INSTRUCTIONS FOR COMPLETION

This form is to be used only if no other approved form is appropriate for the purpose, e.g., Application under section 46 (c) Real Property Act, 1900; Application under section 12 (4) Trustee Act, 1925-1942.

When so required under the Stamp Duties Act, 1920, this dealing should be marked by the Commissioner of Stamp Duties before lodgment at the Registrac General's Office.

Typewriting and handwriting should be clear, legible and in parmanent black non-copying ink.

Alterations are not to be made by erasure; the words rejected are to be ruled through and initialled by the applicant.

If the space provided is insufficient, additional sheets of the same size and quality of paper and having the same margins as this form should be used. Each additional sheet must be identified as an annexture and signed by the applicant and the attesting witness.

Rule up all blanks.

The following instructions relate to the side notes on the form:

- (a) Description of land. (If the application is only in respect of a registered dealing, rule through this panel.)
 - (i) TORRENS TITLE REFERENCE—lesser the current Folio Identifier or Volume and Folio of the Cartificate of Title/Crown Gra Fol. (24. Title references aboutd be listed in numerical sequence.

 - Fel. [25: ATILIS references should be listed in numerical sequence.

 (ii) PART/WHOLE—If part only of the land in the folio of the Register is the subject of the application.—Interest the locality shows on the Cartificate of Title/Crown Grant, e.g., at Chu re. If the locality is as
- (b) Registered dealing: (If the application is only in respect of a certificate of title, rule through this panel.) Show the registered number of the lesse, mortgage or charge, and the title reference affected thereby, e.g., Lesse—Q123456—Vol. 3456 Fol. 124.
- (c) Show the full name of the registered proprietor as recorded on the Register.
- (d) Strike out "land above described" or "abovementioned registered dealing", whichever does not apply.
- (e) Show the full name, address and occupation or description of the person(s) to be registered as proprietor(s).
- (f) Set out the terms of the request, e.g., consequent upon the appointment of, etc.
- (g) Execution.
 - GENERALLY (i) Should there be insufficient space for a
 - 1 2 44 ATTORNEY
 - Book No. and I declare that I have no notice of the revocation of the seld (iv) If the application is executed persuant to an authority (other than specified in (iii)) the form of to the application has been executed. AUTHORITY :
 - CORPORATION (v) If the application is executed by a control of the corporation of the corpor
- (h) insert the name, postal address. Document Exchange reference, telephone number and delivery box number of the lodging party.
- The lodging party is to complete the LOCATION OF DOCUMENTS panel. Place a tick in the appropriate box to indicate the whereabouts of the Certificate of Title. List, in an abbreviated form, other documents lodged, e.g., stat. dec. for statutory declaration.

OFFICE USE ONLY

DIRECTION: PROP FIRST SCHEDULE DIRECTIONS (D)] (E) NAME AND DESCRIPTION B) No. (C) SHARE **经过的股份的现在分词** SCHEDULE AND OTHER DIRECTIONS FOLIO IDENTIFIER DIRECTION DETAILS

REQUEST

Real Property Act 1900

(A) STAMP DUTY If applicable.

(B) TITLE

Show no more than 20.

SEE ANNEXURE "A"

(C) REGISTERED DEALING
If applicable.

(D) LODGED BY

L.T.O. Box 786E	Name, Address or DX and Telephone SHAW McDONALD, 8th Floor, 179 Elizabeth Street, Sydney DX 916 Sydney. Tel: 264 9111 Olympic REFERENCE (max 15 characters): TE:883686	Dealing Code R
L	KITEKENCE (max 15 characters). 121.00000	

(E) APPLICANT

OLYMPIC CO-ORDINATION AUTHORITY

(F) REQUEST

HOMEBUSH BAY DEVELOPMENT CORPORATION is presently recorded as registered proprietor of the land above described. The Applicant requests the Registrar General to record OLYMPIC CO-ORDINATION AUTHORITY as registered proprietor of the land above described pursuant to Section 39 and, in particular, clauses 7 and 9 of Part 2 Division 2 and clauses 11, 12 and 13 of Part 2 Division 3 of Schedule 2, of the Olympic Co-Ordination Authority Act 1995 which was assented to on 9 June, 1995 and which was proclaimed to commence on 30 June, 1995.

THIS IS THE ANNEXURE MARKED WITH THE LETTER "A" REFERRED TO IN THE ATTACHED REQUEST DATED 20th November , 1995 MADE BY THE OLYMPIC CO-ORDINATION AUTHORITY

TORRENS TITLE REFERENCES

FOLIO IDENTIFIERS 101/849975; 102/849975; 2/831539; 4/831539: 5/831539: 6/831539: 7/831539· 1/840154: 11/831538; 50/747909: 52/747909: 56/773763· 57/773763; 58/786296· 59/786296· 60/786296; 70/818981; 71/818981: 72/818981; 73/818981· 74/818981· 22/787402: 24/787402; 3/740790; 54/749222· 25/793595; 26/793595; 302/541070; 4/774130; 6/774130; 7/774130 AND 8/774130.

Signed in my presence by the Director-General who is personally known to me

Signature, of Witness

TERRY H-KINS.
Name of Witness (BLOCK LETTERS)

QCA OFFICES HOMEBUSH

Address of Witness

Signature of Director-General OLYMPIC CO-ORDINATION AUTHORITY

(G)

STANDARD EXECUTION

Certified correct for the purposes of the Real Property Act 1900. Director-General Signed in my presence by the Applicant who is personally known to re-	DATE John Novemberl, 1995 ne.
Signature of Witness FRAN JULIUS Name of Witness (BLOCK LETTERS) C.C.A. OFFICES HOMOBUSH. Address of Witness	Signature of Application Signature of Application AUTHORITY
EXECUTION INCLUDING STAT	UTORY DECLARATION
I make this solemn declaration conscientiously believing the same to Application correct for the purposes of the Real Property Act 1900. M.	-
in the State of	
Signature of Witness	
Name of Witness (BLOCK LETTERS)	
Address and Qualification of Witness	Signature of Applicant

Ref:mg /Src:T 58762045 Form: 97-07SL SUB-LEASE Licence: 10V/0901/98 **New South Wales** Edition: 9804 Real Property Act 1900 STAMP DUTY Office of State Revenue use only OFFICE OF STATE REVENUE (N.S.W. TREASURY) P5 (A) HEAD LEASE U550950 TORRENS TITLE Property leased: if appropriate, specify the part or premises Certificate of Title Folio Identifier 22/787402 PART being the premises shown on the plan annexed hereto marked "A" and thereon described as "Substation Premises No 425 'Figtre Australia" hereinafter called the "demised premises" together with right of way and easement referred to in Clauses 1 and 2 of Annexure "B" hereto. (C) LODGED BY LTO Box Name. Address or DX and Telephone CODE Legalities Reference (optional): BP/MAJ:982071 (D) SUB-LESSOR NEW SOUTH WALES LOTTERIES CORPORATION (formerly NSW Lotteries) The sub-lessor leases to the sub-lessee the property referred to above. (E) Encumbrances (if applicable): 1. 2. 3. SUB-LESSEE **ENERGYAUSTRALIA** (G) TENANCY: (H) 1. TERM: 50 years at an annual rental of 10c per annum payable at the expiration of the said term

COMMENCING DATE:

1 OCTOBER 1998

(if demanded)

3. TERMINATING DATE:

30 SEPTEMBER 2048

4. With an OPTION TO RENEW for a period of

5. Together with and reserving the RIGHTS set out in Annexure "B" hereto

6. Incorporates the provisions set out in ANNEXURE'B"

hereto.

7. Incorporates the provisions set out in MEMORANDUM filed in the Land Titles Office as No. W578000

> Page 1 of number additional pages sequentially

Checked by (LTO use):

Evidence allacked.

Ref:mg /src:T // (1) We certify this dealin	ng correct for the purposes of the Real Property Act 1900.	DATE: 17/5/99
-Signed in my present	se by the sub-lessor who is not small known to me	DAIL.
	se by the sub-lessor with temptative the me.	
-Signature of witness:	Signature of	
Name of witness:	NOTAMORAL	SECRETARY BRIAN MCINTYRE
-Address of witness:	- Mallowell Where applied	able, complete-the statutory declaration below
	CHIEF EXECUTIVE OFFICER	
	MICHAEL HOWELL	
- Signed in my presence	e by the sub-lessee who is personally known to me	
-Signature of witness:	Signature of a	ut tosses
	- Signature of s	HIO-ICSSEE:
-Name of witness:	SIGNED SEALED AND DELIVERED for and on behalf of ENERGYAUSTRALIA	
-Address of witness:	by JOHN EISENHUTH	
8 1	its duly constituted Attorney pursuant to Power of Attorney registered Book 4197 No 593	3
×	110.m	
	J. C. Canillai	17/5/99
STATUTORY DECLARA	ITION	17/5/99
I solemnly and sincere		
1. The time for the ex	xercise of option to renew in expired sub-lease No.	has ended:
	hat sub-lease has not exercised the option:	
	sub-lease extending the term has not been entered into.	
I make this solemn dec	claration conscientiously believing the same to be true and	d by virtue of the Oaths Act 1900.
Made and subscribed a	in the State of	on
in the presence of—		
Signature of witness:	Signature of su	ih lessor
	oignature of so	10-163801.
Name of witness:		
Address of the		
Address of witness:		
Qualification of witness	s:	

ANNEXURE "B" TO MEMORANDUM OF SUB-LEASE MADE THE 17th DAY OF MAY 1999 BETWEEN NEW SOUTH WALES LOTTERIES CORPORATION AS SUB-LESSOR and ENERGYAUSTRALIA AS SUB-LESSEE

The Sub-Lessee shall have the benefit of the following rights and liberties;

- 1. The Sub-Lessee shall have full right and liberty for its officers servants workmen agents and contractors with or without tools materials plant and other apparatus and vehicles to pass and repass at all times of the day or night during the term hereby created over the land marked "Right of Way (6 WIDE) (1.0 WIDE) (7.6 WIDE)" on the plan annexed hereto and marked with the letter "A" (hereinafter referred to as "right of way") and during such times as the Sub-Lessee considers necessary to park vehicles upon the said right of way PROVIDED HOWEVER that access for the Sub-Lessor its agents tenants or licensees is not unnecessarily impeded.
- 2. The Sub-Lessee shall have full right liberty and licence for its officers servants workmen agents and contractors during the term hereby created to construct lay down dismantle replace repair renew and maintain underground/overhead electricity cables through beneath or over the land marked "Easement for Electricity Purposes 2 WIDE" on the plan annexed hereto and marked with the letter "A" (hereinafter referred to as "easement") AND ALSO free and uninterrupted passage of electricity through the cables within the said easement.

SIGNED FOR & ON BEHALF OF NEW SOUTH WALES LOTTERIES CORPORATION

SIGNED FOR & ON BEHALF OF ENERGYAUSTRALIA

10 New South Wales Lotteries Corporation same entity as New South Wales Lotteries

- (1) On the dissolution of New South Wales Lotteries, New South Wales Lotteries Corporation is taken for all purposes, including the rules of private international law, to be a continuation of and the same legal entity as New South Wales Lotteries.
- (2) This clause does not affect any transfer of assets, rights and liabilities under Part 2 of this Act.

[Minister's second reading speech made in— Legislative Assembly on 18 September 1996 Legislative Council on 29 October 1996]

BY AUTHORITY

REGISTRATION DIRECTION ANNEXURE

Use this side only for Second Schedule directions

DO NOT USE BOTH SIDES OF THE FORM

FIRST SCHEDULE DIRECTIONS

FOLIO IDENTIFIER	DIRECTION	DETAILS
	1	
		The same of the sa
	-	
	1	Annual Control of the

SECOND SCHEDULE AND OTHER DIRECTIONS

FOLIO IDENTIFIER	DIRECTION	NOTFN TYPE	DEALING NUMBER	DETAILS
22/87402	undr	_	4550950	
	on	UCL		to Energy Australia of Sub-station Premises No
	- Vin			sub-station Premises No
				425 together with Right
				of Wow & easement for
				electricity purposes affecting another part of
				affecting another part of
				THE ICHA above acscribed
			*	shown in plan with
				5876204 EXPIRES 30/9/2048
			74.4	EXPIRES 30/9/2048
		-	***************************************	Trini male non male

			2 111.00	
			10.80	

Ref:mg /Src:T Form: e - 11R. Release: 1.1

www.lpi.nsw.gov.au

REQUEST

New South Waies Real Property Act 1900

		PRIVACY NOTE: this information is legally required and will bec AA228277					
(A)	STAMP DUTY	If applicable, Office of State Revenue use only					
(B)	LAND	Tomens Title see Annexure A & Annexure B					
(C)	REGISTERED DEALING	Number Torrens Title					
(D)	LODGED BY	Delivery Box Sydney Olympic Park Authority (Attention: Pater Gray) 7 Figtree Drive, Sydney Olympic Park NSW 2127 Phone: 9714 7226					
		Reference (optional): AUSTRALIA CENTRE					
(E)	APPLICANT	Sydney Olympic Park Authority					
(F)	NATURE OF REQUEST	Cancel th	he same Second Schedule notif	fications on 26 Folios of the	Register		
		Section :	32(6) RPA Act 1900 on the bas	sis of Section 10(3) SOPA Act	2001		

(G) TEXT OF REQUEST

Section 10(3) of Sydney Olympic Park Authority Act 2001 extinguished encumbrances highlighted orange on "Sydney Olympic Park Authority, Redundant Encumbrances, Drawing Number HS-J-L-007" which is filed with minute paper vide Dealing No. 9839294.

Encumbrance "AN" shown in the above mentioned drawing is "Restriction on the use of land (DP 740790)" which benefits and burdens the land described in Annexures A & B of this Request and which is thirdly and fourthly referred to in DP 740790 and varied by Dealing No. X483077.

The Registrar-General is requested to cancel the recording of DP 740790 Restriction(s) on the Use of Land and X483077 Variation of Restriction as to User on the land described in Annexures A & B of this Request utilising Section 32(6) Real Property basis of Section 10(3) Sydney Olympic Park Authority Act 2001.

DATE

28.08.03

I certify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence.

Signature of witness:

Name of witness: Address of witness:

7 Figtree Drive

Sydney Olympic Park 2127

Certified correct for the purpo Property Act 1900 by the appl

Signature of applicant:

BRIAN NEWMAN

Common Sea

Annexure A

Torrens Title

Former Lot Number in DP 740790

1.	24/787402	2
2.	25/793595	2
3.	26/793595	2
4.	6001/1018860 🗗	2
5.	22/787402	4
6.	50/747909	5
7.	52/747909	5
8.	54/749222	5
9.	56/773763	5
10.	57/773763	5
11.	58/786296	5
12.	59/786296	5
13.	60/786296	5
14.	4/774130 y	6
15.	70/818981	6
16.	82/855929 .	6
17.	84/855929	6
18.	87/870992	6
19.	88/870992 ✓	6
20.	78/875562	6

DATE 28.08.03

I certify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence.

Signature of witness:

Name of witness: Address of witness: PETER GRAY

7 Figtree Drive Sydney Olympic Park 2127

Certified correct for the purposes of the Real Property Act 1900 by the applicant.

Signature of applicant:

Annexure B

Torrens Title Former Lot Number in DP 740790 79/875562 1. 6 2. 811/1012563 6 3. 812/1012563 6 4. 813/1030022 6 5. 814/1030022 6 815/1030022 6. 6

DATE 28.08.03

I certify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence.

Signature of witness:

Name of witness: Address of witness: PETER GRAY

7 Figtree Drive

Sydney Olympic Park 2127

THE COMMON Seal TY OF A GOVERNMENT

Certified correct for the purposes of the Real Property Act 1900 by the applicant.

Signature of applicant:

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 22/787402

SEARCH DATE	TIME	EDITION NO	DATE
	-		Per lan err 100
1/7/2014	9:42 PM	8	28/7/2010

LAND

LOT 22 IN DEPOSITED PLAN 787402
AT HOMEBUSH
LOCAL GOVERNMENT AREA AUBURN
PARISH OF CONCORD COUNTY OF CUMBERLAND
TITLE DIAGRAM DP787402

FIRST SCHEDULE

SYDNEY OLYMPIC PARK AUTHORITY

(AP 8208818)

SECOND SCHEDULE (5 NOTIFICATIONS)

1 LAND EXCLUDES MINERALS (S.134 PUBLIC WORKS ACT, 1900)

- 2 EASEMENT(S) APPURTENANT TO THE LAND ABOVE DESCRIBED CREATED BY:
 L827059 RIGHT OF WAY (DP235225)
- 3 EASEMENT(S) AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM CREATED BY:

DP774130 TO DRAIN WATER 3 WIDE

- 4 5876204 LEASE TO ENERGY AUSTRALIA OF SUB-STATION PREMISES
 NO 425 TOGETHER WITH RIGHT OF WAY & EASEMENT FOR
 ELECTRICITY PURPOSES AFFECTING ANOTHER PART OF THE
 LAND ABOVE DESCRIBED SHOWN IN PLAN WITH 5876204.
 EXPIRES: 30/9/2048.
- 5 AF551228 LEASE TO NEW SOUTH WALES LOTTERIES CORPORATION OF 2 FIGTREE DRIVE, SYDNEY OLYMPIC PARK EXCLUDING LEASE 5876204. EXPIRES: 29/3/2013. OPTION OF RENEWAL: 1 PERIOD OF 2 YEARS AND 7 PERIODS OF 5 YEARS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

PRINTED ON 1/7/2014

mg

*ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER.

Appendix F - Council Records

1 Susan Street, P.O. Box 118, Auburn NSW Australia 1835

Telephone: 9735 1222 Facsimile: 9643 1120

ABN 63 914 691 587

JBS & G Australia Pty Limited Level 1 50 Margaret Street SYDNEY NSW 2000

PLANNING CERTIFICATE

Issued under Section 149(2) of the Environmental Planning and Assessment Act, 1979

 Certificate No:
 21371

 Receipt No:
 853130

 Date:
 7 July 2014

 Your Reference:
 43567

MBATTAM:12189

Property Details

Address: 2 Figtree Drive, SYDNEY OLYMPIC PARK NSW 2127

Legal Description: Lot 22 DP 787402

Owner(s) Name (as recorded by Council):

Sydney Olympic Park Authority 2 Figtree Drive SYDNEY OLYMPIC PARK NSW 2127

In accordance with the requirements of Section 149(2) of the *Environmental Planning and Assessment Act, 1979* (as amended), the following prescribed matters relate to the land at the date of this certificate.

Note: The information contained in Planning Certificates issued for a lot within Strata-Titled development relates to the land the development is situated on.

1. Names of Relevant Planning Instruments and DCPs

The name of:

- (a) each environmental planning instrument that applies to the carrying out of development on the land.
- (b) each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).
- (c) each development control plan that applies to the carrying out of development on the land.

In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

1(a) State Environmental Planning Policy (Major Development) 2005.

Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005.

Certificate No. 21371 Page 2 of 10

State Environmental Planning Policy No. 4	Development without Consent and Miscellaneous Exempt and Complying Development.
State Environmental Planning Policy No. 6 State Environmental Planning Policy No. 19	Number of Storeys in a Building. Bushland in Urban Areas.
State Environmental Planning Policy No. 21	Caravan Parks.
State Environmental Planning Policy No. 22	Shops and Commercial Premises.
State Environmental Planning Policy No. 30	Intensive Agriculture.
State Environmental Planning Policy No. 32	Urban Consolidation (Redevelopment of Urban Land).
State Environmental Planning Policy No. 33	Hazardous and Offensive Development.
State Environmental Planning Policy No. 50	Canal Estate Development.
State Environmental Planning Policy No. 55	Remediation of Land.
State Environmental Planning Policy No. 62	Sustainable Aquaculture.
State Environmental Planning Policy No. 64	Advertising and Signage.
State Environmental Planning Policy No. 65	Design Quality of Residential Flat Development.
State Environmental Planning Policy No. 70	Affordable Housing (Revised Schemes).
State Environmental Planning Policy	(Affordable Rental Housing) 2009
State Environmental Planning Policy	Building Sustainability Index: BASIX 2004
State Environmental Planning Policy	(Major Development) 2005
State Environmental Planning Policy	(Exempt and Complying Development Codes) 2008
State Environmental Planning Policy	(Infrastructure) 2007
State Environmental Planning Policy	(Mining, Petroleum Production and Extractive Industries) 2007
State Environmental Planning Policy	(Housing for Seniors or People with a Disability) 2004
State Environmental Planning Policy	(State and Regional Development) 2011
State Environmental Planning Policy	(Temporary Structures) 2007

- 1(b) Draft State Environmental Planning Policy (Competition) 2010
- 1(c) There are no development control plans applying to the land.

2. Zoning and Land Use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

- (a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No. 2(a)"),
- (b) the purpose for which the plan or instrument provides that development may be carried out within the zone without the need for development consent,
- (c) the purposes for which the plan or instrument provides that development may not be carried out within the zone except with development consent,
- (d) the purposes for which the plan or instrument provides that development is prohibited within the zone,
- (e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed,
- (f) whether the land includes or comprises critical habitat,
- (g) whether the land is in a conservation area (however described),
- (h) whether an item of environmental heritage (however described) is situated on the land.

Certificate No. 21371 Page 3 of 10

(a) The land is excluded land under Auburn Local Environmental Plan 2010. The land zoning and land use provisions of State Environmental Planning Policy (Major Development) 2005 apply to the land.

The State Environmental Planning Policy (Major Development) 2005 may be obtained via the internet from www.legislation.nsw.gov.au or by contacting NSW Department of Planning.

- (b) Refer to State Environmental Planning Policy (Major Development) 2005.
- (c) Refer to State Environmental Planning Policy (Major Development) 2005.
- (d) Refer to State Environmental Planning Policy (Major Development) 2005.
- (e) There are no development standards applying to this land that fix a minimum land dimension for the erection of a dwelling-house.
- (f) The land does not include or comprise critical habitat.
- (g) The land is not located within a Heritage Conservation Area under the provisions of State Environmental Planning Policy (Major Development) 2005.
 - The land is not located within an Environmental Conservation Area under the provisions of State Environmental Planning Policy (Major Development) 2005.
- (h) The land has not been identified as containing an item of environmental heritage significance under the provisions of State Environmental Planning Policy (Major Development) 2005.

3. Complying Development

- (1) The extent to which the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.
- (2) The extent to which complying development may not be carried out on that land because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of that Policy and the reasons why it may not be carried out under those clauses.

General Housing Code

(1) or (2) Refer to State Environmental Planning Policy (Major Development) 2005.

Rural Housing Code

(1) or (2) Refer to State Environmental Planning Policy (Major Development) 2005.

Housing Alterations Code

(1) or (2) Refer to State Environmental Planning Policy (Major Development) 2005.

General Development Code

(1) or (2) Refer to State Environmental Planning Policy (Major Development) 2005.

Certificate No. 21371 Page 4 of 10

Commercial and Industrial (New Buildings and Additions) Code

(1) or (2) Refer to State Environmental Planning Policy (Major Development) 2005.

Subdivisions Code

(1) or (2) Refer to State Environmental Planning Policy (Major Development) 2005.

Demolition Code

- (1) or (2) Refer to State Environmental Planning Policy (Major Development) 2005.
- (3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that a restriction applies to the land, but it may not apply to all of the land, and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.
 - (3) Council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land when a land based restriction applies to the land, but it may not apply to all of the land.

4. Coastal Protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Services, Technology and Administration.

Council has not been notified by the Department of Public Works that the land is affected by the operation of Section 38 or 39 of the Coastal Protection Act, 1979.

4a Certain information relating to beaches and coasts

- (1) In relation to a coastal council—whether an order has been made under Part 4D of the Coastal Protection Act 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.
- (2) In relation to a Coastal Council:
 - (a) whether the council has been notified under section 55X of the Coastal Protection Act 1979 that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and
 - (b) if works have been so placed—whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.
- (3) (Repealed)
 - 4a The land is currently not affected by provisions included under this part.

4b Annual charges under *Local Government Act 1993* for coastal protection services that relate to existing coastal protection works

In relation to a coastal council—whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the Local

Certificate No. 21371 Page 5 of 10

Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Note. "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as sea walls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

4b The land is currently not affected by provisions included under this part.

5. Mine Subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of Section 15 of the Mine Subsidence Compensation Act, 1961.

The land is not located in an area proclaimed to be a mine subsidence district within the meaning of Section 15 of the Mine Subsidence Compensation Act, 1961.

6. Road Widening and Road Realignment

Whether or not the land is affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act, 1993, or
- (b) Any Environmental Planning Instrument, or
- (c) Any resolution of the Council.
 - (a) The land is not affected by any road widening or road realignment under Division 2 of Part 3 of the Roads Act 1993.
 - (b) The land is not affected by any road widening or road realignment under any Environmental Planning Instrument.
 - (c) The land is not affected by any road widening or road realignment under a Council resolution.

7. Council and other public authority policies on Hazard Risk Restriction

Whether or not the land is affected by a policy:

- (a) adopted by the Council, or
- (b) adopted by any other public authority and notified to the Council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the Council.

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

- (a) The land is excluded land under Auburn Local Environmental Plan 2010 and the applicant should refer to State Environmental Planning Policy (Major Development) 2005 on www.legislation.nsw.gov.au.

 The land is not affected by a policy that has been adopted by Council that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence or any other risk.
- (b) The land is excluded land under Auburn Local Environmental Plan 2010 and the applicant should refer to State Environmental Planning Policy (Major Development) 2005 on www.legislation.nsw.gov.au.

Certificate No. 21371 Page 6 of 10

Council has not been notified of any policies adopted by other public authorities that restrict development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence or other risk.

Council has been notified that the Department of Planning has adopted the *New South Wales Coastal Planning Guideline: Adapting to Sea Level Rise (August 2010).* The guideline can be viewed at www.planning.nsw.gov.au.

The applicant should also refer to projected sea level rise low, medium and high scenario maps on http://www.ozcoasts.org.au/climate/Map_images/Sydney/mapLevel2.jsp for further information.

7a Flood related Development Controls Information

(1) Whether or not the development on that land or part of the land for the purposes of dwellings, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

The land is excluded land under Auburn Local Environmental Plan 2010 and the applicant should refer to State Environmental Planning Policy (Major Development) 2005 on www.legislation.nsw.gov.au.

(2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

The land is excluded land under Auburn Local Environmental Plan 2010 and the applicant should refer to State Environmental Planning Policy (Major Development) 2005 on www.legislation.nsw.gov.au.

(3) Words and expressions in this clause have the same meanings as in the standard instrument set out in the Standard Instrument (Local Environmental Plans) Order 2006.

Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the Standard Instrument (Local Environmental Plans) Order 2006.

8. Land Reserved for Acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

The land is excluded land under Auburn Local Environmental Plan 2010. The applicant should refer to State Environmental Planning Policy (Major Development) 2005 on www.legislation.nsw.gov.au.

9. Contributions Plans

The name of each Contributions Plan applying to the land:

The land is not affected by the Auburn Council Development Contributions Plan 2007.

9A Biodiversity Certified Land

If the land is biodiversity certified land (within the meaning of Part 7A A of the <u>Threatened Species</u> <u>Conservation Act 1995</u>), a statement to that effect.

Certificate No. 21371 Page 7 of 10

The land is not biodiversity certified land within the meaning of the above Act.

10. Biobanking Agreements

If the land is land to which a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995 relates, a statement to that effect (but only if the council has been notified of the existence of the agreement by the Director – General of the Department of Environment, Climate Change and Water).

The land is not affected by a Bio-banking agreement under the Act.

11. Bush Fire Prone Land

If any of the land is bush fire prone land (as defined in the Act), a statement that all or, as the case may be, some of the land is bush fire prone land. If none of the land is bush fire prone land, a statement to that effect.

The land is not located within an area that is bush fire prone as defined by the Environmental Planning and Assessment Act, 1979.

12. Property Vegetation Plans

If the land is land to which a Property Vegetation Plan under the <u>Native Vegetation Act, 2003</u> applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

The land is not affected by a Property Vegetation Plan under the Native Vegetation Act, 2003.

13. Orders under the Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act, 2006 to carry out work in relation to a tree on the land (but only if the Council has been notified of the order).

The land is not affected by an order issued under the Trees (Disputes between Neighbours) Act 2006.

14. Directions under Part 3A (Environmental Planning and Assessment Act 1979)

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

There are no ministerial directions in force under section 75P (2) (c1) of the Environmental Planning and Assessment Act 1979.

15. Site compatibility certificates and conditions for seniors housing

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies:

Certificate No. 21371 Page 8 of 10

(a) a statement of whether there is a current site compatibility certificate (seniors housing), of which the Council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:

- (i) the period for which the certificate is current, and
- (ii) that a copy may be obtained from the head office of the Department of Planning, and
- (b) a statement setting out any terms of a kind referred to in clause 18 (2) of that Policy that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.
 - (a) & (b) The land is not subject to a site compatibility certificate.

16. Site Compatibility Certificates for Infrastructure

A statement of whether there is a valid site compatibility certificate (infrastructure), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:

- (a) the period for which the certificate is valid, and
- (b) that a copy may be obtained from the head office of the Department of Planning.
 - (a) & (b) There is no site compatibility certificate issued under the State Environmental Planning Policy (Infrastructure 2007) in respect of the land.

17. Site Compatibility Certificates and Conditions for Affordable Rental Housing

- (1) A statement of whether there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (a) the period of which the certificate is current, and
 - (b) that a copy may be obtained from the head office of the Department of Planning.
- (2) A statement setting out any terms of a kind referred to in clause 17 (1) or 38 (1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.
 - (1) & (2) There is no current site compatibility certificate (affordable rental housing) of which council is aware or a statement setting out any terms of a kind referred to in clause 17(1) or 38(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that has been imposed as a condition of consent to a development application for the land.

18. Paper Subdivision Information

- (1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.
- (2) The date of any subdivision order that applies to the land.
- (3) Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.
 - (1), (2) & (3) The land is not affected by a proposed or adopted development plan by Council or a subdivision order.

Certificate No. 21371 Page 9 of 10

19. Site Verification Certificates

A statement of whether there is a current site verification certificate, of which the council is aware, in respect of the land and, if there is a certificate, the statement is to include:

- (a) the matter certified by the certificate, and
 Note. A site verification certificate sets out the Director-General's opinion as to whether the land concerned is or is not
 biophysical strategic agricultural land or critical industry cluster land—see Division 3 of Part 4AA of State Environmental
 Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.
- (a) the date on which the certificate ceases to be current (if any), and
- (b) that a copy may be obtained from the head office of the Department of Planning and Infrastructure.
 - (a), (b) & (c) There is no site verification certificate on the land.

Note:

Section 59(2) of the Contaminated Lands Management Act 1997 prescribes the following matters that are to be specified in a Planning Certificate:

- a) That the land to which the certificate relates is significantly contaminated land within the meaning of that Act if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued.
- b) That the land to which the certificate relates is subject to a management order within the meaning of that Act if it is subject to such an order at the date when the certificate is issued,
- c) That the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act if it is the subject of such an approved proposal at the date when the certificate is issued,
- d) That the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act if it is subject to such an order at the date when the certificate is issued,
- e) That the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act if a copy of such a statement has been provided any time to the local authority issuing the certificate.
 - (a) The land is not significantly contaminated land (or part of the land) within the meaning of the *Contaminated Lands Management Act 1997* at the date when the certificate is issued.
 - (b) The land is not subject to a management order within the meaning of the *Contaminated Lands Management Act 1997* at the date when the certificate is issued.
 - (c) The land is not the subject of an approved voluntary management proposal within the meaning of the *Contaminated Lands Management Act 1997* at the date when the certificate is issued.
 - (d) The land is not subject to an ongoing maintenance order within the meaning of the Contaminated Lands Management Act 1997 at the date when the certificate is issued.
 - (e) The land is not subject to a site audit statement within the meaning of the *Contaminated Lands Management Act 1997.*

Certificate No. 21371 Page 10 of 10

Note:

Section 26 of the *Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009* provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Coordinator General under that Act.

