PLATINUM RESTAURANT GROUP

Preliminary Geotechnical Investigation Report

175 Cleveland Street, Redfern, NSW

Report No. E22434 GA 18 March 2015

Report Distribution

Preliminary Geotechnical Investigation Report

175 Cleveland Street, Redfern, NSW

 El Report No.
 E22434 GA

 Date:
 18 March 2015

Copies	Recipient
1 Soft Copy (PDF – Secured, issued by email)	Coco Simonian Platinum Restaurant Group c/- JPR Architects Pty Ltd Level 4, 50 Stanley Street <u>EAST SYDNEY_NSW_2010</u>
1 Original (Saved to Digital Archives)	Environmental Investigations Australia Suite 6.01, 55 Miller Street <u>PYRMONT NSW 2009</u>

Author:

Allrosse

Rachael Prosser Engineering Geologist

Technical Reviewer:

Alan Morrow Senior Geotechnical Engineer

 Revision
 Details
 Date
 Amended By

 GA
 Original
 18 March 2015

© Environmental Investigations Australia Pty Ltd 2015 T/A Environmental Investigations (EI)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Page | i

CONTENTS

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PROPOSED DEVELOPMENT	1
1.3	INVESTIGATION OBJECTIVES	1
1.4	SCOPE OF WORKS	2
1.5	INVESTIGATION CONSTRAINTS	2
2	SITE DESCRIPTION	3
2.1	SITE DESCRIPTION AND IDENTIFICATION	
2.2	LOCAL LAND USE	
2.3	REGIONAL SETTING	
	INVESTIGATION RESULTS	
3.1	STRATIGRAPHY	
3.2	GROUNDWATER OBSERVATIONS	
3.3		
	PRELIMINARY GEOTECHNICAL DISCUSSIONS AND DESIGN ADVICE	
4.1	EXCAVATION RETENTION	
4.2	BASEMENT EXCAVATION MONITORING	
4.3	FOUNDATIONS CONSTRUCTION CONSIDERATIONS FOR THE ASHFIELD SHALE FORMATION	
4.4 E	CONSTRUCTION CONSIDERATIONS FOR THE ASHFIELD SHALE FORMATION	
	RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES	
	STATEMENT OF LIMITATIONS	
	REFERENCES	
	ABBREVIATIONS	
TABLE	S	
Table 2	2-1 Summary of Site Information	3
Table 2	2-2 Summary of Local Land Use	3
Table 2	2-3 Topographic, Geological and Hydrogeological Information	4
Table 3	3-1 Summary of Inferred Subsurface Conditions	5
Table 3	3-2 Summary of Groundwater Seepage and Measurements	6
Table 3	3-3 Summary of Laboratory Test Results	7
Table 4	1-1 Preliminary Geotechnical Discussions and Design Advice	9
Table 4	I-2 Recommended Safe Working Distances for Vibration Intensive Plant	13
FIGURE	ES	

- Site Locality Plan 1
- 2 Borehole Location Plan

APPENDICES

- А
- Borehole Logs and Explanatory Notes Geotechnical Laboratory Testing Certificates В
- С Important Information

1 INTRODUCTION

1.1 BACKGROUND

At the request of Platinum Restaurant Group (PRG), Environmental Investigations Australia Pty Ltd (EI) has carried out a Preliminary Geotechnical Investigation (PGI) for the proposed development at 175 Cleveland Street in Redfern, NSW (the Site).

This PGI report has been prepared to provide preliminary geotechnical advice and recommendations in support of a Development Application (DA) and the preparation of initial concept designs for the proposed mixed-use development. Work has been carried out in accordance with the scope of works outlined in our proposal referenced P12787.1, dated 28 October 2014, and the authorisation to proceed dated 6 February 2014.

1.2 PROPOSED DEVELOPMENT

JPR Architects Pty Ltd (JPR) supplied EI with pre-DA concept drawings:

- Basement Level 02 to Level 07 Loft, Project No. 2014067, Drawing No. SK02 to SK09, Revision A, dated 8 October 2014; and
- Section A and Section B, Project No. 2014067, Drawing No. SK11 and SK12, Revision A, dated 29 September 2014.

Based on the drawings provided, EI understands that the proposed development will involve the construction of an eightstorey building over a two-storey basement car park. We expect that the basement will extend to a maximum depth of approximately 9.0 m below existing ground level (mBGL) adjacent to Cleveland Street.

1.3 INVESTIGATION OBJECTIVES

The objective of the PGI is to assess site surface and subsurface conditions and to provide preliminary geotechnical advice and recommendations addressing the following:

- Building and retaining wall foundation options, including;
 - Preliminary design parameters;
 - ► Earthquake loading factor in accordance with AS1170.4:2007;
 - Subgrade preparation and earthworks requirements;
- Excavation methodologies, limitations and monitoring requirements, including monitoring of excavation induced vibrations;
- Excavation support requirements, including preliminary geotechnical design parameters for retaining walls and shoring systems;
- Approaches to limit potential impacts on adjacent structures, services and roads;
- Construction constraints including groundwater management requirements, if necessary; and
- The requirement for additional geotechnical investigations.

1.4 SCOPE OF WORKS

The scope of works for the PGI included:

- Review of available information from in-house sources;
- Preparation of appropriate health and safety plans;
- Review of relevant soil landscape and geological maps for the project area;
- Site walkover inspection by a Geotechnical Engineer to assess topographical features, condition of surrounding structures and site conditions;
- Dial Before You Dig (DBYD) services search and scan of proposed borehole locations for buried conductive services using a licensed service locator;
- Concrete coring through existing concrete hardstand at two borehole locations (BH1 & BH2);
- Drilling of one borehole (BH1) by a track-mounted drill rig and one borehole (BH2) by a ute-mounted drill rig using solid flight augers equipped with a 'tungsten-carbide' bit (T-C bit). BH1 was terminated at approximately 7.5 metres below ground level (mBGL), and BH2 reached T-C bit refusal at approximately 6.5 mBGL. Approximate borehole locations are shown in Figure 2;
- Standard Penetration Testing (SPT) during drilling of the boreholes at between 0.5 m and 1.5 m depth intervals to
 assess soil strength and collect soil samples for laboratory testing. Soil samples were sent to Macquarie
 Geotechnical Pty Ltd (Macquarie), a National Australian Testing Authority (NATA) accredited laboratory;
- Continuation of BH2 from T-C bit refusal, using NMLC coring techniques, to a termination depth of approximately 11.0 mBGL. Rock core recovered from the boreholes was logged, placed into core trays, photographed and delivered to Macquarie for testing and storage;
- Measurements of groundwater seepage/levels from boreholes during and immediately post drilling. No monitoring
 wells were installed as part of this investigation. Three monitoring wells installed from a previous investigation by
 others were measured during the field work;
- Backfilling of the boreholes with drilling spoil in the reverse order of excavation; and
- Preparation of this PGI report.

The fieldwork was supervised by a Geotechnical Engineer and included logging of subsurface conditions during drilling and locating of boreholes from existing structures.

1.5 INVESTIGATION CONSTRAINTS

The PGI was limited by the preliminary intent of the investigation and the presence of structures at the site at the time of the investigation. The physical extent of the investigation was limited to an asphalt car park on the boundary with Cleveland Street, with no access available to the interior of the buildings for geotechnical purposes. The discussions and advice presented in this report are intended for the development of initial designs for the development. Further geotechnical investigations should be carried out before final design to confirm both the geotechnical and groundwater model, and the preliminary design parameters provided in this report.

2 SITE DESCRIPTION

2.1 SITE DESCRIPTION AND IDENTIFICATION

The site identification details and associated information are presented in Table 2-1 while the site locality is shown in Figure 1.

Table 2-1	Summary of Site Information
-----------	-----------------------------

Information	Detail	
Street Address	175 Cleveland Street, Redfern, NSW 2016	
Lot and Deposited Plan (DP) Identification	Lot 15 in DP 57107, Lot 5 in DP 68798, Lot 1 in DP 724328, Lot 10 in DP 809537, Lots 3 and 4 in Section 2, DP 977379, and lot 1 in DP 1093304	
Local Government Authority	Council of the City of Sydney	
Parish	Alexandria	
County	Cumberland	
Current Zoning	MD – SEPP Major Development 2005 (Sydney Local Environment Plan, 2012)	
Site Description	The site is irregular in shape. The site is currently occupied by a brick single-storey commercial warehouse, used as a furniture store and art workshop, and a second brick warehouse, used as a commercial printers. An irregular sloping asphalt car park is present at the corner of Cleveland Street and Woodburn Street. The car park is approximately 0.5 m higher than Woodburn Street. Paved surfaces at the site were in good condition. Cleveland Street is a Transport for NSW Roads and Maritime Services (RMS) asset.	
Site Area	The site is approximately 1,060 m ² (JPR, 2014)	

2.2 LOCAL LAND USE

The site is situated within an area of high density residential and commercial use. Current uses on surrounding land are described in Table 2-3.

Direction Relative to Site	Land Use Description		
North	Cleveland Street (an RMS asset), followed by a two-storey concrete commercial building and a five-storey brick apartment hotel.		
East	Woodburn Street, followed by a four-storey brick youth hostel with a single-storey partially in-ground basement car park. Sydney Trains rail corridor lies beyond, 25 m from the site, orientated north-northwest between Redfern and Central Station.		
South	A three-storey concrete residential building with a single-level partially in-ground basement car park, followed by two to three-storey brick residential buildings.		

