

Stormwater Management Plan Wenona School, 255-265 Miller St North Sydney

for APP Corporation

11 June 2015

141211

Taylor Thomson Whitting (NSW) Pty Ltd Consulting Engineers ACN 113 578 377 48 Chandos Street St Leonards NSW 2065 PO Box 738 Crows Nest 1585 T 61 2 9439 7288 F 61 2 9439 3146 ttwsyd@ttw.com.au www.ttw.com.au

This document is copyright and is the property of Taylor Thomson Whitting (NSW) Pty Ltd and must not be used without authorisation. © 2015 Taylor Thomson Whitting

TABLE OF CONTENTS

Sect	tion	Page
1.0	INTRODUCTION	3
1.1	SITE LOCATION	3
2.0	STORMWATER CONCEPT DESIGN	4
2.1	NORTH SYDNEY COUNCIL STORMWATER DISPOSAL CONSULTATION	4
2.2	STORMWATER DETENTION	4
2.3	WATER SENSITIVE URBAN DESIGN	5
2.4	SEDIMENT. EROSION AND DUST CONTROLS	6

APPENDIX A – OSD TANK SIZING CALCULATION

APPENDIX B - CIVIL CONCEPT DESIGN DRAWINGS

1.0 INTRODUCTION

This Stormwater Concept report has been prepared on behalf of Wenona School, the proponent for Wenona School's Project Archimedes. It accompanies an environmental impact statement (EIS) prepared in support of State Significant Development Application for the redevelopment of the Wenona Project.

A Concept Proposal has been prepared for the site by TZG architects.

The development site as highlighted in Figure 1.0 involves the demolition of existing childcare centre at 263 Miller St and the existing office building at 265 Miller St to facilitate the construction of a new 6 storey (3 storeys above Miller Street) education establishment.

A new pedestrian overpass crossing Elliot Street providing an improved link into the main senior campus is proposed. Minor alterations and addition to the existing Miller Street campus building 255 Miller Street is also proposed.

1.1 Site Location

The development site is located in North Sydney with Miller Street to the west and Elliot Street to the east – refer figure 1.

Figure 1 – Development Site Location Map

2.0 STORMWATER CONCEPT DESIGN

2.1 North Sydney Council Stormwater Disposal Consultation

TTW have liased with North Sydney Council's Development Engineer to confirm their stormwater disposal requirement. North Sydney Council have confirmed that an On-site detention (OSD) system is required.

Our consultation with Council confirms the following OSD system requirements:

- OSD system to limit the post-development discharge rates to less than or equal the permissible site discharge (PSD) rate.
- The PSD is based on 5-minute, 5-year Average recurrence Interval (ARI) storm event during the pre development scenario refer section 2.2 below for details.

2.2 Stormwater Detention

A catchment area for the development was calculated to be 1,400 m² based on the architectural scheme.

The existing impervious fraction for this area is 67% - refer figure 2 for schematic plan.

Figure 2 – Existing impervious area

Based on the existing impervious fraction of 67%, our PSD estimation is 46.3l/s. Refer table 1.0 below for calculation.

PSD Flows	PSD Flows - Wenona School												
141211													
C* ₁₀ =	0.56018												
Fy=	0.95												
ARI =	5	years											
I _{6min} =	159	mm/hr											
Pit	Area	% Impervious	С	Pit Inflow									
				_									
1	1400	67%	0.75	46.3									

Table 1.0: PSD estimation

The OSD storage requirement has been estimated using the Mass Curve Analysis in accordance with Australian Rainfall Runoff (AR&R) (institution of Engineers Australia) 1987.

Our estimation shows the site is required to provide **32cu.m minimum** of storage with a PSD of 46.3 l/s up to and including the 100-year ARI storm events. The minimum OSD storage and PSD requirements have been agreed upon by TTW and North Sydney Council during the consultation process in March 2015. Refer to **Appendix A** for calculation.

The OSD tank system is proposed under the driveway ramp off Elliot Street as shown in our drawing **C02-P1 in Appendix B** of this report. The site's OSD system's outlet is proposed to connect to North Sydney Council's underground stormwater pipe system in Elliot Street. An overland flowpath is provided in an storm event beyond the OSD system capacity or when the system is blocked.

2.3 Water Sensitive Urban Design\

North Sydney Development Control Plan 2013 objective as per section 18.2.1 O2 states: "To reduce stormwater discharge and improve stormwater quality through the incorporation of Water Sensitive Urban Design (WSUD) on-site."

The proposed development includes OSD tank and rainwater re-use scheme. With these WSUB measures the post development water quality is better than the pre-development scenario.