Not applicable.

Section 149(5) Information

In accordance with the requirements of Section 149(5) of the *Environmental Planning and Assessment Act, 1979* (as amended), the following additional information is provided about the land to which this certificate applies.

Note: In accordance with Section 149(6) of the *Environmental Planning and Assessment Act, 1979* (as amended), Council will not incur any liability for the following additional information, which is provided in good faith. The absence of any matter affecting the land does not imply that the land is not affected by any matter not referred to in this Certificate.

The NSW Scientific Committee, established by the Threatened Species Conservation Act, 1995 has made a Preliminary Determination to support a proposal to list the Cumberland Plain Woodland in the Sydney Basin Bioregion as a Critically Endangered Ecological Community on Part 2 of Schedule 1A of the Act and to omit reference to Cumberland Plain Woodland from Part 3 of Schedule 1 (Endangered Ecological Communities) of the Act.

The land is located within Sydney Olympic Park and is affected by the Sydney Olympic Park Authority Act, 2001.

Millen

MARK BRISBY GENERAL MANAGER

Per: Karl OKorn

Manager- Statutory Planning & Development Control

Appendix G - Borehole Logs

Project No: 43567

Client: Mirvac Development Pty Ltd

Project Name: SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 1.5 Bore Diameter (mm): -

Graphic Log	Cround Surface FILL Silty sand, brown, heterogeneous, dry, medium dense, organic matter FILL Silty sand, heterogeneous, grey to brown, dry, medium dense with inclusions of fine concrete, bricks, tile and igneous gravels SILTY CLAY Silty clay, red with brown and grey mottles, homogeneous, dry, stiff	BH01: 0.2-0.3 BH01: 0.5-0.6	O O O O	D D D Sample Type	Comments
0	FILL Silty sand, brown, heterogeneous, dry, medium dense, organic matter FILL Silty sand, heterogeneous, grey to brown, dry, medium dense with inclusions of fine concrete, bricks, tile and igneous gravels	BH01: 0.2-0.3	0	D	
	FILL Silty sand, brown, heterogeneous, dry, medium dense, organic matter FILL Silty sand, heterogeneous, grey to brown, dry, medium dense with inclusions of fine concrete, bricks, tile and igneous gravels	BH01: 0.2-0.3	0	D	
0	Silty sand, heterogeneous, grey to brown, dry, medium dense with inclusions of fine concrete, bricks, tile and igneous gravels SILTY CLAY	BH01: 0.5-0.6	0	D	
0	SILTY CLAY Silty clay, red with brown and grey mottles, homogeneous, dry, stiff				
0	SILTY CLAY Silty clay, red with brown and grey mottles, homogeneous, dry, stiff	BH01: 1.0-1.1	0	D	
0	END OF HOLE 1.5 m bgs natural encountered				

AHD - Australian Height Datum

BGS - Below Ground Surface

Logged By: K.Sharp

Project Manager: M.Battam

U - Undisturbed tube sample

D - Disturbed sample

CS - Core sample

HA - Hand Auger

PT - Push Tube AH - Air Hammer

SFA - Solid Flight Auger

HFA - Hollow Flight Auger

Project No: 43567

Client: Mirvac Development Pty Ltd

Project Name: SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 2.6 Bore Diameter (mm): -

Lithologic Description Comments Co		SUBSURFACE PROFILE			SAMPLE			
FILL Sity area, brown, heterogeneous, dry, medium dense, organic matter FILL Sity and, beterogeneous, grey to brown, dry, medium dense with includations of fine concrete, bricks, tile, ironstone and igneous gravels BH02: 0.5-0.6 BH02: 1.0-1.1 FILL As above, less concrete BH02: 1.4-1.5 FILL As above, less concrete BH02: 1.4-1.5 D D FILL As above, less concrete tile or brick gravels BH02: 2.5-2.6 FILL As above, no concrete, tile or brick gravels BH02: 2.5-2.6 BH02: 2.5-2.6 D D	Depth	Graphic Log	Lithologic Descr	iption	Sample ID	PID (ppm)	Sample Type	Comments
FILL Sity area, brown, heterogeneous, dry, medium dense, organic matter FILL Sity and, beterogeneous, grey to brown, dry, medium dense with includations of fine concrete, bricks, tile, ironstone and igneous gravels BH02: 0.5-0.6 BH02: 1.0-1.1 FILL As above, less concrete BH02: 1.4-1.5 FILL As above, less concrete BH02: 1.4-1.5 D D FILL As above, less concrete tile or brick gravels BH02: 2.5-2.6 FILL As above, no concrete, tile or brick gravels BH02: 2.5-2.6 BH02: 2.5-2.6 D D			Ground Surfac	e				
Silly gravely sand, heterogeneous, grey to brown, dry, medium dones with inclusions of fine concrete, bricks, tile, ironstone and igneous gravels BH02: 0.5-0.6 BH02: 1.0-1.1 O FILL As above, less concrete BH02: 1.4-1.5 O D FILL As above, no concrete, tile or brick gravels BH02: 2.0-2.1 As above fine to coarse shale fragments END OF HOLE 2.6 m bgs refusal on bedrock	0.0 _		FILL Silty sand, brown, heterogeneous, dry, m		BH02: 0-0.1	0	D	
FILL As above, less concrete BH02: 1.0-1.1 BH02: 1.0-1.1 0 D FILL As above, no concrete, tile or brick gravels FILL As above fine to coarse shale fragments END OF HOLE 2.6 m bgs refusal on bedrock BH02: 2.5-2.6 0 D	_		Silty gravelly sand, heterogeneous, grey dense with inclusions of fine concrete, br	BH02: 0.2-0.3	0	D		
PILL As above, less concrete BH02: 1.0-1.1 0 D	_				BH02: 0.5-0.6	0	D	
As above, less concrete BH02: 1.4-1.5 O D FILL As above, no concrete, tile or brick gravels FILL As above fine to coarse shale fragments END OF HOLE 2.6 m bgs refusal on bedrock BH02: 2.5-2.6 O D	- - -1.0		FILL		Bulgo 4 o 4 4			
FILL As above, no concrete, tile or brick gravels FILL As above fine to coarse shale fragments END OF HOLE 2.6 m bgs refusal on bedrock BH02: 2.5-2.6 D D D	_				BH02: 1.0-1.1	0	D	
FILL As above, no concrete, tile or brick gravels FILL As above fine to coarse shale fragments END OF HOLE 2.6 m bgs refusal on bedrock BH02: 2.0-2.1 0 D D					BH02: 1.4-1.5	0	D	
As above fine to coarse shale fragments END OF HOLE 2.6 m bgs refusal on bedrock			FILL As above, no concrete, tile or brick gravels		BH02: 2.0-2.1	0	D	
END OF HOLE 2.6 m bgs refusal on bedrock			FILL As above fine to coarse shale fragments		BH02: 2.5-2.6	0	D	
	_		END OF HOLE					
	,							

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger	CS - Core sample		
PT - Push Tube			
AH - Air Hammer			

Project No: 43567

Client: Mirvac Development Pty Ltd

Project Name: SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 1.0 Bore Diameter (mm): -

	SUBSURFACE PROFILE					SAMPLE
Depth	Graphic Log	Lithologic Description	Sample ID	PID (ppm)	Sample Type	Comments
-0.0		Ground Surface				
-		FILL Silty sand, dark brown, heterogeneous, damp, medium dense with inclusions of fine to coarse grains, roots, organic matter	BH03: 0-0.1	0	D	QC01 and QC01A collected
_		FILL As above, coarse concrete gravels	BH03: 0.2-0.3	0	D	
-		SILTY CLAY Silty clay, brown with grey and red mottles, homogenous, dry, mediyum plastcitiy and high plasticity, stiff	BH03: 0.5-0.6	0	D	
-						
1.0 		END OF HOLE 1.0 m bgs natural encountered				
-						
-						
-						
-2.0 -						
-						
-						
- -						
-20						
-3.0					l	

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger	CS - Core sample		
PT - Push Tube			
AH - Air Hammer			

Project No: 43567

Client: Mirvac Development Pty Ltd

Project Name: SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 1.0 Bore Diameter (mm): -

	Total note Depth (mbgs). 1.0 Bore Diameter (min).							
	SUBSURFACE PROFILE					SAMPLE		
Depth	Graphic Log	Lithologic Description	Sample ID	PID (ppm)	Sample Type	Comments		
-0.0		Ground Surface						
0.0		FILL Silty sand, dark brown, heterogeneous, damp, medium dense with inclusions of organic matter	BH04: 0-0.1	0	D			
-		FILL As above, less organic matter	BH04: 0.2-0.3	0	D			
_		SILTY CLAY Silty clay, red with grey and brown mottles, homogenous, dry, mediyum plastcitiy and high plasticity, stiff	BH04: 0.5-0.6	0	D			
_								
-1.0 -	<i>x</i>	END OF HOLE 1.0 m bgs natural encountered						
_								
-								
- -								
-2.0 -								
_								
-								
_								
3.0	a Mothod	Sample Type Peterance Level	Log Potails			I		

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger	CS - Core sample		
PT - Push Tube			
AH - Air Hammer			

Project No: 43567

Client: Mirvac Development Pty Ltd

Project Name: SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 2.6 Bore Diameter (mm): -

		SUBSURFACE PROFILE				SAMPLE
Depth	Graphic Log	Lithologic Description	Sample ID	PID (ppm)	Sample Type	Comments
		Ground Surface				
0.0		FILL Silty sand, brown, heterogeneous, dry, medium dense with inclusions of rootlets, organic matter	BH05 0-0.1	0	D	
		FILL Silty sand, grey to brown, heterogenouos, dry, medium de inclusions of fine concrete, igneous and shale gravels	nsity with BH05: 0.2-0.3	0	D	QC02 and QC02A collected with sample
			BH05: 0.5-0.6	0	D	
1.0			BH05: 1.0-1.1	0	D	
			BH05: 1.5-1.6	0	D	
2.0		SILTY CLAY Silty clay, grey with red and brown mottles, homogenous, medium to high plasticity, stiff	BH05: 2.0-2.1	0	D	
3.0		END OF HOLE 2.6 m bgs natural encountered				

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger	CS - Core sample		
PT - Push Tube			
AH - Air Hammer			

Project No: 43567

Client: Mirvac Development Pty Ltd

Project Name: SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 0.8 Bore Diameter (mm): -

Tota	i i iole Di	eptn (mbgs): 0.8 Bore	Diameter (mm): -				
	SUBSURFACE PROFILE						SAMPLE
Depth	Graphic Log	Lithologic Description		Sample ID	PID (ppm)	Sample Type	Comments
-0.0	×××××××	Ground Surface					
		FILL Silty sand, brown, heterogeneous, dry, meinclusions of rootlets, organic matter	dium dense with	BH06: 0-0.1	0	D	
				BH06: 0.2-0.3	0	D	
-		SILTY CLAY Silty clay, red with brown mottles, homoger plasticity, stiff	nous, dry, medium	BH06: 0.5-0.6	0		
-				ВПО0. 0.5-0.6	U	D	
_		END OF HOLE 0.8 m bgs natural encountered					
1.0							
-							
_							
-							
-							
-2.0							
_							
-							
_							
-3.0							
Duillin	a Method	Sample Type R	Reference Level	Log Details			

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger	CS - Core sample		
PT - Push Tube			
AH - Air Hammer			

Project No: 43567

Client: Mirvac Development Pty Ltd **Project Name:** SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 0.8 Bore Diameter (mm): -

		epui (iiibgs). o.o Bore i	Diameter (mm).				
	SUBSURFACE PROFILE						SAMPLE
Depth	Graphic Log	Lithologic Descript	tion	Sample ID	PID (ppm)	Sample Type	Comments
-0.0	XXXXXXX	Ground Surface					
_		FILL Silty sand, brown, heterogeneous, dry, medi inclusions rootlets, organic matter	ium dense with	BH07: 0-0.1	0	D	
_				BH07: 0.2-0.3	0	D	
_		SILTY CLAY Silty clay, red with brown mottles, homogener plasticity, stiff	ous, dry, medium	BH07: 0.5-0.6	0	D	QC03 and QC03A collected
_		END OF HOLE 0.8 m bgs natural encountered					
1.0							
_							
_							
_							
_							
-2.0							
_							
_							
_							
_							
-3.0							
	na Mothod	Sample Type Po	foranco Loval	Log Dotails			

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger	CS - Core sample		
PT - Push Tube			
AH - Air Hammer			

Project No: 43567

Client: Mirvac Development Pty Ltd **Project Name:** SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 0.8 Bore Diameter (mm): -

		eptii (iliugs). 0.0 Bole Dialiletei (iliili).				
					SAMPLE	
Depth	Graphic Log	Lithologic Description	Sample ID	PID (ppm)	Sample Type	Comments
-0.0		Ground Surface				
		FILL Silty gravelly sand, yellow to brown, dry, dense with inclusions, fine to coarse brick, concrete, tile, fine river gravels	BH08: 0-0.1	0	D	
		FILL As above, medium denstiy, no river gravels	BH08: 0.2-0.3	0	D	
_		SILTY CLAY Silty clay, red with brown mottles, homogenous, dry, high to medium plasticity, stiff	BH08: 0.5-0.6	0	D	
_		END OF HOLE 0.8 m bgs natural encountered				
-1.0						
_						
-2.0						
_						
_						
_						
<u>-</u>						
_ 3.0						
	na Mothod	Sample Type Peterance Level	Log Dotails			

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger	CS - Core sample		
PT - Push Tube			
AH - Air Hammer			

Project No: 43567

Client: Mirvac Development Pty Ltd **Project Name:** SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: Deere Northings (MGA): -

Drill Rig: Backhoe Reference Level: Ground Surface

Method: SFA Elevation - Surface (m): Total Hole Depth (mbgs): 0.4 Bore Diameter (mm): -

lota	Total Hole Depth (Hibgs). 0.4 Bole Diameter (Hill).						
	SUBSURFACE PROFILE			SAMPLE			
Depth	Graphic Log	Lithologic Description	Sample ID	PID (ppm)	Sample Type	Comments	
-0.0		Ground Surface					
		FILL Silty gravelly sand, yellow to brown, dry, dense with inclusions of fine to coarse brick, concrete, tile, fine river gravels	BH09: 0-0.1	0	D		
		FILL Silty sandy gravel, grey to brown, medium dense with inclusions of coarse, concrete, brick, igneous gravels	BH09: 0.2-0.3	0	D		
- - - - - - - - - - - - - - - - - - -		END OF HOLE 0.4 m bgs refusal on gravels					
-							
3.0	a Mothod	Sample Type Peferance Level	Log Potails				

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger CS - Core sample			
PT - Push Tube			
AH - Air Hammer			

Project No: 43567

Client: Mirvac Development Pty Ltd

Project Name: SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: - Northings (MGA): -

Drill Rig: - Reference Level: Ground Surface

Method: HA Elevation - Surface (m): Total Hole Depth (mbgs): 0.3 Bore Diameter (mm): -

Total Hole Depth (Hibgs). 5.5 Bore Diameter (Hill).							
	SUBSURFACE PROFILE			SAMPLE			
Depth	Graphic Log	Lithologic Descript	ion	Sample ID	PID (ppm)	Sample Type	Comments
-0.0		Ground Surface					
- 0.0		FILL Silty gravelly sand, yellow to brown, damp, d fine river gravels	lense with inclusions	BH10: 0-0.1	0	D	
		FILL Silty clay, brown with red, grey, damp, hetere inclusions of fine concrete gravels, metal	ogenous, stiff with	BH10: 0.2-0.3	0	D	
- - - - - - - - - - - - - - - - - - -		END OF HOLE 0.4 m bgs refusal on gravels					
	a Mothad	Sample Type Pot	forence Level	Log Dotails			

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger CS - Core sample			
PT - Push Tube			
AH - Air Hammer			

Borehole No: BH11

Project No: 43567

Client: Mirvac Development Pty Ltd **Project Name:** SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: - Northings (MGA): -

Drill Rig: - Reference Level: Ground Surface

Method: HA Elevation - Surface (m): Total Hole Depth (mbgs): 0.3 Bore Diameter (mm): -

Tota		spun (mbgs). O.O Bore Dia	ameter (mm).				
		SUBSURFACE PROFILE					SAMPLE
Depth	Graphic Log	Lithologic Descriptio	n	Sample ID	PID (ppm)	Sample Type	Comments
-0.0		Ground Surface					
0.0		FILL Silty clay, dark brown, heterogeneous, damp, r plasticity, firm	nedium to high	BH11: 0-0.1	0	D	
		FILL Silty clay, grey, damp, heterogenous, medium inclusions of fine concrete and brick gravels,	plasticity, stiff with	BH11: 0.2-0.3	0	D	
- - - - - - - - - - - - - - - - - - -		END OF HOLE 0.4 m bgs refusal on gravels					
-							
-3.0							
D :11:	a Mothod	Sample Type Pefer	onco Lovol	Log Dotails			

Drilling Method	Sample Type	Reference Level	Log Details
HA - Hand Auger	U - Undisturbed tube sample	AHD - Australian Height Datum	Logged By: K.Sharp
SFA - Solid Flight Auger	D - Disturbed sample	BGS - Below Ground Surface	Project Manager: M.Battam
HFA - Hollow Flight Auger	CS - Core sample		
PT - Push Tube			
AH - Air Hammer			

Borehole No: BH12

Project No: 43567

Client: Mirvac Development Pty Ltd

Project Name: SOPA Site 53 Due Diligence

Site Address: 2 Figtree Drive, Sydney Olympic Park

Date: 7/07/2014 Eastings (MGA): Contractor: - Northings (MGA): -

Drill Rig: - Reference Level: Ground Surface

Method: HA Elevation - Surface (m): Total Hole Depth (mbgs): 0.2 Bore Diameter (mm): -

		SUBSURFACE PROFILE	.				SAMPLE
Depth	Graphic Log	Lithologic Desc	ription	Sample ID	PID (ppm)	Sample Type	Comments
-0.0		Ground Surfa		BH11: 0-0.1	0	D	
_		Silty gravelly sand, damp, heterogeneou coarse, with inclusions of brick, concrete	s medium density, fine to e gravels, plastic and roots	B1111.0-0.1		D	
		END OF HOLE 0.2 m bgs refusal on gravels		BH11: 0.2-0.3	0	D	
-							
_							
_							
_							
-1.0							
- 1.0							
_							
_							
_							
_							
_							
_							
-2.0							
_							
_							
_							
_							
_							
_							
-3.0							
Drillin	ng Method	Sample Type	Reference Level	Log Details			

AHD - Australian Height Datum

BGS - Below Ground Surface

Logged By: K.Sharp

Project Manager: M.Battam

U - Undisturbed tube sample

D - Disturbed sample

CS - Core sample

HA - Hand Auger

PT - Push Tube AH - Air Hammer

SFA - Solid Flight Auger

HFA - Hollow Flight Auger

Appendix H	- Laboratory Reports and	d Chain of Custody Doc	umentation

CHAIN OF CUSTODY

Sala

THOSE NO.			ABURA UKY BALL HIVID	
PROJECT NAME: SOPP			SAMPLERS: V	Kenner Daries Com as
SEND REPORT TO: ON BO	HOOD SEND INVOICE TO:	DN.C	PHONE: SYDNEY 02 8245 0300 - PE	
DATE NEEDED BY: 24 hr	S turn aroun		QC LEVEL: NEPM (2013)	
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	or disposal:		Merch Merch	
SAMPLE ID	MATRIX DATE TIME	TYPE & PRESERVATIVE pH	THE COLUMN	NOTES
- GCOID	MILL Lia	but Bay 100	XXXXX	
4 QC6219				
3 0030	→			
		7		
ř.				
				Enviro
				ETYPRO AB 12 Ashley St
				1597 1700 NOT
				Date Riceived: 7/7 // 4
				Time Received: 15:40
				Coping Techbeback
				Seburity: Intact/Broken/None
RELINQUISHED BY:		METHOD OF SHIPMENT:	DECEIVED DV.	
NAME: 1 DATE:	CONSIGNIMENT NOTE NO		Chi	-
2 N. S.	TRANSPORT CO.		DATE: 7/7/14 (Sado.	COOLER SEAL – Yes No Intact Broken
NAINE: DAIE:	CONSIGNMENT NOTE NO.	10.	NAME: DATE:	COOLER SEAL – Yes No Intact Broken
OF:	TRANSPORT CO			COOLER TEMP deg C
Container & Preservative Codes: P = Plastic; J	J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prs	vd.; C = Sodium Hydroxide Prsvd: VC = Hydroch	oric Acid Prsvd Vial: VS = Sulfuric Acid Prsvd Vial: S = Sul	Container & Perservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd: C = Sodium Hydroxide Prsvd: VC = Hydroxidy Prsvd: VC = Hydroxidy Prsvd: VC = Container & Prsvd Vial: VS = Container & Code State Prsvd Vial: VS = Code Sta

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 112651

Client:

JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St Sydney NSW 2000

Attention: M Battam

Sample log in details:

Your Reference: 43567, SOPA

No. of samples: 3 Soils

Date samples received / completed instructions received 07/07/2014 / 07/07/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 8/07/14 / 8/07/14

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	112651-1
Your Reference		QC01A
Date Sampled		7/07/2014
Type of sample		Soil
Date extracted	-	7/07/2014
Date analysed	-	7/07/2014
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	93

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	112651-1
Your Reference		QC01A
Date Sampled		7/07/2014
Type of sample		Soil
Date extracted	-	07/07/2014
Date analysed	-	08/07/2014
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	110
TRHC29 - C36	mg/kg	150
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	200
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	79

PAHs in Soil		
Our Reference:	UNITS	112651-1
Your Reference		QC01A
Date Sampled		7/07/2014
Type of sample		Soil
Date extracted	=	7/07/2014
Date analysed	-	8/07/2014
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE
Surrogate p-Terphenyl-d14	%	96

	I	
Organochlorine Pesticides in soil		
Our Reference:	UNITS	112651-1
Your Reference		QC01A
Date Sampled		7/07/2014
Type of sample		Soil
Date extracted	-	07/07/2014
Date analysed	-	07/07/2014
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	96

PCBs in Soil		
Our Reference:	UNITS	112651-1
Your Reference		QC01A
Date Sampled		7/07/2014
Type of sample		Soil
Date extracted	-	07/07/2014
Date analysed	=	07/07/2014
Arochlor 1016	mg/kg	<0.1
Arochlor 1221	mg/kg	<0.1
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Surrogate TCLMX	%	96

Acid Extractable metals in soil		
Our Reference:	UNITS	112651-1
Your Reference		QC01A
Date Sampled		7/07/2014
Type of sample		Soil
Date digested	-	07/07/2014
Date analysed	-	07/07/2014
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	9
Copper	mg/kg	16
Lead	mg/kg	12
Mercury	mg/kg	<0.1
Nickel	mg/kg	8
Zinc	mg/kg	43

Moisture		
Our Reference:	UNITS	112651-1
Your Reference		QC01A
Date Sampled		7/07/2014
Type of sample		Soil
Date prepared	-	07/07/2014
Date analysed	-	08/07/2014
Moisture	%	20

Envirolab Reference: 112651

Page 8 of 16

Revision No: R 00

Asbestos ID - soils NEPM*		
Our Reference:	UNITS	112651-1
Your Reference		QC01A
Date Sampled		7/07/2014
Type of sample		Soil
Date analysed	-	8/07/2014
Sample mass tested	g	476.20g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
Trace Analysis	-	No respirable fibres detected
ACM>7mm*	-	None
ACM<7mm*	-	None
Fibrous Asb(FA)/Asb Fines(AF)	-	None
Asbestos ww%* Note	-	<0.001
Comments	-	See back page

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-007	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit between 0.01g/kg (0.001% w/w) to 0.1g/kg (0.01% w/w). This form of analysis is outside the scope of NATA accreditation.
	Note: The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

		Cile	nt Referenc	e: 43	567, SOPA			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		ĺ
Date extracted	-			07/07/2 014	112651-1	7/07/2014 7/07/2014	LCS-13	07/07/2014
Date analysed	-			07/07/2 014	112651-1	7/07/2014 7/07/2014	LCS-13	07/07/2014
TRHC6 - C9	mg/kg	25	Org-016	<25	112651-1	<25 <25	LCS-13	99%
TRHC6 - C10	mg/kg	25	Org-016	<25	112651-1	<25 <25	LCS-13	99%
Benzene	mg/kg	0.2	Org-016	<0.2	112651-1	<0.2 <0.2	LCS-13	95%
Toluene	mg/kg	0.5	Org-016	<0.5	112651-1	<0.5 <0.5	LCS-13	100%
Ethylbenzene	mg/kg	1	Org-016	<1	112651-1	<1 <1	LCS-13	100%
m+p-xylene	mg/kg	2	Org-016	2	112651-1	<2 <2	LCS-13	99%
o-Xylene	mg/kg	1	Org-016	<1	112651-1	<1 <1	LCS-13	102%
naphthalene	mg/kg	1	Org-014	<1	112651-1	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	94	112651-1	93 94 RPD:1	LCS-13	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II %RPD		
Date extracted	-			08/07/2 014	112651-1	07/07/2014 07/07/2014	LCS-13	08/07/2014
Date analysed	-			08/07/2 014	112651-1	08/07/2014 08/07/2014	LCS-13	08/07/2014
TRHC10 - C14	mg/kg	50	Org-003	<50	112651-1	<50 <50	LCS-13	98%
TRHC 15 - C28	mg/kg	100	Org-003	<100	112651-1	110 150 RPD:31	LCS-13	110%
TRHC29 - C36	mg/kg	100	Org-003	<100	112651-1	150 200 RPD:29	LCS-13	96%
TRH>C10-C16	mg/kg	50	Org-003	<50	112651-1	<50 57	LCS-13	98%
TRH>C16-C34	mg/kg	100	Org-003	<100	112651-1	200 280 RPD:33	LCS-13	110%
TRH>C34-C40	mg/kg	100	Org-003	<100	112651-1	<100 100	LCS-13	96%
Surrogate o-Terphenyl	%		Org-003	88	112651-1	79 82 RPD:4	LCS-13	99%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-			07/07/2 014	112651-1	7/07/2014 7/07/2014	LCS-13	07/07/2014
Date analysed	-			07/07/2 014	112651-1	8/07/2014 8/07/2014	LCS-13	07/07/2014
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	LCS-13	110%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	LCS-13	112%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	LCS-13	113%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	LCS-13	111%

		Cile	nt Referenc	e: 43	3567, SOPA			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	LCS-13	115%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	LCS-13	112%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	112651-1	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	112651-1	<0.05 <0.05	LCS-13	126%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	107	112651-1	96 102 RPD:6	LCS-13	107%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil					311#	Base II Duplicate II %RPD		Recovery
Date extracted	-			07/07/2	112651-1	07/07/2014 07/07/2014	LCS-13	07/07/2014
Date analysed	-			014 07/07/2 014	112651-1	07/07/2014 07/07/2014	LCS-13	07/07/2014
HCB	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	102%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	86%
Heptachlor	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	76%
delta-BHC	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	106%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	99%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	108%
Dieldrin	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	108%
Endrin	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	90%
pp-DDD	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	121%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	LCS-13	99%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	103	112651-1	96 101 RPD:5	LCS-13	103%
Surrogate TOWIX			0.9 000	1.00	1120011	30 10 1 10 1 5.0	1 200 10	10070

		Clie	nt Referenc	e: 43	3567, SOPA			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			07/07/2 014	112651-1	07/07/2014 07/07/2014	LCS-13	07/07/2014
Date analysed	-			07/07/2 014	112651-1	07/07/2014 07/07/2014	LCS-13	07/07/2014
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	112651-1	<0.1 <0.1	LCS-13	101%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	112651-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	103	112651-1	96 101 RPD:5	LCS-13	90%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		·
Date digested	-			07/07/2 014	112651-1	07/07/2014 07/07/2014	LCS-1	07/07/2014
Date analysed	-			07/07/2 014	112651-1	07/07/2014 07/07/2014	LCS-1	07/07/2014
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	112651-1	<4 <4	LCS-1	100%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	112651-1	<0.4 <0.4	LCS-1	103%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	112651-1	9 10 RPD:11	LCS-1	102%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	112651-1	16 16 RPD:0	LCS-1	104%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	112651-1	12 14 RPD:15	LCS-1	102%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	112651-1	<0.1 <0.1	LCS-1	80%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	112651-1	8 10 RPD:22	LCS-1	102%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	112651-1	43 45 RPD:5	LCS-1	102%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Moisture				
Date prepared	-			[NT]
Date analysed	-			[NT]
Moisture	%	0.1	Inorg-008	[NT]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank
Asbestos ID - soils				
NEPM*				
Date analysed	-			[NT]

Report Comments:

This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Asbestos ID was analysed by Approved Identifier: Paul Ching Asbestos ID was authorised by Approved Signatory: Paul Ching

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

Envirolab Reference: 112651 Page 15 of 16 Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 112651 Page 16 of 16 Revision No: R 00

CHAIN OF CUSTODY

SSEC ST

PROJECT NAME: SOPP				SAN	SAMPLERS: K. Show		ksharpallipsg.com.a
SEND REPORT TO: M. Pottom		SEND INVOICE TO:	O. G.NO	PHC	- 0	PERTH 08 9488 0100 EMA	EMAIL: INDOMEDIA DSG. COM CO.
DATE NEEDED BY: 34D rS	STS		D	ac	QC LEVEL: NEPM (2013)		7
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	ORAGE OR DISPOSAL:			5/70/	8		
				1900			
SAMPLE ID	MATRIX	DATE TIME	TYPE & PRESERVATIVE	8 на	10 V V		NOTES:
m WO!	Margar K	11/14	BIP+ VC+N+1CR		XXXX		
2 mwo2	-			X	XXX		
				X	XXXX		
RINSOHO				Z	メメメメ		
Strip DONK)		VC ++1CB		×		
						Envirolab Services	rvitass
						ENVIROUMB 12 Ashiey St	12 Ashley St
						1	0 6200
						100 NO: 112910	
						7 0 01 . postorio de 10 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	h
						Received by 158	
						Security: (ntacharokeniNone	9
RELINQUISHED BY:	BY:		METHOD OF SHIPMENT:		RECEIVED BY:	FOR RECI	FOR RECEIVING LAB USE ONLY:
NAME: X SA DATE:		CONSIGNMENT NOTE NO.	NOTE NO.	NA	NAME: Kevin Woung	COOLER SEAL - Yes No	Intact Broken
OF: JBS&G	4= 5	TRANSPORT CO.).	OF:	12 15/5	COOLER TEMP deg C	
NAME: DATE:		CONSIGNMENT NOTE NO.	r note no.	NAN	NAME: DATE:	COOLER SEAL – Yes No	Intact Broken
OF:		TRANSPORT CO		5		COOLER TEMP deg C	
Container & Preservative Codes: P	= Plastic; J = Soil Jar; B =	Glass Bottle; N = Nitri	C Acid Prsvd : C = Sodium Hydroxide Prsvd: \	/C = Hydrochloric Acid	Container & Preservative Codes: P = Plastic: J = Soil Jar: B = Glass Bottle: N = Nitric Acid Prsvd; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other	= Sulfuric Acid Prsvd; Z = Zinc Prsvd; E =	= EDTA Prsvd; ST = Sterile Bottle; O = Other

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 112910

Client:

JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St Sydney NSW 2000

Attention: Michelle Battam

Sample log in details:

Your Reference: 43567, SOPA
No. of samples: 5 Waters

Date samples received / completed instructions received 10/07/2014 / 10/07/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 11/07/14 / 11/07/14