Table 2-2Summary of Local Land Use

Page 4

Direction Relative to Site	Land Use Description
West	Eveleigh Street, followed by a three to four-storey brick residential building. To the south-west is a construction site for a four-storey concrete residential building. No information was available regarding basements.

2.3 REGIONAL SETTING

The site topography, geological and hydrogeological information for the locality is summarised in Table 2-3.

Attribute	Description			
Topography	The site is on the side slopes of a spur line which runs approximately southwest-northeast, following the alignment of the Sydney Trains railway corridor. Local topography slopes downwards to the northwest, at approximately 10°.			
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1991) indicates the site to be underlain by Ashfield Shale of the Wianamatta Group, which typically comprises of black to dark-grey shale and laminite. Ashfield Shale generally weathers into silty clay of medium to high plasticity. The site is close to the boundary of the Ashfield Shale, it is expected that Hawkesbury Sandstone may be present beneath the site at shallow depths. Outcrops of Quaternary aged Aeolian Sands (Botany Sands) are mapped approximately 90 m to the south-east of the site. Recent investigations in the area have indicated Aeolian Sands are present 50m to the south on Eveleigh Street. An infilled paleo channel (man made fill over alluvial soils) is present approximately 75 m to the north.			
Soil Landscapes	 The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 (2nd Edition) indicates that the residual landscape of the region of the site comprises the Blacktown Landscape. Soils are generally shallow to moderately deep (<100 cm) red and brown podzolic soils on crests, upper slopes and well-drained areas, and deep (150-300 cm) yellow podzolic soils and soloths on lower slopes and in areas of poor drainage. Land use is dominantly intensive residential and light and heavy industry. Soil Limitations include moderately reactive highly plastic subsoil, low soil fertility, and poor soil drainage. 			
Acid Sulfate Soils (ASS)	In accordance with the Sydney Local Environmental Plan 2012 Acid Sulfate Soils Map – Sheet ASS_009, the site does not fall within any category of Acid Sulfate Soils (ASS).			
	For an unclassified site, works do not require development consent from council regarding ASS.			

An online search was conducted using the NSW Office of Water (NOW) real-time database, which records relevant information pertaining to all licensed water bores for the state of New South Wales, revealed forty three (43) registered monitoring bore located within 500 km of the site. No standing water level data for the monitoring bores was recorded within the NOW database.

3 INVESTIGATION RESULTS

3.1 STRATIGRAPHY

For the development of a site-specific geotechnical model, the observed stratigraphy of shallow fill overlying a residual soil and weathered bedrock profile has been grouped into four geotechnical units. A summary of the subsurface conditions across the site, interpreted from the investigation results, is presented in Table 3-1.

More detailed descriptions of subsurface conditions at the test locations are available in the borehole logs presented in Appendix A. The details of the method of soil and rock classification, explanatory notes and abbreviations adopted in the borehole logs are also presented in Appendix A.

Unit	Material	Depth (mBGL) to Top of Unit	Observed Thickness (m)	Material Description	Comments	
1	Fill	0	1.5 to 1.8	CONCRETE over mixed FILL	Asphalt up to 70 mm thick overlying Sand and Clayey and Gravelly Sand, with some ceramic and brick fill. Fill is inferred to be uncontrolled and poorly compacted. This area was formerly a brick building, with evidence of former brick footings on the boundary with Woodburn Street.	
2	Residual Soil	1.5 to 1.8	0.7 to 3.0	Sandy CLAY	Generally medium plasticity firm to very stiff sandy clay. SPT N values range from 5 to 33 blows with hammer bouncing at the end of the second increment.	
3	Extremely Weathered Shale	2.5 to 4.5	1.5 to 3.0	SHALE	Generally extremely weathered, extremely low to very low strength shale. SPT N values of refusal with hammer bouncing.	
4	Distinctly Weathered Shale	5.5 to 6.0	11.3 ²	SHALE	Generally distinctly weathered, very low to low strength shale. Where cored the bedding dips 0-5°, <1 mm thick. Defects within Unit 3 are generally closely spaced (~ 30-100 mm spacing) sub horizontal bedding partings, with one joint set (J1) dipping at 20-40° at 100-300mm spacing. Unit 3 is classified as Class IV Shale in accordance with Pells (2004).	
5	Slightly Weathered Shale	6.8	N/A ³	SHALE	Generally fresh, medium to high strength shale. Bedding dips 0- 5°, <1 mm thick. Defects within Unit 4 are generally closely to moderately spaced (~ 100-300 mm spacing) sub horizontal bedding partings. There are two joint sets within Unit 4, one set (J1) dipping at 20- 40° at 100-300mm spacing, increasing to >1m from 8.3mBGL. Joint set 2 (J2) is sub-vertical, typically irregular to curved, closed at depth, spacing typically >1m. Unit 4 is classified as Class III Shale in accordance with Pells (2004).	

Notes:

1 Approximate depth below ground level at the time of our investigation. More detailed descriptions of subsurface conditions are available in the borehole logs in Appendix A. Depths may vary across the site.

2 Unit 4 was observed up to borehole termination depth in BH1.

3 Unit 5 was observed up to borehole termination depth in BH2.

3.2 GROUNDWATER OBSERVATIONS

Groundwater seepage was observed during the drilling of BH1 on 25 February 2015. No groundwater seepage was observed during the drilling of BH2. Groundwater measurements taken during drilling and from existing groundwater wells are presented in Table 3-2.

Borehole ID	Date of Observation	Depth to Groundwater (mBGL)	Tip Depth of well (mBGL)
BH1	25/02/2015	6.10 (inflow during drilling)	-
MW1	25/02/2015	2.40	7.00
MW2	25/02/2015	3.90	7.45
MW3	25/02/2015	4.23	7.15

 Table 3-2
 Summary of Groundwater Seepage and Measurements

Observed groundwater seepage levels may be affected by the low permeability of the encountered strata. Further groundwater monitoring should be undertaken prior to final design.

3.3 LABORATORY TEST RESULTS

Two soil samples were selected for laboratory testing to assess the following:

- Soil Moisture Content, Linear Shrinkage and Atterberg Limits (Liquid Limit and Plastic Limit); and
- Soil aggressivity (pH, Chloride and Sulfate content and electrical conductivity).

A summary of soil test results is provided in Table 3-2.

Four rock core samples were tested by Macquarie to determine Point Load Strength Index (Is_{50}) values to assist with rock strength classification. The results of the testing are shown on the borehole logs at the appropriate depths in Appendix A.

Laboratory test certificates are presented in Appendix B

Table 3-3 Summary of Laboratory Test Results

Test/ Sample ID		BH1 (1.5-1.95 mBGL)	BH2 (4.5-4.95 mBGL)	
Unit		Unit 2	Unit 2	
Material Description ¹		Sandy CLAY	Sandy CLAY	
lits	Liquid Limit (%)	31	38	
Atterberg Limits	Plastic Limit (%)	16	22	
Atterb	Plasticity Index (%)	15	16	
Linear	Shrinkage (%)	10.0	8.5	
Moistu	ire Content (%)	17.6	14.9	
	рН	6.4	5.3	
ressivity	Electrical Conductivity (Ω.cm)	15,000	3,400	
Soil Aggressivity	Sulfate SO ₄ (mg/kg)	240	82	
	Chloride Cl (mg/kg)	20	<10	

Notes:

1

More detailed descriptions of the subsurface conditions at borehole locations are available in the borehole logs presented in Appendix A.

4 PRELIMINARY GEOTECHNICAL DISCUSSIONS AND DESIGN ADVICE

The main geotechnical factors for the design of the development include:

- Excavation adjacent to Cleveland Street, an RMS asset.
- Basement excavatability.
- Basement excavation retention to prevent potential lateral deflections and ground loss as a result of excavations.
- Foundation design for building loads.

Geotechnical discussions and design advice are presented in Table 4-1. The advice and parameters presented in Table 4-1 are intended for the development of initial concept designs. Further geotechnical investigations should be carried out prior to final design to confirm the preliminary design parameters provided here.