2.4 Sediment, Erosion and Dust Controls

Construction works are to be carried out in accordance with the "Blue Book" erosion and sediment control requirements. The controls will depend on construction staging and methodology, but will most likely include sediment fences, sandbags around pits and a vehicle wash down. An erosion and sediment control plan has been prepared as part of the schematic design drawings. Refer **Appendix B** for details..

Prepared by: TAYLOR THOMSON WHITTING (NSW) PTY LTD

Nemesio Biason Associate

P:\2014\1412\141211\Reports\TTW\150611_Stormwater Report.doc

APPENDIX A

OSD tank Calculation

PSD Flows - Wenona School												
141211												
C* ₁₀ =	0.56018											
Fy=	0.95											
ARI =	5	years										
I _{6min} =	159	mm/hr										
Pit	Area	% Impervious	С	Pit Inflow								
1	1400	67%	0.75	46.3								

Mass Curve Detention Analysis

Name and Location

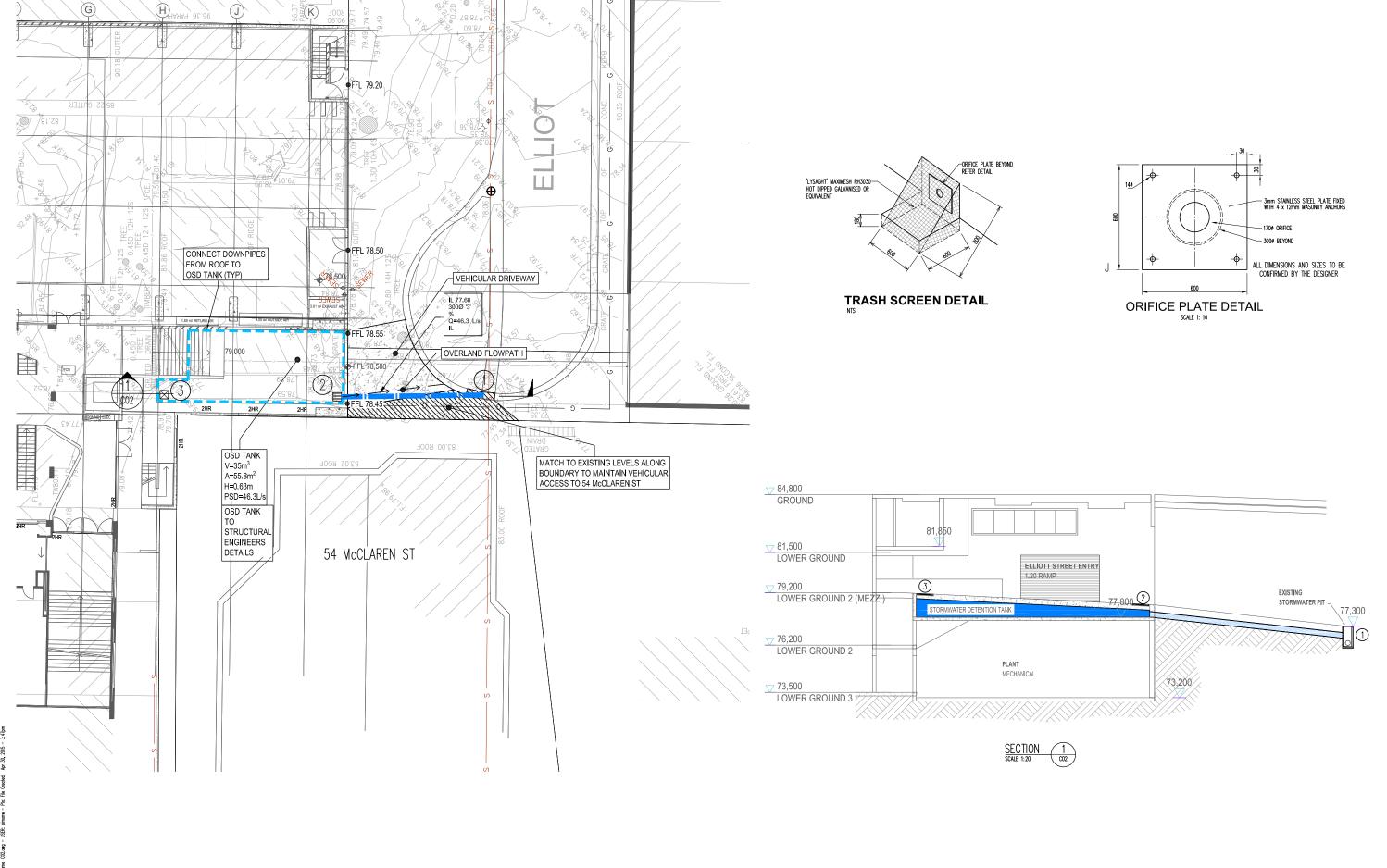
Catchment Area = 1400 sq.m

Time of concentration = 6
Runoff Coefficient = 1

 ARI =
 100 years

 Discharge rate =
 0.0463 cu.m/s

	10	Minute	Cumulative	Allowable	Storage	15	Minute	Cumulative	Allowable	Storage	20	Minute	Cumulative	Allowable	Storage	25	Minute	Cumulative	Allowable	Storage
	I mm	Volume	Volume	Discharge	Required	I mm	Volume	Volume	Discharge	Required	I mm	Volume	Volume	Discharge	Required	I mm	Volume	Volume	Discharge	Required
Time	209.0	cu.m	cu.m	cu.m	cu.m	184.0	cu.m	cu.m	cu.m	cu.m	159	cu.m	cu.m	cu.m	cu.m	146	cu.m	cu.m	cu.m	cu.m
0	238	28	28	14	14	177	21	21	14	7	121	14	14	14	0	124	14	14	14	1
5	180	21	49	28	21	276	32	53	28	25	273	32	46	28	18	204	24	38	28	11
10			49	42	7	99	12	64	42	23	191	22	68	42	27	285	33	72	42	30
15			49	49	0			64	56	9	51	6	74	56	19	66	8	79	56	24
20			49	49	0			64	64	0			74	69	5	51	6	85	69	16
25								64	64	0			74	74	0			85	83	2
30								64	64	0			74	74	0			85	85	0
35								64	64	0			74	74	0			85	85	0
40													74	74	0			85	85	0
45													74	74	0			85	85	0
50																		85	85	0
55																				
60																				
65																				
70																				
75																				
80																				
85																				
90																				
95																				
100																				
105																				
110																				