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

VOCa in water		T				T
VOCs in water Our Reference:	UNITS	112910-1	112910-2	112910-3	112910-4	112910-5
Your Reference		MW01	MW02	QC01	Rinsate	Trip Blank
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Date analysed	_	11/07/2014	11/07/2014	11/07/2014	11/07/2014	11/07/2014
Dichlorodifluoromethane	μg/L	<100	<100	<100	<10	<10
Chloromethane	μg/L	<100	<100	<100	<10	<10
Vinyl Chloride		<100	<100	<100	<10	<10
Bromomethane	μg/L	<100	<100	<100	<10	<10
	μg/L					
Chloroethane	μg/L	<100	<100	<100	<10	<10
Trichlorofluoromethane	μg/L	<100	<100	<100	<10	<10
1,1-Dichloroethene	μg/L	<10	<10	<10	<1	<1
Trans-1,2-dichloroethene	μg/L	<10	<10	<10	<1	<1
1,1-dichloroethane	μg/L	<10	<10	<10	<1	<1
Cis-1,2-dichloroethene	μg/L	<10	<10	<10	<1	<1
Bromochloromethane	μg/L	<10	<10	<10	<1	<1
Chloroform	μg/L	13	<10	<10	<1	<1
2,2-dichloropropane	μg/L	<10	<10	<10	<1	<1
1,2-dichloroethane	μg/L	<10	<10	<10	<1	<1
1,1,1-trichloroethane	μg/L	<10	<10	<10	<1	<1
1,1-dichloropropene	μg/L	<10	<10	<10	<1	<1
Cyclohexane	μg/L	<10	<10	<10	<1	<1
Carbon tetrachloride	μg/L	<10	<10	<10	<1	<1
Benzene	μg/L	<10	<10	<10	<1	<1
Dibromomethane	μg/L	<10	<10	<10	<1	<1
1,2-dichloropropane	μg/L	<10	<10	<10	<1	<1
Trichloroethene	μg/L	<10	<10	<10	<1	<1
Bromodichloromethane	μg/L	<10	<10	<10	<1	<1
trans-1,3-dichloropropene	μg/L	<10	<10	<10	<1	<1
cis-1,3-dichloropropene	μg/L	<10	<10	<10	<1	<1
1,1,2-trichloroethane	μg/L	<10	<10	<10	<1	<1
Toluene	μg/L	<10	<10	<10	<1	<1
1,3-dichloropropane	μg/L	<10	<10	<10	<1	<1
Dibromochloromethane	μg/L	<10	<10	<10	<1	<1
1,2-dibromoethane	μg/L	<10	<10	<10	<1	<1
Tetrachloroethene	μg/L	<10	<10	<10	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<10	<10	<10	<1	<1
Chlorobenzene		<10	<10	<10	<1	<1
	μg/L					
Ethylbenzene	μg/L	<10	<10	<10	<1	<1
Bromoform	μg/L	<10	<10	<10	<1	<1
m+p-xylene	μg/L	<20	<20	<20	<2	<2
Styrene	μg/L	<10	<10	<10	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<10	<10	<10	<1	<1
o-xylene	μg/L	<10	<10	<10	<1	<1
1,2,3-trichloropropane	μg/L	<10	<10	<10	<1	<1

VOCs in water	L IN LITTO					
Our Reference:	UNITS	112910-1	112910-2	112910-3	112910-4	112910-5
Your Reference		MW01 10/07/2014	MW02 10/07/2014	QC01 10/07/2014	Rinsate 10/07/2014	Trip Blank 10/07/2014
Date Sampled Type of sample		10/07/2014 Water	Water	10/07/2014 Water	10/07/2014 Water	Water
Isopropylbenzene	μg/L	<10	<10	<10	<1	<1
Bromobenzene	μg/L	<10	<10	<10	<1	<1
n-propyl benzene	μg/L	<10	<10	<10	<1	<1
2-chlorotoluene	μg/L	<10	<10	<10	<1	<1
4-chlorotoluene	μg/L	<10	<10	<10	<1	<1
1,3,5-trimethyl benzene	μg/L	<10	<10	<10	<1	<1
Tert-butyl benzene	μg/L	<10	<10	<10	<1	<1
1,2,4-trimethyl benzene	μg/L	<10	<10	<10	<1	<1
1,3-dichlorobenzene	μg/L	<10	<10	<10	<1	<1
Sec-butyl benzene	μg/L	<10	<10	<10	<1	<1
1,4-dichlorobenzene	μg/L	<10	<10	<10	<1	<1
4-isopropyl toluene	μg/L	<10	<10	<10	<1	<1
1,2-dichlorobenzene	μg/L	<10	<10	<10	<1	<1
n-butyl benzene	μg/L	<10	<10	<10	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<10	<10	<10	<1	<1
1,2,4-trichlorobenzene	μg/L	<10	<10	<10	<1	<1
Hexachlorobutadiene	μg/L	<10	<10	<10	<1	<1
1,2,3-trichlorobenzene	μg/L	<10	<10	<10	<1	<1
Surrogate Dibromofluoromethane	%	112	118	124	90	100
Surrogate toluene-d8	%	98	97	98	98	101
Surrogate 4-BFB	%	98	102	101	102	100

	T	T			
SVOC's in water	LINITO	440040.4	440040.0	440040.0	440040 4
Our Reference: Your Reference	UNITS	112910-1 MW01	112910-2 MW02	112910-3 QC01	112910-4 Rinsate
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water
Date extracted	-	11/07/2014	11/07/2014	11/07/2014	11/07/2014
Date analysed	_	11/07/2014	11/07/2014	11/07/2014	11/07/2014
Phenol	μg/L	<10	<10	<10	<10
Bis (2-chloroethyl) ether	μg/L	<10	<10	<10	<10
2-Chlorophenol	μg/L	<10	<10	<10	<10
1,3-Dichlorobenzene	μg/L	<10	<10	<10	<10
1,4-Dichlorobenzene	μg/L	<10	<10	<10	<10
2-Methylphenol	μg/L	<10	<10	<10	<10
1,2-Dichlorobenzene	μg/L	<10	<10	<10	<10
bis-(2-Chloroisopropyl) ether	μg/L	<10	<10	<10	<10
3/4-Methylphenol	μg/L	<20	<20	<20	<20
N-nitrosodi-n-propylamine	μg/L	<10	<10	<10	<10
Hexachloroethane	μg/L	<10	<10	<10	<10
Nitrobenzene	μg/L	<10	<10	<10	<10
Isophorone	μg/L	<10	<10	<10	<10
2,4-Dimethylphenol	μg/L	<10	<10	<10	<10
2-Nitrophenol	μg/L	<10	<10	<10	<10
bis (2-Chloroethoxy) methane	μg/L	<10	<10	<10	<10
2,4-Dichlorophenol	μg/L	<10	<10	<10	<10
1,2,4-Trichlorobenzene	μg/L	<10	<10	<10	<10
Naphthalene	μg/L	<10	<10	<10	<10
4-Chloroaniline	μg/L	<10	<10	<10	<10
Hexachlorobutadiene	μg/L	<10	<10	<10	<10
2-Methylnaphthalene	μg/L	10	<10	<10	<10
Hexachlorocyclopentadiene	μg/L	<10	<10	<10	<10
2,4,6-Trichlorophenol	μg/L	<10	<10	<10	<10
2,4,5-Trichlorophenol	μg/L	<10	<10	<10	<10
2-Chloronaphthalene	μg/L	<10	<10	<10	<10
2-Nitroaniline	μg/L	<10	<10	<10	<10
Dimethyl phthalate	μg/L	<10	<10	<10	<10
2,6-Dinitrotoluene	μg/L	<10	<10	<10	<10
Acenaphthylene	μg/L	<10	<10	<10	<10
3-Nitroaniline	μg/L	<10	<10	<10	<10
Acenaphthene	μg/L	<10	<10	<10	<10
2,4-Dinitrophenol	μg/L	<100	<100	<100	<100
4-Nitrophenol	μg/L	<100	<100	<100	<100
Dibenzofuran	μg/L	<10	<10	<10	<10
Diethylphthalate	μg/L	<10	<10	<10	<10
4-Chlorophenylphenylether	μg/L	<10	<10	<10	<10
4-Nitroaniline	μg/L	<10	<10	<10	<10
Fluorene	μg/L	<10	<10	<10	<10
2-methyl-4,6-dinitrophenol	μg/L	<100	<100	<100	<100
Azobenzene	μg/L	<10	<10	<10	<10

2,22	I				
SVOC's in water	LINITO	440040.4	440040.0	440040.0	440040 4
Our Reference: Your Reference	UNITS	112910-1 MW01	112910-2 MW02	112910-3 QC01	112910-4 Rinsate
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water
4-Bromophenylphenylether	μg/L	<10	<10	<10	<10
Hexachlorobenzene	μg/L	<10	<10	<10	<10
Pentachlorophenol	μg/L	<100	<100	<100	<100
Phenanthrene	μg/L	<10	<10	<10	<10
Anthracene	μg/L	<10	<10	<10	<10
Carbazole	μg/L	<10	<10	<10	<10
Di-n-butylphthalate	μg/L	<10	<10	<10	<10
Fluoranthene	μg/L	<10	<10	<10	<10
Pyrene	μg/L	<10	<10	<10	<10
Butylbenzylphthalate	μg/L	<10	<10	<10	<10
Bis(2-ethylhexyl) phthalate	μg/L	42	<10	<10	<10
Benzo(a)anthracene	μg/L	<10	<10	<10	<10
Chrysene	μg/L μg/L	<10	<10	<10	<10
Di-n-octylphthalate	μg/L μg/L	<10	<10	<10	<10
Benzo(b)fluoranthene	μg/L	<10	<10	<10	<10
Benzo(k)fluoranthene	μg/L	<10	<10	<10	<10
Benzo(a)pyrene	μg/L	<10	<10	<10	<10
Indeno(1,2,3-c,d)pyrene	μg/L	<10	<10	<10	<10
Dibenzo(a,h)anthracene	μg/L	<10	<10	<10	<10
Benzo(g,h,i)perylene	μg/L	<10	<10	<10	<10
Ethylmethanesulfonate	μg/L	<10	<10	<10	<10
Aniline	μg/L	<10	<10	<10	<10
Pentachloroethane	μg/L	<10	<10	<10	<10
Benzyl alcohol	μg/L	<10	<10	<10	<10
Acetophenone	μg/L	<10	<10	<10	<10
N-nitrosomorpholine	μg/L	<10	<10	<10	<10
N-nitrosopiperidine	μg/L	<10	<10	<10	<10
2,6-Dichlorophenol	μg/L	<10	<10	<10	<10
Hexachloropropene-1	μg/L	<10	<10	<10	<10
N-nitroso-n-butylamine	μg/L	<10	<10	<10	<10
Safrole	μg/L	<10	<10	<10	<10
1,2,4,5-Tetrachlorobenzene	μg/L	<10	<10	<10	<10
Trans-iso-safrole	μg/L	<10	<10	<10	<10
1,3-Dinitrobenzene	μg/L	<10	<10	<10	<10
Pentachlorobenzene	μg/L	<10	<10	<10	<10
1-Naphthylamine	μg/L	<10	<10	<10	<10
2,3,4,6-Tetrachlorophenol	μg/L	<10	<10	<10	<10
2-Naphthylamine	μg/L	<10	<10	<10	<10
5-Nitro-o-toluidine	μg/L	<10	<10	<10	<10
Diphenylamine	μg/L	<10	<10	<10	<10
Phenacetin	μg/L	<10	<10	<10	<10
Pentachloronitrobenzene	μg/L	<10	<10	<10	<10
Dinoseb	μg/L	<10	<10	<10	<10
Dillogen	μ9/∟	\10	\10	\10	\10

SVOC's in water					Ι
Our Reference:	UNITS	112910-1	112910-2	112910-3	112910-4
Your Reference		MW01	MW02	QC01	Rinsate
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water
Methapyrilene	μg/L	<10	<10	<10	<10
p-Dimethylaminoazobenzene	μg/L	<10	<10	<10	<10
2-Acetylaminofluorene	μg/L	<10	<10	<10	<10
7,12-Dimethylbenz(a)anthracene	μg/L	<10	<10	<10	<10
3-Methylcholanthrene	μg/L	<10	<10	<10	<10
a-BHC	μg/L	<10	<10	<10	<10
b-BHC	μg/L	<10	<10	<10	<10
g-BHC	μg/L	<10	<10	<10	<10
d-BHC	μg/L	<10	<10	<10	<10
Heptachlor	μg/L	<10	<10	<10	<10
Aldrin	μg/L	<10	<10	<10	<10
Heptachlor Epoxide	μg/L	<10	<10	<10	<10
g-Chlordane	μg/L	<10	<10	<10	<10
a-Chlordane	μg/L	<10	<10	<10	<10
Endosulfan I	μg/L	<10	<10	<10	<10
p,p'-DDE	μg/L	<10	<10	<10	<10
Dieldrin	μg/L	<10	<10	<10	<10
Endrin	μg/L	<10	<10	<10	<10
p,p'-DDD	μg/L	<10	<10	<10	<10
Endosulfan II	μg/L	<10	<10	<10	<10
Endrin Aldehyde	μg/L	<10	<10	<10	<10
p,p'-DDT	μg/L	<10	<10	<10	<10
Endosulfan Sulphate	μg/L	<10	<10	<10	<10
Surrogate 2-fluorophenol	%	63	58	67	55
Surrogate Phenol-de	%	59	31	43	34
Surrogate Nitrobenzene-ds	%	42	80	101	84
Surrogate 2-fluorobiphenyl	%	55	85	86	84
Surrogate 2,4,6-Tribromophenol	%	41	64	71	64
Surrogate p-Terphenyl-d ₁₄	%	52	107	103	94

vTRH in Water (C6-C9) NEPM					
Our Reference:	UNITS	112910-1	112910-2	112910-3	112910-4
Your Reference		MW01	MW02	QC01	Rinsate
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water
Date extracted	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Date analysed	=	11/07/2014	11/07/2014	11/07/2014	11/07/2014
TRHC6 - C9	μg/L	<100	<100	<100	<10
TRHC6 - C10	μg/L	<100	<100	<100	<10
Surrogate Dibromofluoromethane	%	112	118	124	87
Surrogate toluene-d8	%	99	97	98	98
Surrogate 4-BFB	%	98	102	101	102

svTRH (C10-C40) in Water					
Our Reference:	UNITS	112910-1	112910-2	112910-3	112910-4
Your Reference		MW01	MW02	QC01	Rinsate
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water
Date extracted	-	11/07/2014	11/07/2014	11/07/2014	11/07/2014
Date analysed	-	11/07/2014	11/07/2014	11/07/2014	11/07/2014
TRHC10 - C14	μg/L	1,000	76	<50	<50
TRHC 15 - C28	μg/L	1,200	120	<100	<100
TRHC29 - C36	μg/L	310	<100	<100	<100
TRH>C10 - C16	μg/L	870	53	<50	<50
TRH>C16 - C34	μg/L	1,100	130	<100	<100
TRH>C34 - C40	μg/L	<200	<100	<100	<100
Surrogate o-Terphenyl	%	76	98	107	101

HM in water - dissolved				
Our Reference:	UNITS	112910-2	112910-3	112910-4
Your Reference		MW02	QC01	Rinsate
Date Sampled		10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water
Date prepared	-	11/07/2014	11/07/2014	11/07/2014
Date analysed	-	11/07/2014	11/07/2014	11/07/2014
Arsenic-Dissolved	μg/L	3	3	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	5	5	<1
Zinc-Dissolved	μg/L	5	10	<1

43567, SOPA Client Reference:

Miscellaneous Inorganics					
Our Reference:	UNITS	112910-1	112910-2	112910-3	112910-4
Your Reference		MW01	MW02	QC01	Rinsate
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water
Date prepared	-	11/07/2014	11/07/2014	11/07/2014	11/07/2014
Date analysed	-	11/07/2014	11/07/2014	11/07/2014	11/07/2014
Ammonia as N in water	mg/L	2.2	0.32	0.53	0.020

Envirolab Reference: 112910

Revision No: R 00

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-057	Ammonia - determined colourimetrically based on EPA350.1 and APHA 22nd ED 4500-NH3 F, Soils are analysed following a KCl extraction.

Client Reference: 43567, SOPA											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
VOCs in water						Base II Duplicate II % RPD		,			
Date extracted	-			10/07/2 014	[NT]	[NT]	LCS-W1	10/07/2014			
Date analysed	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014			
Dichlorodifluoromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Chloromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Vinyl Chloride	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Bromomethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Chloroethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
Trichlorofluoromethane	μg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]			
1,1-Dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Trans-1,2- dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1-dichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	108%			
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Bromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Chloroform	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	104%			
2,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	107%			
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	112%			
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Cyclohexane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Carbon tetrachloride	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Dibromomethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Trichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	113%			
Bromodichloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	99%			
trans-1,3- dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
cis-1,3-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1,2-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Toluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,3-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Dibromochloromethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	101%			
1,2-dibromoethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Tetrachloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	103%			
1,1,1,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Chlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Ethylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Bromoform	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
m+p-xylene	μg/L	2	Org-013	<2	[NT]	[NT]	[NR]	[NR]			
Styrene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,1,2,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
o-xylene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			

Client Reference: 43567, SOPA												
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery				
VOCs in water						Base II Duplicate II %RPD						
1,2,3-trichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
Isopropylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
Bromobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
n-propyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
2-chlorotoluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
4-chlorotoluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,3,5-trimethyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
Tert-butyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2,4-trimethyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,3-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
Sec-butyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,4-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
4-isopropyl toluene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2-dichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
n-butyl benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2-dibromo-3- chloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2,4-trichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
Hexachlorobutadiene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
1,2,3-trichlorobenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]				
Surrogate Dibromofluoromethane	%		Org-013	79	[NT]	[NT]	LCS-W1	105%				
Surrogate toluene-d8	%		Org-013	100	[NT]	[NT]	LCS-W1	97%				
Surrogate 4-BFB	%		Org-013	102	[NT]	[NT]	LCS-W1	97%				

Client Reference: 43567, SOPA											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
SVOC's in water						Base II Duplicate II %RPD		,			
Date extracted	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014			
Date analysed	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014			
Phenol	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	38%			
Bis (2-chloroethyl) ether	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2-Chlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	99%			
1,3-Dichlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
1,4-Dichlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	56%			
2-Methylphenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
1,2-Dichlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
bis-(2-Chloroisopropyl) ether	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
3/4-Methylphenol	μg/L	20	Org-012	<20	[NT]	[NT]	[NR]	[NR]			
N-nitrosodi-n- propylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Hexachloroethane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Nitrobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Isophorone	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2,4-Dimethylphenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2-Nitrophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
bis (2-Chloroethoxy) methane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2,4-Dichlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
1,2,4-Trichlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Naphthalene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
4-Chloroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Hexachlorobutadiene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2-Methylnaphthalene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Hexachlorocyclopentadi ene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2,4,6-Trichlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2,4,5-Trichlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2-Chloronaphthalene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2-Nitroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Dimethyl phthalate	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	65%			
2,6-Dinitrotoluene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Acenaphthylene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
3-Nitroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Acenaphthene	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	66%			
2,4-Dinitrophenol	μg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]			
4-Nitrophenol	μg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]			
Dibenzofuran	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Diethylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	74%			
4- Chlorophenylphenylether	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
4-Nitroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			

Client Reference: 43567, SOPA											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
SVOC's in water						Base II Duplicate II %RPD		,			
Fluorene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2-methyl-4,6- dinitrophenol	μg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]			
Azobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
4-	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Bromophenylphenylether											
Hexachlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Pentachlorophenol	μg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]			
Phenanthrene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Carbazole	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Di-n-butylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Fluoranthene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Pyrene	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	63%			
Butylbenzylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Bis(2-ethylhexyl) phthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Benzo(a)anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Chrysene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Di-n-octylphthalate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Benzo(b)fluoranthene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Benzo(k)fluoranthene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Benzo(a)pyrene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Indeno(1,2,3-c,d)pyrene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Dibenzo(a,h)anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Benzo(g,h,i)perylene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Ethylmethanesulfonate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Aniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Pentachloroethane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Benzyl alcohol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Acetophenone	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
N-nitrosomorpholine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
N-nitrosopiperidine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2,6-Dichlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Hexachloropropene-1	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
N-nitroso-n-butylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Safrole	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
1,2,4,5- Tetrachlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Trans-iso-safrole	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
1,3-Dinitrobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
Pentachlorobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
1-Naphthylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2,3,4,6- Tetrachlorophenol	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
2-Naphthylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			
5-Nitro-o-toluidine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]			

		Clie	nt Referenc	e: 43	3567, SOPA			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOC's in water						Base II Duplicate II %RPD		
Diphenylamine	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Phenacetin	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachloronitrobenzene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dinoseb	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Methapyrilene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p- Dimethylaminoazobenze ne	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Acetylaminofluorene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
7,12-Dimethylbenz(a) anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
3-Methylcholanthrene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
a-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
b-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
g-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
d-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Heptachlor	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Aldrin	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	77%
Heptachlor Epoxide	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
g-Chlordane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
a-Chlordane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endosulfan I	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDE	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dieldrin	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	52%
Endrin	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDD	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endosulfan II	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDT	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Surrogate 2-fluorophenol	%		Org-012	79	[NT]	[NT]	LCS-W1	70%
Surrogate Phenol-de	%		Org-012	54	[NT]	[NT]	LCS-W1	44%
Surrogate Nitrobenzene-ds	%		Org-012	85	[NT]	[NT]	LCS-W1	74%
Surrogate 2- fluorobiphenyl	%		Org-012	111	[NT]	[NT]	LCS-W1	84%
Surrogate 2,4,6- Tribromophenol	%		Org-012	82	[NT]	[NT]	LCS-W1	62%
Surrogate p-Terphenyl- d ₁₄	%		Org-012	81	[NT]	[NT]	LCS-W1	72%

Envirolab Reference: 112910 Revision No: R 00

Client Reference: 43567, SOPA

		<u> </u>	nt Referenc		567, SOPA			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH in Water (C6-C9) NEPM						Base II Duplicate II %RPD		,
Date extracted	-			10/07/2 014	[NT]	[NT]	LCS-W1	10/07/2014
Date analysed	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014
TRHC6 - C9	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	106%
TRHC6 - C10	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	106%
Surrogate Dibromofluoromethane	%		Org-013	79	[NT]	[NT]	LCS-W1	121%
Surrogate toluene-d8	%		Org-013	100	[NT]	[NT]	LCS-W1	98%
Surrogate 4-BFB	%		Org-013	102	[NT]	[NT]	LCS-W1	98%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water						Base II Duplicate II %RPD		
Date extracted	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014
Date analysed	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014
TRHC 10 - C14	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	75%
TRHC 15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	62%
TRHC29 - C36	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	73%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	75%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	62%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	73%
Surrogate o-Terphenyl	%		Org-003	115	[NT]	[NT]	LCS-W1	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		
Date prepared	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014
Date analysed	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014
Arsenic-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	91%
Cadmium-Dissolved	μg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-W1	94%
Chromium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	81%
Copper-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	85%
Lead-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	97%
Mercury-Dissolved	μg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]	[NT]	LCS-W1	104%
Nickel-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	87%
Zinc-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	89%
			.5. 110		<u> </u>			

Envirolab Reference: 112910 Revision No: R 00 Client Reference: 43567, SOPA

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II %RPD		,
Date prepared	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014
Date analysed	-			11/07/2 014	[NT]	[NT]	LCS-W1	11/07/2014
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]	[NT]	LCS-W1	97%

Envirolab Reference: 112910 Revision No: R 00 **Client Reference:** 43567, SOPA

Report Comments:

Total Recoverable Hydrocarbons in water:(NEPM) PQL has been raised due to the sample matrix requiring dilution.

VOC's in water:PQL has been raised due to the sample matrix requiring dilution.

Total Recoverable Hydrocarbons in water (NEPM):PQL has been raised due to the sample matrix requiring dilution.

Asbestos ID was analysed by Approved Identifier: Not applicable for this job Asbestos ID was authorised by Approved Signatory: Not applicable for this job

INS: Insufficient sample for this test

NA: Test not required

<: Less than

PQL: Practical Quantitation Limit

RPD: Relative Percent Difference NA: Test not required

>: Greater than LCS: Laboratory Control Sample

NT: Not tested

Page 19 of 20

Envirolab Reference: 112910 Revision No: R 00

Client Reference: 43567, SOPA

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 112910 Page 20 of 20 Revision No: R 00

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Your ref: 424326

NATA Accreditation No: 14484

8 July 2014

Eurofins | MGT Unit F3, Building F, 16, Mars Road Lane Cove NSW 2066

Attn: Dr Robert Symons

Dear Robert

Asbestos Identification

This report presents the results of thirteen samples, forwarded by Eurofins | MGT on 8 July 2014, for analysis for asbestos. This report supersedes the report issued earlier today.

1.Introduction: Thirteen samples forwarded were examined and analysed for the presence of asbestos.

2. Methods : The samples were examined under a Stereo Microscope and selected fibres were analysed

by Polarized Light Microscopy in conjunction with Dispersion Staining method (Safer Environment Method 1 and Australian Guidelines AS 4964 - 2004 and WA/ NEPM Guidelines)

Guidennes)

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia/ NEPM Guidelines for the Assessment Remediation and Management of Asbestos in contaminated sites.

3. Results: Sample No. 1. ASET40202 / 43382 / 1. BH01 - 0.2 - 0.3 - J106886.

Approx dimensions 9.8 cm x 9.5 cm x 9.2 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, cement, brick and bitumen.

No asbestos detected.

Sample No. 2. ASET40202 / 43382 / 2. BH02 - 0.2 - 0.3 - J106890.

Approx dimensions 10.2 cm x 9.4 cm x 8.6 cm

The sample consisted of a mixture of clayish soil, stones, plant matter and fragments of shale.

No asbestos detected.

Sample No. 3. ASET40202 / 43382 / 3. BH03 - 0 - 0.1 - J106896.

Approx dimensions 10.1 cm x 9.3 cm x 8.7 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of plaster, glass and shale.

No asbestos detected.

Sample No. 4. ASET40202 / 43382 / 4. BH04 - 0 - 0.1 - J106899.

Approx dimensions 9.8 cm x 9.7 cm x 9.5 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of cement and shale.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: aset@bigpond.net.au WEBSITE: www.Ausset.com.au

Sample No. 5. ASET40202 / 43382 / 5. BH05 - 0 - 0.1 - J106902.

Approx dimensions 9.6 cm x 9.5 cm x 9.1 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of coal like material, glass and shale.

No asbestos detected.

Sample No. 6. ASET40202 / 43382 / 6. BH06 - 0 - 0.1 - Jl06908.

Approx dimensions 9.7 cm x 9.5 cm x 9.3 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of glass and shale.

No asbestos detected.

Sample No. 7. ASET40202 / 43382 / 7. BH07 - 0 - 0.1 - J106911.

Approx dimensions 10.2 cm x 9.5 cm x 8.7 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of glass and shale.

No asbestos detected.

Sample No. 8. ASET40202 / 43382 / 8. BH08 - 0 - 0.1 - J106914.

Approx dimensions 9.7 cm x 9.3 cm x 8.8 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of cement.

No asbestos detected.

Sample No. 9. ASET40202 / 43382 / 9. BH09 - 0.2 - 0.3 - J106918.

Approx dimensions 10.3 cm x 9.6 cm x 8.7 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, glass, and shale.

No asbestos detected.

Sample No. 10. ASET40202 / 43382 / 10. BH10 - 0.2 - 0.3 - J106920.

Approx dimensions 9.5 cm x 9.3 cm x 8.4 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fibres^, fragments of cement, brick, bitumin, glass and shale.

Chrysotile[^] (Approximate weight = 0.001g) asbestos detected.

Approximate total weight of asbestos = 0.001g.

Approximate total asbestos weight in AF(Loose fibres) = 0.001g.

Approximate total weight of soil =886 g.

Approximate w/w % = 0.0001%

Sample No. 11. ASET40202 / 43382 / 11. BH11 - 0 - 0.1 - J106921.

Approx dimensions 9.4 cm x 9.3 cm x 8.6 cm

The sample consisted of a mixture of clayish soil, stones, plant matter and fragments of glass.

No asbestos detected.

Sample No. 12. ASET40202 / 43382 / 12. BH12 - 0 - 0.1 - Jl06923.

Approx dimensions 9.6 cm x 9.1 cm x 8.7 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of plaster, cement and shale.

No asbestos detected.

Sample No. 13. ASET40202 / 43382 / 13. QC01 - J106924.

Approx dimensions 9.7 cm x 9.5 cm x 8.6 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of glass and shale.

No asbestos detected.

Analysed and reported by,

Laxman Dias. BSc Analyst / Approved Identifier

Approved Signatory

Accredited for compliance with ISO/IEC 17025.

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation covers only the qualitative part of the results reported.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a $7 \text{mm} \times 7 \text{mm}$ sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos detected in Soil/ Dust.
- *denotes fibres in bonded form in fragments

All samples indicating " No asbestos detected" are assumed to be less than 0.001~% unless the actual approximate weight is given.

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Your ref: 424326

NATA Accreditation No: 14484

8 July 2014

Eurofins | MGT Unit F3, Building F, 16, Mars Road Lane Cove NSW 2066

Attn: Dr Robert Symons

Dear Robert

Asbestos Identification

This report presents the results of thirteen samples, forwarded by Eurofins | MGT on 8 July 2014, for analysis for asbestos. This report supersedes the report issued earlier today.

1.Introduction: Thirteen samples forwarded were examined and analysed for the presence of asbestos.

2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed

by Polarized Light Microscopy in conjunction with Dispersion Staining method (Safer Environment Method 1 and Australian Guidelines AS 4964 - 2004 and WA/ NEPM Guidelines)

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia/ NEPM Guidelines for the Assessment Remediation and Management of Asbestos in contaminated sites.

3. Results: Sample No. 1. ASET40202 / 43382 / 1. BH01 - 0.2 - 0.3 - J106886.

Approx dimensions 9.8 cm x 9.5 cm x 9.2 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, cement, brick and bitumen.

No asbestos detected.

Sample No. 2. ASET40202 / 43382 / 2. BH01 - 0.2 - 0.3 - Jl06890.

Approx dimensions 10.2 cm x 9.4 cm x 8.6 cm

The sample consisted of a mixture of clayish soil, stones, plant matter and fragments of shale.

No asbestos detected.

Sample No. 3. ASET40202 / 43382 / 3. BH03 - 0 - 0.1 - J106896.

Approx dimensions 10.1 cm x 9.3 cm x 8.7 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of plaster, glass and shale.

No asbestos detected.

Sample No. 4. ASET40202 / 43382 / 4. BH04 - 0 - 0.1 - J106899.

Approx dimensions 9.8 cm x 9.7 cm x 9.5 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of cement and shale.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: aset@bigpond.net.au WEBSITE: www.Ausset.com.au

Sample No. 5. ASET40202 / 43382 / 5. BH05 - 0 - 0.1 - J106902.

Approx dimensions 9.6 cm x 9.5 cm x 9.1 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of coal like material, glass and shale.

No asbestos detected.

Sample No. 6. ASET40202 / 43382 / 6. BH06 - 0 - 0.1 - Jl06908.

Approx dimensions 9.7 cm x 9.5 cm x 9.3 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of glass and shale.

No asbestos detected.

Sample No. 7. ASET40202 / 43382 / 7. BH07 - 0 - 0.1 - J106911.

Approx dimensions 10.2 cm x 9.5 cm x 8.7 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of glass and shale.

No asbestos detected.

Sample No. 8. ASET40202 / 43382 / 8. BH08 - 0 - 0.1 - J106914.

Approx dimensions 9.7 cm x 9.3 cm x 8.8 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of cement.

No asbestos detected.

Sample No. 9. ASET40202 / 43382 / 9. BH09 - 0.2 - 0.3 - J106918.

Approx dimensions 10.3 cm x 9.6 cm x 8.7 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, glass, and shale.

No asbestos detected.

Sample No. 10. ASET40202 / 43382 / 10. BH10 - 0.2 - 0.3 - J106920.

Approx dimensions 9.5 cm x 9.3 cm x 8.4 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fibres^, fragments of cement, brick, bitumin, glass and shale.

Chrysotile[^] (Approximate weight = 0.001g) asbestos detected.

Approximate total weight of asbestos = 0.001g.

Approximate total asbestos weight in AF(Loose fibres) = 0.001g.

