov	v type					
Smooth surface flov	v w	n standing /aves	Unbrok standing v	vaves	Chute		pled / p	Scarcely erceptible		ng	Free fall		ling water
(H1)		[H2]	(H3	· · · · · · · · · · · · · · · · · · ·		X	[H5] Channel	Planform	[H7]	and the second	<u>[H8]</u>	And the states of	_] [H9]
Sinuosity straight, low, inte igh)	rmediate,	1070211ED	IATE	Form		Si	ngle	For	2010 and	Braideo	4		Open
	Sand bar	s		Gravel bars			Rock o	utcrops	Ripar	-	Floodplain connectivity	CIPEN (E BANK)	SP. BAST
Floodplain land use Gr.				Fast~1	COM P	aem Acoc	Əpbin ,				Bank structur (concave, convex, strat undercut) height angle	ight, Course So- 0.7M	
					tales Solution		Bed cl	haracter					
% composit	ion		Во	ulder	Cob	ble	Grav	el	Sand	Fi	ne sand	Si	lt / clay
			U-5	D-S	U-S	D-S	u-s 20 a	50	U-5 40 D-5 40	U-S	G D.S 20	U-5 20	3 _{D-5} 10
Bed stabilit				NOT MEMODE	DD-S				Supply	Deposition	Erosio	n Co	nveying

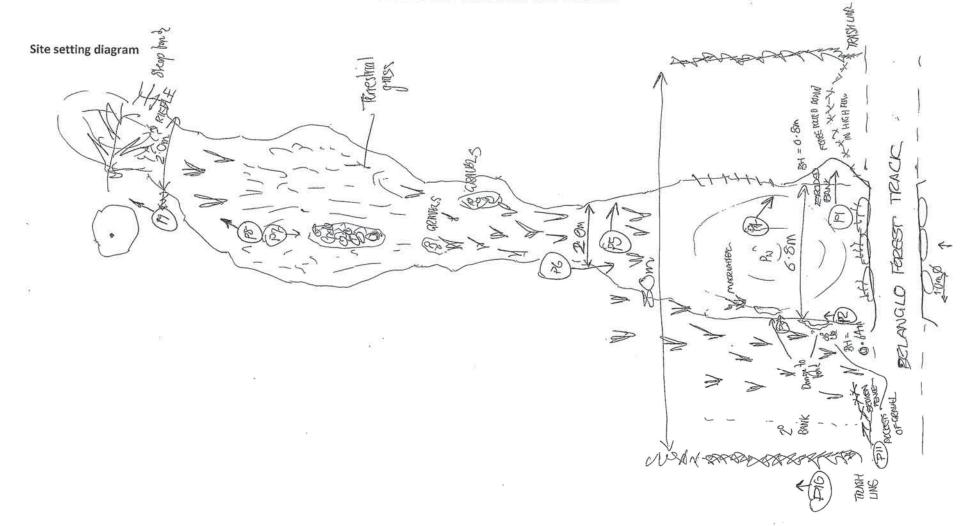
.