115																				


	30 Minute	Cumulative	Allowable	Storage	-	45 Minute	Cumulative	Allowable	Storage	6	0 Minute	Cumulative	Allowable	Storage		90 Minute	Cumulative	Allowable	Storage	120	Minute	Cumulative	Allowable	Storage
I mn	n Volume	Volume	Discharge	Required	I mm	Volume	Volume	Discharge	Required	I mm	Volume	Volume	Discharge	Required	I mm	Volume	Volume	Discharge	Required	l mm	Volume	Volume	Discharge	Required
133	cu.m	cu.m	cu.m	cu.m	113	cu.m	cu.m	cu.m	cu.m	92.8	cu.m	cu.m	cu.m	cu.m	77	cu.m	cu.m	cu.m	cu.m	61.5	cu.m	cu.m	cu.m	cu.m
128	15	15	14	1	49	6	6	6	0	43	5	5	5	0	44	5	5	5	0	32	4	4	4	0
200	23	38	28	10	144	17	23	20	3	78	9	14	14	0	82	10	15	15	0	78	9	13	13	0
263	31	69	42	27	251	29	52	33	18	187	22	36	28	8	202	24	38	29	10	46	5	18	18	0
72	8	77	56	22	186	22	74	47	26	134	16	52	42	10	114	13	52	42	9	72	8	27	27	0
88	10	88	69	18	97	11	85	61	24	258	30	82	56	26	144	17	68	56	12	142	17	43	41	3
48	6	93	83	10	118	14	99	75	23	112	13	95	70	25	291	34	102	70	32	77	9	52	52	0
		93	93	0	76	9	107	89	18	99	12	106	84	23	75	9	111	84	27	266	31	83	66	17
		93	93	0	62	7	115	103	12	63	7	114	98	16	73	9	120	98	22	183	21	105	80	25
		93	93	0	34	4	119	117	2	53	6	120	111	9	61	7	127	112	15	83	10	114	94	20
		93	93	0			119	119	0	35	4	124	124	0	43	5	132	126	6	46	5	120	108	12
		93	93	0			119	119	0	29	3	127	127	0	60	7	139	139	0	49	6	125	122	4
		93	93	0			119	119	0	21	2	130	130	0	47	5	144	144	0	62	7	132	132	0
							119	119	0			130	130	0	29	3	148	148	0	63	7	140	140	0
							119	119	0			130	130	0	33	4	152	152	0	31	4	143	143	0
							119	119	0			130	130	0	30	4	155	155	0	32	4	147	147	0
												130	130	0	18	2	157	157	0	50	6	153	153	0
															21 18	2	160 162	160 162	0	28 18	ა ე	156 158	156 158	0
															10	2	162	162	0	15	2	160	160	0
																	162	162	0	34	2			0
																	102	102	U	3 4	4	164	164 166	0
																				13 19	2	166 168	166 168	0
																				19	2	100	100	U

Storage Required = 32 cu.m

	PLATE ORIFICE SIZING													
Wenon	Wenona School													
141211														
	1	2												
width =	3.2	2.0												
length =	3.6	2.0												
height	storage	discharge	o'flow		d=	0.16442	m							
0.630		0.04628	0					170	mm dia orifice					
D l	0.04.0.1	- \ a0.5												
Based on (Q = CA (2gl	1) ^{/١٥.٥}												