Approximate total weight of soil =886 g.

Approximate w/w % = 0.0001%

Sample No. 11. ASET40202 / 43382 / 11. BH11 - 0 - 0.1 - J106921.

Approx dimensions 9.4 cm x 9.3 cm x 8.6 cm

The sample consisted of a mixture of clayish soil, stones, plant matter and fragments of glass.

No asbestos detected.

Sample No. 12. ASET40202 / 43382 / 12. BH12 - 0 - 0.1 - Jl06923.

Approx dimensions 9.6 cm x 9.1 cm x 8.7 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of plaster, cement and shale.

No asbestos detected.

Sample No. 13. ASET40202 / 43382 / 13. QC01 - J106924.

Approx dimensions 9.7 cm x 9.5 cm x 8.6 cm

The sample consisted of a mixture of clayish soil, stones, plant matter, fragments of glass and shale.

No asbestos detected.

Analysed and reported by,

Laxman Dias. BSc Analyst / Approved Identifier

Approved Signatory

Accredited for compliance with ISO/IEC 17025.

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation covers only the qualitative part of the results reported.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a $7 \text{mm} \times 7 \text{mm}$ sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos detected in Soil/ Dust.
- *denotes fibres in bonded form in fragments

All samples indicating " No asbestos detected" are assumed to be less than 0.001~% unless the actual approximate weight is given.

00026

CHAIN OF CUSTODY

PROJECT NO.: 43567						LAB	ORAT	(OR)	BA	TCH	NO.:					15.5%		1	
PROJECT NAME: SOPA						SAN	1PLE	RS:	1	15	h	30	>			15	She	ACD	9) IDIA COM C
SEND REPORT TO: CO	Ham	SEND II	VVOICE TO:	a.Na		РНО	NE:	SYDN	NEY (02 8	245 0	300 1	PERTH	08 94	88 01	00 E	MAIL:	m	STATE COM COM
DATE NEEDED BY:	turn	aro	und			QCL	EVE	L: NE	PM	(201	.3)								0000
COMMENTS / SPECIAL HANDLING / STORA	AGE OR DISPOSA	ML:			(HEOWYME	PHI BYEX	Aspestas	OCR	RCBS	CEC	1000							
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	ह्य	×	y			10								NOTES:
BHO1 0-0.1	Soil	ורסוד	4	Jart Bagtice		2)5													
BHO1 02-03		' '		10.		X	\times	$d\mathbf{x}$	×	X									
BHOI 0.5-0.6																			
BHO11.0-1.1																			
BH02 0-01																			
BHO2 0.2-03						X	$\times \times$	X	X	X	X>								
BH020.5-0.6																			
BH02 1.0-1.1																			
BH02 1.4-15																			
BHO2 20-21																			
BHO2 25-76						П													
RH03 0-01						\times	ΚX		X	X									
BH03 0-01 BH03 0-2-03											1								
BHO3 0.5-0.6																			
BH040-0-1						\times	$\langle \rangle$	(X	X	X									
RHO4 0.2-0.3								Τ.							\prod				
BH04 0.5-06																			
RH65 0-01						\times	$\times \times$		X	X									
BH0502-03	V	1		V															
RELINQUISHED BY:				METHOD OF SHIPMENT:						VED B	Y:	•	Ş. J.		-76	FOR F	RECEIVIN	IG LAB	USE ONLY.
NAME: K. Sharp	7/7	CONS 14 TRAN	SIGNMENT NO	TE NO.		NAM DAT OF:	ME: Z	EN	N		3.	20				deg C		Intact	use onty;
NAME: DATE:	*	CONS	SIGNMENT NO	TE NO.		NAM OF:	ΛE:				DAT	E:	co	OLER SE	AL - Ye	s N	0	Intact	Broken
OF:			ISPORT CO													deg C			
Container & Preservative Codes: P = Pla		B = Glass Bottl	le; N = Nitric Acid	d Prsvd.; C = Sodium Hydroxide Prsvd; VC = F	lydrochlor	ic Acid	Prsvd \	/ial; VS	= Sul	furic A	cid Prsv	d Vial; S	= Sulfuric	Acid Prs	/d; Z = Zi	nc Prsvd;	E = EDTA	Prsvd;	ST = Sterile Bottle; O = Other

IMSO FormsO13 – Chain of Custody - Gener

00027

CHAIN OF CUSTODY

PROJECT NO.: 45 43567			LABORATORY BATCH NO.:
PROJECT NAME: STOPA			SAMPLERS: K. Sharp Ksharpgybsgcom
SEND REPORT TO: M. Battam :	SEND INVOICE TO: G.Ng		PHONE: SYDNEY 02 8245 0300 - PERTH 08 9488 0100 EMAIL:
DATE NEEDED BY:	PIROUNA		QC LEVEL: NEPM (2013)
COMMENTS / SPECIAL HANDLING STORAGE OR DISPOSAL:			A SOLUTION OF THE SOLUTION OF
920			
r t			[3] # # 8 R R R L L L L L L L L L L L L L L L L
SAMPLE ID MATRIX	DATE TIME TYPE & PRESERVATIVE	рН	PER SOCIATION NOTES:
BH05 0.5-0.6 Soil -	7/7/4 Jar + Bag+ ICE	5	
BH05 10-11		32.	
BH05 15-1.6			
BH05 20-21			
RH06 0-01			XXXXXX
BH06 0.2-0.3			
BH0605-06			
BH070-01			
BH070.2-03			
BH0765-06			
BH080-01			
BH0802-03 BH080506			
BH080506			XXX
RH09 0-01			
BH09 0 2-0.3			
BH10 6-01			
BHIO 02-03			$\times \times \times \times \times \times$
BH11 0-0.1			
BHII 0.2-03 V	A		
RELINOUISHED BY:	METHOD OF SHIPMENT:		RECEIVED BY: FOR RECEIVING LAB USE ONLY
NAME: K. Shop 7/7/4	CONSIGNMENT NOTE NO.		NAME: JEWN 3. 20m COOLER SEAL - Yes No Intact Broken
OF: JBS&G	TRANSPORT CO.		OF: COOLER TEMP deg C
NAME: DATE:	CONSIGNMENT NOTE NO.		NAME: DATE: COOLER SEAL – Yes No Intact Broken
OF:	TRANSPORT CO		OF: COOLER TEMP deg C
		VC = Hydrochlo	oric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other

00028

CHAIN OF CUSTODY

PROJECT NO.: 4356	7					LABO	RATO	RY BAT	CH NO).:	dia s	Part .		3 1			
PROJECT NAME: SPECIF	SOPP	+				SAMP	LERS:	K	5. S	har	0			KSI	Dan	00	1105a.com.qu
SEND REPORT TO: M	Man	SEND IN	VOICE TO	o: G.Ng		PHON	E: SYI	NEY C	2 824	5 0300 -	PERTI	1 08 9	9488	0100	EMAIL.	mn	josg com au attama josq co
DATE NEEDED BY: 24 Y	irs tu	rn c	ארסטו	na U		QC LE	۷EL: ۱	EPM	2013)		*					an allin	
COMMENTS / SPECIAL HANDLING / STOR	RAGE OR DISPOSAL	:				90		8	×								
			-12			DAY METAL	of g	bosk									
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pH	70	O	ĬČ	Foc								NOTES:
BH12 0-0.1	Soil	707	4	104 + B00		XX	XX	X	X								
GCOI		17				XX	XX	X	X								
QCO2	10						,										
QCO3 QCO3	W			V													
RINSOHR	worter			PIB+ VC+N+ICE		XX	X	X	X								
Trio Soike				VC+100					X		3						
RINSOHR Trip Spike Trip blank	1	1		PiBiVC+N+Ke VC+ICe VC+ICO					×	_ 56°							
111/201011				77									-	2			
					7.						- 50		TIS.				
											3.7		9				
					1								-				
7.2													3-				
											517						
								1.8			10	45	4				
													1				
											M						
RELINQUISHED B				METHOD OF SHIPMENT:			-	RECEIV	ED BY:		153		100				JSE ONLY:
NAME: K. Shampate:	7/1/14		GNMENT N	IOTE NO.		NAME DATE: OF:	Jr	cng	3.	20 pm	3.7			Yes		Intact .	Broken
OF: JBS&G NAME: DATE:			GNMENT N	NOTE NO.		NAME	:			ATE:						Intact	Broken
OF:		TRAN:	SPORT CO			OF:					C	OOLER	TEMP	deg	С		
Container & Preservative Codes: P = P	lastic; J = Soil Jar; E	3 = Glass Bottle	; N = Nitric A	cid Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochlo	ric Acid Pr	vd Vial;	VS = Sulf	uric Acid	Prsvd Vial; S						A Prsvd; S	T = Sterile Bottle; O = Other

IMSO FormsO13 - Chain of Custody - Generic

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name: JBS & G (NSW & WA) Pty Ltd

Contact name: Michelle Battam
Client job number: SOPA 43567
COC number: Not provided

Turn around time: 1 Day

Date/Time received: Jul 7, 2014 3:20 PM

Eurofins | mgt reference: 424326

Sample information

- ✓ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 3 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- ☑ Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Extra jar received BH07 2.5-2.6 however BH02 2.5-2.6 is missing.BH07 2.5-2.6 labelled as BH02 2.5-2.6 Extra bag received HA05 0.5-0.6 has been placed on hold.

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone: (+61) (2) 9900 8400 or by e.mail: JeanHeng@eurofins.com.au

Results will be delivered electronically via e.mail to Michelle Battam - mbattam@jbsgroup.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Company Name: Address: JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St

Sydney NSW 2000

Clent Job No.: SOPA 43567 Order No.: Received: Jul 7, 2014 3:20 PM Report #:

424326 Due: Jul 8, 2014 Priority: Contact Name: 1 Day Michelle Battam 02 8245 0300

Eurofins | mgt Client Manager: Jean Heng

	d85 521 e.mail : EnviroSales@eurofins.com.au w			Sample Detail			% Clay	% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
	ıb@r	atory wh	ere analysis is co	onducted															
	el Bio	urne Lab	oratory - NATA S	Site # 1254 & 14	271					Х									
	dine	y Labora	ntory - NATA Site	# 18217				Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
			ratory - NATA Si				Х												
		al Labor							Х										
ğ)	ple ID	Sample Date	Sampling Time	Matrix	LAB ID													
Ε	101	0-0.1	Jul 07, 2014		Soil	S14-JI06885					Х								
	101	0.2-0.3	Jul 07, 2014		Soil	S14-JI06886		Х	Х				Х	Х	Х		Х	Х	Χ
	1 01	0.5-0.6	Jul 07, 2014		Soil	S14-JI06887					Х								
	101	1.0-1.1	Jul 07, 2014		Soil	S14-JI06888					Χ								
	102	0-0.1	Jul 07, 2014		Soil	S14-JI06889					Χ								
	1 01	0.2-0.3	Jul 07, 2014		Soil	S14-JI06890	Х	Х	Х	Х		Х	Х	Х	Х		Х	Х	Χ
	102	0.5-0.6	Jul 07, 2014		Soil	S14-JI06891					Х								
	102	1.0-1.1	Jul 07, 2014		Soil	S14-JI06892					Χ								
	102	1.4-1.5	Jul 07, 2014		Soil	S14-JI06893					Χ								
	102	2.0-2.1	Jul 07, 2014		Soil	S14-JI06894					Х								

Phone:

Fax:

Company Name: Aogdress: JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St Client Job No.:

Sydney NSW 2000

SOPA 43567

Order No.: Received: Jul 7, 2014 3:20 PM

Report #: 424326 Due: Jul 8, 2014 Phone: Priority: Contact Name: 1 Day Michelle Battam 02 8245 0300 Fax:

Eurofins | mgt Client Manager: Jean Heng

2																		
d85 521 e.mail : EnviroSales@eurofins.com.au wet			Sample Detail			% Clay	% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	НОГЛ	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
ıb@r	atory wh	ere analysis is c	onducted															
elac	urne Lab	oratory - NATA	Site # 1254 & 14	271					Х									
dane	y Labora	atory - NATA Site	e # 18217				Х			Х	Х	Х	Х	Х	Х	Χ	Х	Х
		ratory - NATA S				Х												
	al Labor							Х										
102	2.5-2.6	Jul 07, 2014		Soil	S14-JI06895					Х								
E 102 103 103	0-0.1	Jul 07, 2014		Soil	S14-JI06896		Χ	Х				Х	Х	Х		Χ	Χ	Х
103	0.2-0.3	Jul 07, 2014		Soil	S14-JI06897					Х								
— 1 03	0.5-0.6	Jul 07, 2014		Soil	S14-JI06898					Х								
104	0-0.1	Jul 07, 2014		Soil	S14-JI06899		Х	Х				Х	Х	Х		Χ	Х	Χ
104	0.2-0.3	Jul 07, 2014		Soil	S14-JI06900					Х								
104	0.5-0.6	Jul 07, 2014		Soil	S14-JI06901					Х								
1 05	0-0.1	Jul 07, 2014		Soil	S14-JI06902		Х	Х				Х	Х	Х		Χ	Х	Χ
105	0.2-0.3	Jul 07, 2014		Soil	S14-JI06903					Х								
105	0.5-0.6	Jul 07, 2014		Soil	S14-JI06904					Х								
105	1.0-1.1	Jul 07, 2014		Soil	S14-JI06905					Χ								

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St

Sydney NSW 2000

Client Job No.: SOPA 43567 Order No.: Received: Jul 7, 2014 3:20 PM

Report #: 424326 Due: Jul 8, 2014 Phone: Priority: Contact Name: 1 Day Michelle Battam 02 8245 0300 Fax:

Eurofins | mgt Client Manager: Jean Heng

085 521 e.mail: EnviroSales@eurofins.com.au w			Sample Detail			% Clay	% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
ber	atory wh	ere analysis is c	onducted															
elac	urne Lab	ooratory - NATA	Site # 1254 & 14	271					Х									
		atory - NATA Site					Х			Х	Х	Х	Х	Х	Х	Χ	Х	Х
isba	ne Labo	ratory - NATA S	ite # 20794			Х												
	al Laboı	ratory	T	T.				Х										
105	1.5-1.6	Jul 07, 2014		Soil	S14-JI06906					Х								
20 105	1.5-1.6 2.0-2.1 D-0.1	Jul 07, 2014		Soil	S14-JI06907					Х								
<u> 106</u>	D-0.1	Jul 07, 2014		Soil	S14-JI06908		Х	Х				Х	Х	Х		Х	Х	Х
— <u>106</u>	0.2-0.3	Jul 07, 2014		Soil	S14-JI06909					Х								
	0.5-0.6	Jul 07, 2014		Soil	S14-JI06910					Х								
107	D-0.1	Jul 07, 2014		Soil	S14-JI06911		Х	Х				Х	Х	Х		Х	Χ	Х
1 07	0.2-0.3	Jul 07, 2014		Soil	S14-JI06912					Х								
1 07	0.5-0.6	Jul 07, 2014		Soil	S14-JI06913					Х								
108	0-0.1	Jul 07, 2014		Soil	S14-JI06914		Х	Х				Χ	Х	Х		Χ	Х	Х
108	0.2-0.3	Jul 07, 2014		Soil	S14-JI06915					Х								
108	0.5-0.6	Jul 07, 2014		Soil	S14-JI06916	Х	Χ		Χ		Х							

Client Job No.:

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd Level 1, 50 Margaret St

Sydney NSW 2000

SOPA 43567

Order No.: Received: Jul 7, 2014 3:20 PM Report #:

424326 Due: Jul 8, 2014 Priority: Contact Name: 1 Day Michelle Battam 02 8245 0300

Eurofins | mgt Client Manager: Jean Heng

*										_		_		_	_	_	_	-
Q85 521 e.mail : EnviroSales@eurofins.com.au			Sample Detail			% Clay	% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
ı b gr	atory wh	ere analysis is c	onducted															
0		oratory - NATA		271					Х									
da	y Labora	atory - NATA Site	e # 18217				Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
isb	ne Labo	ratory - NATA Si	ite # 20794			Х												
teri	al Labor	atory						Х										
<u>109</u>	D-0.1	Jul 07, 2014		Soil	S14-JI06917					Х								
<u>109</u>	0-0.1 0.2-0.3 0-0.1	Jul 07, 2014		Soil	S14-JI06918		Х	Х				Х	Х	Х		Х	Х	Χ
<u> 110</u>	0-0.1	Jul 07, 2014		Soil	S14-JI06919					Х								
— <u>110</u>	0.2-0.3	Jul 07, 2014		Soil	S14-JI06920		Х	Х				Х	Х	Х		Х	Х	Χ
1 11	D-0.1	Jul 07, 2014		Soil	S14-JI06921		Х	Х				Х	Х	Х		Х	Х	Χ
1 11	0.2-0.3	Jul 07, 2014		Soil	S14-JI06922					Х								
112	D-0.1	Jul 07, 2014		Soil	S14-JI06923		Х	Х				Х	Х	Х		Х	Х	Х
201		Jul 07, 2014		Soil	S14-JI06924		Х	Х				Х	Х	Х		Х	Х	Χ
202		Jul 07, 2014		Soil	S14-JI06925					Х								
203		Jul 07, 2014		Soil	S14-JI06926					Х								
NS/	TE	Jul 07, 2014		Water	S14-JI06927							Χ	Χ		Χ	Χ	Χ	Χ

Phone:

Fax:

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd Order No.: Received: Jul 7, 2014 3:20 PM

Level 1, 50 Margaret St Report #: 424326 Due: Jul 8, 2014 Phone: 02 8245 0300

Sydney NSW 2000 Priority: Contact Name: 1 Day Michelle Battam Client Job No.: Fax:

SOPA 43567 Eurofins | mgt Client Manager: Jean Heng

Sample Detail Sample																			
Districtory where analysis is conducted	e.mail: EnviroSales@eurofins.com.au			Sample Detail				% Moisture	weight as	Exchange	HOLD	Aqueous	Polycyclic Aromatic Hydrocarbons	ס	Metals M8	M8	BTEX	Biphenyls (PC	Total Recoverable Hydrocarbons
Second S	ıbe	ratory wh	nere analysis is c	onducted															
Check Laboratory - NATA Site # 18217	0				271					Х									
Spane Laboratory - NATA Site # 20794 X								Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
Iter al Laboratory X X IP SPIKE Jul 07, 2014 Water \$14-Jl06928 X VIP BLANK Jul 07, 2014 Water \$14-Jl06929 X							Х												
XIP SPIKE Jul 07, 2014 Water \$14-JI06928 X WRIP BLANK Jul 07, 2014 Water \$14-JI06929 X									X										
20 ₹IP \$LANK Jul 07, 2014 Water \$14-Jl06929 X			1		Water	S14-JI06928											Х		
			· ·																
\05 0.5-0.6 Jul 07, 2014 Soil S14-Jl07023 X											Х								

JBS & G (NSW & WA) Pty Ltd Level 1, 50 Margaret St Sydney NSW 2000 NATA

WORLD RECOGNISED
ACCREDITATION

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Kate Sharp

Report424326-S-V2Client ReferenceSOPA 43567Received DateJul 07, 2014

Client Sample ID			BH01 0.2-0.3	BH02 0.2-0.3	BH03 0-0.1	BH04 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S14-JI06886	S14-JI06890	S14-JI06896	S14-JI06899
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit	ĺ		,	
Total Recoverable Hydrocarbons - 1999 NEPM I		O me				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	28	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	55	71
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	79
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	83	150
BTEX	<u>'</u>	, , ,				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	0.4	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	0.2	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	0.5	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92	91	88	89
Total Recoverable Hydrocarbons - 2013 NEPM I	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	110
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	140
Polycyclic Aromatic Hydrocarbons	·					
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene						-
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.0240963855 ² 21687
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH01 0.2-0.3	BH02 0.2-0.3	BH03 0-0.1	BH04 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S14-JI06886	S14-JI06890	S14-JI06896	S14-JI06899
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		<u>'</u>				
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (lower bound)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound)*	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound)*	0.5	mg/kg	1.2	1.2	1.2	1.2
2-Fluorobiphenyl (surr.)	1	%	79	98	93	99
p-Terphenyl-d14 (surr.)	1	%	102	128	125	125
Organochlorine Pesticides	•	•				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	129	104	115	126
Tetrachloro-m-xylene (surr.)	1	%	117	93	90	95
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	129	104	115	126
% Clay	1	%	-	29	-	-
pH (1:5 Aqueous extract)	0.1	units	-	7.0	-	-
% Moisture	0.1	%	6.8	10	14	17
Asbestos (% weight as per WA Guidelines)			see attached	see attached	see attached	see attached
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	-	15	-	-

Client Sample ID Sample Matrix			BH01 0.2-0.3 Soil	BH02 0.2-0.3 Soil	BH03 0-0.1 Soil	BH04 0-0.1 Soil
Eurofins mgt Sample No.			S14-JI06886	S14-JI06890	S14-JI06896	S14-JI06899
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	5.0	5.2	3.2	4.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	6.7	5.4	9.8	7.7
Copper	5	mg/kg	12	24	16	28
Lead	5	mg/kg	14	8.9	12	21
Mercury	0.05	mg/kg	< 0.05	0.09	< 0.05	0.18
Nickel	5	mg/kg	9.3	6.1	8.0	10.0
Zinc	5	mg/kg	25	27	46	150

Client Sample ID			BH05 0-0.1	BH06 0-0.1	BH07 0-0.1	BH08 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S14-JI06902	S14-JI06908	S14-JI06911	S14-JI06914
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	0.3	0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	0.4	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	100	99	95	99
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons	·					
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			BH05 0-0.1 Soil	BH06 0-0.1 Soil	BH07 0-0.1 Soil	BH08 0-0.1 Soil
Eurofins mgt Sample No.			S14-JI06902	S14-JI06908	S14-JI06911	S14-JI06914
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit		00.01,2011	001, 2011	
Polycyclic Aromatic Hydrocarbons	LOIN	Offic				
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (lower bound)*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound)*	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound)*	0.5	mg/kg	1.2	1.2	1.2	1.2
2-Fluorobiphenyl (surr.)	1	%	97	108	113	98
p-Terphenyl-d14 (surr.)	1	%	124	116	123	125
Organochlorine Pesticides	1 '	/0	127	110	120	120
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	113	112	114	99
Tetrachloro-m-xylene (surr.)	1	%	89	91	128	95
Polychlorinated Biphenyls (PCB)		,,,				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232 Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1240	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	113	112	114	99
			7.10	12	1	
% Moisture	0.1	%	9.8	8.8	16	5.1
	0.1	/0				
Asbestos (% weight as per WA Guidelines)			see attached	see attached	see attached	see attached

Client Sample ID Sample Matrix			BH05 0-0.1 Soil	BH06 0-0.1 Soil	BH07 0-0.1 Soil	BH08 0-0.1 Soil
Eurofins mgt Sample No.			S14-JI06902	S14-JI06908	S14-JI06911	S14-JI06914
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	3.1	4.0	7.3	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	9.3	13	9.3
Copper	5	mg/kg	13	16	29	31
Lead	5	mg/kg	11	14	24	5.4
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	2.0
Nickel	5	mg/kg	6.0	7.8	5.0	44
Zinc	5	mg/kg	36	36	64	46

Client Sample ID			BH08 0.5-0.6	BH09 0.2-0.3	BH10 0.2-0.3	BH11 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S14-JI06916	S14-JI06918	S14-JI06920	S14-JI06921
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	-	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	-	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	-	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	-	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	-	< 50	< 50	< 50
ВТЕХ						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	-	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	92	89	82
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	-	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	-	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	-	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5

mgt

Client Sample ID Sample Matrix			BH08 0.5-0.6 Soil	BH09 0.2-0.3 Soil	BH10 0.2-0.3 Soil	BH11 0-0.1 Soil
·			S14-JI06916	S14-JI06918	S14-JI06920	S14-JI06921
Eurofins mgt Sample No.						l
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Total PAH	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (lower bound)*	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound)*	0.5	mg/kg	-	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound)*	0.5	mg/kg	-	1.2	1.2	1.2
2-Fluorobiphenyl (surr.)	1	%	-	99	99	97
p-Terphenyl-d14 (surr.)	1	%	-	125	126	124
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin Fortification to the books	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Hexachlorobenzene Methographics	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Methoxychlor Toyonhone	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
Toxaphene Dibutylchlorendate (surr.)	1	mg/kg	-	< 1 95	< 1 121	< 1 132
	1	%	-			
Tetrachloro-m-xylene (surr.) Polychlorinated Biphenyls (PCB)	<u> </u>	%	-	96	95	128
	0.5	m = //		-05	-0.5	-05
Arcelor 1333	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Arcelor 1343	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Arcelor 1248	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Arcelor 1254	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Arcelor 1260	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1260 Total PCB	0.5 0.5	mg/kg	-	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Dibutylchlorendate (surr.)	0.5	mg/kg %	-	95	121	132
Dibutyicilioreridate (Surf.)		70	<u>-</u>	95	121	132
% Clay	1	%	65	-	-	-
pH (1:5 Aqueous extract)	0.1	units	6.4	-	-	-
% Moisture	0.1	%	22	7.7	16	29
Asbestos (% weight as per WA Guidelines)			-	see attached	see attached	see attached

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH08 0.5-0.6 Soil S14-JI06916 Jul 07, 2014	BH09 0.2-0.3 Soil S14-JI06918 Jul 07, 2014	BH10 0.2-0.3 Soil S14-JI06920 Jul 07, 2014	BH11 0-0.1 Soil S14-JI06921 Jul 07, 2014
Test/Reference	LOR	Unit				
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	15	-	-	-
Heavy Metals						
Arsenic	2	mg/kg	-	6.4	9.5	3.9
Cadmium	0.4	mg/kg	-	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	9.0	12	13
Copper	5	mg/kg	-	19	16	15
Lead	5	mg/kg	-	22	18	16
Mercury	0.05	mg/kg	-	4.8	< 0.05	< 0.05
Nickel	5	mg/kg	-	11	< 5	5.4
Zinc	5	mg/kg	-	53	24	42

Client Sample ID			BH12 0-0.1	QC01
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S14-JI06923	S14-JI06924
Date Sampled			Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	40
TRH C15-C28	50	mg/kg	< 50	90
TRH C29-C36	50	mg/kg	< 50	75
TRH C10-36 (Total)	50	mg/kg	< 50	210
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	0.2	0.8
o-Xylene	0.1	mg/kg	< 0.1	0.3
Xylenes - Total	0.3	mg/kg	< 0.3	1.0
4-Bromofluorobenzene (surr.)	1	%	91	93
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	55
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	55
TRH >C16-C34	100	mg/kg	< 100	130
TRH >C34-C40	100	mg/kg	< 100	< 100
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID Sample Matrix			BH12 0-0.1 Soil	QC01 Soil
Eurofins mgt Sample No.			S14-JI06923	S14-JI06924
Date Sampled			Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit		, , , , , , , , , , , , , , , , , , , ,
Polycyclic Aromatic Hydrocarbons	LOIX	Offic		
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (lower bound)*	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound)*	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (inediam bound)*	0.5	mg/kg	1.2	1.2
2-Fluorobiphenyl (surr.)	1	%	98	94
p-Terphenyl-d14 (surr.)	1	%	126	121
Organochlorine Pesticides		/0	120	121
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.1	< 0.1
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
q-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1
Dibutylchlorendate (surr.)	1	%	106	126
Tetrachloro-m-xylene (surr.)	1	%	78	105
Polychlorinated Biphenyls (PCB)	<u> </u>			
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5
Total PCB	0.5	mg/kg	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	106	126
1/				
% Moisture	0.1	%	9.1	22
Asbestos (% weight as per WA Guidelines)	3	1	see attached	see attached

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH12 0-0.1 Soil S14-JI06923 Jul 07, 2014	QC01 Soil S14-JI06924 Jul 07, 2014
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	4.9	3.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	9.4	10
Copper	5	mg/kg	20	16
Lead	5	mg/kg	15	13
Mercury	0.05	mg/kg	< 0.05	< 0.05
Nickel	5	mg/kg	5.8	7.3
Zinc	5	mg/kg	62	49

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Jul 07, 2014	Holding Time 14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 07, 2014	14 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	Jul 07, 2014	14 Day
- Method: E029/E016 BTEX			
Polycyclic Aromatic Hydrocarbons	Sydney	Jul 07, 2014	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Jul 07, 2014	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Jul 07, 2014	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
% Clay	Brisbane	Jul 09, 2014	6 Month
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract)	Sydney	Jul 08, 2014	7 Day
- Method: E018.2 pH			
% Moisture	Sydney	Jul 07, 2014	28 Day
- Method: E005 Moisture Content			
Ion Exchange Properties	Melbourne	Jul 09, 2014	
Metals M8	Sydney	Jul 07, 2014	28 Day

⁻ Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS

JBS & G (NSW & WA) Pty Ltd

Company Name: Address: Level 1, 50 Margaret St

Sydney NSW 2000

Client Job No.: SOPA 43567 Order No.:

Report #: 424326

Phone: 02 8245 0300

Fax:

Received: Jul 7, 2014 3:20 PM

Jul 8, 2014 Due: 1 Day -ALL INVOICES Priority:

Contact Name:

Eurofins | mgt Client Manager: Jean Heng

RS 521 e mail - EnviroSalas @ eurofins com au		Sample Detail							Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Acutal Recoverables Hydrocarbons
ıbe	ratory wh	ere analysis is c															\perp	
		oratory - NATA		271					Χ								$\perp \!\!\! \perp$	
	_	atory - NATA Site					Х			Х	Х	Х	Х	Х	Х	Х	X	Х
		ratory - NATA Si	te # 20794			X											$\perp \!\!\! \perp$	
	rnal Labor		1					Х									$\perp \!\!\! \perp$	
Sa Sa	in ple ID I 0-0.1	Sample Date	Sampling Time	Matrix	LAB ID													
E <u>10</u> ⋅	I D-0.1	Jul 07, 2014		Soil	S14-JI06885					Х							Щ	
10	0.2-0.3	Jul 07, 2014		Soil	S14-JI06886		Х	Χ				Х	Х	Х		Х	X	Х
10	0.5-0.6	Jul 07, 2014		Soil	S14-JI06887					Х							Ш.	
10	1.0-1.1	Jul 07, 2014		Soil	S14-JI06888					Х							Ш.	
102	2 0-0.1	Jul 07, 2014		Soil	S14-JI06889					Х							Ш.	
	2 0.2-0.3	Jul 07, 2014		Soil	S14-JI06890	X	Х	Χ	Χ		Х	Х	Х	Х		Χ	X	Х
_	2 0.5-0.6	Jul 07, 2014		Soil	S14-JI06891					Х							4	2014
102	2 1.0-1.1	Jul 07, 2014		Soil	S14-JI06892					Х							, 20:	
	2 1.4-1.5	Jul 07, 2014		Soil	S14-JI06893					Х)1 IU	In 1
102	2 2.0-2.1	Jul 07, 2014		Soil	S14-JI06894					Х							ted:	uted:
																	First Reported:J	Date Reported:Jul 1

Lane Cove West, NSW, Ausi 8400 Facsimile: +612 9420

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St

Sydney NSW 2000

Client Job No.: SOPA 43567 Order No.: Received: Jul 7, 2014 3:20 PM Report #:

424326 Due: Jul 8, 2014 Phone: Priority: Contact Name: 1 Day -ALL INVOICES 02 8245 0300

Eurofins | mgt Client Manager: Jean Heng

85 521 e.mail: ErwiroSales@eurofins.com.au w	Sample Detail						% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
	atory wh																	
elBo	urne Laboratory - NATA Site # 1254 & 14271								Х									
dane	ey Laboratory - NATA Site # 18217						Х			Х	Х	Х	Х	Х	Х	Χ	Х	Х
isb	ne Labo	ratory - NATA S	ite # 20794			Х												
	al Labor	ratory		1				Х										
102	2.5-2.6	Jul 07, 2014		Soil	S14-JI06895					Х								
E 102 103 103	D-0.1	Jul 07, 2014		Soil	S14-JI06896		Х	Х				Х	Х	Х		Х	Х	Х
<u> 103</u>	0.2-0.3	Jul 07, 2014		Soil	S14-JI06897					Х								
— <u>103</u>	0.5-0.6	Jul 07, 2014		Soil	S14-JI06898					Х								
104	0-0.1	Jul 07, 2014		Soil	S14-JI06899		Х	Х				Х	Х	Х		Х	Х	Х
104	0.2-0.3	Jul 07, 2014		Soil	S14-JI06900					Х								
104	0.5-0.6	Jul 07, 2014		Soil	S14-JI06901					Х								
1 05	0-0.1	Jul 07, 2014		Soil	S14-JI06902		Х	Х				Х	Х	Х		Х	Х	Х
105	0.2-0.3	Jul 07, 2014		Soil	S14-JI06903					Х								
105	0.5-0.6	Jul 07, 2014		Soil	S14-JI06904					Х								
105	1.0-1.1	Jul 07, 2014		Soil	S14-JI06905					Χ								

Fax:

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St

Sydney NSW 2000

Client Job No.: SOPA 43567 Order No.: Received: Jul 7, 2014 3:20 PM Report #:

424326 Due: Jul 8, 2014 Phone: Priority: Contact Name: 1 Day -ALL INVOICES 02 8245 0300 Fax:

Eurofins | mgt Client Manager: Jean Heng

Metals M8 Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons pH (1:5 Aqueous extract) HOLD Cation Exchange Capacity Asbestos (% weight as per WA Guidelines) % Clay Sample Detail No ne-moo: Suljona-@saleSoniva = 125 989	Total Recoverable Hydrocarbons Polychlorinated Biphenyls (PCB) BTEX
iberatory where analysis is conducted	
alaourne Laboratory - NATA Site # 1254 & 14271	
rdady Laboratory - NATA Site # 18217 X X X X X X X	X X X
isbane Laboratory - NATA Site # 20794 X	
teri al Laboratory X	
105 1.5-1.6 Jul 07, 2014 Soil S14-Jl06906 X	
105 1.5-1.6 Jul 07, 2014 Soil S14-J106906 X Sil S14-J106907 X Soil S14-J106907 X Soil S14-J106907 X Soil S14-J106908 X X X X X X X X X X X X X X X X X X X	
□ 106 p -0.1 Jul 07, 2014 Soil S14-Jl06908 X X X X X	X X X
<u></u>	
106 p .5-0.6 Jul 07, 2014 Soil S14-Jl06910 X	
107 0-0.1 Jul 07, 2014 Soil S14-Jl06911 X X X X X	X X X
107 D.2-0.3 Jul 07, 2014 Soil S14-Jl06912 X	
107 0.5-0.6 Jul 07, 2014 Soil S14-Jl06913 X	
108 0 -0.1 Jul 07, 2014 Soil S14-Jl06914 X X X X X	X X X
108 p .2-0.3 Jul 07, 2014 Soil S14-Jl06915 X	
108 D.5-0.6 Jul 07, 2014 Soil S14-Jl06916 X X X X X	

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd Level 1, 50 Margaret St

Sydney NSW 2000 Client Job No.:

SOPA 43567

Order No.: Received: Jul 7, 2014 3:20 PM Report #:

424326 Due: Jul 8, 2014 Phone: Priority: Contact Name: 1 Day -ALL INVOICES 02 8245 0300

Eurofins | mgt Client Manager: Jean Heng

q85 521 e.mail : EnviroSales @ eurofins.com.au w							% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
be	atory wh	ere analysis is c	onducted															
elBo	urne Lal	boratory - NATA	Site # 1254 & 14	271					Х									
dn	ey Laboratory - NATA Site # 18217						Χ			Х	Χ	Х	Х	Х	Х	Х	Х	Χ
isb	ne Laboratory - NATA Site # 20794																	
ter	al Labo	ratory						Х										
<u>+ 109</u>	0-0.1	Jul 07, 2014		Soil	S14-JI06917					Х								
<u>109</u>	0-0.1 0.2-0.3 0-0.1	Jul 07, 2014		Soil	S14-JI06918		Х	X				Х	Х	Х		Х	X	Χ
<u> </u>	0-0.1	Jul 07, 2014		Soil	S14-JI06919					Х								
— <u>110</u>	0.2-0.3	Jul 07, 2014		Soil	S14-JI06920		Χ	X				Х	Х	Х		Х	Х	Χ
1 11	0-0.1	Jul 07, 2014		Soil	S14-JI06921		Х	X				Х	Х	Х		Х	X	Χ
1 11	0.2-0.3	Jul 07, 2014		Soil	S14-JI06922					Х								
1 12	0-0.1	Jul 07, 2014		Soil	S14-JI06923		Х	Х				Х	Х	Х		Х	Х	Χ
201		Jul 07, 2014		Soil	S14-JI06924		Χ	Х				Х	Х	Х		Х	Х	Х
202	:	Jul 07, 2014		Soil	S14-JI06925					Х							$oxed{oxed}$	
203		Jul 07, 2014		Soil	S14-JI06926					Х								
NS	ATE	Jul 07, 2014		Water	S14-JI06927							Х	Х		Х	Х	Х	Х

Fax:

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd Order No.: Received: Jul 7, 2014 3:20 PM

Level 1, 50 Margaret St Report #: 424326 Due: Jul 8, 2014 Phone: 02 8245 0300 Priority:

Sydney NSW 2000 1 Day -ALL INVOICES Client Job No.: Contact Name: Fax:

SOPA 43567 Eurofins | mgt Client Manager: Jean Heng

ರ																		
d85 521 e.mail : EnviroSales @ eurofins.com.au we	Sample Detail atory where analysis is conducted						% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
ı b gı	atory wh	ere analysis is c	onducted															1
0		oratory - NATA		271					Х									
da	y Labora	ntory - NATA Site	# 18217				Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
		ratory - NATA Si				Х												
	al Labor							Х										
 RIP	SPIKE	Jul 07, 2014		Water	S14-JI06928											Х		
₩,	BLANK	Jul 07, 2014		Water	S14-JI06929											Х		
≥ √05	0.5-0.6	Jul 07, 2014		Soil	S14-JI07023					Х								

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Report Number: 424326-S-V2

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
TRH C10-36 (Total)	mg/kg	< 0	50	Pass	
Method Blank	1 3 3				
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	mg/kg	V 0.0	0.0	1 455	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 0.5	20	Pass	
TRH C6-C10 less BTEX (F1)		< 20	20	Pass	
` '	mg/kg		50	Pass	
TRH >C10-C16	mg/kg	< 50	100	Pass	
TRH >C16-C34	mg/kg	< 100			
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		Т		I	
Polycyclic Aromatic Hydrocarbons				_	
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	<1	1	Pass	
Method Blank	199		,	1 222	
Polychlorinated Biphenyls (PCB)					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB	mg/kg	< 0	0.5	Pass	
Method Blank					
Ion Exchange Properties					
Cation Exchange Capacity	meg/100g	< 0.05	0.05	Pass	
Method Blank	1			1 222	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	<u> </u>				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	97	70-130	Pass	
TRH C10-C14	%	86	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	117	70-130	Pass	
Toluene	%	98	70-130	Pass	
Ethylbenzene	%	96	70-130	Pass	
m&p-Xylenes	%	95	70-130	Pass	
o-Xylene	%	95	70-130	Pass	
Xylenes - Total	%	95	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	112	70-130	Pass	
TRH C6-C10	%	98	70-130	Pass	
TRH >C10-C16	%	92	70-130	Pass	
LCS - % Recovery			1		
-					
Polycyclic Aromatic Hydrocarbons					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthylene	%	92	70-130	Pass	
Anthracene	%	93	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	109	70-130	Pass	
Benzo(b&j)fluoranthene	%	79	70-130	Pass	
Benzo(g.h.i)perylene	%	87	70-130	Pass	
Benzo(k)fluoranthene	%	109	70-130	Pass	
Chrysene	%	103	70-130	Pass	
Dibenz(a.h)anthracene	%	90	70-130	Pass	
Fluoranthene	%	116	70-130	Pass	
Fluorene	%	101	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	90	70-130	Pass	
Naphthalene	%	92	70-130	Pass	
Phenanthrene	%	85	70-130	Pass	
Pyrene	%	114	70-130	Pass	
LCS - % Recovery	1.7	,		1 3.00	
Organochlorine Pesticides					
Chlordanes - Total	%	91	70-130	Pass	
4.4'-DDD	%	99	70-130	Pass	
4.4'-DDE	%	88	70-130	Pass	
4.4'-DDT	%	70	70-130	Pass	
a-BHC	%	95	70-130	Pass	
Aldrin	%	92	70-130	Pass	
b-BHC	%	91	70-130	Pass	
d-BHC	%	83	70-130	Pass	
Dieldrin	%	94	70-130	Pass	
Endosulfan I	%	86	70-130	Pass	
Endosulfan II	%	95	70-130	Pass	
Endosulfan sulphate	%	81	70-130	Pass	
Endrin	%	92	70-130	Pass	
Endrin aldehyde	%	82	70-130	Pass	
Endrin ketone	%	77	70-130	Pass	
g-BHC (Lindane)	%	79	70-130	Pass	
Heptachlor	%	88	70-130	Pass	
Heptachlor epoxide	%	91	70-130	Pass	
Hexachlorobenzene	%	87	70-130	Pass	
Methoxychlor	%	72	70-130	Pass	
LCS - % Recovery	70	12	70 100	1 455	
Polychlorinated Biphenyls (PCB)					
Aroclor-1260	%	106	70-130	Pass	
LCS - % Recovery	70	100	70 100	1 400	
Heavy Metals					
Arsenic	%	99	70-130	Pass	
Cadmium	%	99	70-130	Pass	
Chromium	%	95	70-130	Pass	
Copper	%	96	70-130	Pass	
Lead	%	93	70-130	Pass	
Mercury	%	86	70-130	Pass	
Nickel	%	94	70-130	Pass	
Zinc	%	98	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S14-JI06890	СР	%	95	70-130	Pass	
4.4'-DDD	S14-JI06890	СР	%	104	70-130	Pass	
4.4'-DDE	S14-JI06890	СР	%	104	70-130	Pass	
4.4'-DDT	S14-JI06890	СР	%	100	70-130	Pass	
a-BHC	S14-JI06890	СР	%	95	70-130	Pass	
Aldrin	S14-JI06890	СР	%	92	70-130	Pass	
b-BHC	S14-JI06890	СР	%	85	70-130	Pass	
d-BHC	S14-JI06890	СР	%	94	70-130	Pass	
Dieldrin	S14-JI06890	СР	%	102	70-130	Pass	
Endosulfan I	S14-JI06890	СР	%	93	70-130	Pass	
Endosulfan II	S14-JI06890	CP	%	102	70-130	Pass	
Endosulfan sulphate	S14-JI06890	CP	%	113	70-130	Pass	
Endrin	S14-JI06890	CP	%	103	70-130	Pass	
Endrin aldehyde	S14-JI06890	CP	%	95	70-130	Pass	
Endrin ketone	S14-JI06890	CP	%	115	70-130	Pass	
g-BHC (Lindane)	S14-JI06890	CP	%	92	70-130	Pass	
Heptachlor	S14-JI06890	CP	%	95	70-130	Pass	
Heptachlor epoxide	S14-JI06890	CP	%	97	70-130	Pass	
Hexachlorobenzene	S14-JI06890	CP	%	97	70-130	Pass	
Methoxychlor	S14-JI06890	CP	<u> </u>	102	70-130	Pass	
Spike - % Recovery	314-3106690	CF	70	102		Fass	
Polychlorinated Biphenyls (PCB)				Result 1			
Aroclor-1260	S14-JI06890	СР	%	96	70-130	Pass	
Spike - % Recovery	314-3100090	Ci	/0	30	10-130	1 033	
Heavy Metals				Result 1			
Arsenic	S14-JI06890	СР	%	92	70-130	Pass	
Cadmium	S14-JI06890	CP	<u> </u>	93	70-130	Pass	
Chromium	S14-J106890	CP	%	94	70-130	Pass	
		CP			70-130		
Copper	\$14-JI06890		%	96		Pass	
Lead	S14-JI06890	CP	%	93	70-130	Pass	
Mercury	S14-JI06890	CP	%	72	70-130	Pass	
Nickel	S14-JI06890	CP	%	96	70-130	Pass	-
Zinc	S14-JI06890	СР	%	84	70-130	Pass	
Spike - % Recovery				B 1/4	T	T	
Heavy Metals	044 407004	NOD	0/	Result 1	70.400	-	-
Arsenic	S14-JI07024	NCP	%	95	70-130	Pass	
Cadmium	S14-JI06715	NCP	%	102	70-130	Pass	
Chromium	S14-JI06715	NCP	%	101	70-130	Pass	
Mercury	S14-JI07024	NCP	%	100	70-130	Pass	
Nickel	S14-Jl06715	NCP	%	104	70-130	Pass	
Spike - % Recovery		_		T =T	T	Т	
Total Recoverable Hydrocarbons				Result 1		_	
TRH C6-C9	S14-JI06911	CP	%	102	70-130	Pass	
TRH C10-C14	S14-Jl06911	CP	%	83	70-130	Pass	
Spike - % Recovery				1 !			-
BTEX	l			Result 1		-	
Benzene	S14-JI06911	CP	%	90	70-130	Pass	
Toluene	S14-JI06911	CP	%	87	70-130	Pass	
Ethylbenzene	S14-JI06911	CP	%	101	70-130	Pass	
m&p-Xylenes	S14-JI06911	CP	%	105	70-130	Pass	
o-Xylene	S14-JI06911	CP	%	104	70-130	Pass	
Xylenes - Total	S14-JI06911	CP	%	105	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S14-JI06911	CP	%	104			70-130	Pass	
TRH C6-C10	S14-JI06911	CP	%	97			70-130	Pass	
TRH >C10-C16	S14-JI06911	CP	%	95			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	S			Result 1					
Acenaphthene	S14-JI06911	CP	%	93			70-130	Pass	
Acenaphthylene	S14-JI06911	CP	%	92			70-130	Pass	
Anthracene	S14-JI06911	CP	%	87			70-130	Pass	
Benz(a)anthracene	S14-JI06911	CP	%	110			70-130	Pass	
Benzo(a)pyrene	S14-JI06911	СР	%	109			70-130	Pass	
Benzo(b&j)fluoranthene	S14-JI06911	СР	%	83			70-130	Pass	
Benzo(g.h.i)perylene	S14-JI06911	CP	%	89			70-130	Pass	
Benzo(k)fluoranthene	S14-JI06911	СР	%	100			70-130	Pass	
Chrysene	S14-JI06911	СР	%	102			70-130	Pass	
Dibenz(a.h)anthracene	S14-JI06911	СР	%	92			70-130	Pass	
Fluoranthene	S14-JI06911	СР	%	110			70-130	Pass	
Fluorene	S14-JI06911	СР	%	99			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S14-JI06911	СР	%	93			70-130	Pass	
Naphthalene	S14-JI06911	СР	%	90			70-130	Pass	
Phenanthrene	S14-JI06911	СР	%	87			70-130	Pass	
Pyrene	S14-JI06911	СР	%	124			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	_								
Total Recoverable Hydrocarbons -	 1999 NEPM Fract 	ions		Result 1	Result 2	RPD			
Total Recoverable Hydrocarbons - TRH C10-C14	S14-JI06886	ions CP	mg/kg	Result 1 < 20	Result 2 < 20	RPD <1	30%	Pass	
			mg/kg mg/kg	1			30% 30%	Pass Pass	
TRH C10-C14	S14-JI06886	СР		< 20	< 20	<1			
TRH C10-C14 TRH C15-C28	S14-JI06886 S14-JI06886	CP CP	mg/kg	< 20 < 50	< 20 < 50	<1 <1	30%	Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36	\$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP	mg/kg	< 20 < 50	< 20 < 50	<1 <1	30%	Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	\$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP	mg/kg	< 20 < 50 < 50	< 20 < 50 < 50	<1 <1 <1	30%	Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons	\$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP CP	mg/kg mg/kg	< 20 < 50 < 50 Result 1	< 20 < 50 < 50 Result 2	<1 <1 <1 RPD	30%	Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16	\$14-JI06886 \$14-JI06886 \$14-JI06886 • 2013 NEPM Fract \$14-JI06886	CP CP CP ions	mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1	< 20 < 50 < 50 Result 2	<1 <1 <1 RPD <1	30% 30% 30%	Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34	\$14-JI06886 \$14-JI06886 \$14-JI06886 • 2013 NEPM Fract \$14-JI06886 \$14-JI06886	CP CP CP ions CP	mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100	< 20 < 50 < 50 Result 2 < 50 < 100	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	\$14-JI06886 \$14-JI06886 \$14-JI06886 - 2013 NEPM Fract \$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP CP ions CP	mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100	< 20 < 50 < 50 Result 2 < 50 < 100	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate	\$14-JI06886 \$14-JI06886 \$14-JI06886 - 2013 NEPM Fract \$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP CP ions CP	mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100	< 20 < 50 < 50 Result 2 < 50 < 100 < 100	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30%	Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons	\$14-JI06886 \$14-JI06886 \$14-JI06886 • 2013 NEPM Fract \$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100	< 20 < 50 < 50 < 80 < 50 Result 2 < 50 < 100 < 100 Result 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene	\$14-JI06886 \$14-JI06886 \$14-JI06886 - 2013 NEPM Fract \$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP ions CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthylene	\$14-JI06886 \$14-JI06886 \$14-JI06886 • 2013 NEPM Fract \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP ions CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	\$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP CP ions CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	\$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	\$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP C	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 80 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	\$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP C	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	\$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP C	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	\$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP C	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	\$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP C	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	\$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886 \$14-JI06886	CP	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluorene	\$14-JI06886 \$14-JI06886	CP	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons TRH >C10-C16 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	\$14-JI06886 \$14-JI06886	CP	mg/kg	< 20 < 50 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate Total Recoverable Hydrocarbons - TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluorene	\$14-JI06886 \$14-JI06886	CP	mg/kg	< 20 < 50 < 50 Result 1 < 50 < 100 < 100 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 20 < 50 < 50 < 50 Result 2 < 50 < 100 < 100 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S14-JI06886	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
•		CP		1	1				
Endrin ketone	\$14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S14-JI06886	†	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor apayida	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S14-JI06886	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S14-JI06886	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				I	I . I		T		
Polychlorinated Biphenyls (PCB	<u> </u>			Result 1	Result 2	RPD		_	
Aroclor-1016	S14-JI06886	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S14-JI06886	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S14-JI06886	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S14-JI06886	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S14-JI06886	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S14-JI06886	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				T	T T				
Heavy Metals			ī	Result 1	Result 2	RPD			
Arsenic	S14-JI06886	CP	mg/kg	5.0	5.0	<1	30%	Pass	
Cadmium	S14-JI06886	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S14-JI06886	CP	mg/kg	6.7	5.7	16	30%	Pass	
Copper	S14-JI06886	CP	mg/kg	12	15	24	30%	Pass	
Lead	S14-JI06886	CP	mg/kg	14	17	15	30%	Pass	
Mercury	S14-JI06886	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S14-JI06886	CP	mg/kg	9.3	8.7	7.0	30%	Pass	
Zinc	S14-JI06886	CP	mg/kg	25	31	22	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Clay	M14-My16442	NCP	%	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S14-JI06715	NCP	mg/kg	26	58	97	30%	Fail	Q08
Cadmium	S14-JI06714	NCP	mg/kg	< 0.4	0.40	18	30%	Pass	
Chromium	S14-JI06714	NCP	mg/kg	13	14	12	30%	Pass	
Copper	S14-JI06715	NCP	mg/kg	57	95	120	30%	Fail	Q08
Lead	S14-JI06715	NCP	mg/kg	140	170	110	30%	Fail	Q08
Mercury	S14-JI04489	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S14-JI06714	NCP	mg/kg	7.4	9.3	22	30%	Pass	
Zinc	S14-JI06714	NCP	mg/kg	130	140	9.0	30%	Pass	
Duplicate	, 5.1000114	. 101		, 100		0.0	. 5576	, . 455	
Total Recoverable Hydrocarbon	s - 1999 NFPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S14-JI06908	CP	mg/kg	< 20	< 20	<1	30%	Pass	
11.11 00 00	1 214 0100300		i iig/Ng	\ \	` ~ 20		JU /0	i ass	

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S14-JI06908	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S14-JI06908	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S14-JI06908	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S14-JI06908	CP	mg/kg	0.2	0.2	<1	30%	Pass	
o-Xylene	S14-JI06908	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S14-JI06908	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S14-JI06908	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S14-JI06908	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S14-JI06908	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qι	ualifier Co	odes/Comments
Co	ode	Description
N0	1	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
NO2	2	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	4	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
NO7	7	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q0	8	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Authorised By

Jean Heng Client Services

Bob Symons Senior Analyst-Inorganic (NSW) Emily Rosenberg Senior Analyst-Metal (VIC) Senior Analyst-Metal (NSW) Ivan Taylor Richard Corner Senior Analyst-Inorganic (QLD) Ryan Hamilton Senior Analyst-Organic (NSW) Ryan Hamilton Senior Analyst-Volatile (NSW)

Dr. Bob Symons **Laboratory Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

JBS & G (NSW & WA) Pty Ltd Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Michelle Battam

Report424326-WClient ReferenceSOPA 43567Received DateJul 07, 2014

Client Sample ID			RINSATE	TRIP SPIKE	TRIP BLANK
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S14-JI06927	S14-JI06928	S14-JI06929
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit	,	,	,
Total Recoverable Hydrocarbons - 1999 NEPM		J 0			
TRH C6-C9	0.02	mg/L	< 0.02	_	_
TRH C10-C14	0.05	mg/L	< 0.05	_	_
TRH C15-C28	0.1	mg/L	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	-	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-	-
BTEX	'				
Benzene	0.001	mg/L	< 0.001	88%	< 0.001
Toluene	0.001	mg/L	< 0.001	88%	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	98%	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	100%	< 0.002
o-Xylene	0.001	mg/L	< 0.001	101%	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	100%	< 0.003
4-Bromofluorobenzene (surr.)	1	%	70	102	74
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•			
Naphthalene ^{N02}	0.02	mg/L	< 0.02	-	-
TRH C6-C10	0.02	mg/L	< 0.02	-	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-	-
TRH >C10-C16	0.05	mg/L	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	-	-
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.001	mg/L	< 0.001	-	-
Acenaphthylene	0.001	mg/L	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	-	-
Fluorene	0.001	mg/L	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	-	-

Client Sample ID			RINSATE	TRIP SPIKE	TRIP BLANK
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			S14-JI06927	S14-JI06928	S14-JI06929
Date Sampled			Jul 07, 2014	Jul 07, 2014	Jul 07, 2014
Test/Reference	LOR	Unit	,	,	,
Polycyclic Aromatic Hydrocarbons	LOIK	Offic			
Phenanthrene	0.001	mg/L	< 0.001	_	_
Pyrene	0.001	mg/L	< 0.001	_	_
Total PAH	0.001	mg/L	< 0.001	_	_
2-Fluorobiphenyl (surr.)	1	%	79	_	_
p-Terphenyl-d14 (surr.)	1	%	79	_	_
Organochlorine Pesticides		,,,			
Chlordanes - Total	0.001	mg/L	< 0.001	_	_
1.4'-DDD	0.0001	mg/L	< 0.0001	_	_
1.4'-DDE	0.0001	mg/L	< 0.0001	_	_
4.4'-DDT	0.0001	mg/L	< 0.0001	-	_
a-BHC	0.0001	mg/L	< 0.0001	-	_
Aldrin	0.0001	mg/L	< 0.0001	-	-
p-BHC	0.0001	mg/L	< 0.0001	_	-
H-BHC	0.0001	mg/L	< 0.0001	_	_
Dieldrin	0.0001	mg/L	< 0.0001	_	_
Endosulfan I	0.0001	mg/L	< 0.0001	_	-
Endosulfan II	0.0001	mg/L	< 0.0001	_	_
Endosulfan sulphate	0.0001	mg/L	< 0.0001	_	-
Endrin	0.0001	mg/L	< 0.0001	_	_
Endrin aldehyde	0.0001	mg/L	< 0.0001	_	-
Endrin ketone	0.0001	mg/L	< 0.0001	-	-
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	-	-
Heptachlor	0.0001	mg/L	< 0.0001	-	-
Heptachlor epoxide	0.0001	mg/L	< 0.0001	-	-
Hexachlorobenzene	0.0001	mg/L	< 0.0001	-	-
Methoxychlor	0.0001	mg/L	< 0.0001	-	-
Toxaphene	0.01	mg/L	< 0.01	-	-
Dibutylchlorendate (surr.)	1	%	108	-	-
Tetrachloro-m-xylene (surr.)	1	%	80	-	-
Polychlorinated Biphenyls (PCB)					
Aroclor-1016	0.005	mg/L	< 0.005	-	-
Aroclor-1232	0.005	mg/L	< 0.005	-	-
Aroclor-1242	0.005	mg/L	< 0.005	-	-
Aroclor-1248	0.005	mg/L	< 0.005	-	-
Aroclor-1254	0.005	mg/L	< 0.005	-	-
Aroclor-1260	0.005	mg/L	< 0.005	-	-
Total PCB	0.005	mg/L	< 0.005	-	-
Dibutylchlorendate (surr.)	1	%	108	-	-
leavy Metals	<u> </u>	T			
Arsenic (filtered)	0.001	mg/L	< 0.001	-	-
Cadmium (filtered)	0.0001	mg/L	< 0.0001	-	-
Chromium (filtered)	0.001	mg/L	< 0.001	-	-
Copper (filtered)	0.001	mg/L	< 0.001	-	-
_ead (filtered)	0.001	mg/L	< 0.001	-	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	-	-
Nickel (filtered)	0.001	mg/L	< 0.001	-	-
Zinc (filtered)	0.005	mg/L	< 0.005	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Jul 07, 2014	Holding Time 7 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 07, 2014	7 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	Jul 07, 2014	14 Day
- Method: E029/E016 BTEX			
Polycyclic Aromatic Hydrocarbons	Sydney	Jul 07, 2014	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Jul 07, 2014	7 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Jul 07, 2014	7 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Metals M8 filtered	Sydney	Jul 07, 2014	28 Day

Company Name: Address: JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St

Sydney NSW 2000

Cleent Job No.: SOPA 43567 Order No.:

Report #: 424326 Phone: 02 8245 0300

Fax:

Lane Cove West, NSW, Ausi 8400 Facsimile: +612 9420

Received: Jul 7, 2014 3:20 PM

Jul 8, 2014 Due: Priority: Contact Name: 1 Day Michelle Battam

Eurofins | mgt Client Manager: Jean Heng

	d85 521 e.mail : EnviroSales@eurofins.com.au v			Sample Detail			% Clay	% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB) Polychlorinated Biphenyls (PCB)	dotal Koonneradie Hydrocardons
		atory wh	ere analysis is c	onducted															
	el B o	urne Lab	oratory - NATA	Site # 1254 & 14	271					Х									
	dhe	y Labora	ntory - NATA Site	# 18217				Х			Х	Х	Х	Х	Х	Х	Х	X	X
	isba	ne Labo	ratory - NATA Si	te # 20794			Х												
	terr	al Labor	atory						Х										
g	San	ple ID	Sample Date	Sampling Time	Matrix	LAB ID													<u></u>
Ε	1 01	0-0.1	Jul 07, 2014		Soil	S14-JI06885					Х								
	101	0.2-0.3	Jul 07, 2014		Soil	S14-JI06886		Χ	Х				Х	Χ	Х		Х	X	Χ
	1 01	0.5-0.6	Jul 07, 2014		Soil	S14-JI06887					Χ								
	1 01	1.0-1.1	Jul 07, 2014		Soil	S14-JI06888					Χ								
	102	0-0.1	Jul 07, 2014		Soil	S14-JI06889					Х								
	1 01	0.2-0.3	Jul 07, 2014		Soil	S14-JI06890	X	Χ	X	Х		Χ	Х	Х	Х		Х	X	Χ
	102	0.5-0.6	Jul 07, 2014		Soil	S14-JI06891					Х								4
	1 02	1.0-1.1	Jul 07, 2014		Soil	S14-JI06892					Χ								201
	1 02	1.4-1.5	Jul 07, 2014		Soil	S14-JI06893					Χ								11/1/
	102	2.0-2.1	Jul 07, 2014		Soil	S14-JI06894					Χ								, 00
		I																	Š

Company Name: Aogdress: JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St Client Job No.:

Sydney NSW 2000

SOPA 43567

Order No.: Received: Jul 7, 2014 3:20 PM

Report #: 424326 Due: Jul 8, 2014 Phone: Priority: Contact Name: 1 Day Michelle Battam 02 8245 0300 Fax:

Eurofins | mgt Client Manager: Jean Heng

2																		
d85 521 e.mail : EnviroSales@eurofins.com.au wet			Sample Detail			% Clay	% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	НОГЛ	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
ıb@r	atory wh	ere analysis is c	onducted															
elac	urne Lab	oratory - NATA	Site # 1254 & 14	271					Х									
dane	y Labora	atory - NATA Site	e # 18217				Х			Х	Х	Х	Х	Х	Х	Χ	Х	Х
		ratory - NATA S				Х												
	al Labor							Х										
102	2.5-2.6	Jul 07, 2014		Soil	S14-JI06895					Х								
E 102 103 103	0-0.1	Jul 07, 2014		Soil	S14-JI06896		Χ	Х				Х	Х	Х		Χ	Х	Х
103	0.2-0.3	Jul 07, 2014		Soil	S14-JI06897					Х								
— 1 03	0.5-0.6	Jul 07, 2014		Soil	S14-JI06898					Х								
104	0-0.1	Jul 07, 2014		Soil	S14-JI06899		Х	Х				Х	Х	Х		Х	Х	Χ
104	0.2-0.3	Jul 07, 2014		Soil	S14-JI06900					Х								
104	0.5-0.6	Jul 07, 2014		Soil	S14-JI06901					Х								
1 05	0-0.1	Jul 07, 2014		Soil	S14-JI06902		Χ	Х				Х	Х	Х		Χ	Х	Χ
105	0.2-0.3	Jul 07, 2014		Soil	S14-JI06903					Х								
105	0.5-0.6	Jul 07, 2014		Soil	S14-JI06904					Х								
105	1.0-1.1	Jul 07, 2014		Soil	S14-JI06905					Χ								

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd

Level 1, 50 Margaret St

Sydney NSW 2000

Client Job No.: SOPA 43567 Order No.: Received: Jul 7, 2014 3:20 PM

Report #: 424326 Due: Jul 8, 2014 Phone: Priority: Contact Name: 1 Day Michelle Battam 02 8245 0300 Fax:

Eurofins | mgt Client Manager: Jean Heng

085 521 e.mail: EnviroSales@eurofins.com.au w			Sample Detail			% Clay	% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
ber	atory wh	ere analysis is c	onducted															
elac	urne Lab	ooratory - NATA	Site # 1254 & 14	271					Х									
		atory - NATA Site					Х			Х	Х	Х	Х	Х	Х	Χ	Х	Х
isba	ne Labo	ratory - NATA S	ite # 20794			Х												
	al Laboı	ratory	T	Ť.				Х										
105	1.5-1.6	Jul 07, 2014		Soil	S14-JI06906					Х								
20 105	1.5-1.6 2.0-2.1 D-0.1	Jul 07, 2014		Soil	S14-JI06907					Х								
<u> 106</u>	D-0.1	Jul 07, 2014		Soil	S14-JI06908		Х	Х				Х	Х	Х		Х	Х	Х
— <u>106</u>	0.2-0.3	Jul 07, 2014		Soil	S14-JI06909					Х								
	0.5-0.6	Jul 07, 2014		Soil	S14-JI06910					Х								
107	D-0.1	Jul 07, 2014		Soil	S14-JI06911		Х	Х				Х	Х	Х		Х	Χ	Х
1 07	0.2-0.3	Jul 07, 2014		Soil	S14-JI06912					Х								
1 07	0.5-0.6	Jul 07, 2014		Soil	S14-JI06913					Х								
108	0-0.1	Jul 07, 2014		Soil	S14-JI06914		Х	Х				Χ	Х	Х		Χ	Х	Х
108	0.2-0.3	Jul 07, 2014		Soil	S14-JI06915					Х								
108	0.5-0.6	Jul 07, 2014		Soil	S14-JI06916	Х	Χ		Χ		Χ							