Project \$1	TRANGERS-CR	SEK REHABILIT	NON	HUME C	CAL			Date		22/01/2013	
Surveyor D	E Read	h code: R851	SWQOS	-	MEDUAT	RIVULET		Time		10:30	
Drainage ch	annel	Creek	River		Estuary	Por	nd	W	etland	Lake	
		Х									
Weather cond	ditions	Bright sun No tain 16 #67100 sit	Amm in previou	+48 hours at 1	BoM Castle Hill	U-S Grid ref			D-S grid ref	0254444 6171928	
Upstream ele	vation (m)					Downstream ele	vation (m)			Slope	
10.000				7 T16F-	Waterco	urse attributes	15 16	2117	B	A STATE OF	
Dimensions	Width (m)	9.5-	05 9.7	n S Max.	depth (m)			Velocity (ms ⁻¹)	0	
Shape descrip					hness Height (m) 2n		Bank erosion		20% vegetated 01	
	itream vegetation over (emergent, floating, nerged, sigae, mocs)) 40% EME (Leadies		Bank vegetati (% cover) 80% Csro-554d	ion . Seda		Bench vegetatio (* cover) 1006 Curass , Shru				Organic matter Logs D Twigs / Leaves D Detritus D	
Re1 = 178	15.045	a Ned -	fillen and		Fie	ow type	1 7	<u></u>		7121	
Smooth surface flow	Broken stan waves	ding Unbro standing	SPECIAL STATE		Rippled NC. AC-Dr	Scarcely perceptible flow	Upwelli	ing	Free fall	Standing water	
D (M3)		De	□(H3) □(H4)		Selfes)	10 (HE)	007		[][H0]	E(++9)	
		1 ST			Chann	el Planform	and a second	S. 172. 55		290 24 MILE	
Sinuosity straight, low, interm	ediate.		Form		Single	Forked		Braideo	1	Open	
high) Sa	and bars		Gravel bars		Rock	outcrops			Floodplain connectivity	MICH OIS	
Floodplain lar	oodplain land use		durbal 1	Donestic	(DS) 40	AZING (US)			Bank structure (concave, convex, straig) unitercut) & slope	m, convex.	
1.2.2	12-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		S		Bed	character		1. July 1. Start 1. Start	T		
% compositio	6 composition		oulder	Cobble	Gra	avel	Sand	Fi	ne sand	Silt / clay	
	us[D-5 U	10 os	U-5 30	D5 US	D 05	0.5	D 55	US 20 DS	
Bed stability () (NOT DE	1000	Supply		Deposition Erosion		Conveying	

Project -	STRANGE		REHABILIT		HUME	r COM	-			Date		\$2/01/2013 04/04
Surveyor	DE			SW04			MEDWA	Y RIVULE	T	Time		10:30 12:13
Drainage	channel	c	reek	1	River	Es	tuary		Pond	V	/etland	Lake
	1		х									
Weather co	onditions		Bright sur No rain (6 #67100 si	.4mm in pr	evious 48.hr	ours at BoN		U-S Grid ref		0251586 617689 3	D-S grid ref	6176914
Jpstream e	elevation (m)					I	Downstream	elevation (m)			Slope
200		10.00	11-0	-	1.12		Watercours	e attributes				No. Alecter St.
Dimensions	s Wid	th (m)	Kon ~	An-1.5-5	m 0-5	Max. de	oth (m)	1.1m		Velocity (ms	1)	0-0.5
Shape desc	ription		U-Jop	20CD 23		Roughne	ss Height (m)	σ-4-		Bank erosion		Norse
Instream vo (% cover (emergen) submerged, algae, s	t, floating,		<	Bank vegetation				Bench vegeta	ition	160%	94035	Organic matter Logs 🖉 Twigs / Leaves Detritus 🗆
			1.00	1500		The second	Flow	type	here all	1.00		
Smooth surface flow		n standing aves	Unbr standing	Contraction of the second s	Chute	Rip	pled pe	Scarcely erceptible flow	Upwel	ling	Free fall	Standing water
Ø 1943	(That	ACCH		XIH41)凶(pes)		(Heat	□[H7	1	[Hal]	[] that
	2				- C211	The Party	Channel	Planform	Martin Contraction	2		
Sinuosity straight, low, intr sigh)	ermediate,	STRAIG	+TT	Form		Si	ngle	Forked	1	Braide	d	Open
	Sand bars	5		Gravel b	ars		Rock ou	itcrops	Rip	arian strip	Floodplain connectivity	LOW, ENTREMONIC CHANNEL
Floodplain	land use		Road Posh	NC.				7			Bank structur (concave, convex, straig undercut) & slope	ph, Lunchin SU
						- 8	Bed ch	aracter				
% composit	tion		B US	oulder	Cot	oble	Grave	* 	Sand	us.	ine sand	Silt / clay
embares, mos compaction, low compaction, no pacong				, Some announing Bed machadoly packed (beatring					Supply	Deposition Erosion		n Conveying