APPENDIX B

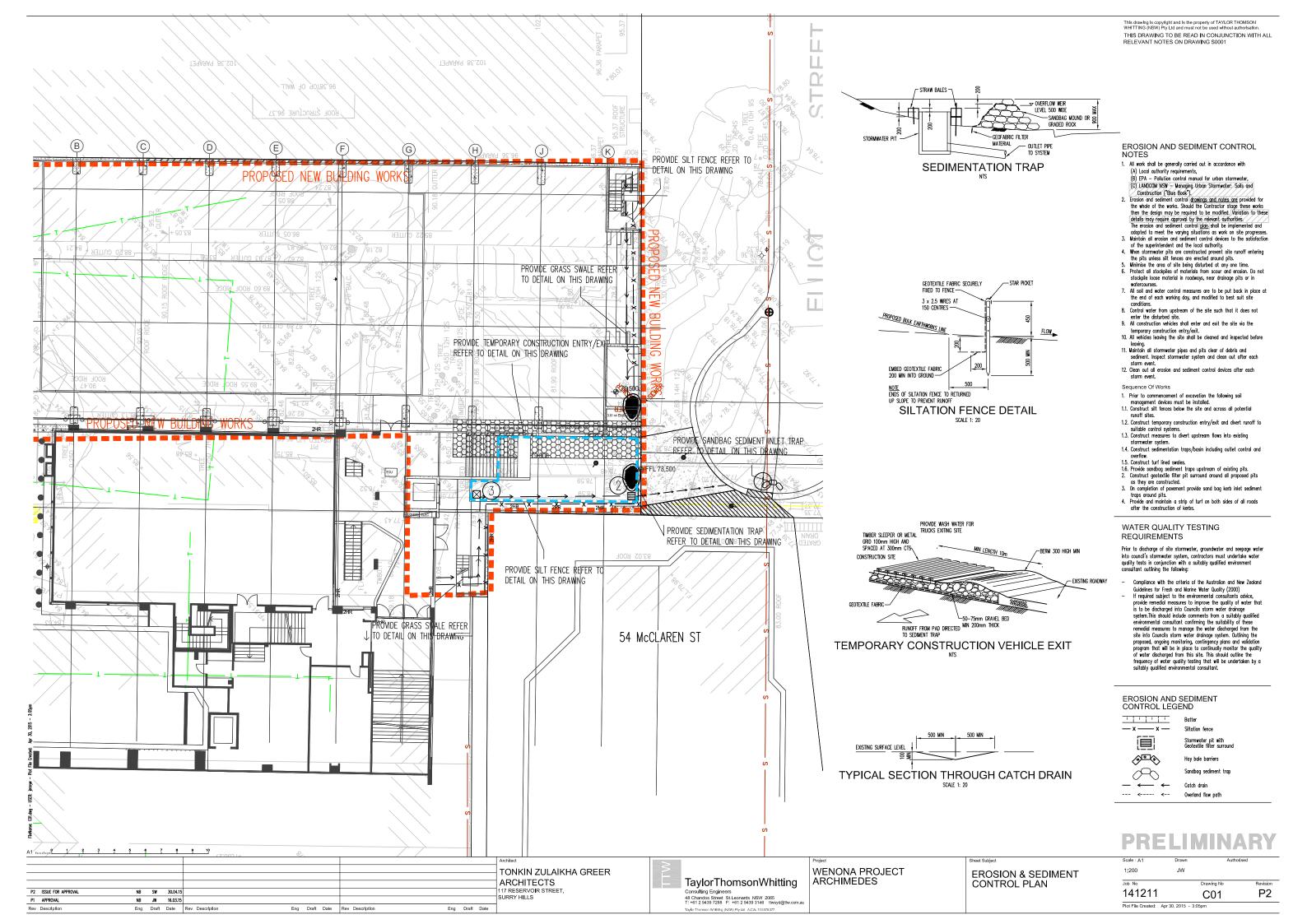
- Stormwater Concept Plan
 - Erosion & Control Plan

PRELIMINARY

P1

TONKIN ZULAIKHA GREER
ARCHITECTS
117 RESERVOIR STREET,
SURRY HILLS

TaylorThomsonWhitting
Consulting Engineers
48 Chandos Street St.Leonards NSW 2065
1: +61 25493 7268 F: +61 29439 3146 tinveyd@thw.com.


WENONA PROJECT ARCHIMEDES STORMWATER CONCEPT PLAN Scale: A1 Drawn Authorise

1:200 JW

Job No Drawling No

141211 C02

Plot File Created: Apr 30, 2015 - 3:47pm