Client Job No.:

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd Level 1, 50 Margaret St

Sydney NSW 2000

SOPA 43567

Order No.: Received: Jul 7, 2014 3:20 PM Report #:

424326 Due: Jul 8, 2014 Priority: Contact Name: 1 Day Michelle Battam 02 8245 0300

Eurofins | mgt Client Manager: Jean Heng

*										_		_		_	_	_	_	-
Q85 521 e.mail : EnviroSales@eurofins.com.au			Sample Detail			% Clay	% Moisture	Asbestos (% weight as per WA Guidelines)	Cation Exchange Capacity	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons
ı b gr	atory wh	ere analysis is c	onducted															
0		oratory - NATA		271					Х									
da	y Labora	atory - NATA Site	e # 18217				Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
isb	ne Labo	ratory - NATA Si	ite # 20794			Х												
teri	al Labor	atory						Х										
<u>109</u>	D-0.1	Jul 07, 2014		Soil	S14-JI06917					Х								
<u>109</u>	0-0.1 0.2-0.3 0-0.1	Jul 07, 2014		Soil	S14-JI06918		Х	Х				Х	Х	Х		Х	Х	Χ
<u> 110</u>	0-0.1	Jul 07, 2014		Soil	S14-JI06919					Х								
— <u>110</u>	0.2-0.3	Jul 07, 2014		Soil	S14-JI06920		Х	Х				Χ	Х	Х		Х	Х	Χ
1 11	D-0.1	Jul 07, 2014		Soil	S14-JI06921		Х	Х				Х	Х	Х		Х	Х	Χ
1 11	0.2-0.3	Jul 07, 2014		Soil	S14-JI06922					Х								
112	D-0.1	Jul 07, 2014		Soil	S14-JI06923		Х	Х				Х	Х	Х		Х	Х	Х
201		Jul 07, 2014		Soil	S14-JI06924		Х	Х				Х	Х	Х		Х	Х	Χ
202		Jul 07, 2014		Soil	S14-JI06925					Х								
203		Jul 07, 2014		Soil	S14-JI06926					Х								
NS/	TE	Jul 07, 2014		Water	S14-JI06927							Χ	Χ		Χ	Χ	Χ	Χ

Phone:

Fax:

Company Name: Aodress: JBS & G (NSW & WA) Pty Ltd Order No.: Received: Jul 7, 2014 3:20 PM

Level 1, 50 Margaret St Report #: 424326 Due: Jul 8, 2014 Phone: 02 8245 0300

Sydney NSW 2000 Priority: Contact Name: 1 Day Michelle Battam Client Job No.: Fax:

SOPA 43567 Eurofins | mgt Client Manager: Jean Heng

Sample Detail Sample																			
Districtory where analysis is conducted	e.mail: EnviroSales@eurofins.com.au			Sample Detail				% Moisture	weight as	Exchange	HOLD	Aqueous	Polycyclic Aromatic Hydrocarbons	ס	Metals M8	M8	BTEX	Biphenyls (PC	Total Recoverable Hydrocarbons
Second S	ıbe	ratory wh	nere analysis is c	onducted															
Check Laboratory - NATA Site # 18217	0				271					Х									
Spane Laboratory - NATA Site # 20794 X								Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
tternal Laboratory X X \$IP \$PIKE Jul 07, 2014 Water \$14-Jl06928 X \$IP \$LANK Jul 07, 2014 Water \$14-Jl06929 X							Х												
XIP SPIKE Jul 07, 2014 Water \$14-JI06928 X WIP BLANK Jul 07, 2014 Water \$14-JI06929 X									X										
20 ₹IP \$LANK Jul 07, 2014 Water \$14-Jl06929 X		_	1		Water	S14-JI06928											Х		
			· ·																
\05 0.5-0.6 Jul 07, 2014 Soil S14-Jl07023 X											Х								

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water. $% \label{eq:case_eq} % \label{eq:case_eq}$

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- $8. \quad \hbox{Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's}.$
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ons				
Naphthalene	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
Method Blank	1 3				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene		< 0.001	0.001	Pass	
· · ·	mg/L	1			
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		T T		I	
Organochlorine Pesticides				_	
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor	mg/L	< 0.0001	0.0001	Pass	5500
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank		1000			
Polychlorinated Biphenyls (PCB)		T T	T		
Aroclor-1016	mg/L	< 0.005	0.005	Pass	
Aroclor-1232	mg/L	< 0.005	0.005	Pass	
Aroclor-1242	mg/L	< 0.005	0.005	Pass	
Aroclor-1248	mg/L	< 0.005	0.005	Pass	
Aroclor-1254	mg/L	< 0.005	0.005	Pass	
Aroclor-1260	mg/L	< 0.005	0.005	Pass	
Total PCB	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	IIIg/L	< 0.003	0.003	1 033	
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ons		T T		
TRH C6-C9	%	95	70-130	Pass	
LCS - % Recovery	70		1 70-130	1 433	
BTEX					
Benzene	%	92	70-130	Pass	
Toluene	%	88	70-130	Pass	
Ethylbenzene	%	99	70-130	Pass	
m&p-Xylenes	%	101	70-130	Pass	
o-Xylene	%	101	70-130	Pass	
Xylenes - Total	%	101	70-130	Pass	
	70	101	70-130	<u> </u>	
LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fracti					
Naphthalene	%	102	70-130	Pass	
TRH C6-C10					
	%	88	70-130	Pass	
LCS - % Recovery Polycyclic Aromatic Hydrocarbons		I	T T		
	0/	122	70 120	Door	
Acenaphthylana	%	122	70-130	Pass	
Acenaphthylene	%	125 111	70-130	Pass	
Anthracene	%		70-130	Pass	
Benz(a)anthracene	%	115	70-130	Pass	
Benzo(a)pyrene	%	109	70-130	Pass	
Benzo(b&j)fluoranthene	%	115	70-130	Pass	
Benzo(g.h.i)perylene	%	111	70-130	Pass	
Benzo(k)fluoranthene	%	120	70-130	Pass	
Chrysene	%	113	70-130	Pass	
Dibenz(a.h)anthracene	%	105	70-130	Pass	
Fluoranthene	%	112	70-130	Pass	
Fluorene	%	122	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	107	70-130	Pass	
Naphthalene	%	129	70-130	Pass	
Phenanthrene	%	107	70-130	Pass	
Pyrene	%	111	70-130	Pass	
LCS - % Recovery		<u> </u>			
Organochlorine Pesticides	0/	100	70.400	D-:	
Chlordanes - Total	%	100	70-130	Pass	
4.4'-DDD	%	100	70-130	Pass	
4.4'-DDE	%	100	70-130	Pass	
4.4'-DDT	%	75	70-130	Pass	
a-BHC	%	100	70-130	Pass	

Te	st		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aldrin			%	100	70-130	Pass	
b-BHC			%	100	70-130	Pass	
d-BHC			%	75	70-130	Pass	
Dieldrin			%	100	70-130	Pass	
Endosulfan I			%	75	70-130	Pass	
Endosulfan II			%	100	70-130	Pass	
Endosulfan sulphate			%	100	70-130	Pass	
Endrin			%	100	70-130	Pass	
Endrin aldehyde			%	75	70-130	Pass	
Endrin ketone			%	100	70-130	Pass	
g-BHC (Lindane)			%	75	70-130	Pass	
Heptachlor			%	75	70-130	Pass	
Heptachlor epoxide			%	100	70-130	Pass	
Hexachlorobenzene			%	100	70-130	Pass	
Methoxychlor			%	75	70-130	Pass	
LCS - % Recovery							
Polychlorinated Biphenyls (PC	В)						
Aroclor-1260			%	75	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S14-JI02741	NCP	%	91	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	S14-JI02741	NCP	%	85	70-130	Pass	
Toluene	S14-JI02741	NCP	%	83	70-130	Pass	
Ethylbenzene	S14-JI02741	NCP	%	94	70-130	Pass	
m&p-Xylenes	S14-JI02741	NCP	%	95	70-130	Pass	
o-Xylene	S14-JI02741	NCP	%	95	70-130	Pass	
Xylenes - Total	S14-JI02741	NCP	%	95	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S14-JI02741	NCP	%	96	70-130	Pass	
TRH C6-C10	S14-JI02741	NCP	%	85	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarb	oons			Result 1			
Acenaphthene	S14-JI02713	NCP	%	113	70-130	Pass	
Acenaphthylene	S14-JI02713	NCP	%	117	70-130	Pass	
Anthracene	S14-JI02713	NCP	%	104	70-130	Pass	
Benz(a)anthracene	S14-JI02713	NCP	%	101	70-130	Pass	
Benzo(a)pyrene	S14-JI02713	NCP	%	98	70-130	Pass	
Benzo(b&j)fluoranthene	S14-JI02713	NCP	%	99	70-130	Pass	
Benzo(g.h.i)perylene	S14-JI02713	NCP	%	108	70-130	Pass	
Benzo(k)fluoranthene	S14-JI02713	NCP	%	115	70-130	Pass	
Chrysene	S14-JI02713	NCP	%	111	70-130	Pass	
Dibenz(a.h)anthracene	S14-JI02713	NCP	%	96	70-130	Pass	
Fluoranthene	S14-JI02713	NCP	%	107	70-130	Pass	
			%	112	70-130	Pass	
Fluorene	S14-JI02713	INCP	/0				
	S14-Jl02713 S14-Jl02713	NCP NCP			70-130	Pass	
Fluorene Indeno(1.2.3-cd)pyrene Naphthalene	S14-Jl02713	NCP	%	99 119	70-130 70-130	Pass Pass	
Indeno(1.2.3-cd)pyrene				99			

Duplicate		Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S14-JI04348	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S14-JI04348	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S14-JI04348	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S14-JI04348	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S14-JI04348	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S14-JI04348	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S14-JI04348	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	S14-JI04348	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10	S14-JI04348	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S14-JI04348	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate				•					
Polycyclic Aromatic Hydrocarboi	าร			Result 1	Result 2	RPD			
Acenaphthene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S14-JI01372	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Jean Heng Client Services

Ivan Taylor Senior Analyst-Metal (NSW) Ryan Hamilton Senior Analyst-Organic (NSW) Ryan Hamilton Senior Analyst-Volatile (NSW)

Dr. Bob Symons

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | Ingl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallure to meet deadlines and lost production arising from this report. This document shall be reported used except in full and retales only to the lients tested. Unless indicated otherwise, the tests were performed on the samples as received.

00032

CHAIN OF CUSTODY

PROJECT NO.: 43567						L	ABOR	ATC	DRY B	ATCH NO).:	P LOSS II HIS		
PROJECT NAME: SOPE	1					S	AMPI	LERS	: K	Sho	200		EMAIL: mbaitangi	com
SEND REPORT TO: M. P.	attam	SEND II	VOICE T	ro: GNA		PI	HON	E: S\	ONE	02 8245	0300 -	- PERTH 08 9488 0100	EMAIL: MORITANO	00.00
PROJECT NAME: SPE SEND REPORT TO: DATE NEEDED BY: 241 COMMENTS / SPECIAL HANDLING / STO	irs to	rno	inou	na.		Q	C LE	/EL:	NEPN	A (2013)				0
COMMENTS / SPECIAL HANDLING / STO	RAGE OR DISPOS	AL:				Smototo	CS S	OCS	Ammania					
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	$\exists \acute{\alpha}$	3 >	5	E 8	E			NOTES:	
CCOIA trip spike	water	0/7/14		B+ P+ VC + N+ke		X	X	X	X >	4			/	
trip spike				V				-,-	-	X				$\neg \neg$
THE SPINE						1				//				
:		,				\top	1-		+	++			 	
						+			-		++			
					+		-	\dashv	\rightarrow	+-				
					-	+					\vdash			
	-													
				. /- :		\perp	1_		\perp					
				2 12										
					_	-								
													· ·	
			*			1	11							
					1	1				1	 			
						+	+		_	+++	 		 	
							+	-			-			
					+	+-	+		_					
	-					+	\perp	_						
	ļ				1									
RELINQUISHED E	SY:			METHOD OF SHIPMENT:					RECE	EIVED BY:			OR RECEIVING LAB USE ONLY:	
NAME: K. Shower	10/1	Δ.	IGNMENT			D	AME: ATE: F:	>	sea	اعاللاً	330	COOLER SEAL – Yes	No Intact Broken	
NAME: DATE:				NOTE NO.		N	IAME: F:			D	ATE:	COOLER SEAL – Yes	No Intact Broken	
OF: Container & Preservative Codes: P =	Plastic: J = Soil lar		SPORT CO e: N = Nitric	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydroch	loric A	rid Pres	d Via	I. V.S = S	ulfuric Acid (Dreud Wish	COOLER TEMP de	g C	har
IMCO FormeO13 Chain of Custody	Canania		,		. 17 51 0 611	. J C M	/ 138	A 4163	1, 13 - 3	wireing Acid I	ravu vial,	- Junioric Acid Frayd, Z - Zille P	oro, a - corn risva, or - stelle bottle; U = Ut	HEI

IMSO FormsO13 - Chain of Custody - Generic

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name: JBS & G (NSW & WA) Pty Ltd

Contact name: Michelle Battam
Client job number: SDPA 43567

COC number: 00032 Turn around time: 1 Day

Date/Time received: Jul 10, 2014 3:30 PM

Eurofins | mgt reference: 424755

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 2.5 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Organic samples had Teflon liners.
- ☑ Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Jean Heng on Phone: (+61) (2) 9900 8400 or by e.mail: JeanHeng@eurofins.com.au

Results will be delivered electronically via e.mail to Michelle Battam - mbattam@jbsgroup.com.au.

Eurofins | mgt Sample Receipt

Company Name: Aogdress: JBS & G (NSW & WA) Pty Ltd Order No.: Received: Jul 10, 2014 3:30 PM

Level 1, 50 Margaret St Report #: 424755 Due: Jul 11, 2014 Phone: 02 8245 0300

Sydney NSW 2000 Priority: Contact Name: 1 Day Michelle Battam Fax:

Eurofins | mgt Client Manager: Jean Heng

SDPA 43567

≥	ress: nt Job No	Sydney NSW 200					Р	epor hone ax:			02
85 521 e.mail: EnviroSales@eurofins.com.au web:			Sample Detail			Ammonia (as N)	Semivolatile Organics	Metals M8 filtered	ВТЕХ	Total Recoverable Hydrocarbons	Volatile Organics
ber	atory whe	ere analysis is co	onducted								
		oratory - NATA S		271							
		tory - NATA Site				X	Х	Х	Х	Х	Х
	ne Labor al Labora	atory - NATA Si	te # 20794								-
San	iple ID	Sample Date	Sampling Time	Matrix	LAB ID						
E 201	A	Jul 10, 2014		Water	S14-JI09781	Х	Χ	Χ		Χ	Х
₹IP S	PIKE	Jul 10, 2014		Water	S14-JI09782				Х		

JBS & G (NSW & WA) Pty Ltd Level 1, 50 Margaret St Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Michelle Battam

Report424755-WClient ReferenceSDPA 43567Received DateJul 10, 2014

Client Sample ID Sample Matrix			QC01A Water	TRIP SPIKE Water
Eurofins mgt Sample No.			S14-JI09781	S14-JI09782
Date Sampled			Jul 10, 2014	Jul 10, 2014
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions			
TRH C6-C9	0.02	mg/L	< 0.02	-
TRH C10-C14	0.05	mg/L	< 0.05	-
TRH C15-C28	0.1	mg/L	< 0.1	-
TRH C29-C36	0.1	mg/L	< 0.1	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-
ВТЕХ	•			
Benzene	0.001	mg/L	-	94%
Toluene	0.001	mg/L	-	89%
Ethylbenzene	0.001	mg/L	-	93%
m&p-Xylenes	0.002	mg/L	-	94%
o-Xylene	0.001	mg/L	-	95%
Xylenes - Total	0.003	mg/L	-	94%
4-Bromofluorobenzene (surr.)	1	%	-	101
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.02	mg/L	< 0.02	-
TRH C6-C10	0.02	mg/L	< 0.02	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-
TRH >C16-C34	0.1	mg/L	< 0.1	-
TRH >C34-C40	0.1	mg/L	< 0.1	-
Volatile Organics				
1.1-Dichloroethane	0.001	mg/L	< 0.001	-
1.1-Dichloroethene	0.001	mg/L	< 0.001	-
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	-
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	-
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	-
1.1.2.2-Tetrachloroethane	0.005	mg/L	< 0.005	-
1.2-Dibromoethane	0.001	mg/L	< 0.001	-
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	-
1.2-Dichloroethane	0.001	mg/L	< 0.001	-
1.2-Dichloropropane	0.001	mg/L	< 0.001	-
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	-
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	-
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	-
1.3-Dichloropropane	0.001	mg/L	< 0.001	

Client Sample ID			QC01A Water	TRIP SPIKE
Sample Matrix				
Eurofins mgt Sample No.			S14-JI09781	S14-JI09782
Date Sampled			Jul 10, 2014	Jul 10, 2014
Test/Reference	LOR	Unit		
Volatile Organics				
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	-
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	-
2-Butanone (MEK)	0.001	mg/L	< 0.001	-
4-Chlorotoluene	0.001	mg/L	< 0.001	-
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	-
Benzene	0.001	mg/L	< 0.001	-
Bromobenzene	0.001	mg/L	< 0.001	-
Bromochloromethane	0.001	mg/L	< 0.001	-
Bromodichloromethane	0.001	mg/L	< 0.001	-
Bromoform	0.001	mg/L	< 0.001	-
Bromomethane	0.001	mg/L	< 0.001	-
Carbon disulfide	0.001	mg/L	< 0.001	-
Carbon Tetrachloride	0.001	mg/L	< 0.001	-
Chlorobenzene	0.001	mg/L	< 0.001	-
Chloroethane	0.001	mg/L	< 0.001	-
Chloroform	0.005	mg/L	< 0.005	-
Chloromethane	0.001	mg/L	< 0.001	-
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	-
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	-
Dibromochloromethane	0.001	mg/L	< 0.001	-
Dibromomethane	0.005	mg/L	< 0.005	-
Dichlorodifluoromethane	0.001	mg/L	< 0.001	-
Ethylbenzene	0.001	mg/L	< 0.001	-
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	-
m&p-Xylenes	0.002	mg/L	< 0.002	-
Methylene Chloride	0.001	mg/L	< 0.001	-
o-Xylene	0.001	mg/L	< 0.001	-
Styrene Tetrachloroethene	0.001	mg/L	< 0.001	-
Toluene	0.001 0.001	mg/L mg/L	< 0.001 < 0.001	-
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	
Trichloroethene	0.001	mg/L	< 0.001	_
Trichlorofluoromethane	0.001	mg/L	< 0.001	
Vinyl chloride	0.001	mg/L	< 0.001	<u> </u>
Xylenes - Total	0.001	mg/L	< 0.003	
Fluorobenzene (surr.)	1	111g/L %	96	_
4-Bromofluorobenzene (surr.)	1	%	96	_
Semivolatile Organics		, ,,		
1-Naphthylamine	0.002	mg/L	< 0.002	_
1.2-Dichlorobenzene	0.002	mg/L	< 0.002	_
1.2.4-Trichlorobenzene	0.002	mg/L	< 0.002	-
1.2.4.5-Tetrachlorobenzene	0.002	mg/L	< 0.002	_
1.3-Dichlorobenzene	0.002	mg/L	< 0.002	_
1.4-Dichlorobenzene	0.002	mg/L	< 0.002	_
2-Chloronaphthalene	0.002	mg/L	< 0.002	_
2-Chlorophenol	0.002	mg/L	< 0.002	_
2-Methylnaphthalene	0.002	mg/L	< 0.002	_
2-Methylphenol (o-Cresol)	0.002	mg/L	< 0.002	_

Client Sample ID Sample Matrix			QC01A Water	TRIP SPIKE Water
Eurofins mgt Sample No.			S14-JI09781	S14-JI09782
Date Sampled				
•			Jul 10, 2014	Jul 10, 2014
Test/Reference	LOR	Unit		
Semivolatile Organics		T		
2-Naphthylamine	0.002	mg/L	< 0.002	-
2-Nitroaniline	0.004	mg/L	< 0.004	-
2-Nitrophenol	0.002	mg/L	< 0.002	-
2.3.4.6-Tetrachlorophenol	0.002	mg/L	< 0.002	-
2.4-Dichlorophenol	0.002	mg/L	< 0.002	-
2.4-Dimethylphenol	0.002	mg/L	< 0.002	-
2.4-Dinitrotoluene	0.004	mg/L	< 0.004	-
2.4.5-Trichlorophenol	0.002	mg/L	< 0.002	-
2.4.6-Trichlorophenol	0.002	mg/L	< 0.002	-
2.6-Dichlorophenol	0.002	mg/L	< 0.002	-
2.6-Dinitrotoluene	0.004	mg/L	< 0.004	-
3&4-Methylphenol (m&p-Cresol)	0.004	mg/L	< 0.004	-
3-Methylcholanthrene	0.002	mg/L	< 0.002	-
4-Aminobiphenyl	0.002	mg/L	< 0.002	-
4-Bromophenyl phenyl ether	0.002	mg/L	< 0.002	-
4-Chloro-3-methylphenol	0.002	mg/L	< 0.004	-
4-Chlorophenyl phenyl ether	0.002	mg/L	< 0.002	-
4-Nitrophenol	0.002	mg/L	< 0.004	-
4.4'-DDD	0.002	mg/L	< 0.002	=
4.4'-DDE	0.002	mg/L	< 0.002	-
4.4'-DDT	0.004	mg/L	< 0.004	-
7.12-Dimethylbenz(a)anthracene	0.002	mg/L	< 0.002	-
a-BHC	0.002	mg/L	< 0.002	-
Acenaphthene	0.001	mg/L	< 0.001	-
Acenaphthylene	0.001	mg/L	< 0.001	-
Acetophenone	0.002	mg/L	< 0.002	-
Aldrin	0.002	mg/L	< 0.002	-
Aniline	0.002	mg/L	< 0.002	-
Anthracene	0.001	mg/L	< 0.001	-
b-BHC	0.002	mg/L	< 0.002	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-
Bis(2-chloroethoxy)methane	0.002	mg/L	< 0.002	-
Bis(2-chloroisopropyl)ether	0.002	mg/L	< 0.002	-
Bis(2-ethylhexyl)phthalate	0.02	mg/L	< 0.02	-
Butyl benzyl phthalate	0.002	mg/L	< 0.002	-
Chrysene	0.001	mg/L	< 0.001	_
d-BHC	0.002	mg/L	< 0.002	_
Di-n-butyl phthalate	0.002	mg/L	< 0.002	_
Di-n-octyl phthalate	0.002	mg/L	< 0.002	_
Dibenz(a.h)anthracene	0.002	mg/L	< 0.002	<u> </u>
Diberiz(a.n)antinacene Dibenzofuran	0.001	mg/L	< 0.001	
Dieldrin	0.002	mg/L	< 0.002	-
Diethyl phthalate	0.002	mg/L	< 0.002	-
Dietriyi pritrialate Dimethyl phthalate				-
Dimetnyi pritnalate Dimethylaminoazobenzene	0.002	mg/L mg/L	< 0.002 < 0.002	-

Client Sample ID			QC01A	TRIP SPIKE
Sample Matrix			Water	Water
Eurofins mgt Sample No.			S14-JI09781	S14-JI09782
Date Sampled			Jul 10, 2014	Jul 10, 2014
Test/Reference	LOR	Unit		
Semivolatile Organics		J 0		
Diphenylamine	0.002	mg/L	< 0.002	_
Endosulfan I	0.002	mg/L	< 0.002	_
Endosulfan II	0.002	mg/L	< 0.002	_
Endosulfan sulphate	0.002	mg/L	< 0.002	_
Endrin	0.002	mg/L	< 0.002	_
Endrin aldehyde	0.002	mg/L	< 0.002	_
Endrin ketone	0.002	mg/L	< 0.002	-
Fluoranthene	0.002	_	< 0.002	
Fluoranthene	0.001	mg/L	< 0.001	=
		mg/L		-
g-BHC (Lindane)	0.002	mg/L	< 0.002	-
Heptachlor	0.002	mg/L	< 0.002	-
Heptachlor epoxide	0.002	mg/L	< 0.002	-
Hexachlorobenzene	0.002	mg/L	< 0.002	-
Hexachlorobutadiene	0.002	mg/L	< 0.002	-
Hexachlorocyclopentadiene	0.004	mg/L	< 0.004	-
Hexachloroethane	0.002	mg/L	< 0.002	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-
Methoxychlor	0.001	mg/L	< 0.001	-
N-Nitrosodibutylamine	0.002	mg/L	< 0.002	-
N-Nitrosodipropylamine	0.002	mg/L	< 0.002	-
N-Nitrosopiperidine	0.002	mg/L	< 0.002	-
Naphthalene	0.001	mg/L	< 0.001	-
Nitrobenzene	0.002	mg/L	< 0.002	-
Pentachlorobenzene	0.002	mg/L	< 0.002	-
Pentachloronitrobenzene	0.002	mg/L	< 0.002	-
Pentachlorophenol	0.01	mg/L	< 0.01	-
Phenanthrene	0.001	mg/L	< 0.001	-
Phenol	0.002	mg/L	< 0.002	-
Pyrene	0.001	mg/L	< 0.001	-
Phenol-d6 (surr.)	1	%	90	-
Nitrobenzene-d5 (surr.)	1	%	91	-
2-Fluorobiphenyl (surr.)	1	%	87	-
Ammonia (as N)	0.01	mg/L	0.29	-
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	0.003	
Cadmium (filtered)	0.0001	mg/L	0.0001	-
Chromium (filtered)	0.001	mg/L	< 0.001	-
Copper (filtered)	0.001	mg/L	< 0.001	-
Lead (filtered)	0.001	mg/L	< 0.001	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	-
Nickel (filtered)	0.001	mg/L	0.006	-
Zinc (filtered)	0.005	mg/L	< 0.005	_

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jul 11, 2014	7 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 11, 2014	7 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	Jul 11, 2014	14 Day
- Method: E029/E016 BTEX			
Volatile Organics	Sydney	Jul 11, 2014	7 Day
- Method: E016 Volatile Organic Compounds (VOC)			
Semivolatile Organics	Sydney	Jul 10, 2014	7 Day
- Method: USEPA 8270 Semivolatile Organics			
Ammonia (as N)	Sydney	Jul 10, 2014	28 Day
- Method: E036/E050 Ammonia as N			
Metals M8 filtered	Sydney	Jul 10, 2014	28 Day

⁻ Method: E020/E030 Filtered Metals in Water & E026 Mercury

Actor eurofins.co	r pany Na dress: ent Job No	Level 1, Sydney NSW 20	000	ty Ltd			R P	Order Repor Phone Tax:	t #:		424 02 8	755 3245 0300	Lane Cove West, NSW, Ausl 18400 Facsimile: +612 9420	Received: Due: Priority: Contact Name:	Jul 10, 2014 3:30 PM Jul 11, 2014 1 Day Michelle Battam mgt Client Manager: Jean Heng
q85 521 e.mail : EnviroSales@eurofins.com.au we			Sample Detail			Ammonia (as N)	Semivolatile Organics	Metals M8 filtered	ВТЕХ	Total Recoverable Hydrocarbons	Volatile Organics		Eurofins mgt Unit F6, Building F, 16 Mars Road, ABN : 50 005 085 521 Telephone: +61 2 990M		
0		ere analysis is o	Site # 1254 & 14	1271											
		tory - NATA Sit		+ ∠ / 1		Х	Х	Х	Х	Х	X				
		ratory - NATA S				<u> </u>	 ^	^							
	ral Labor														
	n <mark>iple ID</mark>	Sample Date	Sampling Time	Matrix	LAB ID										
E <u>201</u>	1 A	Jul 10, 2014		Water	S14-JI09781	X	Х	X		Χ	Х				
<u> </u>	SPIKE	Jul 10, 2014		Water	S14-JI09782				Χ						

Date Reported: Jul 14, 2014

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- $8. \quad \text{Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's}.$
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Quality Control Results

Method Blank Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9 TRH C10-C14 mg/L < 0.02 0.02 Pass TRH C10-C14 mg/L < 0.05 0.05 0.05 Pass TRH C10-C28 mg/L < 0.01 0.1 Pass Method Blank	Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14	Method Blank	,				
TRH C10-C14	Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C15-C28	TRH C6-C9	mg/L	< 0.02	0.02	Pass	
Rethod Blank	TRH C10-C14	mg/L	< 0.05	0.05	Pass	
Method Blank BTEX	TRH C15-C28		< 0.1	0.1	Pass	
Method Blank BTEX	TRH C29-C36		< 0.1	0.1	Pass	
Benzene	Method Blank					
Benzene	втех					
Ethylbenzene	Benzene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	Toluene		< 0.001	0.001	Pass	
m8p-Xylenes mg/L < 0.002 0.002 Pass o-Xylene mg/L < 0.001	Ethylbenzene	mg/L	< 0.001	0.001	Pass	
o-Xylene mg/L < 0.001 0.001 Pass Xylenes - Total mg/L < 0.003 0.003 Pass Method Blank Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene mg/L < 0.02 0.02 Pass TRH C6-C10 mg/L < 0.02				0.002	Pass	
Xylenes - Total mg/L				0.001	Pass	
Method Blank Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene mg/L < 0.02					Pass	
Naphthalene mg/L < 0.02 0.02 Pass TRH C6-C10 mg/L < 0.02						
Naphthalene mg/L < 0.02 0.02 Pass TRH C6-C10 mg/L < 0.02	Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH C6-C10 mg/L < 0.02 Pass TRH C6-C10 less BTEX (F1) mg/L < 0.02		mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1) mg/L < 0.02 0.02 Pass TRH > C10-C16 mg/L < 0.05	TRH C6-C10			0.02	Pass	
TRH > C10-C16 mg/L < 0.05 0.05 Pass TRH > C16-C34 mg/L < 0.1					Pass	
TRH > C16-C34 mg/L < 0.1 Pass TRH > C34-C40 mg/L < 0.1 0.1 Pass Method Blank Volatile Organics The control of the con	` '			0.05	Pass	
TRH > C34-C40 mg/L < 0.1 Pass Method Blank Volatile Organics 1.1-Dichloroethane mg/L < 0.001	TRH >C16-C34				Pass	
Method Blank Volatile Organics .1Dichloroethane mg/L < 0.001						
Volatile Organics mg/L < 0.001 0.001 Pass 1.1-Dichloroethane mg/L < 0.001		_ ' _ '	-			
1.1-Dichloroethane mg/L < 0.001						
1.1-Dichloroethene mg/L < 0.001	_	ma/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane mg/L < 0.001 Pass 1.1.1.2-Tetrachloroethane mg/L < 0.001						
1.1.1.2-Tetrachloroethane mg/L < 0.001 Pass 1.1.2-Trichloroethane mg/L < 0.001						
1.1.2-Trichloroethane mg/L < 0.001 Pass 1.1.2.2-Tetrachloroethane mg/L < 0.005						
1.1.2.2-Tetrachloroethane mg/L < 0.005 Pass 1.2-Dibromoethane mg/L < 0.001						
1.2-Dibromoethane mg/L < 0.001 Pass 1.2-Dichlorobenzene mg/L < 0.001						
1.2-Dichlorobenzene mg/L < 0.001 Pass 1.2-Dichloroethane mg/L < 0.001						
1.2-Dichloroethane mg/L < 0.001 Pass 1.2-Dichloropropane mg/L < 0.001						
1.2-Dichloropropane mg/L < 0.001 Pass 1.2.3-Trichloropropane mg/L < 0.001						
1.2.3-Trichloropropane mg/L < 0.001 Pass 1.2.4-Trimethylbenzene mg/L < 0.001						
1.2.4-Trimethylbenzene mg/L < 0.001 Pass 1.3-Dichlorobenzene mg/L < 0.001						
1.3-Dichlorobenzene mg/L < 0.001 Pass 1.3-Dichloropropane mg/L < 0.001	<u> </u>					
1.3-Dichloropropane mg/L < 0.001 Pass 1.3.5-Trimethylbenzene mg/L < 0.001	-					
1.3.5-Trimethylbenzene mg/L < 0.001 Pass 1.4-Dichlorobenzene mg/L < 0.001						
1.4-Dichlorobenzene mg/L < 0.001 Pass 2-Butanone (MEK) mg/L < 0.001	<u> </u>					
2-Butanone (MEK) mg/L < 0.001 Pass 4-Chlorotoluene mg/L < 0.001						
4-Chlorotoluene mg/L < 0.001 Pass 4-Methyl-2-pentanone (MIBK) mg/L < 0.001						
4-Methyl-2-pentanone (MIBK) mg/L < 0.001 Description Pass Bromobenzene mg/L < 0.001	, ,					
Bromobenzene mg/L < 0.001 Pass						
	<u> </u>					
Bromodichloromethane mg/L < 0.001 Pass						
Bromoform mg/L < 0.001 0.001 Pass						
Bromomethane mg/L < 0.001 Pass						
Carbon disulfide mg/L < 0.001 Pass						
Carbon Tetrachloride mg/L < 0.001 0.001 Pass						
Chlorobenzene mg/L < 0.001 Pass						
Chloroethane mg/L < 0.001 Pass						