Table 4-1 Preliminary Geotechnical Discussions and Design Advice

						Pi	reliminary Design Pa	arameters ²		
	Preliminary Design ¹	Geotechnical Constraints ² Preliminary Discussions and Design	Preliminary Discussions and Design Advice ²		Material ³	Unit 1 Fill	Unit 2 Residual Soil	Unit 3 Extremely Weathered Shale	Unit 4 Distinctly Weathered Shale	Unit 5 Slightly Weathered Shale
				Туріса	al Depth to Top of Unit (mBGL) ⁴	0	1.5 to 1.8	2.5 to 4.5	5.5 to 6.0	6.8
				Bulk	Unit Weight (kN/m ³) ⁵	16	19	2:1	24	24
				Elas	stic Modulus (MPa)	5	30	50	100	200
Basement Excavations	 Two levels of basement car parking. Excavation for the 	• Proposed excavation will likely encounter Unit 1, 2, 3, 4 and 5	 Temporary batters may be considered for retention of material encountered during basement excavation where site constraints allow. 							
and Earthworks	basement is expected to extend to a maximum depth of approximately 9 mBGL along Cleveland Street.	material.	 Batters given for rock units may only be used with consideration of rock support systems such as pattern bolting, spot bolting or shotcreting based upon the rock mass characteristics encountered during excavation. Inspection during construction by an experienced geotechnical engineer or engineering geologist will be required to determine temporary and permanent rock support requirements. Permanent batters may require surface protection to prevent erosion and slaking 		Temporary ⁶	N/A	1.5H:1V	1.5H:1V	Vertical with Rock Support	Vertical with Rock Suppor
			 Where excavations extend beneath the zone of influence of nearby structures/ services/ pavements basement retention will be required. Units 1, 2 and 3 should be diggable with a 20t Hydraulic Excavator. Unit 4 should be 	Batter Angle						
			easy ripping with a D6 or similar. Unit 5 will be hard ripping with a D8 dozer or equivalent.		Permanent 6	N/A	2H:1V	2H:1V	Vertical with Rock Support	Vertical with Rock Suppo
			 All earthworks should be carried out in accordance with AS3798: 2007. This standard applies to any site filling undertaken and to the preparation of basement slab subgrades. 							
Excavation Retention and Rock Face			• Cantilevered retaining walls are typically the most economically viable retention method up to 5 m height. Anchored walls may be more economically viable above 5 m height and may be required to limit lateral deflections where retention systems are within the zone of influence of nearby structures/ services/ pavements.	ure Coefficients	At rest, Ko ⁷	0.66	0.58	0.58	-	-
Support			• Rock face protection of Unit 4 and 5 material using shotcrete and drainage systems will be required.							
			• Consideration will need to be given to excavation retention in competent rock and should be given to the potential for stress relief movement of excavation faces in the design of the basement retention system. Further discussion of this is given in Section 4.1.		Passive, K_p^7	2.04	2.46	2.46	1000 kPa Ultimate stress block	2000 kPa Ultimate stress block
			• Consideration will need to be given to monitoring lateral and vertical deflections of retained soil and to monitoring construction induced vibrations. Further discussion of this is given in Section 4.2.	Earth Press						
			 Parameters given in this table for design of deep foundations may be used for design of basement retention systems. 		Active, K _a ⁷	0.49	0.41	0.41	-	-
Foundations	 Eight-storey building over two levels of basement parking. 	Final excavation levels likely to be in Unit 5 material.	Footing Foundations All footings should found below Unit 1 materials to avoid the potential of potentially		nary Allowable Bearing re (kPa) ⁸	NA	250	500	1000	2000
	 Proposed basement plan extents to all site boundaries 		 large settlements caused by founding in these low density materials. Footings and slabs on Unit 5 – Slightly Weathered Shale should be designed in a standard standar	Undrained shear strength, c _u (kPa) Drained friction angle, φ' (°)			100		-	-
			 accordance with AS2870:2011 based on a Site Classification of 'A.'. Consideration must be given to the possibility of differential settlement caused by foundations for a structure apapring the interface of differing materials. Further, and the set of the se			20	25	-	-	-
			foundations for a structure spanning the interface of differing materials. Further discussion of this is given is Section 4.3.		d cohesion, c' (kPa)	0	5	-	-	-

					Preliminary Design Parameters ² Unit 3 Unit 4 Unit 1 Unit 2 Extremely Distinctly						
	Preliminary Design ¹	Geotechnical Co	onstraints ²	Preliminary Discussions and Design Advice ²		Material ³		Unit 2 Residual Soil	Unit 3 Extremely Weathered Shale	Unit 4 Distinctly Weathered Shale	Unit 5 Slightly Weathered Shale
						pth to Top of Unit mBGL) ⁴	0	1.5 to 1.8	2.5 to 4.5	5.5 to 6.0	6.8
					Bulk Unit	Bulk Unit Weight (kN/m ³) ⁵		19	21	24	24
					Elastic I	Modulus (MPa)	5	30	50	100	200
				 Pile Foundations Pile foundations may be considered where high lateral or axial loads are to be supported. 	Ultimate Ve Pressure (kl	ortical End Bearing Pa) ^{9, 11}	N/A	750	1500	3000	6000
				 The parameters given may also be used for design of retention support. We recommend that a Preliminary Geotechnical Strength Reduction Factor (GSRF) of 0.40 is used for the preliminary design of piled support in accordance with 	Ultimate Shaft	in Compression	15	45	75	150	350
				AS 2159:2009 based upon the preliminary nature of the soil parameters given. The GSRF may be increased upon finalising the development details and subject to further assessments having been carried out e.g. pile testing during construction.	Adhesion (kPa) ^{10, 11}	in Uplift	5	15	37.5	75	175
					Susceptibilit during an Ea	y to Liquefaction arthquake ¹²	Medium	Low	Low	Low	Low
Groundwater Management	• Two levels of basement car parking. Excavation for the basement is expected to extend to a maximum depth of approximately 9.0 mBGL.	Groundwater leve observed during t at approximately 2.4 to 4.2 mBGL.		 Groundwater is expected to be encountered within the basement excavations. Although zones within the rock mass. Groundwater management options may include the groutin Surface water seepage into these excavations may occur during and following periods and pump methods. 	ig of water beari	ng fractures during ex	cavation or the inst	allation of drainage sys	stems behind the exc	avation retention facir	ng.
Earthquake Site Risk Classification				 AS 1170.4:2007 indicates an earthquake subsoil class of Class C_e (Shallow Soil). AS 1170.4:2007 indicates that the hazard factor (z) for Sydney is 0.08. 							
Soil and Groundwater Aggressivity	 Proposed structure will incorporate buried concrete and steel elements. 	 Low permeability below the ground AS2159:2009 give foundation suscep and groundwater 	water table. es guidelines for ptibility to soil	 Analysis of the pH, chloride and sulfate content and electrical conductivity of the soil wa 'Mild' for buried concrete structural elements; and 'Non-aggressive' for buried steel structural elements. 	as compared wit	h criteria in AS 2159:2	009, providing the	following exposure clas	sifications:		

12

Notes:

Design details are based on proposed development details provided by JPR at the time of the preparation of this report.

2 Advice and parameters presented in this PGI report are intended for DA purposes and for the development of initial designs for the development. Further geotechnical investigations should be carried out prior to final design to confirm both the geotechnical model and the preliminary design parameters provided in this report.

- More detailed descriptions of subsurface conditions are available in the borehole logs in Appendix A. Depths may vary across the site. 3
- 4 Approximate depth below ground level at the time of our investigation. More detailed descriptions of subsurface conditions are available in the borehole logs in Appendix A. Depths may vary across the site.
- 5 Unit Weight is based on visual estimate only, order of accuracy is about 10%.

6 Batter angles recommended are based upon ground conditions encountered in the borehole locations only. Ground conditions may vary and preliminary batter angles should be confirmed by additional geotechnical investigations and inspections during construction by an experienced geotechnical engineer. Batter angles provided assume an overall batter height of less than 5 m. Should batters extend beyond 5 m, batter designs should be carried out by an experienced geotechnical engineer and may need to incorporate benches.

- Earth pressures are provided on the assumption that the ground behind the retaining wall is flat and drained.
- 8 Bearing pressures given are indicative only and will vary according to footing type, shape and embedment and should be confirmed by additional geotechnical investigations, design checks and foundation inspections during construction by an experienced geotechnical engineer.
 - To adopt these bearing pressures we have assumed that:
 - Shallow footings have an embedment depth of at least 750mm into the founding material.
 - The bases of all footings are cleaned of loose debris and water and inspected by a suitably qualified Geotechnical Engineer prior to footing construction to verify that ground conditions meet design assumptions.
- 9 Ultimate geotechnical strengths are provided for use in limit state design. Allowable or serviceability bearing pressures and side adhesions may be estimated using factors of safety of 3 and 2, respectively. These are the factors of safety generally adopted in geotechnical practice to limit settlements to an acceptable level for conventional building structures, typically less than 1% of the minimum footing width. Assumes the base of pile holes are clean and penetrate at least 1.0m or 2 pile diameters, whichever is greater, into the respective Unit.

Bearing pressures may vary and must be confirmed by additional geotechnical investigations and foundation inspections during construction by an experienced geotechnical engineer Higher bearing pressures may be applied upon confirmation by additional geotechnical investigations and subject to an experienced geotechnical engineer carrying out foundation inspections during construction.

10 Side adhesion values given assume there is intimate contact between the pile and foundation material. Design engineer to check both 'piston' pull-out and 'cone' pull-out mechanics in accordance with AS4678-2002 Earth Retaining Structures.

- 11 To adopt these parameters we have assumed that:
 - Piles have an embedment depth of at least two pile diameters or 1 m, whichever is greater, into the relevant founding material; -
 - There is intimate contact between the pile and foundation material; -
 - Potential soil and groundwater aggressivity will be considered in the design of bored piles; -
 - be used: and
 - in the design.
 - Susceptibility to liquefaction during an earthquake is based on the following definition: Low Medium to very dense sands, stiff to hard clays, and rock Medium Loose to medium dense sands, soft to firm clays, or uncontrolled fill below the water table
 - High Very loose sands or very soft clays below the water table

The bases of all pile excavations are cleaned of loose debris and water and inspected by a suitably qualified Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could

An experienced Geotechnical Engineer has reviewed the pile designs to assess whether all recommendations presented in this report have been incorporated

4.1 EXCAVATION RETENTION

Rigid retaining structures, such as propped or anchored walls, should be adopted to limit lateral and vertical movements when in close proximity to existing buildings, buried services and pavement. We recommend the use of closely spaced soldier pile walls or contiguous reinforced concrete bored pile walls that are socketed into Class III Shale or better.