Site setting diagram

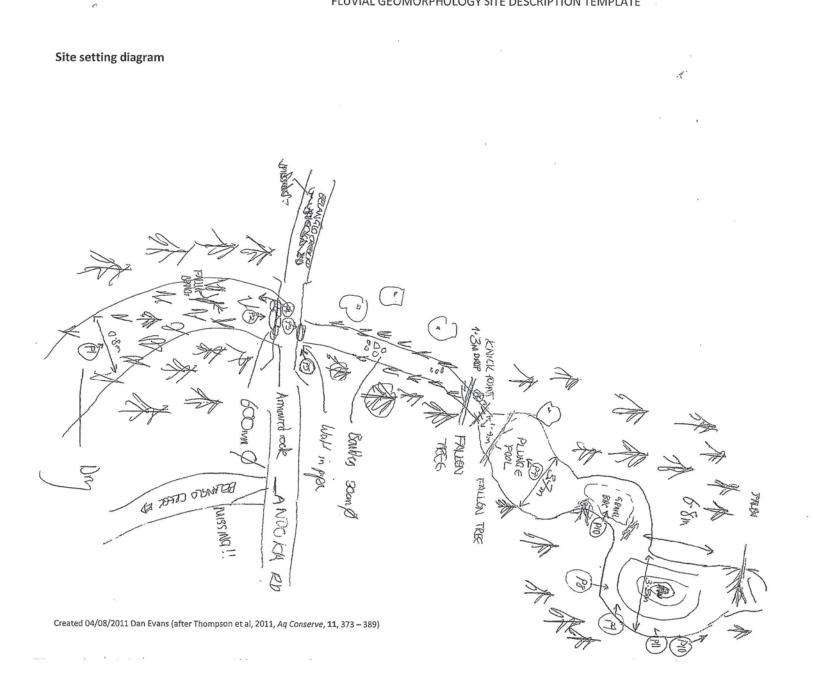


Created 04/08/2011 Dan Evans (after Thompson et al, 2011, Aq Conserve, 11, 373 - 389)

1

Project	TRANGE	RS CREEK	REHABILITA	HON	HUME	COAL			Date		33/0142033 CB (CH)1	
	DE	and the second se			Sugos		CP	EEK TRIE	atthey.	Time		10:30
Drainage c		And and an other states of the second states of the	reek	Riv		Estuary		Pond		W	etland	Lake
			х	C	1							
Weather cor	nditions		Bright suns	i hine 1mm in prev		urs at BoM Castle-I		-S Grid ref		0250298 6175272	D-S grid ref	0250332 61\$75382
Jpstream el	levation (m)	107200210	-1			D	ownstream elev	ation (m)			Slope
						Water	course	attributes	10000	Contraction (
Dimensions	14/Lel	th (m)	2.0-	6.8		Max. depth (m)	104130	02		Velocity (ms)	0.3
Shape descr		tn (m)	20	0-0-3		Roughness Heigh	t (m)			Bank erosion		
Instream vegetation (% cover (emergent, floating, submerged, algae, moiss])			Bank vegetation		SEDGE/ GRUSS 70%		ench vegetation		CIDASS SEDGE	sl i coch	Organic matter Logs Twigs / Leaves Detritus	
	-	-				1	Flow t	type				
Smooth surface flov		n standing vaves	1	broken Chute ing waves		Rippled	per	Scarcely ceptible flow	Upwell		Free fall	Standing water
D pest	1	[[H2]	Dp	[H3] [H4]		X(HSI		Divel	[H7]		Devet	[Ha]
			1.			and the second se	nnel P	lanform				0
Sinuosity (straight, low, inte	ermediate,			Form		Single		Forked		Braide	a	Open □
high)	Sand bar	5		Gravel ba	rs	Ro	ck out	crops	Ripa 30m	arian strip	Floodplain connectivity	CP6N
			Livesto	ichz (Bank structur (concave, convex, strei undercut) & slope	ight, convex abo
1.2	S.M.	10.2				B	ed cha	aracter				12.0102
% composition				Boulder Cob		bble Grav			Sand	F	ine sand	Silt / clay
			U-5		US	DS US] 0.5	us[D-S	us	D-5	U-S D-S
Bed stability (packed & armoured, packed not armoured, mod compaction, low compaction, no packing)				Pucked roll announced				Supply		Deposition	n Erosio	n Conveying