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.005	0.005	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Method Blank	IIIg/L	< 0.001	0.001	Fa55	
Semivolatile Organics		0.000	0.000	D	
1-Naphthylamine	mg/L	< 0.002	0.002	Pass	
1.2-Dichlorobenzene	mg/L	< 0.002	0.002	Pass	
1.2.4-Trichlorobenzene	mg/L	< 0.002	0.002	Pass	
1.2.4.5-Tetrachlorobenzene	mg/L	< 0.002	0.002	Pass	
1.3-Dichlorobenzene	mg/L	< 0.002	0.002	Pass	
1.4-Dichlorobenzene	mg/L	< 0.002	0.002	Pass	
2-Chloronaphthalene	mg/L	< 0.002	0.002	Pass	
2-Chlorophenol	mg/L	< 0.002	0.002	Pass	
2-Methylnaphthalene	mg/L	< 0.002	0.002	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.002	0.002	Pass	
2-Naphthylamine	mg/L	< 0.002	0.002	Pass	
2-Nitroaniline	mg/L	< 0.004	0.004	Pass	
2-Nitrophenol	mg/L	< 0.002	0.002	Pass	
2.3.4.6-Tetrachlorophenol	mg/L	< 0.002	0.002	Pass	
2.4-Dichlorophenol	mg/L	< 0.002	0.002	Pass	
2.4-Dimethylphenol	mg/L	< 0.002	0.002	Pass	
2.4-Dinitrotoluene	mg/L	< 0.004	0.004	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.002	0.002	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.002	0.002	Pass	
2.6-Dichlorophenol	mg/L	< 0.002	0.002	Pass	
2.6-Dinitrotoluene	mg/L	< 0.004	0.004	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.004	0.004	Pass	
3-Methylcholanthrene	mg/L	< 0.002	0.002	Pass	
4-Aminobiphenyl	mg/L	< 0.002	0.002	Pass	
4-Bromophenyl phenyl ether	mg/L	< 0.002	0.002	Pass	
4-Chloro-3-methylphenol	mg/L	< 0.002	0.002	Pass	
4-Chlorophenyl phenyl ether		< 0.002	0.002	Pass	
4-Nitrophenol	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L		0.002		
	mg/L	< 0.002		Pass	
4.4'-DDE	mg/L	< 0.002	0.002	Pass	
4.4'-DDT	mg/L	< 0.004	0.004	Pass	
7.12-Dimethylbenz(a)anthracene	mg/L	< 0.002	0.002	Pass	
a-BHC	mg/L	< 0.002	0.002	Pass	
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Acetophenone	mg/L	< 0.002	0.002	Pass	

Aldrin Aniline Anthracene 0-BHC Benz(a)anthracene Benzo(a)pyrene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.002 < 0.002 < 0.001	0.002	Pass Pass	
Anthracene b-BHC Benz(a)anthracene Benzo(a)pyrene	mg/L mg/L mg/L	< 0.001		Pass	
o-BHC Benz(a)anthracene Benzo(a)pyrene	mg/L mg/L			1 400	
Benz(a)anthracene Benzo(a)pyrene	mg/L		0.001	Pass	
Benzo(a)pyrene		< 0.002	0.002	Pass	
· //· 2	mg/L	< 0.001	0.001	Pass	
) (h. 0.) (h		< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Bis(2-chloroethoxy)methane	mg/L	< 0.002	0.002	Pass	
Bis(2-chloroisopropyl)ether	mg/L	< 0.002	0.002	Pass	
Sis(2-ethylhexyl)phthalate	mg/L	< 0.02	0.02	Pass	
Butyl benzyl phthalate	mg/L	< 0.002	0.002	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
I-BHC	mg/L	< 0.002	0.002	Pass	
Di-n-butyl phthalate	mg/L	< 0.002	0.002	Pass	
Di-n-octyl phthalate	mg/L	< 0.002	0.002	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.002	Pass	
Dibenzofuran	mg/L	< 0.002	0.002	Pass	
Dieldrin	mg/L	< 0.002	0.002	Pass	
Diethyl phthalate	mg/L	< 0.002	0.002	Pass	
Dimethyl phthalate	mg/L	< 0.002	0.002	Pass	
Dimethylaminoazobenzene	mg/L	< 0.002	0.002	Pass	
		< 0.002	0.002	Pass	
Diphenylamine	mg/L				
Endosulfan I	mg/L	< 0.002	0.002	Pass	
Endosulfan II	mg/L	< 0.002	0.002	Pass	
Endosulfan sulphate	mg/L	< 0.002	0.002	Pass	
Endrin	mg/L	< 0.002	0.002	Pass	
Endrin aldehyde	mg/L	< 0.002	0.002	Pass	
Endrin ketone	mg/L	< 0.002	0.002	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
g-BHC (Lindane)	mg/L	< 0.002	0.002	Pass	
Heptachlor	mg/L	< 0.002	0.002	Pass	
Heptachlor epoxide	mg/L	< 0.002	0.002	Pass	
Hexachlorobenzene	mg/L	< 0.002	0.002	Pass	
Hexachlorobutadiene	mg/L	< 0.002	0.002	Pass	
Hexachlorocyclopentadiene	mg/L	< 0.004	0.004	Pass	
Hexachloroethane	mg/L	< 0.002	0.002	Pass	
ndeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Methoxychlor	mg/L	< 0.001	0.001	Pass	
N-Nitrosodibutylamine	mg/L	< 0.002	0.002	Pass	
N-Nitrosodipropylamine	mg/L	< 0.002	0.002	Pass	
N-Nitrosopiperidine	mg/L	< 0.002	0.002	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Nitrobenzene	mg/L	< 0.002	0.002	Pass	
Pentachlorobenzene	mg/L	< 0.002	0.002	Pass	
Pentachloronitrobenzene	mg/L	< 0.002	0.002	Pass	<u> </u>
Pentachlorophenol	mg/L	< 0.01	0.01	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Phenol	mg/L	< 0.002	0.002	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
ethod Blank					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001	0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	93	70-130	Pass	
TRH C10-C14	%	92	70-130	Pass	
LCS - % Recovery				•	
BTEX					
Benzene	%	103	70-130	Pass	
Toluene	%	103	70-130	Pass	
Ethylbenzene	%	106	70-130	Pass	
m&p-Xylenes	%	108	70-130	Pass	
o-Xylene	%	108	70-130	Pass	
Xylenes - Total	%	95	70-130	Pass	
LCS - % Recovery	1,3		10.100	1 3.00	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	116	70-130	Pass	
TRH C6-C10	%	87	70-130	Pass	
TRH >C10-C16	%	105	70-130	Pass	
LCS - % Recovery	,,,		1 10 100	1 466	
Volatile Organics					
1.1-Dichloroethane	%	106	75-125	Pass	
1.1-Dichloroethene	%	108	70-130	Pass	
1.1.1-Trichloroethane	%	108	70-130	Pass	
1.1.1.2-Tetrachloroethane	%	103	70-130	Pass	
1.1.2-Trichloroethane	%	112	70-130	Pass	
1.1.2.2-Tetrachloroethane	%	103	70-130	Pass	
1.2-Dibromoethane	%	117	70-130	Pass	
1.2-Dichlorobenzene	%	103	70-130	Pass	
1.2-Dichloroethane	%	115	70-130	Pass	
1.2-Dichloropropane	%	106	70-130	Pass	
1.2.3-Trichloropropane	%	119	70-130	Pass	
1.2.4-Trimethylbenzene	%	99	70-130	Pass	
1.3-Dichlorobenzene	%	101	70-130	Pass	
1.3-Dichloropropane	%	112	70-130	Pass	
1.3.5-Trimethylbenzene	%	99	70-130	Pass	
1.4-Dichlorobenzene	%	100	70-130	Pass	
2-Butanone (MEK)	%	116	70-130	Pass	
4-Chlorotoluene	%	103	70-130	Pass	
4-Methyl-2-pentanone (MIBK)	%	112	70-130	Pass	
Bromobenzene	%	104	70-130	Pass	
	%			1	
Bromochloromethane Bromodiabloromethana	%	81	70-130	Pass	
Bromodichloromethane Bromoform	%	106	70-130	Pass	
Bromoform		117	70-130	Pass	
Bromomethane	%	96	70-130	Pass	
Carbon disulfide	%	97	70-130	Pass	<u>i</u>

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Carbon Tetrachloride			%	102		70-130	Pass	
Chlorobenzene			%	101		70-130	Pass	
Chloroethane			%	105		70-130	Pass	
Chloroform			%	98		70-130	Pass	
Chloromethane			%	103		70-130	Pass	
cis-1.2-Dichloroethene			%	87		70-130	Pass	
cis-1.3-Dichloropropene			%	100		70-130	Pass	
Dibromochloromethane			%	105		70-130	Pass	
Dibromomethane			%	114		70-130	Pass	
Dichlorodifluoromethane			%	115		70-130	Pass	
Isopropyl benzene (Cumene)			%	107		70-130	Pass	
Methylene Chloride			%	104		70-130	Pass	
Styrene			%	98		70-130	Pass	
Tetrachloroethene			%	103		70-130	Pass	
trans-1.2-Dichloroethene			%	105		70-130	Pass	
trans-1.3-Dichloropropene			%	100		70-130	Pass	
Trichloroethene			%	104		70-130	Pass	
Trichlorofluoromethane			%	110		70-130	Pass	
Vinyl chloride			%	106		70-130	Pass	
LCS - % Recovery								
Semivolatile Organics								
1.2.4-Trichlorobenzene			%	75		70-130	Pass	
1.4-Dichlorobenzene			%	75		70-130	Pass	
2-Chlorophenol	%	75		30-130	Pass			
2.4-Dinitrotoluene		%	75		70-130	Pass		
Acenaphthene	%	75		70-130	Pass			
N-Nitrosodipropylamine	%	75		70-130	Pass			
Phenol			%	38		30-130	Pass	
Pyrene			%	75		70-130	Pass	
LCS - % Recovery					T T			
Ammonia (as N)			%	84		70-130	Pass	
LCS - % Recovery				1	T T			
Heavy Metals								
Arsenic (filtered)			%	112		70-130	Pass	
Cadmium (filtered)			%	115		70-130	Pass	
Chromium (filtered)			%	111		70-130	Pass	
Copper (filtered)			%	114		70-130	Pass	
Lead (filtered)			%	113		70-130	Pass	
Mercury (filtered)			%	111		70-130	Pass	
Nickel (filtered)			%	115		70-130	Pass	
Zinc (filtered)			%	115		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -				Result 1				
TRH C6-C9	S14-JI04465	NCP	%	83		70-130	Pass	
TRH C10-C14	S14-JI02751	NCP	%	104		70-130	Pass	
Spike - % Recovery				I				
BTEX				Result 1			_	
Xylenes - Total	S14-JI04465	NCP	%	87		70-130	Pass	
Spike - % Recovery					I I			
Total Recoverable Hydrocarbons -	0:	Result 1			_			
TRH C6-C10	S14-JI04465	NCP	%	75		70-130	Pass	
TRH >C10-C16	S14-JI02751	NCP	%	117		70-130	Pass	
Spike - % Recovery								

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
				Result 1					
Ammonia (as N)	S14-JI09781	СР	%	82			70-130	Pass	
Spike - % Recovery				•					
Heavy Metals				Result 1					
Arsenic (filtered)	S14-JI09781	СР	%	121			70-130	Pass	
Cadmium (filtered)	S14-JI09781	СР	%	113			70-130	Pass	
Chromium (filtered)	S14-JI09781	СР	%	110			70-130	Pass	
Copper (filtered)	S14-JI09781	СР	%	101			70-130	Pass	
Lead (filtered)	S14-JI09781	СР	%	100			70-130	Pass	
Nickel (filtered)	S14-JI09781	СР	%	104			70-130	Pass	
Zinc (filtered)	S14-JI09781	СР	%	107			70-130	Pass	
Spike - % Recovery	_			•					
BTEX				Result 1					
Benzene	S14-JI04465	NCP	%	78			70-130	Pass	
Toluene	S14-JI04465	NCP	%	72			70-130	Pass	
Ethylbenzene	S14-JI04465	NCP	%	84			70-130	Pass	
m&p-Xylenes	S14-JI04465	NCP	%	87			70-130	Pass	
o-Xylene	S14-JI04465	NCP	%	87			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				<u>'</u>			•	<u> </u>	
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S14-JI04348	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S14-JI02752	NCP	mg/L	6.3	6.3	1.0	30%	Pass	
TRH C15-C28	S14-JI02752	NCP	mg/L	0.40	0.30	39	30%	Fail	Q15
TRH C29-C36	S14-JI02752	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate			J						
BTEX				Result 1	Result 2	RPD			
Xylenes - Total	S14-JI04348	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C10	S14-JI04348	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S14-JI04348	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S14-JI02752	NCP	mg/L	3.1	2.9	7.0	30%	Pass	
TRH >C16-C34	S14-JI02752	NCP	mg/L	0.20	0.10	40	30%	Fail	Q15
TRH >C34-C40	S14-JI02752	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
-				Result 1	Result 2	RPD			
Ammonia (as N)	S14-JI09781	СР	mg/L	0.29	0.28	3.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S14-JI07991	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S14-JI07991	NCP	mg/L	0.00010	0.00010	11	30%	Pass	
Chromium (filtered)	S14-JI07991	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S14-JI07991	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S14-JI07991	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S14-JI07991	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S14-JI07991	NCP	mg/L	0.0075	0.0076	2.0	30%	Pass	
Zinc (filtered)	S14-JI07991	NCP	mg/L	0.027	0.027	2.0	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S14-JI04348	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S14-JI04348	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S14-JI04348	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S14-JI04348	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S14-JI04348	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Quaiii	ner oodes/oonments
Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins I mot's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Jean Heng Client Services

 Bob Symons
 Senior Analyst-Inorganic (NSW)

 Ivan Taylor
 Senior Analyst-Metal (NSW)

 Ryan Hamilton
 Senior Analyst-Organic (NSW)

 Ryan Hamilton
 Senior Analyst-Volatile (NSW)

 Stacey Jenkins
 Senior Analyst-Organic (VIC)

16,000

Dr. Bob Symons Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg the liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

 JBS & G (NSW & WA) Pty Ltd
 ph: 02 8245 0300

 Level 1, 50 Margaret St
 Fax: 02 8245 0399

Sydney NSW 2000

Attention: Michelle Battam

Sample log in details:

Your reference: 43567, SOPA
Envirolab Reference: 112910
Date received: 10/07/2014
Date results expected to be reported: 11/07/14

Samples received in appropriate condition for analysis:

No. of samples provided

5 Waters

Turnaround time requested:

Temperature on receipt (°C)

Cooling Method:

Sampling Date Provided:

YES

Comments:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month

Soil and other solid samples - 2 months

Samples collected in canisters - 1 week. Canisters will then be cleaned.

All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst

ph: 02 9910 6200 fax: 02 9910 6201

 $email: a hie @\,envirolabservices.com. au\,or\,j hurst @\,e$

Appendix I - QA Checker

ESDAT QA Checker

Project:43567 Filter: ALL

Overview Summary

Count of Samples

Summary By Compound

Count of Results

Holding Times

Holding Time Errors (0)

Blanks

Field Blanks

Detects in Lab Blanks (0)

SDG's without Method Blanks (0)

Duplicates

Field and Interlab Duplicates

Lab Duplicates with high RPDs (0)

Duplicate Samples with incorrect or missing Parent Samples (0)

Samples at the same Location/Depth/Time not specified as duplicates (0)

Surrogates

Surrogate Variation > 30% or outside lab LCL or UCL or outside lab LCL or UCL (1)

Lab Control Samples

SDG's without a Laboratory Control Sample (0)

Laboratory Control Samples, Error > 30% (0)

Certified and Standard Reference Materials

Certified Reference Materials - Error > 30% (0)

Matrix Spikes

SDG's without a Matrix Spike (0)

Trip Spikes with invalid Control Sample (0)

Less than 1 matrix spike in 20 samples, or less than 1 matrix duplicate in 20 samples (2)

Matrix Spike Recoveries less than 70% or greater than 130% or outside lab LCL or UCL (0)

Trip Spike Recoveries (70% - 130% is acceptable) (0)

Inorganic

Other

Unit Conversion Problems (0)

OriginalChemNames Requiring Validation (0)

Samples with no Results (0)

Samples associated with Wells which are not specified in the Well Table (0)

Aborted Analysis (0)

Project Name: SOPA Site 53 Due Dilligence Project number: 43567 Client: Mirvac

Matrix Type	SOIL	WATER
First Sample Date	7/07/2014	7/07/2014
Last Sample Date	7/07/2014	7/07/2014
Sampling Period (days)	1	1
Number of Samples Submitted	15	2
Number of Non QA Samples Submitted	13	0
Number of Field Blanks	0	0
Number of Trip Blanks	0	1
Number of Rinsates	0	1
Number of Field Duplicates	1	0
Number of Interlab Duplicates	1	0
Number of Trip Spikes	0	1
Number of Lab Duplicates	5	2
Number of LCSs	6	4
Number of CRMs	0	0
Number of Method Blanks	6	3
Number of Storage Blanks	0	0
Number of Matrix Spikes	4	2
Number of Matrix Spike Dupes	0	0

			Num Results	Н	olding Times (days)	Lab Control Sam	ples	Method an	d Storage Blanks	Labo	ratory Duplicates		Surrogates	Matrix,Trip and	Compound S	oikes Field.Rinsate	e and Trip Bla	nks	Field	Duplicates	
			<u>a</u>	9		_			_	ž			_						ž		
			Norm iite)	Grou	<u>=</u>	% orted	<u>_e</u>		orted le	, EQ	orted	<u>o</u> %	orted	<u> </u>	orted	<u>o</u>	orted	<u>e</u>	× EQ	orted	<u>e</u>
			QA (tility	ple to rction ple to ysis ptabl	very	ptab	ø.	Rep.	RPD	Rep	ptab	Rep	ptab	Rep	ptab	Rep	ptab	RPD	Rep	ptab
Chem_Group	ChemName	Range	Non +	Volat	Samp Extra Samp Anab	Reco	Acce	Rang	Num	Max 4	Mn	Acce	Num	Acce	Num	Acce	Num	Acce	Max 4	Num	Acce
Asbestos	Asbestos Fibres		0	Other	1 1 Y	0			0		0	N	0		0		0			0	N
BTEX	Benzene	0.1 mg/kg	12	VOC	0 0 to 2 Y	95 to 95 1	Y	ND	1 Y		1	Υ	0		0		0			1	Υ
	Ethylbenzene	0.1 mg/kg	12	VOC	0 0 to 2 Y	100 to 100 1		ND	1 Y		1	Y	0		0		0			1	Y
	Toluene Xylene (m & p)	0.1 mg/kg 0.2 mg/kg	12 12	VOC	0 0 to 2 Y 0 0 to 2 Y	100 to 100 1 99 to 99 1		ND ND	1 Y 1 Y		1	Y	0		0		0		67	1	Y
	Xylene (o)	0.1 mg/kg	12	VOC	0 0 to 2 Y	100 to 100 1		ND	1 Y		1	Y	0		0		0		Ŭ.	1	Y
	Xylene (Total)	0.3 mg/kg	12	VOC	0 2 Y	0			0		0	N	0		0		0			1	<u> </u>
Chlorinated Benzenes	Hexachlorobenzene	0.05 mg/kg	12	SVOC	0 0 to 2 Y	87 to 87 1	Y	ND	2 Y		2	Υ	0	97 to 97	1	Y	0			1	Y
Ionic Balance	pH 1:5 soil:water	0.1 UNITS	2	Other	1 2 Y	0			0		0	N	0		0		0			0	N
TOTIC Balance	pri 1.5 suil water	0.1 010113	2	Other	1 2 1	0			U		U	N	U		U		U			U	
Major Cations	Cation Exchange Capacity	0.05 meq/100g	2	Other	2 2 Y	0			0		0	N	0		0		0			0	N
Metals & Metalloids	Arsenic (Total)	2 mg/kg	12	Other	0 0 to 2 Y	100 to 100 2	Y	ND	2 Y		1	Υ	0	95 to 95	1	Y	0			1	Υ
	Cadmium	0.4 mg/kg	12	Other	0 0 to 2 Y	00 10 100	Y	ND	2 Y		1	Y	0	102 to 102	1	Y	0			1	Y
	Chromium (Total) Copper	5 mg/kg 5 mg/kg	12 12	Other Other	0 0 to 2 Y 0 0 to 2 Y		_	ND ND	2 Y 2 Y	11 0	1	Y	0	101 to 101	0	Y	0			1	Y
	Lead	5 mg/kg	12	Other	0 0 to 2 Y	94 to 100 2	Υ	ND	2 Y	15	1	Y	0		0		0			1	Υ
	Mercury (Inorganic) Nickel	0.05 mg/kg 5 mg/kg	12 12	Other Other	0 0 to 2 Y 0 0 to 2 Y	80 to 95 2 98 to 100 2		ND ND	2 Y 2 Y	22	1	Y	0	100 to 100 104 to 104	1	Y	0			1	Y
	Zinc	5 mg/kg	12	Other	0 0 to 2 Y			ND	2 Y	5	1	Y	0	10110101	0	· ·	Ö		6	1	Ϋ́
Organochlorine Pesticides	Aldrin	0.05 mg/kg	12	SVOC	0 0 to 2 Y	92 to 110 2	Y	ND	2 Y	+	2	Y	0	92 to 92	1	Y	0	<u> </u>		1	Y
3	alpha-BHC	0.05 mg/kg	12	SVOC	0 0 to 2 Y	95 to 100 2		ND	2 Y		2	Y	0	95 to 95	1	Y	0			1	Y
	alpha-Chlordane beta-BHC	0.05 mg/kg	0 12	SVOC	0 0 Y 0 0 to 2 Y		Y	ND ND	1 Y 2 Y		1 2	Y	0	85 to 85	0	Y	0	<u> </u>		0	N Y
	Chlordane	0.1 mg/kg	12	SVOC	0 2 Y	91 to 91 1	Υ	ND	1 Y		0	N	0	95 to 95	1	Υ	0			1	Y
	DDD DDE	0.05 mg/kg 0.05 mg/kg	12 12	SVOC	0 0 to 2 Y 0 0 to 2 Y	99 to 120 2 88 to 110 2	_	ND ND	2 Y 2 Y		2	Y	0	104 to 104 104 to 104	1	Y	0			1	Y
	DDT	0.05 mg/kg	12	SVOC	0 0 to 2 Y	70 to 70 1	N	ND	2 Y	<u> </u>	2	Υ	0	100 to 100	1	Y	0			1	Υ
	delta-BHC Dieldrin	0.05 mg/kg	12 12	SVOC	0 0 to 2 Y 0 0 to 2 Y		_	ND ND	2 Y 2 Y		2	Y	0	94 to 94 102 to 102	1	Y	0			1	Y
	Endosulfan alpha	0.05 mg/kg 0.05 mg/kg	12	SVOC	0 0 to 2 Y	86 to 86 1		ND ND	2 Y 2 Y		2	Y	0	93 to 93	1	Y	0			1	Y
	Endosulfan beta	0.05 mg/kg	12	SVOC	0 0 to 2 Y	95 to 95 1 81 to 99 2		ND	2 Y 2 Y		2	Y	0	102 to 102	1	Y	0			1	Y
	Endosulfan Sulphate Endrin	0.05 mg/kg 0.05 mg/kg	12 12	SVOC	0 0 to 2 Y 0 0 to 2 Y	011000 2		ND ND	2 Y		2	Y	0	113 to 113 103 to 103	1	Y	0			1	Y
	Endrin aldehyde	0.05 mg/kg	12	SVOC	0 0 to 2 Y		_	ND	2 Y		2	Y	0	95 to 95	1	Y	0			1	Y
	Endrin ketone gamma-Chlordane	0.05 mg/kg	12 0	SVOC	0 2 Y 0 0 Y	77 to 77 1		ND ND	1 Y 1 Y		1 1	Y	0	115 to 115	0	Y	0			0	Y N
	Heptachlor	0.05 mg/kg	12	SVOC	0 0 to 2 Y			ND	2 Y			Y	0	95 to 95	1	Y	0			1	Y
	Heptachlor Epoxide Lindane	0.05 mg/kg 0.05 mg/kg	12 12	SVOC	0 0 to 2 Y 0 0 to 2 Y			ND ND	2 Y 2 Y		2	Y	0	97 to 97 92 to 92	1	Y	0			1	Y
	Methoxychlor	0.2 mg/kg	12	SVOC	0 0 to 2 Y	721072	Y	ND	2 Y		2	Y	0	102 to 102	1	Υ	0			1	Y
	Toxaphene	1 mg/kg	12	SVOC	0 2 Y	0		ND	1 Y		0	N	0		0		0			1	Y
Organophosphorus Pesticides	Chlorpyrifos-methyl	1 %	2	SVOC	2 2 Y	0			0		0	N	0		0		0			0	N
Other	Moisture	0.1 %	13	Other	0 1 to 2 Y	0			0		0	N	0		0		0		44	1	Y
		0.5 "	12	01/00		0			2 Y			Y	_		0		0				Y
Polychlorinated Biphenyls	Aroclor 1016 Aroclor 1221	0.5 mg/kg	0	SVOC	0 0 to 2 Y 0 0 Y		-	ND ND	2 Y 1 Y		1	Y	0		0		0			0	N N
	Aroclor 1232	0.5 mg/kg	12	SVOC	0 0 to 2 Y			ND	2 Y 2 Y		2	Y	0		0		0			1	Y
	Aroclor 1242 Aroclor 1248	0.5 mg/kg 0.5 mg/kg	12 12	SVOC	0 0 to 2 Y 0 0 to 2 Y	0		ND ND	2 Y 2 Y		2	Y	0		0		0			1	Y
	Aroclor 1254	0.5 mg/kg	12	SVOC	0 0 to 2 Y	100 to 100	Y	ND ND	2 Y		2	Y	0	00 40 00	0	V	0			1	Y
	Aroclor 1260 PCBs (Total)	0.5 mg/kg 0.5 mg/kg	12 12	SVOC	0 0 to 2 Y 0 2 Y		T	ND ND	1 Y		0	N N	0	96 to 96	0	T .	0			1	Y
Delvavalia Azemetia I Ivalza sarbana	Aggraphthana	0.5 mg/kg	12	61/00	0 14a2 V			ND	4 V		1	V	0	02 40 02	1	V	0			- 1	
Polycyclic Aromatic Hydrocarbons	Acenaphthene Acenaphthylene	0.5 mg/kg 0.5 mg/kg	12	SVOC	0 1 to 2 Y 0 1 to 2 Y	0		ND ND	1 Y		1	Y	0	93 to 93 92 to 92	1	Y	0			1	Y
	Anthracene Benz(a)anthracene	0.5 mg/kg	12	SVOC	0 1 to 2 Y 0 1 to 2 Y			ND ND	1 Y 1 Y		1	Y	0	87 to 87 110 to 110	1	Y	0			1	Y
	Benzo(a)pyrene	0.5 mg/kg 0.5 mg/kg	12 12	SVOC		130 to 130 1	_	ND ND	1 Y		1	Y	0	100 to 109	1	Y	0			1	Y
	Benzo(a)pyrene TEQ (lower bound)*	0.5 mg/kg	12	SVOC	0 2 Y				0		0	N	0		0		0			1	Υ
	Benzo(a)pyrene TEQ (medium bound)* Benzo(a)pyrene TEQ (upper bound)*	0.5 mg/kg 0.5 mg/kg	12 12	SVOC	0 2 Y 0 2 Y				0		0	N N	0		0	+ + -	0			1	Y
	Benzo(a)pyrene TEQ (WHO)		0	SVOC	0 1 Y	0			0		1	Υ	0		0		0				N
	Benzo(b,j)fluoranthene Benzo(b,k)fluoranthene	0.5 mg/kg	12 0	SVOC	0 2 Y 0 1 Y			ND	0 1 Y		0	N Y	0	83 to 83	0	Y	0			1 0	Y N
	Benzo(g,h,i)perylene	0.5 mg/kg	12	SVOC	0 1 to 2 Y	0		ND ND	1 Y		1	Υ	0	89 to 89	1	Y	0			1	Y
	Benzo(k)fluoranthene	0.5 mg/kg	12	SVOC	0 2 Y 0 1 to 2 Y			ND	0 1 Y			N Y	0	100 to 100	1	Y	0			1	Y
	Chrysene Dibenz(a,h)anthracene	0.5 mg/kg 0.5 mg/kg	12 12	SVOC	0 1 to 2 Y 0 1 to 2 Y			ND	1 Y		1	Y	0	102 to 102 92 to 92	1	Y	0			1	Y
	Fluoranthene	0.5 mg/kg	12	SVOC	0 1 to 2 Y 0 1 to 2 Y	11010110		ND	1 Y		1	Y	0	110 to 110	1	Y	0			1	Y
	Fluorene Indeno(1,2,3-c,d)pyrene	0.5 mg/kg 0.5 mg/kg	12 12	SVOC	0 1 to 2 Y 0 1 to 2 Y			ND ND	1 Y 1 Y			Y	0	99 to 99 93 to 93	1	Y	0			1	Y
	Naphthalene	0.5 mg/kg	24	VOC	0 0 to 2 Y	110 to 110 1		ND	2 Y			Y	0	90 to 90	1	Y	0			2	Y
	PAHs (Total) Phenanthrene	0.5 mg/kg 0.5 mg/kg	12 12	SVOC	0 2 Y 0 1 to 2 Y		_	ND	0 1 Y		1	N Y	0	87 to 87	0	Y	0			1	Y
	Pyrene	0.5 mg/kg	12	SVOC	0 1 to 2 Y	110 to 110 1		ND	1 Y		1	Y	0	124 to 124	1	Υ	0			1	Y
	Total +ve PAHs	+ +	0	SVOC	0 1 Y	0	+		0		1	Y	0		0	+ +	0			0	N
Surrogate	4-Terphenyl-d14	1	0	SVOC	Y				0			N 96 to 128	17	Y	0		0			0	N
	Surrogate 2-fluorobiphenyl Surrogate 4-BFB	+	0	SVOC VOC	Y				0		0	N 79 to 113 N 82 to 100	13 13	Y	0	+ +	0			0	N N
	Surrogate aaa-Trifluorotoluene		0	SVOC	Y	97 to 97 1	Υ		0		0	N 93 to 97	4	Y	0		0			0	N
	Surrogate Dibutylchlorendate Surrogate o-Terphenyl	+	0	SVOC	Y				0			N 95 to 132 N 79 to 99	13 4	N Y	0		0			0	N N
	Surrogate TCMX		0	SVOC	Ý				0		0	N 78 to 128	21	Y	0		0			0	N
TPHs (NEPC 1999)	C10-C14 Fraction	20 mg/kg	12	SVOC	0 1 to 2 Y	86 to 98 2	Y	ND	2 Y		2	Y	0	83 to 83	1	Y	0			1	Y
(2	C10-C36 Fraction (Total)	50 mg/kg	12	SVOC	0 2 Y	0		ND	1 Y		0	N	0	55.15.55	0		0		87	1	N
	C15-C28 Fraction C29-C36 Fraction	50 mg/kg 50 mg/kg	12 12	SVOC	0 1 to 2 Y 0 1 to 2 Y		_	ND ND	2 Y 2 Y		2	Y	0		0	+ +	0			1	Y
	C6-C9 Fraction	20 mg/kg	12	VOC		99 to 99 1		ND	1 Y		1	Ÿ	0		Ő		0			1	Ϋ́