If cantilevered piles are employed for the design, relatively flexible shoring systems may be used, adopting a triangular earth pressure distribution using active pressures presented in Table 4-1. For design of rigid walls, a trapezoidal earth pressure distribution should be used with a maximum pressure of $0.65^{*}K_{a}^{*}\gamma^{*}H$ (kPa) where 'H' is the effective vertical height of the wall in metres. For excavations spanning the interface of soil and rock, 'H' may be taken as the depth to a zero active earth pressure coefficient.

In addition, design of retaining walls should consider the following:

- If piled retaining walls are to provide permanent support to proposed structures, pile sockets in rock may need to be longer to accommodate additional lateral and axial loads. Anchoring may be required for additional lateral support.
- Care must be taken to ensure that the bored piles found in rock below neighbouring foundation and basement levels, where present.
- The effect of stress relief in the rock on neighbouring foundation systems and pavements, resulting from proposed excavations, should be considered in the retaining wall design.
- Static water pressures should be taken into consideration, unless subsoil drainage is provided behind retaining walls. A hydrostatic pressure distribution could be used for this analysis.

Appropriate surcharge loading from construction equipment and vehicular traffic at finished surface level should be adopted. Any applicable surcharge loads should be taken into account in the retention design.

4.1.1 Rock Support

An allowance should be made for support of vertical excavation faces in Unit 3 and better material, including rock bolts, rock anchors and/ or shotcrete (mesh reinforced) to support weak seams, fracture zones and isolated individual blocks of rock. Specific support requirements can only be assessed during excavation. An experienced Engineering Geologist or Geotechnical Engineer should carry out regular inspections as excavation progresses (at least every 1.5 m depth of excavation).

Rock bolts, and anchors should they be required, should generally be specified in terms of performance requirements and constructed by contractors experienced in ground anchor technology.

We recommend that a geotechnical engineer inspect battered and unsupported excavations and excavation support installations to confirm inferred geotechnical conditions. This will allow for the assessment of design assumptions and to provide further advice with regards to excavation retention / support and proposed construction methodologies, if required.

4.1.2 Construction Considerations for Deep Excavations

As the basement excavation will likely extend through both materials which require full retention (Units 1, and 2) and material which will require rock face support (Unit 3 and better), particular consideration must be given to the integration of retention and support designs at the site. The following methodologies could be considered for design of retention/ support systems:

- Full Height Retention Soldier pile walls to continue the full depth of basement excavation with a socket in Unit 4 below bulk excavation level. This option would allow excavation to continue through the full depth of excavation without concern of disturbing the rock on which the piles are founded. Boring of piles within the medium to high strength rock will likely be slow and cause machine wear; or
- Part Retention Construction of a part-retention system may proceed as follows:
 - Units 1, 2 are to be retained as described above, socketed into Unit 3 Distinctly Weathered Shale.
 - Excavation to the top of Unit 3 material.
 - Anchors to be installed near the base of the retaining wall, socketed into Unit 3.
 - Excavation could then proceed into Unit 3. Spot bolting beneath the toe of the retaining wall may be required to limit block failure from the wall foundation.
 - Further bolting and mesh reinforced shotcrete support of Unit 4 as required, as discussed in Section 4.1.1.

Should the proposed structure found on the retaining wall, consideration should be given in the wall design to the suitability of the rock beneath the pile toe as foundation and ability to support additional building loads. We recommend that further investigations, modelling of the rock conditions, and site inspections are carried out to assess rock support requirements below the pile toe.

4.1.3 Excavation Interaction with Neighbouring Structures and Basements

Medium rise structures and potential basements of unknown extent were noted on adjoining properties as part of the development. Surrounding footings and excavation faces of these developments will lie within the zone of influence of the proposed excavation. There is the potential for neighbouring structures to be adversely affected.

The design of excavation support should consider loading from neighbouring structures and the requirement for underpinning where excavations in rock extend below adjacent building foundation levels.

Detailed survey of the relative positions, levels and working loading of neighbouring basements and footings should be acquired prior to final design. The detailed survey should be used to accurately model the interaction of the proposed development with existing structures in the vicinity of the site using finite element software.

4.2 BASEMENT EXCAVATION MONITORING

Consideration should be made to the impact of the proposed development upon neighbouring structures. Basement excavation retention systems should be designed so as to limit lateral deflections to allowable levels, particularly adjacent to Cleveland Street.

Contractors should also consider the following limits associated with carrying out excavation and construction activities:

- Limit lateral deflection of temporary or permanent retaining structures;
- Limit vertical settlements of ground surface at common property boundaries and services easement; and
- Limit peak particle velocities (ppv) from vibrations, caused by construction equipment or excavation, experienced by any structure within bounding properties and the services easement.

Monitoring of deflections of retaining structures and surface settlements should be carried out by a registered surveyor at agreed points along the excavation boundaries and along existing building foundations/ services/ pavements and other structures located within or near the zone of influence of the excavation. Owners of existing services at the site should be consulted to assess appropriate deflection limits for their infrastructure. Along Cleveland Street it would be

expected that RMS will require a minimum of two inclinometer installations and level monitoring points should excavations exceed 6 m depth. Measurements should be taken:

- Prior to commencement of excavations;
- Immediately after installation of any temporary or permanent retaining structures;
- Immediately after the excavation has reached a depth of 1.5 m, and each 1.5 m depth increment thereafter;
- Immediately after the excavation has reached bulk excavation level; and
- Immediately after backfilling behind retaining structures.

Vibration monitoring should be carried out periodically during excavation works, particularly at the base of external walls of existing buildings in closest proximity to the excavation and easement. El recommends an upper limit for ppv of 3 mm/sec is adopted for sensitive structures such as the Telstra, Ausgrid and Sydney Water mains (or as recommended by utility owner), 10 mm/sec is adopted for residential buildings and 20 mm/sec is adopted for commercial and industrial buildings or reinforced concrete structures.

An ongoing monitoring programme will not be required if the contractor can verify, based on trials carried out at the commencement of the works and with the agreement of a Geotechnical Engineer, that the ppv will not exceed set limits. However, should equipment used during excavation and construction works vary from that used during the trial or as agreed, further vibrations assessments by a Geotechnical Engineer, and/ or an ongoing monitoring programme, may be required.

Should vibrations, settlements or deflections exceed set limits, we recommend the following:

- Cease excavation works and notify the Geotechnical Engineer immediately;
- Backfill excavations or support exposed excavations with buttresses or props, where settlement/ lateral movement limits have been exceeded; and
- Develop an alternative excavation/ support plan in conjunction with the Structural and Geotechnical Engineers.

4.2.1 Construction Vibration Mitigation

As a guide, safe working distances for typical items of vibration intensive plant are listed in Table 4-2. The safe working distances are quoted for both "cosmetic" damage (refer British Standard BS 7385:1993) and human comfort (refer NSW Environmental Protection Agency Vibration Guideline). The safe working distances should be complied with at all times, unless otherwise mitigated to the satisfaction of the relevant stakeholders.

Plant Item	Rating/Description	Safe Working Distance				
		Cosmetic Damage (BS 7385:1993) ¹	Human Response (EPA Vibration Guideline)			
Vibratory Roller	< 50 kN (typically 1-2 tonnes)	5 m	15 m to 20 m			
	< 100 kN (typically 2-4 tonnes)	6 m	20 m			
	< 200 kN (typically 4-6 tonnes)	12 m	40 m			
	< 300 kN (typically 7-13 tonnes)	15 m	100 m			
	< 300 kN (typically 13-18 tonnes)	20 m	100 m			

Table 4-2 Recommended Safe Working Distances for Vibration Intensive Plant

Plant Item	Rating/Description	Safe Working Distance				
		Cosmetic Damage (BS 7385:1993) ¹	Human Response (EPA Vibration Guideline)			
	< 300 kN (typically >18 tonnes)	25 m	100 m			
Small Hydraulic Hammer	300 kg – 5 to 12 t excavator	2 m	7 m			
Medium Hydraulic Hammer	900 kg – 12 to 18 t excavator	7 m	23 m			
Large Hydraulic Hammer	1600 kg – 18 to 34 t excavator	22 m	73 m			
Vibratory Pile Driver	Sheet Piles	2 m to 20 m	20 m			
Pile Boring	≤ 800 mm	2m (nominal)	N/A			
Jackhammer	Hand held	1 m (nominal)	Avoid contact with structure			

Notes:

1

More stringent conditions may apply to heritage buildings or other sensitive structures.

In relation to human comfort (response), the safe working distances in Table 4-2 relate to continuous vibration and apply to residential receivers. For most construction activities, vibration emissions are intermittent in nature and for this reason, higher vibration levels, occurring over shorter periods are permitted, as discussed in British Standard BS 6472-1:2008.