12

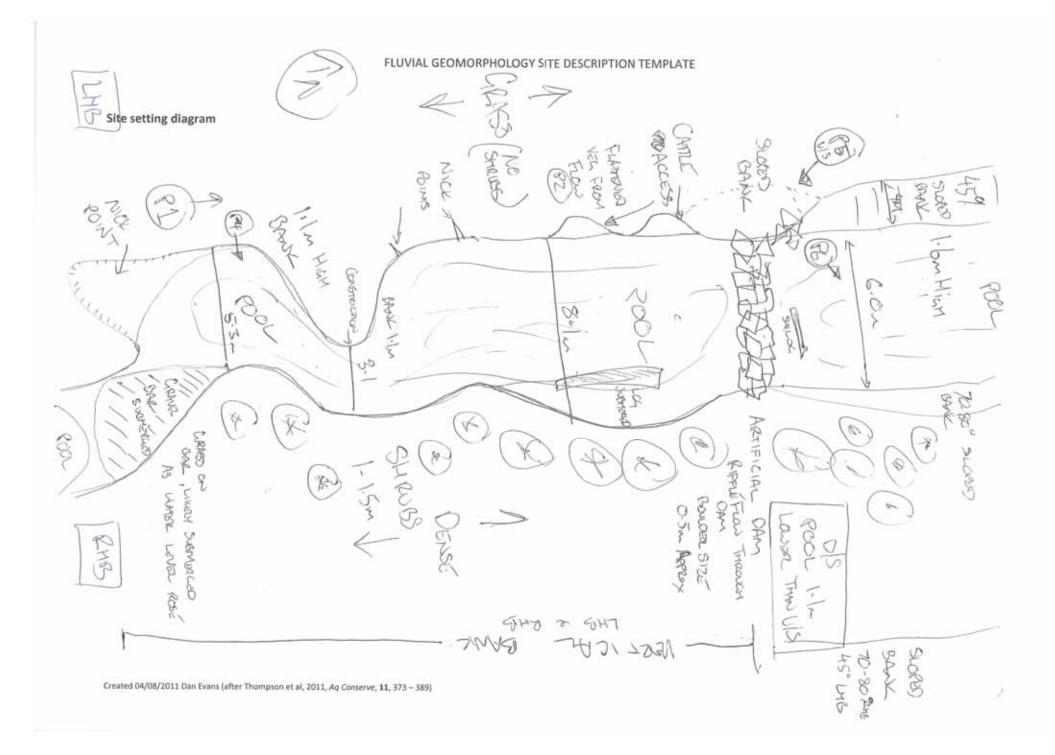


-

Project	STRANGE	RS CREEK	REHABILITA	TION	HUME	COPI						Date				22/01/2013 (7//04/14	
Surveyor	DE	Reach co	de: RGS1	WOODE	7		BELAN	200 (CREEK	2		Time			1	10:30 10:15	
Drainage	channel	c	reek	R	iver	Est	tuary		Pon	d		v	Vet	land	1	Lake	
E	1		Х														
Weather co	onditions		Bright suns No.rain (6.4 #67100 site	lmm in pre	Unzzla vious 48 ho	Card ours at-BoN	U-S Grid	U-S Grid ref			(2480942 D-S grid) 6176 152		D-S grid ref		027-8107- 6176201		
Upstream (elevation (m)						Downstre	eam elev	vatior	n (m)					Slope	
	-				-EX 7		Watercour	se attribu	tes		1.00	1.7.000				1.1.2	
Dimension.	s Wid	th (m)	0.8%	1		Max. dep	oth (m)	1	16			Velocity (ms	·1)		nl	<	
Shape desc	cription						ss Height (m	and the second sec				Bank erosion	1		1	Vine	
Instream vegetation (X cover lemengent, floating, ubbmerged, algae, moss))		rmà luif -	Bank veg (% cover)	etation	50% ba	na lang-	Bench vegetati		1		Prive traces Book / he	ŝ,			anic matter s 🗆 Twigs / Leaves 🗆 Detritus 🗆		
Can	1000	with	95	hall ye	1		Flow	w type L	7410	Dry							
Smooth surface flo		n standing vaves	Unbro		Chute	Rip	pled	Scarcel erceptible		2	Upwellin	g	1	Free fall		Standing water	
C (H3)	1	010421			004	0	DHS1	[H6]			000					Пна	
111123			1	12 200		2	Channe	el Planform		120	and and		- fret			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sinuosity (straight, low, int high)	termediate,	Las		Form		Si	ngle	Fo	rked			Braide	d			Open	
1980	Sand bar	5		Gravel ba	ars			utcrops R			Ripar	ian strip	Floodplain connectivity			Open	
Floodplain land use			Pine po	Price and (state - auno)									Bank structure (concave, convex, straight undercut) & slope			shught 30°	
and where							Bed c	haracter						(
% composition			Bo	ulder	Cob	ble	Grav	vel S		Sar	nd	Fine sand		sand		Silt / clay	
			us 🗌	D-5	0.5	D5			U-5	20	0-5	us 🛛	0	D-5 40		us \$0 05 60	
Bed stabili armoured, mod co	ty (packed & an impaction, low co	noured, packed n npaction, no pad	tenet Perch	ero not	ormaned				Supply			Deposition	Deposition Erosion		1	Conveying	