Naphthalene (F2) on on on (FEX (F1)																			l l			
on on on FEX (F1)	50 mg/kg	12	SVOC	0 1 to 2	V	0	,		0		1	Y	0	+		0		0			1	Y
on on TEX (F1)	50 mg/kg	12	SVOC	0 1 to 2	Y 9		Y	ND	2	Υ	2	Y	0		95 to 95	1 Y	,	0			1	Ý
on (FEX (F1)	100 mg/kg	12	SVOC	0 1 to 2			Ý	ND ND	2	Y	2	Ÿ	ő		00 10 00	0		0			1	Ý
TEX (F1)	100 mg/kg	12		0 1 to 2			Y	ND	2	Υ	2	Υ	0			0		0			1	Y
T T	20 mg/kg	12	VOC	0 0 to 2)		0		1	Υ	0			0		0			1	Y
	20 mg/kg	12	VOC	0 0 to 2	Y 9	9 to 99 1	Y	ND	1	Υ	1	Υ	0			0		0			1	Υ
		0	VOC	0 2	Y 9	2 to 92 1	Y	ND	1	Υ	1	Υ	0		0.88 to 85	2 N	I ND	2	Y		0	N
		0	VOC	0 2	Y 9	9 to 99 1	Y	ND	1	Υ	1	Υ	0		0.98 to 94	2 N	I ND	2	Y		0	N
		0	VOC	0 2	Y 8	8 to 88 1	Y	ND	1	Υ	1	Υ	0		0.88 to 83	2 N	I ND	2	Y		0	N
		0	VOC	0 2	Y 10	1 to 101 1	Y	ND	1	Υ	1	Υ	0		1 to 95	2 N	I ND	2	Υ		0	N
		0		0 2		1 to 101 1	Y	ND	1	Υ	1	Υ	0		1.01 to 95	2 N		2	Υ		0	N
		0	VOC	0 2	Y 10	1 to 101 1	Y	ND	1	Υ	1	Υ	0		1 to 95	2 N	I ND	2	Y		0	N
ene		0	SVOC	0 2	Y 10	0 to 100 1	Y	ND	1	Υ	0	N	0			0	ND	1	Υ		0	N
		0		0 2)		0		0	N	0			0	ND	1	Υ		0	N
		0		0 2)		0		0	N	0			0	ND	1	Y		0	N
)		0		0 2)		0		0	N	0			0	ND	1	Y		0	N
		0	Other	0 2)		0		0	N	0			0	ND	1	Y		0	N
		0	Other	0 2	Y)		0		0	N	0			0	ND ND	1	Y		0	N
nic)		0		0 2	Y)		0		0	N	0			0	ND ND	1	Y		0	N
		0		0 2)		0		0	N	0			0	ND	1	Y		0	N
		0	Other	0 2	Y)		0		0	N	0			0	ND	1	Υ		0	N
			67/00	0 0	-	0 to 100		ND	4		_	N		+			ND	-	V			N,
	 	0	SVOC	0 2		0 10 100	Y	ND ND	1	ľ	0	N N	0	+		0	ND ND	1	Y		0	N
		0		0 2			Y	ND ND	1	Y	0	N N	0	+		0	ND ND	1	Y		0	N N
+	1	0	SVOC	0 2			Y	ND ND	1	Y	0	N N	0	+		0	ND ND	1	Y		0	N
+	1	0		0 2			Y	ND ND	1	, V	0	N N	0	+		0	ND ND	1	Y		0	N N
+	1	0		0 2			Y	ND ND	1	Y		N N	0	+		0	ND ND	1	Y	 	0	N N
+	1	0		0 2			Y	ND ND	1	Y	0	N	0	1		0	ND ND	1	Y		0	N
+	1	0		0 2			Y	ND ND	1	Y	0	N N	0	1		0	ND ND	1			0	N
+	†	0	SVOC	0 2			Y	ND ND	1	Y	0	N	0	+		0	ND ND	1	Y		0	N
a		0	SVOC	0 2		0 10 100	Y	ND ND	1	Y	0	N	0			0	ND ND	1	Y		0	N
	1	0		0 2			Ý	ND ND	1	Y	0	N	0	1		0	ND ND	1	Ϋ́	 	0	N
hate		0		0 2			Ý	ND ND	1	Y	0	N	0	<u> </u>		0	ND	1	Ϋ́	+	0	N
	 	0		0 2			Ý	ND ND	1	Y	0	N	0	1		0	ND ND	1			0	N
		0	SVOC	0 2			Ý	ND ND	1	Y	0	N	0			0	ND	1	Y		0	N
		0		0 2			Ý	ND ND	1	Y	0	N	0			0	ND.	1	Y		0	N
		0		0 2			Ý	ND ND	1	Y	0	N	ő			0	ND	1	Ý		0	N
ide		0		0 2			Y	ND	1	Y	0	N	0			0	ND	1	Y		0	N
-		0					Ý	ND	1	Y	0	N	0			0	ND	1			0	N
		0	SVOC	0 2			Y	ND	1	Υ	0	N	0			0	ND	1	Υ		0	N
		0		0 2)	ND	1	Υ	0	N	0			0	ND	1	Y		0	N
											1 1											
		0	SVOC	0 2	Y	0)	ND	1	Υ	0	N	0			0	ND	1	Υ		0	N
		0	SVOC	0 2	Y	C)	ND	1	Υ	0	N	0			0	ND	1	Y		0	N
		0	SVOC	0 2	Υ	C)	ND	1	Υ	0	N	0			0	ND	1	Y		0	N
		0		0 2	Υ	C)	ND	1	Υ	0	N	0			0	ND	1	Y		0	N
		0	SVOC	0 2	Y	0)	ND	1	Υ	0	N	0			0	ND	1	Υ		0	N
		0	SVOC	0 2	Y 7	5 to 75 1	Y	ND	1	Υ	0	N	0			0	ND	1	Υ		0	N
		0	SVOC	0 2	Υ	0)	ND	1	Υ	0	N	0			0	ND	1	Υ		0	N
																						<u> </u>
		0	SVOC	0 2	Y 12	2 to 122 1	Y	ND	1	Υ	1	Υ	0		113 to 113	1 Y	' ND	1	Υ		0	N
		0		0 2		0 10 120	Y	ND	1	Υ	1	Υ	0		117 to 117	1 Y		1			0	N
		0	SVOC	0 2		1 to 111 1	Y	ND	1	Υ	1	Υ	0		104 to 104	1 Y		1	Υ		0	N
ne		0		0 2			Y	ND	1	Υ	1	Υ	0		101 to 101	1 Y		1			0	N
		0		0 2			Y	ND	1	Υ	1	Υ	0		98 to 98	1 Y		1			0	N
nthene		0		0 2			Y	ND	1	Y	1	Y	0		99 to 99	1 Y		1	Y		0	N
lene	1	0		0 2			Y	ND	1	Y	1	Y	0		108 to 108	1 Y		1			0	N
hene	1	0	SVOC	0 2		0 to 120 1	Y	ND ND	1	Y	1	Y	0	+	115 to 115	1 Y		1	Y		0	N
	 	0	SVOC	0 2		3 to 113 1	Y	ND ND	1	Y	1	Y	0	+	111 to 111	1 Y		1	Y		0	N
racene	1	0		0 2		0 10 100	Y	ND ND	1	Y	1	Y	0	-	96 to 96 107 to 107	1 Y		1	Y		0	N N
+	1	0		0 2			Y	ND ND	1	Y	1	Y	0	+	107 to 107 112 to 112	1 Y		1			0	N N
Invrene	1	0	SVOC	0 2		7 to 107 1	· · ·	ND ND	1	Ý	1 1	· ·	0	1	99 to 99	1 1	' ND	1			0	N
)pyrene	 	0		0 2			2 Y	ND ND	2	Y	2	Y	0	+	96 to 119	2 Y		2	Y	 	0	N
		0			Y 10) '	140	0	- 	0	N	0		30 (0 113	0	ND ND	1				N
+	†	0			Y 10		Y	ND	1	Y	1	Y	0	+	101 to 101	1 Y		1			0	N
+	1	0		0 2			Y	ND ND	1	Ÿ	1	Ÿ	0	†	107 to 107	1 Y		1		-		
		Ť		· -			<u> </u>			· •	 	<u> </u>	Ť	1		<u> </u>			† ·			
		0	SVOC	1	Y	0)	1	0		0	N 79 to 79) 1	Y		0		0	1		0	N
		0	SVOC	1	Ϋ́)	i l	0		0	N 79 to 79		Y		0	İ	0	1		0	N
robiphenyl		0	VOC	1	Ϋ́)		0		0	N 70 to 10		N		0	İ	0			0	N
		0	SVOC		Ϋ́)		0		0	N 108 to 10		Y		0		0				N
robiphenyl		0	SVOC		Υ	0			0		0	N 80 to 80		Υ		0		0				
robiphenyl																İ						
robiphenyl B Vlchlorendate		0	SVOC	0 2)		0		0	N	0			0	ND	1	Υ		0	N
robiphenyl B Vlchlorendate		0	SVOC	0 2	Y	0)	<u> </u>	0		0	N	0			0	ND	1	Υ		0	N
robiphenyl 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0	SVOC			0)		0		0	N	0			0	ND				0	N
nobiphenyl		0				0)		0		0	N	0			0	ND				0	N
nobiphenyl s s s s s s s s s s s s s s s s s s s		0	VOC	0 2	Y 9	5 to 95 1	Y	ND	1	Υ	1	Υ	0		91 to 91	1 Y	' ND	1	Υ		0	N
nobiphenyl																						
n (Total)		0		0 2	Y				0		0	N	0			0	ND	1			0	N
robiphenyl s s s s s s s s s s s s s s s s s s s		U		0 2	Y				0		0	N	0			0	ND				0	N
robiphenyl 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9		0							^				0		-	0	ND	1	Υ		0	N
robiphenyl s s s s s s s s s s s s s s s s s s s		0	SVOC	0 2																		
nobiphenyl s s s s s s s s s s s s s s s s s s s		0 0	SVOC SVOC	0 2 0 2	Υ	0)		0		0	N	0			0	ND	1			0	N
robiphenyl s s s s s s s s s s s s s s s s s s s		0	SVOC SVOC VOC	0 2	Y	0		ND ND		Y Y					85 to 85	0	ND ND	1 1 1	Υ		0	
robiphenyl	E		0 0 0	0 SVOC 0 SVOC 0 VOC 0 SVOC	0 SVOC 0 2 0 SVOC 0 2 0 VOC 0 2 0 SVOC 0 2	0 SVOC 0 2 Y 0 SVOC 0 2 Y 0 VOC 0 2 Y 9 0 SVOC 0 2 Y 9 0 SVOC 0 2 Y	0 SVOC 0 2 Y 0 0 0 0 VOC 0 2 Y 0 0 0 VOC 0 2 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SVOC 0 2 Y 0 0 0 0 VOC 0 2 Y 95 to 95 1 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SVOC 0 2 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SVOC 0 2 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SVOC 0 2 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SVOC 0 2 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SVOC 0 2 Y 0 0 0 0 N 0 SVOC 0 2 Y 0 0 0 0 N 0 VOC 0 2 Y 95 to 95 1 Y ND 1 Y 1 Y 1 Y ND 1 Y ND 1 Y ND 1 Y ND 1 Y ND 1 Y ND 1 Y ND N N 0 SVOC 0 2 Y 0 0 0 N N	0 SVOC 0 2 Y 0 0 0 N 0 0 N 0 0 0 N 0 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 0 N 0 N 0 0 N 0 N 0 0 N 0 N 0 0 N	0 SVOC 0 2 Y 0 0 0 N 0 N 0 0 N 0 N 0 0 N 0 N 0 0 N 0 N 0 0 N 0 N 0 0 N 0 N 0 0 N 0 N 0 0 N N 0 N 0 N N 0 N 0 N N 0 N 0 N N 0 N N 0 N N 0 N N 0 N N 0 N N 0 N N N 0 N N N 0 N	0 SVOC 0 2 Y 0 0 0 0 N 0 0 0 N 0 0 0 0 N 0 0 0 0 0	0 SVOC 0 2 Y 0 0 0 0 N 0 0 0 N 0 0 0 0 0 0 0 0 0 0	0 SVOC 0 2 Y 0 0 0 0 N 0 0 N 0 0 ND 0 SVOC 0 2 Y 95 to 95 1 Y ND 1 Y 1 Y 0 95 to 95 1 Y ND 1 Y 1 Y 0 95 to 95 1 Y ND 0 SVOC 0 2 Y 0 0 0 N 0 0 91 to 91 1 Y ND 0 SVOC 0 2 Y 0 0 0 N 0 0 N 0 0 ND 0 SVOC 0 2 Y 0 0 0 N 0 0 N 0 0 ND	0 SVOC 0 2 Y 0 0 0 0 N 0 0 N 0 0 ND 1 0 SVOC 0 2 Y 95to 95 1 Y ND 1 Y 1 Y 0 95to 95 1 Y ND 1 0 SVOC 0 2 Y 0 0 0 N 0 0 N 0 1 Y ND 1 0 SVOC 0 2 Y 0 0 0 N 0 0 N 0 0 ND 1 0 SVOC 0 2 Y 0 0 0 0 N 0 0 N 0 0 ND 1	0 SVOC 0 2 Y 0 0 0 0 N 0 0 N 0 0 ND 1 Y 0 N 0 N 0 ND 1 Y	0 SVOC 0 2 Y 0 0 0 0 N 0 0 N 0 0 ND 1 Y 0 ND 1 Y 0 ND 1 Y 0 ND 1 Y 0 ND 1 Y 0 ND 1 Y 0 ND 1 Y 0 ND 1 Y 0 ND 1 Y 0 ND 1 Y	0 SVOC 0 2 Y 0 0 0 0 N 0 N 0 0 ND 1 Y 0 0 0 0 0 N 0 0 N 0 N 0 N 0 N 0 N 0 N

Project Name: SOPA Site 53 Due Diligence Project Number: 43567 Client: Mirvac

Matrix_Type	Sample_Type	Reg	Leached	Spike_Compounds	Surrogate
SOIL	Normal	1015	0	0	60
SOIL	LAB_D	118	0	0	5
SOIL	MB	107	0	0	5
SOIL	Field_D	84	0	0	5
SOIL	Interlab_D	70	0	0	5
SOIL	LCS	70	0	0	5
SOIL	MS	0	0	44	0
SOIL	NCP	1	0	0	0
WATER	Rinsate	71	0	0	5
WATER	MB	54	0	0	0
WATER	LCS	46	0	0	0
WATER	NCP	26	0	0	0
WATER	LAB_D	26	0	0	0
WATER	MS	0	0	25	0
WATER	Trip_S	6	0	0	1
WATER	Trip_B	6	0	0	1

424326

424326

			SDG Field_ID	424326 RINSATE	424326 TRIP BLANK
			Sampled_Date-Time	7/07/2014	7/07/2014
			Sample_Type	Rinsate	Trip_B
Chem_Group	ChemName	Units	EQL		
BTEX	Benzene	μg/l	1	<1	<1
	Ethylbenzene	μg/l	1	<1	<1
	Toluene	μg/l	1	<1	<1
	Xylene (m & p) Xylene (o)	μg/l μg/l	1	<2 <1	<2 <1
	Xylene (Total)	μg/l	3	<3	<3
	Ayiono (Total)	pg/i		10	,,
Chlorinated Benzenes	Hexachlorobenzene	μg/l	0.1	<0.1	
Metals & Metalloids	Arsenic (Total) (Filtered)	μg/l	1	<1	
	Cadmium (Filtered)	μg/l	0.1	<0.1	
	Chromium (Total) (Filtered) Copper (Filtered)	μg/l μg/l	1	<1 <1	
	Lead (Filtered)	μg/l	1	<1	
	Mercury (Inorganic) (Filtered)	μg/l	0.1	<0.1	
	Nickel (Filtered)	µg/l	1	<1	
	Zinc (Filtered)	µg/l	5	<5	
	, ,				
Organochlorine Pesticides	Aldrin	μg/l	0.1	<0.1	
	alpha-BHC	μg/l	0.1	<0.1	
	beta-BHC	μg/l	0.1	<0.1	
	delta-BHC	μg/l	0.1	<0.1	
	Chlordane	μg/l	1	<1	
	DDD DDE	μg/l μg/l	0.1	<0.1 <0.1	
	DDT	μg/l	0.1	<0.1	
	Dieldrin	μg/l	0.1	<0.1	
	Endosulfan alpha	μg/l	0.1	<0.1	
	Endosulfan beta	μg/l	0.1	<0.1	
	Endosulfan Sulphate	μg/l	0.1	<0.1	
	Endrin	μg/l	0.1	<0.1	
	Endrin aldehyde	μg/l	0.1	<0.1	
	Endrin ketone	μg/l	0.1	<0.1	
	Heptachlor	μg/l	0.1	<0.1	
	Heptachlor Epoxide	μg/l	0.1	<0.1	
	Lindane	μg/l	0.1	<0.1	
	Methoxychlor Toxaphene	μg/l μg/l	0.1	<0.1 <10	
	Тохарпене	μg/ι	10	<u> </u>	
Polychlorinated Biphenyls	Aroclor 1016	μg/l	5	<5	
.,	Aroclor 1232	μg/l	5	<5	
	Aroclor 1242	µg/l	5	<5	
	Aroclor 1248	μg/l	5	<5	
	Aroclor 1254	μg/l	5	<5	
	Aroclor 1260	μg/l	5	<5	
	PCBs (Total)	μg/l	5	<5	
Dalvarralia Aranastia I lundus andra an	A b - b	/1	4	.4	
Polycyclic Aromatic Hydrocarbons	Acenaphthene Acenaphthylene	µg/l µg/l	1	<1 <1	
	Anthracene	μg/l	1	<1	
	Benz(a)anthracene	μg/l	1	<1	
	Benzo(a)pyrene	µg/l	1	<1	
	Benzo(b,j)fluoranthene	μg/l	1	<1	
	Benzo(g,h,i)perylene	μg/l	1	<1	
	Benzo(k)fluoranthene	μg/l	1	<1	
	Chrysene	μg/l	1	<1	
	Dibenz(a,h)anthracene	μg/l	1	<1	
	Fluoranthene	µg/l	1	<1	
	Fluorene Indeno(1,2,3-c,d)pyrene	μg/l	1	<1	
	Naphthalene	μg/l μg/l	1	<1 <20	
	Phenanthrene	μg/l	1	<1	
	Pyrene	μg/l	1	<1	
	PAHs (Total)	μg/l	1	<1	
TPHs (NEPC 1999)	C6-C9 Fraction	μg/l	20	<20	
	C10-C14 Fraction	μg/l	50	<50	
	C15-C28 Fraction	μg/l	100	<100	
	C29-C36 Fraction	μg/l	100	<100	
	C10-C36 Fraction (Total)	μg/l	100	<100	
TPHe (NEDC 2012)	C6-C10 Fraction	ua/I	20	<20	
TRHs (NEPC 2013)	C6-C10 Fraction >C10-C16 Fraction	µg/l	20 50	<20 <50	
		μg/l μg/l	100	<100	
	I>C1b-C34 Fraction				
	>C16-C34 Fraction >C34-C40 Fraction				
	>C34-C40 Fraction >C6 - C10 less BTEX (F1)	μg/l μg/l	100	<100 <100 <20	

SDG

Project Name: SOPA Site 53 Due Dilligence

Project Number: 43567 Client: Mirvac

nt: Mirvac			SDG	424326	424326	
			Field_ID	BH03	QC01	RPD
			Date	7/07/2014	7/07/2014	
Chem_Group	ChemName	Units	EQL			
BTEX	Benzene		0.1 (Primary): 0.2 (Interlab)	<0.1	<0.1	0
	Ethylbenzene Toluene		0.1 (Primary): 1 (Interlab)	<0.1 <0.1	<0.1 <0.1	0
	Xylene (m & p)		0.1 (Primary): 0.5 (Interlab) 0.2 (Primary): 2 (Interlab)	0.4	0.8	0 67
	Xylene (o)		0.1 (Primary): 1 (Interlab)	0.4	0.8	40
	Xylene (Total)	mg/kg		0.5	1.0	67
Chlorinated Benzenes	Hexachlorobenzene		0.05 (Primary): 0.1 (Interlab)	< 0.05	<0.05	0
Metals	Arsenic (Total)		2 (Primary): 4 (Interlab)	3.2	3.4	6
	Cadmium	mg/kg	0.4	<0.4	<0.4	0
	Chromium (Total)		5 (Primary): 1 (Interlab)	9.8	10.0	2
	Copper		5 (Primary): 1 (Interlab)	16.0	16.0	0
	Lead		5 (Primary): 1 (Interlab)	12.0	13.0	8
	Mercury (Inorganic)		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	Nickel		5 (Primary): 1 (Interlab)	8.0	7.3	9
Organochlorine Pesticides	Zinc Aldrin		5 (Primary): 1 (Interlab) 0.05 (Primary): 0.1 (Interlab)	46.0 <0.05	49.0 <0.05	6
Organochionne Pesticides	alpha-BHC		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	beta-BHC		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	delta-BHC		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	Chlordane	mg/kg	, , , , , ,	<0.1	<0.1	0
	DDD	mg/kg	0.05 (Primary): 0.1 (Interlab)	< 0.05	<0.05	0
	DDE		0.05 (Primary): 0.1 (Interlab)	< 0.05	<0.05	0
	DDT		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	Dieldrin		0.05 (Primary): 0.1 (Interlab)	< 0.05	<0.05	0
	Endosulfan alpha		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	Endosulfan beta		0.05 (Primary): 0.1 (Interlab)	<0.05	< 0.05	0
	Endosulfan Sulphate Endrin		0.05 (Primary): 0.1 (Interlab) 0.05 (Primary): 0.1 (Interlab)	<0.05 <0.05	<0.05 <0.05	0
	Endrin aldehyde		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	Endrin ketone	mg/kg		<0.05	<0.05	0
	Heptachlor		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	Heptachlor Epoxide		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	Lindane		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.05	0
	Methoxychlor	mg/kg	0.2 (Primary): 0.1 (Interlab)	<0.2	<0.2	0
	Toxaphene	mg/kg		<1.0	<1.0	0
Polychlorinated Biphenyls	Aroclor 1016		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Aroclor 1232		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Aroclor 1242		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Aroclor 1248 Aroclor 1254		0.5 (Primary): 0.1 (Interlab) 0.5 (Primary): 0.1 (Interlab)	<0.5 <0.5	<0.5 <0.5	0
	Aroclor 1260		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	PCBs (Total)	mg/kg	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	<0.5	<0.5	0
Polycyclic Aromatic Hydrocarbons	Acenaphthene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Acenaphthylene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Benz(a)anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Benzo(a)pyrene		0.5 (Primary): 0.05 (Interlab)	<0.5	<0.5	0
	Benzo(a)pyrene TEQ (lower bound)*	mg/kg		<0.5	<0.5	0
	Benzo(a)pyrene TEQ (medium bound)*	mg/kg		0.6	0.6	0
	Benzo(a)pyrene TEQ (upper bound)*	mg/kg		1.2	1.2	0
	Benzo(b,j)fluoranthene Benzo(g,h,i)perylene	mg/kg	0.5 (Primary): 0.1 (Interlab)	<0.5 <0.5	<0.5 <0.5	0
	Benzo(g,n,i)peryiene Benzo(k)fluoranthene	mg/kg		<0.5	<0.5 <0.5	0
	Chrysene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Dibenz(a,h)anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Fluoranthene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Fluorene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0
	Phenanthrene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
	Pyrene PALIA (Tatal)		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0
TDUe (NEDC 2042)	PAHs (Total)	mg/kg		<0.5	<0.5	0
TRHs (NEPC 2013)	C6-C10 Fraction >C10-C16 Fraction		20 (Primary): 25 (Interlab)	<20.0 <50.0	<20.0 55.0	7 5
	>C10-C16 Fraction >C16-C34 Fraction	mg/kg mg/kg		<50.0 <100.0	130.0	89
	>C34-C40 Fraction	mg/kg		<100.0	<100.0	09
	C6 - C10 less BTEX (F1)		20 (Primary): 25 (Interlab)	<20.0	<20.0	0
	>C10 - C16 less Naphthalene (F2)	mg/kg		< 50.0	55.0	75
*DDD-1	ere a concentration is greater than 4 times th		!			

^{*}RPDs have only been considered where a concentration is greater than 4 times the EQL.

^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 50 (4-10 x EQL); 50 (10-30 x EQL); 50 (> 30 x EQL))
***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the

Project Name: SOPA Site 53 Due Dilligence

Project Number: 43567 Client: Mirvac

nt: Mirvac			SDG	424326	Interlab_D	
			Field_ID	BH03	QC01A	RPD
			Date	7/07/2014	7/07/2014	
Chem_Group	ChemName	Units	EQL			
BTEX	Benzene		0.1 (Primary): 0.2 (Interlab)	<0.1	<0.2	0
	Ethylbenzene		0.1 (Primary): 1 (Interlab)	<0.1	<1.0	0
	Toluene		0.1 (Primary): 0.5 (Interlab) 0.2 (Primary): 2 (Interlab)	<0.1 0.4	<0.5 < 2.0	0 86
	Xylene (m & p) Xylene (o)		0.1 (Primary): 1 (Interlab)	0.4	<1.0	86
	Xylene (Total)	mg/kg		0.5	V1.0	00
Chlorinated Benzenes	Hexachlorobenzene		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
Metals	Arsenic (Total)		2 (Primary): 4 (Interlab)	3.2	<4.0	46
	Cadmium	mg/kg		<0.4	<0.4	0
	Chromium (Total)		5 (Primary): 1 (Interlab)	9.8	9.0	9
	Copper		5 (Primary): 1 (Interlab)	16.0	16.0	0
	Lead		5 (Primary): 1 (Interlab)	12.0	12.0	0
	Mercury (Inorganic)		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Nickel		5 (Primary): 1 (Interlab)	8.0	8.0	0
Overan a blavin a Danticidas	Zinc		5 (Primary): 1 (Interlab)	46.0	43.0	7
Organochlorine Pesticides	Aldrin alpha-BHC		0.05 (Primary): 0.1 (Interlab) 0.05 (Primary): 0.1 (Interlab)	<0.05 <0.05	<0.1 <0.1	0
	beta-BHC		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	delta-BHC		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Chlordane	mg/kg	, , , , , ,	<0.1	VO.1	<u> </u>
	DDD		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	DDE		0.05 (Primary): 0.1 (Interlab)	< 0.05	<0.1	0
	DDT	mg/kg	0.05 (Primary): 0.1 (Interlab)	< 0.05	<0.1	0
	Dieldrin		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Endosulfan alpha		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Endosulfan beta		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Endosulfan Sulphate		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Endrin		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Endrin aldehyde Endrin ketone	mg/kg	0.05 (Primary): 0.1 (Interlab)	<0.05 <0.05	<0.1	
	Heptachlor		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Heptachlor Epoxide		0.05 (Primary): 0.1 (Interlab)	<0.05	<0.1	0
	Lindane		0.05 (Primary): 0.1 (Interlab)	< 0.05	<0.1	0
	Methoxychlor		0.2 (Primary): 0.1 (Interlab)	<0.2	<0.1	0
	Toxaphene	mg/kg		<1.0		
Polychlorinated Biphenyls	Aroclor 1016		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Aroclor 1232		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Aroclor 1242		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Aroclor 1248		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Aroclor 1254 Aroclor 1260		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	PCBs (Total)	mg/kg	0.5 (Primary): 0.1 (Interlab)	<0.5 <0.5	<0.1	0
Polycyclic Aromatic Hydrocarbons	Acenaphthene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
1 Olycyclic Alomatic Hydrocarbons	Acenaphthylene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Benz(a)anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Benzo(a)pyrene		0.5 (Primary): 0.05 (Interlab)	<0.5	<0.05	0
	Benzo(a)pyrene TEQ (lower bound)*	mg/kg		<0.5		
	Benzo(a)pyrene TEQ (medium bound)*	mg/kg		0.6		
	Benzo(a)pyrene TEQ (upper bound)*	mg/kg		1.2		
	Benzo(b,j)fluoranthene	mg/kg		<0.5		
	Benzo(g,h,i)perylene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Benzo(k)fluoranthene Chrysene	mg/kg	0.5 (Primary): 0.1 (Interlab)	<0.5 <0.5	<0.1	0
	Dibenz(a,h)anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Fluoranthene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Fluorene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Indeno(1,2,3-c,d)pyrene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.1	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.1	0
	Phenanthrene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
	Pyrene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.1	0
TRUE (MEDO 2010)	PAHs (Total)	mg/kg		<0.5	27.5	<u> </u>
TRHs (NEPC 2013)	C6-C10 Fraction		20 (Primary): 25 (Interlab)	<20.0	<25.0	0
	>C10-C16 Fraction	mg/kg		<50.0 <100.0	<50.0 200.0	120
	>C16-C34 Fraction >C34-C40 Fraction	mg/kg mg/kg		<100.0 <100.0	<100.0	120
	C6 - C10 less BTEX (F1)		20 (Primary): 25 (Interlab)	<20.0	<25.0	0
	>C10 - C16 less BTEX (FT)	mg/kg		<50.0	<50.0	0
*555	ere a concentration is greater than 1 times th		<u> ~~</u>	~00.0	~00.0	

^{*}RPDs have only been considered where a concentration is greater than 4 times the EQL.

^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 50 (4-10 x EQL); 50 (10-30 x EQL); 50 (> 30 x E ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row he primary laboratory

Project Name: SOPA Site 53 Due Diligence

Project Number: 43567 Client: Mirvac

SDG	Sample_Type	Dupe_Field_ID	Dupe_SampleCode	Parent_SampleCode	Problem
424326	LAB_D		NCP_Jl06714_424326-DUP	NCP_JI06714_424326	No Data in Parent Sample
424326	LAB_D		NCP_Jl06715_424326-DUP	NCP_JI06715_424326	No Data in Parent Sample
424326	LAB_D		NCP_Jl06714_424326-DUP	NCP_JI06714_424326	No Data in Duplicate Sample
424326	LAB_D		NCP_JI06715_424326-DUP	NCP_JI06715_424326	No Data in Duplicate Sample

Project Name: SOPA Site 53 Due Diligence Project Number: 43567 Client: Mirvac

SDG	Sample_Type	Matrix_Type	SampleCode	Field_ID	Depth	Sampled_Date-Time	Compound	Recovery %	Unit	LCL	UCL	QA_Flag	Comments
424326	Normal	SOIL	S14-JI06921	BH11	0 - 0.1	7/07/2014	Dibutylchlorendate (surr.)	132	%	70	130		

© JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Distribution

Rev No.	Copies	Recipient	Date:
А	1 x electronic	Graham Cooper Mirvac Developments Pty Ltd Email: graham.cooper@mirvac.com	16/07/2014

Document Status

Rev No.	Author	Reviewer	Approved for Issue				
		Name	Name	Signature	Date		
А	Michelle Battam	Matthew Bennett	Matthew Bennett	Client Review	16/07/2014		