The safe working distances provided in Table 4-2 are given for guidance only. The values obtained from these codes are general in nature and site specific values by detailed acoustic assessment of the rock mass should be obtained.

4.3 FOUNDATIONS

Should footings for the proposed development span the interface of several materials identified in this investigation, variable ground conditions may cause difficulties for subgrade preparation. Selection of footing types and founding depth will need to consider the risk of adverse differential ground movements within the foundation footprint and between high level and deeper footings. Unless an allowance for such movement is included in the design of the proposed development, we recommend that all new structures found on natural materials with comparable end bearing capacities. Possible features designed to accommodate potential differential movement of the structures may include movement joints, dowelled connections or shear keys.

4.4 CONSTRUCTION CONSIDERATIONS FOR THE ASHFIELD SHALE FORMATION

Long and intermediate term durability of exposed residual soil and rock is a major concern within the Ashfield Shale formation. Exposure of residual soil and weathered rock due to excavation can lead to rapid degradation of the material. Slaking of rock faces, erosion of soil cuts and softening of foundation subgrade material may occur quickly after excavation. Formations will need to be protected with blinding concrete without undue delay to limit any degradation of these materials.

5 CONCLUSIONS

Based on the findings of this report and within the limitations of geotechnical investigations, El considers the following geotechnical factors will influence the possible development of the site, including:

- Excavation adjacent to Cleveland Street, an RMS asset.
- Basement excavatability.
- Basement excavation retention to prevent potential lateral deflections and ground loss as a result of excavations.

In summary, and considering the limitations of geotechnical investigations, EI considers there is a low risk of geotechnical conditions preventing the proposed development if the recommendations of this report are considered for the preliminary design and construction of the development.

6 RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES

The adopted investigation scope was limited by the investigation intent and by the presence of structures at the site during the investigation. This PGI report will need to be supplemented with additional cored boreholes given the scale of the proposed development.

Further geotechnical investigations should be carried out to confirm the results and address any limitations prior to adoption of the recommendations of this report for detailed design. These investigations should be carried out once preliminary design and construction details are available and should include:

For Design Phase

- For the design of the excavation adjacent to Cleveland Road consider the guidance and additional investigation requirement given in RMS technical directive GTD2012/001 Excavations adjacent to RMS Infrastructure.
- The rock classifications for material encountered at foundation level may be improved on the basis of consistent rock quality encountered in additional boreholes. Should higher bearing pressures be required for foundation design, at least three additional deep cored boreholes to 5 m below foundation level should be drilled to confirm the quality of Shale in Table 4-1.
- Ongoing monitoring of existing groundwater monitoring wells should be undertaken to determine hydrogeological conditions.
- Stress-strain dependent analysis of basement retention systems should be undertaken for final design to determine expected deflections and interaction with adjacent structures.
- All excavated material transported off site should be classified in accordance with NSW EPA 2014 Waste Classification Guideline Part 1; Classifying Waste.

For Construction Phase

- Dilapidation surveys should be carried out on existing structures that may be impacted by any proposed excavations, particularly where located within the zone of influence of excavations. These surveys should be carried out by a qualified structural engineer and/or geotechnical engineer prior to and following completion of construction works.
- Working platforms for construction plant, placed on in-situ materials or on engineered fill, should be designed by an experienced and qualified geotechnical engineer.
- A suitably qualified geotechnical engineer is to assess the condition of exposed material at foundation or subgrade level to assess the ability of the prepared surface to act as a foundation or as a subgrade.
- Ongoing monitoring of ground vibrations, settlements and lateral movements in conjunction with survey results should be carried out during basement excavation.
- Regular inspections of battered and unsupported excavations where localised excavations are proposed, to confirm inferred geotechnical conditions, to assess the suitability of design assumptions and to provide further advice with regards to excavation retention/ support and proposed construction methodologies, if required.

7 STATEMENT OF LIMITATIONS

The adopted investigation scope was limited by site access restrictions due to site conditions at the time of our investigation and by the investigation intent. The advice and parameters presented in this PGI report are intended for the development of initial concept designs for the development. Further geotechnical investigation should be carried out before final design to confirm both the geotechnical model and the preliminary design parameters provided in this report.

We draw your attention to the document "Important Information", which is included in **Appendix** C of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by EI, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact EI.

8 **REFERENCES**

AS1170.4:2007, Structural Design Actions, Part 4: Earthquake Actions in Australia, Standards Australia.

AS1726:1993, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling - Design and Installation, Standards Australia.

AS2870:2011, Residential Slabs and Footings, Standards Australia.

AS3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Chapman, G.A. and Murphy, C.L. (1989), Soil Landscapes of the Sydney 1:100000 sheet. Soil Conservation Services of NSW, Sydney.

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

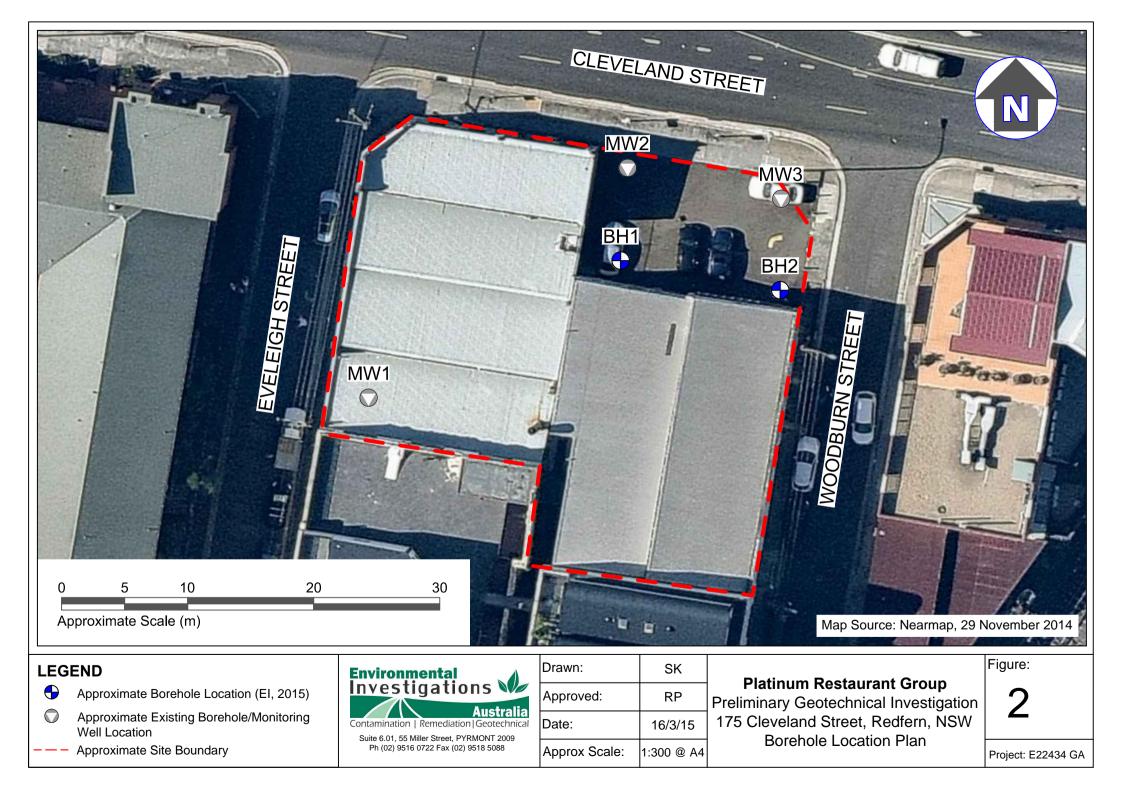
NSW Office of Water, Continuous Water Monitoring Network, http://realtimedata3.water.nsw.gov.au/water.stm.

Pells (2004) Substance and Mass Properties for the Design of Engineering Structures in the Hawkesbury Sandstone, Australian Geomechanics Journal, Vol 39 No 3.

Pettifer and Fookes 1994, A Revision of the Graphical Method for Assessing the Excavatability of Rock, Quarterly Journal of Engineering Geology and Hydrogeology.

9 ABBREVIATIONS


AHD	Australian Height Datum
BGL	Below Ground Level
BH	Borehole
DP	Deposited Plan
EI	Environmental Investigations
EPA	NSW Environmental Protection Agency
NATA	National Association of Testing Authorities, Australia
NOW	NSW Department of Primary Industries, Office of Water
PGI	Preliminary Geotechnical Investigation
RMS	NSW Roads and Maritime Services



Preliminary Geotechnical Investigation 175 Cleveland Street, Redfern, NSW Report No. E22434 GA, 18 March 2015

FIGURES

Preliminary Geotechnical Investigation 175 Cleveland Street, Redfern, NSW Report No. E22434 GA, 18 March 2015

APPENDIX A

BOREHOLE LOG REPORTS AND EXPLANATORY NOTES

Environmental Investigations Australia Contamination | Remediation | Geotechnical

BOREHOLE: BH1

Project Location Position Job No.