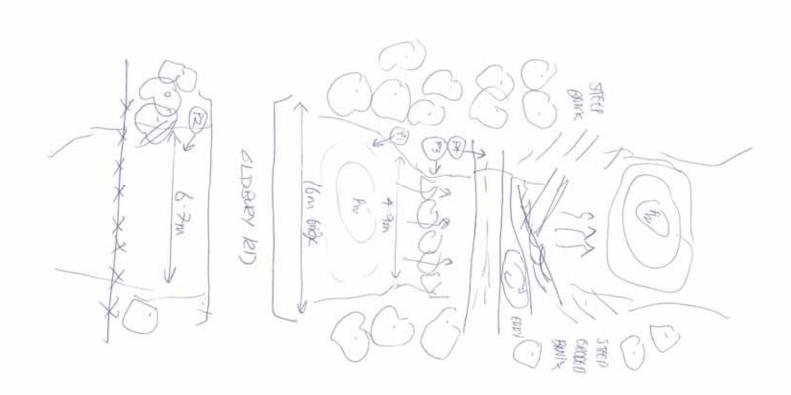
 ~ 10

N.

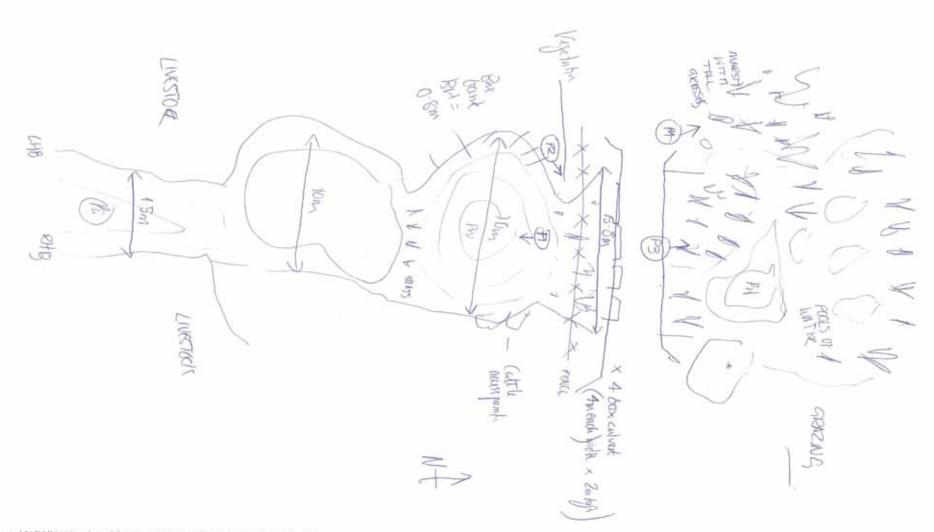


.