Client

New Mixed-use Development 175 Cleveland Street, Redfern, NSW Refer to Figure 2 E22434 Platinum Restaurant Group

333588.1 m East 6248688.1 m MGA94 Zone 56 North Contractor Traccess Drilling Pty Ltd Drill Rig Inclination

MultiDrill 4000 -90°

1 OF 1 Sheet Date Started 25/2/15 Date Completed 25/2/15 Logged SK Date: 25/2/15 Checked RP Date: 16/3/15

		Dril	ling		Sampling								
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	F/		0 —				\bowtie	- /	FILL: ASPHALT; 70 mm.		1	ROAD SURFACE	
	E-F		-		SPT 0.50-0.95 m 2,2,2 N=4 BH1_0.5-0.95			-	FILL: Gravelly SAND; fine to medium grained, black, gravel is fine to coarse, subangular bluestone and brick gravel, trace ceramics.		-	FILL	
			2	<u>1.50</u> 2.50	SPT 1.50-1.95 m 1,2,3 N=5 BH1_1.5-1.95			CI	Sandy CLAY; medium plasticity, pale brown to brown, sand is fine grained.		F	RESIDUAL SOIL	
AD/T	E		-		SPT 3.00-3.45 m 5.8,10 N=18 BH1_3.0-3.45				From 2.5 m, grey mottled red, no sand.	D	VSt		
			4	4.50	SPT 4.50-4.95 m 5,20,20 N=40 BH1_4.5-4.95			-	SHALE; red brown, inferred extremely low strength, inferred extremely weathered.			WEATHERED ROCK	
C0-70-6112 C0-1 4	F		6	5.50 6.00	SPT 6.00-6.10 m				From 5.5 m, dark brown.		-		
			-	7.00	10 HB BH1_6.0-6.10				From 7.0 m, dark grey.	w			
			8						Hole Terminated at 7.50 m Terminated due to rig failure. Backfilled with drilling spoil and concrete capped.				
			- - 10 —										
			-										
			12—		This boreho	ole log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accor	npanying standard notes.	

Environmental Investigations **BOREHOLE: BH2** Australia Project New Mixed-use Development Remediation Location 175 Cleveland Street, Redfern, NSW East 333601.2 m Sheet 1 OF 2 6/3/15 Date Started Position Refer to Figure 2 North 6248686.7 m MGA94 Zone 56 6/3/15 Job No. E22434 Contractor Terratest Pty Ltd Date Completed Logged SK Date: 6/3/15 Client Platinum Restaurant Group Drill Rig MCT-200 Checked RP Date: 16/3/15 Inclination -90° Drilling Sampling **Field Material Description** PENETRATION RESISTANCE MOISTURE CONDITION CONSISTENCY DENSITY JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL GRAPHIC LOG SAMPLE OR SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) FIELD TEST OBSERVATIONS DEPTH RL 0 ROAD SURFACE F FILL: ASPHALT; 50 mm FILL FILL: SAND; medium to coarse grained, brown, with some fine to coarse, subrounded gravel. 0.50 р SPT 0.50-0.95 m FILL: Clayey SAND; fine to medium grained, grey to brown, clay is of high plasticity, trace ceramics. 5,3,2 N=5 BH2_0.5-0.95 Е D -M 1.60 SPT 1.50-1.95 m From 1.60 to 1.65 m, with some ash. 1.80 0,0,1 N=1 RESIDUAL SOIL Sandy CLAY; medium plasticity, grey mottled red, sand is fine to medium grained. BH2_1.5-1.80 BH2_1.8-1.95 PP =225-255 kPa 2 D VSt 2.50 SHALE; grey, inferred extremely low to very low strength, inferred extremely weathered. WEATHERED ROCK SPT 3.00-3.45 m 8,16,17 HB N=33 BH2_3.0-3.45 GWNE AD/T F 4 -SPT 4.50-4.95 m 6,14,18 HB N=32 BH2_4.5-4.95 -5.50 FIA 1 03 2014-07-05 ROCK From 5.5 m, inferred very low to low strength, inferred distinctly weathered. н 6 SPT 6.00-6.13 m 10 HB BH2 6.0-6.13 16/03/2015 15:45 8:30.004 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Pri: 6.50 Continued as Cored Borehole 8 <<DrawingFile>> 10 30 REHOLE 3 E22434 GP.I 0 11 S 12 11B 1 03 GLB This borehole log should be read in conjunction with Environmental Investigations Australia's accompanying standard notes. ₹

Environmental Investigations			BOR	EHOLE:	BH2
Australia Contamination Remediation Geotechnical	ProjectNew Mixed-use DevelopmentLocation175 Cleveland Street, Redfern, NSWPositionRefer to Figure 2Job No.E22434ClientPlatinum Restaurant Group	East North Contractor Drill Rig Inclination	333601.2 m 6248686.7 m MGA94 Zone 56 Terratest Pty Ltd MCT-200 -90°	Sheet Date Started Date Completed Logged SK Checked RP	2 OF 2 6/3/15 6/3/15 Date: 6/3/15 Date: 16/3/15
Drilling	Field Material Description		Defect	Information	
METHOD WATER WATER Rob (SCR) Metres)	ROCK / SOIL MATERIAL DESCRIPTION	SN INFERRED STRENGTH Is (50) MPa	I DEFECT DESCRIP & Additional Observe	TION	AVERAGE DEFECT SPACING (mm)
UNU VIU VIU VIU VIU VIU VIU VIU VI	Continuation from non-cored borehole SHALE: dark grey, returned as stiff to very stiff, high plasticity sandy clay. SHALE: bedding dipping 0-5 degrees, <1 mm thick, dark grey. Hole Terminated at 11.00 m Target Depth Reached. Backfilled with drilling spoil and concrete capped.	XW DW SW FR	6.63-6.68: BPx2 0° PR S CN 6.63-6.68: BPx2 0° PR S CN 6.84: JT 20° ST RF Fe SN 6.90-7.02: BPx6 0- 5° PR RF Fe SN 7.03-7.06: JT 45° PR RF Fe SN 7.06-7.09: JT 50° PR RF Fe SN 7.06-7.09: JT 50° PR RF Fe SN 7.24-7.32: JT 60° IR RF Fe SN 7.34-7.35: JT 20° PR RF FC N 7.50-7.67: JT 60° PR RF FC N 7.50-7.67: JT 60° PR RF CN 7.50-7.67: JT 60° PR RF CN 7.58-80° CS 20 mm, f-m, wedged 8.13: BP 5° PR RF CN 8.30-8.34: JTx2 30 - 40° PR RF CN 7.88-80° CS 20 mm, f-m, wedged 8.13: BP 5° PR RF CN 8.30-8.34: JTx2 30 - 40° PR RF CN 9.31: JT 90° PR RF CN 9.31: JT 90° PR RF CN 9.32: BP 0° PR RF CN 9.33: BP 0° PR RF CN 9.34: JT 10° PR RF CN 9.35: BP 0° PR RF CN 9.35: BP 0° PR RF CN 10.54-10.57: JT 35° PR RF CN 10.54-10.57: J	SN avg sp = 20-30	

REPORT OF BOREHOLE: BH2

Project: New Mixed-use Development Location: 175 Cleveland Street, Redfern, NSW Position: Refer to Figure 2 Job No. : E22434 Client: Platinum Restaurant Group East: 333601.2 m North: 6248686.7 m MGA94 Zone 56 Inclination: -90° Box: 1 of 1 Hole Depth: 11.00 m Depth Range: 6.50 m to 11.00 m Contractor: Terratest Pty Ltd Drill Rig: MCT-200 LOGGED: SK DATE: 6/3/2015 CHECKED:RP DATE: 16/3/2015