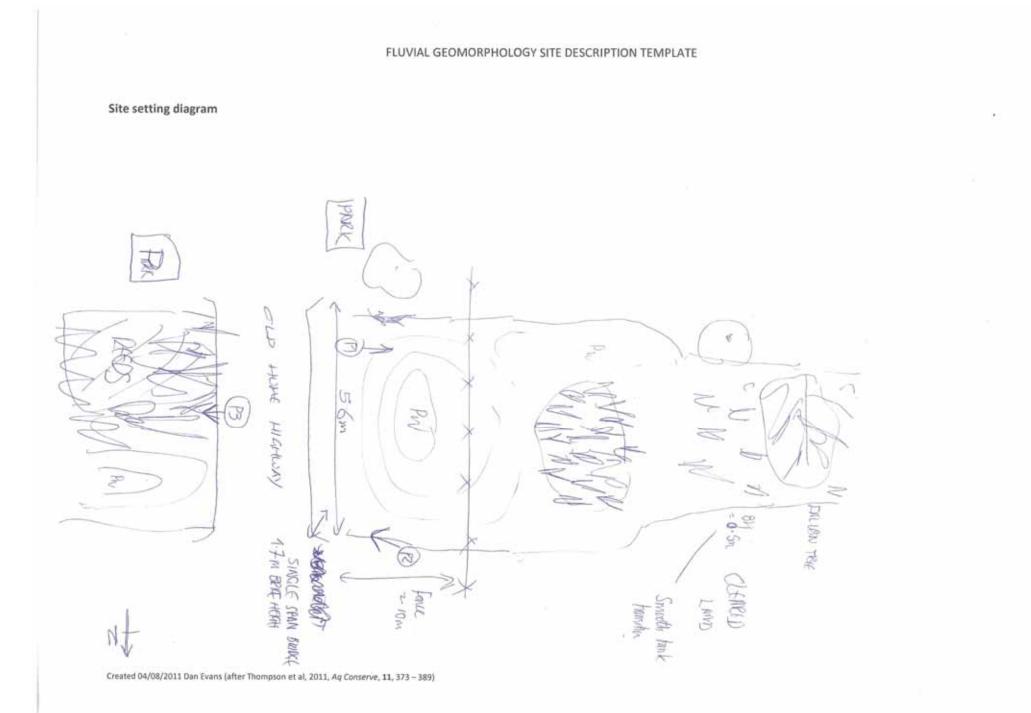
Project	STRANGE	RS GREEK	REHABILITAT	HON	HOME	COAL				Date 3	3/14		22/01/2013
Surveyor	DE	Reach co	de: RGSI.	S	Jaiz	- LIEL	5	CREEK		Time 131	5		10:30
Drainage	channel	c	reek	Ri	iver	Estuary		Pond		w	etiand		Lake
	1		Х										
Weather co	onditions		Bright supst No rain (6,4 #67100 site	min in pre	liliyis ye Ko	unsvat Balm Castle Hil		S Grid ref			D-S grid re	ef	0251245 6173105
Upstream	elevation (m)					Do	ownstream eleva	tion (m)				Slope
100	10-0-0		1. S. R. F. F. F.		10	Waterco	urse	attributes			1		A 1. 32
Dimension	s Wid	th (m)	US 5.	3		Max. depth (m)		Im		Velocity (ms)		0
Shape desc			RECTANC	ECTANLULAR		Roughness Height	(m)	20cm		Bank erosion			90%
		, Ethalliant Kallian	Bank vegetation		101 GRASS M		Bench vegetation (* count VOO lo GRASS LEFT BASK SNEWES EVENT BASK				10.00	ganic matter Nice gs Twigs / Leaves [Detritus	
18122	1	1	111111	1		FI	ow t	ype	COLUMN L				
Smooth surface flo		n standing vaves	Unbrok standing v	100000	Chute	1262.01		Scarcely ceptible flow	Upwelli	ng	Free fall		Standing water
C) (Ha)](H2)	[(H)]	□(H0) □(H4)				(Mine)	[H7]		[bal]	-	El (rei)
		1011	e 9	-	10.15		nel Pl	anform	1	Braide	4		0.000
Sinuosity (straight, kow, int high)	termediate,	Sm	AIGHT	Form		X	Single		Forked				Open
	Sand bar	5		Gravel ba	irs	Rock	outo	rops	Ripa	rian strip 図	Floodplain connectivity		HIGHLY CONACERED
Floodplain land use			Gea	21124	13700	×					Bank structu (concave, convex, etr undercut) & slop	wight,	SHRANCHY 90'
						Bed	l char	racter	S			2	
% composition Bou				ulder	Cob	ble Gr	avel		Sand	F	ine sand		Silt / clay
			u-5	D-5	0.5	D-5 US	E	10	0.5 20	u-5	0.5		US 00 DS GG
Bed stabili armoured, mod co	ty (packed & an impaction, low co	noured, packed n npaction, no pac	king	LMOUIL RATE C	OMPACTI	bu		5	Supply	Deposition	Erosio	on	Conveying


Created 04/08/2011 Dan Evans (after Thompson et al, 2011, Ag Conserve, 11, 373 - 389)

. .


Project	STRANGE	RS GREEK	REHABILITAT	ION-	HUME	COAL	WHITES	CREEK	Date		22/01/2013 B CH /2	
Surveyor	DE	Reach co	de: R6S1 3	50014	_	- MEDWAY G	LIVULET T	RIBUTAR!	Time		1030 18:05	
Drainage	channel		reek		ver	Estuary		Pond	W	etland	Lake	
	g (X	[-							
Weather co	onditions		Bright sunsh No rain (6.4) #67100_site)	mm in prev		ours at BoM Castle Hil	U-S Grid ref		025E688 6174073	D-S grid ref	0255679 6174057	
lpstream e	elevation ('m)					Downstream (elevation (m)			Slope	
			11.08		1.00	Waterco	urse attributes	SIL Sector	CO STATE			
Dimensions	Wid	th (m)	4-9-6	7		Max. depth (m)	08	3m	Velocity (ms ⁻¹)	0-04	
hape desc				2		Roughness Height			Bank erosion		20% BET RHB	
Instream vegetation (% cover [emergent, floating, submerged, algae, moss]]		<	Bank vege (% cover)	etation	20% 105	Bench vegetat	tion	100 % hes	0	Drganic matter Logs 🔍 Twigs / Leaves 💆 Detritus 🖗		
		Sec. 30		1		FI	ow type				1	
Smooth surface flow		n standing /aves	10.000 (20.000)	hbroken Chute ding waves		Rippled	Scarcely perceptible flow	Upwelli v	ing	Free fall	Standing water	
D peat	1	Піна)	[] [H3]	at 5d(Ha)		Mpros	(He)	0.07		Пбняз	[[Ha]	
	1. All				-	Chanr	nel Planform	5				
inuosity traight, low, intr igh)	ermediate,	Lon)	Form		Single	Forked		Braided	đ	Open	
	Sand bars	s	1	Gravel ba	rs	Rock	outcrops	Ripa		Floodplain connectivity	OPEN U-S LOW D-S	
Floodplain land use				LIVESTOCK		RD 0-5				Bank structure (concave, convex, straight undercur) & slope		
	121					Bed	l character		12 2 2 1			
6 composil	tion		Bou	ulder	Cob	ble Gr	avel	Sand	Fi	ne sand	Silt / clay	
			U-S	0-5	U-5	DS US	D-S	us _ ps _	0.5	DS	us 100 ps 10.0	
Rod stabilit	V (sacked & are	noured, packed re	ot 188 L	as com	rheft in			Supply	Deposition	Erosion	Conveying	