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

Contamination Remediation Geotec	inical					
DRILLING/EXCAVATIO	N METHOD					
HA Hand Auger	•	RD	Rotary blade	or drag bit	NQ	Diamond Core - 47 mm
DTC Diatube Cor	ing	RT	Rotary Tricon	e bit	NMLC	
NDD Non-destruc	tive digging	RAB	Rotary Air Bla	st	HQ	Diamond Core - 63 mm
AS* Auger Screw	wing	RC	Reverse Circu	ulation	HMLC	Diamond Core - 63mm
AD* Auger Drillin	ıg	PT	Push Tube		BH	Tractor Mounted Backhoe
*V V-Bit		СТ	Cable Tool Ri	g	EX	Tracked Hydraulic Excavator
*T TC-Bit, e.g.	ADT	JET	Jetting		EE	Existing Excavation
ADH Hollow Auge	er	WB	Washbore or	Bailer	HANE	D Excavated by Hand Methods
PENETRATION/EXCAV	ATION RESISTA	NCE				
	Denid nenetnetien	/				at ward
	. Rapid penetration					
			•	•		lerate effort from equipment used.
H High resistance	Penetration/ exca	vation is p	ossible but at a	slow rate and	requires si	gnificant effort from equipment used.
R Refusal/ Practic	al Refusal. No fu	rther prog	ress possible wi	thout risk of da	amage or u	nacceptable wear to equipment used.
These assessments are sub	jective and are dep	endent on	many factors, i	ncluding equip	ment powe	er and weight, condition of
excavation or drilling tools a				0 1 1	•	
WATER		b - · ·		~		inten lana
¥	Water level at date	e snown		\triangleleft	Partial w	vater loss
\triangleright	Water inflow				Complet	te water loss
GROUNDWATER NOT OBSERVED	Observation of gr or cave-in of the t			ent or not, was	s not possi	ble due to drilling water, surface seepage
GROUNDWATER NOT ENCOUNTERED						ater could be present in less permeable een left open for a longer period.
SAMPLING AND TESTI	NG					
seating 30/80mm RW HW BB Sampling DS BDS GS WS	Where practical r Penetration occu Penetration occu Hammer double Disturbed Sample Bulk disturbed Sa Gas Sample Water Sample	rred under rred under bouncing o e	r the rod weight the hammer ar	only		iterval are reported
U63	Thin walled tube	sample - r	number indicate	s nominal sam	ple diame	ter in millimetres
Testing FP FVS PID PM PP WPT DCP CPT CPTu	Field Permeabilit Field Vane Shea Photoionisation I Pressuremeter te Pocket Penetrom Water Pressure t Dynamic Cone P Static Cone Pene Static Cone Pene	r test expre Detector re est over se neter test e rests Penetromet etration tes	essed as uncorr ading in ppm ection noted expressed as in: ter test st	strument readi	ng in kPa	= peak value, sr = residual value)
RANKING OF VISUALL	Y OBSERVABLE				(for specif	fic soil contamination assessment
• • • •	le evidence of cont			R = A		atural odours identified
	vidence of visible co		on	R=B		n-natural odours identified
- 5	contamination			R = C	0	e non-natural odours identified
	ant visible contamin	ation		R = D		on-natural odours identified
ROCK CORE RECOVER				_		
TCR = Total Core Recov	rery (%)	SCR	= Solid Core Re	ecovery (%)		RQD = Rock Quality Designation (%)
$=\frac{\text{Length of core recevered}}{\text{Length of core recevered}}$		Σ Length	ofcylindrical co	re recevered	100 :	$=\frac{\Sigma \text{Axial Lenghts of core} > 100 \text{ mm}}{\text{Length of core mm}} \times 100$
$= \frac{\text{Lengh of core run}}{\text{Lengh of core run}}$	x 100 =	=	Lengh of core r	un X	100	Lengh of core run
MATERIAL BOUNDARI	ES	=	Lengh of core r	un A		Lengh of core run X 100

Environm Investi Contamination	gatior	Australia			N BORE		SOIL DESCE				
	FILL			RGANIC SO L, OH or Pt)	-	 	CLAY (CL, (CI or CH)			
		BLES or _DERS	**** **** **** **** ****	LT (ML or M	H)		SAND (SP o	or SW)			
20°2°	GRA GW)	VEL (GP or	Combinations sandy clay	of these basic s	ymbols may b	e used to	indicate mixed mater	ials such as			
Soil is broad	ly classifie	d and described in	STRATIGRAPHY Borehole and Test F aterial properties are	Pit Logs using th			en in AS1726 – 1993, ethods.	(Amdt1 –			
PARTICLE	SIZE CI	HARACTERISTI	CS	USCS SYMBOLS							
Major Divi	sion	Sub Division	Particle Size	Major D	ivisions	Symbol					
	BOULD	ERS	>200 mm	Е	e e	GW	Well graded grav				
	COBBL	ES	63 to 200 mm	COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are >2.mm	GP	sand mixtures, lit Poorly graded gra	vel and gravel-			
		Coarse	20 to 63 mm	0.0 ר	than 50 se grain >2.mm		sand mixtures, lit Silty gravel, gra				
GRAVE	EL	Medium	6 to 20 mm	dry n thar	arse	GM	mixtu	res.			
		Fine	2 to 6 mm	By of the set of the s	Mc CO	GC	Clayey gravel, gr mixtu	res.			
		Coarse	0.6 to 2 mm	COARSE GRAINED SOILS for than 50% by dry mass le 63mm is greater than 0.075	0% ains	SW	Well graded san sand, little o				
SAND)	Medium	0.2 to 0.6 mm	ARS than	More than 50% of coarse grains are <2 mm	SP	Poorly graded sand and grav sand, little or no fines.				
		Fine	0.075 to 0.2mm	ore to	e tha oarse re <2	SM	Silty sand, little o				
	SILT		0.002 to 0.075 mn	thar	Mor of cc al	SC	Clayey sand, mixtu				
		STICITY PROPE		S han		ML	Inorganic silts of very fine sands,	low plasticity, rock flour, silty			
, percent	30			FINE GRAINED SOILS re than 50% by dry mass st than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	or clayey fir Inorganic clays of plasticity, gravell clays, silt	low to medium y clays, sandy			
¹ 1 x:		CL CI .		RAINED 1 50% by 63mm is 0.075mm	Liq	OL	Organic silts an clays of low				
QNI	20		он	thar han		MH	Inorganic silts of	high plasticity.			
STICITY INDEX		OL or ML	MH MH	FINE GRAINED More than 50% by less than 63mm is 0.075mm	Liquid Limit > than 50%	CH OH	Inorganic clays of Organic clays of plastic	medium to high			
PLAST	20	30 40 50	60 70			PT	Peat muck and organic				
MOISTURI							organic	00110.			
Symbol	Term	Description									
D	Dry	•	Is are free flowing.	Clays & Silts may	y be brittle or	friable and	powdery.				
М	Moist		han in the dry condit			nd gravels	tend to cohere.				
W Moisture co	Wet		water. Sands and gra			r liquid lim	it (WL) [» much great	or than			
		than, « much less					it (WE) [» much great	er unari,			
CONSISTEN	ICY			DENSITY							
Symbol	Term		Shear Strength	Symbol	Term		Density Index %	SPT "N" #			
VS S	Very So Soft		12 kPa 25 kPa	VL	Very Loose	se	< 15 15 to 35	0 to 4 4 to 10			
F	Firm		50 kPa	MD	Medium De	nsity	35 to 65	10 to 30			
St	Stiff	50 to	100 kPa	D	Dense		65 to 85	30 to 50			
VSt H	Very Sti		200 kPa	VD	Very Den	se	Above 85	Above 50			
In the absend		esults, consistenc					served behaviour of t n pressure and equip				
MINOR CO											
Term		nent Guide				Pr	oportion by Mass				
Trace	or no diff	erent to general pr	y feel or eye but soil roperties of primary o	component							
Some			by feel or eye but so operties of primary o								

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

STRENGTH

Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
Н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

[#]Rock Strength Test Results

4

Point Load Strength Index, $Is_{(50)}$, Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $Is_{(50)}$, but can be as low as 5 MPa.

ROCK MATERIAL WEATHERING

Sym	bol	Term	Field Guide							
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.							
EW		Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.							
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or							
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.							
SW		Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.							
FR		Fresh	Rock shows no sign of decomposition or staining.							

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

		ESCRIP										
Layering					Stru							
Term		Descr	iption		Term				Spacing (mn			
Massive		No lav	ering apparent			-	inated	<6				
						nated		6 – 20				
Poorly Devel	oped		ring just visible; little effect on				bedded		20 - 60			
,		proper				y bed			60 - 200			
			yering (bedding, foliation, cleavage)				edded		200 - 600			
Well Develop	bed		listinct; rock breaks more easily arallel to layering				kly bedded 600 – 2,0 / thickly bedded > 2,00					
		-				UTICKI	y bedded		> 2,000			
				RDEFECTIVE	E9							
Defect Type		Abbr.	Description		<u> </u>							
Joint		JT	or no tensile str acts as cement.	ength. May be c	losed o	r filled	l by air, wate	r or soil	ross which the rock has littl or rock substance, which			
Bedding Par	ting	BP	sub-parallel to la	ayering/ bedding	. Beddi	ng ret	fers to the la	yering o	no tensile strength, parallel r stratification of a rock, ropy in the rock material.			
Foliation		FL	Repetitive plana	ar structure para	llel to th	e she	ar direction	or perpe	endicular to the direction of (SH) and Gneissosity.			
Contact		CO	The surface bet	ween two types	or ages	of ro	ck.					
Cleavage		CL	Cleavage planes appear as parallel, closely spaced and planar surfaces resulting from mechanical fracturing of rock through deformation or metamorphism, independent of bedding.									
Sheared Seam/ Zone (Fault)			spaced (often <	50 mm) parallel	and usi	ually s	smooth or sli	ckenside	ock substance cut by close ed joints or cleavage plane			
Crushed Sea Zone (Fault)		CS/CZ	with roughly par	Seam or zone composed of disoriented usually angular fragments of the host rock substance, with roughly parallel near-planar boundaries. The brecciated fragments may be of clay, silt, sand or gravel sizes or mixtures of these.								
Decompose Seam/ Zone		DS/DZ	Seam of soil su material in place		ith grac	lation	al boundarie	s, forme	ed by weathering of the roc			
Infilled Sean	1	IS	Seam of soil substance, usually clay or clayey, with very distinct roughly parallel boundaries, formed by soil migrating into joint or open cavity.									
Schistocity		SH	The foliation in schist or other coarse grained crystalline rock due to the parallel arrangement of platy or prismatic mineral grains, such as mica.									
Vein		VN	Distinct sheet-like body of minerals crystallised within rock through typically open-space filling or crack-seal growth.									
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE AN	D RO	UGHNESS					
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Des	cription					
Planar	PI	Consis	stent orientation	Polished	Pol	Shin	y smooth su	rface				
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	oved or striat	ed surfa	ace, usually polished			
Undulating	Un	Wavy	surface	Smooth	S	Smo	oth to touch	. Few or	no surface irregularities			
Stepped	St		r more well d steps	Rough	RF				ularities (amplitude genera coarse sandpaper			
Irregular	lr	in orie	sharp changes ntation	Very Rough	VR	>1m	m. Feels like	e very co	ularities, amplitude general barse sandpaper			
Drientation:			cal Boreholes – ned Boreholes –						the core axis.			
ABBREVIATI	ONS A	ND DES	CRIPTIONS FOR	R DEFECT COA	TING		DEFECT A	PERTUR	RE			
Coating	Abbr.	Descrip	otion				Aperture	Abbr.	Description			
Clean			le coating or infill	ing			Closed	CL	Closed.			
Stain	SNI	No visib	le coating but sui	faces are discol	oured b	y	Open		Without any infill material.			
Veneer		A visible	, often limonite (orange-brown) e coating of soil or mineral substance, usually to measure (< 1 mm); may be patchy				Infilled	-	Soil or rock i.e. clay, talc,			