Site setting diagram



Project	STRANGE	RS CREEK B	EHABILITAT	HON	HUME	COAL				Date		22/01/2018 03/04/12	
and the second se	DE	Reach coo	the second se	SUS 16			STO	N/ CREE	K	Time			10:30 17:30
Drainage o	channel	contraction of the second second second	eek		ver	Estuary	1.00	Pon		W	etland		Lake
			X	(2						
Weather co	onditions		Bright sunsh	mm in prev		ours at BoM Castle H	lill	-9 Grid ref		0256362 D-S grid ref 6177716			
Upstream e	elevation (100 site)					ownstream ele	vation (m)				Slope
					-	Waterr	ourse	attributes					
Dimensions	Mid	th (m)	5 8M			Max. depth (m)	ourse	G 2m		Velocity (ms	1)	10	/
Shape desci		un (m)	15 011			Roughness Heigh	t (m)	- SIN		Bank erosion		1	
(% cover [emergant,	nstream vegetation 6 cover (amergant, floating, damerged, algae, most))			Bank veg (% cover)	etation	B Colo pasi		ench vegetation cover)	n	100% 794-2	5		anic matter s Twigs / Leaves Detritus
		1.2 25	U C S L	-	211.051		Flow t	type	175000	100	100	5	
Smooth surface flow	w w	aves	s standing waves		Chute	Rippled	per	Scarcely ceptible flow	Upwelli Doz	ng	Free fall		Standing water
C1 (ist)	-	-itiest	- Lind		Cifeet		nnel P	lanform			- Provide State	-	A
Sinuosity (straight, low, inte	ermediate,	SDANK	HT.	Form		Single		Forked		Braide	d		Open
high)	Sand bar	5		Gravel ba	rs	Rock o		crops	Ripa	rian strip	Floodplain connectivity		HIG H
Floodplain	Floodplain land use				ISING 0-	S					Bank structure (concave, convex, straight, undercot) & slope		
		1200		010000		Be	d cha	iracter		2 C			
% composit	tion		Bo	ulder	Cot	oble G	iravel		Sand	F	ine sand		Silt / clay
Bed stabilit			n RAKIO	ed NOT A	RMURER	os La Us L	D-5	US US	Supply	Deposition		n	Conveying

Site setting diagram

Project 5	TRANGE	RSTOREEK	REHABILITA	TION	HU	ME CO	AL				Date			22/01/2018 03/01/20
	DE			KR ShO			DRURY	C	REEK		Time			40,30 17:10
Drainage ch			reek	Riv			uary		Pond	1	V	/etland		Lake
			х	0	1									
Weather con	nditions		Bright suns	hine Imm in prev	-	ours at BoM Castle Hill			Grid ref		0253872 6178269	D-S grid	ref	
Upstream ele	evation (in or a do on to	1				Downstream elevation (m)						Slope
		80				000076	Watercou	rse a	ttributes			a -		
Dimensions	Widt	h (m)	5.6			Max. dep	oth (m)	1	22		Velocity (ms	·1)	(9
Shape descri	iption					Roughne	ss Height (n	n)	0.5		Bank erosion	1		
nstream vegetation N cover [amergent, floating, ubmerged, algae, moss]]			ds 40%	Bank vege (% cover)	tation	KOH JS	15	Bench vegetation			100% 9K	NST	1.000	ganic matter gs 🗆 Twigs / Leaves 🕅 Detritus 🗆
10.000				-		1	Flo	w typ	pe					
Smooth surface flow	1	standing aves	Unbro standing	and the second second	Chute	Rip	tippled pe		carcely ptible flow	Upwelli	ng	Free fall		Standing water
При	0	30421	При	A CONTRACTOR OF		Приз			Did (Hall	Diral		Пінаї		
			1		-	100	Channe	I Pla	nform					
Sinuosity (straight, low, intern	mediate,	STREAGH	7	Form		Si	ngle		Forked		Braide	d		Open
high) S	Sand bars			Gravel bar	5	Rock outc			ops	Ripa	rian strip	Floodplain connectivity		MEDUNA
Floodplain land use			IS BRIDGE LINESTOLK. PORIAN - 30m								Bank struct (concave, convex, undercut) & slo	straight,	STRUKHT ROC	
							Bed	hara	icter					and street
% compositio	Composition Boulder					obble Grave			and in concernment of the second s		1	Fine sand		Silt / clay
	UN	KNOWN	U.S.	D-5	U-5	p-s	U-5	0-5		0-5	u-s [_ _{0.5} _		U.5 D.5
Bed stability armoured, mod comp	(packed & arm	oured, packed a	vot king)	~						Supply Depo				Conveying
		-		_									<u> </u>	