Preliminary Geotechnical Investigation 175 Cleveland Street, Redfern, NSW Report No. E22434 GA, 18 March 2015

APPENDIX B

LABORATORY TEST CERTIFICATES

		F	POINT LC	AD STRE	NGTH 4133 4.1	INDEX	K RI	EPOR	Т											
Client:	Environme	ntal Investig	Moisture Content Condition:	As received																
Address:	: Suite 6.01, 55 Miller Street Pyrmont NSW 2009				Storage History:	Core Boxes														
Project:	175 Clevel	and Street, F	Redfern (E22434)		Report No:	S2439-PLT														
Job No:	S15056				Date Tested:	13/03/2015														
Test Proce	edure:	4	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength i	index														
Sampling:		Sampled by					Date	Sampled:		Unknown										
Preparatio	on:	Prepared in	accordance with the	test method																
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes										
62.420	0112	6 50 6 60	Courdatour a	Diametral	-	50.0	0.11	0.04	0.04											
S2439	BH2	6.50-6.60	Sandstone	Axial	50.0	43.0	0.10	0.04	0.04											
62440	0112	7 10 7 20	Ciltatara	Diametral	-	52.0	0.25	0.09	0.09											
S2440	BH2	7.10-7.20 Siltstone		Axial	52.0	47.0	1.48	0.47	0.50											
62.4.44	DUD												Ciltatara	Diametral	-	52.0	0.25	0.09	0.09	
S2441	1 BH2 8.20-8.30		Siltstone	Axial	52.0	38.0	0.85	0.34	0.34											
62442		0.20.0.40	20.0.40 Siltetone	Diametral	-	52.0	0.05	0.02	0.02											
S2442	BH2	9.30-9.40	Siltstone	Axial	52.0	42.0	0.64	0.23	0.24											
Comr	nents:						L													
The results of the tests, calibrations and/or measure document are traceable to Australian/national stand compliance with ISO/IEC 17025. This document she except in full.			standards. Accredited for		Authorised Signatory:				16/03/2015											
	NA	TA Accredite	ed Laboratory Num	ber: 14874		Chris Ll	oyd	·		Date:										
GEO	QUARIE TECH			Facility Name: Sydney E Facility Location: 8/10 E Site No.: 22365		xandria NSW 2	2015			Macquarie Geotechnical 3 Watt Drive BATHURST NSW 2795										

	SOIL CLASSIFI	CATION	NREPORT
Client:	Environmental Investigations	Source:	BH1 1.50-1.95m
Address:	Suite 6.01, 55 Miller Street Pyrmont NSW 2009	Sample Description:	sandy CLAY
Project:	175 Cleveland Street, Redfern (E22434)	Report No:	S2437-PI
Job No:	S15056	Lab No:	S2437
Test Proce Sampling:	AS1289 2.1.1 Soil moisture content tests (Oven dryin AS1289 3.1.1 Soil classification tests - Determination AS1289 3.1.2 Soil classification tests - Determination AS1289 3.2.1 Soil classification tests - Determination AS1289 3.2.1 Soil classification tests - Determination AS1289 3.2.1 Soil classification tests - Determination AS1289 3.3.1 Soil classification tests - Calculation of AS1289 3.4.1 Soil classification tests - Determination AS1289 3.4.1 Soil classification tests - Determination Sampled by Client Soil classification tests - Determination	n of the liquid limit of a so n of the liquid limit if a soil n of the plastic limit of a s i the plasticity Index of a s	il - One point Casagrande method (subsidiary method) soil - Standard method soil
Preparatio	n: Prepared in accordance with the test method		
	Liquid Limit (%): 31 Plastic Limit (%): 16 Fie Plastic Index: 15 Plasticity Chart for Classification	Linear Shri	ontent (%): 17.6
	$\begin{array}{c} 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 5 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \end{array}$	50 quid Limit %	Image: Single interview I
NAT	Soil Preparation Method: Soil History: Soil Condition: The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.	Oven Dried	Authorised Signatory: 16/03/2015
	NATA Accredited Laboratory Number: 14874		Chris Lloyd Date:
	Facility Name: Sydney Branch Site Location: 8/10 Bradford St, Alexandria NSW Site No.: 22365	/ 2015	Facility Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

	SOIL CLASSIFI	CATION	N REPORT
Client:	Environmental Investigations	Source:	BH2 4.50-4.95m
Address:	Suite 6.01, 55 Miller Street Pyrmont NSW 2009	Sample Description:	sandy CLAY
Project:	175 Cleveland Street, Redfern (E22434)	Report No:	S2438-PI
Job No:	S15056	Lab No:	S2438
Test Proce Sampling:	edure: ✓ AS1289 2.1.1 Soil moisture content tests (Oven dryin AS1289 3.1.1 Soil classification tests - Determination ✓ AS1289 3.1.2 Soil classification tests - Determination ✓ AS1289 3.2.1 Soil classification tests - Determination ✓ AS1289 3.2.1 Soil classification tests - Determination ✓ AS1289 3.3.1 Soil classification tests - Determination ✓ AS1289 3.3.1 Soil classification tests - Calculation of ✓ AS1289 3.4.1 Soil classification tests - Determination	n of the liquid limit of a so n of the liquid limit if a soil n of the plastic limit of a s i the plasticity Index of a s	vil - One point Casagrande method (subsidiary method) soil - Standard method soil
Preparatio	n: Prepared in accordance with the test method		
	Plastic Limit (%): 22 Fie Plastic Index: 16 Plasticity Chart for Classification	ld Moisture Co	
	$\begin{array}{c} 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 5 \\ 0 \\ 10 \\ 20 \\ 30 \\ 10 \\ 20 \\ 30 \\ 40 \\ Lie \\$	50 quid Limit %	Silt 60 70 80
NAT	Soil Preparation Method: Soil History: Soil Condition: The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.	Oven Dried	Authorised Signatory: 16/03/2015
	NATA Accredited Laboratory Number: 14874		Chris Lloyd Date:
	Facility Name: Sydney Branch Site Location: 8/10 Bradford St, Alexandria NSV Site No.: 22365	/ 2015	Facility Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

124935

Client: Macquarie Geotech 3 Watt Dr Bathurst NSW 2795

Attention: Chris Lloyd

Sample log in details:

Your Reference:	S15056, Refern		
No. of samples:	2 soils		
Date samples received / completed instructions received	11/03/15	/	11/03/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 18/03/15
 / 13/03/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

Client Reference: S15

S15056, Refern

Misc Inorg - Soil			
Our Reference:	UNITS	124935-1	124935-2
Your Reference		S2437	S2438
Depth		1.5-1.95	4.5-4.95
Type of sample		Soil	Soil
Sample ID		BH3	BH2
Date prepared	-	12/03/2015	12/03/2015
Date analysed	-	12/03/2015	12/03/2015
pH 1:5 soil:water	pH Units	6.4	5.3
Chloride, Cl 1:5 soil:water	mg/kg	20	<10
Sulphate, SO4 1:5 soil:water	mg/kg	240	82
Resistivity in soil*	ohmm	150	34

Client Reference: S15056, Refern

MethodID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity.

Client Reference: S15056, Refern									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Misc Inorg - Soil						Base II Duplicate II % RPD			
Date prepared	-			12/03/2 015	124935-1	12/03/2015 12/03/2015	LCS-1	12/03/2015	
Date analysed	-			12/03/2 015	124935-1	12/03/2015 12/03/2015	LCS-1	12/03/2015	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	124935-1	6.4 6.4 RPD:0	LCS-1	102%	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	124935-1	20 20 RPD:0	LCS-1	103%	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	124935-1	240 260 RPD:8	LCS-1	115%	
Resistivity in soil*	ohmm	1	Inorg-002	<1.0	124935-1	150 160 RPD:6	[NR]	[NR]	

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Preliminary Geotechnical Investigation 175 Cleveland Street, Redfern, NSW Report No. E22434 GA, 18 March 2015

APPENDIX C

IMPORTANT INFORMATION

Important Information

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client and Environmental Investigations ("EI"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

EI has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. EI has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, EI will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to EI.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.

The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. EI should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that EI be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. EI assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of EI or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

EI will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.